
UC Davis
UC Davis Electronic Theses and Dissertations

Title
Predictability of cottonwood recruitment along a dynamic, regulated river

Permalink
https://escholarship.org/uc/item/6855d5hn

Author
Wright, Rachel Erin

Publication Date
2023

Supplemental Material
https://escholarship.org/uc/item/6855d5hn#supplemental
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6855d5hn
https://escholarship.org/uc/item/6855d5hn#supplemental
https://escholarship.org
http://www.cdlib.org/


i 
 

Predictability of cottonwood recruitment along a dynamic, regulated river  
 

By 
 

RACHEL ERIN WRIGHT 
THESIS 

 
Submitted in partial satisfaction of the requirements for the degree of 

 
MASTER OF SCIENCE 

 
in 
 

Hydrologic Sciences 
 

in the 
 

OFFICE OF GRADUATE STUDIES 
 

of the 
 

UNIVERSITY OF CALIFORNIA 
 

DAVIS 
 

Approved: 
 

         
Gregory B. Pasternack, Chair 

 
         

Yufang Jin 
 

         
Mary L. Cadenasso 

 
Committee in Charge 

 
2023 

 

 

 

 

 



ii 
 

ABSTRACT 

Riparian vegetation planting and management are vital to river engineering projects. To 

inform these activities, a better understanding of what influences riparian vegetation 

recruitment and identifying where vegetation will most likely establish and survive is 

needed. This study investigated whether the recruitment of Populus fremontii (Fremont 

cottonwoods), a dominant riparian species in the western USA, could be predicted at 

0.91-m2 resolution deterministically and statistically throughout a dynamic, alluvial 

regulated river. The testbed was a ~ 34-km stretch of the Yuba River in California, USA, 

mapped in 2017 after a large flood reset the terrain. Five years later from August 

through November 2022, a field campaign characterized juvenile cottonwoods 

recruitment. For the deterministic test, a riparian seedling recruitment model was used 

with expert-estimated parameters. Bioverification analysis, or comparison of model 

predictions to observed organism locations, found that the model did not accurately 

differentiate the predicted optimal locations from the lethal locations. Hydrophysical and 

topographic variables were then used as predictor rasters in a data-driven, supervised 

classification Random Forest (RF) model with cottonwood presence and absence data 

to statistically test whether recruitment locations could be predicted. The RF model 

performed well, having an overall accuracy of 87% and reached an AUC-ROC value of 

94% with only a few predictors. When the statistical model was coupled with biophysical 

interpretations of model behavior, topographic variables were much more significant 

drivers for recruitment locations than hydrophysical variables. Further mechanistic 

developments to understand underlying governing equations and parameters are 

feasible drawing on the lessons from bioverification and the RF model. Both 
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deterministic and statistical methods are recommended to advise stakeholders about 

suitable locations for riparian vegetation restoration or topographic characteristics 

needed to promote restoration efforts, as each yield unique insights.  

 

Keywords: Riparian seedling recruitment, ecohydraulics, modeling, machine learning, 

river revegetation, cottonwood 
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1 INTRODUCTION 

Riparian forests exist at the interface between terrestrial and aquatic 

environments, creating highly dynamic, diverse, and structurally complex habitats 

(Naiman et al., 1993). Within this zone, vegetation, hydrology, and topography all 

influence each other with varying degrees of magnitude and directionality (Swanson et 

al., 1982). Hydrogeomorphic processes provide plants with water and nutrients and 

regenerate new sites for colonization, while established vegetation influences the flow 

field, sediment transport, and deposition processes (Camporeale et al., 2013; Gurnell, 

2014; Gurnell et al., 2012; Politti et al., 2018). This creates a biologically diverse and 

synergistic landscape dependent on disturbance regimes (Gregory et al., 1991; 

Stromberg, 2001). 

A long history of human manipulation of rivers due to flow regulation, 

deforestation, intensive agriculture, urbanization, channelization, and mining has 

resulted in cumulative effects that transformed riverine landscapes  (Downs & Piégay, 

2019; Wohl & Merritts, 2007). In the Western United States, these anthropogenic 

processes have greatly reduced riparian forests to remnants of varying size and quality, 

and have severely impacted habitat-forming foundational species (Abell, 1989; Braatne 

et al., 1996; Patten, 1998). Despite the enormity of this problem, there has been limited 

and variable success with riparian revegetation efforts (González et al., 2015; Kondolf & 

Micheli, 1995; Stromberg, 2001), stressing the need to better understand what causes 

an effort to succeed or fail. This has led to an increased need of identifying the  
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appropriate environmental criteria to support efforts attempting to establish new riparian 

forests and improve existing ones rooted in scientific theory (Thomson et al., 2001). 

Identifying these ideal environmental conditions from a physical process 

viewpoint is complex, as the characteristics of a river system are a product of dynamic 

hydrogeomorphic processes.  River bank and floodplain heterogeneity provide the 

physical template for the spatial pattern and development of varying riparian vegetation 

communities (Gregory et al., 1991). Topographic gradients impact the amount of energy 

and force of river flows, resulting in areas of erosion or deposition (Swanson et al., 

1982). These sediment transport processes may impact vegetation through uprooting, 

burial, and erosion (Politti et al., 2018), and affect the substrate’s ability to retain the 

moisture needed for root growth by influencing sediment composition and grain size 

(Camporeale et al., 2013). Microtopography, or the localized topographic variability in 

soil surface elevation and roughness, also impacts the immediate hydrologic conditions 

experienced by a seed or plant (Moser et al., 2007; Pollock et al., 1998). Environmental 

characteristics resulting from varying microtopographic patterns may influence the 

distribution of plants through the creation of differing habitats (Titus, 2016). These 

variations in soil conditions and topography result in a high diversity of riparian plant 

species that can coexist (Naiman et al., 1993). 

To maintain this characteristic diversity, species need to successfully recruit into 

the riparian system. In semi-arid western North America, cottonwoods (Populus) are a 

foundational pioneer species. They are among the first to colonize disturbed or bare 

areas (Stromberg, 1993) and are a dominant tree species (Amlin & Rood, 2002; 

Braatne et al., 1996; Patten, 1998; Stella et al., 2010). They are important for stabilizing 
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channel banks, providing rich wildlife habitats, maintaining biodiversity, creating shade 

and shelter, and serving as a source of streamwood (Naiman et al., 1993). 

Successful natural recruitment of cottonwoods and other pioneer species is also 

crucial for the continuation of riparian forests. The ecophysiological requirements for 

cottonwood recruitment and survival are intricately linked to fluvial hydrologic and 

geomorphic processes. Recruitment of these pioneer species is largely dependent on 

large, infrequent flows, which provide the necessary physical disturbance to create open 

space for colonization, dispersal of seeds, and substrate moisture for early root growth 

and consequent seedling recruitment (Benjankar et al., 2020; Rood, Braatne, et al., 

2003; Stella et al., 2010). After recruitment, seedling survival is then reliant on 

environmental factors such as access to sunlight and a root growth rate comparable to 

recession rate declines of the water table in order to maintain access to moisture (Amlin 

& Rood, 2002; Benjankar et al., 2020; Stella et al., 2010). 

Numerous pressures on cottonwoods arise from human manipulation of riverine 

systems. Dams and flow regulation can change the natural flow and sediment regime 

(Poff et al., 1997), impacting hydrologic processes and environmental suitability for 

cottonwood seedling recruitment (Dixon et al., 2012; Mahoney & Rood, 1998). Livestock 

grazing, land clearing, and mining can reduce recruitment and seedling growth rate, 

resulting in habitat fragmentation and altered sediment processes (Patten, 1998; 

Stromberg, 1993). These influences threaten the hydrogeomorphic processes needed 

for cottonwood reproduction and survival, and also impact the ecological integrity of 

riparian forests and connected ecosystems (Braatne et al., 1996; Poff et al., 1997). 
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Degradation is particularly relevant in the arid and semiarid regions of western 

North America, where water resources are often intensely regulated for human needs 

by dams and diversions (Hauer & Lorang, 2004; Poff et al., 2003). Management of 

regulated rivers systems must be able to maximize ecological benefits from varying 

water years to encourage and determine existing natural recruitment opportunities for 

cottonwoods and other pioneer riparian species. However, identifying the best way to 

accurately predict cottonwood seedling recruitment in support of long-term river 

management is still a challenge. 

To untangle impediments on riparian vegetation conservation, this study tested 

the ability of existing scientific theory and methods to accurately predict locations of 

cottonwood recruitment throughout a regulated, dynamic river corridor by implementing 

the state of knowledge in two different modeling approaches, one deterministic and one 

statistical. The physical processes and environmental conditions included in the two 

models were further explored to examine the conditions needed for both natural 

recruitment and for accurately predicting recruitment. Prediction accuracy was 

evaluated using cottonwood field observations, yet the novelty of this work lies in 

exploring outcomes of different prediction approaches and how that can inform riparian 

ecology and conservation.  

