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Article

Post-Operative Outcome Predictions in Vestibular Schwannoma
Using Machine Learning Algorithms
Abigail Dichter † , Khushi Bhatt † , Mohan Liu, Timothy Park, Hamid R. Djalilian and Mehdi Abouzari *

Division of Neurotology and Skull Base Surgery, Department of Otolaryngology-Head and Neck Surgery,
University of California, Irvine, CA 92697, USA
* Correspondence: mabouzar@hs.uci.edu; Tel.: +1-714-509-6096
† These authors contributed equally to this work.

Abstract: Background/Objectives: This study aimed to develop a machine learning (ML) algorithm
that can predict unplanned reoperations and surgical/medical complications after vestibular
schwannoma (VS) surgery. Methods: All pre- and peri-operative variables available in the American
College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP) database (n = 110),
except those directly related to our outcome variables, were used as input variables. A deep neural
network model consisting of seven layers was developed using the Keras open-source library, with
a 70:30 breakdown for training and testing. The feature importance of input variables was measured
to elucidate their relative permutation effect in the ML model. Results: Of the 1783 patients with
VS undergoing surgery, unplanned reoperation, surgical complications, and medical complications
were seen in 8.5%, 5.2%, and 6.2% of patients, respectively. The deep neural network model had
area under the curve of receiver operating characteristics (ROC-AUC) of 0.6315 (reoperation), 0.7939
(medical complications), and 0.719 (surgical complications). Accuracy, specificity, and negative
predictive values of the model for all outcome variables ranged from 82.1 to 96.6%, while positive
predictive values and sensitivity ranged from 16.7 to 51.5%. Variables such as the length of stay
post-operation until discharge, days from operation to discharge, and the total hospital length of stay
had the highest permutation importance. Conclusions: We developed an effective ML algorithm
predicting unplanned reoperation and surgical/medical complications post-VS surgery. This may
offer physicians guidance into potential post-surgical outcomes to allow for personalized medical
care plans for VS patients.

Keywords: vestibular schwannoma; artificial neural network; complication; machine learning;
reoperation

1. Introduction

Vestibular schwannomas (VSs) are benign tumors that account for over 90% of cranial
nerve schwannomas and 6–8% of intracranial tumors [1–3]. Since surgical resections of
VS present with major challenges, many studies have characterized the complications and
reoperations following VS surgery [4–7]. While the safety of this procedure has significantly
improved over the past years because of advancements in surgical techniques [8], risks
remain and complications and reoperations following VS surgery continue to be a substantial
burden on patients and the healthcare system. This has heightened the importance of
improving post-VS surgery predictive capabilities to minimize surgical outcome risk.

Recent developments in machine learning (ML) and increases in available annotated
medical data have allowed for the successful application of these technologies to many
fields of medicine [9–11]. Artificial neural networks (ANNs) are one type of ML that
outperform traditional statistical methods when manipulating large datasets with an inherent
nonlinear distribution that is not well understood [12]. Since many clinical variables, such
as risk factors or treatment outcomes, possess multivariate causes, ANN’s features make it
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a strong candidate for predictive analyses in a wide variety of medical disciplines. However,
it has yet to be applied to predictions of post-surgical outcomes for VS surgery.

Given such information, the aim of this study was to develop an ANN algorithm,
specifically a deep neural network (DNN), that can predict unplanned reoperation, surgical
complications, and medical complications after VS surgery. The American College of
Surgeons National Surgical Quality Improvement Program (ACS-NSQIP) database was
used to train and validate the algorithm. Such technology could serve as a useful predictive
tool for mitigating the effect of given problems on patients and healthcare infrastructure alike.

2. Materials and Methods

Reporting 30-day morbidity and mortality information for many surgical operations,
the ACS-NSQIP database was retrospectively reviewed for data from the years 2007 to
2019. A total of 1783 patients with a diagnosis of VS undergoing surgery were identified
using the ICD-9 and ICD-10 codes 225.1 and D33.3. Out of these patients, we selected
those who specifically underwent head and neck surgery according to current procedural
terminology (CPT) codes related to VS surgery (see Table 1).

Table 1. List of procedures and associated CPT codes related to VS surgery. CTBC, Craniectomy,
Trephination, and Bone Flap Craniotomy; IPF, Infratentorial or Posterior Fossa; CBTC = Craniectomy,
Bone Flap Craniotomy, and Transtemporal Excision; PJM, Posterior Cranial Fossa, Jugular Foramen, or
Midline Skull Base; IPP, Infratemporal Fossa, Parapharyngeal Space, or Petrous Apex; PCF, Posterior
Cranial Fossa, Clivus, or Foramen Magnum.

