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Abstract

We estimate productivity growth in England from 1250 to 1870. Real wages over this pe-

riod were heavily influenced by plague-induced swings in the population. Our estimates ac-

count for these Malthusian dynamics. We find that productivity growth was zero prior to 1600.

Productivity growth began in 1600—almost a century before the Glorious Revolution. Thus,

the onset of productivity growth preceded the bourgeois institutional reforms of 17th century

England. We estimate productivity growth of 2% per decade between 1600 and 1800, increas-

ing to 5% per decade between 1810 and 1860. Much of the increase in output growth during

the Industrial Revolution is explained by structural change—the falling importance of land in

production—rather than faster productivity growth. Stagnant real wages in the 18th and early

19th centuries—“Engel’s Pause”—is explained by rapid population growth putting downward

pressure on real wages. Yet, feedback from population growth to real wages is sufficiently weak

to permit sustained deviations from the “iron law of wages” prior to the Industrial Revolution.
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1 Introduction

When did economic growth begin? A traditional view holds that economic growth began with

the Industrial Revolution around 1800. Recent work has challenged this view, pushing back the

date of the onset of growth. Crafts (1983, 1985) and Harley (1982) revised downward previous

estimates of growth in Britain during the Industrial Revolution. These new estimates indicate that

British output per capita was larger by the mid-18th century than was previously thought, im-

plying that substantial growth must have occurred at an earlier date (see also Crafts and Harley,

1992). Acemoglu, Johnson, and Robinson (2005) argue that a First Great Divergence occurred

starting around 1500 with Western Europe growing apart from other areas of the world follow-

ing the discovery of the Americas and the sea route to India. They support this view with data

on urbanization rates. Broadberry et al. (2015) argue that growth began even earlier than this.

They present new estimates of GDP per person for Britain back to 1270. These data show slow

but steady growth in GDP per person from the beginning of their sample. Finally, Kremer (1993)

uses world population estimates to argue for positive but glacially slow growth for hundreds of

thousands of years.

An important facet of the debate about when growth began is when productivity growth began.

We contribute to this debate by constructing a new series for productivity growth (TFP) in England

back to 1250. Figure 1 plots our new productivity series (solid black line). Our main finding

is that productivity growth in England began in 1600. Between 1250 and 1590, we estimate that

productivity growth was zero.1 We estimate productivity growth of about 2% per decade between

1600 and 1800. Productivity growth then increased to 5% per decade between 1810 and 1860. We

attribute much of the increase in output growth during the Industrial Revolution to structural

change—a fall in the importance of land in production—rather than to an increase in productivity

growth.

Our results help distinguish between different theories of why growth began. They suggest that

researchers should focus on developments proximate to the 16th and 17th centuries. An important

debate regarding the onset of growth centers on the role of institutional change. Our results help

sharpen this debate. We find that productivity growth began almost a century before the Glorious

Revolution and well before the English Civil War. While the institutional changes associated with

these events may have been important for subsequent growth, researchers must look to earlier

1The positive but glacially slow productivity growth rate implied by Kremer’s (1993) population data for the period
1200 to 1500 lies within our credible set.
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Figure 1: Estimates of Productivity in England
Note: Each series is the natural logarithm of productivity. The series denoted by “Clark (2016)*” is the series
from Clark (2016) extended to 1860. We received this series from Clark in private correspondence. Clark’s
series estimates TFP for the entire economy based on a dual approach. Allen’s (2005) estimates are for TFP
in the agricultural sector using a primal approach. Our preferred productivity series is normalized to zero in
1250. The other two series are normalized to match our preferred series in 1300.

events for the seeds of modern growth. Plausible candidates include the Reformation, the decline

of feudalism, the rise of the yeoman, movable type printing and the associated increase in literacy,

and expansion of international trade. We discuss these in more detail below.

The most comprehensive existing productivity series for England was constructed by Clark

(2010, 2016). Clark estimated changes in TFP for the entire English economy from 1209 onward

using the “dual approach”—i.e., as a weighted average of changes in real factor prices (e.g., Hsieh,

2002). Figure 1 plots Clark’s series over our sample period (broken black line).2 A striking feature

of this series is that it implies that productivity in England was no higher in the mid-19th century

than in the 15th century. This result does not line up well with other existing (less comprehensive)

measures of productivity in England or with less formal assessments of the English economy. For

example, Allen (2005) estimates that TFP in agriculture was 162% higher in 1850 than in 1500 (grey

diamonds in Figure 1).3 Clark himself commented that if the fluctuations in his series are not mea-

2Clark (2016) published an update of Clark’s better-known 2010 series for the shorter time period 1250-1600. The
series we plot in Figure 1 is Clark’s 2016 series extended to 1860. We received this series from Clark by private corre-
spondence. The 2016 series differs from the 2010 series prior to 1600 due to a new land rent series and because Clark
corrected an important error in the 2010 series. We discuss this in more detail in Appendix G.

3Allen (2005) employs the familiar “primal approach” of Solow (1957), i.e., subtracts a weighted average of growth
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surement error “they imply quite inexplicable fluctuations in the performance of the preindustrial

economy.”

Our conclusions about productivity in England are quite different from those of Clark (2010,

2016). According to our estimates, productivity in England was 95% higher in 1850 than in 1500

rather than being essentially unchanged. We also estimate smaller fluctuations in productivity

prior to 1600. In particular, our productivity series falls much less between 1450 and 1600. These

substantial differences arise from differences in the data and methodology we use. We take the

labor demand curve as our starting point and estimate changes in productivity as shifts in the

labor demand curve. This means that the key data series that inform our estimates are real wages

and population. These are arguably among the best measured series of all economic time series

over our long sample period.

Our approach is best understood by considering Figure 2. This figure presents a scatter plot of

the logarithm of real wages in England (y-axis) against the logarithm of the population in England

(x-axis). From 1250 to 1300, the population of England increased and real wages decreased. The

period from 1300 to 1450 was a period of frequent plagues—the most famous being the Black

Death of 1348. Over this period, the population of England fell by a factor of two and real wages

rose substantially. Then, from 1450 to 1600, the population recovered and real wages fell. In 1630,

the English economy was back to almost exactly the same point it was at in 1300.

One way to explain these dynamics between 1300 and 1630 is as movements along a stable

labor demand curve with no change in productivity. Had productivity grown between 1300 and

1630, the economy could not have returned to essentially the same point in 1630 as it was in 1300

since the labor demand curve would have shifted up and to the right over the intervening period.

Then in the 17th century, something important seems to change. The points start moving off the

prior labor demand curve. Specifically, they start moving up and to the right relative to the earlier

curve. This suggests that productivity started growing in the 17th century in England.

The basic idea behind our approach is to estimate a labor demand curve for England and

then back out productivity growth as shifts in this labor demand curve. To get a better sense for

how this approach works, consider the following simple labor demand curve for a pre-modern

economy

Wt = (1− α)At

(
Z

Lt

)α
,

where Wt denotes real wages, At denotes productivity (TFP), Z denotes land (which is fixed), and

in factor inputs from output growth, but is only able to do this for agriculture and for a few years.

3



Figure 2: Real Wages and Population
Note: The figure presents a scatter plot of the logarithm of real wages in England against the logarithm of the
population in England over the period 1250-1860. The data on real wages are from Clark (2010). Estimates of
the population are based on our calculations (baseline case).

Lt denotes labor. We consider more general models later in the paper, but the basic challenge we

face can be grasped using this simple model. If we take logarithms, this equation becomes

wt = φ− αlt + at,

where lower case letters denote logarithms of upper case letters. Armed with data on real wages,

the population, and an estimate of the slope of the labor demand curve α, one can back out esti-

mates of productivity at.

We consider two approaches to estimating the slope of the labor demand curve α. The first

is to use the Black Death as a large exogenous shock to the population. In this case, we estimate

α simply from data on real wages and population before and after the Black Death. Our second

method is to structurally estimate a Malthusian model. In this case, we are modelling the endoge-

nous response of the population to changes in the real wage. These two methods yield similar

results.

Since our analysis extends into the early industrial era, we must confront the fact that the

importance of land as a factor of production fell rapidly with the spread of steam power, which

meant that the production of energy was no longer land intensive (Wrigley, 2010). To capture this
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crucial development, we allow the output elasticity of land, capital, and labor to change over time

after the onset of the Industrial Revolution. We use data on land rents after 1760 to pin down

how rapidly the importance of land in production fell. The modest increase in land rents that

we observe in the face of explosive growth in labor and capital after 1760 leads us to estimate a

rapidly falling importance of land in production.

The fact that we allow for this structural transformation implies that the standard way of mea-

suring productivity (a multiplicative At in front of a function F (Lt,Kt, ...)) is no longer valid.

Following Caves, Christensen, and Diewert (1982) we derive a Malmquist productivity index

(Malmquist, 1953) for our setting. The Malmquist index reduces to At in the familiar setting of

constant factor elasticities, but remains valid even when the structure of the production function

is changing.

Allowing the importance of land in production to fall after the onset of the Industrial Revolu-

tion has important implications for our estimates of productivity. If we don’t allow for this change,

we estimate a much larger break in productivity in 1810. Productivity growth is, of course, just a

measure of our ignorance. Modelling the shift of production away from land intensive technology

allows us to explain a larger part of growth during the Industrial Revolution, leaving less for the

residual.

Our estimates also shed light on the lack of real wage growth during the latter part of the 18th

century, sometimes referred to as “Engels’ Pause” (Engels, 1845, Allen, 2009b). Our Malthusian

model implies that during this period real wages were held back by very rapid increases in the

population, which in a Malthusian world put downward pressure on the marginal product of

labor. This explanation contrasts with the common idea that the absence of real wage growth

during this period resulted from the lion’s share of the fruits of technical change going to capital

as opposed to labor. This idea has received attention in the modern context in relation to the

development of automation and artificial intelligence (Acemoglu and Restrepo, 2019a).

In addition to estimates of productivity, our methodology yields estimates of the speed of

Malthusian population dynamics in pre-modern England. Our estimates imply that these pop-

ulation dynamics were very slow: a doubling of real incomes led to an increase in population

growth that was only about 3 to 6 percentage points per decade. Together with our other esti-

mates, this implies that the half-life of a plague-induced drop in the population was more than

100 years prior to the onset of the Industrial Revolution. As the importance of land in production

fell after 1760, the Malthusian population dynamics became even slower and weaker. By 1860,
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our estimate of the half-life of a population shock have risen to several hundred years. Earlier es-

timates of the speed of Malthusian population dynamics in England also indicate that they were

slow. For example, Lee and Anderson (2002) find a half-life of 107 years, while Crafts and Mills

(2009) find a half-life of 431 years. Chaney and Hornbeck (2016) document very slow population

dynamics in Valencia after the expulsion of the Moriscos in 1609.

The weakness of the Malthusian population dynamics we estimate imply that our model is

consistent with sustained deviations from “the iron law of wages” (i.e., that wages in a Malthu-

sian economy are stuck at subsistence). Modest productivity growth over a few centuries can tem-

porarily overwhelm the Malthusian population dynamics in our model and result in sustained

periods of real wages several times higher than at other times. Our model can therefore make

sense of episodes that historians sometimes refer to as “golden ages” or “effloresences” (Gold-

stone, 2002). Once productivity growth falters, real wages will slowly fall back to a lower level.

But this will take several centuries.

We are not the first to plot a figure like Figure 2 and argue that it has implications about the

evolution of productivity in England. We formalize this intuitive idea and assess what exactly it

implies about productivity. Clark (2005, 2007a) discuss informally how shifts in the labor demand

curve of a Malthusian model can be informative about the timing of the onset of economic growth.

The existing papers most closely related to ours from a methodological point of view are Lee and

Anderson (2002) and Crafts and Mills (2009). These papers structurally estimate a Malthusian

model of the English economy, as we do. Relative to these papers, we extend the sample period

back in time considerably (theirs starts in 1540 while ours start in 1250). This allows us to assess

when growth began. We also estimate α differently, incorporate capital, and allow the importance

of land to change after the onset of the Industrial Revolution, among other differences.

The timing of the onset of productivity growth we estimate lines up well with recent estimates

of the onset of structural transformation in Wallis, Colson, and Chilosi (2018). They estimate that

the share of workers in agriculture began a long and large fall around 1600 after having been

stable in the 16th century. Making use of data on GDP and population from Broadberry et al.

(2015), they also estimate that labor productivity in agriculture, industry, and services began to

rise around 1600.

Our paper is also related to the literature in macroeconomics on the transition from pre-

industrial stagnation to modern growth—often referred to as the transition “from Malthus to

Solow.” Important papers in this literature include Galor and Weil (2000), Jones (2001), and
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Hansen and Prescott (2002). Relative to these papers, our work is more empirical. We contribute

detailed estimates of the evolution of productivity, while these papers propose theories of how

productivity growth rose. Our work is also related to recent work by Hansen, Ohanian, and Oz-

turk (2020).

Our paper proceeds as follows. Section 2 presents a simple estimate of productivity growth

in England with α estimates from the Black Death. Section 3 presents our full Malthusian model

of the economy. Section 4 presents our results on productivity based on the full model. Section

5 presents our results on the strength of the Malthusian population force. Section 6 presents our

estimates of the population. Section 7 concludes.

2 A Simple Estimate of Productivity Growth in England

We begin by presenting a very simple estimate of productivity growth in England. Later sections

develop a number of extensions and refinements to the basic approach adopted in this section. We

model time as discrete and denote it by a subscript t. Since we use decadal data throughout the

paper, each time period in the model is meant to represent a decade. Our sample period is from

1250 to 1860. All the data we use are decadal averages. In our figures, a data point listed as 1640

refers to the decadal average from 1640 to 1649. We sometimes refer to a variable at a point in time

(say 1640) when we mean the decadal average for that decade. In other words, we use 1640 and

“the 1640s” interchangeably.

Consider an economy where output is produced with land and labor according to the follow-

ing production function:

Yt = AtZ
αL1−α

t ,

where Yt denotes output, Z denotes land, Lt denotes labor, and At denotes productivity (TFP).

We model the quantity of land as being fixed. Literally speaking, the stock of land in England has

always been fixed. However, the way in which land has been used has changed over time. The

sharp fall in population after the Black Death led land to be converted to pastoral farming (which

is land intensive). Growth in the population later in our sample period resulted in more land

being used for arable farming (less land intensive). A growing population implied that people

were forced to use lower and lower quality land to grow crops and farm each hectare of land

more intensively. This meant that for a given level of productivity the marginal product of labor

was decreasing in the size of the population. Our production function with Z being fixed captures
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this fact.4

Land use also changed due to improvements such as the draining of swamps, clearing of fields,

and cutting down of forests. Later in the paper, we consider a model with capital. Investments

in land improvement will then be captured as additions to the capital stock. Finally, institutional

change resulted in changes in land use. Two important examples are the confiscation and sale

of monastic land by Henry VIII (Heldring, Robinson, and Vollmer, 2021) and enclosures (Allen,

1992). The effects of these institutional changes will show up as changes in productivity in our

analysis.

We assume that producers hire workers in a competitive labor market taking wages as given.

Producer optimization then gives rise to the following labor demand curve:

Wt = (1− α)AtZ
αL−αt ,

where Wt denotes the real daily wage. Taking logarithms of this equation yields

wt = φ+ at − αlt, (1)

where lower case letters denote logarithms of upper case letters and φ = log(1 − α) + α logZ.

Assuming that labor is paid its marginal product in pre-industrial England is a strong assumption

that we discuss in greater detail below.

To estimate changes in productivity using equation (1), we need data on real wages, data on

labor supply, and an estimate of the slope of the labor demand curve α. We discuss these in turn.

