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Seasonal patterns in pathogen transmission can influence the impact of disease

on populations and the speed of spatial spread. Increases in host contact rates

or births drive seasonal epidemics in some systems, but other factors may

occasionally override these influences. White-nose syndrome, caused by the

emerging fungal pathogen Pseudogymnoascus destructans, is spreading across

North America and threatens several bat species with extinction. We examined

patterns and drivers of seasonal transmission of P. destructans by measuring

infection prevalence and pathogen loads in six bat species at 30 sites across

the eastern United States. Bats became transiently infected in autumn, and

transmission spiked in early winter when bats began hibernating. Nearly all

bats in six species became infected by late winter when infection intensity

peaked. In summer, despite high contact rates and a birth pulse, most bats

cleared infections and prevalence dropped to zero. These data suggest the

dominant driver of seasonal transmission dynamics was a change in host

physiology, specifically hibernation. Our study is the first, to the best of our

knowledge, to describe the seasonality of transmission in this emerging wild-

life disease. The timing of infection and fungal growth resulted in maximal

population impacts, but only moderate rates of spatial spread.
1. Introduction
Seasonality in pathogen dynamics influences the impact of disease on populations

[1], and can enhance pathogen spread [2]. If the timing of peak infectiousness

occurs when populations are highly mobile (e.g. during migration or dispersal),

spatial spread will be maximized [3–6]. The timing of seasonal mortality can

also influence disease impact: impacts will be additive and largest if there is seaso-

nal density-dependent population regulation, and mortality from disease occurs

after most density-dependent mortality [7–9]. For example, if birth pulses drive

seasonal epidemics, then disease impacts may compensate for naturally occurring

density-dependent mortality and dispersing infected young could lead to rapid

spatial spread. Understanding the patterns and drivers of seasonality increases

our understanding of disease impacts on populations and the rate of spread of

invading pathogens.

Five mechanisms driving seasonality in transmission have been proposed for

directly transmitted pathogens, and these may act independently or in concert

with each other to drive transmission. First, sociality varies seasonally for many

species and alters transmission by increasing or decreasing contact rates [5,10–12].

Mating frequently increases infectious contacts, whereas territoriality can decrease

contact rates among hosts [2,5,13]. Second, seasonal birth pulses can increase
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Figure 1. Seasonal life-history patterns of temperate hibernating bats and hypothesized trends in population size in the absence of disease. In the summer, female bats
form single-species maternity colonies in human structures, trees or rock crevices, where they give birth to two (Eptesicus fuscus) or one (all other species) pup. During
autumn, bats often mate at swarms in and around hibernation sites and use torpor intermittently. In winter, bats of multiple species enter prolonged periods of torpor
(hibernation) inside hibernacula. Disease mortality that reduces populations down to the dashed black line may be compensatory mortality, whereas population decreases
below the dashed black line will be additive with other sources and will lead to fewer reproducing individuals in summer. (Online version in colour.)
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transmission by creating an influx of susceptible individuals into

an otherwise mostly immune population [14–16]. Third, seaso-

nal changes in host habitat use can influence the transmission

and persistence of pathogens by altering contact with infective

stages in the environment [17,18]. Fourth, climatic changes

may influence the persistence of pathogens outside hosts, and

can also change host behaviour, which may work in concert

with other factors [19]. Finally, seasonal differences in host

immune function also can alter growth of pathogens within

hosts [20,21]. Hibernating bat species affected by the novel

fungal disease, white-nose syndrome (WNS), exhibit seasonal

differences in host physiology, habitat use and sociality, present-

ing a powerful opportunity to empirically test the influence of

these factors on seasonal disease dynamics (figure 1).

WNS is caused by the fungus, Pseudogymnoascus destructans
and emerged in North America in the winter of 2006 [22–24].

This disease currently threatens several hibernating bat species

with extinction [25], has killed millions of individuals and has

resulted in the collapse of little brown bat populations across

eastern North America [25,26]. Morbidity and mortality

appear to be linked to fungal invasion of tissues that disrupt

bat physiology, and lead to dehydration and increased arousals

[22] that deplete fat reserves [27]. Pseudogymnoascus destructans
grows best at the cool temperatures at which many bats hiber-

nate, with optimal fungal growth between 78C and 168C, and

no growth above 208C [28]. Hibernacula are known reservoirs

for the fungus [29,30], and P. destructans can survive for long

periods in the absence of bats [31].

