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Monotonicity Properties of Regenerative Sets

and Lorden’s Inequality

P.J. Fitzsimmons

Department of Mathematics
U.C. San Diego

pfitzsim@ucsd.edu

Dedicated to Professor Masatoshi Fukushima

Abstract. Lorden’s inequality asserts that the mean return time in a
renewal process with (iid) interarrival times Y1, Y2, . . ., is bounded above
by 2E[Y1]/E[Y 2

1 ]. We establish this result in the context of regenera-
tive sets, and remove the factor of 2 when the regenerative set enjoys
a certain monotonicity property. This property occurs precisely when
the Lévy exponent of the associated subordinator is a special Bernstein
function. Several equivalent stochastic monotonicity properties of such a
regenerative set are demonstrated.
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1. Introduction. Let Y1, Y2, . . . be i.i.d. positive random variables with finite
variance, and use their partial sums Wn :=

∑n

k=1 Yk, to form a renewal process
W = (Wn)n≥1. For t > 0, define N(t) := #{n ≥ 1 : Wn ≤ t}, the number of
renewals up to time t, and let Rt := WN(t)+1 − t denote the time until the next
renewal after time t. Although the distribution of Rt is not particularly simple
to express, Lorden [15] has shown that

(1) E[Rt] ≤
E[Y 2

1 ]

E[Y1]
, ∀t > 0.

In view of Wald’s Identity

(2) E[WN(t)+1] = E[Y1] ·E[N(t) + 1],

the inequality (1) also provides an upper bound on the renewal function E[N(t)].
In this paper we examine the analog of (1) in the context of regenerative sets
(a continuous analog of renewal processes), and look at a class of such sets in
possession of a monotonicity property that leads to an improvement of Lorden’s
inequality that is sharp in a certain sense.



2 P.J. Fitzsimmons

Let (Ω,F , (Ft)t≥0,P) be a filtered probability space. We fix once and for all a
regenerative set M . This is an (Ft)-progressively measurable set M ⊂ Ω×[0,∞[,
with closed sections M(ω) := {t ≥ 0 : (ω, t) ∈ M}, such that P[0 ∈ M ] = 1 and
such that for each (Ft)-stopping time T with T (ω) ∈ M(ω) for each ω ∈ {T <
∞}, the (shifted) post-T portion of M , defined by its sections

(3) θTM(ω) := (M(ω)− T (ω)) ∩ [0,∞[,

is independent of FT and has the same distribution asM , on the event {T < ∞}.
The reader is referred to [6] or [13] for more details on such random sets.

It is known that the Lebesgue measure of M is either a.s. strictly positive or
a.s. null. This is Kingman’s heavy/light dichotomy [13, pp. 74–76]. The results
presented here are true with slight modifications in the heavy case, but for
definiteness we assume M to be light; that is

∫∞

0 1{t∈M(ω)} dt = 0 for P-a.e.
ω ∈ Ω. There is a second dichotomy, according as T0 := inf (M∩ ]0,∞[) satisfies
P[T0 = 0] = 0 or 1. (It must be one or the other because of Blumenthal’s
0–1 law.) In the former case, the random set M is discrete; this is the renewal
process case. We shall stick to the latter situation (the unstable case in Kingman’s
terminology), in which case M has perfect sections M(ω) for P-a.e. ω ∈ Ω. The
generic example of such a regenerative set is the closure of the level set

(4) {t ≥ 0 : Xt = x0}

of a right-continuous strong Markov process X = (Xt)t≥0 started in a regular
point x0.

There are several stochastic processes associated with M that facilitate its
study. First is the last exit process G = (Gt)t≥0,

(5) Gt := sup (M ∩ [0, t]) , t ≥ 0,

and the associated age process A = (At)t≥0,

(6) At := t−Gt, t ≥ 0.

Both A and G are right continuous and adapted to (Ft), and

(7) M = {t : At = 0}.

Moreover A is a time-homogeneous strong Markov process.
Next is the return time process

(8) Dt := inf{s > t : s ∈ M} = inf (M∩ ]t,∞[) , t ≥ 0, (inf ∅ := ∞),

and the related remaining life process

(9) Rt := Dt − t, t ≥ 0.