2.1 Data on Real Wages and the Population

Our baseline measure of real wages in England is Clark’s (2010) series for unskilled building work-

ers. Figure 3 plots this series. The main features of the series are a large and sustained rise between

1300 and 1450, a large and sustained fall between 1450 and 1600, some recovery over the 17th

century, stagnation during the 18th century, and finally a sharp increase after 1800. Figure A.1

compares this series with several other series for real wages in England. This comparison shows

that the real wage series we use is quite similar to Clark’s real wage series for farmers and for

4This is entirely analogous to the standard way in which the use of capital in production is usually modelled.
Consider an ice cream maker that has one ice cream machine and one worker. If they hire more workers, the machine
will be used more intensively and the marginal product of labor will fall.
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Figure 3: Real Wages in England, 1250-1860
Note: The figure presents estimates of the real wages of unskilled building workers in England from Clark
(2010).

craftsmen. We have redone our analysis with these series and discuss this analysis in section 4.3.5

Our baseline assumption is that labor supply is proportional to the population of England.

Figure 4 presents the population data that we use. For the period from 1540 onward, we use pop-

ulation estimates from Wrigley et al. (1997), which in turn build on the seminal work of Wrigley

and Schofield (1981). Sources for population data prior to 1540 are less extensive. Clark (2007b)

uses unbalanced panel data on the population of villages and manors from manorial records and

penny tithing payments to construct estimates of the population prior to 1540. We build on Clark’s

work to construct an estimate of the population before 1540.

We cannot directly use Clark’s pre-1540 population series since Clark’s method for construct-

ing his series involves making assumptions about the evolution of productivity.6 Since we aim

to use the population series to make inference about the evolution of productivity in England,

we cannot use a population series that already embeds assumptions about productivity growth.

However, as an intermediate input into constructing his pre-1540 population series, Clark esti-

5Much controversy has centered on the behavior of real wages in England between 1770 and 1850. This debate
revolves around the extent to which laborers shared in the benefits of early industrialization (see, e.g. Feinstein, 1998,
Clark, 2005, Allen, 2007, 2009b). In Figure A.1, we also plot Allen’s (2007) wage series (which starts in 1770). The
figure shows that the differences discussed in the prior literature are modest from our perspective and therefore do not
materially affect our analysis.

6Appendix A discusses Clark’s method in more detail.
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Figure 4: Population Data for England, 1250-1860
Note: The figure presents population estimates for England for the period 1540-1860 from Wrigley et al. (1997)
(grey line) and the population trend estimates by Clark (2007b) for the period 1250-1520 (black line). In this
figure, the black line is normalized for visual convenience such that its last point is equal to the first point of
the grey line.

mates a regression of his village and manor level population data on time and village/manor

fixed effects. Clark refers to the time effects from this regression as a population trend. We plot

this population trend in Figure 4 (normalized for visual convenience). We base our estimates of

the population of England prior to 1540 on this population trend series. In section 4.3, we dis-

cuss how this series compares to (lower frequency) population data reported in Broadberry et al.

(2015).

We assume that the true population is measured with error. Specifically, we assume that nt =

ψ+ ñt+ ιnt , where nt denotes the true unobserved population, ñt denotes our observed population

series (Clark’s population trend series prior to 1530 and the population series from Wrigley et al.

(1997) after 1530), ιnt ∼ tνn(0, σ2
n) denotes measurement error, and ψ denotes a normalization

constant. We normalize ψ to zero after 1530 and estimate its value for the pre-1530 Clark series.

We allow for a structural break in the variance of the measurement error σ2
n in 1540. Finally,

population data are missing for 1530. We view it as unobserved and estimate its value.
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2.2 Identification and Estimation

We estimate the slope of the labor demand curve—α in equation (1)—under the assumption that

the Black Death is an exogenous shock to the population. Specifically, we estimate α as the ratio

of the change in real wages and the change in the population between 1340 and 1360. This is the

slope between the point for 1340 and the point for 1360 in Figure 2.7 The identifying assumption

is that the Black Death dominates the change in wages and population between 1340 and 1360.

We choose 1360 as opposed to 1350 as our post Black Death point due to attempts by the lords in

England to keep wages low in the immediate aftermath of the Black Death. In 1351, the Statute

of Laborers was passed which set a maximum wage equal to the prevailing wage prior to the

Black Death. These attempts may have had some effect on wages during the 1350s, but wages

responded strongly in the 1360s.

This procedure yields a value of α = 0.70, which lines up well with the overall slope of the

points in Figure 2 prior to the 17th century. This suggests that much of the variation in the popula-

tion and real wages of England prior to the 17th century was driven by labor supply shocks such

as plagues and other disease. With a Cobb-Douglas production function, α is also the land share

of production. However, in appendix B, we show that the relationship between the land share of

production and the slope of the labor demand curve is sensitive to the elasticity of substitution

between land and labor. A CES production function implies that the land share is σα, where σ

is the elasticity of substitution between land and labor. Assuming an elasticity of substitution of

0.66 (Boppart et al., 2023) implies a land share of 0.66 × 0.70 = 0.46. More generally, additional

parameters are needed to go from the slope of the labor demand curve to factor shares.

Armed with data on wt and lt and an estimate of α, we can “back out” values for log pro-

ductivity, at, from equation (1) (up to a constant). Since we are primarily interested in persistent

changes in productivity, we filter out high frequency variation in at by assuming that at is made

up of a permanent and transitory component. We assume the permanent component follows a

random walk process with drift µ:

ãt = µ+ ãt−1 + ε1t. (2)

The average growth rate of productivity is given by the parameter µ. To capture changes in

long-run growth, we allow for structural breaks in µ. Recall that changes in productivity cor-

respond to shifts in the labor demand curve. We allow for a break in 1810 associated with the

7Figure 2 adjusts for measurement error. To estimate α, we use the raw data for 1340 and 1360. Our estimate of α
is, therefore, only approximately the slope between the point for 1340 and the point for 1360 in Figure 2.
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Figure 5: Probability of Different Productivity Growth Break Dates
Note: The figure plots our estimate of the probability that a structural break occurred in the parameters µ, σ1,
and σ2 in different decades between 1550 and 1800.

Industrial Revolution. But Figure 2 suggests that the labor demand curve began shifting out ear-

lier. As a consequence, we allow for one additional break earlier in the sample. This allows for the

possibility that there may have been a break in average growth before the Industrial Revolution.

We consider a range of possible dates for the first break between 1550 and 1800.8 The method

we use to pin down the timing of this earlier break and to estimate the model more generally is

described in detail in section 3.

2.3 When Did Growth Begin?

Figure 5 plots our estimates of the probability that a pre-Industrial Revolution break in productiv-

ity growth occurred at different dates between 1550 and 1800. The probability of a break spikes in

1600. It stays high in 1610 and 1620 and then falls off. The probability is very low prior to 1590 and

also low after 1650. The probability of a break occurring before 1640—i.e., before the onset of the

English Civil War—is estimated to be 59%. The probability of a break occurring before 1680—i.e.,

before the Glorious Revolution—is 73%. For expositional simplicity, we date the break in 1600.

Results from our more complex models in sections 3 and 4 yield 1600 as the most likely break date
8The fact that we allow for permanent breaks in productivity growth implies that productivity growth has a unit

root component. This allows our model to match the fact that the population is integrated of order two in our sample,
which has been emphasized in prior work on this topic (Bailey and Chambers, 1993, Crafts and Mills, 2009).
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Table 1: Productivity Growth

Mean St Dev 2.5% 97.5%
µa,1 0.00 0.01 -0.01 0.02
µa,2 0.04 0.02 0.02 0.10
µa,3 0.19 0.01 0.17 0.22

Note: The table presents the mean, standard deviation, 2.5% quantile, and 97.5% quantile
of the posterior distribution we estimate for average productivity growth µ in the three
regimes, using the simple procedure described in section 2. See table A.1 for the posterior
distribution of σε1,t and σε2,t .

(see Figure A.2).

Table 1 presents our estimates of the average growth rate of productivity µ for the three regimes

over our sample. We estimate that average productivity growth prior to 1600 was zero. Kre-

mer (1993) used data on the growth rate of the world population to argue that growth has been

non-zero and increasing for many millennia. The world population estimates he used indicate

that world population growth from 1200 to 1500 was 0.6% per decade. In our Malthusian model

(as well as Kremer’s model), steady state productivity growth is α times steady state population

growth. Using our estimate of α discussed above, this suggests that growth in productivity was

0.4% per decade over the period 1200 to 1500, i.e., positive but glacial. This slow growth rate is

well within the credible set of our pre-1600 estimate of µ.

Our results indicate that sustained productivity growth began in 1600 (or around that time).

We estimate average productivity growth of 4% per decade over the period 1600 to 1810. In the

early 19th century, productivity growth accelerated sharply to 19% per decade. We conclude from

these estimates that the period from 1600 to 1810 was a period of transition in England from an era

of total stagnation to an era of modern economic growth. We will refine these estimates in sections

3 and 4.

Figure 6 presents our initial estimate of the time series evolution of the permanent component

of productivity. These estimates indicate that the level of productivity in England was very similar

in 1600 to what it had been in the late 13th century. In the intervening period, productivity fluctu-

ated a slight bit. After 1600, productivity began a sustained increase, which accelerated sharply in

1810. As in most models in macroeconomics, productivity growth is a residual. In later sections,

we consider more complex models with capital and in which we allow the elasticity parameters

in the production function to change over time. In these cases, we attribute a substantial fraction

of the post-1800 productivity growth in Figure 6 to capital deepening and the falling importance
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Figure 6: Permanent Component of Productivity
Note: The figure plots our estimates of the evolution of the permanent component of productivity ãt over our
sample period (natural logarithm relative to its value in 1250). The black line is the mean of the posterior for
each period and the gray shaded area is the 90% central posterior interval.

of land in production.9

2.4 Real Wages, Productivity, and Engels’ Pause

Figure 7 compares our estimate of productivity with the data we use on real wages. This figure

illustrates well the importance of accounting for Malthusian population forces when estimating

productivity in the pre-industrial era. Our analysis implies that the large changes in real wages

prior to 1600 are explained almost entirely by changes in the population and almost not at all by

changes in productivity. During this period, the economy moved up and down a relatively stable

labor demand curve as suggested by Figure 2. First, plagues reduced the population and this

increased wages. Then, the population recovered from these plagues and real wages fell. As a

result, changes in productivity were very substantially muted relative to changes in real wages.

Real wages are also a poor guide to changes in productivity for the period from 1600 to 1860.

Over this period, however, the pattern is reversed: productivity moved substantially more than

9Table A.1 presents estimates of the standard deviation of the permanent and transitory productivity shocks. These
vary very little across the three regimes. The standard deviation of the permanent productivity shocks is 0.03 prior to
1600 and 0.02 after 1600. The standard deviation of the transitory productivity shocks is 0.05 prior to 1600 and 0.04 after
1600.
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Figure 7: Productivity and Real Wages
Note: The figure plots our estimates of the evolution of the permanent component of productivity ãt along
with the real wage series we use.

real wages. Productivity started to grow after 1600. But this induced rapid growth in the pop-

ulation. Since the labor demand curve was downward sloping due to land being a fixed factor,

growth in the population put downward pressure on wages. Over this period, therefore, real

wages lagged behind growth in productivity.

Our analysis provides a simple explanation for “Engels’ Pause,” the fact that real wages did

not rise appreciably during the early decades of industrialization in England. We see in Figure 7

that over the period 1730 and 1800 real wages in England fell slightly despite substantial produc-

tivity growth. (The real wage series of Feinstein (1998) and Allen (2007)—which differ somewhat

from Clark’s real wage series—extend the Pause a few decades into the 19th century.) One ex-

planation for this fact—famously articulated by Engels (1845)—is that the gains from capitalism

overwhelmingly accrue to capitalists as opposed to laborers. Our analysis suggests an alternative

Malthusian explanation: rapid growth in the population put downward pressure on the marginal

product of labor and thus reduced the growth in wages relative to productivity.10

10Allen (2009b) comes to a similar conclusion using quite different data and methods. He also concludes that pop-
ulation growth was a crucial contributor to stagnant real wages in England during Engels’ Pause: “population growth
was a necessary condition for stationary real wages: Engels’ pause looks like Malthus’ dismal science come true” (p.
430). Allen’s model is more complex than the simple model we analyze in this section. In his model, slow accumula-
tion of capital and a low elasticity of substitution between capital and labor also contribute to low growth in real wages
during Engels’ Pause. We extend our model to include capital in section 3 below. In Allen’s model, growth in capital
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One reason we chose to use the wage series for unskilled building workers in our analysis is to

capture a part of the labor market that involved relatively voluntary labor and therefore a better

measure of the marginal product of labor than, e.g., the work of the villein in the countryside.

Nevertheless, our assumption of a competitive labor demand curve is clearly a simplification, and

it is important to consider how our results might change were we to weaken this assumption. A

constant wage markdown due to monopsony power or coercion by employers would not affect

our results. It would only affect the estimate of the constant φ in equation (1). A wage markdown

that was getting smaller over time as the labor market became more free and competitive would

show up as an increase in productivity in our analysis. So long as this process was slow—which

seems likely—the bias in our results arising from this issue would also be small.

2.5 From When to Why

By dating the onset of productivity growth, our results help discriminate between competing ex-

planations for why growth began. We estimate that sustained productivity growth began in Eng-

land substantially before the Glorious Revolution of 1688. According to our estimates, productiv-

ity in England rose by 34% from 1600 to 1680. North and Weingast (1989) argue that the political

regime that emerged in England after the Glorious Revolution—characterized by a power shar-

ing arrangement between Parliament, the Crown, and the common law courts—resulted in secure

property rights and rule of law and thereby laid the foundation for economic growth. While the

institutional changes associated with the Glorious Revolution may well have been important for

growth, our results indicate that the seeds of growth in England were sown earlier.

Our results support explanations of the onset of growth that focus attention on developments

that occurred in the period surrounding 1600. The Reformation is an obvious candidate. In par-

ticular, Henry VIII’s confiscation of monastic lands was a big shock to land ownership patterns

and the land market in England (Heldring, Robinson, and Vollmer, 2021). England also became

a favored destination for skilled immigrants fleeing religious persecution on the continent. This

was, furthermore, a period of rapidly increasing urbanization in England. London experienced

an explosion of its population around this time—from 55,000 in 1520 to 475,000 in 1670 (Wrigley,

2010)—likely due to a rapid increase in international trade. English woolen exports expanded

rapidly over this period (new draperies) as did intercontinental trade, colonization, and privateer-

eventually catches up to growth in the population leading real wage growth to pick up. Our analysis below places
a greater emphasis on reductions in the importance of land in production in eliminating the Malthusian character of
growth over the course of the 19th century.
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ing. The British East India Company was founded in 1600 and the Virginia Company founded its

first permanent settlement in North America in 1607.

Our finding that the onset of growth preceded both the Glorious Revolution and the English

Civil War (1642-1651) lends support to the Marxist view that economic change propelled history

forward and drove political and ideological change. Marx (1867) stressed the transition from

feudalism to capitalism. He argued that after the disappearance of serfdom in the 14th century,

English peasants were expelled from their land through the enclosure movement. That spoliation

inaugurated a new mode of production: one where workers did not own the means of production,

and could only subsist on wage labor. This proletariat was ripe for exploitation by a new class of

capitalist farmers and industrialists. In that process, political revolutions were a decisive step

in securing the rise of the bourgeoisie. To triumph, capitalism needed to break the remaining

shackles of feudalism. As the Communist Manifesto puts it, “they had to be burst asunder; they

were burst asunder” (Marx and Engels, 1848, pp. 40-41). Hill (1940, 1961) offers more recent

treatments of the political revolutions in England in the 17th century that stress class conflict and

their economic origins.

Acemoglu, Johnson, and Robinson (2005) synthesize the Marxist and institutionalist views.

