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Dedicated to Professor Masatoshi Fukushima

Abstract. Lorden’s inequality asserts that the mean return time in a
renewal process with (iid) interarrival times Y1, Y2, ..., is bounded above
by 2E[Y1]/E[Y]. We establish this result in the context of regenera-
tive sets, and remove the factor of 2 when the regenerative set enjoys
a certain monotonicity property. This property occurs precisely when
the Lévy exponent of the associated subordinator is a special Bernstein
function. Several equivalent stochastic monotonicity properties of such a
regenerative set are demonstrated.
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2020 Mathematics Subject Classification: 60K05, 60J55, 60J30

1. Introduction. Let Y7,Ys,... be i.i.d. positive random variables with finite
variance, and use their partial sums W,, := Zzzl Y%, to form a renewal process
W = (Wy)n>1. For t > 0, define N(t) := #{n > 1: W, < t}, the number of
renewals up to time ¢, and let Ry := Wi ()41 — ¢ denote the time until the next
renewal after time ¢. Although the distribution of R; is not particularly simple
to express, Lorden [15] has shown that

E[Y?]
1 E < t .
(1) [R] < B’ vt >0
In view of Wald’s Identity
2) E[Wn (1] = BIYi] - BIN(1) + 1],

the inequality (1) also provides an upper bound on the renewal function E[N (t)].
In this paper we examine the analog of (1) in the context of regenerative sets
(a continuous analog of renewal processes), and look at a class of such sets in
possession of a monotonicity property that leads to an improvement of Lorden’s
inequality that is sharp in a certain sense.
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Let (£2, F, (Fi)i>0, P) be a filtered probability space. We fix once and for all a
regenerative set M. This is an (F;)-progressively measurable set M C §2x [0, oof,
with closed sections M (w) := {t > 0: (w,t) € M}, such that P[0 € M] =1 and
such that for each (F;)-stopping time 7" with T'(w) € M (w) for each w € {T <
oo}, the (shifted) post-T" portion of M, defined by its sections

(3) OrM(w) := (M(w) = T(w)) N[0, 00,

is independent of Fr and has the same distribution as M, on the event {T" < co}.
The reader is referred to [6] or [13] for more details on such random sets.

It is known that the Lebesgue measure of M is either a.s. strictly positive or
a.s. null. This is Kingman’s heavy/light dichotomy [13, pp. 74-76]. The results
presented here are true with slight modifications in the heavy case, but for
definiteness we assume M to be light; that is fooo Litem(w)y dt = 0 for P-a.e.
w € §2. There is a second dichotomy, according as Tp := inf (MN]0, co[) satisfies
P[T, = 0] = 0 or 1. (It must be one or the other because of Blumenthal’s
0-1 law.) In the former case, the random set M is discrete; this is the renewal
process case. We shall stick to the latter situation (the unstable case in Kingman’s
terminology), in which case M has perfect sections M (w) for P-a.e. w € 2. The
generic example of such a regenerative set is the closure of the level set

(4) {t>0:X; =x0}
of a right-continuous strong Markov process X = (X;);>¢ started in a regular
point xg.
There are several stochastic processes associated with M that facilitate its
study. First is the last exit process G = (Gy)i>0,
(5) Gt :=sup (M N 10,t]), t>0,
and the associated age process A = (Ay)i>o,
(6) At Z:t—Gt, IfZ 0.
Both A and G are right continuous and adapted to (F;), and
(7) M ={t: A, =0}.

Moreover A is a time-homogeneous strong Markov process.
Next is the return time process

(8) Dy:=inf{s>t:se M} =inf (MN]t, ), t>0,(inf 0 = o0),
and the related remaining life process
(9) Rt = Dt - lf, t Z 0.

These are also right-continuous processes. Notice that each Dy is an (F)-stopping
time and that R and D are optional with respect to the “advance” filtration
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(Fp, )t>0, and (R;) is a strong Markov process with respect to this larger filtra-
tion, with values in [0, co].