1.1 Cottonwood Recruitment Background 

Cottonwood recruitment occurs both sexually through seeds and asexually as 

clonal processes. Seedling recruitment for riparian regrowth is important to maintain in a 

river in addition to having clonal processes, as it supports genetic diversity, offsets 
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losses due to mortality, and is the primary method of colonization on new or barren 

surfaces (Braatne et al., 1996; Dixon et al., 2012; Mahoney & Rood, 1998). These bare 

surfaces are created when flows high enough to induce sediment mobilization uproot 

existing vegetation, clear away ground cover and detritus, and/or bury young vegetation 

by depositing sediments. In non-cohesive soils, uprooting vegetation may occur through 

Type I or Type II uprooting mechanisms, which respectively reference early germinated 

or mature vegetation (Edmaier et al., 2011). Type I uprooting occurs when the drag 

force exceeds the root resistance of the plant, while Type II uprooting is when the 

scouring near the base of the plant exposes the root system and decreases the root 

anchoring resistance until turning into Type I (Edmaier et al., 2011). When high flows 

recede, cottonwoods may colonize the suitable areas of newly deposited sediment and 

moist open ground (Friedman et al., 1995). These barren surfaces are important to 

pioneer species like cottonwoods, which are shade intolerant and poor competitors, 

making access to full sunlight critical for seedling growth and development (Braatne et 

al., 1996; Johnson 1994). 

In the semiarid western United States, rivers exhibit winter and spring flooding 

followed by flow recession in the late spring and summer (Lins, 1997). Cottonwoods 

have adapted to releasing seeds after the peak in seasonally high spring flows from 

mountain snowpack melting, with a limited dispersal time period and a seed viability that 

quickly declines (Braatne et al., 1996; Mahoney & Rood, 1998). An abundant number of 

seeds are produced every year by mature cottonwoods and are dispersed by the wind 

and water (Braatne et al., 1996; Stromberg, 1993). Annual variability in 

hydrogeomorphic processes result in episodic recruitment, with higher recruitment in 
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some years or decades compared to others (Dixon et al., 2012; Scott et al., 1997; 

Stromberg, 1998). 

Cottonwoods are dependent on the groundwater table and the associated 

capillary fringe in the substrate for moisture. For germination to successfully occur, 

substrate requires continual moisture for the first few weeks of establishment (Cooper et 

al., 1999; Fenner et al., 1984). After germination, surface moisture conditions and 

receding water table rates impact the success of seedling growth and development 

(Amlin & Rood, 2002; Stella et al., 2010). Seedlings must be able to grow sufficiently 

long roots to reach the receding water levels (Stromberg, 1993), with drought stress or 

mortality for seedlings where the water table recedes faster than their roots can grow 

(Amlin & Rood, 2002; Mahoney & Rood, 1991; Stella et al., 2010). 

Areas where cottonwood seedlings colonized may then be vulnerable to high 

flows with sufficiently intense hydraulic forces that result in scouring or depositional 

processes, risking mortality (Politti et al., 2018). When these large flows result in areas 

flooded with slow moving or stationary water, erosional and sediment transport impacts 

are less (Amlin & Rood, 2001). Prolonged inundation over multiple weeks can also be 

stressful or lethal to seedlings as it can lead to oxygen depletion in the root zone (anoxic 

conditions), root growth suppression, reduce transpiration, and cause decay (Amlin & 

Rood, 2001; Auchincloss et al., 2012). Impacts to a seedling and the number of 

inundation days it can survive are dependent upon the age and size of the seedling, as 

well as the depth, clarity, and temperature of the water (Auchincloss et al., 2012; 

Friedman & Auble, 1999). 
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1.2 Riparian Vegetation Modeling 

Numerical models serve to capture the details of scientific understanding about a 

natural phenomenon and provide specific quantitative predictions about it. Many 

scientific ideas cannot be codified into mathematics, or can only be done so partially, so 

models are necessarily simplifications. Nevertheless, the ways in which a given model 

is uncertain and its levels of accuracy and precision can serve as indicators of the state 

of understanding of a phenomenon. 

Solari et al. (2016) and You et al. (2015) summarize mathematical models 

analyzing riparian vegetation within a disturbance regime, including effects of vegetation 

on hydro-morphodynamics by influencing flow resistance (Järvelä, 2004; Luhar & Nepf, 

2013), sediment transport (Lopez & Garcia, 1998), or bank dynamics (Bertoldi et al., 

2014; Zong & Nepf, 2011), and the reverse of hydro-morphodynamics on vegetation by 

impacting seed dispersal (Groves et al., 2009; Merritti & Wohl, 2016), recruitment 

(Mahoney & Rood, 1998), or mortality and woody debris inputs (Edmaier et al., 2011; 

Gregory et al., 2003; Haga et al., 2002; Villanueva et al., 2014). Mathematical models 

also vary in purpose to analyze systems at the individual (Mahoney & Rood, 1998; Scott 

et al., 1999), population (Clipperton et al., 2003; Phipps, 1979), or community level 

(Camporeale & Ridolfi, 2006). In addition, these mathematical model may differ by 

being deterministic, statistical-empirical, or statistical-stochastic, or a combination 

thereof (Jajarmizadeh et al., 2012). 

This study used the novel Riparian Seedling Recruitment sub-module (RSRM) 

(Phillips & Pasternack, 2022) within a free, open-source software called River Architect 

(Schwindt et al., 2020; https://riverarchitect.github.io). The RSRM is a spatially 
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distributed, deterministic numerical algorithm designed to determine the theoretical 

suitability of locations for Fremont cottonwood (Populus fremontii) seedling recruitment 

by predicting the potential success for a seedling to survive through its first year of life 

(Phillips & Pasternack, 2022). The scientific foundation for the RSRM is the recruitment 

box model (Mahoney & Rood, 1998), which relates the timing and inter-annual pattern 

of stream stage to the physiological needs for cottonwood seedling recruitment. The 

recruitment box model has been validated by successful instream flow restoration 

programs (Rood et al., 2005; Rood, Gourley, et al., 2003; Rood & Mahoney, 2000). It 

has also been used in the development of other spatially distributed models for 

cottonwood seedling recruitment (Benjankar et al., 2014, 2020; Stella, 2005). A more 

detailed description of the RSRM conceptualization and development can be found in 

Phillips & Pasternack, (2022). 

Time, finances, site accessibility, and other such local constraints may prevent in 

situ collection of environmental variables or measurements necessary to calibrate a 

deterministic model. Alternatively, a small sample of data might be better used for 

training a statistical-empirical model, such as an artificial intelligence machine learning 

(AI/ML) model when there is an abundance of remote sensing data, especially 

environmental variables derived from airborne LiDAR (Diaz-Gomez & Pasternack, 2021; 

Guisan et al., 1999; Rew et al., 2005; Shoutis et al., 2010; Vogiatzakis & Griffiths, 

2006). Like statistical-empirical models in general, AI/ML models are most useful and 

can be highly accurate for professional practice when tuned on and applied to a local 

setting, staying within the range of conditions for which tuning was done. Relationships 

between species and the environment are often complex and nonlinear, allowing 
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classification ML procedures to provide more meaningful analysis of ecological data 

then traditional statistical methods may be able to (Cutler et al., 2007; De’Ath & 

Fabricius, 2000).  

One such procedure is the Random Forest (RF), which uses classification trees to 

repeatedly split the input data into more homogenous groups using different 

combinations of explanatory variables (Breiman, 2001). RF’s allow for the exploration of 

prediction patterns and processes through the use of both discrete and continuous 

explanatory variables, variable importance measures, and graphical representations. A 

previous study by Diaz-Gomez & Pasternack, (2021) used a RF with topographic 

metrics derived from airborne LiDAR to predict where vegetation had successfully 

established on the same testbed river as this study. Presence and absence points of 

naturally established vegetation were randomly selected from LiDAR-derived data and 

used with 17 topographic explanatory variables, ultimately achieving an accuracy metric 

(i.e., AUC) of 77% (Diaz-Gomez & Pasternack, 2021). The workflow created by Diaz-

Gomez & Pasternack, (2021) was modified to be utilized in this study for predicting the 

presence and absence of juvenile cottonwoods. 

1.3 Research Questions 

The goal of this study was to evaluate the state of cottonwood recruitment 

predictability. The predictability of cottonwood seedling recruitment locations is both of 

interest as a basic science topic to evaluate how well the scientific community 

understands recruitment as a spatio-temporal biophysical mechanism and as an applied 

tool to improve the success of the cottonwood vegetation component of riparian 
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revegetation projects, whether in terms of setting up the right conditions for natural 

recruitment or to guide manual planting. To achieve this goal, both a deterministic and a 

statistical-empirical model were used, which showcased the potential that each offers 

when addressing a real river in need of active conservation measures. The deterministic 

model implemented mathematical equations describing hydrogeomorphic processes 

and was coupled with empirically-derived biophysical cottonwood metrics. The 

statistical-empirical model explored relationships between environmental variables and 

cottonwood presence/absence. Each approach makes different assumptions and 

provides unique, valuable insights. Together they generate expert-based, physical 

interpretations of environmental processes and requirements needed for cottonwood 

seedling recruitment. 