Procedure CPT Code

Supratentorial Craniectomy or Craniotomy Exploratory 61304

Craniectomy or Craniotomy, Exploratory, Infratentorial 61305

Suboccipital Craniectomy with Cervical Laminectomy 61343

Posterior Fossa Cranial Decompression 61345

Suboccipital Craniectomy 61458

Suboccipital Craniectomy—Section of Cranial Nerves 61460

Craniectomy with Tumor or Bone Lesion Excision 61500

CTBC for Supratentorial Tumor 61510

CTBC for Supratentorial Meningioma 61512

CTBC for Supratentorial Cyst 61516

Craniectomy for IPF Brain Tumor 61518

Craniectomy for IPF Meningioma Brain Tumor 61519

IPF Brain Tumor Excision or Cerebellopontine Angle Tumor Excision 61520

Excision of Midline Tumor at IPF Skull Base 61521

Brain Abscess Excision via IPF Craniectomy 61522

IPF Cyst Excision 61524

CBTC of Cerebellopontine Angle Tumor 61526

CBTC of Cerebellopontine Angle Tumor with Posterior Fossa Craniotomy 61530

Craniotomy with Partial or Subtotal Hemispherectomy 61543

Craniotomy for Pituitary Tumor Removal with Intracranial Approach 61546

Pituitary Tumor Excision via Transnasal or Transseptal Approach 61548

Craniectomy/Craniotomy with Foreign Body Removal 61570

Craniofacial Approach to Anterior Cranial Fossa 61581

Infratemporal Pre-Auricular Approach to Middle Cranial Fossa 61590
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Table 1. Cont.

Procedure CPT Code

Infratemporal Post-Auricular Approach to Middle Cranial fossa 61591

Orbitocranial Zygomatic Approach to Middle Cranial Fossa 61592

Transtemporal Approach to PJM 61595

Transcochlear Approach to PJM 61596

Transcondylar Approach to PJM 61597

Transpetrosal Approach to PCF 61598

Lesion Reduction in IPP, specifically Extradural Area 61605

Resection of Lesions in IPP 61606

Resection of Lesions in Parasellar Area, Cavernous Sinus, Clivus, or
Midline Skull Base 61608

Resection of Lesions at PCF 61615 and 61616

Secondary Repair of Dura Post-Skull Base Surgery 61618

Craniectomy or Craniotomy for Neurostimulator Electrode Implantation
on Cerebral Cortex 61860

Dural or CSF Leak Repair 62100

Lumbar Intraspinal Lesion Removal via Laminectomy 63267

Extradural Growth of Spinal Cord via Laminectomy 63277

Laminectomy with Tethered Spinal Cord Release in Lumbar Region 63200

Intradural, Extramedullary Growth of Spinal Cord via Laminectomy 63281

Excision of Intradural, Extramedullary Growth on Lumbar Spinal Cord 63282

Intradural, Intramedullary Growth in Cervical Spine via Laminectomy 63285

Excision of Intradural, Intramedullary Neoplasm via Laminectomy in
Thoracolumbar Region 63287

Three primary outcomes of interest were predicted: the occurrence of an unplanned
reoperation, surgical complications, and medical complications. For reoperations, we
used the “RETURNOR” variable, which indicates an unplanned reoperation. Multiple
variables, such as blood transfusions within 72 h, wound disruptions, the occurrences of
superficial surgical site infections (SSIs), organ/space SSIs, and deep SSIs, were used to
determine surgical complications. Finally, medical complications included occurrences
of renal insufficiency, pneumonia, being on ventilation for more than 48 h, unplanned
reintubation, myocardial infarction, urinary tract infections, deep vein thrombosis, pulmonary
embolism, acute renal failure, cerebrovascular accidents with neurological deficits, septic
shock, cardiac arrest requiring cardiopulmonary resuscitation, or sepsis.

A total of 110 preoperative, operative, and post-operative variables were selected as
input variables. The data were acquired from three separate Excel datasets that contained
data concerning medical complications, reoperative cases, and surgical complications. All
three datasets were imported into Python and merged into a single dataset. The CASEID
(a unique identifier specific to each data entry and unique in structure for each data source)
was used to discriminate between the data sources after merging. During the merge, some
datasets were found to have available data that other datasets lacked. To resolve this, we
consistently prioritized the available data for our analyses.