They argue that Atlantic trade enriched a merchant class that then demanded secure property

rights and secured these rights through the Civil War and Glorious Revolution. This last narrative

lines up well with our result that steady growth—perhaps driven by the Atlantic trade—began

about half a century before the Civil War. However, we do not detect a radical increase of growth

in the immediate aftermath of either the Civil War or the Glorious Revolution: 3.2% (1600-1640),

4.2% (1640-1680) and 4.5% (1680-1810).

Allen (1992) argues that a long and gradual process of institutional change in England over

the 600-year period from the Norman Conquest to the Glorious Revolution resulted in a situation

in the 16th century where the yeoman class had acquired a substantial proprietary interest in

the land, and thus an incentive to innovate. The timing of Allen’s ‘rise of the yeoman’ lines up

reasonably well with our estimate of the onset of growth. According to Allen, property rights, rule

of law, and personal freedom gradually expanded, and the social order was gradually transformed

from a feudal to a capitalist order. From the 12th century, royal courts helped freeholders gain

full ownership over their land. After the Black Death, serfdom collapsed as landlord competed

for scarce labor. Early enclosures (15th and early 16th centuries) involved brutal evictions and

depopulation of manors. The Crown reacted to this by increasing protection of tenant farmers.
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The spread of movable-type printing across Europe after 1450 led to a large increase in literacy

in England in the 16th and 17th centuries (Cressy, 1980, Houston, 1982), and a huge drop in the

price of books (Clark and Levin, 2011). Dittmar (2011) argues that cities exposed to printing grew

substantially faster than otherwise similar cities. More generally, Rosenberg and Birdzell (1986)

argue for the emergence of institutions favorable to commerce in the early modern period in West-

ern Europe and especially in England and Holland. These included impartial commercial courts,

bills of exchange, marine insurance, and double-entry bookkeeping in addition to several of the

institutions discussed above.

Printing and literacy likely had wide ranging effects on culture. Mokyr (2009, 2016) and Mc-

Closkey (2006, 2010, 2016) have argued that the crucial change that caused growth to begin was

the emergence of a culture of progress based on the idea that mankind can improve its condition

through science and rational thought. Others have stressed a Protestant ethic (Weber, 1905) and

Puritanism (Tawney, 1926). The timing of these changes lines up reasonably well with our esti-

mates although it is not straightforward to pinpoint precisely what these theories imply about the

timing of the onset of growth.

Bogart and Richardson (2011) stress the importance of the post-Glorious Revolution regime’s

push to reorganize and rationalize property rights through enclosures, statutory authority acts,

and estate acts. While our results contradict the notion that growth began with the Glorious Revo-

lution, the fact that England underwent massive institutional change in the 17th and 18th century

may have played an important role in sustaining growth during this period.

Allen (2009a) argues that the Industrial Revolution occurred in Britain around 1800 because

innovation was uniquely profitable then and there. His theory relies on growth in the 17th century

leading to high real wages in England in the 18th century as well as the development of a large

coal industry. High wages and cheap coal made it profitable to invent labor saving technologies

in textiles such as the spinning jenny, water frame, and mule, as well as coal burning technologies

such as the steam engine and coke smelting furnace. While our theory does not point to the

Industrial Revolution as the genesis of economic growth, Allen’s theory helps explain how growth

was sustained and the particular direction it took that led to the huge fall in the importance of land

in production that we estimate later in the paper.
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3 A Malthusian Model of the Economy

The simple analysis in section 2 makes a number of strong assumptions. In the remainder of the

paper, we explore a richer framework that allows us to relax some of these. Most importantly, we

model the evolution of the population. Thus, we can present novel estimates of the strength of

Malthusian population forces in pre-industrial England. We explicitly incorporate plague shocks

into this part of the model, which helps the model distinguish between measurement error and

true variation in the population. We also incorporate capital accumulation into the model, explore

alternatives to the assumption that labor supply was proportional to the population, allow for

a falling importance of land in production after the onset of industrialization, and estimate the

slope of the labor demand curve using the entire data set as opposed to identifying it from the

Black Death. This richer framework allows us to explore the robustness of our conclusions from

section 2 and to present a number of additional interesting results.

While our focus is on the pre-industrial period, our data extends well into the early industrial

period. It is therefore important for our model to capture both the character of the pre-industrial

economy and the early industrial economy. The role of land in production is particularly im-

portant in this regard. Prior to the Industrial Revolution, land was a hugely important factor of

production. However, the advent of steam power led to a sharp fall in the role of land in produc-

tion as fossil fuels substituted for human and animal power in the production of energy (and the

role of food production in the economy shrank). To capture this change, we distinguish between

the pre-industrial period and the early industrial period and allow the importance of land in pro-

duction to change after the onset of the Industrial Revolution. Section 3.1 presents our model of

the pre-industrial economy, while section 3.2 presents our model of the early industrial economy.

3.1 A Model of the Pre-industrial Economy

Output is produced with land, capital, and labor according to the following production function:

Yt = Ft(Z,Kt, Lt) = AtZ
αKβ

t L
1−α−β
t ,

whereKt denotes capital.11 Producer optimization gives rise to the following labor demand curve:

Wt = (1− α− β)AtZ
αKβ

t L
−α−β
t .

11Appendix C presents results for a more general production function.
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Taking logarithms of this equation yields

wt = φ̃+ at + βkt − (α+ β)lt, (3)

where φ̃ = log(1− α− β) + α logZ.

Producers accumulate capital to the point where the marginal product of capital is equal to its

user cost. This gives rise to the following capital demand equation:

rt + δ = βAtZ
αKβ−1

t L1−α−β
t , (4)

where rt is the rental rate for capital and δ is the rate of depreciation of capital. Since we do not

have data on capital for the pre-industrial period, we use the capital demand equation—equation

(4)—to eliminate Kt from the labor demand equation—equation (3). Taking logs of the resulting

equation yields

wt = φ̃′ +
1

1− β
at −

α

1− β
lt −

β

1− β
log (rt + δ) , (5)

where

φ̃′ =
β

1− β
log β + log (1− α− β) +

α

1− β
logZ.

The logarithm of productivity at is the sum of a permanent and transitory component:

at = ãt + ε2t, (6)

where ε2t ∼ N (0, σ2
ε2) is the transitory component and ãt is the permanent component of produc-

tivity, which follows a random walk with drift

ãt = µ+ ãt−1 + ε1t, (7)

with ε1t ∼ N (0, σ2
ε1). Both ε1t and ε2t are independently distributed over time. The transitory

component of productivity may reflect both measurement error and true transitory variation in

productivity (e.g., due to transitory variation in weather). As in most macroeconomic models,

productivity is a catch-all variable capturing the influence of all variables that are not explicitly

modeled in the production function. Relative to the model in section 2, we now incorporate capital

accumulation. Our measure of productivity is narrower as a consequence. Productivity in this

model nonetheless captures a number of features of reality in addition to technology, including
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institutions, the effects of international trade, and colonial exploitation.

The average growth rate of productivity is given by the parameter µ. As in section 2, we allow

for two breaks in µ, i.e., two changes in the average growth rate of productivity. (We allow the

variances of the transitory and permanent productivity shocks—σ2
ε1 and σ2

ε2—to break at the same

times.) We fix one of these breaks in 1810. This break captures the Industrial Revolution. We allow

for another break earlier in the sample between 1550 and 1800.

To pin down the timing of the first break, we estimate a mixture model. Since µ, σ2
ε1 and

σ2
ε2 break twice, they take on three values: one for each regime. We denote these as µ(i) with

i ∈ {1, 2, 3} (with analogous notation for σ2
ε1 , and σ2

ε2). From the beginning of our sample until

1540, µ = µ(1). From 1550 until 1800, µ = (1− I)µ(1) + Iµ(2), where I is an indicator variable that

switches from zero to one at the time of the first break. Finally, from 1810 until 1860, µ = µ(3). The

indicator variable I has a multinomial distribution with probabilities of switching from zero to one

at each date between 1550 and 1800. We estimate the probabilities of the multinomial distribution

for I . The prior for these probabilities is a Dirichlet distribution with concentration vector cb ×

(1, ..., 1). We choose a small value for cb. This ensures that each draw from the distribution is close

to a corner of the distribution, i.e. chooses a specific break date. In particular, we set cb = 0.001.12

The output from our estimation of these probabilities is a posterior probability distribution over

break dates.

We assume that the labor force in the economy is proportional to the population and that each

worker works Dt days per year. This implies that

Lt = ΛDtNt,

where Nt denotes the population and Λ is a constant. Taking logs of this equation and using the

resulting equation to eliminate lt in equation (5) yields

wt = φ+
1

1− β
at −

α

1− β
(dt + nt)−

β

1− β
log (rt + δ) , (8)

where φ = φ̃′ − α/(1− β)λ.

A central aspect of our model is the law of motion for the population. Following Malthus

12For a simple exposition of the Dirichlet distribution and the role of the concentration parameter, see Stan Func-
tion Reference, section 23: https://mc-stan.org/docs/functions-reference/dirichlet-distribution
.html.
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(1798), we assume that population growth is increasing in real income:

Nt

Nt−1
= Ω(Wt−1Dt−1)γΞt,

where Ω is a constant, γ is the elasticity of (gross) population growth with respect to real income,

and Ξt denotes other (exogenous) factors affecting population growth. Taking logarithms of this

equation yields

nt − nt−1 = ω + γ(wt−1 + dt−1) + ξt. (9)

Malthus argued that both the birth rate and the death rate varied with real income. He de-

scribed “preventive checks” on population growth that lowered birth rates. These included con-

traception, delayed marriage, and regulation of sexual activity during marriage. Malthus also

described “positive checks” on population growth that raised death rates. These include dis-

ease, war, severe labor, and extreme poverty. Modern research on fertility emphasizes a quantity-

quality trade off where parents invest in child quality rather than child quantity when their income

rises (Becker and Lewis, 1973, Becker and Barro, 1988). In our model, the parameter γ captures the

combined effect of all these effects.

We allow for two types of exogenous population shocks:

ξt = ξ1t + ξ2t. (10)

First, we allow for “plague” shocks:

exp(ξ1t) ∼

 β(β1, β2), with probability π

1, with probability 1− π
(11)

These plague shocks occur infrequently (with probability π) but when they occur, they kill a (po-

tentially sizable) fraction of the population. The fraction of the population that survives follows a

beta distribution β(β1, β2). In addition to the plague shocks, we allow for a second type of pop-

ulation shock: ξ2t ∼ N (0, σ2
ξ2

). Both of the population shocks are independently distributed over

time. Together, these population shocks are meant to capture a host of potential influences on

population growth, in addition to plagues.
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Table 2: Energy Consumption in England and Wales

1560 1700 1750 1800 1850
Draught Animals 21.1 32.8 33.6 34.3 50.1
People 14.9 27.3 29.7 41.8 67.8
Firewood 21.5 22.5 22.6 18.5 2.2
Wind 0.2 1.4 2.8 12.7 24.4
Water 0.6 1.0 1.3 1.1 1.7
Coal 6.9 84.0 140.8 408.7 1,689.1

Total 65.1 168.9 230.9 517.1 1,835.3
Total Less Coal 58.2 84.9 90.1 108.4 146.2

Note: The figure plots energy consumption in England and Wales from various sources in petajoules.
It reproduces a portion of Table 2.1 in Wrigley (2010).

3.2 A Model of the Early Industrial Economy

The last century of our data covers the early industrial period in England. A crucial development

over this period was the rapid fall in the importance of land as a factor of production. The primary

driving force in this development was the introduction of the steam engine powered by fossil fu-

els. This technological advance meant that the production of energy was no longer land intensive

(Wrigley, 2010). Table 2 presents data on energy consumption from various sources over our sam-

ple period. Prior to the introduction of steam power, the vast majority of energy was derived from

draught animals, human power, and firewood. All three of these energy sources were extremely

land intensive. Both draught animals and human power rely on the production of food (feed in

the case of animals) and firewood requires vast forests. In this environment, the fixed nature of

land created a severe bottleneck for economic expansion. Our pre-industrial model captures this

by explicitly modeling the reliance of production on land.

With the introduction of the steam engine, energy production was gradually decoupled from

land use. This dramatically reduced the importance of land in production. The last two columns

in Table 2 show just how enormous the increase in energy consumption was during even the

relatively early phase of the industrial era. By 1850, total energy consumption had risen by over

a factor of 10 relative to 1700 with virtually all of this increase coming from coal. It is clear that

nothing even remotely like this would have been possible without steam power or some other

dramatically less land intensive energy source.

To capture this change parsimoniously, we allow the exponents in the production function to

change after the onset of the Industrial Revolution. Acemoglu and Restrepo (2018, 2019b) show

how a production function that is explicit about how intermediate inputs (such as energy) pro-
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duced by completing various tasks and new technologies (such as the steam engine) can change

the factor content of production is equivalent to a traditional production function written in terms

of primary factors only as long as the exponents on the factors are allowed to vary with technical

progress. We take this approach and assume for the early industrial period that

Yt = Ft(Z,Kt, Lt) = AtZ
αtKβtL1−αt−βt

t , (12)

which is the same as before except that the exponents αt and βt are now time varying. A fall in

αt will then capture the fall in the importance of land as a factor of production, and the evolution

of βt will determine to what extent it is capital or labor that increases in importance. We do not

model the use of fossil fuels explicitly. Their use is reflected in the changing output elasticities and

in higher productivity.

In this case, the labor demand curve—equation (8)—becomes:

wt = φt +
1

1− βt
at −

αt
1− βt

(dt + nt)−
βt

1− βt
log (rt + δ) , (13)

where:

φt =
βt

1− βt
log βt + log (1− αt − βt) +

αt
1− βt

logZ − (αt + βt)λ.

The fact that αt and βt can change implies that more data is needed to identify the model: an

increase in wages for a given level of labor supply could be due to an increase in at or a fall in

αt. To address this issue, we make use of the demand curves for land and capital and data on the

quantity of capital and the price of land after 1760. We assume that potential renters and owners

of land will trade until the rental price of land equals its marginal product:

St = αtAtZ
αt−1KβtL1−αt−βt

t (14)

where St denotes the rental price of land. Capital demand is the same as before—equation (4)—

except that αt and βt are time varying. Taking logarithms and manipulating the land, capital and

labor demand curves yields:

st = wt + nt + dt − logZ + logαt − log(1− αt − βt) + λ (15)

log(rt + δ) = wt + nt + dt − kt + log βt − log(1− αt − βt) + λ (16)
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These two extra equations pin down αt and βt. Simple manipulation of the demand curves for

labor, land, and capital—which we spell out in detail in Appendix D—establishes three intuitive

results. First, an increase in st (land rents) holding other variables constant implies an increase

in αt and a decrease in both βt, and 1 − αt − βt. Second, an increase in rt (the return on capital)

holding other variables constant implies an increase in βt and a decrease in both αt, and 1−αt−βt.

Third, an increase inwt (wages) holding other variables constant implies and increase in 1−αt−βt
and a decrease in both αt and βt. At a mechanical level, we are adding two equations per time

period—equations (15) and (16)—and two observable variables per time period—st and kt.

3.3 Measuring Productivity with Structural Transformation

Allowing the exponents in the production function to change raises an important complication. In

this case, At is no longer a natural measure of productivity.13 Productivity is meant to capture the

rate at which inputs can be converted into outputs. In settings with multiple inputs (or outputs),

how to operationalize this concept is ambiguous. In some cases, such as Yt = AtF (Xt) where Xt

denotes a vector of inputs, all reasonable measures of productivity agree (in this case At). But in

the more general case of Yt = Ft(Xt), this is not the case. Caves, Christensen, and Diewert (1982)

introduce the notion of a Malmquist productivity index for a quite general case of production

technologies, based on ideas in Malmquist (1953). This index uses the notion of the distance

between the input-output vector chosen at one point in time and the technological frontier at

another point in time. For example, the distance of the input-output vector that is chosen in

period t + 1 from the time t technological frontier is Dt(Xt+1, Yt+1) = Ft+1(Xt+1)/Ft(Xt+1)—i.e.,

actual output at time t + 1 divided by counterfactual output using the input vector of time t + 1

but the time t production function. Analogously, the distance of the input-output vector that is

chosen at time t from the time t+ 1 technological frontier is Dt+1(Xt, Yt) = Ft(Xt)/Ft+1(Xt).