We quantified seasonal patterns of P. destructans infection

and pathogen loads (infection intensity) to examine the relative

influences of colony size, birth pulses, habitat use and physi-

ology on transmission (the change in prevalence over time)

and pathogen amplification (the increase in infection intensity)

on hosts. If colony size is the primary mechanism driving trans-

mission, we predict that prevalence would increase faster in

seasons when colonies are larger. A yearly birth pulse may

be important in driving transmission if either colony size or
acquired immunity is important, and would result in sharp

increases in prevalence in mid-summer after females have

given birth [32]. If contact with an environmental reservoir

drives transmission, then prevalence would be predicted to

increase significantly as bats contact infected environments.

Hibernacula, where bats swarm and spend the winter are

known reservoirs for the fungus [30], and it is unknown

whether differences in seasonal exposure in different habitats

may drive seasonal patterns of WNS. Finally, changes in host

physiology, in particular, hibernation (when bats’ lower their

body temperatures for sustained periods to conditions where

P. destructans can grow [32,33]) may drive seasonal trans-

mission. Increases in infectiousness as the fungus grows on

hibernating bats may drive winter transmission, with loads

increasing throughout the winter. We examined the influence

of these mechanisms on the seasonality of WNS by quantifying

patterns of infection prevalence and pathogen loads on six bat

species over the year at 30 hibernacula and maternity sites

spanning much of the current distribution of the fungus.
2. Material and methods
(a) Study sites
We sampled bats at 30 hibernacula and maternity colonies in

New York, Vermont, Massachusetts, Virginia, New Hampshire

and Illinois where P. destructans had been present for at least

1 year. We sampled bats in one or more periods of their life

cycle which roughly correspond with seasons, including early

autumn swarm (late August to mid-September), late autumn

swarm (late September to late October), early winter hibernation

(November and December), late winter hibernation (March and

early April), early summer maternity (May) and late summer

maternity (late June to July; figure 2). Phenology varies by lati-

tude; bats in southern sites have shorter hibernation seasons,

swarm later in the autumn and return to maternity colonies ear-

lier [34]. Winter colonies included one to six bat species: little

brown myotis (Myotis lucifugus), northern long-eared myotis
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(Myotis septentrionalis), eastern small-footed myotis (Myotis leibii),
Indiana myotis (Myotis sodalis), tri-colored bats (Perimyotis subfla-
vus) and big brown bats (Eptesicus fuscus). We sampled two

species in the summer that roost in human dwellings (e.g.

barns), little brown myotis and big brown bats. Other species’

maternity sites are difficult to locate and therefore were not

sampled. Hibernacula counts were conducted primarily during

late winter visits. At maternity colonies, we conducted emer-

gence counts twice to determine total colony size: once before,

and once after the young of the year had become volant. We fol-

lowed field hygiene protocols in accordance with United States

Fish & Wildlife Service WNS Decontamination Guidelines, and

individual state recommendations [35]. All research was conducted

under protocol number 11-022 approved by the IACUC of Boston

University.

(b) Sample collection and analysis
We sampled a mean of 12 individuals (+0.26, range: 5–80) of each

species present at each site to determine infection prevalence and

P. destructans infection intensity. We sampled bats by dipping a

sterile polyester swab in sterile water to moisten it and then rubbing

the swab five times across both the forearm and muzzle of a bat.

Swabs were stored in RNAlater for preservation until extraction.

Samples were tested for presence and quantity of P. destructans
DNA using real-time PCR [36]. We quantified the amount of
P. destructans based on the cycle threshold (Ct) value to estimate

the fungal load on each bat, with a Ct cut-off of 40 cycles. The stan-

dard curve for quantification was generated using genomic DNA

from P. destructans ATCC MYA-4855 quantified with the Quant-

IT PicoGreen double-stranded DNA assay kit (Life Technologies,

Carlsbad, CA) in conjunction with a DynaQuant 300 fluorometer

(Harvard Bioscience, Inc., Holliston, MA). Serial dilutions of the

DNA from 10 ng to 1000 fg were prepared and analysed with

IGS qPCR, resulting in a significant curve from 17.33 to 30.74 Ct

(ng of P. destructans¼ 23.348*Ct þ 22.049, r2 ¼ 0.986).