To prepare for analysis, binary variables, like LOS_binary (length of stay) and ASA_binary
(ASA), were label-encoded to simplify the classification process. Multi-class categorical
variables were one-hot encoded to keep them interpretable. The main outcome variables—
REOPERATION (reoperation), Surg_Comp (surgical complications), and Med_Comp
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(Medical complications)—were converted to binary indicators, where 1 represented “yes”
and 0 represented “No”.

Exploratory Data Analysis (EDA) was conducted to examine the relationships between
predictor variables and outcomes. Statistical measures and visualization techniques were
used, guided by a custom analyze_x_against_y function that streamlined the analysis of
relationships between predictors and outcomes. Categorical variables were dummy-coded
to ensure compatibility with machine learning models. Correlation matrices were generated
to assess associations between predictors and outcomes. Additionally, mean ratio analysis
was used to calculate the proportion of positive cases for each predictor, which helped us
identify those variables that possessed strong links to outcomes.

A screening process using area under the curve of receiver operating characteristics
(ROC-AUC) scores was employed next to assess each predictor’s ability to distinguish
between outcomes. Categorical variables were evaluated using decision tree classifiers,
whereas numerical variables were evaluated with logistic regression. Only those variables
that possessed an ROC-AUC score of 0.55 or higher were retained for modeling. For
predictive modeling, an XGBoost classifier was implemented for each outcome.

The model used a refined set of predictors and a strong classification pipeline. Predictors
possessed an ROC-AUC score above 0.55, which included categorical and numerical
variables that were selected based on the EDA results. To address any imbalance in the
outcome data, the scale_pos_weight parameter was adjusted to improve the model’s
accuracy by balancing positive and negative cases in the target variable. Each outcome
dataset was split into training (70%) and testing (30%) subsets using stratified sampling.
Key hyperparameters (including n_estimators, max_depth, learning_rate, subsample,
colsample_bytree, lambda, and alpha) were fine-tuned using the GridSearchCV class to
maximize the ROC-AUC score. Additionally, three-fold cross-validation within GridSearchCV
improved model reliability by reducing overfitting.

Feature engineering was applied to procedural and work relative value unit (WRVU)
codes. Procedural codes (CONCPT) were transformed into a binary matrix, which indicated
the presence of each unique code for each case. An aggregated column was added to
the matrix to represent the total number of procedures. WRVU codes were processed in
a similar way, with counts capturing the extent of interventions each patient received. Each
final model incorporated the original variables (e.g., CONCPT, CONWRVU, OTHERCPT,
OTHERPROC, OTHERWRVU) to improve predictive accuracy.

Model performance was evaluated using accuracy, sensitivity, specificity, F1 score,
ROC-AUC, precision–recall area under the curve (PR-AUC), negative predictive value
(NPV), and positive predictive value (PPV). Receiver operating characteristics (ROCs) and
precision–recall (PR) curves were plotted to visualize performance, and area under the
curve (AUC) values were calculated for both. Feature importance was derived from the
final models, and the top 20 predictors were visualized. The best-performing model for
each outcome, along with the feature sets used, were saved in an organized directory to
ensure reproducibility. The top 10 predictors for each outcome were extracted.

3. Results

This study comprised 1783 patients overall. In total, 765 (42.9%) were male patients
and 1018 were female (57.1%). Furthermore, 1289 patients were white (72.3%), 83 (4.66%)
were Black or African American, 82 (4.60%) were Asian, and 43 (2.41%) were Hispanic. The
mean age of the cohort was 50.4 ± 13.9 years.

Out of the total of 1783 patients, 151 (8.5%) had undergone a reoperation, 111 (6.2%)
had experienced medical complications, and 92 (5.2%) had experienced surgical complications.
The ROC-AUC value for the predicted occurrence of reoperation in the test dataset was
0.6315. The corresponding accuracy of prediction was 0.8206, the sensitivity was 0.3111,
the specificity was 0.8673, the PPV (precision) was 0.1772, the NPV was 0.932, the F1 score
was 0.2258, and the PR-AUC was 0.1968. The ROC-AUC score for the predicted occurrence
of medical complications in the test dataset was 0.7939, along with an accuracy of 0.8692,
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a sensitivity of 0.5152, a specificity of 0.8924, a PPV of 0.2394, an NPV of 0.9655, an F1 score
of 0.3269, and a PR-AUC of 0.2208. Finally, the ROC-AUC value for the predicted occurrence
of surgical complications in the test dataset was 0.719, while the accuracy of prediction was
0.8729, the sensitivity was 0.3571, the specificity was 0.9014, the PPV was 0.1667, the NPV
was 0.9621, the F1 score was 0.2273, and the PR-AUC was 0.1795. Table 2 and Figures 1
and 2 relay the evaluation statistics, PR curves, and ROC curves for all predictions.