Three specific, tractable research questions were posed, each with an 

accompanying hypothesis (Table S1). These questions focus on juvenile cottonwoods 

of five years old or younger, which in this study are defined to be less than 5 m tall 

(Braatne et al., 1996; Nagler et al., 2005; Zamora-Arroyo et al., 2001). The first question 

explores how the predicted cottonwood seedling recruitment locations from a 

deterministic numerical model compare to field locations of juvenile cottonwoods. It was 

hypothesized that the field locations of juvenile cottonwoods would occur in the more 

favorable and optimal recruitment locations predicted by the RSRM, as it models the 

biophysical and hydrogeomorphic processes (i.e., shear stress during disturbance 

flows, peak flows during seed dispersal, stream stage recession rates, and inundation 

periods) important for cottonwood seedling recruitment. 
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The second question evaluates how field locations of juvenile cottonwoods 

compare to presence/absence classification predictions by the statistical RF machine 

learning model through several performance metrics. Due to the use of both the RSRM 

hydrophysical variables important for cottonwood seedling recruitment and topographic 

variables that capture the heterogeneity and small-scale variations in terrain needed for 

maintaining riparian vegetation diversity, enough spatial information should be available 

for successful model predictions. Therefore, it is hypothesized that satisfactory 

performance metrics will result when held to high modeling standards. 

The third question uses results from the statistical machine learning model in an 

interpretive analysis to ascertain whether statistically important predictors are also 

biophysically explaining suitable conditions for recruitment and cottonwood presence 

and absence. Both topographic and hydrophysical variables were included as potential 

explanatory variables, with the distance from and elevation above the wetted channel 

hypothesized to be the most important drivers in juvenile cottonwood presence. This is 

based on terrain-hydrology-cottonwood relationships. Seeds are deposited in receding 

flood flows along the active channel margins to create recruitment bands (Braatne et al., 

1996; Mahoney & Rood, 1998; Scott et al., 1997; Stromberg, 1993), while recruitment 

elevations are dependent on an access to moisture that does not result in scouring by 

high flows at lower elevations or drought stress at higher elevations (Mahoney & Rood, 

1998; Scott et al., 1997). 
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2 STUDY SETTING 

2.1 Hydrology and Geomorphology 

The lower Yuba River (LYR) is a ~ 37.5-km-long, gravel-cobble regulated river in 

Northern California’s Central Valley. It was selected to serve as the testbed for 

evaluating cottonwood seeding recruitment predictability with deterministic and ML 

models because extensive research has been done on the river’s environmental history 

and current conditions. There are also detailed, abundant datasets to support model 

development and testing. 

The Yuba catchment drains 3,480 km2 of the western Sierra Nevada Mountains 

before reaching the confluence with the Feather River (Figure 1). This area has a dry 

summer subtropical climate, experiencing cool, wet winters and hot, dry summers. The 

LYR’s hydrology is driven by winter rainstorms and spring snowmelt, with most of the 

annual precipitation occurring between November and March. Flow to the LYR is 

partially regulated by dams and diversions (YCWA, 2013), including 79-m-high 

Englebright Dam and 7.3-m-high Daguerre Point Dam (both mining sediment barrier 

dams), but to a less degree than for other rivers in the region (Escobar-Arias & 

Pasternack, 2011). In fact, large floods (> 25-yr recurrence interval) that produce 

sustained above-bankfull discharges driving among the most voluminous 

morphodynamics in North America for a river of its size (Gervasi et al., 2021) occur on 

an approximate decadal cycle for recorded history (Guinn, 1890). They are caused by 

atmospheric rivers and rain-on-snow events (Garvelmann et al., 2015). 
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Figure 1. LYR map and location within Northern California.  

An estimated 280,209,355 m3 of hydraulic mining sediment was created within 

the Yuba’s catchment during and after California’s Gold Rush between 1852 and 1906 

(James, 2005), with almost 90% of it remaining there by the 1980’s (Adler, 1980). 

Sedimentation aggraded the LYR’s natural channel by 8-26 m (Adler, 1980; Gilbert, 

1917) and changed the channel pattern. Sediment reworking and export continue to 

influence aquatic and riparian habitats (YCWA, 2013; Carley et al., 2012). 

The LYR corridor was also historically modified. Dredging of mine tailings during 

the 20th century to extract more gold was done in a way that created wide, tall training 

berms that line the LYR for several kilometers to focus flow in an active river corridor to 

keep it out of neighboring dredger mining areas (James, 2005). Flood-borne migration 

of mining sediment down the Yuba River valley led to the construction of Daguerre Point 

Dam (DPD) in 1906 to prevent mining sediment from being exported to the Feather and 

Sacramento Rivers. The sediment-barrier Englebright Dam (ED) was built in 1941 in the 

canyon defining the entrance to the LYR. The deposition of unconsolidated mining 
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sediment buried pre-existing riparian vegetation and may have altered riparian 

conditions by reducing the extent and diversity of vegetation, covering the existing soil 

with debris, and may have altered the capillary fringe and impacted soil moisture 

availability for roots (YCWA, 2013). 

While the historic river valley underwent dramatic changes, the containment of 

flow into a smaller corridor where it has been for many decades has by now yielded a 

remarkably dynamic river responding to a dynamic flow regime (Gervasi et al., 2021). 

For example, studies have found the LYR to have ecologically functional flows 

(Escobar-arias and Pasternack, 2011), diverse and self-sustainable landforms (Strom et 

al., 2016; J. R. Wyrick & Pasternack, 2014), and an abundance of high-quality 

anadromous fish habitat (Kammel et al., 2016; Moniz & Pasternack, 2021; Pasternack 

et al., 2014). New projects are underway to expand the area of the functional river 

corridor (e.g., Southall et al., 2022). Given the current dynamism in the river, the setting 

is a good testbed for this study. 

2.2 Vegetation and Streamwood 

The LYR supports many woody species, including in order from more abundant 

to least, varying willow species (Salix sp. and Cepthalanthus occidentalis), Fremont 

cottonwood (Populus fremontii), blue elderberry (Sambucus nigra ssp. caerulea), black 

walnut (Juglans hindsii), and more (YCWA, 2013). LiDAR analysis in 2008 found that 

within the floodprone inundation area (i.e., width for which mean depth is double mean 

bankfull depth), sections of the LYR downstream of DPD were more densely vegetated 

than those upstream (Burman & Pasternack, 2017). Further within the floodprone area, 
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channel and floodplain landforms had lower density of vegetation compared to higher 

elevation fluvial landforms. By studying aerial photographs from 1947 to 2010, a 15%-

80% increase in total vegetative cover by area was observed in most LYR reaches, 

which are distinct geomorphic sections delineated on the basis of tributary junctions, 

hydraulic structures, river bed slope, and valley width (Wyrick & Pasternack, 2012), 

while one of the upstream reaches had 10% less vegetative cover (YCWA, 2013). This 

is attributable to flow regulation, which is a common global phenomenon (Gordon & 

Meentemeyer, 2006). 

The LYR receives an abundance of streamwood from its catchment. Wood flows 

over Englebright Dam’s ogee crest, providing some potential for asexual recruitment 

and creating structural complexity where large wood accumulates. Vaughan (2013) 

estimated that the Yuba catchment stores 600,500 m3 of large streamwood. Senter et 

al., (2017) estimated that the North Yuba River exports 1.8-2.2 m3/year/km2, so when 

applied to the whole Yuba catchment that could be 6264-7656 m3/yr, with high 

interannual variability. 

Even though riparian vegetation is increasing along the LYR both downstream 

and through time, the river has large expanses of unshaded terrain. Some stakeholders 

seek projects to promote even more expansion of riparian vegetation and its riverbank 

ecotone and floodplain habitats, both for the stakeholder’s sake as well as to provide 

enhanced cover habitat for the rearing lifestage of federally threatened Chinook salmon 

and steelhead trout. Riparian vegetation that is more structurally and biologically diverse 

provides shade and a food supply, regulates light and temperature (SYRCL 2013), and 

creates in-stream habitat and shelter through large woody debris (Naiman et al., 2002). 
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Due to these needs, there are multiple ongoing or planned aquatic, riparian, and 

floodplain restoration projects along the LYR. 

3 METHODOLOGY 

3.1  Experimental Design 

The primary scientific novelty of this study is in exploring how the outcomes of 

different prediction approaches inform the science of riparian ecology and the practice 

of riparian conservation, not necessarily in producing accurate predictions. To answer 

the questions posed in section 1.3, an experimental design was developed using 

available data and data to be collected during a field campaign (Figure 2). This section 

presents the overall approach; major subroutines in the design are detailed in 

subsequent sections. 

To answer the first question investigating how predicted recruitment locations 

compared to field locations of juvenile cottonwoods, the Riparian Seedling Recruitment 

sub-Module (RSRM; section 3.2) was used to predict seedling recruitment potential 

along the LYR for the years 2017-2021 and test results against cottonwood locations 

collected in the field. A set of spatial data inputs and the mean daily flow record was 

used in RSRM modeling (section 3.2.1), which produced outputs consisting of 

recruitment potential predictions and hydrophysical variables (section 3.2.2 & section 

3.2.3). Predictions were treated as hypotheses to be tested with observations in 2022. 