Caves, Christensen, and Diewert (1982) recommend using a geometric average of

Dt(Xt+1, Yt+1) and Dt+1(Xt, Yt)
−1 as a Malmquist index of productivity:

Mt

Mt−1
=

√
Ft(Z,Kt, Lt)Ft(Z,Kt−1, Lt−1)

Ft−1(Z,Kt, Lt)Ft−1(Z,Kt−1, Lt−1)
, M0 = 1. (17)

13One simple way to see this is to consider a change in the units that we use to express labor. Suppose L̈t ≡ ψLt,
then: Yt = AtZ

αtKβt
t L

1−αt−βt
t = (At/(ψ

1−αt−βt))ZαtKβt
t L̈

1−αt−βt
t . With the new units for labor, it is At/ψ1−αt−βt

rather than At that multiplies the factors of production. If αt and βt change over time, At/ψ1−αt−βt will behave
differently from At. Clearly, a more general concept of productivity is needed. See Appendix E for a discussion of how
the Malmquist index (introduced below) avoids this issue.
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We adopt this recommendation. With constant exponents α and β, the growth rates of Mt and At

are the same (i.e., Mt/Mt−1 = At/At−1). More generally, however, the growth rate ofMt will differ

from the growth rate of At in important ways. See Appendix E for a more detailed discussion of

the Malmquist index.

With the production function (12), the logarithm of the Malmquist index is

m̂t = ât + α̂t logZ + β̂tk̄t − (α̂t + β̂t)(d̄t + n̄t + λ), (18)

where hats denote deviations from the previous period, x̂t = xt−xt−1, and bars denote the average

of period t−1 and period t, x̄t = (xt−1+xt)/2. Once again, if αt and βt are constant, this expression

just collapses to: m̂t = ât.

As in the pre-industrial era, we assume that the logarithm of productivity (mt) is subject to

permanent and transitory shocks in the early-industrial era:

mt = m̃t + ε2t, (19)

where

m̃t = µ+ m̃t−1 + ε1t, (20)

ε1t ∼ N (0, σ2
ε1), ε2t ∼ N (0, σ2

ε2), and ε1t and ε2t are independently distributed over time. Here, m̃t

is the permanent component of productivity, which follows a random walk with drift, while ε2t is

the transitory component of productivity.

3.4 Data on Interest Rates, Land Rents, Capital, and Days Worked

For the pre-industrial period, we use data on rates of return to estimate the evolution of the capital

stock. Figure 8 plots our data on rates of return on agricultural land and “rent charges” compiled

by Clark (2002, 2010). The rate of return on agricultural land is measured as R/P , where R is the

rent and P is the price of a piece of land. “Rent charges” should not be confused with land rents.

Rent charges were yields on perpetual nominal debt obligations secured by land or buildings (i.e.,

a collateralized loan). These are also measured as R/P , where R is the annual payment and P is

the price of the obligation (which was usually much smaller than the value of the collateral). See

Clark (2010) for more detail.

We view our series on rates of return of agricultural land and rent charges as two noisy mea-
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Figure 8: Rates of Return on Land and Rent Charges
Note: The figure plots the data we use on rates of return on land and rent charges. These data are from Clark
(2002, 2010).

sures of the rate of return on capital in England over our sample period. In other words, we

assume that rt = r̃it + ιrit, where rt denotes the true rate of return on capital at time t, r̃it denotes

noisy measure i, and ιrit ∼ tνir(0, σ̃
2
ir) denotes measurement error. In periods when neither mea-

sure is available, we assume that the interest rate follows a random walk with truncated normal

innovations: rt ∼ N(0,.2)(rt−1, 0.012).

We date the shift from the pre-industrial period to the early industrial period to between 1760

and 1770. This is a traditional date for the beginning of the Industrial Revolution. Also, estimating

a changing production function—changes in αt and βt—requires systematic data on rents and

the capital stock. The capital stock series we use is from Feinstein (1988) and is only available

after 1760. Figure 9 plots the data on land rents and the capital stock that we use. The land

rents series we use is an index from Clark (2002, 2010). Feinstein’s series is for the net capital

stock and is expressed in millions of pounds in 1851-1860 prices. It reflects both industrial and

agricultural investment. We assume that both of these variables are observed with measurement

error st = s̃t + ιst and kt = k̃t + ιkt , where st and kt denote the true land rent and capital stock,

respectively, s̃t and k̃t denote our noisy measures of land rents and the capital stock, respectively,

and ιst ∼ tνs(0, σ̃2
s) and ιkt ∼ tνk(0, σ̃2

k) denote the measurement error in these two variables.

27



Figure 9: Land Rents and Capital after 1760
Note: The figure plots the data we use on land rents from (Clark, 2002, 2010) and the net capital stock from
(Feinstein, 1988, table VIII).

3.5 Priors and Estimation Details

We use Bayesian methods to estimate our model. In particular, we use a Hamiltonian Monte Carlo

sampling procedure (Gelman et al., 2013, Betancourt, 2018).14 Table 3 lists the priors we assume

for the model parameters. In all cases, we choose highly dispersed priors. Most of the priors

are self-explanatory. But some comments are in order. Our baseline estimation for the slope of

the labor demand curve is based on movements in real wages and the population between 1340

and 1360 as discussed in section 2. With capital, the slope of the labor demand curve becomes

α̃ = α/(1−β). We set a uniform for β between 0 and 1 and recover α from α = α̃(1−β). The prior

listed for β in Table 3 is for this case. We also present results where (α, β) is estimated structurally

from our full model. We explain the prior for that case below.

The prior for ψ is set such that the peak population before the Black Death is between 4.5

and 6 million with 95% probability. This range encompasses the estimates of Clark (2007b) and

Broadberry et al. (2015). Rather than specifying priors for β1 and β2, we specify priors for the

mean of ξ1 which we denote µξ1 = β1/(β1 +β2) and the pseudo sample size of ξ1 which we denote

νξ1 = β1 + β2. The priors we choose for these parameters follow the recommendations of Gelman

14We implement this procedure using Stan (Stan Development Team, 2017).
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Table 3: Priors for Model Parameters

Parameter Prior Parameter Prior
β U(0, 1) γ U(−2, 2)

ϕx N (0, 1002) ψ N (10.86, 0.072)

ω N (0, 1) µ N (0, 1)

µξ1 U(0.5, 0.9) νξ1 PI(1, 1.5)

π U(0, 0.5) δ N(0,0.2)(0.1, 0.052)

σ2
ε1 IΓ(3, 0.001) σ2

ε2 IΓ(3, 0.005)

σ2
ξ2

IΓ(3, 0.005) σ2
n IΓ(3, 0.005)

σ2
d IΓ(3, 0.005) σ2

ri IΓ(3, 0.005)

σ̃2
d IΓ(3, 0.005) σ̃2

s IΓ(3, 0.005)

σ̃2
k IΓ(3, 0.005) ν−1

n U(0, 1)

ν−1
d U(0, 1) ν−1

s U(0, 1)

ν−1
k U(0, 1) ν−1

ir U(0, 1)

et al. (2013, p. 110) for a flat prior for a beta distribution. Figure A.3 plots the prior densities for

the standard deviations of ε1, ε2, and ξ2. In section 4.3, we discuss how varying our priors affects

our main results.

To discipline the behavior of αt and βt after 1760, we assume that the simplex (αt, βt, 1−αt−βt)

follows a Dirichlet distribution with concentration vector cs × (αt−1, βt−1, 1− αt−1 − βt−1), where

cs = 3. For any value of cs, this implies that the mean of αt is αt−1 and the mean of βt is βt−1. The

choice cs = 3 implies that, with αt−1 = βt−1 = 1/3, the distribution is uniform over simplexes.

A smaller value of cs would concentrate the prior distribution towards the corners of the simplex

— draws where one of the coefficients is close to 1 and the others close to 0. A larger value, on

the other hand, concentrates the prior towards the mean of the distribution — most draws would

be close to (αt−1, βt−1, 1 − αt−1 − βt−1). Thus, our prior choice is a way to center the distribution

around the previous value of the coefficients, while allowing them to change if the likelihood

dictates it. In the case where (α, β) is estimated structurally before 1760, our prior distribution for

(α, β, 1− α − β) is a Dirichlet distribution with concentration vector (1, 1, 1) = 3× (1/3, 1/3, 1/3)

which, once again, corresponds to a uniform distribution over simplexes.

We allow for a structural break in the probability of a plague π in 1680. The timing of this

break is chosen to immediately follow the Great London Plague of 1665.15 This break is meant to

15Notice that the change in the population between the 1660s and the 1670s is affected by the Great London Plague.
So, ξ1t for t = 1670 will be affected by the Great London Plague. This is why we assume that ξ1t for t ≥ 1680 is
governed by a different π than earlier values of ξ1t.
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capture the fact that plagues are less frequent in the latter part of our sample. The exact timing of

this break does not affect our main results in a material way.

Finally, we need to normalize some of the variables in our model. Labor demand—equation

(13)—features logZ and λ, which we normalize to 0. The observed wage, land rents, and our

capital series are indices. They are thus not normalized in a theoretically consistent fashion. For

wages, for instance, we would want to observe the marginal product of an additional unit of labor

expressed in units of aggregate output. What we observe is an index that is normalized to 100 in

1860. Our Bayesian framework allows us to handle this issue in a straightforward fashion. For

wages we assume that wt = ϕw + w̃t, where w̃t is the observed wage, wt is the true wage, and

ϕw ∼ N (0, 1002) is a normalization constant. For land rents and the capital stock, we add the

following normalization constants to their measurement equations: ϕs ∼ N (0, 1002) and ϕk ∼

N (0, 1002), respectively. We reproduce the equations and distributional assumptions of our full

model in Appendix F for convenience.

4 Estimates of Productivity from the Full Malthusian Model

We present results on the evolution of productivity in England for several variants of the model

presented in section 3. We first consider a case in which we maintain our earlier assumptions that

the importance of land in production (α) is constant, days worked are constant, and that the slope

of the labor demand curve is pinned down by movements in wages and the population at the

time of the Black Death. This case differs from the simple model presented in section 2 in that we

have added capital and the Malthusian model of population dynamics. We refer to this case as the

‘constant α, β’ case.

Figure 10 presents results on the evolution of productivity over time for the constant α, β

case (gray solid line). We also include results for the simple model from section 2 for comparison

(black solid line). While the overall pattern is similar, the constant α, β case of the full model

implies slower productivity growth than the simple model. The reason for this is that the full

model incorporates capital accumulation. As a result, a portion of the increase in labor demand

over our sample period is attributed to capital accumulation as opposed to productivity and less

is left in the residual to be attributed to productivity growth.16

16Figure A.2 presents our estimate of the timing of the pre-Industrial structural break in productivity growth in the
constant α, β case, our baseline case discussed below, as well as several other variants of the model. All these cases
strongly favor a break in 1600.
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Figure 10: Permanent Component of Productivity
Note: The figure plots our estimates of the evolution of the permanent component of productivity ãt over
our sample period for several variants of our full Malthusian model (natural logarithm relative to its value in
1250).

4.1 Productivity and the Falling Importance of Land

The models we have discussed above make the standard, but highly unrealistic, assumption that

the elasticity of output with respect to land α is constant through the early industrial period up to

1870. We now relax this assumption by allowing the production function parameters α and β to

change over time after the onset of the Industrial Revolution. As we describe in section 3, we use

data on the quantity of capital and the price of land after 1760 to pin down the evolution of αt and

βt during the early industrial period.

Figure 11 plots our estimates of the evolution of αt and βt over time. Recall that αt corresponds

to the elasticity of output with respect to land, while βt corresponds to the elasticity of output with

respect to capital. We estimate a value for α prior to the Industrial Revolution of 0.54 (0.05), and

a value for β of 0.23 (0.07).17 After 1760, we estimate a sharp fall in αt. By 1860, αt had fallen by

roughly half to a value of 0.29. This sharp fall in αt reflects the nature of technical change during

the Industrial Revolution. As we discuss in section 3, the advent of the steam engine powered by

17As we discuss in section 2, the land share of production differs from α when the elasticity of substitution between
land and labor differs from one. In particular, if land and labor are complements in production the land share is lower
than α. Explicitly, allowing for a production function that is more general than the Cobb-Douglas production function
is complicated when the structure of the production function is changing as it is for us after 1760.
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Figure 11: Parameters of the Production Function
Note: The figure plots our estimates of the evolution of the parameters αt and βt in our baseline case. They
are constant until 1770 by assumption. The black line is the mean of the posterior for each period and the gray
shaded area is the 90% central posterior interval.

fossil fuels meant that the production of energy was no longer land intensive. This led to a large

fall in the importance of land in production. As αt falls, both βt and 1 − αt − βt (the elasticity of

output with respect to labor) rise. Between 1760 and 1860, βt increased from 0.23 to 0.35, while

1− αt − βt increased from 0.23 to 0.36.18

Allowing for a fall in the importance of land in production after 1760 has a substantial effect on

our estimate of productivity growth after that date. The dashed black line in Figure 10 plots our

estimates of productivity growth in this case, which we refer to as our baseline case. Productivity

growth up until 1760 is very similar to the constant α, β case, but after 1760 it is much slower.

In the constant α, β case, our estimate of average productivity growth between 1800 and 1870 is

16% per decade (Table 4). When we allow αt and βt to change in the early industrial period, our

estimate of average productivity growth falls to a more modest level of 5% per decade over this

period. This baseline case is the specification used in Figures 1 and 2 of the introduction. Also, the

numerical estimates discussed in the abstract and introduction are for this case.

Intuitively, in the constant α, β case with a large α, the marginal product of labor is sharply

downward sloping. After 1760, England experienced explosive growth in its population (Figure

18Estimates of µ and γ are discussed below. Estimates of other model parameters are presented in Table A.1.
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Table 4: Productivity Growth

Mean St Dev 2.5% 97.5%
Simple

µa,1 0.00 0.01 -0.01 0.02
µa,2 0.04 0.02 0.02 0.10
µa,3 0.19 0.01 0.17 0.22

Constant α, β
µa,1 -0.00 0.01 -0.01 0.01
µa,2 0.03 0.01 0.01 0.05
µa,3 0.16 0.02 0.11 0.20

Baseline
µa,1 -0.00 0.01 -0.01 0.01
µa,2 0.02 0.01 0.01 0.04
µa,3 0.05 0.01 0.03 0.08

Note: The table presents the mean, standard deviation, 2.5% quantile, and 97.5% quantile of
the posterior distribution we estimate for average productivity growth µ for three cases of
our model. See table A.1 for estimate of the posterior distribution of other model parame-
ters.

4). This led to strong downward pressure on real wages. Since real wages actually rose over this

period, large increases in productivity are needed to fit the data. When α is allowed to fall after

1760, the labor demand curve becomes less downward sloping, which implies that the down-

ward pressure on real wages from population growth is smaller and less productivity growth is

therefore needed to explain the increase in real wages.

The model with falling importance of land after 1760 attributes a substantial portion of the ex-

plosive economic growth of the early industrial period not to productivity growth but to structural

change. Prior to the Industrial Revolution, land was a severe bottleneck for economic growth. The

advent of the coal-powered steam engine changed this dramatically, freeing the economy to grow

more rapidly. Whether one wants to view this change as an increase in productivity (as we do in

the constant α, β case) or as structural change is a matter of how detailed a model one considers.

Productivity captures both forces in the simple model. In the more detailed model of this sec-

tion, we provide an explanation for a large chunk of this variation in the early industrial period,

through the lens of structural change.