Table 2. Model performance statistics for predicting the occurrence of reoperation, medical
complications, and surgical complications (classification threshold = 0.55).

Metric Reoperation Medical
Complications

Surgical
Complications

Accuracy 0.8206 0.8692 0.8729
Sensitivity 0.3111 0.5152 0.3571
Specificity 0.8673 0.8924 0.9014
Precision 0.1772 0.2394 0.1667
F1 Score 0.2258 0.3269 0.2273

ROC-AUC 0.6315 0.7939 0.719
PR AUC 0.1968 0.2208 0.1795

NPV 0.932 0.9655 0.9621
PPV 0.1772 0.2394 0.1667

J. Pers. Med. 2025, 15, x FOR PEER REVIEW 6 of 11 
 

 

 

 
(a) (b) (c) 

Figure 1. PR curves for predictions of (a) surgical complications; (b) medical complications; and (c) 
reoperation. 

 
(a) (b) (c) 

Figure 2. ROC curve for predictions of (a) surgical complications; (b) medical complications; and (c) 
reoperation. 

Finally, the permutation importance of each variable’s outcome-predicting capabili-
ties was calculated. The top 10 most important features for predicting each outcome are 
listed in Table 3. Though there was some variance depending on the outcome variables, 
features including the length of stay post-operation until discharge, days from operation 
to discharge, and the total hospital length of stay were categorized as the most important 
predictive features. 

Table 3. The top 10 important variables for predictions of a reoperation occurrence, medical com-
plication, and surgical complication. ALKPHOS, alkaline phosphatase; WBC, white blood count; 
INR, international normalized ratio; SGOT, Serum Glutamic Oxaloacetic Transaminase; ASA, 
American Society of Anesthesiologists. 

Ranking Reoperation Medical 
Complication 

Surgical 
Complication 

1 Days from Operation to 
Discharge 

Hospital Discharge 
Destination Other than 
Home 

Length of Stay Post-Op-
eration until Discharge 

2 
Total Hospital Length 
of Stay 

Total Hospital Length 
of Stay Triage Operation Time 

3 
Time Duration from 
ALKPHOS Preopera-
tive Labs to Operation 

Days from Operation to 
Discharge 

Days from Hospital Ad-
mission to Operation 

4 
Time Duration from 
WBC Preoperative Labs 
to Operation 

Hypertension Requir-
ing Medication 

Total Hospital Length 
of Stay 

5 
Time Duration from 
INR Preoperative Labs 
to Operation 

Time Duration from 
INR Preoperative Labs 
to Operation 

Total Operation Time 

Figure 1. PR curves for predictions of (a) surgical complications; (b) medical complications; and
(c) reoperation.

J. Pers. Med. 2025, 15, x FOR PEER REVIEW 6 of 11 
 

 

 

 
(a) (b) (c) 

Figure 1. PR curves for predictions of (a) surgical complications; (b) medical complications; and (c) 
reoperation. 

 
(a) (b) (c) 

Figure 2. ROC curve for predictions of (a) surgical complications; (b) medical complications; and (c) 
reoperation. 

Finally, the permutation importance of each variable’s outcome-predicting capabili-
ties was calculated. The top 10 most important features for predicting each outcome are 
listed in Table 3. Though there was some variance depending on the outcome variables, 
features including the length of stay post-operation until discharge, days from operation 
to discharge, and the total hospital length of stay were categorized as the most important 
predictive features. 

Table 3. The top 10 important variables for predictions of a reoperation occurrence, medical com-
plication, and surgical complication. ALKPHOS, alkaline phosphatase; WBC, white blood count; 
INR, international normalized ratio; SGOT, Serum Glutamic Oxaloacetic Transaminase; ASA, 
American Society of Anesthesiologists. 