(c) Statistical analysis
We used generalized linear-mixed models (function glmer in pack-

age lme4 [37] in R v. 3.02 [38]) to compare changes in P. destructans
prevalence and intensity for each species over time. To measure

the change in prevalence or load over time, we used a modified

time axis where 0 represented the first day of autumn swarm

sampling and expressed time (in units of partial months). We exam-

ined differences in seasonal transmission (the change in prevalence

over time) and changes in infection intensity as the fixed effect of

time interacting with season (autumn, winter, spring) to estimate a

slope (representing the transmission rate or fungal growth rate)

and intercept for each season. We included time nested within

site as a random effect to allow for variation among sites in

transmission rate or fungal growth rate on bats.



0
–2
–4
–6
–8

0
–2
–4
–6
–8

0
–2

–2

–3

–4

–5

–6

–4
–6
–8

es
tim

at
ed

 lo
g 10

 P
d 

lo
ad

s 
(n

g)
m

ea
n 

lo
g 10

 P
d

lo
ad

s 
(n

g)
m

ea
n 

lo
g 10

 P
d

lo
ad

s 
(n

g)
m

ea
n 

lo
g 10

 P
d

lo
ad

s 
(n

g)

E. fuscus
M. leibii
M. lucifugus

M. sodalis
P. subflavus

M. septentrionalis

E. fuscus M. leibii

M. lucifugus

M. sodalis P. subflavus

M. septentrionalis

month
8 9 10 11 12

*

*

*

*

1 2 3 4 5 6 7 8

swarm hibernation maternity

8 9 10 11 12 1 2 3 4 5 6 7 8 8 9 10 11 12 1 2 3 4 5 6 7 8

(b)(a)

(c) (d )

(e)

(g)

( f )

Figure 3. (a – f ) Seasonal loads (+1 s.e.) of Pseudogymnoascus destructans for six species across all sites. Lines connect estimates from the same site. (g) Model
predicted log10 P. destructans loads (+ standard error of predicted mean) among species of P. destructans for six species from autumn to summer. Dashed lines indicate
species that were poorly sampled across that season. Asterisks denote time points in which loads were significantly different ( p , 0.0001 for all comparisons) than the
previous season. Vertical dashed lines in all panels divide seasons (autumn swarm, winter hibernation, summer maternity). (Online version in colour.)

rspb.royalsocietypublishing.org
Proc.R.Soc.B

282:20142335

4

3. Results
We sampled a total of 1512 bats of six species at 20 hiberna-

cula and 717 bats of two species at 10 maternity sites where

P. destructans had been present for at least 1 year. Infection

prevalence in early autumn when bats returned to infected

hibernacula to swarm was between 5% and 50% for the

six species (figure 2). Surprisingly, prevalence decreased

during the autumn for M. lucifugus at all three sites where

this species was sampled multiple times, and more limited

data for other species also suggested a decline in prevalence

during this season (figure 2 and the electronic supplementary

material, table S1), despite high contact rate during promis-

cuous mating. By contrast, prevalence spiked when bats

entered hibernation and was significantly higher than late

autumn prevalence for all sampled species (figure 2g).

During winter when bats were in hibernation, prevalence

increased significantly for three species, M. sodalis (figure 2e),

P. subflavus (figure 2f ) and E. fuscus (figure 2a). For two

other species, M. lucifugus and M. septentrionalis, prevalence

was already nearly 100% in early hibernation and showed

no change over time (figure 2c,d,g and the electronic sup-

plementary material, table S1). In the sixth species, M. leibii,
prevalence also increased significantly between autumn and

late winter, but a lack of early winter samples from this rela-

tively rare species prevented finer characterization of winter

trends (figure 2b and the electronic supplementary material,

table S1). During the summer, when bats in maternity colonies

use torpor much less frequently and their body temperature is

typically 15–208C higher than the upper growth limit of

P. destructans, prevalence of both species sampled, M. lucifugus
and E. fuscus, decreased rapidly (figure 2a,c and the electronic

supplementary material, table S1), and were not significantly

different from zero by late summer (figure 2).

