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EPIGRAPH

. . . every mind is shaped by its own experiences and memories and knowledge, and what

makes it unique is the grand total and extremely personal nature of the collection of all

the data that have made it what it is. Each person possesses a mind with powers that are,

whether great or small, always unique, powers that belong to them alone. This renders

them capable of carrying out a feat, whether grandiose or banal, that only they could

have carried out.

from The Literary Conference by César Aira
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Chapter 1

Every Choice Correspondence is
Backwards-Induction Rationalizable

Abstract: We extend the result from [BS13] that every single-valued choice

function is backwards-induction rationalizable via strict preferences to the case of choice

correspondences via weak preferences.

1



2

1.1 Introduction

[BS13] define a choice function on the outcomes of an extensive-form game as

backwards-induction rationalizable “if there exists a finite perfect-information extensive-

form game such that, for each subset of alternatives of the extensive-form game, the

backwards-induction outcome of the restriction of the game to that subset of alternatives

coincides with the choice from that subset.” [BS13] then prove that for finite-alternative

extensive-form perfect-information games, every choice function is backwards-induction

rationalizable via strict preference relations. One easily finds this unique backwards-

induction outcome using the backwards-induction algorithm developed in [Kuh53] for

finite extensive-form games with strict preferences.

Some examples of choice functions studied by [BS13] on the set of alternatives

A = {1,2,3} are given by f1 and f2 in Figure 1. These examples show that choice

functions which are backwards-induction rationalizable can be irregular as both f1 and

f2 violate property α of [Sen70]. In particular, the choice function f2 chooses alternative

3 from the universal set although it is never chosen from any pair of alternatives which

would be irregular. However, Bossert and Sprumont do not allow weak preferences and

do not consider choice correspondences. The purpose of this note is to establish that

all choice correspondences are backwards-induction rationalizable via weak preference

relations. The choice correspondences which are backwards-induction rationalizable can

also be irregular as seen by the choice correspondences f3 and f4 in Figure 1. The choice

correspondences are irregular since f3 violates property α and f4 violates properties α

and β as defined in [Sen70].

This paper contributes to a growing literature which seeks to identify the testable

aspects of joint decision making when preferences are unobserved. Some relevant litera-

ture includes [Spr00] and [Gal05] which examine choice functions and Nash equilibria
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of normal-form games. [RZ01] and [RS03] study Nash equilibria and sub-game perfect

equilibria on extensive-form games. [Lee12] uncovers the empirical conditions which are

unique to zero-sum games. Lastly, [BS13] and [XZ07] examine when choice functions

can be rationalized by an extensive-form game.

B f1 f2 f3 f4

{1,2} 1 1 {1,2} {1,2}
{1,3} 3 1 1 {1,3}
{2,3} 2 2 2 2
{1,2,3} 1 3 3 3

Figure 1.1. Examples of the three-alternative case

1.2 Definitions

Presented here are the relevant definitions from [BS13]. First, let A = {1, . . . ,a}

be the universal set of alternatives. The power set of A excluding the empty set is denoted

by P(A). A choice correspondence f on a set of alternatives A = {1, . . . ,a} is a mapping

f : P(A)⇒ A such that for every B ∈P(A), one has that f (B)⊂ B and f (B) 6= /0 where

“⊂” denotes weak set inclusion. Here we focus on choice correspondences which are

defined for all subsets of the universal set.

A binary relation � on a set X is complete if for all x,y ∈ X , x � y or y � x. It

is transitive if for all x,y,z ∈ X , [x� y and y� z] implies x� z. It is asymmetric if for

all x,y ∈ X , x � y implies that y � x does not hold. Finally, it is antisymmetric if for

all x,y ∈ X , [x� y and y� x] implies that x = y. Let � be a transitive and asymmetric

precedence relation on a non-empty and finite set N. We say that n ∈ N is an immediate

predecessor of n′ ∈ N if n≺ n′ and there does not exist an n′′ ∈ N such that n≺ n′′ ≺ n′.

Similarly, we say that n ∈ N is an immediate successor of n′ ∈ N if n′ ≺ n and there does

not exist an n′′ ∈ N such that n′ ≺ n′′ ≺ n. The set of immediate predecessors of a node
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n ∈ N is denoted P(n). The set of immediate succesors of a node n ∈ N is denoted S(n).

A tree, Γ, is given by a quadruple (0,D,T,≺) where:

(1) 0 is the root;

(2) D is a finite set of decision nodes such that 0 ∈ D;

(3) T is a non-empty and finite set of terminal nodes such that D∩T = /0;

(4) ≺ is a transitive and asymmetric precedence relation on N = D∪T such that:

(4.i) |P(0)|= 0 and |S(0)| ≥ 1;

(4.ii) ∀n ∈ D\{0}, |P(n)|= 1 and |S(n)| ≥ 1;

(4.iii) ∀n ∈ T, |P(n)|= 1 and |S(n)|= 0.

When considering a tree Γq = (0q,Dq,Tq,≺q), we use the notation Nq for the set

of nodes in Γq and Pq(n) and Sq(n) for the sets of immediate predecessors and immediate

successors of n ∈ Nq. We also say that a path in Γ from a decision node n ∈ D to a

terminal node n′ ∈ T (of length K ∈N) is an ordered (K+1)-tuple (n0, . . . ,nK) ∈N|K+1|

such that n = n0 , {nk−1}= P(nk) for all k ∈ {1, . . . ,K}, and nK = n′.

A game on the set of outcomes A = {1, . . . ,a} is a triple G = (Γ,g,R) where:

(1) Γ is a tree;

(2) g : T → A a function such that, for all n ∈ T , g(n) ∈ A;

(3) R : D→RA is a preference assignment map which assigns a complete and transitive

preference relation to each decision node, where RA is the set of orderings on A.

We use the notation (Γq,gq,Rq) for a game Gq. Let G be a game on A. For

any B ∈P(A) such that B ⊂ g(T ), the restriction of G to B is the game G|B = Gr =

(Γr,gr,Rr) on the set of alternatives B such that:

(1) 0r = 0;

(2) Dr = {n ∈ D | there exists n′ ∈ g−1(B) and a path in Γ from n to n′};
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(3) Tr = g−1(B);

(4) ≺r is the restriction of ≺ to Nr = Dr∪Tr;

(5) gr is the restriction of g to Tr;

(6) Rr : Dr→RB is a restricted preference assignment map of R, where RB is the set of

orderings on B.

An example of a game G on a set A = {1,2,3,4} that has the restricted game

G′ = G|B where B = {1,3} is shown in Figure 2. In this game arrows point from terminal

nodes to their corresponding outcome for a given outcome function and the preference

relations are omitted in the figure.

1 2 3 1 3 4

D

T

g(T ) 1 3 1 3

D′

T ′

g′(T ′)

Figure 1.2. A game on A = {1,2,3,4} restricted to B = {1,3}

Next, we denote max(B; R̃) to be the set of best elements in B ∈P(A) according

to the complete and transitive preference relation R̃ ∈ RB. For a game G and each

decision node n ∈ D , we denote en(G) as the set of backwards-induction outcomes of

the subgame rooted at n. This set of outcomes is defined in the expected way where we

first set en(G) = g(n) for all n ∈ T . Then we recursively define en(G) = max({en′(G) |

n′ ∈ S(n)};R(n)) for all n ∈D. We simplify the notation e0(G) to e(G). Note that the set

of backwards-induction outcomes for any subgame of G (including G itself) exists since

G is a finite-alternative perfect-information game. Similarly, for every B ∈P(A), the set

of backwards-induction outcomes for G|B is also well defined.
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Now we extend the definition of backwards-induction rationalizability from

[BS13] to correspondences in a natural way. A choice correspondence f on A is

backwards-induction rationalizable if there exists a game G on A such that f (B) = e(G|B)

for all B ∈P(A). We say then that G is a backwards-induction rationalization of f or

that G backwards-induction rationalizes f .

1.3 Result

While the proof of the main result that follows is heavy in notation, the idea

is very simple. First, from [BS13] we know that for any choice functions f and g on

some set of finite alternatives A we can create extensive-form games F and G with strict

preferences which backwards-induction rationalize f and g respectively. Now, we can

create a new root node which exhibits complete indifference between the full set of

alternatives in A and then append the games F and G to the root node to create a new

extensive-form game. This new extensive-form game includes the backwards-induction

rationalizable outcomes from f and g and backwards-induction rationalizes the choice

correspondence f ∪g. We can repeat this process with any finite number of functions

{hi}m
i=1 to generate larger correspondences. With this intuition in mind, we proceed to

the statement and proof of the main result.

Theorem 1. Every choice correspondence is backwards-induction rationalizable.

Proof. Let A = {1, . . . ,a} be a finite set of alternatives and P(A) be the power set of

alternatives not including the empty set. Let f : P(A)⇒ A be a correspondence such

that for all B ∈P(A), f (B)⊂ B and f (B) 6= /0.

Then for each set B ∈P(A), let f (B) = {b1, . . . ,b| f (B)|}. Now, let

m=maxB∈P(A)}{| f (B)|}. Then construct the following m functions fk for k∈{1, . . . ,m}
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to be defined on each B ∈P(A) as follows. For a given B, if k < | f (B)| then let

fk(B) = bk. If k ∈ {| f (B)|, . . . ,m} let fk(B) = b| f (B)|.

We now have for each B ∈P(A) that
⋃m

k=1 fk(B) =
⋃| f (B)|

k=1 {bk}= f (B). There-

fore, f =
⋃m

k=1 fk. We claim that f is backwards-induction rationalizable. From [BS13],

one has that each fk is backwards-induction rationalizable by an extensive-form game

Gk = (Γk,gk,Rk) with a tree Γk = (0k,Dk,Tk,≺k) where Rk is a preference mapping

which assigns strict (antisymmetric) preference relations on nodes in Dk. We also ex-

tend all mappings so that ≺k (n) = /0 for n /∈ Dk, gk(n) = /0 for n /∈ Tk, and Rk(n) = /0

for n /∈ Dk. Now let 0 f be a new node and assign to it the universal indifference re-

lation R0 on A. Also, define a precedence relation ≺0 which assigns 0 f as the unique

immediate predecessor of 0k for all k ∈ {1, . . . ,m} and the empty set otherwise. We

then define D f = {0 f }∪(
⋃m

k=1 Dk), Tf =
⋃m

k=1 Tk,≺ f=
⋃m

k=0 ≺k, and the associated tree

Γ f = (0 f ,D f ,Tf ,≺ f ). Lastly, define g f =
⋃m

k=1 gk, R f =
⋃m

k=0 Rk, and the extensive-form

game associated with the tree Γ f as G f = (Γ f ,g f ,R f ).

Now notice for the extensive-form game G f , any set of alternatives B ∈P(A),

and for all k ∈ {1, . . . ,m} that e0k(G f |B) = bk since the subgame rooted at 0k is just a

finite-alternative extensive-form game with strict preferences. For all k ∈ {1, . . . ,m},

e0k(G f |B) = bk ∈ e(G f |B) since the preference relation R0 at the root node 0 f exhibits

complete indifference. Therefore, e(G f |B) =
⋃m

k=1 e0k(G f |B) =
⋃| f (B)|

k=1 {bk}= f (B) from

our construction. Since this holds for all B∈P(A) the game G f is a backwards-induction

rationalization of the choice correspondence f =
⋃m

k=1 fk. Therefore, f is backwards-

induction rationalizable.
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1.4 Conclusion

We have shown that the result from [BS13] that every choice function is

backwards-induction rationalizable via strict preferences can easily be extended to choice

correspondences with weak preferences by a simple constructive procedure. From the

construction, we also note that this result immediately applies to the case when the choice

correspondence takes a subset of choice sets as the domain. It is interesting to note that

the games which backwards-induction rationalize a choice correspondence only require a

single node exhibiting indifference regardless of the choice correspondence.

Chapter 1, in full, is a reprint of the material as it appears in Games and Economic

Behavior, 2014, Rehbeck, John. The dissertation author was the primary investigator and

author of this paper. The copyright of this article is held by Elsevier.



Chapter 2

Menu-Dependent Stochastic Feasibility

Abstract: We examine the role of stochastic feasibility in consumer choice using

a random conditional choice set rule (RCCSR) and uniquely characterize the model

from conditions on stochastic choice data. Feasibility is modeled to permit correlation

in availability of alternatives. This provides a natural way to examine substitutabil-

ity/complementarity. We show that an RCCSR generalizes the random consideration

set rule of [MM14a]. We then relate this model to existing literature. In particular, an

RCCSR is not a random utility model.

9
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2.1 Introduction

We investigate the role of stochastic feasibility in consumer choice. Consider a

researcher with scanner data on a consumer’s purchases from repeated visits to grocery

stores. In addition, each store supplies the researcher with the list of offered alternatives.

However, there is random variation of alternatives that are available to consumers that is

unknown to the researcher. For example, the researcher may not know if a delivery is

delayed, food is spoiled, or some alternatives are out of stock.1 In each case, a rational

consumer’s choices will depend on the available alternatives. Therefore, random variation

in feasibility causes a rational consumer’s choices to appear stochastic to the researcher.

Hence, stochastic feasibility induces a stochastic choice function.2

The events mentioned above may cause correlation in availability of alternatives.

For example, a delivery truck carrying meat and dairy may be delayed, a disease can

spoil certain fruits, and stock-outs may depend on similar products being offered. When

feasibility is driven by stock-outs, correlation provides a natural way to discuss substi-

tutability/complementarity.3 For example, we say two alternatives are substitutes if there

is negative correlation in feasibility because one alternative is less likely to be available

in the presence of the other.4

We model stochastic feasibility using a Random Conditional Choice Set Rule

(RCCSR). An RCCSR assumes the agent has deterministic preferences while feasibility

is driven by an exogenous stochastic process. In particular, the probability of a particular

set being feasible is conditioned on the offered menu. This feature permits correlation in

availability which facilitates discussion of substitutability/complementarity. We model

1This could also be a limited attention model where the researcher does not know the subset of
alternatives the consumer considered.

2We are grateful to Doron Ravid for suggesting this interpretation.
3See [MMÜ15] for a discussion on the appeal of using correlation to identify substitutes/complements.
4If feasibility is driven by consideration, correlation captures substitutability/complementarity of their

consideration.
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the possibility that the feasible set is empty with a default option. We show that an

RCCSR is uniquely characterized from conditions on stochastic choice data (Theorem 2).

Further, we demonstrate how an RCCSR generalizes the random consideration set rule

of [MM14a] (henceforth MM) and provide a new characterization (Theorem 4).

The rest of the paper proceeds as follows: Section 2.2 introduces notation and

defines an RCCSR. Section 2.3 uniquely characterizes an RCCSR using conditions on

stochastic choice data. Section 2.4 demonstrates how an RCCSR differs from existing

models.

2.2 Definitions and notation

Let X be a non-empty finite set of alternatives and D a domain of menus which

are subsets of X . We assume that the domain satisfies the following richness condition:

{a,b} ∈ D for all distinct a,b ∈ X and B ∈ D whenever A ∈ D and B ⊆ A.5 Let the

default option option be x∗ /∈ X . The default option is available for each menu and can be

interpreted as choosing nothing or not choosing from a particular class of alternatives.6

We use the notation X∗ = X ∪{x∗} and A∗ = A∪{x∗} for all A ∈D .

Definition 1. A random choice rule is a map P : X∗×D→ [0,1] such that: for all A ∈D ,

∑a∈A∗ P(a,A) = 1; for all a /∈ A∗, P(a,A) = 0; and for all A ∈ D \ /0, for all a ∈ A∗,

P(a,A) ∈ (0,1).

In the above definition, P(a,A) is the probability that alternative a is chosen from

A∗. When the menu is empty, the default option x∗ is always chosen, so P(x∗, /0) = 1. For

all A ∈D and B⊆ A∗, we denote P(B,A) = ∑b∈B P(b,A).

5This domain assumption captures two important special cases: classical stochastic choice framework
and classical binary stochastic choice.

6Outside of an experimental study, it may be difficult to observe a consumer “choosing” nothing. This
can be ameliorated if one is interested in consumer choice within a class of alternatives. For example, if
the researcher is concerned about the purchase of fruit, the default option could be interpreted as “did not
buy fruit”.
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We investigate the behavior of an agent whose preferences are given by a strict

total ordering � on X .7 For any A ∈ D , we denote the set of feasible alternatives as

F(A)⊆ A. We call F(A) the feasible set. An agent’s choice is made by maximizing �

over alternatives in F(A). We allow F(A) to be empty, in which case the agent chooses

the default option x∗. Therefore, P(x∗,A) is the probability that F(A) is empty.

For a random conditional choice set rule (RCCSR), we consider a full support

probability distribution π on D . Thus, there is a positive probability each A ∈ D is

feasible.8 When D = 2X , π(A) represents the probability that A is feasible in X . For a

menu A, the probability of facing the feasible set B⊆ A is

Pr(F(A) = B) =
π(B)

∑C⊆A π(C)
.

If B is not a subset of A, then Pr(F(A) = B) = 0. Thus, the probability of facing a

given feasible set is conditioned on the offered menu.9 For a menu A ∈D and a ∈ A, let

Aa = {B⊆ A | a ∈ B and ∀b ∈ B\{a} a� b}. Aa is the set of subsets of A where a is the

most preferred alternative. We now formally define an RCCSR.

Definition 2. A random conditional choice set rule (RCCSR) is a random choice rule

P�,π for which there exists a pair (�,π), where � is a strict preference ordering on X

and π : D → (0,1) a full support probability distribution over D , such that for all A ∈D

and for all a ∈ A

P�,π(a,A) =
∑B∈Aa π(B)
∑C⊆A π(C)

.

7 A strict total ordering is an asymmetric, transitive, and weakly connected binary relation. A binary
relation � on a set X is asymmetric if for all x,y ∈ X , x� y implies that y� x does not hold. The relation
� is transitive if for all x,y,z ∈ X , [x� y and y� z] implies x� z. The relation � is weakly connected if
for all a,b ∈ X such that a 6= b, then a� b or b� a.

8We find this condition reasonable for the feasibility interpretation. However, this is hardly defensible
for consideration sets. We refer the reader to Appendix 2.7 of the Supplemental Material for a model where
an agent considers at most a pair of alternatives.

9We discuss an alternative type of conditioning in Appendix 2.6 of the Supplemental Material.
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Thus, P�,π(a,A) is the probability that a is the best feasible alternative when

offered menu A. Menu-dependence is clear since Pr(F(A) = B) is conditioned on the

subsets of the offered menu. Further, an RCCSR incorporates correlation in availability

of alternatives.

We now define the random consideration set rule of [MM14a] (MM) which we

re-characterize in Section 2.3.3.10

Definition 3. A random consideration set rule is a random choice rule P�,γ for which

there exists a pair (�,γ), where � is a strict preference ordering on X and γ is a map

γ : X → (0,1), such that for all A ∈D and for all a ∈ A that

P�,γ(a,A) = γ(a) ∏
b∈A:b�a

(1− γ(b)).

The random consideration set rule is a simple model with only |X | parame-

ters which represent how likely an object is considered. Setting π(A) = ∏b∈X\A(1−

γ(b))∏a∈A γ(a) gives P�,π = P�,γ . Hence, a random consideration set rule is a special

case of an RCCSR.

2.3 Characterization

2.3.1 Revealed Preference and Limited Data

The revealed preference relation of our model is based on a sequential indepen-

dence condition. We say that alternative b is sequentially independent from alternative a

in menu A ∈D for menus |A| ≥ 2 denoted bIAa if

P(b,A) = P(b,A\{a})P(A∗ \{a},A).
10[Hor14] provides a characterization of a random consideration set rule without a default alternative.

See Section 2.3.1 for a discussion on difficulties with removing the default option.
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Assuming an agent faces random feasible sets and has a deterministic preference

� with a� b, then b will be chosen only if a is not available. Thus, it seems reasonable

that the agent chooses b independent of a not being available. However, the term

P(A∗ \{a},A) is the probability a is not available in A. Thus, sequential independence

is the case described. In contrast, the most preferred option is chosen when available

with any other alternatives. Hence, removal of a sub-optimal alternative may cause

non-independent changes to the choice probability of a.

We define the revealed preference relation � by a � b if and only if bIAa for

some menu A with a,b ∈ A. In contrast, the revealed preference relation �̃ of MM is

given by a �̃ b if and only if P(b,A)< P(b,A\{a}) for some menu A, so the revealed

preference relation � implies �̃.

Upon rearranging, one sees that sequential independence is a hazard rate condition.

For example, bIAa if and only if the probability of choosing b in A\{a} is the hazard rate

P(b,A\{a}) = P(b,A)
1−P(a,A)

.

We see that the probability b is chosen from the set A\{a} is the same as the probability

b is chosen from A conditional on a being infeasible. This relaxes the “stochastic path

independence” of a random consideration set choice rule in MM.11

Now suppose we observe stochastic choice data of all alternatives from only two

menus A,B ∈D generated by an RCCSR. What can we infer about π and �? Suppose

B = A\{b} for some alternative b ∈ A. Then, we can determine b’s rank relative to all

11 One might also expect similarities between an RCCSR and the regular perception-adjusted Luce
model from [EST14] which imposes conditions on hazard rates. However, these models differ in many
ways which we discuss in Section 2.4 and Appendix 2.8 of the Supplemental Material.
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alternatives in A. To see this, note that any c ∈ A\{b} satisfying

P(c,A\{b})
P(c,A)

=
P(x∗,A\{b})

P(x∗,A)

must also satisfy b� c. This is because the choice frequencies of all goods inferior to b

change by the same proportion as the change in choice frequency of x∗ once b is removed

from the menu. All alternatives a such that the equality does not hold satisfy a� b. Thus,

b’s rank among the alternatives is established.

Further, it is possible to find the probability that b is feasible in A since

Pr(b ∈ F(A)) =

∑
B⊆A|b∈B

π(B)

∑C⊆A π(C)
= 1− P(x∗,A)

P(x∗,A\{b})
.

We can then use that ∑
B⊆A|b∈B

π(B) ≤ P(b ∈ F(A)) to place bounds on π with limited

data.12

Now consider an RCCSR when the feasible set must be nonempty, so π is a

probability distribution over D\ /0. As in MM, an RCCSR lacks unique identification once

the default option is removed. For example, let X = {a,b} and suppose P(a,{a,b}) = α

and P(b,{a,b}) = β .13 This is consistent with a� b and π({a})+π({a,b}) = α and

π({b}) = β or with b � a and π({a}) = α and π({b})+π({a,b}) = β . However, if

D = 2X we can still identify a revealed preference ordering which is unique up to the

two least preferred alternatives. That is, for any distinct a,b,c ∈ X we can identify the

most preferred alternative among them by evoking sequential independence on the menu

{a,b,c}. Whether the default option can be removed by a process similar to [Hor14]

remains an open question.

12One could instead think of using data on feasibility and stated preferences to generate predictions
from the model which could be tested against observed consumer choice frequencies.

13Note that P(a,{a}) = P(b,{b}) = 1 in this framework.
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2.3.2 Characterization of RCCSR

We now characterize an RCCSR using conditions on stochastic choice data.

ASI : (Asymmetric Sequential Independence) For all distinct a,b ∈ X , exactly one of

the following holds:

aI{a,b}b or bI{a,b}a.

ASI assumes that the alternatives are asymmetric in sequential independence. The

intuition for this condition was argued earlier when discussing the revealed preference

relation.

TSI: (Transitive Sequential Independence) For all distinct a,b,c ∈ X ,

aI{a,b}b and bI{b,c}c ⇒ aI{a,c}c.

TSI says that if a is chosen independently when b is not feasible and b is chosen

independently when c is not feasible in their respective binary menus, then a is chosen

independently when c is not feasible in menu {a,c}. This condition imposes that the I

relation is an ordering over alternatives in binary menus.

ESI: (Expansive Sequential Independence) For all a ∈ X and all menus A,B ∈D such

that a ∈ A∩B, if

∀b ∈ A\{a} bIAa and ∀c ∈ B\{a} cIBa ⇒ ∀d ∈ A∪B\{a} dIA∪Ba.

ESI expands sequential independence from binary to arbitrary menus. It says if

an agent chooses alternatives independently when a is not feasible in different menus,

then they are still chosen independently when a is not feasible in the union of the menus.

We introduce some new notation for the following condition. For all A∈D \ /0, let

OA = P(A,A)
P(x∗,A) be the odds of the feasible set being nonempty in menu A. For the empty set,
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let O /0 = 0. For A,B ∈D , we define ∆BOA = OA−OA\B = P(A,A)
P(x∗,A)−

P(A\B,A\B)
P(x∗,A\B) . Let B =

{B1, . . . ,Bn} be any collection of sets such that Bi ∈ D . Let ∆BOA = ∆Bn . . .∆B1OA =

∆Bn . . .∆B2OA−∆Bn . . .∆B2OA\B1 be the successive marginal differences of feasible odds.

IFO: (Increasing Feasible Odds) For any A ∈D \ /0, |A| ≥ 2, and for any finite collec-

tion B = {B1, . . . ,Bn} with Bi ∈D ,

∆BOA > 0.

IFO states that enlarging the menu decreases the odds the default option is chosen

at an increasing rate.14 [Agu15] further examines successive difference conditions on

choice probabilities to study the role of capacities in stochastic choice. We note this

condition is equivalent to a multiplicative version of the Block-Marschak polynomials on

the default option. Thus, choice of the default option behaves as if in a random utility

model. In particular, IFO is equivalent to the condition that for all A ∈ D such that

|A| ≥ 2,

∑
B⊆A

(−1)|A\B| ∏
C⊆A:C 6=B

P(x∗,C)> 0.