Ranking Reoperation Medical 
Complication 

Surgical 
Complication 

1 Days from Operation to 
Discharge 

Hospital Discharge 
Destination Other than 
Home 

Length of Stay Post-Op-
eration until Discharge 

2 
Total Hospital Length 
of Stay 

Total Hospital Length 
of Stay Triage Operation Time 

3 
Time Duration from 
ALKPHOS Preopera-
tive Labs to Operation 

Days from Operation to 
Discharge 

Days from Hospital Ad-
mission to Operation 

4 
Time Duration from 
WBC Preoperative Labs 
to Operation 

Hypertension Requir-
ing Medication 

Total Hospital Length 
of Stay 

5 
Time Duration from 
INR Preoperative Labs 
to Operation 

Time Duration from 
INR Preoperative Labs 
to Operation 

Total Operation Time 

Figure 2. ROC curve for predictions of (a) surgical complications; (b) medical complications; and
(c) reoperation.



J. Pers. Med. 2024, 14, 1170 6 of 10

Finally, the permutation importance of each variable’s outcome-predicting capabilities
was calculated. The top 10 most important features for predicting each outcome are
listed in Table 3. Though there was some variance depending on the outcome variables,
features including the length of stay post-operation until discharge, days from operation
to discharge, and the total hospital length of stay were categorized as the most important
predictive features.

Table 3. The top 10 important variables for predictions of a reoperation occurrence, medical complication,
and surgical complication. ALKPHOS, alkaline phosphatase; WBC, white blood count; INR,
international normalized ratio; SGOT, Serum Glutamic Oxaloacetic Transaminase; ASA, American
Society of Anesthesiologists.

Ranking Reoperation Medical
Complication

Surgical
Complication

1 Days from Operation to
Discharge

Hospital Discharge
Destination Other
than Home

Length of Stay
Post-Operation until
Discharge

2 Total Hospital Length
of Stay

Total Hospital Length
of Stay Triage Operation Time

3
Time Duration from
ALKPHOS Preoperative
Labs to Operation

Days from Operation to
Discharge

Days from Hospital
Admission to Operation

4
Time Duration from WBC
Preoperative Labs
to Operation

Hypertension Requiring
Medication

Total Hospital Length
of Stay

5
Time Duration from INR
Preoperative Labs to
Operation

Time Duration from INR
Preoperative Labs to
Operation

Total Operation Time

6 Preoperative SGOT Preoperative Serum
Albumin

Preoperative Total
Bilirubin

7 Total Operation Time Total Operation Time Days from Operation to
Discharge

8
Time Duration from
Bilirubin Preoperative
Labs to Operation

Time Duration from
Platelet Count Preoperative
Labs to Operation

Preoperative SGOT

9 Age of Patient ASA Classification
Time Duration from
WBC Preoperative Labs
to Operation

10 Triage Operation Time Age of Patient ASA Classification

4. Discussion

Reoperations and complications post-surgery undoubtedly place mental and physical
tolls on patients [13]. It also places a burden on the healthcare system, given that rehospital-
ization post-discharge has been estimated to cost USD 17 billion annually in avoidable
Medicare expenditures [14]. The Agency for Healthcare Research and Quality has been
implemented to combat this issue; however, this has contributed to controversies regarding
readmission rates and reimbursements [15]. A high-quality predictive model could mitigate
this issue by offering physicians insights into potential post-surgical outcomes and allowing
them to devise a more personalized treatment plan. ANN developments have enabled
many researchers to apply this technology for predictions of various surgical variables
including length of stay, readmission, complication, recurrence, and reoperation among
various specialties [10,16,17]. However, similar studies in the literature regarding VS remain
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very scarce, and to our understanding, our study is one of the first to predict occurrences of
reoperation, surgical complications, and medical complications following surgical removal
of VS.

Our DNN algorithm reached an AUC-ROC of 0.6315, 0.7939, and 0.719 for predicting
occurrences of reoperation, medical complications, and surgical complications, respectively.
These results match those of other studies that utilized ANN algorithms to predict post-
operation factors for other surgical procedures such as those in orthopedic surgery and
neurosurgery [16,17]. Medical outcomes are dependent on a variety of factors, of which
many of these are often based on complex relationships that may not be explicit. ANN
is poised for these scenarios, since no previous knowledge regarding the importance of
specific input variables is needed, and the model can also detect relationships between
input and output variables automatically [18,19]. In contrast, other ML techniques, such
as logistic regressions and random forest classifiers, perform well when the input dataset
is relatively streamlined to include minimal variables that are known to be important
in predicting the outcome variable [18]. Though it is oftentimes difficult to assess which
types of algorithms are best suited for each task at hand, our results clearly show that
a DNN algorithm was able to predict post-surgical VS complications and reoperations in
the present study.