As it was not feasible to look at every location within a ~ 107 m2 area, an equal-effort, 

randomly stratified sampling scheme (section 3.3) was constructed for the field 

campaign. Sites were surveyed with a consistent observation protocol (section 3.4). 
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Model predictions were tested against field observations of cottonwood presence 

locations (section 3.5) using a previously published bioverification methodology 

(Kammel et al., 2016).  

To answer the second question evaluating a Random Forest (RF) machine 

learning model’s prediction accuracy for cottonwood presence/absence, a RF model 

was used with topographic variables and the hydrophysical outputs from the RSRM as 

predictor variables (section 3.6.1). Surveyed cottonwood locations from the field 

campaign were used as presence points, while absence points were randomly 

generated within the surveyed field sites (section 3.6.2). The predictor variables and 

presence/absence points were then used in a repeated k-fold cross-validation, which 

was the chosen resampling method used for RF implementation (section 3.6.3). A 

model performance assessment was then carried out through investigating several 

metrics to determine whether the RF could accurately predict juvenile cottonwood 

presence or absence (section 3.6.4). 

For the third question, a ranking of variable importance generated by the RF was 

used to investigate the top ranked predictor variables and their biophysical sensibility for 

cottonwood recruitment (section 3.6.5). How these variables influenced the probability 

of predicting cottonwood presence, and how they compared between presence and 

absence locations was explored and analyzed.  
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Figure 2. Experimental design and structure for the use of a deterministic and statistical 
model. 

 

Most spatial analyses were performed in ArcGIS Pro (ESRI, Redlands, CA), 

while machine learning modeling was performed in R. Most of the data in this study was 

collected in American customary units and then converted to SI units, leading to non-

integer values being reported in some instances where one might expect the selection 

of integer values, such as raster cell size. 
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3.2 Riparian Seedling Recruitment Sub-Module 

This study used the Riparian Seedling Recruitment sub-module (RSRM) to 

generate testable hypotheses about locations where cottonwoods would be likely to 

recruit and survive the first year of life on the LYR. As this was the first application of a 

novel model, there were no pre-existing model parameter value sets from past 

calibrated models to use as a starting point to parameterize this model and inform the 

field campaign. Further, in the absence of any seedling observational data, model 

parameter sets could not be calibrated in advance. This component of the study did not 

seek to implement a post hoc framework in which the answers would be used to tune 

the test. Instead, the approach was consistent with how this type of model might be 

implemented in conservation practice for project planning and design in the absence of 

pre-existing data. Thus, physically realistic values were chosen on an expert basis with 

reference to the literature on Fremont cottonwoods and then newly collected 

observational data was used to test how well the model performed with the expert-

based values. Commonly, models do not perform well without calibration, even when 

they are supposed to be physically realistic, but it is important to do that testing at the 

outset with a new model to help evaluate whether the scientific understanding 

underlying model structure and model parameterization is literally true and accurate 

enough for prediction. 

Four hydrophysical processes were used in the RSRM to evaluate whether 

suitable site conditions for recruitment were met: 
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(1) Preparation of the bed through higher flows generating a large enough 

dimensionless bed shear stress to create new bare surfaces before seed 

dispersal, 

(2) Desiccation or drought survival from stream stage and groundwater recession, 

(3) Survival during prolonged inundation periods, 

(4) Scour survival from flows with a high enough dimensionless bed shear stress for 

scouring affects after germination. 

The extent of the peak modeled flows during seed dispersal was used to define 

areas of recruitment analysis. As an expert-based parameter selection, each of the four 

processes was equally weighted and given a numerical value indicating favorable (1.0), 

stressful (0.5), or lethal (0.0) conditions for a given cell defined by the threshold values 

for each process. A metric describing recruitment potential was then solved for and 

provided recruitment potential predictions at a 0.46-m2 resolution.  

3.2.1 Data inputs 

The mean daily flow record was collected at different points along the LYR 

(Table 1). Due to the physical processes in RSRM, flow records must start two years 

prior to the year of interest, using May 2nd as the beginning of seed dispersal. For 

example, Predictions for 2017 require daily flow records from May 2, 2015 to May 2, 

2018. The years analyzed in this study were 2017 to 2021, requiring the mean daily flow 

record for the years of 2015 to 2022. 

Spatial data inputs used in RSRM modeling included topography, hydraulics, 

sediment grain size, and vegetation data. Topographic data and derivative variables 
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were available from a 0.91-m resolution 2017 digital elevation model (DEM) (Table S2). 

The DEM came from a point cloud integrating airborne LiDAR, boat-based multi-beam 

echosounder, and ground-based RTK GPS surveys (Silva & Pasternack, 2018; Gervasi 

et al., 2021). Steady-state hydraulic rasters for velocity, depth, and water surface 

elevation (WSE) were available from TUFLOW HPC, a validated two-dimensional (2D) 

hydrodynamic model with outstanding performance (Pasternack, 2023; Table S3 & 

Table S4). A total of 45 flows from 8.5-2,464 m3/s were used, covering the range of 

discharges that occurred on the LYR for the years of interest. Grain size data for the 

LYR was available from a previous study that used a machine learning algorithm based 

on LiDAR data and grain size samples from the field to create a sediment facies map 

(Díaz Gómez et al., 2022). The average grain size was approximated for regions not 

included within the mapped area. An existing 2017 vegetation map created from LiDAR 

data was used to identify areas of established vegetation (i.e., taller than 0.6 m). 

 

 

Figure 3. The LYR with the three domains MRYFR, DPDMRY, and EDDPD, gaging 
stations, and dams. The blue region of the river represents the section that was used for 
field data collection. The dashed line within EDDPD represents where this domain was 
split into two hydrological sections.  
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The study area (Figure 3, blue) was split into three different RSRM modeling 

domains for computational and analysis efficiencies. Further, the Dry Creek tributary 

inflow and an irrigation diversion at Daguerre Point Dam (Figure 3) required use of 

three different discharge data sources. The inflow from Dry Creek required the 

upstream modeling domain to be split into two hydrological sections (Table 1). 

 

Table 1. Hydrologic data sources for each modeling domain. 

Domain Domain Description Flow Data 

1) MRYFR Reach extends from just 
upstream of the confluence with 
the Feather River to 3.4-km 
downstream of the Marysville 
gaging station. 

USGS Marysville gage (11421000) 

2) DPDMRY Reach extends from 3.4-km below 
the Marysville gaging station to 
just downstream of Daguerre 
Point Dam. 

USGS Marysville gage (11421000) 

3A) EDDPD 
(downstream)  

Reach extends from to just 
upstream of Daguerre Point Dam 
to confluence with Dry Creek 

The Yuba Water Agency has 
projected flows through 2017 for 
both above and below the Dry 
Creek tributary. A linear regression 
comparing the flows above and 
below Dry Creek was used to find 
the slope for flows <1,000 cfs, 
1,000-10,000 cfs, and > 10,000 
cfs.  
 
USGS Deer Creek gage 
(11418500) and Englebright near 
Smartsville gage (11418000) were 
added together. Flows were 
respectively multiplied by the slope 
for each category above. 

3B) EDDPD 
(upstream) 

Extends from just upstream of Dry 
Creek to Englebright Dam 

USGS Deer Creek gage 
(11418500) and Englebright near 
Smartsville gage (11418000) were 
added together 
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3.2.2 Hydrophysical variables 

Threshold values were set in the RSRM to evaluate whether hydrophysical 

processes created suitable conditions needed for seedling recruitment and survival 

(Table 2). The RSRM uses the wetted area extents for the maximum and minimum 

flows during the seed dispersal period to create the spatial domain for areas of possible 

germination. An existing vegetation map can be included to remove areas with 

established vegetation from analysis, as these are areas with competition for sunlight 

and moisture. 

The preparation of the bed before seed dispersal and the scouring flows after 

dispersal are both analyzed through the dimensionless bed shear stress (𝜏 ∗) with the 

equation from Schwindt et al., (2019): 

 𝜏 ∗=
1

𝐷84𝑔(𝑠−1)
[

𝑢

5.75𝑙𝑜𝑔10(12.2ℎ/2𝐷84)
]2 (2) 

where 𝐷84 is the grain diameter approximated as 𝐷84=2.2𝐷50 (Rickenmann & Recking, 

2011), g is the gravitational acceleration (9.81 m/s2), s is sediment grain and water 

density ratio (2.68 g/cm3), u is the water velocity (m/s), and h is the water depth (m). 

The dimensionless bed shear stress is calculated for each provided discharge and 

compared against the thresholds for partially and fully mobilized sediment transport in 

every cell. The flows during the 2 years prior to seed dispersal are analyzed to 

determine the bed preparation, while the flows after germination during the seed 

dispersal period through the following May are used for the scouring survival analysis. 
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Inverse distance weighted (IDW) interpolation is used in River Architect to 

spatially extrapolate the WSE raster for the river’s wetted area at a given discharge to 

estimate the water level elevation (WLE) beyond the wetted area (Larrieu et al., 2021). 

When WLE < DEM, then WLE is the groundwater level. When WLE > DEM, then it is 

the WSE of disconnected ponds, swales, and floodplain channels. Inundation duration 

is tracked for every cell when the WLE has a greater value than the DEM. Consecutive 

days of inundation are counted throughout the inundation survival period during the 

seed dispersal period after germination through the following May. 