One can make other restrictions on how choice probabilities of the default option

behave when removing alternatives. For example, if we instead require that the choice

frequency of the default option exhibits a menu-independent marginal effect when adding

an alternative, we arrive at the random consideration set model of MM (Theorem 4).

We also characterize a model where π has limited support in Appendix 2.7 of the

Supplemental Material. We now present the main result.

Theorem 2. A random choice rule satisfies ASI, TSI, ESI, and IFO if and only if it is

an RCCSR P�,π . Moreover, both � and π are unique, that is, for any RCCSR with
14Note this defines a capacity from the odds that the feasible set is non-empty. Making this inequality

weak characterizes a model with {A ∈ D | |A| ≤ 2} ⊆ support(π). Removing this condition, we would
characterize a model where π(·) represents set intensities on choice which could be negative.
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P�,π = P�′,π ′ we have that (�,π) = (�′,π ′).

All proofs can be found in Appendix 2.5. We give intuition for showing suffi-

ciency. We first show the revealed preference relation � described previously is a strict

preference ordering using ASI, TSI, and ESI. Next, we show that the probability of

choosing the default option has the an RCCSR representation on the domain. We then

prove the representation holds for arbitrary alternatives on singleton and binary menus.

Finally, we extended the representation to all other menus via induction. We then define

a valid probability distribution π using IFO and a Möbius inversion formula.

We now present a lemma used in the proof of the main result.

Lemma 1. If ASI, TSI, and ESI hold, then for any A ∈ D such that |A| ≥ 2 and ã ∈ A

such that ∀b ∈ A\{ã} ã� b we have that x∗IAã.

Lemma 1 shows that these conditions restrict choice of the default option to

satisfy sequential independence. Therefore, a model where the default option is more

preferred than some alternative would require a different characterization.

An RCCSR’s appeal is being able to exhibit menu-dependent feasibility without

assuming menu-dependent parameters. A counterpart to an RCCSR is a model with

menu-dependent feasibility parameters. We define a menu-dependent random conditional

choice set rule as a random choice rule P�,ν for which there exists a pair (�,ν), where

� is a strict total order on X and ν is a map ν : D×D \ /0→ (0,1), such that

P�,ν(a,A) =
∑B∈Aa ν(B,A)
∑C⊆A ν(C,A)

∀A ∈D ,∀a ∈ A.

However, a model with menu-dependent feasibility parameters has no empirical content.

Theorem 3. For every strict total order� on X and for every random choice rule P, there

exists a menu-dependent random conditional choice set rule P�,ν such that P = P�,ν .
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2.3.3 Characterization of Random Consideration Set Rule

We now obtain the random consideration set rule of [MM14a] by replacing IFO

with a constant marginal effects condition on the choice probability of the default option.

MIDO : (Menu Independent Default Option) For all a∈X and for all A,B∈D

such that a ∈ A∩B then

P(x∗,A\{a})
P(x∗,A)

=
P(x∗,B\{a})

P(x∗,B)

This is MM’s i-Independence on the default option. It restricts how the choice

frequency of the default option changes once an alternative is removed from the menu.

Specifically, the condition requires the effect to be menu independent. This condition is

similar to the independence condition of [Luc59] and is one reasonable way to restrict

choice of the default option.

Theorem 4. A random choice rule satisfies ASI, TSI, ESI, and MIDO if and only if it is a

random consideration set rule P�,γ . Moreover, both � and γ are unique, that is, for any

random consideration set rule with P�,γ = P�′,γ ′ we have that (�,γ) = (�′,γ ′).

2.4 Comparison to Related Models

Although an RCCSR has a strong structure and a rational agent, it allows for

deviations from a standard model of choice and permits correlation among feasible

alternatives. Additionally, since the random consideration set rule is a special case of an

RCCSR, an RCCSR can exhibit choice frequency reversals and violations of stochastic

transitivity.

We examine the i-Asymmetry condition required for the random consideration
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set rule of MM. i-Asymmetry states that

P(a,A\{b})
P(a,A)

6= 1 ⇒ P(b,A\{a})
P(b,A)

= 1.

This says that if removing b affects the choice probability of a in a menu, then removing

a cannot affect the choice probability of b in the same menu. However, it is reasonable

that removal of either alternative may affect the other’s choice probability within a menu.

We will show that an RCCSR allows violations of i-Asymmetry.

First, return to the story of a researcher following an agent’s choices in the

introduction. Suppose in addition that the researcher has knowledge of alternatives that

were available at the time of choice. It would be reasonable to think correlation exists

between which objects are feasible. Correlation would mean that Pr(a ∈ F(A) | b ∈

F(A)) 6=Pr(a∈F(A)) for some a,b∈A with a 6= b. We note that a random consideration

set rule does not allow these effects. The following example details a situation in which

an RCCSR generates choice frequencies which violate i-Asymmetry and alternatives

have correlation in availability.

Example 1. (Grocery Store) Consider a researcher with scanner data of a consumer’s

purchases from several grocery stores. The alternatives of interest are apples (a), bananas

(b), and carrots (c). Here the set of alternatives is X = {a,b,c} and D = 2X . Suppose

we observe choice from all possible nonempty menus given by Table 2.1.

Table 2.1. Grocery Store Stochastic Choice Data

{a,b,c} {a,b} {a,c} {b,c} {a} {b} {c}
a 7/20 1/3 1/2 0 1/2 0 0
b 11/20 1/2 0 11/13 0 3/4 0
c 1/20 0 1/4 1/13 0 0 1/2

One can use this data and the revealed preference relation to find that a� b� c



21

and that the π system is given by

π( /0) =
1

20
π({a}) = 1

20
π({b}) = 3

20
π({c}) = 1

20

π({a,b}) = 1
20

π({a,c}) = 1
20

π({b,c}) = 8
20

π({a,b,c}) = 4
20

.

Looking at the pair a and b, we see that

P(a,{a,c})
P(a,X)

=
10
7

and
P(b,{b,c})

P(b,X)
=

20
13

which is a violation of i-Asymmetry. Here we see that a and b both benefit from the

other’s removal. Next, suppose that a researcher observes b is available when the agent

chooses from X. Now, the researcher can back out the probability that a was also in the

feasible set since

P(a ∈ F(X) | b ∈ F(X)) =
π({a,b})+π({a,b,c})

π({a,b})+π({a,b,c})+π({b,c})+π({b})
=

5
16

but P(a ∈ F(X)) = 7/20. As discussed earlier, if menus are subject to stock-outs this

negative correlation may suggest that apples and bananas are substitutes since apples

are less likely to be available given bananas are still available.

We now consider how an RCCSR compares to other models in the literature.15

[BM60] considered a class of stochastic choice functions known as random utility models.

A random utility model is described by a probability measure over preference orderings,

where the agent selects the maximal alternative available according to the randomly

assigned preference ordering. Random utility models obey the regularity condition that
15Like many models of stochastic choice, we do not explicitly model measurement or feasibility errors.

However, it may be interesting to see if choice behavior similar to an RCCSR could be generated by a
profit maximizing firm choosing a costly technology which yields a stochastic menu of goods to rational
consumers.
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P(a,B) ≥ P(a,A) for any a ∈ B ⊆ A. However, Example 1 violates this condition as

seen by examining the choice probabilities of a in {a,b} and X . Therefore, RCCSRs

are not nested in random utility models. Moreover, random utility models are not nested

in RCCSRs. To see this, consider the model from [Luc59], which is a special case of a

random utility model. The Luce model is of the form P(a,A) = u(a)
∑b∈A u(b) for a strictly

positive utility function u and is characterized by the IIA condition.16 However, an

RCCSR will necessarily violate IIA when A ∈ D and |A| ≥ 3 since the ratio of the

probability of choosing most preferred alternative over the probability of choosing the

least preferred alternative will necessarily decrease once the middle-ranked alternative is

removed from the menu. Lastly, we note that there are models which are both a random

utility model and an RCCSR such as the random consideration set rule.

A recent model which appears similar to an RCCSR is the regular perception-

adjusted Luce model (rPALM) from [EST14]. In fact, both an RCCSR and rPALM use

conditions on hazard rates to characterize the models. Furthermore, both an RCCSR and

rPALM accommodate violations of regularity, IIA, and stochastic transitivity. Nonethe-

less, an RCCSR and rPALM are distinct.17 One strong prediction of an RCCSR is that

choice frequency of the default alternative decreases as alternatives are added to a menu.

However in an rPALM, default alternative choice probabilities need not systematically

increase or decrease since they are driven by a menu dependent parameter. An rPALM

also requires ratios of hazard rates to be constant across menus and satisfy a regularity

condition. Both of these conditions are difficult to interpret, but neither is required in an

RCCSR. This suggests several ways to discern which model is appropriate from data.

The recent work of [GNP14] axiomatizes an attribute rule where the decision

maker first randomly chooses an attribute from all perceived attributes and then randomly

16IIA states that P(a,A)
P(b,A) =

P(a,B)
P(b,B) for any a,b and menus A,B such that a,b ∈ A∩B.

17In particular, an rPALM cannot generate the choice frequencies exhibited in Example 1 (Appendix 2.8
of Supplemental Material).
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selects an alternative containing the selected attribute. Every attribute rule is a random

utility model and the Luce model is a special case. Therefore, an RCCSR and an attribute

rule are not equivalent from the discussion of random utility models.

There are other works worthy of mention which take a different approach than

those mentioned here. The models of [Mac85], [MW02], and [FIS15] assume an agent

has deterministic preferences over lotteries and chooses a probability distribution to

maximize utility on a menu. Therefore, these models induce “stochastic choice” from

deterministic preferences on lotteries. We refer the reader to the survey by [RBM06] for

a survey of other related works.

2.5 Appendix A: Main Results

We present a series of lemmas which characterize the preference relation, prop-

erties on larger menus, and the proof of Lemma 1. We then present a statement of the

Möbius inverse formula used in the proof of Theorem 2. The proof of Theorem 2 follows.

Lemma 2. If ASI and TSI hold, then there exists a strict total order of X such that for

any a,b ∈ X

a� b ⇔ P(b,{a,b}) = P(b,{b})P({b,x∗},{a,b}).

Proof. The relation � is asymmetric and weakly connected since by ASI for distinct

a,b ∈ X we have that exactly one of the below is true

P(a,{a,b}) = P(a,{a})P({a,x∗},{a,b}) or P(b,{a,b}) = P(b,{b})P({b,x∗},{a,b}).
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Suppose for a,b,c ∈ X that a� b and b� c. By definition we have

P(b,{a,b}) = P(b,{b})P({b,x∗},{a,b}) and P(c,{b,c}) = P(c,{c})P({c,x∗},{b,c}).

By TSI we have that P(c,{a,c}) = P(c,{c})P({c,x∗},{a,c}) so by definition of � we

have a� c, so that � is transitive.

Lemma 3. If ASI, TSI, and ESI hold, then for any menu A ∈D there exists an ã ∈ A such

that for all b ∈ A\{ã} we have

P(b,A) = P(b,A\{ã})P(A∗ \{ã},A).

Proof. By Lemma 2 we know � is strict, so for any A ∈ D there exists an ã such that

ã� b for all b ∈ A\{ã}. The result obviously holds for binary menus by ASI so assume

|A|= 3 with A = {ã,b,c}. By definition of � we know

P(b,{ã,b}) = P(b,{b})P({b,x∗},{ã,b}) and

P(c,{ã,c}) = P(c,{c})P({c,x∗},{ã,c}).

By ESI we have

P(b,{ã,b,c}) = P(b,{b,c})P({b,c,x∗},{ã,b,c})

with an analogous statement for c. For|A|> 3 the result holds by induction.

Proof of Lemma 1. Lemma 3 established the existence of a maximal alternative in any

menu, so let A ∈D with |A| ≥ 2 and let ã ∈ A be the maximal alternative. Using some
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basic algebra and the sequential independence result from Lemma 3 we have that

P(x∗,A) = 1−P(ã,A)− ∑
b∈A\{ã}

P(b,A)

= 1−P(ã,A)− ∑
b∈A\{ã}

P(b,A\{ã})P(A∗ \{ã},A)

= 1−P(ã,A)−P(A∗ \{ã},A) ∑
b∈A\{ã}

P(b,A\{ã})

= 1−P(ã,A)−P(A∗ \{ã},A)(1−P(x∗,A\{ã}))

= 1−P(ã,A)−P(A∗ \{ã},A)+P(x∗,A\{ã})P(A∗ \{ã},A)

= P(x∗,A\{ã})P(A∗ \{ã},A).

Möbius inversion has been used in economics since [Sha53]. In particular, the

result of [Fal78] that the Block-Marschak polynomials are sufficient for a random utility

model was proved by [Fio04] using Möbius inversion. In general, it is a powerful tool to

move between two functions when there is a partial order. Here we use the partial order

over sets. We now present a version of Möbius inversion from [Sha76].

Theorem 5. (Möbius inversion ([Sha76]) ) If Θ is a finite set with f and g functions on

2Θ then

f (A) = ∑
B⊆A

g(B)

for all A⊆Θ if and only if

g(A) = ∑
B⊆A

(−1)|A\B| f (B)

for all A⊆Θ.
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The corollary below shows this will hold for an RCCSR for Θ = X with g(A) =

π(A) and f (A) = P(x∗,X)
P(x∗,A) .

Corollary 1. If P = P�,π is a RCCSR with D = 2X then for all A⊆ 2X we have that

P(x∗,X)

P(x∗,A)
= ∑

B⊆A
π(B)

For the proof of the main result, we have that D may not be the power set.

However, this will affect the above intuition by changing only a scaling factor. We now

present the proof of the main result.

Proof of Theorem 2 . That an RCCSR satisfies ASI, TSI, ESI, and IFO is simple to check

and is omitted here.

Now, suppose |X |= N ≥ 1 and P is a random choice rule that satisfies ASI, TSI,

ESI, and IFO. From Lemma 2 and D rich, we can define an ordering � on X which is a

total order. We want to show that the P(·, ·) is an RCCSR. We prove the representation

inductively on menu size. Let M = maxA∈D |A| be the largest order of sets in D . Let

DM = argmaxA∈D |A| be the elements of D with maximal order. First, define λ : D → R

such that for A ∈D we have that

λA = λ (A) = ∑
B⊆A

(−1)|A\B|
1

P(x∗,B)
.

Note that this imposes λ /0 =
1

P(x∗, /0) = 1. Moreover, we have that for A = {a} for a ∈ X

that

λa =
1

P(x∗,{a})
−1 > 0

since P(x∗,{a}) ∈ (0,1) by definition of a random choice rule. For A ∈D with |A| ≥ 2
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since IFO is equivalent to positivity of the multiplicative polynomial

∑
B⊆A

(−1)|A\B| ∏
C⊆A:C 6=B

P(x∗,C)> 0⇔ ∑
B⊆A

(−1)|A\B|
1

P(x∗,B)
> 0⇔ λ (A)> 0

by dividing the polynomial by ∏C⊆A P(x∗,C).

Using the Möbius inversion formula Theorem 5 gives us that

1
P(x∗,A)

= ∑
B⊆A

λB.

We first examine the choice of the default option from any menu A ∈D . Here

P(x∗,A) =
(

1
P(x∗,A)

)−1

= λ /0

(
∑

B⊆A
λB

)−1

=
λ /0

∑B⊆A λB
.

Now, singleton menus are in D by richness. Thus, focusing on singleton menus

A = {a} for a ∈ X the above result can be used to show that

P(a,{a}) = 1−P(x∗,{a})

= 1− λ /0

λ /0 +λ{a}

=
λ{a}

λ /0 +λ{a}

Next, binary menus are in D by richness, so suppose that the menu is binary i.e. A =

{a,b} for a,b ∈ X and that a � b without loss of generality. By definition of � we

have P(b,{a,b}) = P(b,{b})P({b,x∗},{a,b}) and by Lemma 1 that P(x∗,{a,b}) =
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P(x∗,{b})P({b,x∗},{a,b}). Combining these two gives us

P(b,{a,b})
P(x∗,{a,b})

=
P(b,{b})P({b,x∗},{a,b})
P(x∗,{b})P({b,x∗},{a,b})

=
P(b,{b})
P(x∗,{b})

.

However, after a simple rearrangement we have that

P(b,{a,b})
P(b,{b})

=
P(x∗,{a,b})
P(x∗,{b})

=

(
∑B⊆{a,b}λB

)−1(
∑B⊆{b}λB

)−1 =
∑B⊆{b}λB

∑B⊆{a,b}λB

This relates the ratios of probabilities to the weight function λ defined earlier. Moreover,

using this result and Lemma 3 and Lemma 1 it is clear that for any menu A and alternative

b which is not the maximal element ã of � in A, we have that

P(b,A)
P(b,A\{ã})

=
∑B⊆A\{ã}λB

∑B⊆A λB
. (2.1)

Using this and the earlier result from singleton menus it follows that

P(b,{a,b}) = P(b,{b})P(b,{a,b})
P(b,{b})

=

(
λ{b}

∑B⊆{b}λB

)(
∑B⊆{b}λB

∑B⊆{a,b}λB

)

=
λ{b}

∑B⊆{a,b}λB
.

Next, examining the choice probability of a, the most preferred alternative in {a,b},

P(a,{a,b}) = 1−P(b,{a,b})−P(x∗,{a,b})

= 1−
λ{b}

∑B⊆{a,b}λB
− λ /0

∑B⊆{a,b}λB

=
λ{a}+λ{a,b}

∑B⊆{a,b}λB
.
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Summarizing, we have for any singleton or binary menu A and a ∈ A that

P(a,A) =
∑B∈Aa λB

∑B⊆A λB

where as before Aa = {B⊆ A | a ∈ B and ∀b ∈ B\{a} a� b}. Assume inductively that

the representation holds for menus of size m− 1 < M in D . Let A ∈ D be a menu

such that |A| = m. Recall B ∈ D for all B ⊆ A from richness. Thus, for all a ∈ A then

P(·,A\{a}) satisfies the representation. From Lemma 3 we have that there is a unique

maximal element ã ∈ A. Therefore, for any b ∈ A\{ã} we have

P(b,A) = P(b,A\{ã})
(

P(b,A)
P(b,A\{ã})

)
=

(
∑B∈(A\{ã})b

λB

∑B⊆A\{ã}λB

)(
∑B⊆A\{ã}λB

∑B⊆A λB

)
=

∑B∈Ab
λB

∑B⊆A λB
.

where the second equality follows by the induction hypothesis and (2.1) and the third

equality follows because Ab = (A \ {ã})b since ã � b. Now examining the choice

probability of ã in A we see that

P(ã,A) = 1− ∑
b∈A∗\{ã}

P(b,A)

= 1− ∑
b∈A∗\{ã}

∑B∈Ab
λB

∑B⊆A λB

=
∑B∈Aã λB

∑B⊆A λB

where the second equality follows by the previous result and the third equality follows

since ∑B⊆A λB−∑b∈A∗\{ã}∑B∈Ab
λB = ∑B∈Aã λB.

We now have the appropriate definition but λ is not necessarily a probability. We
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define λ̃ : D → R by λ̃ (A) = λ (A)
∑B∈D λ (B) . Thus, we have that

∑
A∈D

λ̃A = ∑
A∈D

λ (A)
∑B∈D λ (B)

= 1

and for A ∈ D that λ̃A ∈ (0,1). Therefore, λ̃ forms a valid full support probability

distribution on D which is related to λ by a constant.

Therefore, we have that P is an RCCSR with � as defined from Lemma 2 and

λ̃ = π .

To show that (�,π) is unique, suppose that there exists a (�′,π ′) such that

P�,π = P�′,π ′ . First, we note for singleton menus {a} ∈D that

P�,π(a,{a})
P�,π(x∗,{a})

=
π({a})
π( /0)

=
π ′({a})
π ′( /0)

=
P�′,π ′(a,{a})
P�′,π ′(x∗,{a})

⇒ π
′( /0) = π( /0)

π ′({a})
π({a})

.

This means that π ′( /0) = απ( /0) for α > 0 and π ′({a}) = απ({a}) for any singleton

menu. Then, since �′ 6=� we know that there exist a� b and b�′ a so

P�,π(a,{a,b}) =
π({a})+π({a,b})

π({a,b})+π({a})+π({b})+π( /0)

=
π ′({a})

π ′({a,b})+π ′({a})+π ′({b})+π ′( /0)
= P�′,π ′(a,{a,b}).

However, cross multiplying equations, using the scale relation, and eliminating variables

π
′({a,b})(π({a})+π({a,b}))+α(π({b})+π( /0))π({a,b}) = 0.

This is a contradiction since all of the quantities are positive. Therefore we have that

�=�′. The uniqueness of π follows immediately since � is uniquely defined then

π ′ = απ . However, for π ′ to be a probability requires α = 1. Therefore, the pair (�,π)

is unique for each RCCSR.



31

Proof of Theorem 3. The proof follows immediately from Theorem 2 in [MM14a] by

letting ν(B,A) = ∏b∈B δ (b,A)∏a∈A\B(1− δ (a,A)) for δ defined as in the proof of

[MM14a].

Proof of Theorem 4. That a random consideration set rule satisfies ASI, TSI, ESI, and

MIDO is simple to check and is omitted here.

Now, suppose |X | = N ≥ 1 and P is a random choice rule that satisfies ASI,

TSI, ESI, and MIDO. By Lemma 2 and D rich, we can define an ordering � on X

which is a total order. Let M = maxA∈D |A| be the largest order of sets in D . Let

DM = argmaxA∈D |A| be the elements of D with maximal order. We want to show that

the P(·, ·) is a random consideration set rule. We prove the representation inductively on

menu size.

For all a ∈ X we define λa = λ (a) = P(a,{a}). Now examining the choice of the

default option in any menu A ∈D and any alternative a ∈ A, we have by MIDO that

P(x∗,A\{a})
P(x∗,A)

=
P(x∗, /0)
P(x∗,a)

=
1

P(x∗,a)
⇒ P(x∗,A) = P(x∗,{a})P(x∗,A\{a}).

Since the above argument was for a generic alternative and menu, we have

P(x∗,A) = ∏
a∈A

P(x∗,{a}) = ∏
a∈A

(1−P(a,{a})) = ∏
a∈A

(1−λa)

For singleton menus, the representation trivially holds. Next we examine the case

of choice in binary menus. For a,b ∈ X we suppose without loss of generality that a� b.
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By ASI and D rich , we have

P(b,{a,b}) = P(b,{b})P({x∗,b},{a,b})

= P(b,{b})P(x∗,{a,b})
P(x∗,{b})

= λb
(1−λb)(1−λa)

(1−λb)

= λb(1−λa).

Where the second equality is by Lemma 1 and the third equality is by the representation

of the choice of the default option in terms of λ . Then for the best alternative a,

P(a,{a,b}) = 1−P(b,{a,b})−P(x∗,{a,b})

= 1−λb(1−λa)− (1−λa)(1−λb)

= λa.

Now assume that the representation holds for all sets of size m−1 < M so if |A|< m

P(a,A) = λa ∏
b∈A|b�a

(1−λb).

For the a menu A with |A| = m we have by Lemma 3 that there is a maximal

element ã� b for all b ∈ A. Now looking at the choice of b ∈ A such that ã� b we have
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that

P(b,A) = P(b,A\{a})P(A∗ \{ã},A)

= P(b,A\{a}) P(x∗,A)
P(x∗,A\{ã})

=

(
λb ∏

c∈A\{ã}|c�b
(1−λc)

)
(1−λã)

= λb ∏
c∈A|c�b

(1−λc).

Where the first equality follows from Lemma 3 and definition of �, the second equality

follows from Lemma 1, and the last equality follows since ã� b. Now examining the

choice of ã, we have that

P(ã,A) = 1−P(A∗ \{ã},A)

= 1− P(x∗,A)
P(x∗,A\{ã})

= 1− (1−λã)

= λã.

Therefore, P is a random consideration set rule with preference � and attention parame-

ters γ(a) = λ (a). Where for all a ∈ X we have γ(a) ∈ (0,1) since P is a random choice

rule and γ(a) = P(a,{a}). That this representation is unique follows immediately from

Theorem 1 in [MM14a].
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2.6 Appendix B: Alternative Conditioning

Recall that throughout our analysis, we have considered a model where the

probability of obtaining a feasible set is given by

Pr(F(A) = B) =
π(B)

∑C⊆A π(C)
.

However, there are other ways that one could condition to obtain a feasible set. In

particular, one could consider the model given by

Pr(F(A) = B) = ∑
C∈D :C∩A=B

π(C),

where the default option is chosen if B = /0. This alternative conditioning formula is used

in [BG11] to characterize a preference for flexibility over menus.

We prefer the conditioning formula used in an RCCSR for two main reasons.

First, suppose that a feasible set is generated by what items an agent considers from a

menu. In this case, an RCCSR says an agent first looks at the menu, then considers a

set of alternatives from the menu, and lastly makes a choice. If we used the alternative

conditioning formula, it will change the timing of these actions. In particular, the

alternative formulation says an agent first considers a set of alternatives, then looks at the

menu and further restricts the considered objects, and finally makes a choice.18 Therefore,

in this alternative formulation an agent could be thinking of a better/worse alternative

when choosing from the menu. The alternative formulation also seems ill suited for the

case of general feasibility. For example, it would seem surprising that the probability an

alternative is out of stock in a menu depends on alternatives not offered.