The data we use on the capital stock and land rents starts in 1760. We view these variables

as being unobserved prior to that time. Figure A.4 plots what our model implies about their

evolution over our entire sample period. We infer that capital grew at a modest pace prior to
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Figure 12: Days Worked per Worker in England, 1260-1840
Note: The figure presents an estimate of the evolution of days worked per worker in England from Humphries
and Weisdorf (2019).

1600, with faster growth thereafter. We infer relatively stable land rents prior to 1600 with growth

thereafter.

4.2 Days Worked and Structural Identification of the Slope of Labor Demand

The results we have presented up to this point have made the assumption that labor supply was

proportional to the population of England over our sample. This is a common assumption in the

literature. However, recent work by de Vries (2008) and Humphries and Weisdorf (2019) argues

that days worked per worker fluctuated substantially over our sample. Figure 12 plots Humphries

and Weisdorf’s series. It indicates that days worked dropped sharply after the Black Death and

then recovered to its previous level by the early 17th century. After that, days worked kept in-

creasing, rising far above their previous level.19

Figure 13 presents results on productivity for a case where we incorporate Humphries and

19Other researchers have referred to the increase in worker industriousness over this period as an “Industrious
Revolution” (de Vries, 1994, 2008). However, the degree to which days worked changed over time in England is contro-
versial. Comparisons of direct estimates by Blanchard (1978) for 1400-1600 and Voth (2000, 2001) for 1760-1830 support
the idea that days worked were low in the post-Black Death period and rose sharply in the 17th and 18th centuries.
Earlier indirect estimates by Clark and Van Der Werf (1998), however, suggest modest changes in days worked over
our sample. Humphries and Weisdorf (2019) argue that their new series on the income of workers on annual contracts
represents an important improvement relative to the series used by Clark and Van Der Werf (1998).
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Figure 13: Permanent Component of Productivity
Note: The figure plots our estimates of the evolution of the permanent component of productivity ãt over
our sample period for several variants of our full Malthusian model (natural logarithm relative to its value in
1250).

Weisdorf’s 2019 estimates of days worked into our analysis. Here, we assume that days worked

are exogenous and are measured with error dt = d̃t + ιdt , where dt denotes the true number of

days worked per worker, which are unobserved, d̃t denotes Humphries and Weisdorf’s estimates

of days worked, and ιdt ∼ tνd(0, σ̃
2
d) denotes the measurement error.20 Allowing for changing

days worked does not affect our conclusion about the timing of the onset of productivity growth.

However, we do estimate a somewhat larger increase in average productivity growth after 1600 in

this case. Intuitively, more productivity is needed to compensate for the additional labor supply

associated with increased days of work. With Humphries and Weisdorf’s estimates of variable

work hours, we estimate that average productivity growth µ is 3% per decade for the period 1600-

1800 and 6% per decade for the period 1810-1870.

We have used the Black Death as an exogenous shock to identify the slope of the labor demand

curve in the pre-industrial era. We also consider the alternative approach of using the structure of

the full model to identify this slope. In this case, we specify a relatively diffuse prior for both α

and β and use Bayesian updating to calculate a posterior mean for these and for the slope of the

labor demand curve conditional on the entire sample, as we do for other parameters. We are then

20Humphries and Weisdorf do not provide estimates for 1250, 1850, and 1860. We extrapolate days worked on these
dates assuming that dt = dt−1 + ηt where ηt ∼ N (0, σ2

d).
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relying on the Malthusian model of population dynamics to account for the endogeneity of the

population. Figure 13 presents results on productivity for this case. The results are very similar to

the baseline case.

4.3 Robustness

Alternative Real Wage Data: Our results up to this point use real wage data for unskilled builders

from Clark (2010). Figure A.5 presents five alternative productivity series where we instead use

other wage series. First, we present estimates of productivity using the following day wage series:

1) Clark’s (2010) real wages series for farm laborers, 2) Clark’s (2010) real wages series for building

craftsmen, 3) Allen’s (2007) real wage series for the period 1770 onward (with our baseline wage

series before that time). We also present estimates of productivity based on the assumption that

the builders, farmers, and craftsmen series from Clark (2010) are all noisy signals of the underlying

true wage. Finally, we use Humphries and Weisdorf’s (2019) annual income series along with the

assumption that days worked are constant. We do this robustness analysis for the structural slope

case. These alternative productivity series yield similar results to baseline productivity series,

although there is some divergence early in the sample period.

Population Data: Our results up to this point use population data prior to 1540 from Clark

(2010). Figure A.6 presents estimates of productivity using population data from Broadberry et al.

(2015) for the period prior to 1540. Broadberry et al.’s (2015) estimates of the population are infre-

quent and irregular in their frequency. There are quite a few decades for which Broadberry et al.

(2015) have no estimate, e.g., they present no estimate between 1450 and 1522. In this robustness

analysis, we view the population as an unobserved variable in decades for which we do not have

an estimate from Broadberry et al. (2015). Our results on the evolution of productivity for this case

are very similar to our baseline model.

Break Dates: Figure A.7 compares the evolution of the permanent component of productivity

for four different assumptions about when the pre-Industrial Revolution break to the productivity

component occurred. Recall that Figure 10 presents the evolution of the permanent component

of productivity integrating over the probability of breaks occurring at different dates as in Figure

A.2. Figure A.7 compares these results with results when we condition on the break occurring

at a specific date. We do this for the baseline case and present results for several different dates

between 1550 and 1760. These alternative results are very similar.

Priors: Figure A.8 presents estimates of productivity using different prior distributions than
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we use in our main analysis. First, we present results for a case where we change the prior on

σε1—the variance of permanent productivity shocks—to be IΓ(3, 0.005), i.e., the same as the prior

on the other productivity and population shocks. Second, we present results for a case where we

change the prior on ψ—the level of the population prior to 1540—to be N (10.86, 102), i.e., much

wider than in our main analysis. In both cases, the resulting productivity series are very similar

to our main results. Other priors are quite dispersed.

Comparison with Clark (2010, 2016): Our estimates of productivity differ substantially from

those of Clark (2010, 2016). Appendix G presents a detailed decomposition of the factors lead-

ing to the differences. Several factors are important. One important contributor to the difference

between our series and Clark’s (better known) 2010 series is an error in that series that leads to a

spurious 25 log point drop between 1540 and 1550. Using the average of factor output elasticities

at time t and t−1 when calculating changes in productivity between time t and t−1 also explains

an important part of the difference in our results relative to Clark’s, especially for the period prior

to 1600. Differences in the factor prices and factor output elasticities implied by our approach,

relative to those used by Clark, explain the remaining differences.

5 Liberating the Economy from the Iron Law of Wages

In section 4, we estimate a gradual increase in productivity growth µ and a sharp fall in the im-

portance of land in production α after the onset of industrialization. Here we discuss how both

of these developments—as well as our small estimate of the elasticity of population growth to

real income γ (see discussion below)—contributed to liberating the economy from the Malthu-

sian “iron law of wages,” i.e., the notion that wages tend to a very low (subsistence) level. These

estimates also reconcile the Malthusian model with episodes historians have identified prior to

the Industrial Revolution when some parts of the world have experienced substantial economic

growth over a sustained period of time, sometimes several hundred years. Goldstone (2002) refers

to these episodes as efflorescences. They include ancient Greece, ancient Rome, Song China, the

Islamic golden age, and the golden age of Holland, to name but a few. These episodes have often

been used as evidence against the Malthusian model (e.g., Persson, 2008).

It is important to recognize that steady positive productivity growth in a Malthusian model

like ours results in a persistent force pushing wages higher. As wages rise, a counteracting force

comes into play pushing wages lower (population growth). The strength of the force pushing

wages lower is increasing in the level of the real wage. This implies that as wages rise the down-
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ward force gets stronger and stronger and eventually chokes off further increases in wages. In

other words, there is a steady state real wage for each level of average productivity growth in a

Malthusian model. This steady state is not at subsistence. Rather, the steady state real wage is

increasing in average productivity growth.

In appendix H, we show that the steady state wage in our Malthusian model is given by

w̄ =
µ

αγ
+ constant, (21)

As we discussed above, faster productivity growth µ results in a stronger force pushing wages up

and therefore a higher steady state wage. The strength of the counteracting force—which we call

the Malthusian population force—is governed by two parameters in our model: the importance

of land in production α and the elasticity of population growth with respect to per capita income

γ. Intuitively, α determines the slope of the long-run labor demand curve, i.e., how rapidly real

wages fall as population rises, while γ determines how rapidly the population increases when real

wages are high.

With zero productivity growth, the steady state real wage is potentially very low. Its level

depends on factors outside of the scope of our analysis such as hygiene, the marriage rate, con-

traceptive technology, and the level of violence in society. With positive productivity growth, the

steady state real wage can be much higher. Whether it is depends on the size of α and γ. We

discussed our estimates of α in section 4. We next turn to our estimates of γ.

5.1 The Responsiveness of Population Growth to Income

Table 5 presents our estimate of the elasticity of (gross) population growth—i.e., Nt+1/Nt—with

respect to real income γ for our baseline case and the case with variable days worked. In our

baseline case, our estimate of γ is extremely small at 0.03. This means that a 100 log point increase

in real wages increases population growth per decade by only 3 log points. Between 1270 and 1440,

real wages in England rose by 161% (or 96 log points). So, this increase in real wages stimulated

population growth by a mere 3 log points per decade.

Table 5 also presents results on γ for our variable days worked case. In this case, we esti-

mate a somewhat larger γ of 0.09. The lower bound of the credible interval in this case exceeds

zero. While this estimate is somewhat larger, it remains very small. Allowing for changes in days

worked, real incomes in England rose by 70% between 1270 and 1440. A γ of 0.09 implies that this
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Table 5: Estimates of γ

Mean St Dev 2.5% 97.5%
Baseline (constant days worked) 0.03 0.05 -0.06 0.12

Variable days worked 0.09 0.02 0.05 0.14

Note: The table presents the mean, standard deviation, 2.5% quantile, and 97.5% quantile of the posterior
distribution we estimate for the elasticity of population growth to income γ. The first row presents results
assuming constant days worked (our baseline case), while the second row presents results assuming days
worked vary as in Humphries and Weisdorf (2019).

stimulated population growth by 5 percentage points per decade, while a doubling of real income

would stimulate population growth by 6 percentage points per decade.

Another way to gauge the quantitative magnitude of our estimates of γ is to calculate the half-

life of population dynamics after an exogenous shock to the level of the population, e.g., due to a

plague. Assuming for simplicity that days worked and the return on capital are constant, that all

shocks are equal to their average value, and that there’s no productivity growth (µ = 0), we show

in appendix H that the dynamics of the population after an initial disturbance are given by the

following AR(1) process:

nt+1 =

(
1− γα

1− β

)
nt + constant. (22)

The speed of population recovery after a plague-induced decrease is, thus, governed by 1−γα/(1−

β) in this case. In particular, the half-life of the population dynamics, i.e., the time it takes for

the population to recover half of the way back to steady state after a plague-induced drop, is

log 0.5/ log(1− αγ/(1− β)). (The half-life of real wage dynamics is the same.)

Plugging our estimates of the parameters γ, α, and β into the formula above, we find that the

half-life of population and real wage dynamics prior to the Industrial Revolution for our baseline

case is 356 years. For the variable days case, the half-life is 115 years. Since α falls sharply after

1760 and β changed little, the Malthusian population force becomes even weaker after 1760. By

1860, the half-life of population and real wage dynamics have risen to 560 years in the baseline case

and 240 years with variable days. These long half-lives imply that the strength of the Malthusian

population force was weak in England over our sample period—a result that is sometimes referred

to as “weak homeostasis.” Prior work has also found weak homeostasis. For example, Lee and

Anderson (2002) find a half-life of 107 years, while Crafts and Mills (2009) find a half-life of 431

years.

One possible reason why we estimate a small value for γ is that the strength of the positive and

preventive checks emphasized by Malthus may not have been very sensitive to modest changes
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Figure 14: Steady State Wage with Productivity Growth
Note: The figure plots steady state real wage for different average levels of productivity growth (µ) and output
elasticity of land (α) relative to the steady state real wage with zero productivity growth. The parameter α
varies on the x-axis and each line plots real wages for a given level of average productivity growth. These
impulse responses are calculated assuming that all other model parameters are at their posterior mean values.
We do this for the variable days case.

in real income. Another possible reason is the quantity-quality trade-off emphasized by mod-

ern scholars: higher income may have mostly increased child quality rather than child quantity.

While we estimate a positive γ for our sample, the relationship between real income and fertility

switched to being negative in the late 19th century and 20th century. This switch may have been

due to increases in the value of education tilting behavior even more towards child quality as well

as to increases in the bargaining power of women within marriages.

5.2 Prosperity and the Slope of the Long-Run Labor Demand Curve

We can now use equation (21) and our parameter estimates to assess how changes in the economy

after the onset of growth in 1600 affected the long-run steady state real wage the economy was

tending towards. Figure 14 plots the steady state wage in our Malthusian economy for different

values of productivity growth µ and the slope of the long-run labor demand curve α relative to

the steady state wage with zero productivity growth. Each line in the figure gives the steady state

wage for a particular value of productivity growth as the value of α varies. We do this analysis for

the variable days case, i.e., using γ = 0.09.
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The figure illustrates clearly how important the fall in α is for liberating the economy from

the iron law of wages. Consider first how steady state real wages respond to productivity growth

when α is equal to our pre-industrial estimate of 0.49. In this case, productivity growth of 3%

per decade raises the real wage by a factor of 2 in the long run, while 6% productivity growth

raises the real wage by a factor of 4. These results show that our Malthusian model is consistent

with substantial, multi-hundred year efflorescences of the kind discussed by Goldstone (2002) if

we allow for modest productivity growth. The small value we estimate for γ and the associated

weak homeostasis are key to this result.

As α falls, the steady state real wage for any given level of average productivity growth rises

sharply. With our estimate of α for 1860 (α = 0.22), productivity growth of 6% per decade can raise

the real wage by a factor of 18 in the long run. In other words, this level of productivity growth

would have eventually led to a 18-fold increase in real wages even if the Demographic Transition

had not occurred and the Malthusian population force had continued at its 1860 strength. Clearly,

a flattening of the long-run labor demand curve is a powerful force for liberating the economy

from the iron law of wages when productivity growth is positive.

Another way to visualize these effects is to plot the steady state wage relative to the actual

wage over time. We do this in Figure 15. Before 1600, the ratio of the steady state wage to the

actual wage is relatively stable around 1. Once productivity growth begins, however, the steady

state wage jumps higher and the actual wage only gradually catches up. After 1760, the steady

state wage begins to rise rapidly as the slope of the long-run labor demand curve flattens. By 1860,

the steady state wage is more than five times higher than the actual wage.

5.3 Post-1750 Population Explosion

The modest strength of the Malthusian population force in our model raises the question of

whether our model can explain, with these parameter values, the large increase in the popula-

tion of England that occurred after 1750 (see Figure 4). In 1740, the population of England was 6

million. By 1860, it had risen to almost 20 million. The population therefore grew at a compound

rate of 10.4% per decade over this 120-year period.

Figure 16 compares the evolution of the population in England from 1750 to 1860 with the

predicted evolution of the population from the variable days version of our model. We construct

the predicted evolution by taking the evolution of real wages and days worked in England as

given and simulating the evolution of the population using equation (9) starting from its actual
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Figure 15: Steady State Wage Relative to Actual Wage
Note: The figure plots the ratio of the steady state wage—given by equation (49)—and the actual wage over
time. Note that the steady state wage is a function of days worked. In the figure, we use the days worked at
each date as the d∗ in equation (49). The black line is the median of the posterior for each period and the gray
shaded area is the 90% central posterior interval. We do this for the variable days case.

value in 1740 and assuming no population shocks. This analysis shows that in fact our model

with variable days worked can explain the vast majority of the rapid increase in the population

between 1740 and 1860. This may seem surprising given the weak Malthusian population force

and the somewhat modest increase in real wages over this period. However, allowing for variable

days worked, per capita income in England over this period rose quite substantially (see Figure

12).