Desiccation stress may occur if seedling roots cannot maintain contact with the 

soil moisture as WLE recedes. A recession rate of 1 cm/day was considered stressful 

and 2.5 cm/day was considered lethal (Amlin & Rood, 2002; Mahoney & Rood, 1998; 

Phillips & Pasternack, 2022; Stella et al., 2010). The mortality coefficient is used to 

quantify the recession rate and is calculated using a 3-day moving average for each 

cell, as this accounts for a time lag associated with the capillary fringe and the rate at 

which seedlings can grow roots (Braatne et al., 2007; Burke et al., 2009). The 

desiccation survival period begins during the seed dispersal period when germination 

begins and ends when baseflow starts. 
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Table 2. Criteria set for the physical processes in the RSRM by Phillips & Pasternack, 
2022. The metric code was given depending on where a cell fell within the criteria for 
each condition. Bed shear stress was divided into the bed preparation phase and the 
scour survival phase. 

Process Criteria Condition Metric 

Seed Dispersal 
Period 

May 2 - July 4   

Bed Shear Stress 
(Bed preparation / 
scour survival) 

0.047 
 

0.030 
 
 

0.000 

Fully prepared / Fully disturbed 
 

Partially prepared / Partially 
disturbed 

 
Unprepared / Undisturbed 

1 / 0 
 

0.5 / 0.5 
 
 

0 / 1 

Mortality Coefficient 
(Desiccation 
survival)  

< 20 days 
 

20-30 days 
 

>30 days 

Favorable 
 

Stressful 
 

Lethal  

1 
 

0.5 
 

0 

Inundation < 14 days 
 

14 
 

28 

Favorable 
 
Stressful 

 
Lethal 

1 
 

0.5 
 

0 

 

3.2.3 Recruitment potential predictions 

After applying constraints to the hydrophysical processes, the recruitment 

potential for a given cell is determined. The metric for each hydrophysical process is 

weighted by a coefficient and then the product of those terms is computed to create 

recruitment predictions at a 0.46-m2 resolution (Table 3). For example, a cell with 

physical process performing at the lethal metric will result in the cell being classified as 

lethal for potential seedling recruitment, while a cell with every physical process 
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performing as favorable results in being classified as optimal. This method is a common 

approach in environmental science and management (Leclerc et al., 1995; Renard et 

al., 1997). In the absence of any prior knowledge, all coefficients were given the same 

value of 1.0. Each hydrophysical process was weighted equally when computing the 

recruitment potential classes. Using the Random Forest model to determine the ranking 

of importance for each hydrophysical variable can provide insights for adjusting the 

weighting of each process for future use.  

 

Table 3. Final recruitment potential classes from Phillips & Pasternack, 2022. 

Combined Value Stressful Parameters Description 

1 0 optimal 

0.5 1 favorable 

0.25 2 stressful 

0.125 3 tolerable 

0.0625 4 likely lethal 

0 - lethal  

3.3 Field Site Selection 

Random sampling is often beneficial, but it is problematic when the relative 

availability of different conditions is highly unequal. It will oversample abundant 

conditions and under-sample or entirely miss rare conditions. A solution is a stratified, 

random equal-effort sampling scheme (Legendre & Legendre, 1998; Zhang et al., 

2020). Locations were stratified based on their RSRM-predicted recruitment potential 

class, and an equal number of randomly selected locations from within each class were 
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surveyed (Figure 4). As a goal,  10 sites per class across the whole LYR were to be 

sampled, with 3-4 sites per class in each domain. Sites that were inaccessible were not 

considered. The study area was truncated upstream of the LYR’s terminus because 

intense unauthorized land use and residency in the flood prone area yielded unnatural 

vegetation presence/absence and made field work potentially unsafe. 
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Figure 4. Workflow for field site selection. MRYFR, DPDMRY, and EDPDP model 
domains illustrated in Figure 3. 

 

Following the method of Wyrick and Pasternack (2014), the LYR’s centerline was 

stationed and sectioned every 31 m, laterally spanning the wetted area of the highest 

discharge of 2,384-m3 in the 2015-2022 flow record. Cross-sections were then buffered 
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out 15.5 m upstream and downstream to yield rectangles. Rectangles were split with the 

centerline. Due to meandering and topographic nonuniformity, rectangle lateral extents 

and areas varied. 

The mode (i.e., most commonly occurring values) of annual recruitment potential 

values was calculated for each modeled grid cell along the LYR for the RSRM outputs 

of years 2017-2021. The area was then calculated for each mode riparian recruitment 

class within every rectangle. For each domain, the rectangles were filtered and grouped 

by the riparian recruitment class that occurred within it, with the potential for a rectangle 

to be grouped multiple times if more than one class occurred within it. The median area 

for each class within each domain was calculated and used as a baseline value for 

consideration of a rectangle as a potential sample site. Any rectangle with a class area 

below the respective median value was not included in site selection to avoid intense, 

costly labor to find and survey tiny areas, while rectangles with a class area above the 

median were randomly numbered. Rectangles randomly numbered one through five 

were prioritized as potential sample sites, with safety and accessibility also being 

considered. 

3.4 LYR Field Data Collection 

Field sites were mapped August through November 2022 (Figure 5). For 

rectangle sites that had cottonwoods, data was collected from every individual present. 

A hand-held Trimble GeoXH mapping-grade GPS was used to navigate to and mark the 

boundaries of each site to be surveyed. A survey-grade Trimble R8 RTK GPS receiving 

real-time corrections from a commercial regional benchmark network was used to 
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record geographic coordinates (horizontal accuracy of ~  3 cm) of every cottonwood 

observed within the site. If a slope, boundary, or other obstacle prevented close contact 

to the base of a tree, the GPS point was collected at the closest possible location along 

with the distance and compass direction to the tree; coordinates were adjusted later in 

ArcGIS Pro. 

Observation methods differed by plant height class. For cottonwoods < 2-m tall, a 

tape measure and caliper were used to measure height and stem diameters, 

respectively (Figure 6). Diameters were measured above the root collar and at 50% of 

the height. If the tree was > 2-m tall, diameter at breast height (DBH) was recorded 

using a diameter tape, while height was measured using Pythagorean relationships 

between a set distance to the base of the tree and the angle to both the top of the 

canopy and the base of the tree. The angle was collected using a clinometer, while a 

measured distance from the base of the tree was collected using a long tape measure. 
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Figure 5. LYR field site locations within the modeling domains. The map is split at 
Daguerre Point Dam (DPD). Downstream of DPD is the left image and upstream of 
DPD is the right. 
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Figure 6. An example field site (A) and methods for data collection: B) measuring height 
with a tape measure, C) diameter above the root collar with a caliper, and D) DBH with 
a diameter tape. 

 

A total of 2,957 juvenile cottonwood locations were recorded within the 

boundaries of 70 sampled sites. Recruitment class 0.0625 had less sampled classes 

due to the way the RSRM calculates recruitment classes (Table 4). Most sites in 

DPDMRY were at the upstream and downstream ends, as the middle could only be 

reached by kayak. EDDPD was fully accessible. 

 

Table 4. Number of recruitment classes sampled per domain. 

Recruitment Class 

Domain 0 0.0625 0.125 0.25 0.5 1 Total # Sites  

MRYFR 4 0 4 2 0 0 10 

DPDMRY 5 0 7 4 6 5 27 

EDDPD 6 4 6 6 6 5 33 

Total # Sites 15 4 17 12 12 10 70 
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3.5 Bioverification 

An evaluation of RSRM prediction accuracy was performed through a method 

termed bioverification, comparing the number of recorded locations of juvenile 

cottonwoods within each area of recruitment potential classes modeled (Kammel et al., 

2016; Moniz et al., 2020; Pasternack et al., 2014). Bioverification uses an electivity 

index to evaluate two criteria. First, there must be at least one recruitment potential 

class exhibiting preference and at least one exhibiting avoidance to demonstrate that 

the model can differentiate conditions. Second, the electivity index must increase as 

recruitment potential increases from class to class (Kammel et al., 2016). A large 

number of electivity indices exist, but given the abundance and simplicity of this data, 

the classic forage ratio (FR) was used. It was calculated as the ratio of the percent of 

cottonwood observations in a recruitment potential class (i.e., percent occurrence, aka 

utilization) to the percent area of that class (i.e., percent availability). A FR > 1 indicates 

an organism’s preference for a habitat, while a FR < 1 indicates an avoidance. The 

further from 1.0 a FR value is, the more a habitat is preferred or avoided by the 

designated organism. A FR  1 for a class indicates behavior indistinguishable from 

random and cannot be attributed to a species showing preference or avoidance for that 

class in the model.  

When performed with other statistical tests, such as Mann-Whitney U test and 

statistical bootstrapping with random points, the FR has been found to be an acceptable 

metric for bioverification (Kammel et al., 2016; Pasternack et al., 2014). Statistical 

bootstrapping is a method used for determining a measure of accuracy for sample 

estimates, with random sets of the same sample size created and used with the test 
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metrics to quantify the statistical confidence limits and evaluate whether the 

observations behave like a random variable or not. This study did not require the 

additional steps with statistical bootstrapping, because the results were so extreme that 

they could not be random, given the sample sizes. 