18Using the “in the mood” interpretation, an RCCSR conditioning says a consumer sees the menu and
draws a random mood which is consistent with the offered alternatives. In the alternative formulation, the
consumer receives a mood before looking at the offered menu.
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Secondly, we prefer the formulation used in an RCCSR for its identifiability and

flexibility. The alternative formulation makes it difficult to identify π completely. In

addition, this alternative conditioning formula produces choice probabilities consistent

with a random utility model.

2.7 Appendix C: Binary Support

We can also characterize some models which have limited support by replacing

IFO with other conditions. Here we still assume that D is rich.

BIFO : (Binary Increasing Feasible Odds) For all distinct a,b ∈ X ,

∆a∆bO{a,b} > 0

This condition restricts IFO to binary menus. In a consideration set framework, this

would mean that adding acceptable alternatives draws consideration away from the

default option.

CMD : (Constant Marginal Differences) For all distinct a,b ∈ X and A,B ∈ D with

a,b ∈ A∩B then

P(a,A)
P(x∗,A)

− P(a,A\{b})
P(x∗,A\{b})

=
P(a,B)
P(x∗,B)

− P(a,B\{b})
P(x∗,B\{b})

This condition states that the marginal effect on the odds ratio with respect to the default

option of removing an alternative is constant across menus. Replacing IFO with these

conditions, we get a model with |X |+
(|X |

2

)
parameters. We now define a binary random

choice set rule.

Definition 4. A binary random choice set rule (BRCSR) is a random choice rule P�,α

for which there exists a pair (�,α), where � is a strict preference ordering on X
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and α : D → [0,1) a distribution with α(A) > 0 for sets A ∈ D with |A| ≤ 2 and zero

otherwise, such that for all A ∈D and for all a ∈ A

P�,α(a,A) =
α({a})+∑b∈A|a�b α({a,b})

∑C⊆A:|C|≤2 α(C)
.

Theorem 6. A random choice rule satisfies ASI, TSI, ESI, BIFO, and CMD if and only if

it is a BRCSR P�,α . Moreover, both � and α are unique, that is, for any BRCSR with

P�,α = P�′,α ′ we have that (�,α) = (�′,α ′).

Proof. Note that a BRCSR satisfies ASI, TSI, ESI, BIFO, and CMD is simple to check

and omitted here.

Now, suppose |X | = N ≥ 1 and P is a random choice rule that satisfies ASI,

TSI, ESI, BIFO, and CMD. By Lemma 2 and D rich, we can define an ordering � on

X which is a total order. Let M = maxA∈D |A| be the largest order of sets in D . Let

DM = argmaxA∈D |A| be the elements of D with maximal order. We want to show that

the P(·, ·) has the BRCSR representation. We prove the representation inductively on

menu size.

First, define λ : D → R such that for A ∈D we have that

λA = λ (A) = ∑
B⊆A

(−1)|A\B|
1

P(x∗,B)
.

This is related to a Möbius inversion formula. Theorem 5 gives us that

1
P(x∗,A)

= ∑
B⊆A

λB.
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First, note that for singleton menus {a} ∈ 2X that

λ{a} =
1

P(x∗,{a})
−1 > 0

since P(x∗,{a}) < 1 by definition of a random choice rule. Next, for binary menus

{a,b} ∈D assume without loss of generality that a� b. Then BIFO implies

∆a∆bO{a,b} = ∑
B⊆{a,b}:B6= /0

(−1)|{a,b}\B|
P(B,B)
P(x∗,B)

= ∑
B⊆{a,b}

(−1)|{a,b}\B|+ ∑
B⊆{a,b}:B6= /0

(−1)|{a,b}\B|
P(B,B)
P(x∗,B)

= ∑
B⊆{a,b}

(−1)|{a,b}\B|
(

1+
P(B,B)
P(x∗,B)

)
= ∑

B⊆{a,b}
(−1)|{a,b}\B|

1
P(x∗,B)

> 0

where we used that ∑B⊆{a,b}(−1)|{a,b}\B| = ∑
2
i=0(−1)i(2

i

)
= 0.

Therefore, we have

P(x∗,{a,b})−1−P(x∗,{b})−1−P(x∗,{a})−1 +1 > 0

where we used Lemma 1 to get to the second equality. Thus we have

λ{a,b} = ∑
B⊆{a,b}

(−1)|{a,b}\B|
1

P(x∗,B)
> 0.

Now, we show a result on how the λ terms relate to P(·, ·) under CMD and then

show for all A ∈D such that |A| ≥ 3 that λA = 0. Note for A = {a,b,c} such that a� b
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and a� c then we have by CMD that

P(a,A)
P(x∗,A)

− P(a,{a,c})
P(x∗,{a,c})

=
P(a,{a,b})
P(x∗,{a,b})

− P(a,{a})
P(x∗,{a})

.

First, looking at the left side of the equality and using Lemma 1

P(a,A)
P(x∗,A)

− P(a,{a,c})
P(x∗,{a,c})

=
1−P((A\{a})∗,A)

P(x∗,A)
− 1−P({c,x∗},{a,c})

P(x∗,{a,c})

= P(x∗,A)−1−P(x∗,{b,c})−1−P(x∗,{a,c})−1

+P(x∗,{c})−1.

Similarly, looking at the right side of the equality and using Lemma 1

P(a,{a,b})
P(x∗,{a,b})

− P(a,{a})
P(x∗,{a})

= P(x∗,{a,b})−1−P(x∗,{b})−1−P(x∗,{a})−1 +1.

= λ{a,b}

Rearranging the equality we see that

P(x∗,A)−1 = λ{a,b}+P(x∗,{b,c})−1 +P(x∗,{a,c})−1−P(x∗,{c})−1

= λ{a,b}+
(
P(x∗,{b,c})−1−P(x∗,{b})−1−P(x∗,{c})−1 +1

)
+P(x∗,{a,c})−1 +(P(x∗,{b})−1−1)

= λ{a,b}+λ{b,c}+λ{b}+P(x∗,{a,c})−1

= λ{a,b}+λ{b,c}+λ{b}

+(P(x∗,{a,c})−1−P(x∗,{a})−1−P(x∗,{c})−1 +1)

+(P(x∗,{a})−1−1)+(P(x∗,{c})−1−1)+1

= ∑
B(A

λB
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Therefore, we have that 1
P(x∗,A) = ∑B(A λB for all |A|= 3. However, using the Möbius

inversion result we know that

∑
B(A

λB =
1

P(x∗,A)
= ∑

B⊆A
λB ⇒ λA = 0.

Now, suppose that 1
P(x∗,A) = ∑B(A λB holds for sets A ∈ D with |A| = m− 1 and 3 ≤

m− 1 < M. For A ∈ D such that |A| = m and ∀c ∈ A \ {a,b} such that a � b � c, we

have
P(a,A)
P(x∗,A)

− P(a,A\{b})
P(x∗,A\{b})

=
P(a,{a,b})
P(x∗,{a,b})

− P(a,{a})
P(x∗,{a})

.

We can perform the same substitutions using Lemma 1 as in the three element case so

P(x∗,A)−1−P(x∗,A\{a})−1−P(x∗,A\{b})−1 +P(x∗,A\{a,b})−1 = λ{a,b}.

Since A\{a} and A\{b} are m−1 element sets, we can use our induction step and then

rearrange so

P(x∗,A)−1 = λ{a,b}+ ∑
B⊆A\{a}:|B|≤2

λB + ∑
B⊆A\{b}:|B|≤2

λB− ∑
B⊆A\{a,b}:|B|≤2

λB

= λ{a,b}+ ∑
B⊆A\{a}:|B|≤2

λB + ∑
B⊆A\{b}:|B|=2 and a∈B

λB +λ{a}

= ∑
B⊆A:|B|≤2

λB.

We restrict looking at weights λB with |B| ≤ 2 since the inductive step makes other λ terms

zero. Performing subtraction of the rightmost terms leads to the second equality. The

third equality comes by collecting all terms. Thus, we have that 1
P(x∗,A) =∑B⊆A:|B|≤2 λB =

∑B(A λB since λB = 0 for all B(A with |B| ≥ 3 by induction. Using the Möbius inversion

formula, ∑B(A λB = ∑B⊆A λB so that λA = 0. Therefore, we have shown by induction



40

that λA = 0 for all A ∈D with |A| ≥ 3. The representation now holds immediately from

the proof of Theorem 3.1. and letting α = λ̃ .

2.8 Appendix D: Comparison to PALM

The regular perception-adjusted Luce model (rPALM) of [EST14] is described

by a pair (%P,u) where %P is a weak order on X and u : 2X → R is a function such that

P%P,u(a,A) = µ(a,A) ∏
α∈A/%P:α�Pa

(1− ∑
c∈A:c∈α

µ(c,A))

where

µ(a,A) =
u(a)

∑b∈A u(b)+u(A)

and

u(c)≥ u({a,b})−u({a,b,c})

for all a,b,c ∈ X with strict inequality with if b�P c.

The notation A/ %P is for the set of equivalence classes according to %P that

partition A, so the product is over all classes of alternatives that are ordered ahead of a.

In rPALM, %P is interpreted as a perception priority relation, and the authors attribute all

violations of IIA to perception priority. More specifically, when a,b ∈ X do not violate

IIA, then we have a∼P b.

One of the distinguishing features of an RCCSR relative to an rPALM is that the

choice frequency of the default alternative must obey monotonicity with respect to set

inclusion under an RCCSR: B⊂ A⇒ P(x∗,B)> P(x∗,A). In the context of availability,

this restriction is logical in that larger menus are more likely to have an alternative

available. An rPALM places no such consistency restrictions on choice frequency of the
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default alternative. This is one potential way in which the two models can be distinguished

from choice data.

Another feature of rPALM is the hazard rate the authors define as

q(a,A) =
P%P,u(a,A)

1−P%P,u(A
a,A)

where Aa = {b ∈ A : b �P a}. The authors impose that the hazard rate obeys both

IIA (q(a,{a,b})
q(b,{a,b}) =

q(a,A)
q(b,A) for all a,b ∈ X and A ⊆ X such that a,b ∈ A) and regularity

(q(a,{a,b}) ≥ q(a,{a,b,c}) for all a,b,c ∈ X and with strict inequality only when

b �P c). We will use this to show that an RCCSR is not a special case of rPALM. It

is easy to see that an RCCSR can violate hazard rate IIA (in Example 1 it is violated

for a,b). Now consider the choice frequencies in Example 1 and note that we have

P(a,{a,b,c})> P(a,{a,b}) and P(b,{a,b,c})> P(b,{a,b}). An rPALM is unable to

generate these choice frequencies. In what follows, let A = {a,b,c}.

Case 1: a%P b,a%P c,b�P c. By regularity we have

P%P,u(a,A) = q(a,A)< q(a,{a,b}) = P%P,u(a,{a,b}).

Case 2: a �P b ∼P c. By regularity we have P%P,u(a,A) = q(a,A) = q(a,{a,b}) =

P%P,u(a,{a,b}).

Case 3: b%P a,b%P c,a�P c. By regularity we have

P%P,u(b,A) = q(b,A)< q(b,{a,b}) = P%P,u(b,{a,b}).

Case 4: b �P a ∼P c. By regularity we have P%P,u(b,A) = q(b,A) = q(b,{a,b}) =

P%P,u(b,{a,b}).

Case 5: c �P a %P b. By regularity we have P%P,u(a,A) = q(a,A)(1−P%P,u(c,A)) <

q(a,A)≤ q(a,{a,b}) = P%P,u(a,{a,b}).

Case 6: c �P b %P a. By regularity we have P%P,u(b,A) = q(b,A)(1−P%P,u(c,A)) <
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q(b,A)≤ q(b,{a,b}) = P%P,u(b,{a,b}).

Case 7: a∼P b∼P c. rPALM cannot violate IIA in this case, but

P(a,A)
P(b,A)

=
7

11
6= 2

3
=

P(a,{a,b})
P(b,{a,b})

in Example 1.

Chapter 2, in full, is a reprint of the material as it appears in Econometrica, 2016,

Brady, Richard L.; Rehbeck, John. The dissertation author was the primary investigator

and author of this paper. The copyright of this article is held by The Econometric Society.



Chapter 3

Revealed Preference Analysis of
Characteristics in Discrete Choice

Abstract: This paper studies a descriptive model of stochastic choice that in-

cludes information about observable characteristics. The model can describe behavioral

phenomena observed in datasets while retaining properties similar to the standard con-

sumer demand problem. Necessary and sufficient conditions for the model to describe a

dataset are formalized using a system of linear inequalities. We perform an empirical

analysis and find that the model can describe individual stated preference data on flight

choice from [LCB+13]. After performing a power correction, a model with linear utility

over characteristics often provides the most powerful description of individual datasets.

43



44

3.1 Introduction

Individuals often confront discrete choice problems. For example, an individual

may choose a health care provider offered by an employer, a lottery offered by an

experimenter, or a flight to take a vacation. For these examples, the (indexed) alternatives

generally differ along observable dimensions. Health care providers differ in number

of specialists, number of locations, and copays. Lotteries differ in probabilities and

prizes. Flights differ in travel times, prices, and airlines. A characteristic is an observable

dimension along which an indexed alternative may vary. In this paper, we develop a

model of stochastic choice that explicitly incorporates information from characteristics.

This approach allows us to perform an empirical analysis on existing individual discrete

choice datasets.

We model discrete choice as stochastic since individuals often make different

choices when they face the same decision problem.1 To understand why individual choice

appears stochastic, a large theoretical literature has emerged.2 Much of this literature

takes an axiomatic approach to formalize models of stochastic choice, but the axioms are

often tenuous or refuted by data. Rather than explain why choice is stochastic, we aim to

describe choices individuals make. To accomplish this goal, we present an “as if” model

of stochastic choice from costly attention that nests existing models. The model nests

approaches accounting for rational inattention [CD15], agents uncertain of their utility

[FIS15], and unobservable characteristics [Man77]. Moreover, the model can describe

behavioral effects seen in data.

Since we take a descriptive approach, we use characteristics recorded in discrete

1Individuals are robustly shown to choose different lotteries from the same decision problem experi-
mentally. For example, the works of [MN51], [Tve69], and [AOng] have documented this behavior. In
fact, [AOng] observes some individuals pay to randomize their choices.

2Classical examples include [Thu27], [Luc59], [BM60], and [Mac85]. Recent work includes [GNP14],
[MM14a], [FIS15], and [BR16] among many others.
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choice datasets. This differs from many theoretical models that are silent about char-

acteristics. This approach is valuable since characteristics are often used in laboratory

and thought experiments to generate counterexamples to stochastic choice models. By

explicitly incorporating characteristics, the model clarifies often implicit similarity as-

sumptions on indexed alternatives, produces predictions when characteristics vary, and

ensures researchers are using the same observables. The model also allows us to examine

the descriptive power of different model specifications.

This paper proposes and empirically examines a model of stochastic choice gen-

erated by costly attention that explicitly incorporates characteristics. Choice probabilities

from the model are interpreted “as if” the individual is maximizing a non-expected utility

function. In particular, choice probabilities are the unique maximizers of a utility function

with an expected utility component that depends on characteristics less a costly attention

function that is independent of characteristics. When the costly attention function is

strictly convex, we refer to the model as a strict perturbed utility model of stochastic

discrete choice or strict PUM. The model is formalized by a system of linear inequal-

ities whose feasibility is necessary and sufficient for a strict PUM to describe a set of

observed choice probabilities (Theorem 7). The inequalities prevent the existence of

“utility pumps”. We use these inequalities to examine when individual choice data is

described by different specifications of strict PUMs.

For a descriptive model of stochastic choice, it is advantageous that the model

nests approaches already deemed useful in applications. Additive random utility models

are a common class of models used in applications.3 We show that perturbed utility

models nest additive random utility models (Section 3.2.1).4 Thus, if the data are

inconsistent with a perturbed utility model, then an additive random utility model with

3Additive random utility models include the logit model. See [McF74], [Bos74], and [RM70] for early
applications of additive random utility models for commute choice, labor decisions, and college choice.

4We do not impose strict convexity for this result for technical reasons described in Section 3.2.1.
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characteristics is also inconsistent.

Strict PUMs can also describe behavior often seen in data but ruled out in many

models. For example, behavior consistent with an attraction effect can be generated by

strict PUMs. The attraction effect is often documented adding an alternative to a binary

choice set. Attraction effects state that if the added alternative is intuitively dominated

by exactly one alternative from the binary choice set, then the probability of choosing

the dominating alternative increases. Intuitively, adding a dominated alternative draws

attention to the dominating alternative, which can cause the dominating alternative to be

chosen more often. The attraction effect violates a regularity condition that is imposed by

all random utility models.5 [HPP82] first documented the attraction effect, while other

studies clarify conditions when the effect occurs and document robustness of the effect

[DORB99, RSS87, HC95]. Additional behavioral effects are discussed in Section 3.2.3.

In addition to examining strict PUMs theoretically, we perform an empirical

analysis to examine when a strict PUM can generate observed individual choice datasets.

The empirical analysis uses individual stated preference data on flight choice from

[LCB+13]. The analysis provides answers to the following questions: “Can strict PUMs

describe individual choice datasets?”, “Are there common properties of specifications

that best describe the data?”, “Which characteristics best describe individual datasets?”.

For data from [LCB+13], we find: (1) Strict PUMs often can describe individual choices,

(2) Strict PUMs with linear utility over characteristics often provide the most powerful

description of datasets, (3) Price of flight is an important characteristic, but descriptive

power often improves by explicitly modeling additional characteristics.

Since strict PUMs with linear utility over characteristics often provide powerful

descriptions of datasets, we check if there are utility parameters with intuitive monotonic-

5Regularity states that the probability an alternative is chosen weakly decreases as additional alternatives
are added to a choice set.
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ity properties that can describe individual choice datasets. When imposing monotonicity

constraints, we find that strict PUMs are still able to describe many individual choice

datasets. Lastly, the descriptive power of a strict PUM with linear utility over price

relatively improves as the number of alternatives increases. This provides some evidence

that individuals may pay attention to fewer characteristics when making decisions from

discrete choice problems with more alternatives.

3.1.1 Relation to Literature

Thus far, we have not discussed how this paper is related to work on revealed

preference. We use a revealed preference approach to formalize the refutable aspects of

the model using a system of linear inequalities. These inequalities are similar to those

used by [Afr67] and [Var83] for studying the standard consumer demand problem. There

has recently been a renewed interest in using a revealed preference approach to formalize

models and analyze datasets. For example, the work of [CDRV07] gives refutable

conditions for when a household’s aggregate demand is observed but individual demand

is unobserved. [PQR15] provide a test of rational behavior on contingent consumption

from risky states and provide an empirical analysis using experimental data on portfolio

choice.

While there is a large literature on stochastic choice, the interpretation of stochas-

tic choice generated “as if” it were generated from deterministic choice of lotteries is

gaining renewed interest. Recall that a strict PUM models an individual with preferences

over lotteries represented by an expected utility component less a costly attention func-

tion. We show in Section 3.2.2 this approach is essentially a first order approximation

of utility including observables. [Mac85] is one of the earliest to consider stochastic

choice generated from deterministic preferences over lotteries. Recent work that ex-

amines stochastic choice using this framework is [SM13], [FIS15], and [CVDOR15].
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This interpretation is desirable since it allows stochastic choice problems to be treated as

standard maximization problems. Moreover, choice probabilities behave like demand

functions from the standard consumer problem.

A convenient functional form of preferences over lotteries considers a utility

function with an expected utility component less a costly attention function. In the setting

of preferences over lotteries, the costly attention function can be interpreted as a cost

to ensure a desired object is chosen. The idea of using costly attention functions has

seen widespread use in information processing environments. For example, [Sim03] uses

the Shannon entropy function to model limited information flows for consumption-labor

decisions over time. More recently, [MM14b] study optimal information acquisition

when an individual has a prior distribution and entropy costs of information acquisition.

[CD15] suggest the cost function may be of unknown structure and provide revealed

preference conditions for choosing information structures without specifying structure

on the cost function. Similar to [CD15] we study general costly attention functions, but

abstract from the information acquisition process. This allows us to take these ideas to

datasets in which their observables are unavailable.

While we interpret the separable nonlinear utility component as costly attention,

it has been interpreted many ways. Similar to our interpretation, [MW02] interpret the

nonlinear component as costly effort is necessary to ensure an outcome occurs. [FIS15]

interpret the nonlinear component as preference to avoid regret. This interpretation is

similar to individuals choosing risky portfolios with mean-variance preferences studied

in [Mar52]. Alternatively, [SM13] interpret the nonlinear component as a preference

for exploration. While there is some disagreement about what the non-expected utility

component represents, there is agreement that it encodes behavioral properties.

Our study of strict perturbed utility models in stochastic choice is related to a

more general study of perturbation functions. [HS02] helped bring attention to nonlinear
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perturbation functions in their study of potential games. [MF12] consider a “perturbed

consumer” and provide a study of demand systems with different assumptions. In

addition, [MF12] interpret the expected utility component as a perturbation, while the

object of welfare interest is the nonlinear component. In contrast, we follow [HS02]

and [FIS15] in interpreting the expected utility component as the object of interest for

welfare on the margin. Perturbed utility models also appear in a study of demand systems

generated from general entropy functions in [FdP15].

This paper is also related to the literature including additional observable in-

formation into microeconomic models. Recently, [RS08] argue to include additional

observables in revealed preference studies. However, the idea of including additional

observables into models has been considered since at least the work of [Lan66]. [Lan66]

considers an agent choosing consumption bundles where commodities only enter the

utility function through the value of characteristics when commodities have fixed conver-

sion rates to characteristics. [BBC08] use a revealed preference approach to study the

model from [Lan66] and find individuals can be described by the model in an empirical

analysis. An alternative approach by [GNP14] considers subjective descriptors of indexed

alternatives in a model of stochastic choice. This approach is elegant and provides insight

on when alternatives may be considered similar. However, the approach fails to speak

about what should be done with observed characteristics in discrete choice models.

Rather than using a strict PUM, one could consider introducing characteristics

in a random utility model. For example, [MR90] and [McF05] provide general revealed

preference analyses of stochastic choice data generated by random utility models. A

natural way to include characteristics in random utility models is to treat each unique

set of characteristics as a distinct alternative and perform the tests developed in these

papers. [KS13] follow this approach to develop statistical test of random utility models

and find limited statistical evidence against random utility behavior. However, modifying
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the approach in these papers to test different model specifications seems challenging and

is an open question. In contrast, the formalization of strict PUMs provides a simple way

to examine different model specifications (see Section 3.3).

One could alternatively study strict PUMs using a statistical approach. [AR16b]

examine identifying perturbed utility models using symmetry properties and test a struc-

tured perturbed utility model against a null hypothesis that parameters are consistent

with additive random utility. The test rejects the null hypothesis of additive random

utility parameters. This provides some evidence for perturbed utility models using the

statistical approach. One may also consider adapting results from additive random utility

models to strict PUMs. We note that [SSS15] study the identifying power of cyclic

monotonicity as an implication of additive random utility models. For a strict PUM, strict

cyclic monotonicity is a necessary and sufficient condition for the model. Because we use

similar implications as [SSS15], one could consider estimating linear utility parameters

over characteristics for a strict PUM following their procedure.

The remainder of the paper proceeds as follows. Section 2 defines the individual

choice datasets, defines the model, and provides examples. Section 3 provides theoret-

ical results. Section 4 performs an empirical analysis of strict PUMs using data from

[LCB+13]. Section 5 contains our concluding remarks.

3.2 Definitions and Model

We present a model of stochastic choice that arises from an individual choosing

an optimal lottery. To operationalize this idea, it is necessary to choose an indexing

of alternatives. In general, individual choice datasets are collections of observables

and choices. It is up to the researcher to specify what an individual is choosing when

performing an economic analysis. The choice of an index will not be innocuous in the

model we present. The index specifies the dimension along which costly attention affects
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the individual. Later in an application, we choose list position as the index of alternatives

to captures the intuition that list position imposes costs that lead to stochastic choice.

We denote the indexed alternatives by a = 1, . . . ,A. For simplicity, we refer to these as

alternatives.

Each indexed alternative has additional structure from observables called char-

acteristics.6 Characteristics can take many forms. For example, characteristics can

be numeric such as price or time. A characteristic could be ordered numeric such as

safety rating or quantity. Alternatively, a characteristic could be categorical such as

brand or color. We assume each alternative a has da (finite) characteristics. The set

Xa, j contains values that the j-th characteristic of alternative a can take. The charac-

teristic values an alternative can take are encoded to lie in a vector space.7 Vector

notation is suppressed and inner products are represented using dot product notation.

Thus, xa = (xa,1, . . . ,xa,da) ∈Xa = ∏
da
j=1 Xa, j is a vector of characteristic values taken by

alternative a.

We call a menu a collection of characteristic values for each alternative.8 We

denote a menu x = (x1, . . . ,xA)∈X = ∏
A
a=1 Xa. We denote the probability simplex over

indexed alternatives as ∆ = {p ∈ RA | ∑
A
a=1 pa = 1 and pa ≥ 0 for all a}. We consider

datasets of observed menus and choice probabilities from the observed menus denoted

{(xn, p(xn)))}N
n=1. For a dataset, menus are distinct, but it is possible for p(xr) = p(xs)

for r 6= s and r,s ∈ {1, . . . ,N} .