6 Plagues and the Population

Figure 17 plots our baseline estimate of the evolution of the population of England from 1250 to

1550 along with prior estimates from Clark (2007a), Clark (2010), and Broadberry et al. (2015). Our

estimates are very similar to Clark’s. This implies that our estimation procedure largely validates

the assumptions Clark makes regarding the evolution of productivity in constructing his popula-

tion estimates. The estimates of Broadberry et al. (2015) are substantially lower early in the sample

period, but then gradually converge.

The evolution of the population in England over our sample period is heavily affected by
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Figure 16: Actual and Predicted Population Dynamics after 1750
Note: The dashed line is the evolution of the population in England. The solid line is the predicted evolution
of the population in England from our Malthusian model. In calculating this line, we take the evolution of
real wages and days worked in England as given and simulate the evolution of the population using equation
(9) starting from its actual value in 1740. The gray shaded area is the 90% central predictive interval given our
estimates of α and γ.

plagues. Our model captures plagues (and other influences on the population other than changes

in real income) through the shocks ξ1t and ξ2t. Figure A.9 plots the evolution of the sum of these

population shocks over our sample period. The largest population shock by far is the Black Death

of 1348. We estimate that the population shocks associated with the Black Death lead the popu-

lation of England to shrink by 32%. But Figure A.9 also makes clear that England faced steady

population headwinds—i.e., persistent negative population shocks—from the early 14th century

until about 1500.

7 Conclusion

In this paper, we estimate the evolution of productivity in England from 1250 to 1870 as shifts in

the labor demand curve. Our principal finding is that productivity growth began in 1600. Before

1600, productivity growth was zero. We estimate a growth rate of productivity of 2% per decade

between 1600 and 1800 and an increase to 5% per decade between 1810 and 1870. Our results

indicate that sustained growth in productivity began well before the Glorious Revolution and

Industrial Revolution. We demonstrate that the early 17th century was a crucial turning point
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Figure 17: Comparison of Population Estimates for England
Note: The figure plots our estimates of the evolution of the population of England along with estimates from
Clark (2007a), Clark (2010), and Broadberry et al. (2015)

for productivity growth in England, a result that helps distinguish between competing lines of

thought regarding the ultimate causes of the emergence of growth.

We attribute the high output growth of the Industrial Revolution only partly to productivity

growth. A second important factor was the rapidly falling importance of land in production as-

sociated with the transition to steam power fueled by coal. We leverage our model to estimate

the strength of the Malthusian population force in pre-Industrial England. This force was quite

weak. The half-life of the response of real wages after a plague-induced decrease in the population

was more than 100 years prior to the onset of the Industrial Revolution and increased to several

hundred years by 1860.
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Figure A.1: A Comparison of Real Wage Measures in England, 1250-1860
Note: The figure presents four estimates of the real wages in England. Three are from Clark (2010): builders,
farmers, and craftsmen. The remaining series is from Allen (2007). The builders series is the series we use in
our main analysis. The builders series is normalized to 100 in 1860. The levels of the farmers and craftsmen
series indicate differences in real earnings relative to builders. The Allen (2007) series is normalized to equal
the builders series in 1770.

Figure A.2: Probability of Breaks Dates for Different Specifications
Note: The figure plots our estimate of the probability that a structural break occurred in the parameters µ, σ1,
and σ2 in different decades between 1550 and 1800 for various specifications of our model.
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Figure A.3: Prior Densities for Standard Deviations

Figure A.4: Capital and Rents
Note: The figure plots our estimates of the evolution of the logarithm of capital, kt, and rents, st. They are
normalized to 0 in 1250. The black line is the mean of the posterior for each period and the gray shaded area
is the 90% central posterior interval.
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Figure A.5: Productivity using Alternative Wage Series
Note: The figure compares our baseline estimates of the evolution of the permanent component of productivity
m̃t with estimates using different wage series. The “Farmers” series is the farm worker series from Clark
(2010), the “Craftsmen” series is the building craftsmen series from Clark (2010), the “Allen (2007)” series uses
Allen’s (2007) series from 1770 onward (but our baseline wage series before that). Finally, we present estimates
of productivity based on the assumption that the builders, farmers, and craftsmen series are all noisy signals
of the true underlying wage. These estimates are labeled “3 series”.

Figure A.6: Productivity using Different Population Data
Note: The figure compares our baseline estimates of the evolution of the permanent component of productivity
m̃t with estimates using data on the population of England prior to 1540 from Broadberry et al. (2015).

47



Figure A.7: Productivity Allowing for Different Break Dates
Note: The figure compares estimates of the evolution of the permanent component of productivity m̃t when
we allow for different dates for the first productivity break. B1 and B2 stand for break 1.

Figure A.8: Productivity using Different Priors
Note: The figure compares our baseline estimates of the evolution of the permanent component of productivity
m̃t with estimates using different prior distributions. The “Productivity shocks” series changes the prior
on σε1 to be IΓ(3, 0.005), i.e., the same as the prior on the other productivity and population shocks. The
“Population level” series changes the prior on ψ to beN (10.86, 10.0).
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Figure A.9: Population Shocks
Note: The figure plots our estimates of the population shocks hitting the English economy over our sample
period, i.e., ξ1t + ξ2t. The black line is the mean of the posterior for each period and the gray shaded area is
the 90% central posterior interval.

Figure A.10: Measurement Error in Population Data
Note: The figure plots our estimate of the measurement error in our population data ιnt .
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Table A.1: Parameter Estimates—changing α, β

Mean St Dev 2.5% 97.5%
Main Parameters

α 0.54 0.05 0.44 0.62
β 0.23 0.07 0.11 0.37
γ 0.03 0.05 -0.06 0.12
ω 0.03 0.02 -0.01 0.08

Productivity Shock Parameters
σε1,1 0.03 0.01 0.02 0.05
σε1,2 0.02 0.01 0.01 0.03
σε1,3 0.02 0.01 0.01 0.04
σε2,1 0.06 0.01 0.04 0.08
σε2,2 0.04 0.01 0.02 0.05
σε2,3 0.04 0.01 0.02 0.06

Population Parameters
πt<1680 0.26 0.14 0.03 0.49
πt≥1680 0.10 0.09 0.00 0.35

µξ1 0.82 0.08 0.59 0.90
νξ1 7.18 29.07 1.04 36.32
σξ2 0.06 0.01 0.04 0.08

Population Measurement Error Parameters
σn,t<1540 0.04 0.01 0.02 0.06
σn,t≥1540 0.03 0.00 0.02 0.04
νn,t<1540 18.45 1127.28 1.14 42.78
νn,t≥1540 74.50 1984.14 2.13 258.69

Note: The table presents the mean, standard deviation, 2.5% quantile, and 97.5% quantile
of the posterior distribution we estimate for , using the three procedures described in sec-
tions 2–3. Note: The table presents the mean, standard deviation, 2.5% quantile, and 97.5%
quantile of the posterior distribution we estimate for the parameters of the production func-
tion α, β, the elasticity of population growth to income γ, the subsistence wage parameter
ω, the standard deviation of the permanent and transitory productivity shocks ε1t and ε2t in
the three regimes, the probability of a plague shock π, the mean of the plague shock µξ1 , the
pseudo sample size of the plague shocks νξ1 , the standard deviation of the normal popula-
tion shock σξ2 , the scale and degrees of freedom parameters of the population measurement
error shocks, σn and νn, respectively.
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Appendix to:

When Did Growth Begin? New Estimates of Productivity Growth

in England from 1250 to 1870

A Clark’s Population Series

As we discuss in the main text, Clark (2007b) uses unbalanced panel data on the population of

villages and manors from manorial records and penny tithing payments to construct estimates of

the population prior to 1540. Clark starts by running a regression of this data on time fixed effects

and manor/village fixed effects. He refers to the time fixed effects from this regression as as a

population trend series.

Clark’s population trend series does not provide information on the overall level of the popu-

lation prior to 1540, only changes in the population (i.e., a normalization is needed). In addition,

Clark’s microdata is sufficiently unreliable for the 1530s that he does not make use of his estimated

population trend for that decade. Clark uses the following procedure to surmount these problems.

First, he regresses his population trend on real wages from 1250 to 1520, and separately regresses

the Wrigley et al. (1997) population series on wages from 1540 to 1610. He observers that the R2

in both regressions are high and that they yield similar slope coefficients. He concludes from this

that (i) the English economy moved along stable labor demand curves during both subsamples

and (ii) these two labor demand curves had similar slopes.

Clark next makes the assumption that there was no productivity growth between 1520 and

1540—the labor demand curve did not shift during this time. This allows him to extrapolate the

relationship that he finds in the post-1540 data to the earlier sample, and infer both the population

in 1530 and the missing normalization from the level of real wages. Clark also uses the fitted

values for the population from his labor demand curve as an alternative estimate of the population

and averages this with the trend series to get what he calls the “best” estimate of population before

1540.
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B CES Production Function

Consider the production function

Yt = At

[
α′

1
σZ

σ−1
σ + (1− α′)

1
σ (Lt)

σ−1
σ

] σ
σ−1

,

where σ denotes the elasticity of substitution between land and labor in production. Optimal

choice of labor by land owners gives rise to the following labor demand curve

Wt = (1− α′)
1
σAt

[
α′

1
σ

(
Z

Lt

)σ−1
σ

+ (1− α′)
1
σ

] 1
σ−1

.

A log-linear approximation of this equation yields

wt = φ− αlt + at,

where

α =

[
σ

(
1 +

(
1− α′

α′

) 1
σ
(
L

Z

)σ−1
σ

)]−1

and L is the level of labor we linearize around. Notice that α→ α′ when σ → 1.

It is furthermore easy to show that with the CES production function given above, the labor

share of output is

L̄S = 1−

[
1 +

(
1− α′

α′

) 1
σ
(
L

Z

)σ−1
σ

]−1

.

Combining these last two equations, we get that

α =
1− L̄S
σ

.

This implies that the land share is σα in this case.

C More General Production Function for Pre-Industrial Era

Consider the concave production function

Yt = AtF (Z,Lt,Kt) (23)
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The first-order conditions are

Wt = AtFL(Z,Lt,Kt)

rt + δ = AtFK(Z,Lt,Kt)

where δ is the depreciation rate of capital.

Taking logs in the FOC

wt = at + log (FL(Z,Lt,Kt)) ≈ φ̃
′
+ at +

LFLL
FL

lt +
KFLK
FL

kt (24)

log(rt + δ) = at + log (FK(Z,Lt,Kt)) ≈ φ̃
′′

+ at +
LFLK
FK

lt +
KFKK
FK

kt (25)

Solving for kt in equation (25)

kt = φ̃
′′′

+
FK

KFKK
(log(rt + δ)− at)−

LFLK
KFKK

lt (26)

Substituting into equation (24)

wt ≈ φ̃+

(
1− FKFLK

FLFKK

)
at +

L

FLFKK

(
FLLFKK − F 2

LK

)
lt +

FKFLK
FLFKK

log(rt + δ)

Which can be rewritten

wt ≈ φ̃+
(

1 + β̃
)
at − α̃lt − β̃ log(rt + δ) (27)

where

α̃ = − L

FLFKK

(
FLLFKK − F 2

LK

)
β̃ = −FKFLK

FLFKK

Equation (27) shows that at is identified up to a first-order approximation. This result does not

require a Cobb-Douglas production function, not even constant returns to scale.
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D Identification of αt and βt

Consider the demand curves for labor, land, and capital in the early-industrial era:

Wt = (1− αt − βt)AtZαtKβt
t L
−αt−βt
t , (28)

St = αtAtZ
αt−1KβtL1−αt−βt

t , (29)

rt + δ = βtAtZ
αtKβt−1

t L1−αt−βt
t . (30)

We begin by dividing land demand and capital demand by labor demand:

St
Wt

=
αt

1− αt − βt
Lt
Z
, (31)

rt + δ

Wt
=

βt
1− αt − βt

Lt
Kt
. (32)

Manipulating equation (31) yields

αt = Xt −Xtβt, (33)

where

Xt =
St/Wt

(Lt/Z) + (St/Wt)
.

Manipulation equation (32) yields

αt = Yt − Ytβt, (34)

where

Yt =
(rt + δ)/Wt

(Lt/Kt) + ((rt + δ)/Wt)
.

Solving equations (33) and (34) for αt and βt yields

αt = Xt
1− Yt

1−XtYt
, (35)

βt = Yt
1−Xt

1−XtYt
, (36)

and we then also have that

1− αt − βt =
(1−Xt)(1− Yt)

1−XtYt
. (37)
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Consider a case were St (land rents) goes up while all other variable remain constant. This

increase Xt but leaves Yt unchanged. As a consequence, αt increases and both βt and 1 − αt − βt
decrease.21

Next, consider a case were rt (rental rate of capital) goes up while all other variables remain

constant. This increases Yt but leaves Xt unchanged. As a consequence, βt increases and both αt

and 1− αt − βt decrease.

Finally, consider a case where Wt (wage) goes up while all other variables remain constant.

This decreases bothXt and Yt. As a consequence, bothαt and βt decrease and 1−αt−βt increases.22

E The Malmquist Productivity Index

The concept of productivity is meant to measure the ratio of output to inputs (Diewert and Naka-

mura, 2007). In situations with more than one inputs (or outputs), the exact way in which this

basic concept is operationalized is ambiguous. In some special cases, all reasonable measures of

productivity will agree. This is, for example, the case if production is assumed to take the follow-

ing form Yt = AtF (Xt), where Yt denotes output and Xt denotes a vector of inputs. In this case,

At is the natural measure of productivity. In the more general case of Yt = Ft(Xt) the definition of

productivity is less clear cut.

Caves, Christensen, and Diewert (1982) introduce the notion of a Malmquist productivity in-

dex for a quite general case of production technologies, based on ideas in Malmquist (1953).

The discussion below builds on the exposition of these concepts in Färe et al. (1994). Con-

sider a production technology St that transforms inputs Xt ∈ RN+ into output Yt ∈ R+: St =

{(Xt, Yt) : Xt can produce Yt}. Written in terms of a production function Yt = Ft(Xt), we have

St = {(Xt, Yt) : Yt ≤ Ft(Xt)}. In other words, St defines the set of all feasible input-output vectors.

Caves, Christensen, and Diewert (1982) define the Malmquist productivity index in terms of

the distance function Dt(Xs, Ys) = inf{θ : (Xs, Ys/θ) ∈ St}. The distance Dt(Xs, Ys) is then the

minimum multiplicative proportion by which Ys needs to be scaled down for the input-output

vector (Xs, Ys) to be feasible with time t technology. For example, if period s is a later period than

period t and technology is “more advanced” at this later period, (Xs, Ys) may be feasible using

21The derivative of (1−Xt)/(1−XtYt) with respect to Xt is −(1− Yt)/(1−XtYt)2, which is negative.
22The total derivative of 1− αt − βt with respect to Wt is: −

(
(1− Yt)2 × ∂Xt/∂Wt + (1−Xt)2 × ∂Yt/∂Wt

)
/(1−

XtYt)
2. Since Xt and Yt are both decreasing in Wt, this derivative is positive. For 1− αt − βt to increase, αt or βt must

decrease. Manipulating equations (31) and (32), we have: αt/βt = St/(rt + δ) × Z/Kt. Since the ratio of αt over βt is
constant and at least one of them decreases, both must decrease.
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technology Ss, but Ys/Dt(Xs, Ys) with Dt(Xs, Ys) > 1 may be the largest output that is feasible

given input use Xs and the inferior technology St.