Loads of P. destructans on bats showed trends similar to

prevalence patterns (figure 3). During the autumn, loads

remained very low on all species. Loads increased significantly

in most species during hibernation (figure 3c,e,f,g and the elec-

tronic supplementary material, table S2) and peaked on all

species at the end of hibernation (figure 3). However, as soon

as bats became active and migrated to maternity colonies,

loads decreased substantially and fell to zero for most individ-

uals by the end of summer (figure 3). Decreases in loads and

prevalence over the summer did not parallel changes in

colony size for M. lucifugus, which broadly overlapped and
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were not significantly different between summer and winter

(figure 4; t19.21 ¼ 0.46, p ¼ 0.65). Colony sizes at maternity

sites grew to be approximately 2.2 times larger over the

summer, suggesting that most active bats were clearing

the pathogen rather than dying of latent infection, and some

immigration occurred between the counts.
4. Discussion
The seasonal patterns of prevalence and loads of P. destructans
were remarkably consistent for all six bat species, with a sharp

increase in prevalence between autumn and early winter when

bats began to hibernate and a peak in fungal load in late winter

at the end of hibernation. In contrast to many other systems

[2,15,16,39], we found no support for the hypothesis that

birth pulses drive seasonality. Prevalence and intensity actu-

ally decreased precipitously in summer when all species gave

birth and previously uninfected young of the year join the

adult population. This suggests that an influx of susceptible

individuals is not driving transmission dynamics. Further-

more, for M. lucifugus, transmission was unrelated to

seasonal changes in colony size. Colony sizes among seasons

broadly overlapped despite directionally opposite patterns of

infection prevalence, suggesting that larger winter colony

sizes are not the primary driver of differences in transmission

among seasons. Although winter colonies affected by WNS

decline over the winter, colony sizes would have to be

100 times higher in early winter to alter the qualitative relation-

ship between seasonal colony size and transmission. Finally,

although contact with contaminated hibernacula [29,30,40] in

autumn initiated infection in bats, transmission and infection

intensity remained low until bats increased prolonged torpor

use [33], suggesting that habitat selection is not the primary

factor driving disease dynamics. Furthermore, prevalence

and loads decreased during the summer, suggesting that if

summer maternity colony sites are infected, the routine use

of body temperatures above the growth range of P. destructans
probably prevented infection or growth.

Hibernation appeared to be the dominant factor determining

transmission dynamics and pathogen growth. It was only after

bats began to fully hibernate during the winter that transmission

increased, and shortly thereafter nearly 100% of individuals

became infected at many sites. Fungal loads also increased sub-

stantially with the onset of hibernation. The rapid increase in

prevalence between late autumn and early hibernation could

have been caused by the large increase in loads which increased

infectiousness. Contact rates during hibernation are unknown,
but males are known to mate with torpid females [33], and a

combination of high infectiousness and moderately high contact

rates could facilitate rapid transmission. Temperatures of bats

during hibernation are approximately the same as ambient

temperatures of hibernacula [41], and are within the range of

temperatures that the pathogen can grow [28], resulting in explo-

sive amplification of P. destructans on hibernating bats. In

summary, the seasonality of P. destructans transmission appears

to be driven by host physiology, specifically a sustained decrease

in body temperature.

Changes in body temperature are also important for other

diseases. Hibernation has been shown to be important for

another pathogen of bats (rabies; [14]). However, in rabies, hiber-

nation allows the virus to persist in a quiescent phase, whereas

for WNS, hibernation increased both transmission among bats

and pathogen replication on hosts. Host body temperature is

also important in driving host impacts in the fungal pathogen

of amphibians [42], Batrachochytrium dendrobatidis, highlighting

a similarity between these important pathogens.