We now define a strict perturbed utility model of discrete choice (strict PUM). A

6This is similar to the standard consumer problem where one chooses an index of commodities that are
the same regardless of price. One could instead consider a model of consumer behavior where individuals
have preferences over the index and price. However, this approach removes the similarity inherent in a
commodity. We feel the same logic holds in discrete choice environments with characteristics and that one
should be explicit when indexing alternatives.

7We think of Xa ⊆ Rda . In this case, quantitative variables have a relevant domain and categorical
variables can be defined using indicators.

8This definition will agree with the standard definition of a menu if only availability variation is used.
See Appendix 3.14.
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strict PUM is represented by

p∗(x) = (p∗1(x), . . . , p∗A(x)) = argmaxp∈∆

(
A

∑
a=1

paua(xa)−C(p)

)
,

where p∗(x) is the optimal distribution of choices when the menu is x, the function

ua : Xa→ R gives the utility of characteristic values for alternative a, and C : ∆→ R is

a strictly convex function which perturbs the expected utility. This model differs from

that of [FIS15] by allowing interactions of choice probabilities in the cost function and

explicitly modeling characteristics.9 The ua(xa) term can be interpreted as part of the

local utility for an alternative with characteristic values xa. We discuss this interpretation

more in Section 3.2.2.

We interpret the strictly convex function C as costly attention required to ensure

an alternative is chosen. For example, an individual may want to choose an alternative that

has the highest utility from observables, but has behavioral biases about the alternatives

that generates a distribution of choices. In line with this interpretation, the costly

attention function only depends on the indexing of alternatives. The nonseparability

of costly attention allows choice probabilities to interact. For example, consider when

the indexing of alternatives denotes the position in a list. It may be costly to consider a

position in the middle of the list, but once the position is considered the nearby objects

are considered more often. Nonseparable cost functions allow this behavior, while

separable cost functions rule this behavior out. The costly attention function also encodes

substitutability and complementarity analogous to standard consumer demand. Other

interpretations are provided in Section 3.1.1.

We briefly describe how this approach relates to theoretical models of stochastic

9The formulation of the cost function in [FIS15] studies when C(p) = ∑
A
a=1 c(pa) for a fixed c(·)

function that is continuously differentiable. See Appendix 3.8 for discussion of a model with symmetric
and separable costs. See Appendix 3.9 for a discussion about imposing differentiability.
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choice that use alternative availability. Alternative availability can be accommodated

using characteristics. Assign each alternative that can be chosen a single characteristic

which takes the values “available” and “unavailable”.10 Using this mapping, we see that

our definition of a menu agrees with the standard terminology using only availability.

Any dataset that satisfies positivity with only alternative availability is rationalized by a

strict PUM as noted in [Mac85] (see Appendix 3.14 for details and a simple proof).

3.2.1 Connection to Additive Random Utility Models

We desire strict PUMs to nest approaches already found useful describing data.

Additive random utility models are often used in prediction exercises and contain the

tractable logit model. Therefore, we consider how strict PUMs are related to additive

random utility models. The following discussion considers perturbed utility models with

costs not necessarily strictly convex since general additive random utility models can

have positive probability of utility ties. In this case, optimal choice distributions need not

be unique.

Consider an alternative a with latent utility given by va(xa) = ua(xa)+ εa, where

ε = (ε1, . . . ,εA) is unobservable to the researcher and does not depend on the menu. In

an additive random utility model, the individual observes ε and chooses the object with

the largest latent utility. This can be written as

p∗(x,ε) ∈ argmaxp∈∆

(
A

∑
a=1

paua(xa)−C(p,ε)

)
, (3.1)

where C(p,ε) =−∑
A
a=1 paεa and p∗(x,ε) denotes that the choice depends on the real-

ization of ε .
10When C is a bounded function, if ua(“unavailable”) =−K for K large, then alternative a is never be

chosen when unavailable. The domain of X excludes the case that all alternatives are unavailable.
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[AR16a] show under weak regularity conditions that

p∗(x) = E[p∗(x,ε)] ∈ argmaxp∈∆

(
A

∑
a=1

paua(xa)−C(p)

)
, (3.2)

where expectations are over ε , C(p) = maxπ∈Π:E[π]=pE
[
−∑

A
a=1 πa(ε)εa

]
where Π is

the set of all measurable functions from the support of ε to ∆. This shows that PUMs

nest behavior generated by additive random utility models.

The aggregation result in fact applies to all random utility models when the only

characteristics are alternative availability. To show this result, we require ua(·) terms to

take value −∞. The result now follows letting ua(“available”) = 0 and

ua(“unavailable”) =−∞. The distribution of ε induces a distribution over linear orders

of the alternatives {1, . . . ,A}. Since ε does not depend on the menu (which only includes

variation in availability), this coincides with random utility models from [BM60]. How-

ever, there are perturbed utility models that are not additive random utility models.11

Example 3 gives behavior that is inconsistent with additive random utility models.

3.2.2 Motivation of Separability and Local Approach

Strict PUMs can also be interpreted as a first order approximation to describing

behavior. First, consider a general non-expected utility function as in [Mac85] given by

p∗(x) = argmaxp∈∆V (x, p)

where V (x, p) is a continuously differentiable function in p. Similar to the analysis of

[Mac82], we take a first order Taylor expansion around the optimal choice distribution

11 [HS02] show under a stronger set of regularity conditions that the additive random utility model of
(3.1) implies a perturbed utility representation. They also provide an example of a perturbed utility model
which cannot be represented by an additive random utility model.
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and find that

V (x, p)−V (x, p∗(x)) =
A

∑
a=1

Va(x, p∗(x))[pa− p∗a(x)]+o(||p− p∗(x)||)< 0.12

Examining the comparison near the optimum, the o(||p− p∗(x)||) term is small so

A

∑
a=1

Va(x, p∗(x))pa <
A

∑
a=1

Va(x, p∗(x))p∗a(x).

Therefore, Va(x, p∗(x)) represents the local utility of alternative a. However, if values

recorded in menu x are informative about the true utility value of an alternative, then

it is natural to make additional assumptions. First, it is natural to assume that xa only

provides information about the local utility of alternative a. In this case, local utility is

represented by

Va(x, p∗(x)) =Va(xa, p∗(x)).

A second natural assumption imposes that characteristic values impact local

utility independently of choice distributions. This assumption says if observables xa

occur in another problem, then the local utility is the same. Now we can decompose the

local utility into a component that depends on the observables xa and a component that

depends on the lottery choice, so

Va(x, p∗(x)) = ua(xa)+Va(p∗(x)).

Since other terms are of smaller order locally, a first order approach suggests that

characteristic values only effect local utility. However, these assumptions bring us to a

12The term || · || is the standard Euclidean norm.
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utility function

V (x, p) =
A

∑
a=1

ua(xa)pa +Ṽ (p).

A sufficient condition for p∗(x) to be a unique maximizer of V (x, p) is that Ṽ (p) is strictly

concave. This final assumption yields a strict PUM by setting C(p) =−Ṽ (p). From this

procedure, it is clear that C captures behavioral properties associated with the indexing

of alternatives.

Note that ua(xa) is only part of the local utility for an alternative. Therefore, ua(xa)

does not give information about absolute welfare for alternative a with characteristics

xa. However, ua(xa) provides information about marginal welfare and may be of policy

interest. For example, an individual may have a predisposition to avoid buses when

traveling that is encoded through the costly attention function. However, a policy maker

could consider changing the attractiveness of buses through observables to change

individual behavior at the margin.

3.2.3 Behavioral Effects

This section details behavior potentially seen in data that can be described by the

model. Two common behavioral effects seen in data are the attraction and compromise

effect. Details of the attraction effect are provided in the introduction. The commonly

observed compromise effect states that if an alternative is added to a binary choice set and

is “between” the two alternatives, then it is chosen more often. For more details about

the attraction and compromise effect, we refer the reader to [Sim89]. While these are

robustly documented effects, they need not always occur. Thus, a descriptive model of

stochastic choice should allow either type of behavior. We provide an example decision

problem below where either type of behavior could occur.

Consider an employee choosing between health care provider A, B, and C offered

by their employer. Health care providers only differ in the number of locations and
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specialists. In this example, alternatives are indexed by health care providers A, B, and

C. The characteristics for each alternative are the number of locations and specialists.

From this description, the indexing of alternatives specifies a priori what is chosen by

the individual and supposes similarity for different values of characteristics. The costly

attention function only depends on the health care provider. Costly attention may capture

prior information that is unobserved such as reputation, advertising effects, and word

of mouth. An individual chooses between providers A, B, and C, but an employer may

consider changing the coverage at the same cost to the individual. Let C`, Cm, and Ch be

different potential coverages offered by provider C with low, medium, and high numbers

of specialists respectively. The different coverages are pictured in Figure 3.1. Rather

than adding alternatives to a choice set, we consider attraction and compromise effects

using continuous changes in characteristic values.

Locations

Specialists

3

5
6

2

8

4 62

A

B

C`

Cm

Ch

Figure 3.1. Insurance provider decision problems

If the coverage of provider C changes from C` to Cm or Cm to Ch, there are

plausible reasons to expect the choice probability of provider A to increase or decrease.

The direction depends on which behavioral effect dominates. First, consider the choice

of provider when the coverages are given by A,B, C` in Figure 3.1. Since C` is strictly
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dominated by both providers in characteristics, we may expect that provider C is chosen

with low or zero probability. If coverage C` is replaced with the coverage Cm, provider C

may become more attractive and be chosen more often. In addition, provider A dominates

Cm so A may be chosen more often, in line with an attraction effect. However, provider

A may be chosen less since provider C is a better competitor. If the number of specialists

for provider C increases further to coverage Ch, then we again expect provider C to be

chosen more often. Provider A could be chosen less often if provider C is viewed as a

competitor. However, provider A could be viewed as a compromise and chosen more

often. Using conditions from Section 3.3, Example 5 shows that as long as there is a

direct effect on the choice probability of the alternative with varying characteristic values,

either type of behavior can be described.

3.2.4 Examples

Although this paper focuses on a revealed preference analysis of the model, we

provide some examples of cost functions that highlight the versatility of the model. These

examples place a parametric structure on the cost function that allows for analysis of

comparative statics and prediction.

Example 2 (Choice from Lists). Let a be the order of results displayed in a list which

has A options. Let η > 0 and consider the perturbation function

C(p) = η

A

∑
a=1

pa ln(pa)−
A

∑
a=1

γa pa,

where γa ∈R. Assume that each position has the same set of characteristics and ua(xa) =

u(xa) for each a. This implies that utility received from characteristic values does not
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depend on list position. Using the above assumptions,

p∗a(x) =
e(u(xa)+γa)/η

∑
A
b=1 e(u(xb)+γb)/η

.

A high value of γa acts as a “boost” to choosing position a. When γa = 0 for each a,

this is the logit formula. The modified logit formula is due to [MW02].13 Following the

interpretation of [MM14b], γa may be non-zero to reflect prior beliefs about quality of

items in position a.

Example 3 (Choice from Lists with Linked Position Effects). Consider choice from an

ordered list as in Example 2. Assume A > 2. Now suppose that if the last position (A)

is chosen with high probability, then position A−1 is also chosen with high probability.

One perturbation function consistent with this behavior is (with η ,γ > 0)

C(p) = η

A

∑
a=1

pa ln(pa)+ γ max{pA− pA−1,0}.

Suppose at menu x = (x1, . . . ,xA), U(x) = (u(x1), . . . ,u(xA)) equals the zero

vector. Since η > 0 we obtain p∗a(x) = 1/A for each a. Suppose characteristic values

change only for position A so x̃ = (x1, . . . ,xA−1, x̃A) with u(x̃A) > 0. For fixed η , there

exists γ sufficiently large such that p∗A(x̃)> p∗A(x) and p∗A−1(x̃)> p∗A−1(x).
14 Thus, there

can be position effects that are linked.

Example 4 (Sparse Stochastic Choice). In data, one often finds only a few alternatives

chosen with positive probability. However, many models of stochastic choice including

the logit model assume each alternative is chosen with positive probability. The following

13[MW02] consider the relative entropy cost C(p) = η ∑
A
a=1 pa ln(pa/qa), where q = (q1, . . . ,qA) is a

reference measure. This formulation is made equivalent to the above cost function by rewriting γa =
η ln(qa).

14This is an example of stochastic complementarity between objects in positions A and A−1 using the
definition from [AR16a].
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perturbed utility function incorporates a penalty so only a few alternatives have positive

probabilities. For η > 0 the function

C(p) = p2
1 +

A

∑
a=2

(
p2

a +η pa
)

will induce a subset of alternatives to be chosen with zero probability when η is large

enough.

3.3 Revealed Preference Analysis

We take a revealed preference approach to check when a dataset {(xn, p(xn))}N
n=1

can be described by a strict PUM.15 Conditions developed in this section allow us to give

example datasets that cannot be described by a strict PUM. Any proofs not in the main

text are in Appendix 3.6.

Definition 5 (Rationalization of Strict PUM). The dataset {(xn, p(xn))}N
n=1 is rational-

ized by a strict perturbed utility model if there exist ua : Xa→ R for all a ∈ {1, . . . ,A}

and a strictly convex C : ∆→ R such that

p(xn) = argmaxp∈∆

A

∑
a=1

paua(xn
a)−C(p)

for all n ∈ {1, . . . ,N}.

First, we present a lemma on properties of optimizers from perturbed utility

models. The result implies that utilities are monotone in probabilities and only relies on

the existence of a unique maximizer. Let U(x) = (u1(x1), . . . ,uA(xA)) be the vector of

utilities generated by menu x. Let g : ∆→ R be a function on the simplex.

15A perturbed utility model with a weakly convex perturbation can rationalize any dataset. Details are in
Appendix 3.6.
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Lemma 4. Consider the dataset {(xn, p(xn))}N
n=1 and suppose that

p(xn) = argmaxp∈∆

(
∑

A
a=1 paua(xn

a)−g(p)
)

is a singleton . Then for any x, x̃ ∈ {xn}N
n=1

such that p(x) 6= p(x̃),

(p(x)− p(x̃)) ·U(x̃)< g(p(x))−g(p(x̃))< (p(x)− p(x̃)) ·U(x)

Proof. Uniqueness of the argmax set requires that

p(x̃) ·U(x)−g(p(x̃))< p(x) ·U(x)−g(p(x))

p(x) ·U(x̃)−g(p(x))< p(x̃) ·U(x̃)−g(p(x̃)).

The result follows by rearrangement.

Next, consider taking a sequence of probabilities chosen from different menus.

Let x[m] = (x1[m], . . . ,xA[m]) ∈ {xn}N
n=1 for m ∈ {1, . . . ,M} be an element in a sequence

of observed menus. Let U(x[m]) = (u1(x1[m]), . . . ,uA(xA[m]). Assume at least one pair

of choice distributions chosen is not equal and let x[M+1] = x[1]. Summing inequalities

from Lemma 4 yields

M

∑
m=1

(p(x[m+1])− p(x[m])) ·U(x[m])<
M

∑
m=1

g(p(x[m+1]))−g(p(x[m])) = 0.

If all choice distributions from a sequence are equal, then the above sums both equal zero

and provide no restriction on utilities. Rearranging the probabilities and still assuming

x[M+1] = x[1], we find that

M

∑
m=1

p(x[m+1]) ·U(x[m])<
M

∑
m=1

p(x[m]) ·U(x[m]).

This condition states that there does not exist a strict utility pump when comparing the
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probabilities chosen from a menu to other observed probabilities. In light of the discussion

in Section 3.2.2, we interpret this as being able to find no local utility improvements from

a cycle.16 We show that the no strict utility pump condition is necessary and sufficient

for a dataset to be rationalized by a strict PUM.

Theorem 7. Consider the dataset {(xn, p(xn))}N
n=1. The following are equivalent:

(i) {(xn, p(xn))}N
n=1 is rationalized by a strict PUM.

(ii) There exist utility functions ua : Xa→ R for all a ∈ {1, . . . ,A} and a function g :

∆→ R such that for all n ∈ {1, . . . ,N}, p(xn) = argmaxp∈∆ ∑
A
a=1 paua(xn

a)−g(p).

(iii) There exist numbers {un
a}N

n=1 for all a ∈ {1, . . . ,A} and {gn}N
n=1, such that for all

(s,r) ∈ {1, . . . ,N}×{1, . . . ,N} with p(xs) 6= p(xr) then

A

∑
a=1

pa(xs)ur
a−gs <

A

∑
a=1

pa(xr)ur
a−gr,

and for all r,s ∈ {1, . . . ,N}

ur
a = us

a if xr
a = xs

a

gr = gs if p(xr) = p(xs)

(iv) There exist numbers {un
a}N

n=1 for all a∈ {1, . . . ,A} such that for all finite sequences

{x[m]}M
m=1 where all x[m] ∈ {xn}N

n=1 and p(x[m]) 6= p(x[m+1]) for some m

M

∑
m=1

p(x[m+1]) ·U [m]<
M

∑
m=1

p(x[m]) ·U [m]

16This above inequality is a version of strict cyclic monotonicity as developed in [Roc70].One early
application of cyclic monotonicity is the development of necessary and sufficient conditions to implement
action profiles in a quasi-linear environment by [Roc87].
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where x[M +1] = x[1] and U [m] = (u1[m], . . . ,uA[m]) where ua[m] is the ur
a term

associated to xa[m] = xr
a;

and for all r,s ∈ {1, . . . ,N} and for all a ∈ {1, . . . ,A}

ur
a = us

a if xr
a = xs

a

(v) Let S = {(x̃,x) ∈ {xn}N
n=1×{xn}N

n=1 | p(x̃) 6= p(x)}. There is no {π(x̃,x)}(x̃,x)∈S

with π(x̃,x) ≥ 0 and ∑(x̃,x)∈S π(x̃,x) = 1 such that for all x̂a ∈ {{xn
a}A

a=1}N
n=1

∑
{(x̃,x)∈S |xa=x̂a}

π(x̃,x)pa(x̃) = ∑
{(x̃,x)∈S |xa=x̂a}

π(x̃,x)pa(x)

and for all x̂ ∈ {xn}N
n=1

∑
{(x̃,x)∈S |p(x̃)=p(x̂)}

π(x̃,x) = ∑
{(x̃,x)∈S |p(x)=p(x̂)}

π(x̃,x)

That (i) implies (ii) is clear since a strictly convex perturbation function yields

argmax sets that are singletons. That (ii) implies (iii) is an implication of Lemma 4. That

(iii) implies (iv) is immediate from the discussion preceeding the theorem.17 We provide

a constructive proof that (iv) implies (i). Condition (iii) is equivalent to (v) by a theorem

of the alternative.

We briefly mention some highlights of these conditions. Condition (ii) states

that one cannot differentiate strict PUMs from a more general class of PUMs with

unique maximizers. The inequalities in (iii) are similar to those from [Afr67] to test

standard consumer demand where the utility numbers ur
a play a role similar to prices.

17(iii) implies (iv) even if gn 6= gñ when p(xn) = p(xñ) so that this holds under slightly weaker assump-
tions. We prefer the above representation for transparency and since it will eliminate variables in the
application.
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The inequalities in (iv) are similar to the no attention improving cycles condition in

[CD15] and the revealed preference test for utility maximization in incomplete markets

provided by [GS86]. Condition (v) provides a set of universal conditions that can refute

strict PUMs.18 Moreover, condition (v) has a connection to second stage expected utility

maximization that we discuss in Appendix 3.7. We now state a simple corollary of the

above result.

Corollary 2. Consider the dataset {(xn, p(xn))}N
n=1. If p(xn) = p̂ for all n ∈ {1, . . . ,N},

then the dataset is rationalized by a strict perturbed utility model.

The corollary states that at least one pair of distinct choice distributions are needed

to refute a strict PUM. The result follows from Theorem 7 since there are no comparisons

of different probabilities. A simple rationalization of the dataset is generated by setting

U(x) = 0 for all x ∈X and letting C(p) = ∑
A
a=1(pa− p̂a)

2. This rationalization predicts

choice probabilities that never change for any set of characteristic values.

Theorem 7(i)-(iv) can be used to state additional theorems to rationalize strict

PUMs with various utility functions over characteristics. For example, looking for

rationalizations with ua(xa) = ∑
da
j=1 ua, j(xa, j) or ua(xa) = βa · xa both yield systems of

linear inequalities on ua, j(xn
a, j) or βa, respectively.19 If characteristics are the same for

all alternatives, the a subscript can be dropped to examine utility over characteristics that

is independent of the indexing of alternatives. For the linear model, one can test strict

monotonicity of characteristics by imposing additional inequalities on the βa terms. See

Appendix 3.6 for a statement of these results.

We now provide an example illustrating some restrictions imposed by strict

PUMs.
18Condition (v) for strict PUMs is also UNCAF as defined in [CES14].
19Other revealed preference tests of separable models often generate nonlinear restrictions. See for

example [Var83] and [CDDRH15].
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Example 5. [Monotonicity Violation] Let A = 3 and suppose menus x = (x1,x2,x3) and

x̃ = (x1,x2, x̃3) are observed with p1(x)> p1(x̃), p2(x)< p2(x̃), and p3(x) = p3(x̃). This

is inconsistent with a strict PUM. To be consistent, there must exist values u3(x3),u3(x̃3)

such that,

(p3(x̃)− p3(x))(u3(x3)−u3(x̃3))< 0,

which is impossible. This restriction says if a change of characteristic values for alter-

native three changes the choice probability of a different alternative, then the choice

probability of alternative three must also change.

If instead p3(x) 6= p3(x̃), then the equation imposes ordinal information on u3(·).

For example, if p3(x) < p3(x̃), then u3(x3) < u3(x̃3). Now, consider characteristic

movements as in Figure 3.1. This says that behavior consistent with the attraction

and compromise effect are rationalized by a strict PUM only if the alternative whose

characteristic value changes also experiences a change in choice probability.

Example 5 suggests a strict PUM may always rationalize data when there is no

overlap of characteristic values. This intuition is formalized below.

Proposition 1. If {xn}N
n=1 are menus such that xr

a 6= xs
a for all a ∈ {1, . . . ,A} and for all

r,s ∈ {1, . . . ,N} such that r 6= s, then {(xn, p(xn))}N
n=1 can always be rationalized by a

strict PUM.

Thus, there must be some alternatives with the same characteristic values in

multiple menus to refute a strict PUM. However, the choice of characteristics to include

in the model is at the discretion of the researcher. A common characteristic that is

dropped from many revealed preference analysis is time for exactly this reason. Thus,

when choosing an indexing of alternatives or which characteristics to explicitly model,

one must be wary of the “garbage-in, garbage-out” concerns of [Mye81]. If many

characteristics are modeled, then it is more likely to be in the case of Proposition 1 where
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any dataset of choice probabilities can be generated from a strict PUM. Therefore, one

needs to be judicious when choosing observables to explicitly model. However, the

ability to refute strict PUMs is regained by imposing additional structure. Below is an

example dataset which refutes linear utility over characteristics for a strict PUM, but

trivially satisfies a fully nonparametric model.

Example 6 (Refutation of strict linear perturbed models). Consider the stochastic choice

dataset in Table 3.1.

Table 3.1. Refutation of a strict linear perturbed model

x1 x2 p1 p2

0 0 2/3 1/3
1 1 1/3 2/3
2 2 2/3 1/3

Using Theorem 10(iv) in Appendix 3.6 for linear utility over characteristics,

consider the restriction involving the first two rows so

(2/3−1/3)β1 +(1/3−2/3)β2 < 0,

and hence β1 < β2. The restriction of the second and third rows imposes β2 < β1. There-

fore, this dataset is inconsistent with a strict PUM with linear utility over characteristics.

Since all characteristics are distinct for an alternative, a strict PUM rationalizes the

dataset from Proposition 1.

3.4 Application: Stated Preference Data

In this section, we test different specifications of strict PUMs using individual

choice data from [LCB+13]. A specification of a strict PUM includes a functional form of

utility over characteristics and a set of relevant characteristics. A relevant characteristic
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is a characteristic that is explicitly modeled. We examine different specifications to

address the questions mentioned earlier:“Can strict PUMs describe individual choice

datasets?”, “Are there common properties of specifications that best describe the data?”,

“Which characteristics best describe individual datasets?”.

The data from [LCB+13] was collected from an opt-in web survey asking ques-

tions about flight choice.20 We describe the structure of the survey from [LCB+13]. Each

question asked the individual to choose their most-preferred flight from a list of flights

named “Flight A”, “Flight B”, etc. ordered left to right. The list is of fixed size for each

individual. The characteristics used for individual questions are fixed, while characteristic

values vary for each question. After an individual chooses their most-preferred flight, they

are asked whether they would purchase any flight. Given the variety of data, we focus

on one subset of data in the main text. Specifically, we examine individual choices from

survey questions with lists of size four and restrict the analysis to flights the individual

would actually purchase. Results for lists of size three and five, as well as results for data

that includes choices individuals would not purchase are in Appendix 3.13.

We provide details to map datasets into a strict PUM framework. We index

alternatives by “Flight A”, “Flight B”, etc. used in the survey. This also coincides with

list position from left to right. The leftmost object is denoted a = 1. This choice of

indexing can be interpreted as costly attention acting through the list position.21 This

index captures how costly it is to pay attention to different sections of the list. Since

the analysis is at the individual level, each individual is allowed to process the list in a

potentially different way.