To compute FR values, the percent utilization and percent availability were 

needed. The percent utilization for each class was determined by dividing the total 

number of juvenile cottonwoods across the sampled sites in each recruitment potential 

class by the total number of juvenile cottonwoods found in the whole dataset. The total 

area for each riparian recruitment potential class was calculated by summing the area of 

all sampled sites for a given class, using the 2017-2021 mode recruitment potential 

class values from field site selection. Total class areas were then summed to compute 

total model-prediction area. The percent area for each riparian recruitment potential 

class was then calculated by dividing each individual class area by the overall total area 

of predicted classes. A second set of FR values were also computed using the 2017-

2021 maximum recruitment potential class values for a given cell (Table S7; Figure 

S2).  

3.6 Random Forest Model 

A RF supervised classification algorithm was used to address the second 

scientific question (Figure 7), modifying the RF model previously used to predict and 

analyze all riparian vegetation on the LYR (Diaz-Gomez & Pasternack, 2021). Two-step 

pre-processing was undertaken to prepare predictors (section 3.6.1) and a binary 

response variable of presence or absence (section 3.6.2). The values of each predictor 
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were then extracted at each binary response variable location and used in the caret 

package in R (Kuhn, 2008) to perform the RF and generate hypothesis-testing metrics 

(section 3.6.4). 

RF’s are a machine learning technique that use an ensemble of decision trees 

that are aggregated to make a more accurate classification decision (Breiman, 2001), 

and have been observed to have a high classification accuracy when compared to other 

classification methods (Cutler et al., 2007). The number of trees used was 500 as the 

conservative default value needed to stabilize the prediction accuracy (Maxwell et al., 

2018; Diaz-Gomez and Pasternack, 2021). The number of explanatory variables 

sampled at every node was between 1 and the number of variables (20), defined on a 

grid with a resolution of 1 (Probst et al., 2018, Zhang et al., 2020, Diaz-Gomez and 

Pasternack, 2021). 
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Figure 7. Processing and workflow for the RF machine learning model 

3.6.1 Predictors 

A total of 20 predictor variables were chosen for the classification of juvenile 

cottonwood presence or absence, using the four hydrophysical variables from the 

RSRM and 16 DEM-derived topographic features characterizing the terrain in 2017 

(Table S5). The RSRM creates 0.46-m resolution rasters for the four 2017 

hydrophysical rasters, which were later resampled to the same 0.91-m resolution as the 

DEM and the subsequent topographic variables. Topographic variables were 
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numerically continuous, while hydrophysical variables had three discrete values (Table 

S5) 

3.6.2 Binary class variable 

For the supervised classification, cottonwood presence and absence was used 

as the binary class variable. Field locations of juvenile cottonwoods were used to 

indicate presence cells at 0.91-m resolution. Cells that fell within cottonwood clusters 

were classified as presence, with no differentiation made between cells containing one 

or more cottonwoods. As a result, the 2,957 observed juvenile cottonwood locations 

were reduced to 1,349 presence cells. An equal number of absence cells were 

randomly created without duplication in any one cell within surveyed sites after 

excluding presence cells, resulting in a total of 2,698 samples for model training and 

testing. 

3.6.3 Implementation 

The repeated k-fold cross-validation resampling method was used for RF 

implementation, where k indicates the number of groups the dataset is split into (10 

herein). The observations at 0.91-m resolution were divided into 10 subsets (or folds) of 

equal size, each with 269 samples. One group is taken as a holdout for model validation 

while the remaining nine are used to train the model. This process is then repeated 10 

times until every fold has both trained and validated the model. The repeated k-fold 

cross validation effectively captures the generalization performance of the RF model, by 

ensuring that the predictive model’s skill report does not depend on the way that training 
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and testing data are chosen, which in this case is the difference between the model 

estimated and true values (Kuhn & Johnson, 2013). 

3.6.4 Model performance analysis 

Just as the bioverification framework used to test the RSRM had two criteria - 

one to demonstrate predictability in terms of differentiation of locations and another to 

demonstrate that the directionality of how variables worked matched biophysical 

mechanistic sensibility - RF performance testing must also achieve both of those 

outcomes. The performance analysis of the RF model serves the first need and was 

assessed through several performance tests. The first few metrics were through an 

averaged confusion matrix to visualize the accuracy and relative error among presence 

and absence classes using the hold out testing data, for each of the 10-folds from the 

10 repetitions. The matrix portrays the number of correct and incorrect predictions by 

the RF and relates the overall accuracy, producer’s and user’s error, and omission and 

commission errors (Fawcett, 2006; Sokolova & Lapalme, 2009). The accuracy is 

calculated as the number of correct predictions to the overall number of predictions, 

relaying the effectiveness of the model. The producer’s accuracy portrays the 

sensitivity, the ratio of correctly classified presence points, and the specificity, the ratio 

of correctly classified absence points. The best sensitivity or specificity is 1.0, meaning 

all the predictions were correct, while 0.0 would be the worst. Omission and commission 

errors respectively represent the reference or classified cells omitted from the correct 

class, with a balance between these errors as the ideal. These metrics provide a deeper 

understanding of the performance of the model beyond the accuracy, portraying how 
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well it classified both presence and absence, which may not result in the same ratio 

value.  

The next assessment used the area under the curve (AUC) for the receiver 

operator characteristic (ROC). The ROC plots the  proportion of true positives (i.e. 

proportion of presence points correctly identified as presence) on the y-axis against the 

proportion of false positives on the x-axis (i.e. proportion of absence points classified as 

presence) (Fawcett, 2006). The ROC space is conceptually simple, with the point (0, 0) 

representing no positive classifications, the point (0, 1) representing unconditional 

positive classifications, and the point (1, 0) representing a perfect classification. The 

AUC indicates the area between the ROC curve and the diagonal from (0, 0) to (1, 1) 

and represents the probability that a randomly chosen positive instance will rank higher 

than a randomly chosen negative instance (Fawcett, 2006). It ranges from 0 to 1, with 

0.5 indicating random predictions, equaling the diagonal line the area is calculated 

between, and 1.0 indicating a perfect classification, with no realistic classification model 

having an AUC<0.5 (Fawcett, 2006). 

3.6.5 Predictor variable importance 

A strength of the RF algorithm is the ability to generate a ranking of variable 

importance. The permutation based feature importance was used, which is measured 

by the decrease in the model’s prediction accuracy when a variable is permuted 

(Breiman, 2001). Partial dependence plots (PDP) were also used to further examine the 

marginal effect a variable has on the predicted outcome of the model when all other 

explanatory variables are held constant at their mean values (Friedman, 2001). In this 
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study, it would be the effect a predictor has on the probability of the RF model predicting 

cottonwood presence, allowing a visual to examine how the probability of predicting 

presence increases or decreases as the variable value changes. These metrics help 

interpret the contribution of individual predictors to the overall performance of the 

Random Forest model, and by inference perhaps to explain how the natural 

phenomenon works mechanistically. 

To further evaluate biophysical mechanistic sensibility, the median value (i.e., 

middle value within a dataset) for the more important predictors was inspected to 

evaluate differences in presence and absence locations. Then, directionality of the 

predictor-cottonwood relationship and the predictor extent of presence and absence 

conditions were vetted against biophysical reasoning and evaluated. For example, if the 

model were to predict that presence points were at a detrended elevation corresponding 

to the bottom of pools in the river, then there might be high statistical predictability in the 

model but it is biophysically wrong, as cottonwoods cannot recruit at that type of 

permanently inundated location. To be considered an accurate and useful model, 

important variables were not only considered statistically important for prediction but 

also biophysically realistic and meaningful to understand the natural phenomenon of 

cottonwood recruitment. 

4 RESULTS 

4.1 Cottonwood Recruitment Patterns 

A higher density of cottonwoods was located downstream of DPD than upstream 

of it (Figure 8). Downstream of DPD recruitment for seedlings that germinated in the 
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2022 summer was observed to be in sporadic dense patches, located mostly on lateral 

and point bars, islands, or along backwater and abandoned channels. Newly formed 

and dynamic islands were also found to have dense clustering of seedlings. Juvenile 

cottonwoods that were not in their first growing season were found in scattered stands 

among other riparian species, such as willows, or by themselves. There were dense 

and robust stands of mature cottonwoods observed in these regions. 

Upstream of DPD, a dense seedling cluster was found on an active point bar. 

However, juvenile cottonwood locations were more scattered and individual in this 

section. Moving upstream, the surfaces became barer and had less vegetation present. 

A smaller number of mature cottonwoods was observed in this segment. 

 

 

Figure 8. Heat map of surveyed cottonwoods along the LYR with two perspectives, one 
downstream of DPD and one above. 
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4.2 Question 1: Does the RSRM Bioverify? 

Among the total of 2,957 young cottonwood presence locations used in the 

forage ratio (FR) calculations, 1,408 presence points were located within RSRM 

modeled results and 1,550 presence points were outside modeled areas (because the 

RSRM considers this area beyond the modeled wetted area during seed dispersal). 