Finally, there is the local time process L = L(M) = (L)¢>0; this is the unique
continuous increasing process adapted to the filtration of A, increasing precisely
on M, a.s., normalized so that E fooo e ®*dLs; =1, and additive in the sense that

(10) Lt+s = Lt + LS(HtM), VS,t Z O, a.s.

Here 0, M := (M —t) N[0, 00[. Thus Ls(M) is a functional of the part M N[0, s]
of M, while Ls(6;M) is the same functional of ;M. One can access L through
the general theory of the additive functionals of a Markov process, but Kingman
[12] has provided a direct construction that will guide intuition. Before getting
to that we need to introduce one more associated process.

The right-continuous inverse process 7 = (7,),>0 defined by

(11) T =7(r) :==inf{t: Ly > 1}, r>0,

is a strictly increasing, pure jump process—the subordinator associated with M.
Notice that M coincides with the closure of the range {7, : # > 0} of 7. The
process T has stationary independent increments (an increasing Lévy process)
with Laplace transforms

(12) Elexp(—ar,)] = exp(—ro(a)], a>0,7r>0,

where the Lévy exponent ¢ admits the representation

(13) o= [ -edn,  a>o
10,00]

for a Borel measure v on ]0, 0o] satisfying

(14) /]0 ](3: A1) v(dr) < oo,

which ensures that the integral in (13) is finite for each av > 0. We write h(z) for
the tail v (]2, oc]), and note that ¢(a) = ah(e), where the hat indicates Laplace
transform.

We now turn to Kingman’s construction of the local time L: for § > 0, define

(15)  M(0) := {(w,s) € 2 x [0,00[: |s —v| < J for some v € M(w)N[0,%]},
and
5
(16) 08) = / h(s)ds, §>0.
0
Then [12, Thm. 3], there is a constant ¢ > 0 such that

(17) L, = chmw

t > .S,
=0 vt >0, as.,
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where A denotes Lebesgue measure on [0, col.
The potential measure U associated with M is the mean occupation time of
T

(18) U(B) := E/OOO 15(r,) dr = E/B dL;, VB e B(R4),

and the associated distribution function
V(t) := E[Ly], t>0,

plays the role of the renewal function. The Laplace transform of the measure U
is given by

(19) U(a) := /OO e U (dt) = E/OO e T dr = /OO e ") dr = 1/¢(a),
0 0 0

for @ > 0. For later reference we note that U is related to the potential kernel
of the strong Markov process 7: writing E" for expectation under the initial
condition 79 = r, we have

(20) B[ frds= [ frenU@), rzo,
0 0
for f non-negative and Borel.

2. Lorden’s inequality.
By using the regeneration property of M at the stopping time D; (¢t > 0
fixed) and the fact that L is flat off M, one sees that

(21) Elexp(—aDy)] = é(a) /t o U (ds).

Inverting this we can obtain the distribution of D; or, equivalently, that of R;.
In fact,

(22) B / " gla+ R Ulde) = / gy Uldy + 1),

provided g is a positive Borel function on [0, 0o]. This follows immediately from
(21) for g of the form g(z) = e **, and then for general g by Weierstrass’s
theorem followed by the monotone class theorem. Another direct consequence of
(21) is Wald’s Identity for regenerative sets:

(23) E[Di] = p-V (1),

where p:= [ zv(dz).

If the mean p is finite then (as is well known in the renewal theory context)
the random variable R; converges in distribution, as ¢ — 00, to a random variable
Roo whose law has density

(24) —_—, z >0,
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with respect to Lebesgue measure on |0,00[; see [3, Thm. 1]. Observe that
E[Ry] = (2u)7" [J° 2 v(dz).

The following proposition states Lorden’s inequality [15] in our context. We
reproduce the proof found in [5].