Next, we select relevant characteristics. We focus on five characteristics that are
20Each individual was asked 16 or 32 discrete choice questions. [LCB+13] reports that the number of

discrete choice survey questions normally ranges from 4-8.
21There are other ways to choose an index. We discuss some of these in Appendix 3.15.
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included in all survey questions.22 These characteristics are price, time, brand, stops,

and beverage. The values the characteristics can take are given in Table 3.2. We test the

following sets of relevant characteristics: All combinations of price, time, and brand, as

well as all five characteristics. We say the set of relevant characteristics is “Full” when

all five characteristics are treated as relevant.

Table 3.2. Values of flight characteristics

Characteristic Description Values

Price Round trip airfare∗ $350 $450 $550 $650
Time Total travel time 4 hr 5 hr 6 hr 7 hr
Brand Airline Qantas Virgin Blue Jetstar Oz Jet
Stops Number of stops 0 1
Beverage Juice/water/soft drinks Not available(0) All free(1)
∗ Round trip airfare excludes taxes

We also need to specify a functional form of the utility function over characteris-

tics. We focus on five utility functions over characteristics. These utility functions are

fully nonparametric ua(xa), additively separable ∑
d
j=1 ua, j(xa, j), additively separable and

independent of list position ∑
d
j=1 u j(xa, j), linear βa · xa, and linear and independent of

position β · xa.23

Lastly, we discuss how to generate the choice probabilities p(xn) for observed

menus. Once we choose a set of relevant characteristics, we average an individual’s

choices across menus with the same characteristic values. Thus, p(xn) is a vector of

sample averages.24 Using averages highlights data trade-offs when designing a test. For

example, treating an additional characteristic (that takes on at least two values) as relevant

reduces the number of choices to average over when generating choice probabilities. We

show in Appendix 3.10 that when data is deterministic, testing a strict PUM is equivalent
22The number of characteristics for an alternative varies from six to twelve.
23Price, time, stops, and beverage have natural implementations in the utility functions. However,

there is flexibility when including brand as a relevant characteristic. For the separable and linear tests of
rationality, we normalize brand by introducing three indicators which give utility relative to Qantas.

24The idea of choice probabilities generated from averaging behavior is studied theoretically in [AES16].
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to looking for a strict ordering over the chosen alternatives. This result is analogous to a

result for the model in [FIS15].

We provide some basic descriptive statistics for the four alternative dataset of

focus. The average age of individuals is 40.6 years old. The population of individuals

tested is 54.7 % female. In the population, 86.9% of individuals have an annual income

less than 104,000 Australian Dollars. Descriptive statistics for all datasets are in Appendix

3.12.

3.4.1 Rationalizability Results

All analysis in this section is for choices an individual would purchase from a list

of size four. First, we present the percentage of individual datasets that can be rationalized

by a strict PUM for the various specifications in Table 3.3. We call these percentages pass

rates. A number of 0.760 means that 76% of the data sets can be rationalized by a strict

PUM. The test is performed using Theorem 7(iii) and the implementation is detailed in

Appendix 3.11. The sample size of individuals is denoted S. We refer to sets of relevant

characteristics in text as represented in the tables.

Table 3.3. Pass rates for four alternatives

ua(xa) ∑
d
j=1 ua, j(xa, j) ∑

d
j=1 u j(xa, j) βa · xa β · xa S

Price 0.760 0.760 0.710 0.729 0.575 221
Brand 0.751 0.751 0.543 0.751 0.543 221
Time 0.751 0.751 0.624 0.688 0.357 221
Price & Brand 0.882 0.652 0.348 0.579 0.303 221
Price & Time 0.869 0.620 0.416 0.448 0.262 221
Brand & Time 0.819 0.348 0.118 0.231 0.068 221
Price & Time & Brand 0.955 0.787 0.520 0.670 0.348 221
Full 0.955 0.837 0.643 0.801 0.511 221

Many tests have a high pass rate. In particular, the fully nonparametric model

has pass rates up to 95%. This provides some evidence that strict PUMs are able to

describe individual choices. Moreover, high pass rates suggest that the indexing of
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alternatives we use is sensible. At first glance, the results seem to align with intuition.

For example, specifications which include price tend to describe many individuals. In

contrast, specifications for a given utility function with Brand & Time often describe the

smallest percentage of individual datasets.

When checking if strict PUMs can describe individual data, there are three effects

that occur when adding relevant characteristics. First, the number of free parameters

increases which makes violations of rationality less likely. Second, there is an increase in

the number of menus to compare probabilities which makes violations of rationality more

likely. Third, there is a decrease in the number observations to generate an average choice

distribution which has an ambiguous effect. Therefore, pass rates do not necessarily

increase with the number of relevant characteristics (see for example going from Price to

Price & Brand with additively separable utility).

While pass rates are high and suggest strict PUMs can describe individual choice

datasets, we are concerned that pass rates are high simply because there is little character-

istic overlap as discussed in Section 3.3. To account for these concerns, we perform a

power correction using the measure of predictive success (MPS) from [BC11]. An MPS

for an individual is given by

MPS = 1{data described by strict PUM}− correction term.

A MPS can take values between negative one and one. For an individual, an MPS

close to zero means that if someone were randomizing without considering relevant

characteristics, they would just as likely pass the test.

We use two corrections based on [Bro87]. The correction term is interpreted as

how likely a dataset from some class would pass the test. The first power correction

examines choice distributions generated anywhere on the probability simplex. The
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second power correction examines choice distributions that are possible from the number

of choices an individual made from a menu for given relevant characteristics. Thus,

the second procedure considers permissiveness relative to choices that could have been

observed and may provide a stronger power correction for the dataset. The details of the

corrections are as follows:

(i) For each menu x ∈ {xn}N
n=1 generate a variable Z = (z1, . . . ,zA)

′ ∼ Uniform[0,1]A.

Generate probabilities p̂a(x) = za/∑
A
a=1 za. Check if randomly generated probabil-

ities can be generated by a strict PUM and record the result. Repeat this procedure

100 times. Use the percentage of samples that can be generated by a strict PUM as

an estimate of the correction term.

(ii) For each menu x ∈ {xn}N
n=1, examine how many decisions Nx were made from

the menu. Generate random variables Zi = (zi,1, . . . ,zi,A)
′ ∼ Uniform[0,1]A for i =

1, . . . ,Nx. Generate sample probabilities p̂a(x) = 1
Nx

∑
Nx
i=11{zi,a > zi,b for all a 6= b}.

Check if randomly generated probabilities can be generated by a strict PUM and

record the result. Repeat this procedure 100 times. Use the percentage of samples

that can be generated by a strict PUM as an estimate of the correction term.

We refer to the first measure as “basic” since it is the same procedure regardless of the

dataset. We refer to the second procedure as “adaptive” since it adapts to properties of

the dataset.

We present the average basic MPS in Table 3.4 and the average adaptive MPS in

Table 3.5. There are many differences between pass rates and average MPS. Although

specifications with nonparametric utility have high pass rates, they have average MPS

close to zero. This indicates that nonparametric utility has low descriptive power for the

datasets observed. Other specifications with high pass rates have average MPS close to

zero. For example, the average MPS is nearly zero for specifications with only Brand as
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a relevant characteristic. For simplicity, we use MPS to refer to the average MPS in the

remaining discussion.

Next, we examine how many combinations of relevant characteristics have an

MPS greater than 0.10 for at least one utility function over characteristics.25 There are six

combinations of relevant characteristics with basic MPS and adaptive MPS greater than

0.10. The only combinations of relevant characteristics that fail to meet this threshold

MPS in both cases are Brand and Brand & Time. For relevant characteristics that exceed

the threshold for basic MPS, we find that a linear model always has the highest basic

MPS. For relevant characteristics that exceed the threshold for adaptive MPS, a linear

model has the highest adaptive MPS except for the sets of relevant characteristics Price

& Time & Brand and Full. In these cases, the model with additively separable utility

independent of list position has the highest adaptive MPS. The highest basic MPS is

0.518 occurs for the specification with linear utility and the relevant characteristics Price

& Time & Brand. The highest adaptive MPS is 0.516 for a linear utility independent of

list position with the relevant characteristic Price. This means over 50% of individuals

can be described by some strict PUM after correcting for power.

Table 3.4. MPS for four alternatives: Basic

ua(xa) ∑
d
j=1 ua, j(xa, j) ∑

d
j=1 u j(xa, j) βa · xa β · xa S

Price -0.008 -0.008 0.220 0.086 0.493 221
Brand -0.010 -0.010 0.022 -0.010 0.022 221
Time -0.013 -0.013 0.133 0.041 0.279 221
Price & Brand -0.026 0.307 0.202 0.447 0.262 221
Price & Time -0.012 0.339 0.362 0.381 0.235 221
Brand & Time -0.076 0.005 -0.027 0.098 0.027 221
Price & Time & Brand -0.045 0.358 0.363 0.518 0.302 221
Full -0.045 0.314 0.472 0.490 0.453 221

25There is no standard precedent to evaluate what level of average MPS should be used as a threshold.
However, if over 10% of the dataset could be plausibly described by a model after correcting for power, we
believe it may be of some interest.
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Table 3.5. MPS for four alternatives: Adaptive

ua(xa) ∑
d
j=1 ua, j(xa, j) ∑

d
j=1 u j(xa, j) βa · xa β · xa S

Price 0.014 0.014 0.296 0.115 0.516 221
Brand 0.002 0.002 0.098 0.002 0.099 221
Time 0.006 0.006 0.204 0.071 0.298 221
Price & Brand 0.033 0.331 0.283 0.425 0.263 221
Price & Time 0.040 0.348 0.355 0.364 0.237 221
Brand & Time -0.015 0.042 0.054 0.075 0.031 221
Price & Time & Brand 0.022 0.293 0.420 0.377 0.301 221
Full 0.019 0.257 0.491 0.332 0.443 221

These results suggest that linear models of utility over characteristics in a strict

PUM may describe many important aspects of individual choice. For example, the model

of Price with linear utility independent of position is among the top two models according

to the basic and adaptive MPS. Lastly, while basic and adaptive MPS are typically similar

when analyzing strict PUMs, they can qualitatively differ. For example, the basic MPS

for βa · xa with relevant characteristics Price & Time & Brand is 0.518, while it drops

to 0.377 using the adaptive MPS. While a difference of 0.13 is large, it is known that

different correction procedures can yield different results.26

3.4.2 Monotonicity Restriction Results

Given the relative success of describing individual choice datasets using strict

PUMs with linear utility over characteristics, a natural question is: “Can we find parame-

ters which have the correct intuitive sign?”. For example, it is intuitive that coefficients

on price, time, and number of stops would be negative, while the coefficient on beverage

would be positive. We impose these coefficient constraints while checking for a rational-

ization by a strict PUM with linear utility over characteristics. The results are presented

in Table 3.6.

While imposing constraints, there are only modest decreases in pass rates. The

26See [AGH13] for a variety of other procedures one could use to calculate correction terms.
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Table 3.6. Linear monotonicity results for four alternatives

Pass Rates Basic MPS Adaptive MPS

βa · xa β · xa βa · xa β · xa βa · xa β · xa

Price 0.674 0.575 0.400 0.529 0.472 0.539
Time 0.525 0.348 0.248 0.301 0.315 0.314
Price & Brand 0.570 0.303 0.484 0.269 0.493 0.269
Price & Time 0.353 0.258 0.314 0.240 0.321 0.240
Brand & Time 0.208 0.068 0.126 0.038 0.139 0.037
Price & Time & Brand 0.633 0.348 0.540 0.312 0.528 0.313
Full 0.760 0.430 0.611 0.384 0.556 0.383

largest decrease in pass rate is approximately 16%, while the remaining specifications

drop less than 10%. In fact, the pass rate is the same regardless of monotonicity con-

straints for several specifications. For position independent linear utilities, pass rates

are unchanged for the specifications of Price, Price & Brand, Brand & Time, and Price

& Time & Brand. This is evidence that if an individual’s choices can be rationalized,

then they often can be made to have utilities that are monotonic over characteristics in

intuitive ways.

Adding monotonicity constraints weakly decreases the pass rates and the cor-

rection term, so individual MPS can increase or decrease. The average MPS primarily

increases for utilities that depend on position and remains almost unchanged for position

independent utilities. This may occur because the correction term for the position inde-

pendent test is of smaller magnitude before imposing the monotonicity constraints. The

specification that has the highest basic and adaptive MPS uses the Full set of relevant

characteristics with position dependent linear utilities. Therefore, accounting for a priori

information can change the MPS ranking of specifications and the descriptive power of

strict PUMs. We note that the specification with only Price and position independent

utility still has high average MPS.
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3.4.3 Comparison to Three and Five Alternative Results

We the same analysis for individual choice datasets while conditioning on the

flights an individual would purchase from lists of size three and five. Results are reported

in Appendix 3.13. We find that the MPS ranking of a strict PUM with only Price and

position independent linear utility weakly improves as list size increases. This result also

holds when examining MPS rankings while imposing monotonicity restrictions. This

provides some evidence that as the number of alternatives increases, individual behavior

may best be described using fewer relevant characteristics. Moreover, specifications

using only Time and Brand do not consistently improve in MPS ranking as list size grows.

This suggests that individuals may have a priority ordering over which characteristics are

valued as the number of alternatives to choose from increases.

3.5 Conclusion

We provide a study of characteristics in a model of stochastic choice using strict

perturbed utility models. This class of models restricts behavioral effects to occur through

a costly attention function that only depends on the indexing of alternatives. We show that

the characteristic approach generalizes variation in alternative availability and the strict

PUMs nest behavior from additive random utility models. Moreover, we show a strict

PUM can be thought of as accounting for characteristics using a first order approximation.

In addition, we provide a system of inequalities which completely characterizes behavior

from strict PUMs. These inequalities can be interpreted as being able to find utilities

which do not produce a utility pump.

Finally, we perform tests of strict PUMs for various specifications of utility

functions and relevant characteristics using stated preference data from [LCB+13]. We

find that fully nonparametric utility functions over characteristics often rationalize the
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data. However, after applying a power correction for the permissiveness of the test, we

find that linear specifications provide more powerful descriptions of individual choice

datasets. A linear specification with only Price is often a powerful descriptor of the

data, but can often be improved on by adding other characteristics. There is also some

evidence of a priority order on characteristics as the number of alternatives to choose

from increases. These results suggest that examining simple perturbed utility models

with linear utility over a few characteristics could provide insights in applications.

3.6 Appendix A: Proofs of Main Results

Before proving results in the main text, we show that any dataset can be rational-

ized by a PUM when the set of maximizers is not a singleton.

Definition 6 (Rationalization of Weak PUM). The dataset {(xn, p(xn))}N
n=1 is rational-

ized by a weak perturbed utility model if there exist ua : Xa→ R for all a ∈ {1, . . . ,A}

and a convex C̃ : ∆→ R such that

p(xn) ∈ argmaxp∈∆

A

∑
a=1

paua(xn
a)−C̃(p)

for all n ∈ {1, . . . ,N}.

Theorem 8. Any dataset {(xn, p(xn))}N
n=1 is rationalized by a weak PUM.

Proof. For all a ∈ {1, . . . ,A} set ua(xa) = 0 for all xa ∈Xa. Set C̃(p) = 0 for all p ∈ ∆.

Since all probabilities yield the same utility, any observation p(xn) is a maximizer.

We note that condition (iv) of Theorem 7 can be re-written as strict cyclic mono-

tonicity. We present the definition of strict cyclic monotonicity here since it is useful

when constructing a cost function in the proof of Theorem 7.
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Definition 7 (Strict Cyclic Monotonicity). A function ρ : RK → RK satisfies strict cyclic

monotonicity if for every positive integer M ∈Z+ and sequence y[1], . . . ,y[M],y[M+1] =

y[1] ∈ RK with at least two y[m]’s distinct, then

M

∑
m=1

(y[m+1]− y[m])′ρ(y[m])< 0.

Proof of Theorem 7. ((iv)⇒ (i)) Assume that {(xn, p(xn))}N
n=1 satisfies (iv). Let Σ be the

set of all finite sequences {x[m]}M
m=1 with x[m]∈ {xn}N

n=1 such that p(x[m]) 6= p(x[m+1])

for some m. By (iv) there exist numbers {un
a}N

n=1 for all a ∈ {1, . . . ,A} such that for all

s,r ∈ {1, . . . ,N} if xs
a = xr

a then us
a = ur

a and

M

∑
m=1

(p(x[m+1])− p(x[m])) ·U [m]< 0

where x[M+1] = x[1] and U [m] = (u1[m], . . . ,uA[m]) where ua[m] is the ur
a term associ-

ated to xa[m] = xr
a. Since the inequality is strict, there exists ε0 > 0 small enough so that

there exist numbers {un
a}N

n=1 for all a ∈ {1, . . . ,A} such that for all s,r ∈ {1, . . . ,N} if

xs
a = xr

a then us
a = ur

a and

M

∑
m=1

(p(x[m+1])− p(x[m])) ·U [m]+ ε0 < 0 (3.3)

for all sequences in Σ with x[M+1] = x[1].

Consider the function f : RA→ R given by f (y) = (y2
1 + . . .+ y2

A +T )1/2−T 1/2

for T > 0. This function is used in [MR91]. In particular, f (·) is strictly convex,

differentiable, f (0) = 0, f (y)> 0 if y 6= 0, and
[

∂ f
∂ya

(y)
]
< 1 for all y and a ∈ {1, . . . ,A}.

From Equation 3.3, there exists ε > 0 small enough so that there exist numbers {un
a}N

n=1



78

for all a ∈ {1, . . . ,A} such that for all s,r ∈ {1, . . . ,N} if xs
a = xr

a then us
a = ur

a and

M

∑
m=1

[(p(x[m+1])− p(x[m])) ·U [m]+ εg(p(x[m+1])− p(x[m]))]< 0 (3.4)

where x[M+1] = x[1].

Next, consider the function φσ : ∆→ R for each sequence σ ∈ Σ given by

φσ (p) =
M−1

∑
m=1

[(p(x[m+1])− p(x[m]) ·U [m]+ εg(p(x[m+1])− p(x[m]))]

+(p− p(x[M])) ·U [M]+ εg(p− p(x[M])).

Each φσ (·) is strictly convex on the simplex since it is the sum of an affine and strictly

convex function restricted to a convex domain.

Using the φσ functions, we use a constructive procedure from [Roc70] Theorem

24.8. First, choose an arbitrary p(x0) ∈ {p(xn)}N
n=1 and let Σ0 be the set of sequences

which begin with p(x0). Next, define a function C : ∆→ R given by

C(p) = max
σ0∈Σ0

{φσ0(p)}.

C(·) is defined as a max of strictly convex functions, so it is strictly convex.

All that remains is to show that the numbers {{un
a}A

a=1}N
n=1 used to satisfy Equa-

tion 3.4 and the C(·) function rationalize the data {(xn, p(xn))}N
n=1. To see this let σn

0 be
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the sequence where C(p(xn)) achieves the maximum. For p 6= p(xn) and p ∈ ∆ we have

A

∑
a=1

paun
a−C(p) =

A

∑
a=1

paun
a− max

σ0∈Σ0
{φσ0(p)}

≤
A

∑
a=1

paun
a−

[
A

∑
a=1

(pa− pa(xn))un
a + εg(p− p(xn))+φσn

0
(p(xn))

]

=
A

∑
a=1

pa(xn)un
a− εg(p− p(xn))−φσn

0
(p(xn))

<
A

∑
a=1

pa(xn)un
a−φσn

0
(p(xn))

=
A

∑
a=1

pa(xn)un
a−C(p(xn))

where the first inequality comes by choosing the sequence which ends with p(xn) and

begins with the largest cost sequence for p(xn) and the second inequality is from εg(p−

P(xn))> 0 for p 6= p(xn). The rationalization can be extended to all of X by choosing

any real number for utilities associated with unobserved characteristic values.

((iii)⇔ (v)) We prove this result in Appendix 3.7 when discussing second stage

expected utility.

The following results can be proved using the same approach in Theorem 7 when

imposing structure on ua(xa). We provide results imposing structure so that ua(xa) is

equal to ∑
da
j=1 ua, j(xa, j) or βa ·xa. We do not provide a version of Theorem 7(v) for brevity,

however a similar statement will hold by application of a theorem of the alternative as in

the proof of Theorem 7.

Theorem 9. Consider the dataset {(xn, p(xn))}N
n=1. The following are equivalent:

(i) {(xn, p(xn))}N
n=1 is strictly rationalized by a perturbed utility model with ua(xa) =

∑
da
j=1 ua, j(xa, j).
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(ii) There exist utility functions ua(xa) = ∑
da
j=1 ua, j(xa, j) for all a ∈ {1, . . . ,A} and a

function g : ∆→R such that p(xn) = argmaxp∈∆ ∑
A
a=1 ∑

da
j=1 paua, j(xn

a, j)−g(p) for

all n ∈ {1, . . . ,N}.

(iii) There exist numbers {{un
a, j}

da
j=1}N

n=1 for all a ∈ {1, . . . ,A} and {gn}N
n=1, such that

for all (s,r) ∈ {1, . . . ,N}×{1, . . . ,N} with p(xs) 6= p(xr) then

A

∑
a=1

da

∑
j=1

pa(xs)ur
a, j−gs <

A

∑
a=1

da

∑
j=1

pa(xr)ur
a, j−gr

and for all r,s ∈ {1, . . . ,N} and a ∈ {1, . . . ,A}

ur
a, j = us

a, j if xr
a, j = xs

a, j for all j ∈ {1, . . . ,da}

gr = gs if p(xr) = p(xs).

(iv) There exist numbers {{un
a, j}

da
j=1}N

n=1 for all a ∈ {1, . . . ,A} such that for all finite

sequences {x[m]}M
m=1 with x[m] ∈ {xn}N

n=1 and p(x[m]) 6= p(x[m+1]) for some m

M

∑
m=1

(
A

∑
a=1

da

∑
j=1

(pa(x[m+1])− pa(x[m]))ua, j[m]

)
< 0

where x[M + 1]) = x[1] and ua, j[m] is the ur
a, j term associated to xa, j[m] = xr

a, j;

and for all r,s ∈ {1, . . . ,N} and a ∈ {1, . . . ,A}

ur
a, j = us

a, j if xr
a, j = xs

a, j for all j ∈ {1, . . . ,da}.

Theorem 10. Consider the dataset {(xn, p(xn))}N
n=1. The following are equivalent:

(i) {(xn, p(xn))}N
n=1 is strictly rationalized by a perturbed utility model with ua(xa) =

βa · xa.
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(ii) There exist utility functions ua(xa) = βa ·xa for all a ∈ {1, . . . ,A} and a function g :

∆→R such that p(xn) = argmaxp∈∆ ∑
A
a=1 pa(βa ·xa)−g(p) for all n∈ {1, . . . ,N}.

(iii) There exist numbers βa ∈ Rd
a for all a ∈ {1, . . . ,A} and {gn}N

n=1, such that for all

(s,r) ∈ {1, . . . ,N}×{1, . . . ,N} with p(xs) 6= p(xr) then

A

∑
a=1

pa(xs)(βa · xr
a)−gs <

A

∑
a=1

pa(xr)(βa · xr
a)−gr

and for all r,s ∈ {1, . . . ,N}

gr = gs if p(xr) = p(xs).

(iv) There exist numbers βa ∈Rd
a for all a∈ {1, . . . ,A} such that for all finite sequences

{x[m]}M
m=1 with x[m] ∈ {xn}N

n=1 and p(x[m]) 6= p(x[m+1]) for some m

M

∑
m=1

(
A

∑
a=1

(pa(x[m+1])− pa(x[m]))(βa · x[m])

)
< 0

where x[M+1]) = x[1].

There are other natural results when Xm = X for all m ∈ {1, . . . ,M} and the

utility is independent of the alternative. In this case, one considers utilities u(xa),

∑
d
j=1 u j(xa, j), and β · xa appropriately. One can also impose monotonicity constraints on

the utility numbers.

Proof of Proposition 1 . Any dataset with p(xn) = p̂ for all n ∈ {1, . . . ,N} can be ratio-

nalized by Corollary 2. Next, let {xn}N
n=1 be characteristics such that xr

a 6= xs
a for all

a ∈ {1, . . . ,A} and for all r,s ∈ {1, . . . ,N} such that r 6= s. To show {(xn, p(xn))}N
n=1 can

be strictly rationalized it suffices to show that there exist {{un
a}A

a=1}N
n=1 which satisfy

Theorem 7(iv). Let Un = (un
1, . . . ,u

n
A) for each n∈ {1, . . . ,N} and let v = (U1, . . . ,UN) be
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the vector of utilities associated with all observed characteristic values. Utility numbers

differ for each menu xn by assumption. We can rewrite the system of inequalities given

by Theorem 7(iv) using a matrix R as Rv < 0 where the strict inequality holds component-

wise. Let γ
s,r
a = pa(xs)− pa(xr). For example, when N = M = 3 and probabilities are

distinct for each menu, the matrix R is given by

R =



u1
1 u1

2 u1
3 u2

1 u2
2 u2

3 u3
1 u3

2 u3
3

(1,2) γ
2,1
1 γ

2,1
2 γ

2,1
3 γ

1,2
1 γ

1,2
2 γ

1,2
3 0 0 0

(1,3) γ
3,1
1 γ

3,1
2 γ

3,1
3 0 0 0 γ

1,3
1 γ

1,3
2 γ

1,3
3

(2,3) 0 0 0 γ
3,2
1 γ

3,2
2 γ

3,2
3 γ

2,3
1 γ

2,3
2 γ

2,3
3

(1,2,3) γ
2,1
1 γ

2,1
2 γ

2,1
3 γ

3,2
1 γ

3,2
2 γ

3,2
3 γ

1,3
1 γ

1,3
2 γ

1,3
3

(1,3,2) γ
3,1
1 γ

3,1
2 γ

3,1
3 γ

1,2
1 γ

1,2
2 γ

1,2
3 γ

2,3
1 γ

2,3
2 γ

2,3
3


.