These are also right-continuous processes. Notice that eachDt is an (Ft)-stopping
time and that R and D are optional with respect to the “advance” filtration
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(FDt
)t≥0, and (Rt) is a strong Markov process with respect to this larger filtra-

tion, with values in [0,∞].
Finally, there is the local time process L = L(M) = (Lt)t≥0; this is the unique

continuous increasing process adapted to the filtration of A, increasing precisely
on M , a.s., normalized so that E

∫∞

0 e−s dLs = 1, and additive in the sense that

(10) Lt+s = Lt + Ls(θtM), ∀s, t ≥ 0, a.s.

Here θtM := (M − t)∩ [0,∞[. Thus Ls(M) is a functional of the part M ∩ [0, s]
of M , while Ls(θtM) is the same functional of θtM . One can access L through
the general theory of the additive functionals of a Markov process, but Kingman
[12] has provided a direct construction that will guide intuition. Before getting
to that we need to introduce one more associated process.

The right-continuous inverse process τ = (τr)r≥0 defined by

(11) τr = τ(r) := inf{t : Lt > r}, r ≥ 0,

is a strictly increasing, pure jump process—the subordinator associated with M .
Notice that M coincides with the closure of the range {τr : r ≥ 0} of τ . The
process τ has stationary independent increments (an increasing Lévy process)
with Laplace transforms

(12) E[exp(−ατr)] = exp(−rφ(α)], α > 0, r ≥ 0,

where the Lévy exponent φ admits the representation

(13) φ(α) =

∫
]0,∞]

(1 − e−αx) ν(dx), α > 0,

for a Borel measure ν on ]0,∞] satisfying

(14)

∫
]0,∞]

(x ∧ 1) ν(dx) < ∞,

which ensures that the integral in (13) is finite for each α > 0. We write h(x) for

the tail ν (]x,∞]), and note that φ(α) = αĥ(α), where the hat indicates Laplace
transform.

We now turn to Kingman’s construction of the local time L: for δ > 0, define

(15) Mt(δ) := {(ω, s) ∈ Ω × [0,∞[: |s− v| < δ for some v ∈ M(ω) ∩ [0, t]},

and

(16) ℓ(δ) :=

∫ δ

0

h(s) ds, δ > 0.

Then [12, Thm. 3], there is a constant c > 0 such that

(17) Lt = c · lim
δ↓0

λ(Mt(δ))

ℓ(δ)
, ∀t ≥ 0, a.s.,
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where λ denotes Lebesgue measure on [0,∞[.
The potential measure U associated with M is the mean occupation time of

τ :

(18) U(B) := E

∫ ∞

0

1B(τr) dr = E

∫
B

dLt, ∀B ∈ B(R+),

and the associated distribution function

V (t) := E[Lt], t ≥ 0,

plays the role of the renewal function. The Laplace transform of the measure U
is given by

(19) Û(α) :=

∫ ∞

0

e−αtU(dt) = E

∫ ∞

0

e−ατ(r) dr =

∫ ∞

0

e−rφ(α) dr = 1/φ(α),

for α > 0. For later reference we note that U is related to the potential kernel
of the strong Markov process τ : writing Er for expectation under the initial
condition τ0 = r, we have

(20) Er

∫ ∞

0

f(τs) ds =

∫ ∞

0

f(r + x)U(dx), r ≥ 0,

for f non-negative and Borel.

2. Lorden’s inequality.

By using the regeneration property of M at the stopping time Dt (t > 0
fixed) and the fact that L is flat off M , one sees that

(21) E[exp(−αDt)] = φ(α) ·

∫ ∞

t

e−αs U(ds).

Inverting this we can obtain the distribution of Dt or, equivalently, that of Rt.
In fact,

(22) E

∫ ∞

0

g(x+Rt)U(dx) =

∫ ∞

0

g(y)U(dy + t),

provided g is a positive Borel function on [0,∞]. This follows immediately from
(21) for g of the form g(x) = e−αx, and then for general g by Weierstrass’s
theorem followed by the monotone class theorem. Another direct consequence of
(21) is Wald’s Identity for regenerative sets:

(23) E[Dt] = µ · V (t),

where µ :=
∫∞

0 x ν(dx).
If the mean µ is finite then (as is well known in the renewal theory context)

the random variableRt converges in distribution, as t → ∞, to a random variable
R∞ whose law has density

(24)
h(x)

µ
, x > 0,
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with respect to Lebesgue measure on ]0,∞[; see [3, Thm. 1]. Observe that
E[R∞] = (2µ)−1

∫∞

0 x2 ν(dx).
The following proposition states Lorden’s inequality [15] in our context. We

reproduce the proof found in [5].