The timing of P. destructans transmission and increases in

infection intensity probably maximize the impact of WNS on

bat populations. Infection peaks when bat populations are near

their annual minima, just prior to when females give birth,

thereby reducing the reproductive population (figure 1). In

addition, bats rely on colonial roosts for thermoregulatory

benefits to both raise young in the summer and survive winter

hibernation [43,44]. As a result, mortality is occurring at a time

when bats may experience positive density dependence (i.e.

Allee effects), meaning survival and reproduction would

decrease with decreasing colony size [45]. Finally, transmission

and disease-caused mortality are absent in late summer and

early autumn, when density-dependent food limitation may be

strongest because bats forage intensely to obtain enough food

and fat to survive over winter [46]. Thus, the seasonal timing of

transmission and pathogen growth probably results in nearly

maximal disease impacts of this pathogen on bat populations

and contributes to exceedingly high population declines across

a wide region (more than 90% in several species; [25,26]). By con-

trast, the timing of peak disease mortality in many other systems

often coincides with reproduction. For example, transmission

and avian mortality from West Nile virus peaks in late summer

and autumn, just after the seasonal birth pulse [47]. In this case,

disease mortality reduces density-dependent regulation before

populations reach minima overwinter.

The seasonality in P. destructans infection patterns, while

leading to maximum disease impacts, probably reduces the

rate of spatial spread of P. destructans [48] because of a mis-

match between periods of high mobility and high pathogen
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prevalence and load. Bats are highly mobile during the

autumn when they travel among hibernacula to mate, and

at the end of summer when they migrate from maternity

sites to hibernacula [34,49]. However, pathogen loads and

prevalence were relatively low during these periods. If infec-

tion loads and prevalence in autumn or late summer were at

levels observed in winter, bats would be much more infec-

tious, and spatial spread would probably be much faster.

The high prevalence and infection load during winter make

occasional movements among hibernacula during winter

(either in winter or early spring) [49] potentially important

in pathogen spread.

Although bats travel substantial distances from hiberna-

cula to summer maternity sites [49,50], this is unlikely to

facilitate spatial spread among hibernacula. While the high

fungal loads and nearly 100% prevalence on bats at the end

of winter facilitates rapid spread to their summer maternity

sites, the high body temperatures and hot maternity roosts

bats use during summer are too high for pathogen growth

[28] and lead to bats clearing P. destructans infection from

their skin. The combination of the seasonality of infection

and the hot environments used by bats during the summer

has probably slowed the geographical spread of P. destructans
compared with pathogens where transmission peaks at the

same time when animals are dispersing or migrating, such

as West Nile virus [51] and avian influenza [4].

The seasonal patterns of transmission we have documented

can be used to more effectively guide management interven-

tions. When bats first become infected with P. destructans,
loads, and therefore tissue invasion and damage, are relatively

low. Therefore, applying treatments that reduce or clear infec-

tion during the autumn and early winter would be most

effective for reducing transmission, impacts and spread to

new sites. However, if treatments offer only short-term protec-

tion, our data suggest that treated bats will probably be rapidly

re-infected upon return to natural environments owing to

exceedingly high infection prevalence in other hosts. Our

results also suggest that another management strategy, culling

bats to remove infected individuals, would be ineffective
during the winter, because nearly 100% of individuals are

already infected by early hibernation. Finally, while rearing

temperate bats in captivity is exceedingly challenging [52], if

this strategy were attempted, capturing bats during late

summer would maximize the fraction of uninfected bats that

could be brought into captivity.

In the 7 years since the detection of WNS, bat populations

have crashed to a small fraction of their former size [26], with

several species at risk of extinction [25]. Our findings illustrate

how the seasonality of transmission and infection intensity

drives the impact of this deadly disease. Commonality across

host physiology, specifically, hibernation for extended periods

at temperatures that allow growth of the pathogen, has created

a perfect storm, and led to the deaths of millions of individuals

of multiple species. More broadly, our results demonstrate

the importance of seasonal timing of infection in driving

impacts and spread of emerging pathogens, and show how

understanding seasonal patterns of transmission can provide

critical information for mitigating the devastating impacts of

wildlife disease.
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