We show that for any R generated by Theorem 7(iv) with no characteristic value overlap,

the set Rv < 0 is always feasible.

Assume that the inequalities given by Rv < 0 is infeasible, then by a theorem of

the alternative27 there exists λ 
 0 such that

λ
′R = (0, . . . ,0) and ∑

σ∈Σ

λσ = 1,28 (3.5)

where Σ be the set of all finite sequences used to generate the inequalities in Theorem 7(iv).

The (a+(n−1)A)-th column of R for a ∈ {1, . . . ,A} and n ∈ {1, . . . ,N} contains entries

in sequences which are associated with the un
a term. Let Coli(R) be the i-th column

of R. Replace values of 0 in Cola+(n−1)A(R) by (pa(xn)− pa(xn)). Let pa(xσ ) be the

27See for example [Bor13] Corollary 15.
28We note that R′ denotes the transpose of the matrix R.
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probability for the σ -th sequence in column a+(n−1)A with the zero entries replaced

as mentioned before. Thus

λ
′Cola+(n−1)A(R) = ∑

σ∈Σ

λσ (pa(xσ )− pa(xn)) = 0.

Recall that ∑σ∈Σ λσ = 1 so that the above implies that

∑
σ∈Σ

λσ pa(xσ ) = pa(xn). (3.6)

Let Ga = {a+(n−1)A | pa(xn) ≥ pa(xñ) for all ñ 6= n} be the set of indices such that

the probability of choosing alternative a is greatest among the observed probabilities. For

a+(n−1)A ∈ Ga, from Equation 3.5 for column Cola+(n−1)A(R) is taking an average

over points that are weakly less than pa(xn), so that λσ > 0 for σ ∈ Σ if and only if

pa(xσ ) = pa(xn). Denote the subset of indices with λσ > 0 as Σa.

Let Σ∗ =
⋂A

a=1 Σa. Suppose that Σ∗ 6= /0. Since σ was included in R there must

be p(x[m+ 1]) 6= p(x[m]). However, σ ∈ Σ∗ so examining the columns associated to

utilities generated by menu x[m] we see that λσ > 0 implies that pa(x[m+1]) = pa(x[m])

for all a ∈ {1, . . . ,A} which is a contradiction. Thus, it must be that Σ∗ = /0 and the dual

system is infeasible. Therefore, Rv > 0 is always feasible and we can construct a strict

rationalization using the method in Theorem 7.

3.7 Appendix B: Second Stage Expected Utility Rela-
tion

Throughout the paper, we have considered a strict PUM as a model of stochastic

choice. However, we could use this model to describe preferences over a finite set of risky

outcomes. In this section, we consider how to relate the inequalities from Theorem 7(v)
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to results on expected utility from [Fis75]. The preferences of strict PUMs are not

equivalent to expected utility. However, we can consider preferences in the spirit of

second stage expected utility from [Seg90]. Thus, we can consider when preferences

over the second stage of randomness are represented by expected utility.

To make the comparison concrete, consider an environment with A outcomes.

The value of each outcome depends on observables given by x = (x1, . . . ,xA). Let p be

a probability distribution over the A outcomes. The pair (x, p) defines a lottery with

observables x. Next, consider the second stage lottery over M pairs (x, p) given by

{(πm,(x[m], p[m]))}M
m=1 where πm ≥ 0 for all m and ∑

M
m=1 πm = 1. One can imagine an

individual offered a pair of second stage lotteries given by {(πm,(x[m], p[m]))}M
m=1 and

{(π̃`,(x̃[`], p̃[`]))}L
`=1, suppose that the agent has non-expected utility preferences over

first stage lotteries given by V : X ×∆→ R and the second stage satisfies expected

utility so

{(π̃`,(x̃[`], p̃[`]))}L
`=1 � {(πm,(x[m], p[m]))}M

m=1 if and only if

L

∑
`=1

π̃`V (x̃[`], p̃[`])≤
M

∑
m=1

πmV (x[m], p[m])

and

{(π̃`,(x̃[`], p̃[`]))}L
`=1 ≺ {(πm,(x[m], p[m]))}M

m=1 if and only if

L

∑
`=1

π̃`V (x̃[`], p̃[`])<
M

∑
m=1

πmV (x[m], p[m])

This formulation can now be related to work on expected utility based tests of

demand by [KSW14], [ES15], and [CLM16].

Definition 8. We say that an individual satisfies second stage expected utility prefer-

ences if there exists a function V : X ×∆→ R such that {(πm,(x[m], p[m]))}M
m=1 and
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{(π̃`,(x̃[`], p̃[`]))}L
`=1 such that

{{(π̃`,(x̃[`], p̃[`]))}L
`=1 � (≺){(πm,(x[m], p[m]))}M

m=1 if and only if

L

∑
`=1

π̃`V (x̃[`], q̃[`])≤ (<)
M

∑
m=1

πmV (x[m],q[m])

We provide one interpretation of the second stage expected utility formulation.

Consider an individual facing a decision between two degenerate lotteries on (x, p) and

(x̃, p̃). Suppose that the A alternatives are risky assets that have observables given by x

and x̃. Now, p and p̃ can be interpreted as portfolios over the A risky assets with properties

x and x̃. An individual may prefer mixtures of assets depending on the observables x

and x̃ when evaluating simple lotteries. However, if an individual is offered a choice

between mixtures of portfolios given by {(πm,(x[m], p[m])}M
m=1 and {(π`,(x[`], p[`])}L

`=1,

the decision environment has become more complex. The individual may be able to

calculate how much they value each (x, p) lottery, but then evaluate the more complex

environment by taking an average. Thus, second stage expected utility preferences allow

individuals rich preferences in simple decision environments, but simpler preferences

from more complex decision environments.

Now we impose restrictions from a strict PUM, so

V (x, p) =
A

∑
a=1

ua(xa)pa−C(p).

For the dataset {(xn, p(xn)}N
n=1, recall that V (xn, p(xn))>V (xn, p) for all p∈ ∆ with p 6=

p(xn). Theorem 7(iii) says that it suffices to looking at binary comparisons of probabilities

from {p(xn)}N
n=1 to find a strict PUM. If we select menus x[m], x̃[m] ∈ {xn}N

n=1, then

for all lotteries {(πm,(x[m], p(x[m])))}M
m=1 and {(πm,(x[m], p(x̃[m])))}M

m=1 an individual
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with second stage expected utility must also satisfy

M

∑
m=1

πm

( A

∑
a=1

ua(xa[m])pa(x̃[m])−C(p(x̃[m]))
)
≤

M

∑
m=1

πm

( A

∑
a=1

ua(xa[m])pa(x[m])−C(p(x[m]))
)
.

Using this formulation, the terms of πm, p(x[m]), and p(x̃[m]) define lotteries over

the utility terms {{ua(xa[m])}A
a=1}M

m=1 and {C(p(x[m])}M
m=1. Moreover, if at least one

set of probabilities differs the inequality is strict.

We note that second stage expected utility is still an expected utility problem.

Therefore, we use the results of [Fis75]. This shows that an individual satisfies second

stage expected utility with a strict perturbed utility if and only if there does not exist

πm ≥ 0 such that ∑
M
m=1 π` = 1 such that

M

∑
m=1

πm

( A

∑
a=1

ua(xa[m])pa(x̃[m])−C(p(x̃[m]))
)

=
M

∑
m=1

πm

( A

∑
a=1

ua(xa[m])pa(x[m])−C(p(x[m]))
)
.

with πm > 0 for some m with p(x[m]) 6= p(x̃[m]).

We see that any pair with p(x[m]) = p(x̃[m]) can be removed from the compar-

isons without loss of generality since the utility difference for any lottery is zero. Thus,

we restrict attention to the subset of ordered comparisons (x̃,x) with p(x̃) 6= p(x). We

denote this set of comparisons as

S = {(x̃,x) ∈ {xn}N
n=1×{xn}N

n=1 | p(x̃) 6= p(x)}.

The x̃ term references a choice distribution, while x will reference a choice distribution

and the environment for an inequality from Theorem 7(iii). Thus, if we can find a
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distribution {π(x̃,x)}(x̃,x)∈S with π(x̃,x) ≥ 0 and ∑(x̃,x)∈S π(x̃,x) = 1 such that

∑
(x̃,x)∈S

π(x̃,x)

( A

∑
a=1

ua(xa)pa(x̃)−C(p(x̃))
)
= ∑

(x̃,x)∈S
π(x̃,x)

( A

∑
a=1

ua(xa)pa(x)−C(p(x))
)

then second stage expected utility preferences are refuted. Since we are already restrict-

ing to strict utility comparisons, the condition that π(x̃,x) > 0 for some p(x̃) 6= p(x) is

automatically satisfied.

So far, we have assumed that the ua(xa) and C(p) terms are observed. However,

utility numbers are unobservable. It is clear that a sufficient condition to find a refutation

is that the sums of extended lotteries on ua(xa) and C(·) terms are equal. We show this

condition is also necessary.

Theorem 11. Consider the dataset {(xn, p(xn))}N
n=1. The following are equivalent:

(i) {(xn, p(xn))}N
n=1 is rationalized by a strict PUM.

(ii) Let S = {(x̃,x) ∈ {xn}N
n=1×{xn}N

n=1 | p(x̃) 6= p(x)}. There is no {π(x̃,x)}(x̃,x)∈S

with π(x̃,x) ≥ 0 and ∑(x̃,x)∈S π(x̃,x) = 1 such that for all x̂a ∈ {{xn
a}A

a=1}N
n=1

∑
{(x̃,x)∈S |xa=x̂a}

π(x̃,x)(pa(x̃)− pa(x)) = 0

and for all x̂ ∈ {xn}N
n=1

∑
{(x̃,x)∈S |P(x̃)=P(x̂)}

π(x̃,x) = ∑
{(x̃,x)∈S |P(x)=P(x̂)}

π(x̃,x).

(iii) {(xn, p(xn))}N
n=1 are rationalized by a second stage expected utility model where

V (x, p) is represented by a strict PUM.

It is clear that (i) is equivalent to (iii). If the individual is strictly rationalized
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by perturbed utility model, then the constructed perturbed utility function can be used

to generate second stage expected utility preferences. Moreover, if the individual has

second stage expected utility preferences with a strictly perturbed utility function, then

they have strictly perturbed utility preferences over degenerate first stage lotteries. We

also have that (iii) implies (ii). If there exists a distribution that satisfies the equalities in

(ii), then it provides a violation for any second stage expected utility with a strict PUM.

Therefore, it suffices to show that (ii) implies (i). In fact, (ii) is equivalent to (i) via a

theorem of the alternative using the inequalities from Theorem 7(iii). This result also

proves that Theorem 7(iii) is equivalent to Theorem 7(v).

Proof of Theorem 11. To prove (ii) is equivalent to (i), we use the inequalities from

Theorem 7(iii). We know that {(xn, p(xn))}N
n=1 is strictly rationalized by a perturbed

utility model if there exist numbers {un
a}N

n=1 for all a ∈ {1, . . . ,A} and {gn}N
n=1 such that

for all (s,r) ∈ {1, . . . ,N}×{1, . . . ,N} with p(xs) 6= p(xr) then

A

∑
a=1

pa(xs)ur
a−gs <

A

∑
a=1

pa(xr)ur
a−gr

and for all r,s ∈ {1, . . . ,N}

ur
a = us

a if xr
a = xs

a

gr = gs if p(xr) = p(xs).

Let Wa be the number of unique un
a terms for each a. Therefore, for every a there are

Wa unique terms of {un
a}N

n=1. These terms will be denoted uwa
a for wa = {1, . . . ,Wa}. Let

L be the number of unique p(xn), so there are L unique terms of {gn}N
n=1. These terms

will be denoted by g` for `= {1, . . . ,L}. Let ex be the vector with a one in the column

corresponding to the term of g for p(x). Similarly, let (p(x̃)− p(x))U(x) be the difference
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of the probability vectors projected onto the columns corresponding to the utility terms

for menu x.We collect the inequalities using the matrix

Q =



g1 ... gL u1
1 ... uW1

1 u1
2 ... u

WA
A

...
...

...

(x̃,x) ex− ex̃ (p(x̃)− p(x))U(x)
...

...
...

.

Recall that S = {(x̃,x) ∈ {xn}N
n=1×{xn}N

n=1 | p(x̃) 6= p(x)}. Thus, Q is an |S | ×(
L+∑

A
a=1Wa

)
dimensional matrix.

Now, we examine conditions when the inequalities from Theorem 7(iii) is infeasi-

ble. Using a version of the theorem of the alternative (see for example [Bor13] Corollary

15), the system inequalities from Theorem 7(iii) is infeasible if and only if

{λ ∈ R|S | | λ ′Q = 0′,1′λ = 1,λ ≥ 0} 6= /0.

Let π ∈ {λ ∈ R|S | | λ ′Q = 0,1′λ = 1,λ ≥ 0}. The vector π satisfies the definition of a

second stage lottery that gives equal utility. Take the inner product of π with the columns

of Q corresponding to the gz terms, then for all x̂ ∈ {xn}N
n=1

∑
{(x̃,x)∈S |p(x̃)=p(x̂)}

π(x̃,x) = ∑
{(x̃,x)∈S |p(x)=p(x̂)}

π(x̃,x).

Take the inner product of π with the columns of Q corresponding to the uwa
a terms, then

for all x̂a ∈ {{xn
a}A

a=1}N
n=1

∑
{(x̃,x)∈S |xa=x̂a}

π(x̃,x)(pa(x̃)− pa(x)) = 0.
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Therefore, there is no rationalization by a strict PUM for {(xn, p(xn))}N
n=1 if and only if

we can find a distribution over {p(xn)}N
n=1 that satisfies the equalities in Theorem 11(ii).

Take the contrapositive and we have Theorem 11(i) if and only if Theorem 11(ii).

We note that this condition is essentially a version of [Fis75] which imposes that

we find a distribution where equalities hold in appropriate dimensions.

3.8 Appendix C: Separable and Symmetric Cost Func-
tion

We now consider how to find rationalizations when there is characteristic informa-

tion when the cost function is separable and symmetric. This characterization is closely

related to the functional form studied in [FIS15]. A kinked additive perturbed utility

model (kinked additive PUM) of discrete choice has the representation

p∗(x) = argmaxp∈∆

A

∑
a=1

(paua(xa)− c(pa))

for some ua : Xa → R functions that give the utility of characteristic values and c :

[0,1]→ R is a strictly convex function that perturbs the expected utility. This differs

from the weak additive perturbed utility model from [FIS15] which imposes that the cost

function is also continuously differentiable.

We characterize a kinked additive PUM using a strict acyclicity condition. The

strict acyclicity condition checks for cycles of choice probabilities across alternatives and

menus. For a dataset {(xn, p(xn))}N
n=1, we say a finite sequence

{(am,x[m]),(bm,z[m])}M
m=1 is admissible if (i) for all m that am,bm ∈ {1, . . . ,A} and

x[m],z[m] ∈ {xn}N
n=1 , (ii) the sequence {bm}M

m=1 is a permutation of {am}M
m=1, (iii)

the sequence {zbm [m]}M
m=1 is a permutation of {xam[m]}M

m=1, and (iv) {z[m]}M
m=1 is a

permutation of {x[m]}M
m=1.
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In words, admissibility states that alternatives, characteristic values for each

alternative, and menus show up the same number of times in both sequences from the

observed dataset. The difference from the acyclicity condition from [FIS15] is that we

must account for alternatives and characteristic values. We now define strict acyclicity.

Definition 9. A dataset {(xn, p(xn))}N
n=1 satisfies strict acyclicity if there is no admissible

sequence such that

pam(x[m])> pbm(z[m]) for all m ∈ {1, . . . ,M}

We consider when the dataset {(xn, p(xn))}N
n=1 can be rationalized by a kinked

additive PUM using sub-differential first order conditions of the Lagrangian.

Theorem 12. Consider the dataset {(xn, p(xn))}N
n=1. The following are equivalent:

(i) {(xn, p(xn))}N
n=1 is rationalized by a kinked additive perturbed utility model.

(ii) {(xn, p(xn))}N
n=1 satisfies strict acyclicity.

(iii) There exist numbers {un
a}N

n=1 for all a∈{1, . . . ,A} and numbers {λ n}N
n=1, such that

for all finite sequences {(a[m],x[m])}M
m=1 with x[m] ∈ {xn}N

n=1, a[m] ∈ {1, . . . ,A},

and pa[m](x[m]) 6= pa[m+1](x[m+1]) for some m then

M

∑
m=1

(pa[m+1](x[m+1])− pa[m](x[m]))(ua[m][m]+λ [m])< 0

with x[M + 1] = x[1], ua[m][m] = ur
a[m] such that xa[m][m] = xr

a[m], and λ [m] = λ r

such that x[m] = xr;

and for all a ∈ {1, . . . ,A} and for all r,s ∈ {1, . . . ,N}

ur
a = us

a if xr
a = xs

a.
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(iv) There exist {{un
a}A

a=1}N
n=1 and {λ n}N

n=1, such that for all r,s ∈ {1, . . . ,N} and

a,b ∈ {1, . . . ,A}

if pa(xr)> pb(xs) then ur
a +λ

r > us
b +λ

s

and for all a ∈ {1, . . . ,A} and for all r,s ∈ {1, . . . ,N}

ur
a = us

a if xr
a = xs

a.

First, we note that convexity is not innocuous for a kinked additive PUM. The

implication (i) implies (iii) follows from sub-differential first order conditions. Next, (iii)

implies (i) from a constructive procedure similar to Theorem 7. The equivalence of (iii)

and (iv) is a property of monotonicity in one dimension. We have (iv) implies (ii) since

if there were a strict cycle, then summing the cycle elements of (iv) would equal zero a

contradiction. Lastly, (ii) implies (iv) from a rational Farkas lemma which is stated here.

Lemma 5. Let k ∈QS and V be a linear subspace of QS. Exactly one of the following

holds

1. Theres exists v ∈V such that v≤ k.

2. There exists w ∈QS
+ such that w⊥V and 〈w,k〉< 0.

Proof of Theorem 12. To show (i) implies (iii) we give sub-differential first order condi-

tions for the Lagrangian. Consider the Lagrangian given by

max
p∈RA

A

∑
a=1

[ua(xa)pa− c(pa)]+λ (x)

(
A

∑
a=1

pa−1

)
+

A

∑
a=1

[
µ

0
a (x)pa +µ

1
a (x)(1− pa)

]
with µ0

a ,µ
1
a ≥ 0 for all a∈ {1, . . .A}. The terms λ (x),µ0

a (x) and µ1
a (x) are the multipliers

on ∑
A
a=1 pa = 1, pa ≤ 1 and pa ≥ 0 respectively. Let ∂c(·) denote the subdifferential of
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the function c(·).29 Karush-Kuhn-Tucker conditions require that for each a

0 ∈ ua(xa)−∂c(pa)+λ (x)+µ
0
a (x)−µ

1
a (x)

and complementary slackness conditions hold for each a so

µ
0
a (x)pa = µ

1
a (x)(1− pa) = 0.

We re-write the first inequality so

ua(xa)+λ (x)+µ
0
a (x)−µ

1
a (x) ∈ ∂c(p).

Since c is strictly convex, the subgradient satisfies strict cyclic monotonicity. Since

we assume the data are rationalized by a weak kinked PUM, for all finite sequences

{(a[m],x[m])}M
m=1 with x[m] ∈ {xn}N

n=1, a[m] ∈ {1, . . . ,A}, and

pa[m](x[m]) 6= pa[m+1](x[m+1]) for some m, letting

ωm = (pa[m+1](x[m+1])− pa[m](x[m])) then

M

∑
m=1

ωm
[
ua[m](xa[m])+λ (x[m])+µ

0
a[m](x[m])−µ

1
a[m](x[m])

]
< 0

where x[M+1] = x[1].

However, the µ terms can be removed to consider strict cyclic monotonicity

in λ (x) + ua(xa). First, if pa[m](x[m]) ∈ (0,1) then µ0
a[m](x[m]) = µ1

a[m](x[m]) = 0 by

complementary slackness. If pa[m](x[m]) = 1, then µ0
a[m](x[m]) = 0 and µ1

a[m](x[m])≥ 0

from complementary slackness. Extracting the term on µ1
a[m](x[m]) for each term in the

29The subdifferential of c : [0,1]→ R at a point p̂a ∈ (0,1) is defined as ∂c(p̂a) = {z ∈ R | c(pa)−
c(p̂a)≥ z(pa− p̂a)}.
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sum, we find that

(1− pa[m+1](x[m+1]))µ1
a[m](x[m])≥ 0

since all probabilities are weakly less than one and the multiplier is non-negative.

Therefore, we remove this term and still have strict cyclic monotonicity. Similarly,

if pa[m](x[m]) = 0, then µ0
a[m](x[m])≥ 0 and µ1

a[m](x[m]) = 0 from complementary slack-

ness. Extracting the term on µ0
a[m](x[m]) we find that

pa[m+1](x[m+1])µ0
a[m](x[m])≥ 0

since all probabilities are non-negative and the multiplier is non-negative. Therefore, we

can remove the multiplier term while retaining strict cyclic monotonicity.

Thus, for all finite sequences {(a[m],x[m])}M
m=1 with x[m] ∈ {xn}N

n=1, a[m] ∈

{1, . . . ,A}, and pa[m](x[m]) 6= pa[m+1](x[m+1]) for some m, then

M

∑
m=1

(pa[m+1](x[m+1])− pa[m](x[m]))
(
ua[m](xa[m])+λ (x[m])

)
< 0

where x[M+1] = x[1]. Using the numbers from utility functions and Lagrange multipliers

from the optimization procedure, we satisfy (iii).

We show (iii) implies (i) from a constructive procedure similar to the proof of

Theorem 7. Let Σ be the set of all finite sequences {(a[m],x[m])}M
m=1 with x[m]∈ {xn}N

n=1,

a[m] ∈ {1, . . . ,A}, and pa[m](x[m]) 6= pa[m+1](x[m+1]) for some m. From (iii) there exist

numbers {un
a}N

n=1 for all a ∈ {1, . . . ,A} and numbers {λ n}N
n=1 such that

M

∑
m=1

(pa[m+1](x[m+1])− pa[m](x[m]))(ua[m][m]+λ [m])< 0

where x[M + 1] = x[1], ua[m][m] = ur
a[m] such that xa[m][m] = xr

a[m], and λ [m] = λ r such
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that x[m] = xr. Since this is a strict inequality, there exists ε0 > 0 small enough so that

there exist numbers {un
a}N

n=1 for all a ∈ {1, . . . ,A} and numbers {λ n}N
n=1 such that

M

∑
m=1

(pa[m+1](x[m+1])− pa[m](x[m]))(ua[m][m]+λ [m])+ ε0 < 0 (3.7)

for all sequences in Σ with x[M + 1] = x[1], ua[m][m] = ur
a[m] such that xa[m][m] = xr

a[m],

and λ [m] = λ r such that x[m] = xr.

Again, consider the function f : R→ R from [MR91] given by f (y) = (y2 +

T )1/2−T 1/2 for T > 0 . In particular, f (·) is strictly convex, differentiable, f (0) = 0,

f (y)> 0 if y 6= 0, and
[

∂ f
∂y (y)

]
< 1 for all y. From Equation 3.7, there exists ε > 0 small

enough so there exist numbers {un
a}N

n=1 for all a ∈ {1, . . . ,A} and numbers {λ n}N
n=1,

letting ωm = (pa[m+1](x[m+1])− pa[m](x[m])) such that

M

∑
m=1

ωm(ua[m][m]+λ [m])+ ε f
(

pa[m+1](x[m+1])− pa[m](x[m])
)
< 0

where x[M + 1] = x[1], ua[m][m] = ur
a[m] such that xa[m][m] = xr

a[m], and λ [m] = λ r such

that x[m] = xr.

Next, consider the function φσ : [0,1]→ R for each sequence σ ∈ Σ given by

φσ (p̃) =
M−1

∑
m=1

ωm(ua[m][m]+λ [m])+ ε f
(

pa[m+1](x[m+1])− pa[m](x[m])
)

+(p̃− pa[m](x[m]))(ua[m][m]+λ [m])+ ε f
(

p̃− pa[m](x[m])
)
.

Each φσ (·) is strictly convex on the simplex since it is the sum of an affine and strictly

convex function restricted to a convex domain.

Using the φσ functions, we use a constructive procedure from [Roc70] Theorem

24.8. First, choose an arbitrary pa0(x
0) ∈ {{pa(xn)}A

a=1}N
n=1 and let Σ0 be the set of
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sequences which begin with pa0(x
0). Next, define a function c : [0,1]→ R given by

c(p̃) = max
σ0∈Σ0

{φσ0(p̃)}.

c(·) is defined as a max of strictly convex functions, and so it is strictly convex.

All that remains is to show that the numbers {{un
a}A

a=1}N
n=1 and {λ n}N

n=1 used to

satisfy Equation 3.4 and the c(·) function rationalize the data {(xn, p(xn))}N
n=1. To show

this result, let σn
0,a ∈ Σ0 be the sequence where each c(pa(xn)) achieves the maximum.