Given the definition of St, the distance is the smallest θ such that Ys/θ ≤ Ft(Xs), which means

Dt(Xs, Ys) = Ys/Ft(Xs). Under our maintained assumptions in this paper, Dt(Xt, Yt) = 1, i.e.,

the output actually produced at time t with inputs Xt is exactly feasible. (More generally, one can

imagine production at time t being inside the technical frontier at time t. In this case, Dt(Xt, Yt) <

1.)

Next consider Dt(Xt+1, Yt+1), i.e., the distance of the input-output vector at time t + 1 from

the technical frontier at time t. Applying the definition of the distance function we have that

Yt+1/Dt(Xt+1, Yt+1) = Ft(Xt+1), which implies

Dt(Xt+1, Yt+1) =
Yt+1

Ft(Xt+1)
=
Ft+1(Xt+1)

Ft(Xt+1)
.

This is very intuitive: The distance of the time t+ 1 technology from the time t technology evalu-

ated at the time t+1 input-output vector is simply the output at time t+1, i.e., Ft+1(Xt+1), divided

by what output would be if the input vector at time t + 1 were used with the time t technology,

i.e., Ft(Xt+1).

A Malmquist index for productivity growth between periods t and t+ 1 that uses the produc-

tion technology of time t as a reference technology is then defined as

M t
t,t+1 ≡

Dt(Xt+1, Yt+1)

Dt(Xt, Yt)
=
Ft+1(Xt+1)/Ft(Xt+1)

1
=
Ft+1(Xt+1)

Ft(Xt+1)
.

We can also consider Dt+1(Xt, Yt), i.e., the distance of the input-output vector at time t from

the technical frontier at time t + 1. Applying the definition of the distance function, we have that

Yt/Dt+1(Xt, Yt) = Ft+1(Xt), which implies

Dt+1(Xt, Yt) =
Yt

Ft+1(Xt)
=

Ft(Xt)

Ft+1(Xt)
.

A Malmquist index for productivity growth between periods t and t+ 1 that uses the produc-

tion technology of time t+ 1 as a reference technology is then defined as

M t+1
t,t+1 ≡

Dt+1(Xt+1, Yt+1)

Dt+1(Xt, Yt)
=

1

Ft(Xt)/Ft+1(Xt)
=
Ft+1(Xt)

Ft(Xt)
.

Caves, Christensen, and Diewert (1982) recommend defining the Malmquist index as the geo-
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metric average of M t
t,t+1 and M t+1

t,t+1. In this case the Malmquist index becomes

Mt,t+1 ≡
(
Dt(Xt+1, Yt+1)

Dt(Xt, Yt)

Dt+1(Xt+1, Yt+1)

Dt+1(Xt, Yt)

)1/2

=

(
Ft+1(Xt+1)

Ft(Xt+1)

Ft+1(Xt)

Ft(Xt)

)1/2

.

This definition avoids favoring the technology in one of the two periods over the other.

E.1 Normalization and the Malmquist Index

As we discuss in footnote 13 in the body of the paper, one symptom of At not being a good

measure of productivity in the case where the functional form of the production function changes

over time is that the growth rate of At will be sensitive to the choice of normalization of the inputs

to production. This is not the case for the Malmquist index.

To illustrate this, consider again the change in the unit in which labor is expressed that we

discussed in footnote 13: L̈t ≡ ψLt. In this case we have that

Ft(Z,Kt, Lt) ≡ AtZαtKβt
t L

1−αt−βt
t = ÄtZ

αtKβt
t L̈

1−αt−βt
t ≡ F̈t(Z,Kt, L̃t), (38)

where

Ät ≡
At

ψ1−αt−βt

Clearly, if αt or βt vary over time, the growth rates of At and Ät will not be the same.

The Malmquist index, however, suffers no such issue. Since, by equation (38), Ft(Z,Kt, Lt) =

F̈t(Z,Kt, L̃t), this equation immediately implies that the Malmquist index remains the same. In

fact, any rewriting of the production function that leaves the mapping from input to output un-

changed, i.e. that does not change the production possibility frontier, implies the same Malmquist

index because the formula for the Malmquist index only depends on output for some quantities

of inputs.

We can illustrate this point by deriving an expression for the Malmquist index in terms of the

observables in our model—equation (18)—for both Ft and F̈t and denoting the associated indices
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as mt and m̈t:

m̂t = ât + α̂t logZ + β̂tk̄t − (α̂t + β̂t)l̄t

= ât + (α̂t + β̂t) logψ + α̂t logZ + β̂tk̄t − (α̂t + β̂t)(l̄t + logψ)

= ˆ̈at + α̂t logZ + β̂tk̄t − (α̂t + β̂t)
¯̈
lt

= ˆ̈mt.

Recall that hats denote deviations from the previous period, x̂t = xt − xt−1, and bars denote the

average of period t − 1 and period t, x̄t = (xt−1 + xt)/2. To go from the first to the second line,

we added and subtracted the normalization that transforms lt into l̈t: (α̂t + β̂t) logψ. In the third

line, this time-varying normalization is absorbed by the A residual, ˆ̈at, and l̄t + logψ is converted

to ¯̈
lt. From this we see that while the A residual is normalization-dependent the Malmquist index

is not.

F Model Equations

We reproduce the equations and distributional assumptions of our full model here for conve-

nience:
wt = φt + 1

1−βtat −
αt

1−βt (dt + nt)− βt
1−βt log (rt + δ)

φt = log βt + log (1− αt − βt) + αt
1−βt z − (αt + βt)λ

st = wt + nt + dt − z + logαt − log(1− αt − βt)

kt = wt + nt + dt − log(rt + δ) + log βt − log(1− αt − βt)

nt = nt−1 + ω + γ(wt−1 + dt−1) + ξ1t + ξ2t

m̂t = ât + α̂tz + β̂tk̄t −
(
α̂t + β̂t

)
(d̄t + n̄t)

mt = m̃t + ε2t

m̃t = µ+ m̃t−1 + ε1t

exp(ξ1t) ∼

 β(β1, β2), with probability π

1, with probability 1− π

ε1t ∼ N (0, σ2
ε1), ε2t ∼ N (0, σ2

ε2), ξ2t ∼ N (0, σ2
ξ2)
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Before 1760, αt and βt are assumed to be constant. This implies that the sixth equation collapses

to ât = m̂t before 1760. As a result, rents st and the capital stock kt only appear in the equations

that define them (the third and fourth equations). This is also the period for which we do not have

data on st and kt. For this period, we therefore use the third and fourth equations to estimate st

and kt.

Below we reproduce the assumptions we make about measurement error and normalizations

in our data:
wt = ϕw + w̃t

nt = ψ + ñt + ιnt

dt = d̃t + ιdt

rt = r̃it + ιrit

st = ϕs + s̃t + ιst ,

kt = ϕk + k̃t + ιkt ,

Here, the variables with tilde’s are the measured variables, while the variables without tilde’s are

the true variables, ϕw ∼ N (0, 1002), ϕs ∼ N (0, 1002), and ϕk ∼ N (0, 1002) are normalization

constants, and ιnt ∼ tνn(0, σ2
n), ιdt ∼ tνd(0, σ̃

2
d), ιrit ∼ tνir(0, σ̃

2
ir), ιst ∼ tνs(0, σ̃

2
s), and ιkt ∼ tνk(0, σ̃2

k)

capture measurement error. A few additional details regarding missing observations are given in

the main text.

G A Comparison with Clark (2010, 2016)

Our approach to estimating productivity in England from the 13th to 19th centuries yields quite

different results than the most comprehensive existing estimates by Clark (2010, 2016). Here, we

consider from where the differences arise. We break this discussion into three parts. First, we

discuss Clark’s dual approach and differences between his 2010 series and his 2016 series. Second,

we discuss how Clark’s dual approach relates to our Malmquist approach. Third, we discuss

differences that arise from the fact that our approach has different implications for the evolution

of factor prices and factor output elasticities than Clark’s approach.

A summary of our conclusions is as follows. First, Clark (2010) made an error in calculating

the growth rate of his index from 1540 to 1550 which contributes to the difference between this

series and our series. Clark (2016) corrects this error. Second, using the average of factor output

elasticites at time t and t − 1 when calculating changes in productivity between time t and t −
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1 explains an important part of difference in our results, especially prior to 1600. Conditional

on doing this Clark’s dual approach is approximately equal to our Malmquist approach. Third,

differences in the factor prices and factor output elasticites implied by our approach, relative to

those used by Clark, explain the remaining differences in the evolution of productivity.

G.1 Clark’s Dual Approach and Differences Between Clark (2010) and Clark (2016)

Clark (2010, 2016) employs a “dual approach” to estimating productivity. Specifically, his estimate

of the growth rate of productivity is

Et
Et−1

=

(
St
St−1

)sZ,t−1
(

rt + λ

rt−1 + λ

)sK,t−1
(

Wt

Wt−1

)sL,t−1 1− τt−1

1− τt
. (39)

where we useEt (for efficiency) to denote the dual estimate of productivity, λ is a risk premium, τt

is the share of national income paid in indirect taxes, and sZ,t−1, sK,t−1, and sL,t−1 are time-varying

estimates of the elasticity of output with respect to land, capital, and labor, respectively.23

Clark’s 2016 productivity series is an updated version of his better known 2010 productivity

series for the sample period 1250-1600. Clark has shared with us the file he used to construct his

2016 series by private correspondence. This file extends his 2016 series from 1600 to 1860 and

contains the component series Clark uses to construct this series. Our discussion here is based

on these series. For the period after 1600, the new productivity series coincides with Clark’s 2010

series.

Figure G.1 plots Clark’s 2010 productivity series (solid gray line) and Clark’s 2016 productivity

series extended to 1860 using the file Clark shared with us (broken black line). We refer to the

extended 2016 series as “Clark (2016)*”. These series differ for two reasons. First, Clark’s 2010

series contains an error in the growth rate from 1540 to 1550. This error creates a 25 log point

spurious drop in the 2010 series. Clark’s 2016 series corrects this error. Second, Clark´s 2016 series

incorporates a new land rent series for the period 1250-1600. Both of these changes make Clark’s

2016 series more similar to our baseline productivity estimate (solid black line in Figure G.1) than

his 2010 series.

The Malmquist index we use for our baseline estimates uses average factor output elastici-

23The discussion in Clark (2010, 2016) suggests that Clark estimates the level of productivity rather than its growth
rate. However, data Clark has shared with us (discussed below) makes clear that he, in fact, estimates growth rates of
productivity. This distinction is important as the level formula Clark discusses in his 2010 and 2016 papers does not
provide a valid measure of productivity when factor shares are allowed to vary over time. See footnote 13 in the main
text for more detail on this point.
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Figure G.1: A Comparison between Clark (2010) and Clark (2016)
Note: The Figure plots four productivity series. The solid black line is our baseline Malmquist index. The solid
gray line is Clark’s (2010) original productivity series. The broken black line—labeled “Clark (2016)*”—is
Clark’s (2016) productivity series extended to 1860. We obtained this series from Clark in private correspon-
dence. The broken gray line is an estimate of productivity using equation (39) with decadal data, i.e., this
series moves to average output elasticities and time aggregates relative to the Clark (2016)* series. The latter
three series are normalized to be equal to the Malmquist index in 1600.

ties rather than lagged factor output elasticities. Using average factor output elasticities is also

recommended by Barro and Sala-i-Martin (2004, p. 435). We can modify Clark’s dual approach—

equation (39)—to use average factor output elasticities as follows:

Et
Et−1

=

(
St
St−1

)s̄Z,t ( rt + λ

rt−1 + λ

)s̄K,t ( Wt

Wt−1

)s̄L,t 1− τt−1

1− τt
. (40)

As in the main text, the bar on top of each s signifies an average between t − 1 and t: s̄Z,t =

(sZ,t−1 + sZ,t)/2 and similarly for s̄K,t and s̄L,t.

The fourth line plotted in Figure G.1 is productivity growth estimated using equation (40)

and Clark’s data series for factor prices and factor output elasticities (broken gray line). This line

also differs from the two Clark series because of time aggregation. Clark estimates productivity

using equation (39) at an annual frequency and then averages over decades. To be consistent

with our approach in the rest of the paper, we average the data over each decade and then use

equation (39) to estimate productivity at a decadal frequency. We see that moving from lagged to

average factor output elasticities and decadal time aggregation results in estimates of productivity
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that are lower early in the sample. This difference is mostly due to the switch to average factor

output elasticities—time aggregation only makes a small difference. These changes result in a

productivity series that is closer to ours between 1350 and 1600.

G.2 The Dual Approach versus the Malmquist Approach

We next show that our Malmquist index and the dual approach are equivalent up to a first-order

approximation. To see this, we go back to equation (18), which we reproduce here for convenience:

m̂t =ât + α̂t logZ + β̂tk̄t − (α̂t + β̂t)lt.

In this equation, bars denote arithmetic averages across period t− 1 and t and hats denote differ-

ences between the two periods. Rearranging this equation yields24

m̂t = ŷt − β̄tk̂t − (1− ᾱt − β̄t)l̂t. (41)

The right-hand side is the primal measure of the growth rate of productivity, i.e., the Solow resid-

ual (Solow, 1957). Here, weights are given by the arithmetic average of the factor output elastic-

ities across the two periods. To go from the primal measure to the dual measure, we can follow

Hsieh (2002) and start from the fact that the value of output must equal payments to factors:

Yt = StZ + (rt + δ)Kt +WtLt. Taking a log-linear approximation of this expression at times t− 1

and t around a situation where factor output elasticities are the averages of the two periods yields

the following expression:

ŷt = ᾱtŝt + β̄t

(
log

(
rt + δ

rt−1 + δ

)
+ k̄t

)
+ (1− ᾱt − β̄t)

(
ŵt + l̂t

)
,

24The derivation is

m̂t =at − at−1 +
1

2
(αt logZ + βtkt + (1− αt − βt)lt − (αt−1 logZ + βt−1kt−1 + (1− αt−1 − βt−1)lt−1))

− 1

2
(αt−1 logZ + βt−1kt + (1− αt−1 − βt−1)lt − (αt logZ + βtkt−1 + (1− αt − βt)lt−1))

=at + αt logZ + βtkt + (1− αt − βt)lt − (at−1 + αt−1 logZ + βt−1kt−1 + (1− αt−1 − βt−1)lt−1)

− 1

2
(αt logZ + βtkt + (1− αt − βt)lt − (αt−1 logZ + βt−1kt−1 + (1− αt−1 − βt−1)lt−1))

− 1

2
(αt−1 logZ + βt−1kt + (1− αt−1 − βt−1)lt − (αt logZ + βtkt−1 + (1− αt − βt)lt−1))

=ŷt − β̄tk̂t − (1− ᾱt − β̄t)l̂t.

For the first equality, we just use the definition of the bar and hat symbols. For the second equality, we add and subtract
the expression contained in the line that follows the second equal sign. The third equality is again a straightforward
use of the bar and hat symbols.
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where we have dropped higher order terms. Combining this equation and equation (41), we

obtain

m̂t = ᾱtŝt + β̄t log

(
rt + δ

rt−1 + δ

)
+ (1− ᾱt − β̄t)ŵt. (42)

This equation shows that the log-change in the Malmquist index is equal to the dual measure of

productivity growth up to a first order approximation.

The productivity measures in equation (42) differ in some details from the ones plotted in

Figure G.1. First, the left-hand-side of equation (42) is m̂t, the change in mt. The productivity

measure plotted as our baseline estimate in Figure G.1 (solid black line) is m̃t rather than mt.

Recall that m̃t is the permanent component of productivity (see equations (19)–(20)). Our base-

line estimate in Figure G.1, thus, filters out some high frequency variation in productivity, which

makes it smoother than estimates based on the dual approach.

Clark’s dual approach also differs in a few details from the right-hand side of equation (42).