Proposition. Assume that p := foooxu(dx) < 00. Then E[R;] < 2E[R] for
all t > 0.

Before turning to the proof we need the following lemma, both parts of which
are well known.

Lemma 1. (a) V is subadditive: V(t + s) < V(t) + V(s), for all s,t > 0.
(b) E[V(t — Rx)] = t/p for t > 0, with the understanding that V (s) = 0 for
s <0.

Proof. (a) We have, using (21) with g = 1jg 4 for the first equality below,
(25) V(t+s)—V(t)=E[V(s—R); R <s] <E[V(s); Ry <] <V(s).

(b) The Laplace transform of the left side of this identity is easily seen to
be U(a)h(a)/(ap) = 1/(au) because of (19). This coincides with the Laplace
transform of the right side, so the assertion follows by inversion because both
sides are continuous in ¢ > 0. O

Proof of the Proposition. Let Z; and Zs by independent random variables with
the same distribution as R... The subadditivity asserted in Lemma 1(a) persists
for negative values of s,t provided we agree that V' vanishes on | — oo, 0]. Thus,

(26) V() SV(t+ 2y — Zz) + V(22 — Zy).

By Lemma 1(b), the conditional expectation of the first term on the right of
(26), given Zy, is (t+ Z1)/up. Likewise, the conditional expectation of the second
term, given Zs, is Zs/p. It follows that

(27) p-V(t) <Elt+ Z1]+ E[Z;] =t + 2E[R],

and the assertion follows because E[R;]| = E[D;] —t = p -V (t) —t by (23). O

3. Monotone potential density.

The exponent ¢ is an example of what is called a Bernstein function (non-
negative, completely monotone derivative). Such a ¢ is a special Bernstein func-
tion provided ¢* : & — a/¢(a) is also a Bernstein function. In this case, because
U(a)¢p(e) = 1, the measure U admits a Lebesgue density given by

(28) u(z) = v* (|, o0])

where v* is the Lévy measure in the representation (13) of ¢*. Notice that u
is right-continuous, and (more importunely) monotone decreasing. Conversely,
if U admits a monotone density with respect to Lebesgue measure, then ¢ is
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a special Bernstein function. For discussion of special Bernstein functions see
chapter 10 of [17].

Our main result contains further (stochastic) characterizations of the class
of special Bernstein functions. For partial results in this vein, in the context of
renewal processes, see [4] and [14].

Theorem. For a light unstable regenerative set M the following are equivalent:
(a) U is absolutely continuous and admits a monotone decreasing density.
(b) t = Ry is stochastically increasing.
(c) t — A, is stochastically increasing.
(d) t — 0, M is stochastically decreasing.
(e) t — 0L is stochastically decreasing.

[By (d) is meant that for each 0 < s < ¢ there is some probability space carrying

random sets M* and M* such that M* < O, M, Mt 4 0;M, and M C M* almost
surely. Point (e) should be interpreted in an analogous fashion, the local time
being thought of as a random measure dLs, and (0; L)y := Ly4p— Ly = Ly(0,M).]

Proof. (a)=(b). If U has a monotone density, then the left side of (22), which is
nothing but (7% U)(g) (m: being the distribution of R;), is monotone decreasing
in t. It follows that if s < ¢ then 7 is “downstream” from 75 in the balayage
order of the subordinator 7. By a theorem of H. Rost [16] there are (randomized)
stopping times T'(s) and T'(t) of 7 with T'(s) < T'(¢) such that 7(T(s)) has the
same distribution as R, and 7(T'(t)) has the same distribution as R;. Since 7 is
increasing, P[R, > x| < P[R; > z] for each = > 0; that is, R, is stochastically
larger than Rj.

(b)=(a). Conversely, if ¢t — R; is stochastically increasing, then from (22)
with g = 1y we see that t — U[t,t 4 b] is decreasing for each b > 0. In
particular, V' is midpoint concave, hence concave (because x — V() = E[L,] is
continuous). This implies that V' is concave, so the righthand derivative u := V|
exists and is decreasing. Moreover, again by the concavity of V', the measure U
is absolutely continuous with density w.