Proposition. Assume that µ :=
∫∞

0
x ν(dx) < ∞. Then E[Rt] ≤ 2E[R∞] for

all t > 0.

Before turning to the proof we need the following lemma, both parts of which
are well known.

Lemma 1. (a) V is subadditive: V (t+ s) ≤ V (t) + V (s), for all s, t > 0.
(b) E[V (t−R∞)] = t/µ for t > 0, with the understanding that V (s) = 0 for

s ≤ 0.

Proof. (a) We have, using (21) with g = 1[0,s] for the first equality below,

(25) V (t+ s)− V (t) = E[V (s−Rt);Rt ≤ s] ≤ E[V (s);Rt ≤ s] ≤ V (s).

(b) The Laplace transform of the left side of this identity is easily seen to

be Û(α)ĥ(α)/(αµ) = 1/(α2µ) because of (19). This coincides with the Laplace
transform of the right side, so the assertion follows by inversion because both
sides are continuous in t > 0. ⊓⊔

Proof of the Proposition. Let Z1 and Z2 by independent random variables with
the same distribution as R∞. The subadditivity asserted in Lemma 1(a) persists
for negative values of s, t provided we agree that V vanishes on ]−∞, 0]. Thus,

(26) V (t) ≤ V (t+ Z1 − Z2) + V (Z2 − Z1).

By Lemma 1(b), the conditional expectation of the first term on the right of
(26), given Z1, is (t+Z1)/µ. Likewise, the conditional expectation of the second
term, given Z2, is Z2/µ. It follows that

(27) µ · V (t) ≤ E[t+ Z1] +E[Z2] = t+ 2E[R∞],

and the assertion follows because E[Rt] = E[Dt]− t = µ · V (t)− t by (23). ⊓⊔

3. Monotone potential density.

The exponent φ is an example of what is called a Bernstein function (non-
negative, completely monotone derivative). Such a φ is a special Bernstein func-
tion provided φ∗ : α 7→ α/φ(α) is also a Bernstein function. In this case, because
Û(α)φ(α) = 1, the measure U admits a Lebesgue density given by

(28) u(x) := ν∗ (]x,∞]) ,

where ν∗ is the Lévy measure in the representation (13) of φ∗. Notice that u
is right-continuous, and (more importunely) monotone decreasing. Conversely,
if U admits a monotone density with respect to Lebesgue measure, then φ is
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a special Bernstein function. For discussion of special Bernstein functions see
chapter 10 of [17].

Our main result contains further (stochastic) characterizations of the class
of special Bernstein functions. For partial results in this vein, in the context of
renewal processes, see [4] and [14].

Theorem. For a light unstable regenerative set M the following are equivalent:
(a) U is absolutely continuous and admits a monotone decreasing density.
(b) t 7→ Rt is stochastically increasing.
(c) t 7→ At is stochastically increasing.
(d) t 7→ θtM is stochastically decreasing.
(e) t 7→ θtL is stochastically decreasing.

[By (d) is meant that for each 0 < s < t there is some probability space carrying

random setsM s andM t such that M s d
= θsM ,M t d

= θtM , andM t ⊂ M s almost
surely. Point (e) should be interpreted in an analogous fashion, the local time
being thought of as a random measure dLs, and (θtL)b := Lt+b−Lt = Lb(θtM).]

Proof. (a)⇒(b). If U has a monotone density, then the left side of (22), which is
nothing but (πt ∗U)(g) (πt being the distribution of Rt), is monotone decreasing
in t. It follows that if s < t then πt is “downstream” from πs in the balayage
order of the subordinator τ . By a theorem of H. Rost [16] there are (randomized)
stopping times T (s) and T (t) of τ with T (s) ≤ T (t) such that τ(T (s)) has the
same distribution as Rs and τ(T (t)) has the same distribution as Rt. Since τ is
increasing, P[Rs > x] ≤ P[Rt > x] for each x > 0; that is, Rt is stochastically
larger than Rs.