Clark’s dual approach does not incorporate capital depreciation (δ), but it includes a risk premium

(λ) and taxes (τt) that are not incorporated into equation (42). The similarity (and difference in

details) between the right-hand side of (42) and Clark’s dual approach can be more easily seen by

taking logarithms of equation (40):

êt = s̄Z,tŝt + s̄K,t log

(
rt + λ

rt−1 + λ

)
+ s̄L,tŵt − log

(
1− τt

1− τt−1

)
(43)

Comparing this equation to equation (42), notice that in our model, αt, βt, and 1− αt − βt are the

land, capital, and labor output elasticities, while in equation (43) these are denoted by sZ,t, sK,t

and sL,t, respectively. The two formulas are, thus, the same apart from δ being replaced by λ, and

the presence of τt in equation (43).

These details turn out not to make much of a difference. To see this, Figure G.2 plots a dual

measure of productivity using the formula in equation (40) but with our factor price and factor

output elasticities series (broken black line). In other words, this measure of productivity, differs

from ours only in terms of method, not data. We see that the resulting productivity series tracks

our baseline productivity series very closely. The only difference is that our measure is smoother

at high frequency reflecting the fact that it filters out high-frequency movements in productivity.
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Figure G.2: Our Productivity Measure Compared with the Dual Approach
Note: The Figure plots three productivity series. The solid black line is our baseline Malmquist index. The
solid gray line is the index constructed with Clark’s factor prices and factor shares using equation (40). This
is the same line as the one we label “Clark (Time Aggregation/Average Shares)” in Figure G.1. The dashed
black line is the index constructed with our factor prices and factor shares using equation (40). The latter two
series are normalized to be equal to the Malmquist index in 1600.

G.3 Factor Prices and Factor Output Elasticities

We now turn to the role played by differences in the factor price and factor output elasticity series

used by Clark relative to those implied by our analysis. Since we have shown above that the dual

approach and the Malmquist approach are virtually equivalent, we will carry out the rest of the

analysis using the dual approach for concreteness. In particular, we will calculate productivity

using equation (40) with different combinations of Clark’s and our factor price and factor output

elastiticy series. (Clark refers to factor output elasticities as factor shares.) In the case of Clark’s

series, we will use Clark’s 2016 series extended to 1860. We have already plotted two such cases

in Figure G.2. The solid gray line uses Clark’s factor price and factor output elasticity series, while

the broken black line uses our factor price and factor output elasticity series. Next, we consider

intermediate cases.

A complication that arises if we seek a decomposition of the remaining difference between our

productivity index and Clark’s—the solid gray line and the broken black line in Figure G.2—into

the share explained by factor prices and the share explained by factor output elasticities is that

the productivity indexes we are considering are non-linear. This implies that the difference in
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Figure G.3: Contribution of Factor Prices to Differences in Productivity Estimates
Note: The Figure plots three productivity series. The solid black line is our baseline Malmquist index. The
solid gray line is the index constructed with Clark’s factor prices and factor shares using equation (40). The
dashed gray line is the index constructed with Clark’s factor prices and Clark factor shares using equation (40).
The latter two series are normalized to be equal to the Malmquist index in 1600.

question is not simply the sum of the effect of changing the factor prices, on the one hand, and

the effect of changing the factor output elasticities, on the other hand. Rather, there is also an

interaction term, which is non-trivial.

With this in mind, we begin by considering how changing the factor price series alone affects

the productivity series. Figure G.3 plots a dual estimate of productivity using Clark’s factor output

elasticity but our factor price series (broken black line). The difference between the solid gray line

and the broken black line in Figure G.3 is thus due to moving from Clark’s factor price series

to our factor price series. Focusing on the period after 1600, we see that this change explains a

sizable portion of the difference between our results and the series using Clark’s factor prices and

factor output elasticities, especially during the 17th and early 18th centuries. Prior to 1600, moving

to Clark’s factor price series raises productivity which helps explain the difference between our

results and Clark’s early in the sample, but makes this difference larger between 1350 and 1600.

Figure G.4 plots Clark’s factor price series (solid gray lines) and our factor price series (solid

black lines). In the case of land rents, we also plot the series used in Clark (2010) (broken gray

line). Our real wage series looks similar to Clark’s. The raw real interest rate date we use is also

similar to that used by Clark. However, we allow for measurement error in real interest rates and
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Figure G.4: A Comparison of Price Series
Note: The top two panels plots the wage and interest rate series used in our analysis and used by Clark (2016).
The bottom two panels plot the land rent series used by Clark (2010, 2016) and the land rents that are implied
by our analysis.

make use of two return series (rates of return on land and rent charges). This implies that our real

interest rate series is substantially smoother in the early part of our sample and around 1600. In

particular, Clark’s interest rate series is constant between 1370 and 1540, reflecting Clark’s choice

of how to interpolate over a period of relatively sparse data, while our series falls more gradually

over the early part of this period.

For land rents, we use the same data as Clark after 1760 but choose to infer land rents from

the model prior to 1760. Our inferred series differs quite a bit from Clark’s series, especially early

in the sample. Clark’s data is quite noisy over this early period. But measuring land rents prior

to 1650 is difficult due to the complexity of the relationship between landlords and tenants in a

feudal era. It is also notable that Clark’s 2016 series for land rents differs quite substantially from

his earlier 2010 land rent series for the period prior to 1500. From 1250 to 1500, the 2016 series

increases by 45%, while the 2010 series falls by 32%.

Turning to factor output elasticities, Figure G.5 plots a dual estimate of productivity using

Clark’s factor prices but our factor output elasticity series (broken black line). The difference
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Figure G.5: Contribution of Factor Shares to Differences in Productivity Estimates
Note: The Figure plots three productivity series. The solid black line is our baseline Malmquist index. The
solid gray line is the index constructed with Clark’s factor prices and factor shares using equation (40). The
dashed gray line is the index constructed with Clark’s factor prices and our factor shares using equation (40).
The latter two series are normalized to be equal to the Malmquist index in 1600.

between the solid gray line and the broken black line in Figure G.5 is thus due to moving from

Clark’s factor output elasticity series to our factor output elasticitiy series. For the period after

1600, this change has a minimal effect. Prior to 1600, the differences are larger. Shifting to our

factor output elasticity results in a sharp rise of the productivity series from 1250 to 1400. This

reflects the increase in Clark’s 2016 rent series (which both the solid gray and broken black lines are

using). It also results in high volatility and a substantial increase in the 16th century. Figures G.1,

G.2, G.3, and G.5 taken together indicate that the difference between Clark’s series and our series

before 1600 is a complicated combination of the effects of factor prices, factor output elasticities,

their interaction, time aggregation, and average versus lagged factor output elasticities.

Figure G.6 compares our estimates of factor output elasticities (black lines) with Clark’s (gray

lines). The largest difference is for the output elasticity of land. We estimate a substantially larger

output elasticity of land than Clark. Recall that our estimate of the output elasticity of land is de-

rived from our estimate of the slope of the labor demand curve. Clark constructs his estimate from

estimates of factor shares. His basic approach is to calculate payments to factors by multiplying

factor prices with the quantity of those factors. A challenge with this approach is that Clark does

not have much data on factor quantities. This forces him to make strong assumptions (educated
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Figure G.6: Factor Shares
Note: The figure presents the factor shares implies by our analysis (black lines) and those used by Clark (2016)
extended to 1860 (gray lines). We obtained the latter series from Clark in private correspondence.

guesses) about the factor quantities.

For instance, Clark’s estimate of payments to labor is: Wt×300× νNt, where Wt is the average

daily wage, 300 is the assumed number of days worked, Nt is population, and ν is the fraction of

the population that is economically active, which he assumes to be 34%. Clark’s assumption that

days worked are constant over the entire sample period contrasts sharply with the estimates of

Humphries and Weisdorf (2019). Also, it is not clear why he choses 300 days. Earlier work often

chose 250. Finally, the notion that the fraction of the population that was economically active

was constant over our sample is also a strong assumption. In particular, an important literature

has highlighted variation in marriage patterns over our sample and associated variation in the

employment of women (De Moor and van Zanden, 2010, Voigtländer and Voth, 2013).

Similarly, to construct payments to capital, Clark makes educated guesses on the stock of hous-

ing, improvements to land, livestock, etc. He estimates payments to land by multiplying the rent

index with a fixed stock of land (28.24 million acres) before the 1840s and direct estimates from tax

returns after this date. With factor payments estimated in this manner, each factor’s share can be

obtained by dividing payments accruing to that factor by payments accruing to all factors. Clark’s

estimates of factor share are, thus, based on a number of strong empirical conjectures. A curious

aspect of his estimates is that he estimates a large capital share in the 13th century that then falls
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by about half in the 14th century (mostly before the Black Death).

H Impulse Response Functions

H.1 Dynamics After Change in Productivity Growth

Our Malthusian model implies that an increase in productivity growth will result in higher steady

state wages. To see this, we first abstract for notational simplicity from all the shocks in our model.

More precisely, we set the value of all shocks equal to their mean. The mean value of ε1t, ε2t, and

ξ2t is zero. The mean value of ξ1t, however, is Eξ1t = π(ψβ1) − ψ(β1 + β2)), where ψ(·) is the

digamma function. We furthermore, assume that days worked and the interest rate are constant

at d∗ and r∗.

Given these assumptions, our model simplifies to:

wt = φ+
1

1− β
ãt −

α

1− β
(nt + d∗)− β

1− β
log (r∗ + δ) (44)

nt − nt−1 = ω + γ(wt−1 + d∗) + Eξ1t (45)

ãt = µ+ ãt−1. (46)

We can use equation (44) to eliminate wt in equation (45). This yields:

nt − nt−1 = ω + γφ+
γ

1− β
ãt−1 −

αγ

1− β
nt−1 −

βγ

1− β
log (r∗ + δ) + γ

1− α− β
1− β

d∗ + Eξ1t.

This equation can be rewritten as

nt+1 =

(
1− γα

1− β

)
nt +

γ

1− β
ãt−1 + constant. (47)

Next, we subtract α times the second-to-last equation from equation (46) and rearrange. This

yields:

ãt − αnt = µ− κ+
1− αγ − β

1− β
(ãt−1 − αnt−1) , (48)

where

κ = α

(
ω + γφ+ γ

1− α− β
1− β

d∗ − βγ

1− β
log(r∗ + δ) + Eξ1t

)
.

This shows that ãt−α×nt follows anAR(1) and therefore settles down to a steady state in the long
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Figure H.1: Real Wage Growth After an Increase in Productivity Growth
Note: Each line plots the growth rate of real wages over time after an increase in productivity growth from
µ = 0 to a higher value. These impulse responses are calculated assuming that all model parameters are at
their posterior mean values and α is equal to our pre-Industrial estimate of 0.49.

run as long as |(1−αγ − β)/(1− β)| < 1. The steady state value of ãt −αnt is (µ− κ)(1− β)/(αγ)

and (using equation (44)) the steady state real wage is

w∗ =
µ

αγ
− d∗ − ω

γ
− Eξ1t

γ
(49)

We see from this that the steady state real wage in our Malthusian economy is increasing in the

productivity growth rate µ and the extent to which this is the case is influenced by the strength of

the Malthusian population force as summarized by αγ.

Figures H.1 and H.2 present impulse responses to a change in productivity growth that show

quantitatively how much changes in productivity growth increase wages over time according to

our model when α is set to our pre-Industrial estimate (α = 0.49). For each impulse response, we

start the economy off in a steady state with zero productivity growth (µ = 0). At time zero in the

figures, productivity growth increases. In Figure H.1, we show the evolution of the growth rate

of wages (log change) over the subsequent 500 years. In Figure H.2, we show the evolution of

the level of wages relative to its earlier steady state level over the subsequent 1000 years. In both

figures, we assume that all other shocks are constant at their mean values.

In Figure H.1, we see that the growth rate of wages is initially equal to the change in produc-
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Figure H.2: Evolution of Real Wages After an Increase in Productivity Growth
Note: Each line plots the evolution of real wages over time after an increase in productivity growth from µ = 0
to a higher value. These impulse responses are calculated assuming that all model parameters are at their
posterior mean values and α is equal to our pre-Industrial estimate of 0.49.

tivity. As wages rise and the Malthusian population force kicks in, the growth rate of wages falls.

This process takes a very long time due to the weakness of the Malthusian population force. As

we discussed above, the half-life of wage growth is roughly 115 years when the land share is at

its pre-1760 value. The fact that wage growth continues for hundreds of years after a change in

productivity implies that the cumulative increase in wages is substantial. In Figure H.2, we can

read off the long-run effect of higher productivity growth on wages. For a “modern” productivity

growth rate of µ = 0.1, we find that the long-run effect on the level of wages is an increase of a

factor of 20.

H.2 Dynamics after Change in α

We now study the impulse response function of our Malthusian economy to a change in α. The

thought experiment is the following: before time 0, the economy is on a balanced growth path

with α constant and equal to αH . At time 0, the value of α falls to αL. β is constant at all times.

Like before, we shut shocks down by setting them equal to their expected value. The permanent
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component of the Malmquist index follows its law of motion throughout the experiment:

m̃t = µ+ m̃t−1. (50)

Since the economy is on the balanced growth path before time 0, the derivations of section H.1

apply and we have for all t < 0:

wt =
µ

αHγ
− d∗ − ω

γ
− Eξ1t

γ

ãt − αHnt =
(µ− κH)(1− β)

αHγ
,

where κH is the value of κ when α = αH . Similarly, since α is constant for t ≥ 1, equations (44)–

(46) hold and so does equation (48). Therefore, the convergence result for at − αLnt and wt, t > 0,

apply with α = αL.

At time 0, things are more subtle as the change in α implies that equation (46) is replaced by

equation (50). Combining equation (45) at time 0 and the formula for wt with t < 0, we know n0:

n0 = n−1 +
µ

αH
.

Invoking equation (18), we can solve for a0:

ã0 = ã−1 + µ+ (αH − αL) (logZ − d∗ − n̄0 − λ) , (51)

where we have used the fact that β is constant, at = ãt, mt = m̃t, and ˆ̃mt = µ. Finally, w0 is given

by equation (44) with α = αL.

We show the impulse response functions of Wt and Nt in Figures H.3 and H.4. We set αH , the

value of α before time 0, to 0.49, which is the posterior mean before 1770 and show the results

for various values of αL. The lowest one, 0.22, is the posterior mean for αt in the last decade

of the sample. For simplicity, we set µ = 0 so that population has a well-defined steady state.

Both variables are expressed as a multiple of their steady state value with α = αH . Note that, by

assumption, the variables are in the latter steady state before time 0.

Real wages jump on impact. Since productivity, defined as the Malmquist index, is held con-

stant throughout, there is no change in output at time 0 and this jump is entirely explained by the
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Figure H.3: Response of Wt to a Change in α
Note: The figure plots the response of the real wage (Wt) to a drop in α from its posterior mean before 1770
(0.49) to the value in the legend. Wt is expressed in multiple of its steady state value before the drop.

increase in the labor share.25 Indeed, a drop in α from 0.49 to 0.22 implies a 92% increase in the

labor share, which is exactly the increase in Wt on impact. From time 1 onward, population in-

creases which pushes the wage down to the old steady state—without growth (µ = 0), the steady

state wage doesn’t depend on α.

Population is predetermined at time 0, so it does not change on impact. As income rose in

period 0, however, it starts increasing in period 1 and slowly converges to a permanently higher

level. With a larger labor share, a bigger population can be sustained in steady state.

25Formally, the change in output is:

ŷ0 = ˆ̃a0 + α̂0 logZ + βk̂0 − α̂0(n−1 + d∗ + λ) =
1

1− β

(
ˆ̃a0 + α̂0 (logZ − (n−1 + d∗ + λ))

)
= 0,

where we used the fact that n0 = n−1 when µ = 0 in the first equality, the capital demand in the second one, and
equation (51) in the third one.
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Figure H.4: Response of Nt to a Change in α
Note: The figure plots the response of population (Nt) to a drop in α from its posterior mean before 1770 (0.49)
to the value in the legend. Nt is expressed in multiple of its steady state value before the drop.
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