For p 6= p(xn) and p ∈ ∆ we have

A

∑
a=1

(un
a pa− c(pa)) =

A

∑
a=1

(
un

a pa− max
σ0∈Σ0

{φσ0(pa)}
)

≤
A

∑
a=1

(
un

a pa− (pa− pa(xn)) [un
a +λ

n]

+ ε f (pa− pa(xn))+ max
σn

0,a∈Σ0
{φσ0(pa(xn))}

)
=

A

∑
a=1

(
un

a pa(xn)+λ
n(pa− pa(xn))

+ ε f (pa− pa(xn))+ max
σn

0,a∈Σ0
{φσ0(pa(xn))}

)
=

A

∑
a=1

(
un

a pa(xn)+ ε f (p− pa(xn))+ max
σn

0,a∈Σ0
{φσ0(pa(xn))}

)

<
A

∑
a=1

(
un

a pa(xn)+ max
σn

0,a∈Σ0
{φσ0(pa(xn))}

)

=
A

∑
a=1

(un
a pa(xn)+ c(pa(xn))) .

The first inequality comes by choosing the sequence for each a that ends with pa(xn)

and begins with the largest cost sequence for pa(xn). The second equality follows

by rearrangement. The third equality follows since the multiplier is the same and
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probabilities sum to one. The second inequality follows from ε f (pa− pa(xn)) > 0

for at least one a. Now by the second set of equalities on the number {un
a}n

n=1 for all

a ∈ {1, . . . ,A}, we can create functions for utilities over characteristic values. One can

extend the utility functions to X by choosing arbitrary numbers for unobserved values.

Last, we show that (ii) implies (iv). Let Q∗ be the vector space over the field of

rational numbers whose coordinates correspond to pairs (ν ,ξ ) = {(aν ,xν),(bξ ,xξ )}with

paν
(xν)> pbξ

(xξ ). We will use a vector w to count the number of times a relation appears.

There is an admissible strict cycle when the comparisons made for each alternative,

characteristic values, and menu can appear on the ν and ξ sides the same number of

times. Define k ∈ Q∗ as the vector of all entries equal to negative one. For w ∈ Q∗,

〈w,k〉< 0 if and only if at least one comparison in a collection of probability comparisons

is strict. This conditions is automatically satisfied unless all choice distributions are

uniform over alternatives.

For each a ∈ {1, . . . ,A} let x̂a ∈ {xn
a}N

n=1, define vx̂a ∈Q∗ as

vx̂a(ν ,ξ ) =


−1 if xν

aν
= x̂a and xξ

bξ
6= x̂a

1 if xν
aν
6= x̂a and xξ

bξ
= x̂a

0 if otherwise.

Now, w ⊥ vx̂â if and only if x̂â is included equally many times on the ν and ξ sides.

Moreover, if the collection of w⊥ {vx̂â}x̂a∈{xn
a}N

n=1
then the alternative a shows up equally

many times on the ν and ξ sides.
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For each x̂ ∈ {xn}N
n=1, define vx̂ ∈Q∗ as

vx̂(ν ,ξ ) =


−1 if xν = x̂ and xξ 6= x̂

1 if xν 6= x̂ and xξ = x̂

0 if otherwise

Similarly, w ⊥ vx̂ if and only if x̂ is included equally many times on the ν and

ξ sides. Let V = {{vx̂a}x̂a∈{xn
a}N

n=1
}A

a=1∪{vx̂}x̂∈{xn}N
n=1

. Thus, w ∈Q∗ represents a strict

cycle if and only if w⊥V and 〈w,k〉< 0.

Since strict acyclicity holds, we have w⊥V and 〈w,k〉< 0, so by Lemma 5 there

exists v ∈V such that v≤ k. This means there exists numbers {{ua(x̂a)}x̂a∈{xn
a}N

n=1
}A

a=1

and {λ (xn)}n=1 in Q such that

v =
A

∑
a=1

∑
x̂a∈{xn

a}N
n=1

ua(x̂a)vx̂a +∑
n

λ (xn)vxn

which enforces the utility for each alternative to be unique at observed characteristic

values. Moreover, if pa(xr)> pb(xs) then v((a,xr),(b,xs)) =−ua(xr)−λ (xr)+ub(xs)+

λ (xs)< k((a,xr),(b,xs)) =−1. Thus, ua(xr)+λ (xr)> ub(xs)+λ (xs) and (iv) is satis-

fied.

For a kinked additive PUM with fully nonparametric utility over characteris-

tics, the conditions make direct comparisons across alternatives with different choice

probabilities and utilities. Thus, unlike a general strict PUM, choosing an index is innocu-

ous for kinked additive PUMs with fully nonparametric utility. The equivalence of (i),

(iii), and (iv) holds even if we assume that ua(xa) = ∑
da
j=1 ua, j(xa, j) and ua(xa) = βa · xa.

In these cases, the choice of indexing alternatives is not innocuous due to potentially
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different characteristics. A strict acyclicity condition can be shown equivalent when

ua(xa) is separable in characteristics since the weightings on the utility numbers are

integers. Alternatively, when ua(xa) is linear there is a weighted cycles condition similar

to Theorem 7(v). Currently, we are researching if the weighted cycles condition can be

converted to an acyclicity condition. We are also currently working on examining data

using Theorem 12(iv).

3.9 Appendix D: Differentiable Cost Functions

We consider placing conditions on the differentiability of the cost functions. In

this case, imposing differentiability has a behavioral interpretation. Without differen-

tiability, the cost function is kinked so there can be utility changes from characteristic

values without a change in the choice distribution. This behavior relates to the notion

of just noticeable differences. For example, if utility is linear over characteristic values,

there may be coarse levels of perception where an individual has the same behavior

for characteristic values in some range of characteristic values. For example, consider

“grains of sugar” as a characteristic when choosing between coffee and tea. Many in-

dividuals treat a cup of coffee with no sugar the same as cup of coffee with one grain

of sugar. Therefore, an individual may have the same choice probabilities for a range

of characteristic values. However, individuals often distinguish a cup of coffee with no

sugar and a cup of coffee with a packet of sugar. If differentiability is imposed on the cost

function with linear utility over characteristic values, then a small change in characteristic

values causes a small change choice probabilities which rules out behavior associated

with just noticeable differences.

Now, we desire the cost function to be continuously differentiable, so the sub-

gradient of the cost function has unique utility values at each choice distribution. This

implication imposes conditions similar to the strong version of the strong axiom of
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revealed preference from [CR87]. Therefore, one can follow the proofs of Theorem 7

and Theorem 12 imposing this additional constraint and apply the convolution methods

of [CR87] to get an infinitely differentiable cost function. We present the results for

nonparametric utility over characteristics without proof. We drop the results on cycles

conditions to avoid additional definitions.

Theorem 13. Consider the dataset {(xn, p(xn))}N
n=1. The following are equivalent:

(i) {(xn, p(xn))}N
n=1 is rationalized by an infinitely differentiable strict PUM.

(ii) There exist utility functions ua : Xa → R for all a ∈ {1, . . . ,A} and a continu-

ously differentiable function g : ∆→ R such that p(xn) is the unique argmax from

maxp∈∆ ∑
A
a=1 paua(xn

a)−g(p) for all n ∈ {1, . . . ,N}.

(iii) There exist numbers {un
a}N

n=1 for all a ∈ {1, . . . ,A} and {gn}N
n=1, such that for all

(s,r) ∈ {1, . . . ,N}×{1, . . . ,N} with p(xs) 6= p(xr) then

A

∑
a=1

pa(xs)ur
a−gs <

A

∑
a=1

pa(xr)ur
a−gr

and for all r,s ∈ {1, . . . ,N}

ur
a = us

a if xr
a = xs

a

gr = gs if p(xr) = p(xs)

for all a ∈ {1, . . . ,A} ur
a = us

a if p(xr) = p(xs).

(iv) There exist numbers {un
a}N

n=1 for all a∈ {1, . . . ,A} such that for all finite sequences

{x[m]}M
m=1 where all x[m] ∈ {xn}N

n=1 and p(x[m]) 6= p(x[m+1]) for some m

M

∑
m=1

p(x[m+1]) ·U [m]<
M

∑
m=1

p(x[m]) ·U [m]
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where x[M +1] = x[1] and U [m] = (u1[m], . . . ,uA[m]) where ua[m] is the ur
a term

associated to xa[m] = xr
a;

and for all r,s ∈ {1, . . . ,N} and for all a ∈ {1, . . . ,A}

ur
a = us

a if xr
a = xs

a

for all a ∈ {1, . . . ,A} ur
a = us

a if p(xr) = p(xs).

Theorem 14. Consider the dataset {(xn, p(xn))}N
n=1. The following are equivalent:

(i) {(xn, p(xn))}N
n=1 is rationalized by an infinitely differentiable additive perturbed

utility model.

(ii) There exist numbers {un
a}N

n=1 for all a∈{1, . . . ,A} and numbers {λ n}N
n=1, such that

for all finite sequences {(a[m],x[m])}M
m=1 with x[m] ∈ {xn}N

n=1, a[m] ∈ {1, . . . ,A},

and pa[m](x[m]) 6= pa[m+1](x[m+1]) for some m then

M

∑
m=1

(pa[m+1](x[m+1])− pa[m](x[m]))(ua[m][m]+λ [m])< 0

with x[M + 1] = x[1], ua[m][m] = ur
a[m] such that xa[m][m] = xr

a[m], and λ [m] = λ r

such that x[m] = xr;

and for all a ∈ {1, . . . ,A} and for all r,s ∈ {1, . . . ,N}

ur
a = us

a if xr
a = xs

a

for all a ∈ {1, . . . ,A} ur
a = us

a if p(xr) = p(xs).

(iii) There exist {{un
a}A

a=1}N
n=1 and {λ n}N

n=1, such that for all r,s ∈ {1, . . . ,N} and
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a,b ∈ {1, . . . ,A}

if pa(xr)> pb(xs) then ur
a +λ

r > us
b +λ

s

and for all a ∈ {1, . . . ,A} and for all r,s ∈ {1, . . . ,N}

ur
a = us

a if xr
a = xs

a

for all a ∈ {1, . . . ,A} ur
a = us

a if p(xr) = p(xs).

3.10 Appendix E: Deterministic Choice

We examine when a dataset consists only of deterministic choice. Choices are

deterministic when the choice distributions consist of zeros and ones. Thus, the dataset

{(xn, p(xn))}N
n=1 is deterministic when every p(xn) has some a ∈ {1, . . . ,A} such that

pa(xn) = 1. We note that [FIS15] provide conditions for deterministic choice, so we

begin by studying conditions to rationalize deterministic data with a kinked additive

PUM with nonparametric utility over characteristics. We focus our study looking on

acyclicity conditions that formalize kinked additive PUMs.

For deterministic choice data, one only needs to look for cycles over alternatives

or cycles over menus to refute the model. We begin by defining strict item acyclicity.

This condition says we cannot have preference cycles over alternatives with different

characteristic values.

Definition 10. A dataset {(xn, p(xn))}N
n=1 satisfies strict item acyclicity if all finite

sequences {(a[m],x[m])}M
m=1 with x[m] ∈ {xn}N

n=1, a[m] ∈ {1, . . . ,A}, and such that
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xa[m+1][m] = xa[m+1][m+1] for all m = 1, . . . ,M−1 and xa[1][1] = xa[1][M] satisfy

pa[1](x[1])> pa[2](x[1]), . . . , pa[M−1](x[M−1])> pa[M](x[M−1])

implies pa[M](x[M])≯ pa[1](x[M]).

Alternatively, one could look for cycles holding the alternatives fixed in compar-

isons while varying the menu. In this case, we arrive at the following definition of strict

menu acyclicity.

Definition 11. A dataset {(xn, p(xn))}N
n=1 satisfies strict menu acyclicity if all finite

sequences {(a[m],x[m])}M
m=1 with x[m] ∈ {xn}N

n=1, a[m] ∈ {1, . . . ,A}, and such that

xa[m][m] = xa[m][m+1] for all m = 1, . . . ,M−1 and xa[M][1] = xa[M][M].

pa[1](x[1])> pa[1](x[2]), . . . , pa[M−1](x[M−1])> pa[M−1](x[M]) implies

pa[M](x[M])≯ pa[M](x[1]).

Looking for either a strict item cycle or a strict menu cycle refutes deterministic

choice. In this case, the indexing of alternatives places no additional structure on behavior.

This result again highlights that if there is no structure on how characteristics enter utility,

we return to standard models of decision theory. The following proposition can be

deduced from [FIS15], but we provide details of the result below.

Proposition 2. Assume that the dataset {(xn, p(xn))}N
n=1 is deterministic. The following

conditions are equivalent:

1. {(xn, p(xn))}N
n=1 satisfies strict item acyclicity.

2. {(xn, p(xn))}N
n=1 satisfies strict menu acyclicity.

3. {(xn, p(xn))}N
n=1 satisfies strict acyclicity.
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4. There exists an injective function v :
⋃A

a=1{xn
a}N

n=1→R such that pa(xn) = 1 if and

only if v(xn
a) = maxxa∈

⋃A
a=1{xn

a}
v(xn

a).

Proof. First, we show (i) if and only if (iv). When the {p(xn)}N
n=1 are deterministic, we

define a single valued choice function K : {xn}N
n=1→

⋃A
a=1{xn

a}N
n=1 which takes menus

to a chosen alternative from the menu. Thus, K(x) = xa when pa(xn) = 1. Thus, a dataset

satisfies strict item acyclicity if and only if there is no sequence

xa[1][1] = K(x[1]) 6= xa[2][1],xa[2][2] = K(x[2]) 6= xa[3], . . .

xa[M][M] = K(x[M]) 6= xa[1][M]

where xa[m+1][m] = xa[m+1][m+1] for all m = 1, . . . ,M−1 and xa[1][1] = xa[1][M]. Thus

strict item acyclicity is equivalent to, the congruence axiom from [Ric66]. As shown

by [Ric66], congruence is equivalent to the existence of a preference relation over⋃A
a=1{xn

a}N
n=1 such that for each x ∈X , K(x) is the set of most preferred elements. Since⋃A

a=1{xn
a}N

n=1 is finite and K is single valued, this is equivalent to a strict utility function

over
⋃A

a=1{xn
a}N

n=1 that rationalizes the choice function K.

Next, we show (iv) implies (iii). Let v be an injective function such that pa(x) = 1

if v(xn
a) = maxxa∈

⋃A
a=1{xn

a}
v(xn

a). If strict acyclicity is violated, then there is an admissible

sequence such that

pa[m](x[m])> pb[m](z[m]) for all m ∈ {1, . . . ,M}.

For this sequence, pick an arbitrary xa[m][m]. By admissibility (iii), there is an element

zb[m̃][m̃] = xa[m][m]. Since {p(xn)}N
n=1 is deterministic, we can take all comparisons

in the permutation from m to m̃ and conclude that va[m](xa[m][m]) > vb[m̃](zb[m̃][m̃]) =

va[m](xa[m][m]). However, this contradicts the strict ordering of utilities.
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Note that (iii) implies (ii) by fixing the appropriate elements in a cycle. Lastly (ii)

implies (i). Suppose that strict item acyclicity is violated by the sequence

pa[1](x[1])> pa[2](x[1]), . . . , pa[M−1](x[M−1])> pa[M](x[M−1]) implies

pa[M](x[M])> pa[1](x[M])

such that xa[m+1][m] = xa[m+1][m+ 1] for all m = 1, . . . ,M− 1 and xa[1][1] = xa[1][M].

However, then

0 = pa[m+1](x[m])< pa[m+1](x[m+1]) = 1 for all m = 1, . . . ,M−1

and xa[m+1](x[m]) = xa[m+1](x[m+1]). In addition, 0= pa[1](x[M])< pa[1](x[1]) = 1 with

xa[1][M] = xa[1][1] so this is a menu cycle.

3.11 Appendix F: Implementation of Tests

To analyze a dataset {(xn, p(xn))}N
n=1, we examine whether the data can be de-

scribed by a strict PUM. We operationalize checking for rationalization by a strict PUM

using the inequalities from Theorem 7(iii).30 We focus on the following five speci-

fications of utilities over characteristics: Nonparametric ua(xa), additively separable

∑
d
j=1 ua, j(xa, j), additively separable and independent of list position ∑

d
j=1 u j(xa, j), lin-

ear βa · xa, and linear and independent of position β · xa. First, consider testing strict

PUM with nonparametric utility over characteristics. Let Q be matrix generated by

Theorem 7(iii) for the dataset {(xn, p(xn))}N
n=1 which places restrictions on the vector of

30We could have applied Theorem 7(iv) when testing rationality by fixing the length of the sequence.
Fixing the length to be at most two or three, we find numbers with pass rates which always exceed those of
the full test. We find that these differences are at most approximately a 6% difference.
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unknowns, U , associated to
{
{un

a}A
a=1,g

n}N
n=1 after imposing the equality conditions on

u. By Theorem 7(iii), the dataset is rationalized by a strict PUM if {U | QU < 0} 6= /0.

Using a theorem of the alternative (see for example [Bor13] Corollary 15),

{U | QU < 0}= /0 ⇔ {λ | Q′λ = 0,1′λ = 1,λ ≥ 0} 6= /0.

We check whether the data are described by a strict PUM by examining if solutions exist

to the quadratic program

min
λ

rQ

∑
i=1

λ
2
i

s.t. Q′λ = 0

1 ·λ = 1

λ ≥ 0,

where rQ is the number of rows of Q and 1 is a vector of ones. If solutions exist to

the above problem, then the dual system is non-empty and there are no utility numbers

which rationalize the data. Let the solutions be denoted λ ∗i . From the formulation of

the problem, λ ∗i is strictly greater than zero only in the presence of violations. As the

number of violations increases, there are more λ ∗i ∈ (0,1] and the minimum decreases.

Therefore, one could use the optimal value to measure violations of rationality, where

heuristically a smaller value means “less rational”.

Similarly, we construct matrices of restrictions for separable and linear utilities

using Theorem 9(iii) and Theorem 10(iii). We perform a similar procedure when utility

over characteristics is independent of an alternative. We refer to these matrices as Q

without loss of generality. We also test intuitive monotonicity restrictions on linear utility

parameters (e.g. βprice < 0). In this case, let C be the matrix that generates the mono-
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tonicity constraints. We denote the matrix that generates rationality and monotonicity

restrictions by

Q̃ =

Q

C

 .
We jointly test rationality and monotonicity restrictions by replacing Q with Q̃ in the

quadratic program. However, now there are λi terms associated with monotonicity

violations. We can operationalize the test of kinked additive PUM by checking the strict

monotonicity conditions imposed by Theorem 12(iv). To run this test with additively

separable utility or linear utility over characteristics, we can run the test imposing the

additional restrictions on utility numbers.

3.12 Appendix G: Descriptive Statistics

We provide tables of individual descriptive statistics for the raw data and the

purchase data. The differences between the raw and purchase datasets are small, so

we focus on the differences as the number of alternatives changes. Regardless of the

number of alternatives, the average age is approximately 40 years old. The three and

four alternative datasets have slightly more women, while the five alternative dataset has

slightly more men. The three and five alternative datasets have similar distributions of

wealth and are slightly wealthier than the four alternative dataset.
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Table 3.7. Purchase data descriptive statistics

Number of Alternatives

3 4 5

Age (Years) 41.3 40.6 39.8
Male 46.4% 45.3% 57.0%

Income (AUD)
$0-51,999 30.6% 44.8% 32.6%
$52,000-103,999 46.0% 42.1% 43.4%
$104,000 or above 23.4% 13.1% 24.0%

Respondents 222 221 221

Table 3.8. Raw data descriptive statistics

Number of Alternatives

3 4 5

Age (Years) 41.4 40.3 39.9
Male 46.1% 46.3% 57.1%

Income (AUD)
$0-51,999 31.3% 45.4% 33.2%
$52,000-103,999 45.7% 41.9% 42.5%
$104,000 or above 23% 12.8% 24.3%

Respondents 230 227 226
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3.13 Appendix H: Empirical Analysis: Strict PUM

3.13.1 Purchase Data

Here we present the rationalization analysis of strict PUMs for datasets from

lists with three and five flight after restricting the dataset to flights the individual would

actually purchase. We often refer to the analysis with three or five alternatives, so the

indexing by list position is implicit. For three and five alternatives, the raw pass rates

are similar lists with four alternatives. We note that pass rates slightly decrease for many

specifications as the size of the list increases increase. Next, we examine the fraction of

sets of relevant characteristics that have an MPS above the threshold 0.10 for at least one

utility specification. For three alternatives, only the sets Brand and Brand & Time fail

to pass the threshold for basic MPS and only Brand & Time fails to pass the threshold

adaptive MPS. For five alternatives, the set of relevant characteristics Brand and Brand &

Time fail to pass the threshold for basic and adaptive MPS. These results are similar to

those for the four alternative survey.

Next, we examine if a linear utility model has more descriptive power from

the sets of relevant characteristics that pass the 0.10 MPS threshold and excluding the

specification with only Brand. We exclude Brand alone since many of these tests have

identical numbers. For three alternatives, a linear utility over characteristics has the

highest basic MPS for 5/6 cases and highest adaptive MPS for 5/6 cases. For five

alternatives, a linear utility over characteristics has the highest basic MPS for 5/6 cases

and the highest adaptive MPS for 4/6 cases.

We next consider which specification has the most descriptive power after per-

forming the correction. For three alternatives, the highest basic MPS specification is

a position dependent linear utility model with Price & Time & Brand and the highest

adaptive MPS is a position independent linear utility for the Full set of characteristics.
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For five alternatives, a position independent linear utility for only Price yields the highest

basic and adaptive MPS among all menus.

For the monotonicity tests with linear utility, there are only modest drops in

pass rates for the three and five alternative case. The largest difference occurs for the

specification with only Time. The decrease for the three and five alternative datasets

are approximately 14% and 15%, respectively. We see that position independent utility

experiences little change to MPS, while the position dependent utility MPS experiences

changes that can be up to approximately 0.36. For three alternatives, the highest basic and

adaptive MPS is for the Full specification of characteristics with position dependent utility.

In contrast, for five alternatives the highest basic and adaptive MPS is for the specification

with only Price and position independent utility. This along with the information in the

last paragraph is some evidence that as list size increases individuals consider a smaller

number of characteristics.