(c)& (). P(R; > z) = P(MN]t,t + 2] =0) = P(Ar1, > z).

(a) =(d). From the proof of (a) =(b) we know that if 0 < s < ¢ then there
are (randomized) stopping times T'(s) and T'(¢) of 7 such that T'(s) < T(¢),
T(T(s)) 2 R,, and T(T(t)) £ R,. In particular, T7(T(s)) < 7(T'(t)). Define M* :=
MN[r(T(s)),o0[ and M* := MN[r(T(t)),o0[. Then M* C M*#, and the required
distributional equalities hold by regeneration at the stopping times 7(7'(s)) and
7(T(#))

(d) =(e). This follows immediately from Kingman’s construction (17): For
fixed 0 < s < ¢, we have Ly(M*) — Lo(M?*) < Ly(M®) — Lo(M?), for all 0 <
a < b, almost surely. This means that the measure with distribution function

b — Ly(M?) is dominated setwise by the measure with distribution function
b— Ly(M?), a.s.
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(e)=(a). U (Jt,t + b)) = E[(6:L)s). O

Remarks. (a) It is shown in [4, Thm. 3], in the renewal context, that if the
tail probability P[Y; > y] (the analog of h) is log-convezr then (a), (b), (c),
and the “counting” version of (e) in the Theorem hold true. This log-convexity
is equivalent to the decreasing failure rate property (DFR). Expressed in the
present context this amounts to the statement that

h(z +y)
h(y)

is non-increasing on the interval where h(y) > 0, for each z > 0. It was shown
by J. Hawkes [9, Thm. 2.1] that in our context, the log-convexity of the Lévy
tail function h implies that U has a decreasing density. For more on this class
of subordinators see [17]. Brown conjectured in [4] that the DFR property is
equivalent to the concavity of the renewal function; a counterexample was found
(after 31 years) by Y. Yu [18].

(b) The use of Rost’s theorem (on Skorokhod stopping) in the proof of
(a)=(b) (and again in (a)=(d)) was suggested by an argument of J. Bertoin,
[1, p. 568].

(29) Y

Observe that when U has a monotone density, because R; stochastically
increasing in t, each random variable R; is stochastically dominated by R..
This yields the following improvement on Lorden’s inequality.

Corollary. Under any of the conditions listed in the Theorem, we have

30 B < B2 g o

and the inequality is sharp.

Whether the constant 2 in Lorden’s original inequality can be improved in
the general case is an open question.

4. Concluding Remarks.

A regenerative set M is infinitely divisible (ID) provided for each positive
integer n there are i.i.d. regenerative sets My, 1., 1 <k < n, such that N}_, M,, 1
has the same distribution as M. A large class of such sets (“Poisson random
cutout sets”) is discussed and characterized in [7]. It has long been conjectured
by the author that this class exhausts (at least among light unstable regener-
ative sets) all of the ID regenerative sets. In unpublished work the author has
shown that an ID regenerative set whose potential measure admits a monotone
density is, in fact, a Poisson cutout set. Somewhat irritatingly, this supplemen-
tary monotonicity condition is satisfied by all Poisson cutout sets. It should be
noted that the parallel results for heavy ID sets, and for the discrete-time situ-
ation, have been established by D.G. Kendall [10, 11]; see also [8] for a detailed
discussion of these matters and further references.
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From the proof of the Theorem in section 3, we know that when U has a

monotone density then for each ¢ > 0 we have

(31)

0, ML M\ I,

where I; is a random interval [0, 7(T'(¢)) [ growing stochastically larger as ¢ in-
creases. In the Poisson cutout case, 8; M and I; are independent, because of the
independence properties of the Poisson process. Does this independence charac-
terize ID regenerative sets?
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