(b)⇒(a). Conversely, if t 7→ Rt is stochastically increasing, then from (22)
with g = 1[0,b] we see that t 7→ U [t, t + b] is decreasing for each b > 0. In
particular, V is midpoint concave, hence concave (because x 7→ V (x) = E[Lx] is
continuous). This implies that V is concave, so the righthand derivative u := V ′

+

exists and is decreasing. Moreover, again by the concavity of V , the measure U
is absolutely continuous with density u.

(c)⇔(b). P(Rt > x) = P (M∩ ]t, t+ x] = ∅) = P(At+x > x).

(a)⇒(d). From the proof of (a)⇒(b) we know that if 0 < s < t then there
are (randomized) stopping times T (s) and T (t) of τ such that T (s) ≤ T (t),

τ(T (s))
d
= Rs, and τ(T (t))

d
= Rt. In particular, τ(T (s)) ≤ τ(T (t)). Define M s :=

M ∩ [τ(T (s)),∞[ and M t := M ∩ [τ(T (t)),∞[. Then M t ⊂ M s, and the required
distributional equalities hold by regeneration at the stopping times τ(T (s)) and
τ(T (t))

(d)⇒(e). This follows immediately from Kingman’s construction (17): For
fixed 0 ≤ s < t, we have Lb(M

t) − La(M
t) ≤ Lb(M

s) − La(M
s), for all 0 ≤

a < b, almost surely. This means that the measure with distribution function
b 7→ Lb(M

t) is dominated setwise by the measure with distribution function
b 7→ Lb(M

s), a.s.
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(e)⇒(a). U (]t, t+ b]) = E[(θtL)b]. ⊓⊔

Remarks. (a) It is shown in [4, Thm. 3], in the renewal context, that if the
tail probability P[Yk > y] (the analog of h) is log-convex then (a), (b), (c),
and the “counting” version of (e) in the Theorem hold true. This log-convexity
is equivalent to the decreasing failure rate property (DFR). Expressed in the
present context this amounts to the statement that

(29) y 7→
h(x+ y)

h(y)

is non-increasing on the interval where h(y) > 0, for each x > 0. It was shown
by J. Hawkes [9, Thm. 2.1] that in our context, the log-convexity of the Lévy
tail function h implies that U has a decreasing density. For more on this class
of subordinators see [17]. Brown conjectured in [4] that the DFR property is
equivalent to the concavity of the renewal function; a counterexample was found
(after 31 years) by Y. Yu [18].

(b) The use of Rost’s theorem (on Skorokhod stopping) in the proof of
(a)⇒(b) (and again in (a)⇒(d)) was suggested by an argument of J. Bertoin,
[1, p. 568].

Observe that when U has a monotone density, because Rt stochastically
increasing in t, each random variable Rt is stochastically dominated by R∞.
This yields the following improvement on Lorden’s inequality.

Corollary. Under any of the conditions listed in the Theorem, we have

(30) E[Rt] ≤

∫∞

0 x2 ν(dx)

2µ
= E[R∞], ∀t > 0,

and the inequality is sharp.

Whether the constant 2 in Lorden’s original inequality can be improved in
the general case is an open question.

4. Concluding Remarks.

A regenerative set M is infinitely divisible (ID) provided for each positive
integer n there are i.i.d. regenerative sets Mn,k, 1 ≤ k ≤ n, such that ∩n

k=1Mn,k

has the same distribution as M . A large class of such sets (“Poisson random
cutout sets”) is discussed and characterized in [7]. It has long been conjectured
by the author that this class exhausts (at least among light unstable regener-
ative sets) all of the ID regenerative sets. In unpublished work the author has
shown that an ID regenerative set whose potential measure admits a monotone
density is, in fact, a Poisson cutout set. Somewhat irritatingly, this supplemen-
tary monotonicity condition is satisfied by all Poisson cutout sets. It should be
noted that the parallel results for heavy ID sets, and for the discrete-time situ-
ation, have been established by D.G. Kendall [10, 11]; see also [8] for a detailed
discussion of these matters and further references.
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From the proof of the Theorem in section 3, we know that when U has a
monotone density then for each t > 0 we have

(31) θtM
d
=M \ It,

where It is a random interval [0, τ(T (t)) [ growing stochastically larger as t in-
creases. In the Poisson cutout case, θtM and It are independent, because of the
independence properties of the Poisson process. Does this independence charac-
terize ID regenerative sets?
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