Four recruitment potential classes had FR values indicating avoidance, while one 

(“tolerable”) had a value indicating preference (Table S6; Figure 9). These results meet 

bioverification criteria one but fail criteria two. Criteria one requires the occurrence of 

both preference and avoidance to be exhibited by separate classes, which can be seen 

in Figure 9. Criteria 2 requires that the FR, the percent of cottonwood occurrence to the 

percent area available for each recruitment class, increase as the recruitment potential 

increases, which did not occur. The FR calculated using the 2017-2021 maximum 

recruitment potential class values did not change overall results (Table S7; Figure S2).  
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Figure 9. Forage ratio test results using the 2017-2021 mode recruitment class values 
for the expert-parameterized implementation of the RSRM. The class that represented 
“tolerable” recruitment potential was the only one that resulted in a FR indicating 
preference. 

4.3 Question 2: Does the RF Model Accurately Predict Presence and Absence?  

When compared with the testing data, the averaged confusion matrix of the 

Random Forest prediction portrayed an overall accuracy of 87% of correctly predicting 

either an absence or presence point with a p-value < 2e-16 (Table 5). For cottonwood 

presence the producer’s accuracy (sensitivity) was 89% (omission error of 11%) and the 

user’s accuracy was 86% (commission error of 14%). For cottonwood absence the 

producer’s accuracy (specificity) was 85% (omission error of 15%) and the user’s 

accuracy was 88% (commission error of 12%). In other words, 89% of cottonwood 

presence cells were predicted to be presence cells, while 14% of absence cells were 

predicted to be presence cells. On the other side, 85% of cottonwood absence cells 

were predicted as absence, while 12% of presence cells were predicted to be absence. 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 0.125 0.25 0.5 1

F
o
ra

g
e

 R
a
ti
o

Recruitment Class 



44 
 

The RF model had a higher accuracy for predicting presence, while still obtaining the 

goal of having a good balance between the producer and user accuracies for presence 

and absence. The model performed well with an AUC-ROC of 94% (Figure 10), 

reaching this value with 8 variables available at each tree node (Figure 11). 

Remarkably, even a single variable produces an AUC-ROC > 90% and adding just 

three more variables increases the result to 93%. 

 

Table 5. The averaged confusion matrix for the RF repeated cross-validation scheme. 
The bolded values represent the correctly classified observations. 

Prediction Reference   

 Absence Presence Total User Accuracy 

Absence 1147 151 1299 88% 

Presence 202 1198 1400 86% 

Total 1349 1349 2698  

Producer Accuracy 85% 89%   
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Figure 10. The AUC-ROC curve for the RF model 

 

 

Figure 11. AUC-ROC value by number of randomly selected predictors. 
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4.4 Question 3: Drivers for Cottonwood Presence and Absence? 

For predicting the presence/absence of young cottonwoods, the top four most 

important variables include detrended DEM, channel proximity, inundation survival, 

lateral relative aspect, and the vector ruggedness measure (VRM), based on the RF-

generated variable importance ranking (Figure 12). Inundation survival was the only 

hydrophysical variable in the top five, with the other most important being topographic 

variables. The biophysical realism of these variables was further investigated with 

PDPs.  

The detrended elevation, which was found to be the most important predictor 

variable, was a representation of the land surface when the down valley slope is 

removed while still preserving local topographic variations. It was assigned a relative 

importance of 100%, with all the following variables’ relative importance compared 

against it. The probability of cottonwood presence increased from detrended elevations 

of 0 to 2 m before a sharp peak, then decreased as the elevation increased further 

(Figure 13), which is consistent with the logic of cottonwood recruitment. Channel 

proximity was the 2nd ranked variable with relative importance of 71% (Figure 12). The 

predicted outcome of cottonwood presence decreased as the distance to the channel 

increased (Figure 13), which is also realistic. Inundation survival was 3rd at 43% in 

terms of predictive power, however, PDP showed a negative relationship between 

presence probability and more favorable inundation metrics (i.e., the probability of 

presence predictions decreased as inundation become more favorable), which is not 

initially biophysically sensible (Figure 13). Lateral relative aspect was 4th at 21% 

(Figure 12). The presence probability initially decreased as lateral relative aspect 
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increased from -1.0 (facing towards the river) to -0.75, before stabilizing until the 

probability decreased again at around 0.75 (facing away from the river) (Figure 13), 

which is realistic. Vector ruggedness measure (VRM) was close behind the lateral 

relative aspect, with a relative importance of 20% (Figure 12). The probability of 

cottonwood presence being predicted increased rapidly following a VRM of 0.0, before 

decreasing after a sharp peak and then stabilizing after a value of 0.02 (Figure 13). 

Based on these results, inundation survival was then removed from the predictors and 

the RF model was applied again to compare model performance and the ranked 

variables of importance (Figure S4). The accuracy was similar and the detrended 

elevation and channel proximity remained the two most important variables.  
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Figure 12. Relative contribution of variable importance for the RF model’s predictions of 
cottonwood pres ence and absence. The most important variable is identified and 
assigned an importance of 100%, with the other variables ranked relative to it.  
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Figure 13. Partial dependence presence probability for the top four explanatory 
variables: detrended elevation (m), channel proximity (m), inundation survival, lateral 
relative aspect, and vector ruggedness measure (VRM). The black line represents the 
mean marginal response when the other explanatory variables were kept constant. 

 

The median and lower/upper quantile values for the top five explanatory 

variables was further examined to interpret biophysical realism (Table 6). For the 

detrended elevation, presence cells were found at a lower elevation than the absence 

points. The upper quantile value for presence was equivalent to the lower quantile value 

for the absence cells. Presence cells also occurred closer to the wetted baseflow 

channel than the absence points. For the inundation survival, presence cells occurred at 
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a lethal inundation and the absence cells at a favorable inundation. The median lateral 

relative aspect for presence was negative, indicating pixels facing towards the river 

while the absence points faced away. The VRM was similarly very small for both 

presence and absence, with an average presence VRM of 0.0018 and absence VRM of 

0.0016.  

Table 6. Median, lower quantile (LQ), and upper quantile (UQ) values of the presence 
and absence points for the top five most important explanatory variables. 

 Presence Absence 

Predictor LQ Median UQ LQ Median UQ 

Detrended Elevation (m) 1.3 1.6 2.4 2.4 3.3 4.1 

Channel Proximity (m) 0.0 5.4 19.9 14.1 36.4 65.5 

Inundation Survival 0 0 1 1 1 1 

Lateral Relative Aspect -0.96 -0.09 0.97 -0.78 0.53 0.95 

VRM 6E-05 2E-04 1E-03 8E-05 3E-04 1E-03 

5 DISCUSSION 

5.1 Understanding RSRM Results 

After comparing the RSRM results with locations of juvenile cottonwoods 

throughout the LYR, the uncalibrated, expert-based model was found to not bioverify. 

The test seemed to result in random results that did not necessarily indicate habitat 

preference or avoidance. This could be a reflection or culmination of many factors 

including: 1) a time lag between the years analyzed with the RSRM, cottonwood 

mortality and morphological disturbances that occurred during that time, and when field 

surveys occurred; 2) parameters used and the importance of local environmental factors 
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and initial conditions; 3) unrecognized differential sensitivities of the parameter criteria 

used. 

While the RSRM produces recruitment predictions for a seedling after its first 

year of life, it does not account for mortality that may have occurred after. Site selection 

for field data collection was based on the mode RSRM results for 2017-2021, so it is 

difficult to determine model accuracy if most seedlings died in earlier years. In addition, 

during the five years between the collection of data to create the 2017 DEM and the 

2022 field season for this study, a few floods occurred and caused local geomorphic 

changes, potentially degrading model accuracy- though the same issue faced the RF 

model and it still yielded excellent performance. Many locations had minor to no 

changes, but particularly some depositional locations were highly prone to dynamism 

wherein the channel completely migrated and left behind abandoned or remnant 

channels. This resulted in the RSRM not being able to make predictions that reflected 

the current streambank or in areas with newly formed islands or land features. As 

erosional and depositional processes are important for the creation or disappearance of 

new or bare surfaces and the location of the wetted channel for access to water are 

important for seedling recruitment, morphological changes need to be acknowledged. 

Without the monitoring of sites for each of these years the RSRM was used, a complete 

evaluation is difficult. 

While the criteria and thresholds set for the hydrophysical processes in the 

RSRM (Table 2) was chosen based on existing scientific literature, site specific 

decisions based on local factors need to be considered (Stella et al., 2010). It is also 

difficult to compare criteria and results from differing studies due to variations in 
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experimental designs and environmental conditions (Politti et al., 2018). An uncertainty 

exists in the criteria set for the RSRM, as chosen values may not apply well to the LYR 

or using the same threshold values for the entire extent of the LYR may have been too 

general.  

The sensitivity for one or more parameters could be high, impacting the success 

of results even if the values chosen were close to being suitable for the LYR. Smaller 

sections that were carefully selected and studied may have been necessary for a more 

successful validation of the RSRM. A propagation of error from the 2D modeled 

hydraulic inputs, interpolation of the WLE, and the modeling of the RSRM itself may 

have also impacted results. The RF relative importance analysis suggests that different 

variables have unequal roles, and so the choice of equal weighting of hydrophysical 

variables in the RSRM may require re-assessment. 