Table 3.9. Pass rates for three alternatives

ua(xa) ∑
d
j=1 ua, j(xa, j) ∑

d
j=1 u j(xa, j) βa · xa β · xa S

Price 0.806 0.806 0.797 0.788 0.378 222
Brand 0.757 0.757 0.622 0.757 0.626 222
Time 0.748 0.748 0.662 0.676 0.243 222
Price & Brand 0.901 0.613 0.414 0.532 0.297 222
Price & Time 0.914 0.703 0.518 0.518 0.293 222
Brand & Time 0.865 0.252 0.099 0.176 0.045 222
Price & Time & Brand 0.982 0.815 0.635 0.725 0.428 222
Full 0.982 0.874 0.757 0.829 0.622 222
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Table 3.10. MPS for three alternatives: Basic

ua(xa) ∑
d
j=1 ua, j(xa, j) ∑

d
j=1 u j(xa, j) βa · xa β · xa S

Price 0.046 0.046 0.271 0.247 0.348 222
Brand 0.004 0.004 0.076 0.004 0.081 222
Time -0.004 -0.004 0.148 0.151 0.220 222
Price & Brand 0.037 0.419 0.272 0.443 0.265 222
Price & Time 0.045 0.532 0.460 0.472 0.271 222
Brand & Time 0.005 0.058 -0.044 0.088 0.012 222
Price & Time & Brand -0.011 0.501 0.469 0.613 0.389 222
Full -0.011 0.438 0.577 0.588 0.562 222

Table 3.11. MPS for three alternatives: Adaptive

ua(xa) ∑
d
j=1 ua, j(xa, j) ∑

d
j=1 u j(xa, j) βa · xa β · xa S

Price 0.050 0.050 0.307 0.249 0.332 222
Brand 0.007 0.007 0.116 0.007 0.122 222
Time -0.005 -0.005 0.182 0.150 0.204 222
Price & Brand 0.057 0.345 0.338 0.389 0.260 222
Price & Time 0.045 0.422 0.435 0.439 0.268 222
Brand & Time 0.015 -0.015 0.023 0.033 0.008 222
Price & Time & Brand 0.048 0.343 0.473 0.441 0.381 222
Full 0.050 0.315 0.498 0.389 0.539 222

Table 3.12. Linear monotonicity results for three alternatives

Pass Rates Basic MPS Adaptive MPS

βa · xa β · xa βa · xa β · xa βa · xa β · xa

Price 0.748 0.374 0.553 0.352 0.566 0.343
Time 0.541 0.225 0.349 0.205 0.369 0.196
Price & Brand 0.514 0.297 0.458 0.268 0.439 0.265
Price & Time 0.428 0.284 0.398 0.269 0.394 0.266
Brand & Time 0.113 0.045 0.054 0.015 0.035 0.013
Price & Time & Brand 0.644 0.405 0.573 0.373 0.520 0.368
Full 0.788 0.541 0.682 0.502 0.570 0.493
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Table 3.13. Pass rates for five alternatives

ua(xa) ∑
d
j=1 ua, j(xa, j) ∑

d
j=1 u j(xa, j) βa · xa β · xa S

Price 0.765 0.765 0.679 0.733 0.584 221
Brand 0.756 0.756 0.520 0.756 0.516 221
Time 0.765 0.765 0.561 0.679 0.308 221
Price & Brand 0.842 0.647 0.308 0.593 0.285 221
Price & Time 0.873 0.701 0.371 0.443 0.199 221
Brand & Time 0.842 0.348 0.081 0.253 0.081 221
Price & Time & Brand 0.896 0.719 0.403 0.652 0.312 221
Full 0.914 0.796 0.579 0.760 0.466 221

Table 3.14. MPS for five alternatives: Basic

ua(xa) ∑
d
j=1 ua, j(xa, j) ∑

d
j=1 u j(xa, j) βa · xa β · xa S

Price -0.018 -0.018 0.170 0.018 0.479 221
Brand -0.025 -0.025 -0.027 -0.025 -0.026 221
Time -0.021 -0.021 0.057 -0.040 0.211 221
Price & Brand -0.082 0.046 0.144 0.415 0.223 221
Price & Time -0.048 0.129 0.298 0.345 0.149 221
Brand & Time -0.079 -0.254 -0.084 0.076 0.020 221
Price & Time & Brand -0.041 0.212 0.227 0.439 0.246 221
Full -0.070 0.257 0.393 0.340 0.387 221

Table 3.15. MPS for five alternatives: Adaptive

ua(xa) ∑
d
j=1 ua, j(xa, j) ∑

d
j=1 u j(xa, j) βa · xa β · xa S

Price 0.007 0.007 0.277 0.044 0.506 221
Brand 0.002 0.002 0.079 0.002 0.089 221
Time 0.006 0.006 0.171 -0.010 0.239 221
Price & Brand 0.005 0.275 0.237 0.423 0.228 221
Price & Time 0.052 0.382 0.300 0.353 0.156 221
Brand & Time 0.016 -0.013 0.013 0.091 0.028 221
Price & Time & Brand 0.010 0.260 0.312 0.351 0.251 221
Full 0.020 0.262 0.461 0.306 0.387 221
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Table 3.16. Linear monotonicity results for five alternatives

Pass Rates Basic MPS Adaptive MPS

βa · xa β · xa βa · xa β · xa βa · xa β · xa

Price 0.701 0.584 0.290 0.517 0.373 0.530
Time 0.529 0.290 0.122 0.225 0.216 0.242
Price & Brand 0.561 0.281 0.445 0.225 0.477 0.230
Price & Time 0.353 0.167 0.286 0.130 0.299 0.133
Brand & Time 0.208 0.081 0.094 0.028 0.126 0.032
Price & Time & Brand 0.579 0.303 0.455 0.246 0.468 0.251
Full 0.715 0.412 0.505 0.347 0.498 0.352
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3.13.2 Raw Data

Here we present the rationalization analysis of strict PUMs for datasets from

lists with three, four, and five positions without conditioning on choices an individual

would purchase. Again, we often refer to the analysis with three, four, or five alternatives,

so the indexing by list position is implicit. Pass rates using the unconditioned data are

lower in most specifications. This could be because using purchase data reduces noise.

However, this decrease could be mechanical since the purchase datasets contain fewer

comparisons. Inspecting basic and adaptive MPS, there are no systematic increases or

decreases between results for the raw datasets or those which include only purchase

data. Many of the MPS differences between raw and purchase data are small (< 0.05

difference in MPS). The largest differences of MPS between the raw and purchase

datasets is approximately 0.10 for a specification with position independent linear utility

with a basic MPS.

Next, we examine fraction of the sets of relevant characteristics that pass a 0.10

MPS threshold for at least one utility specification. For three alternatives, Brand and

Brand & Time fail to pass the threshold for basic MPS and only Brand & Time fails to

pass the threshold for adaptive MPS. For four alternatives, only Brand fails to pass the

threshold for basic MPS and only Brand & Time fails to pass the threshold for adaptive

MPS. For five alternatives, only Brand fails to pass the threshold for basic MPS and

adaptive MPS. Like the purchase data, only the relevant characteristic sets of Brand and

Brand & Time ever fail to pass MPS thresholds.

Next, we examine if a linear utility model has more descriptive power from

the sets of relevant characteristics that pass the 0.10 MPS threshold and excluding the

specification with only Brand. Again, only Brand is excluded since many tests are

identical. For three alternatives, a linear utility has the highest basic MPS for 4/6 cases



115

and the highest adaptive MPS 2/6 cases. For four alternatives, a linear utility has the

highest basic MPS 6/7 cases and the highest adaptive MPS for 4/6 cases. For five

alternatives, a linear utility has the highest the highest basic MPS 7/7 cases and the

highest adaptive MPS for 5/6 cases. Thus, linear utility specifications tend to also have

more descriptive power for the raw data.

Again, there is some evidence that size of the list is important when performing

this analysis. For example, separable utility over characteristics performs well for lists of

size three. Therefore, individual utility from characteristics may be more subtle when

lists are smaller. For four and five alternatives, a simple specification of a position

independent linear utility over Price yields the highest adaptive MPS. This result provides

some evidence that individuals may use simple descriptions of the alternatives as list size

increases.

For the monotonicity tests with linear utility, there are only modest drops in

pass rates for three, four, and five alternatives. The largest difference occurs for the

specification with only Time for the three, four, and five alternative tests. The difference

in pass rate is approximately 0.13-0.17. The position independent utility experiences

little change to MPS, while the position dependent utility experiences MPS changes that

can be up to 0.36. The Full specification of characteristics with position dependent utility

has the highest basic MPS for the three, four, and five alternative datasets. The ranking by

adaptive MPS differs from the basic MPS ranking of specifications. For three alternatives,

the highest adaptive MPS occurs for the specification with position independent utility

over Price. The four alternative adaptive MPS is largest with the Full set of relevant

characteristics with position dependent utilities. For five alternatives, the highest adaptive

MPS occurs for the specification with position dependent utility over Price.
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Table 3.17. Raw pass rates for three alternatives

ua(xa) ∑
d
j=1 ua, j(xa, j) ∑

d
j=1 u j(xa, j) βa · xa β · xa S

Price 0.774 0.774 0.752 0.757 0.300 230
Brand 0.735 0.735 0.583 0.735 0.583 230
Time 0.730 0.730 0.643 0.665 0.270 230
Price & Brand 0.870 0.448 0.270 0.374 0.178 230
Price & Time 0.891 0.570 0.396 0.422 0.191 230
Brand & Time 0.843 0.113 0.017 0.061 0.009 230
Price & Time & Brand 0.970 0.704 0.487 0.587 0.291 230
Full 0.970 0.752 0.604 0.704 0.461 230

Table 3.18. Raw MPS for three alternatives: Basic

ua(xa) ∑
d
j=1 ua, j(xa, j) ∑

d
j=1 u j(xa, j) βa · xa β · xa S

Price 0.039 0.039 0.257 0.238 0.300 230
Brand 0.004 0.004 0.059 0.004 0.059 230
Time -0.000 -0.000 0.148 0.150 0.270 230
Price & Brand 0.057 0.391 0.178 0.369 0.178 230
Price & Time 0.073 0.553 0.396 0.422 0.191 230
Brand & Time 0.037 0.057 -0.074 0.057 0.009 230
Price & Time & Brand -0.019 0.572 0.396 0.585 0.291 230
Full -0.019 0.493 0.513 0.644 0.461 230

Table 3.19. Raw MPS for three alternatives: Adaptive

ua(xa) ∑
d
j=1 ua, j(xa, j) ∑

d
j=1 u j(xa, j) βa · xa β · xa S

Price 0.040 0.040 0.313 0.241 0.286 230
Brand 0.004 0.004 0.125 0.004 0.123 230
Time -0.001 -0.001 0.206 0.151 0.255 230
Price & Brand 0.065 0.329 0.265 0.331 0.178 230
Price & Time 0.057 0.465 0.393 0.419 0.191 230
Brand & Time 0.041 0.008 0.013 0.023 0.009 230
Price & Time & Brand 0.063 0.379 0.450 0.442 0.291 230
Full 0.064 0.329 0.504 0.417 0.455 230
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Table 3.20. Raw linear monotonicity results for three alternatives

Pass Rates Basic MPS Adaptive MPS

βa · xa β · xa βa · xa β · xa βa · xa β · xa

Price 0.722 0.300 0.551 0.300 0.571 0.293
Time 0.543 0.261 0.377 0.261 0.394 0.254
Price & Brand 0.357 0.178 0.356 0.178 0.347 0.178
Price & Time 0.343 0.191 0.343 0.191 0.343 0.191
Brand & Time 0.035 0.009 0.034 0.009 0.027 0.009
Price & Time & Brand 0.496 0.278 0.496 0.278 0.466 0.278
Full 0.648 0.396 0.643 0.396 0.558 0.394

Table 3.21. Raw pass rates for four alternatives

ua(xa) ∑
d
j=1 ua, j(xa, j) ∑

d
j=1 u j(xa, j) βa · xa β · xa S

Price 0.753 0.753 0.678 0.722 0.555 227
Brand 0.727 0.727 0.511 0.727 0.515 227
Time 0.727 0.727 0.577 0.678 0.379 227
Price & Brand 0.846 0.511 0.242 0.485 0.229 227
Price & Time 0.846 0.515 0.317 0.374 0.216 227
Brand & Time 0.762 0.185 0.053 0.128 0.044 227
Price & Time & Brand 0.947 0.692 0.401 0.573 0.286 227
Full 0.947 0.744 0.533 0.709 0.419 227

Table 3.22. Raw MPS for four alternatives: Basic

ua(xa) ∑
d
j=1 ua, j(xa, j) ∑

d
j=1 u j(xa, j) βa · xa β · xa S

Price 0.023 0.023 0.207 0.086 0.495 227
Brand -0.000 -0.000 0.009 -0.000 0.013 227
Time -0.003 -0.003 0.108 0.040 0.318 227
Price & Brand -0.008 0.361 0.150 0.465 0.229 227
Price & Time 0.023 0.436 0.317 0.374 0.216 227
Brand & Time -0.072 0.033 -0.040 0.109 0.044 227
Price & Time & Brand -0.053 0.419 0.308 0.560 0.286 227
Full -0.053 0.390 0.440 0.558 0.419 227
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Table 3.23. Raw MPS for four alternatives: Adaptive

ua(xa) ∑
d
j=1 ua, j(xa, j) ∑

d
j=1 u j(xa, j) βa · xa β · xa S

Price 0.026 0.026 0.299 0.114 0.523 227
Brand 0.000 0.000 0.104 0.000 0.109 227
Time -0.001 -0.001 0.199 0.068 0.347 227
Price & Brand 0.037 0.346 0.241 0.437 0.229 227
Price & Time 0.055 0.405 0.317 0.373 0.216 227
Brand & Time -0.026 0.036 0.052 0.082 0.044 227
Price & Time & Brand 0.029 0.329 0.395 0.406 0.286 227
Full 0.029 0.292 0.508 0.385 0.418 227

Table 3.24. Raw linear monotonicity results for four alternatives

Pass Rates Basic MPS Adaptive MPS

βa · xa β · xa βa · xa β · xa βa · xa β · xa

Price 0.661 0.555 0.409 0.524 0.480 0.539
Time 0.507 0.370 0.257 0.339 0.331 0.352
Price & Brand 0.463 0.229 0.459 0.229 0.458 0.229
Price & Time 0.308 0.216 0.308 0.216 0.308 0.216
Brand & Time 0.115 0.044 0.112 0.044 0.109 0.044
Price & Time & Brand 0.529 0.278 0.527 0.278 0.507 0.278
Full 0.656 0.344 0.642 0.344 0.570 0.343

Table 3.25. Raw pass rates for five alternatives

ua(xa) ∑
d
j=1 ua, j(xa, j) ∑

d
j=1 u j(xa, j) βa · xa β · xa S

Price 0.739 0.739 0.642 0.721 0.544 226
Brand 0.730 0.730 0.434 0.730 0.434 226
Time 0.730 0.730 0.491 0.668 0.279 226
Price & Brand 0.805 0.553 0.199 0.509 0.181 226
Price & Time 0.819 0.575 0.265 0.350 0.124 226
Brand & Time 0.796 0.221 0.022 0.155 0.018 226
Price & Time & Brand 0.867 0.633 0.288 0.571 0.195 226
Full 0.872 0.686 0.469 0.659 0.350 226
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Table 3.26. Raw MPS for five alternatives: Basic

ua(xa) ∑
d
j=1 ua, j(xa, j) ∑

d
j=1 u j(xa, j) βa · xa β · xa S

Price 0.009 0.009 0.174 0.010 0.487 226
Brand -0.001 -0.001 -0.069 -0.001 -0.069 226
Time -0.003 -0.003 0.022 -0.044 0.216 226
Price & Brand -0.069 0.085 0.106 0.456 0.181 226
Price & Time -0.052 0.163 0.265 0.350 0.124 226
Brand & Time -0.070 -0.247 -0.071 0.105 0.018 226
Price & Time & Brand -0.040 0.287 0.195 0.509 0.195 226
Full -0.097 0.326 0.376 0.405 0.350 226

Table 3.27. Raw MPS for five alternatives: Adaptive

ua(xa) ∑
d
j=1 ua, j(xa, j) ∑

d
j=1 u j(xa, j) βa · xa β · xa S

Price 0.009 0.009 0.303 0.037 0.518 226
Brand 0.000 0.000 0.055 0.000 0.064 226
Time 0.000 0.000 0.159 -0.014 0.251 226
Price & Brand 0.012 0.326 0.199 0.449 0.181 226
Price & Time 0.047 0.418 0.265 0.348 0.124 226
Brand & Time 0.012 -0.007 0.022 0.101 0.018 226
Price & Time & Brand 0.012 0.303 0.286 0.394 0.195 226
Full 0.016 0.285 0.461 0.348 0.349 226

Table 3.28. Raw linear monotonicity results for five alternatives

Pass Rates Basic MPS Adaptive MPS

βa · xa β · xa βa · xa β · xa βa · xa β · xa

Price 0.664 0.544 0.295 0.513 0.388 0.532
Time 0.487 0.265 0.118 0.234 0.207 0.253
Price & Brand 0.478 0.181 0.467 0.181 0.471 0.181
Price & Time 0.274 0.111 0.274 0.111 0.274 0.111
Brand & Time 0.119 0.018 0.110 0.018 0.114 0.018
Price & Time & Brand 0.487 0.181 0.478 0.181 0.467 0.181
Full 0.606 0.292 0.545 0.292 0.508 0.292
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3.14 Appendix I: Availability Variation

We consider the special case when a menu only contains information about which

alternatives are available. We show if all available alternatives in a menu are chosen with

positive probability, then we can always rationalize the data with a strict perturbed utility

model. These datasets are mentioned in [Mac85] and it is stated that one can always

always find a non-expected utility function that rationalizes the data. We show here that

a strict PUM is equivalent to the non-expected utility function mentioned there.

For each a, let Xa = {0,1} where 0 is interpreted as “unavailable” and 1 as

“available”. Let X =
(
∏

A
a=1 Xa

)
\ (0, . . . ,0). Consider subsets of alternatives given by

M ⊆ {1, . . . ,A} and M 6= /0. Let ea ∈ RA be the a-th standard basis element with one

in the a-th position and zeros elsewhere. We denote a menu with the alternatives in M

available as xM = ∑a∈M ea. Let D ⊆ {M ⊆ {1, . . . ,A} |M 6= /0} be a collection of

subsets of alternatives. When the characteristics are as defined above, we say a dataset

{(xM , p(xM ))}M∈D has availability-variation when for all M ∈ D , if a /∈M then

pa(xM ) = 0.

An availability-variation dataset {(xM , p(xM ))}M∈D satisfies positivity if for all

M ∈D , if a ∈M then pa(xM )> 0. This amounts to all probabilities being positive on

the face of the simplex associated with M . From Theorem 11(ii), it suffices to look at

whether or not one can find a convex combination of probabilities that satisfies a system

of equalities.

Proposition 3. Let {(xM , p(xM ))}M∈D be an availability-variation dataset that sat-

isfies positivity, then there exists a strict perturbed utility model that rationalizes the

dataset.

Proof. For a dataset with a single observation, the data are rationalized by the argument

for Corollary 2. Therefore, we consider when |D | ≥ 2. We prove the result by showing
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no distribution satisfying the equalities in Theorem 11(ii) exists.

First, we examine the relevant objects of Theorem 11(ii) for an availability-

variation dataset. Consider the set S = {(xN ,xM ) |M ,N ∈D with p(xN ) 6= p(xM )}.

For M 6= N there exists a ∈M \N or a ∈N \M , so that pa(xN ) 6= pa(xM ) from

positivity. Therefore, S = {(N ,M ) |M ,N ∈D and M 6= N }. We label the distri-

bution {π(N ,M )}(N ,M )∈S with π(N ,M ) ≥ 0 and ∑(N ,M )∈S π(N ,M ) = 1.

Suppose by contradiction that π satisfies the equalities in Theorem 11(ii). For

each a ∈ {1, . . . ,A}, first equality of Theorem 11(ii) implies that

∑
{(N ,M )∈S |xM

a =0}
π(N ,M )pa(xN ) = 0

since pa(xM ) = 0 if xM
a = 0. Therefore, if a /∈M and a ∈ N then π(N ,M ) = 0,

otherwise the left hand side would be strictly positive from positivity. This means

positive mass cannot be put on comparisons when M does not have alternatives that

N contains. Therefore, π(N ,M ) ≥ 0 if N (M , otherwise π(N ,M ) = 0. If D contains

no pairs N ,M ∈ D with N ( M , then π(N ,M ) = 0 for all (N ,M ) ∈ S . This

contradicts the assumption of π being a probability distribution.

We consider the final case when there exists N ,M ∈ D such that N (M .

Recall for any M ,N ∈D that p(xM ) 6= p(xN ). The second equality of Theorem 11(ii)

states for a fixed M that

∑
N

π(M ,N ) = ∑
N

π(N ,M )

since xM has a distinct choice distribution. Define the set of alternatives in D with the

largest cardinality to be

Dmax = {M ∈D | max
M∈D

{|M |}}.
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For Mmax ∈Dmax, then

∑
N

π(Mmax,N ) = 0

since no N contain Mmax. However, the second equality of Theorem 11(ii) allows us to

conclude for Mmax ∈Dmax that

∑
N

π(N ,Mmax) = 0

so if N (Mmax then π(N ,Mmax) = 0. We can repeat this procedure inductively to show

that π(N ,M ) = 0 for all N (M . However, then all π(N ,M ) = 0 that contradicts π

being a probability distribution.

We now describe how to relate strict PUMs to a nonexpected utility approach. In

the setup of a strict PUM, there are no explicit constraints placed on choice alternatives.

Alternatively, one could consider placing explicit constraints on choice probabilities

from menu information as in [Mac85]. For example, consider generating a nonexpected

utility function from a strict PUM rationalization of an availability-variation dataset that

satisfies positivity. We create the function

V (p) = ∑
a∈A

va pa +Ṽ (p)

where va = ua(1) and Ṽ (p) =−C(p). We can explicitly enforce constraints for a menu

xM that all b /∈M satisfy pb = 0 with a Lagrangian given by

∑
a∈A

va pa +Ṽ (p)+λM

(
∑

a∈M
pa−1

)
+ ∑

b/∈M
λ(M ,b)pb

with λM ,λ(M ,b) ∈ R and boundary constraints are excluded because of positivity. When

pb = 0 for all b /∈M , the solutions are given by p(xM ). Moreover, the construction of
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C(·) imposes that the va terms are in the sub-gradient so the λM terms can be assumed

zero. The setup of the Lagrangian allows us to interpret the unavailability utilities. The

unavailable utility of an alternative must satisfy ua(0)< ua(1)+minM∈D
(
λ(M ,a)

)
so

that the unavailable utility must be less than the available utility plus the worst case

shadow cost of being unable to choose a.31 Therefore, there is an equivalence between

strict PUMs and strictly concave nonexpected utility for datasets of availability-variation

with positivity.

3.15 Appendix J: Indexing and Two Stage Models

In the main text, we noted that the indexing of alternatives imposes structure on

behavioral effects and complementarity/substitution patterns. As mentioned, the indexing

implicitly states that these commodities are the same up to the additional structure

imposed by characteristics. We note that there are some PUMs where the indexing

can be thought of as an additional characteristic. For example, kinked additive PUMs

with nonparametric utility over characteristics treats an alternative index the same as a

characteristic. However, the indexing may be treated asymmetrically by placing more

structure on utility for an indexed alternative over characteristics (such as linearity).

One may wonder what happens if there are two items which truly have the same

index. For example, consider an individual choosing a flight from a list. One may want to

use the airline to index alternatives, but the airline may show up several times on any list.

One way to get around this issue would be to index the alternatives by both the position

in the list and the airline. However, there are other approaches one could take.

For example, an individual may choose an airline based on some cognitive

process, but then flights offered by the same airline are substitutable. For the choice of

31This means the utility of an alternative never chosen cannot be distinguished from unavailable
alternatives.
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a flight from a list, we could sum up all choice probabilities from a list with the same

airline to generate airline choice probabilities. We could then use some aggregation

method to generate an average characteristic value for the airline. This would allow us

to test if a strict PUM to rationalizes the airline choice probabilities. We could then test

the second hypothesis of substitution within an airline by imposing a kinked additive

PUM for the probabilities of choosing different flights with the observed characteristic

values after conditioning on the airline choice probability. Therefore, one can finely test

different behavioral processes about individual choices by imposing different restrictions

at different levels of indexing and aggregation. The choice of which models are suitable

to test is at the discretion of the researcher.

Chapter 3, in full, is currently being prepared for submission for publication.

Allen, Roy; Rehbeck, John. The dissertation author was the primary investigator and

author of this paper.
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[BG11] Salvador Barberà and Birgit Grodal. Preference for flexibility and the
opportunities of choice. Journal of Mathematical Economics, 47(3):272–
278, 2011.

[BM60] Henry David Block and Jacob Marschak. Random orderings and stochastic
theories of responses. Contributions to probability and statistics, pages
97–132, 1960.

125



126

[Bor13] Kim C. Border. Alternative linear inequalities. Manuscript, Division of
Humanities and Social Sciences, California Institute of Technology, 2013.

[Bos74] Michael J. Boskin. A conditional logit model of occupational choice.
Journal of Political Economy, 82(2):389–398, 1974.

[BR16] Richard L. Brady and John Rehbeck. Menu-dependent stochastic feasibility.
Econometrica, 84(3):1203–1223, 2016.

[Bro87] Stephen G. Bronars. The power of nonparametric tests of preference
maximization. Econometrica: Journal of the Econometric Society, pages
693–698, 1987.

[BS13] Walter Bossert and Yves Sprumont. Every choice function is backwards-
induction rationalizable. Econometrica, 81(6):2521–2534, 2013.

[CD15] Andrew Caplin and Mark Dean. Revealed preference, rational inatten-
tion, and costly information acquisition. American Economic Review,
105(7):2183–2203, 2015.

[CDDRH15] Laurens Cherchye, Thomas Demuynck, Bram De Rock, and Per Hjert-
strand. Revealed preference tests for weak separability: an integer pro-
gramming approach. Journal of econometrics, 186(1):129–141, 2015.

[CDRV07] Laurens Cherchye, Bram De Rock, and Frederic Vermeulen. The collec-
tive model of household consumption: a nonparametric characterization.
Econometrica, 75(2):553–574, 2007.

[CES14] Christopher P. Chambers, Federico Echenique, and Eran Shmaya. The
axiomatic structure of empirical content. The American Economic Review,
104(8):2303–2319, 2014.

[CLM16] Christopher P. Chambers, Ce Liu, and Seung-Keun Martinez. A test for
risk-averse expected utility. Journal of Economic Theory, 163:775–785,
2016.

[CR87] Pierre-Andre Chiappori and Jean-Charles Rochet. Revealed preferences
and differentiable demand. Econometrica, pages 687–691, 1987.

[CVDOR15] Simone Cerreia-Vioglio, David Dillenberger, Pietro Ortoleva, and Gil
Riella. Deliberately stochastic. Manuscript Columbia University, 2015.

[DORB99] John R. Doyle, David J. O’Connor, Gareth M. Reynolds, and Paul A.
Bottomley. The robustness of the asymmetrically dominated effect: buy-
ing frames, phantom alternatives, and in-store purchases. Psychology &
Marketing, 16(3):225–243, 1999.



127

[ES15] Federico Echenique and Kota Saito. Savage in the market. Econometrica,
83(4):1467–1495, 2015.

[EST14] Federico Echenique, Kota Saito, and Gerelt Tserenjigmid. The perception-
adjusted luce model. 2014. Caltech Discussion paper.

[Fal78] Jean Claude Falmagne. A representation theorem for finite random scale
systems. Journal of Mathematical Psychology, 18(1):52–72, 1978.

[FdP15] Mogens Fosgerau and André de Palma. Demand systems for market shares.
2015.

[Fio04] Samuel Fiorini. A short proof of a theorem of falmagne. Journal of
mathematical psychology, 48(1):80–82, 2004.

[Fis75] Peter C. Fishburn. Separation theorems and expected utilities. Journal of
Economic Theory, 11(1):16–34, 1975.

[FIS15] Drew Fudenberg, Ryota Iijima, and Tomasz Strzalecki. Stochastic choice
and revealed perturbed utility. Econometrica, 83(6):2371–2409, 2015.
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