An interesting and meaningful aspect of our study was the characterization of variables
that highly influenced the algorithm’s ability to predict occurrences of complications and
reoperations. These variables could be monitored for future treatments of VS to potentially
improve patient outcomes. Variable importance for ANN classifications cannot be currently
measured directly, and hence, we utilized a method that measures model performance
when a specific variable is removed from the dataset. Variables with a higher decrease in
performance were regarded as more important. It was therefore notable that the length of
stay post-operation until discharge, days from operation to discharge, and the total hospital
length of stay were determined as the most important variables for predictions. Though
this method provides insights into the importance of individual variables, it is important
to note that it does not provide an explanation of how each variable precisely influences
the prediction. ML explainability and interpretation is a topic that is under extensive
investigation, and there is currently no method that extracts the true importance of each
variable [20]. Hence, these findings should be referenced with caution.

While the negative predictive value of our model was very high, averaging at 0.953
between the three variables at a classification threshold of 0.55, the positive predictive value
was relatively low, averaging at 0.194. This indicates that our DNN model was particularly
proficient in identifying cases that were not followed by post-operative complications
or reoperations and that positive cases were more difficult to predict given the variables
inputted into the model. Patients with head and neck cancer have been identified as
a high-risk group for readmission, with their rates ranging between 6% and 26.5% [21–24].
Though the Hospital Readmissions Reduction Program (HRRP) has not been implemented
for head and neck surgery, many studies have pointed out the likeliness of the program
expanding to cover such procedures in the future [25,26]. Our study has illustrated that
a significant part of complication or reoperation negative VS cases were highly predictable.
Hence, a predictive model based on the ANN algorithm developed through this study
may become useful in the future for developing a stratified model in which hospitals will
be penalized for post-surgical incidences only for cases that were predicted to have a low
probability of such events occurring.

Similar predictive indices have been considered before, such as the LACE+ (length of
stay, acuity, comorbidities, and emergency presentations) index, which predicts an early
death or urgent readmission after hospital discharge [27]. Furthermore, the University of
Kansas Health Systems and Atrium Health have both successfully implemented predictive
programs that analyze clinical and socioeconomic factors after hospital discharge, resulting
in a successful reduction in their readmission rates [28]. Nonetheless, neither program
has employed ML techniques. Incorporating the predictive capacity of ANN or alternate



J. Pers. Med. 2024, 14, 1170 8 of 10

ML algorithms into such frameworks could improve the quality of these risk-stratification
models, allowing healthcare professionals to appropriately measure the risk of post-surgical
outcomes, thereby benefiting not only the healthcare system but also patients by providing
them with more information and tailored guidance regarding their treatment.

Despite the many findings, it is important to mention several limitations of our
study. The performance of classifiers is inherently rooted in the quality of the training
dataset, which, in the case of this present study, was the ACS-NSQIP database. Most datasets
are subject to errors, and this is no different for the NSQIP database, as shown by a previous
study that reported inaccuracies in CPT coding among neurosurgical procedures [29]. This
database also may not be generalizable to all intended patients, given that the database only
included a maximum of 708 hospitals [30]. Furthermore, the input variables of our model
are limited to those included in the database. This inevitably omits potentially relevant
variables for predicting post-surgical VS incidents, such as the presence of NF2 mutation
status, tumor size or location, or surgical approaches, which could all impact the outcome
of treatment [31,32].

A class imbalance also existed between cases of patients who presented without any
post-surgical reoperations or complications and those who did, with all percentages being
below 8.5%. Future adjustments, such as increasing the size of the dataset, may improve
positive case detection and balance. On a similar note, the NSQIP database presented
a plethora of missing data. Though we maneuvered this challenge by prioritizing the
available data, in future studies, a more complete dataset could improve the performance
of the algorithm.

5. Conclusions

A robust ML algorithm predicting unplanned reoperation and surgical or medical
complications following VS surgery was developed. The model possessed an ROC-AUC of
0.6315, 0.7939, and 0.719 for prediction reoperation, medical complications, and surgical
complications, respectively. Variables deemed to be most important for making predictions
included those such as the length of stay post-operation until discharge, days from
operation to discharge, and the total hospital length of stay. The above findings may offer
physicians insights into potential post-surgical outcomes, though further investigations
incorporating new algorithms and databases may be needed for the clinical implementation
of a more personalized treatment plan for VS patients.
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