There could also be other factors or processes that were not considered in the 

development of the RSRM. Variables relating to the climate or location and number of 

mature cottonwoods that may release seeds relative to model predictions were not 

included. The RSRM considers seeds dispersed by water but does not account for 

seeds dispersed by wind and deposited in areas not expected by the model. While 

seeds are typically dispersed by water, seeds dispersed by wind may be deposited 

within a few hundred meters or several kilometers through convective wind currents 

from the seed-dispersing tree (Braatne et al., 1996). A larger density of juvenile 

cottonwoods was in the sampled sites located below Daguerre Point Dam when 

compared to the upstream sites. One factor that may be contributing to this is that more 

robust and expansive riparian forests with mature cottonwoods were observed in this 
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area, potentially producing a larger number of seeds to recruit on suitable surfaces. 

There could also be a role for the generally erosional setting upstream of DPD and 

depositional setting downstream of it (Carley et al., 2012), though that can change 

through time (Gervasi et al., 2021). 

5.2 Cottonwood Presence and Absence  

Despite some floods and morphodynamic changes from 2017 to 2022, the 

Random Forest (RF) model was able to accurately predict juvenile cottonwood 

presence and absence in 2022 based on conditions in 2017, as indicated by 

performance assessment metrics. An accuracy of 87% was achieved for correctly 

predicting cottonwood presence or absence. Sensitivity was larger than the specificity, 

indicating the model was better at correctly predicting presence locations versus 

absence. AUC-ROC was high, reflecting optimal performance by the RF (Fawcett, 

2006). The RF had a strong performance, similar to other binary RF classification 

models (Cutler et al., 2007; Maxwell et al., 2018), suggesting that the predictor variables 

provided enough useful environmental information to identify characteristics of 

cottonwood recruitment locations. 

The two most important variables from the RF were detrended elevation and 

channel proximity, which are indicators for depth to the water table and flood inundation 

depth. The directionality of the statistical relations aligned with observations in the field 

and expectations from cottonwood literature and is observed in a visual representation 

of predicted cottonwood presence or absence along a small section of the LYR (Figure 

14). Juvenile cottonwoods were found to be at lower elevations and closer to the 
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baseflow channel when compared to the absence points, likely having been deposited 

on the moist substrate during receding flows. Seedlings that had recruited along the 

active margin of the channel were mostly located in dense clusters on the edges of 

point and lateral bars, which have the geomorphic surfaces and sediment processes 

needed to create suitable bare surfaces for cottonwood seedling recruitment (Braatne et 

al., 1996, 2007; Mahoney & Rood, 1998). In one location of dense clustering, the 

migration of the active channel had created large extents of new bare surfaces, allowing 

a large band of new recruitment.  

 

 

Figure 14. An example of the RF's predicted cottonwood presence (purple) or absence 
(grey), with surveyed juvenile cottonwood locations within the sampled field sites.  

 

Inundation survival was ranked as the 3rd most important variable, with presence 

points having a median value of lethal inundation and absence having favorable 

inundation value. This is opposite to what was initially hypothesized yet was analyzed 

for biophysical sensibility. Seedlings that recruited on new or bare surfaces close to the 

baseflow wetted area would experience longer durations of inundation when compared 
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to those that recruited at higher elevations. New recruits in risky locations may have 

been modeled in the lethal inundation zones by the RSRM. Changes that have occurred 

in active areas of the channel margin since 2017 may also have an influence. 

Recruitment since 2017 has occurred on newly created surfaces close to the channel 

that did not exist in 2017, which may have been modeled as inundated by the RSRM. 

The absence points were located further away from the active channel and may have 

experienced short or no periods of inundation. The ideal conditions of abandoned or 

remnant channels may have also been captured. Many abandoned channels below 

Daguerre Point Dam had been extensively colonized by juvenile cottonwoods, as the 

process of fine sediment deposition as the abandoned channel dewaters creates ideal 

moist surfaces and conditions for rapid colonization by pioneer species (Stella et al., 

2011). Colonized abandoned channels above Daguerre Point Dam were not observed. 

Long term survival for many of these recruited seedlings is not probable due to 

their location relative to the river water surface level during higher flow events, as they 

are likely to be scoured when sediment is mobilized. Cottonwood seedlings that had 

survived beyond their first few growing seasons and large cottonwood trees were 

observed in backwater areas or within willow and cottonwood bands on point bars and 

high on the riverbank far from the late summer stage position when the field sampling 

occurred. 

Presence points were also more likely to face towards the river then away, as 

shown by the 4th most important variable being lateral relative aspect. The lateral 

relative aspect is linked to hydraulic and sediment processes (Díaz Gómez et al., 2022), 

and may also be associated with the deposition of seeds that were transported by 
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water. While the vector ruggedness measure (VRM) ranked 5th in this study, it was the 

most important influencer in another study on the 2017 riparian vegetation of the LYR 

(Diaz-Gomez & Pasternack, 2021). The median VRM for presence and absence points 

were similar, but the presence points had a larger average VRM than the absence 

points. VRM expresses heterogeneity in the surface by representing both aspect and 

slope, indicating that micro-variability in the terrain is needed for cottonwoods to recruit 

and establish. 

5.3 Management Implications 

The ability to accurately predict cottonwood seedling recruitment locations along 

a dynamic, regulated river is useful for informing riparian revegetation efforts and 

planting projects. Areas where seedlings naturally recruit indicate desirable locations 

and environmental characteristics that could be used to maximize recruitment 

opportunities for cottonwoods when managing river flows during varying water years. 

The identification of recruitment areas and their environmental characteristics can also 

help to inform manual plantings, which are used as a common cottonwood revegetation 

method (González et al., 2018). Plantings have the benefit of human site selection in 

areas determined to be favorable and may not be as vulnerable as a newly germinated 

seedling. The success of a planting does not first depend on disturbance flows to create 

new, bare surfaces, and larger plantings with already present roots may not be as at 

risk to receding water table levels or scouring flows. Yet a revegetation effort may fail 

due to unaddressed underlying factors (Briggs et al., 1994; Stromberg, 2001) and if a 

chosen site was suitable at one point in time, fluvial morphodynamics can cause site 
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suitability to change on a frequency set by the disturbance regime. While many planting 

projects may report high mortality rates, is this necessarily a sign of failure? Natural 

mortality occurs in seedling recruitment, so mortality should be expected with plantings 

too. A realistic planting mortality threshold for “success” should be defined to achieve 

the desired result for a revegetation effort. 

Although the RSRM was not calibrated, it was used in a way that is common in 

management practice, so study results have consequences for professional practice. 

Commonly, projects are done at sites lacking long-term monitoring data or the breadth 

of scientific investigations done over the last two decades on the LYR. As a result, 

practitioners rely on literature and their expert judgment for whatever models they are 

applying. The results of this study suggest that the underlying science to make a 

mechanistic predictive model is still missing key factors. It is particularly puzzling when 

the RF model yielded remarkably accurate results from just two very simple topographic 

inputs. Thus, how topography asserts itself through a “mechanistic chain” of cause and 

effect is highly nontrivial and still elusive to simulate, necessitating further work. It may 

also be that the RSRM would be successful in a different setting than the LYR. 

The LYR is a dynamic river, and so are many others around the world, so it is 

important to have tools that can be effective as rivers change. Full morphodynamic 

modeling is plausible but still experimental (Camporeale et al., 2013) and highly 

computationally expensive for long river segments at meter resolution. The DEM and 

hydraulic spatial data from 2017 were used in this study to model recruitment through 

2021, which meant that the morphological changes to the LYR since 2017 were not 

accounted for. This is a realistic constraint as agencies or organizations involved in river 
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management efforts may be limited by money, making infeasible yearly monitoring and 

the frequent updating of large river datasets (i.e., high resolution DEM, vegetation, 

substrate, etc.). The ability to accurately model cottonwood seedling recruitment, or the 

recruitment of other pioneer species, using datasets that are not updated on a frequent 

basis is a valuable tool for the planning and implementation of river revegetation 

projects. At this time, machine-learning modeling outperforms mechanistic modeling in 

this context.  

6 CONCLUSIONS 

This study found that the novel Riparian Seedling Recruitment sub-module did 

not bioverify, which could be due to time lags between the years modeled and when 

field work occurred, uncertainty in the parameter’s due to local conditions, or sensitivity 

in the chosen criteria. While the RSRM did not bioverify, the RF model was successful 

in predicting the presence or absence of juvenile cottonwoods. This indicates that there 

is enough useful information available about the environmental characteristics of 

juvenile cottonwood locations needed to predict recruitment. Detrended elevation and 

channel proximity were ranked as the two most important predictor variables by the RF. 

The methods described in this study could be used to help inform revegetation efforts 

through natural recruitment or manual plantings, potentially resulting in more cost-

effective and successful projects. Care should be taken to study the characteristics of a 

given site to make sure model criteria are suitable. 
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