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A B S T R A C T

Background and purpose: Brain radiotherapy (RT) can cause white matter damage and downstream neurocog-
nitive decline. We developed a computational neuroimaging tool to regionally partition individual white matter
tracts, then analyze regional changes in diffusion metrics of white matter damage following brain RT.
Materials and methods: RT dose, diffusion metrics and white matter tract structures were extracted and mapped
to a reference brain for 49 patients who received brain RT, and underwent diffusion tensor imaging pre- and
9–12months post-RT. Based on their elongation, 23 of 48 white matter tracts were selected. The Tract-Crawler
software was developed in MATLAB to create cross-sectional slice planes normal to a tract’s computed medial
axis. We then performed slice- and voxel-wise analysis of radiosensitivity, defined as percent change in mean
diffusivity (MD) and fractional anisotropy (FA) as a function of dose relative to baseline.
Results: Distinct patterns of FA/MD radiosensitivity were seen for specific tracts, including the corticospinal
tract, medial lemniscus, and inferior cerebellar peduncle, in particular at terminal ends. These patterns persisted
for corresponding tracts in left and right hemispheres. Local sensitivities were as high as 40%/Gy (e.g., voxel-
wise:−39 ± 31%/Gy in right corticospinal tract FA,−45 ± 25%/Gy in right inferior cerebellar peduncle FA),
p < 0.05.
Conclusions: Tract-Crawler, a novel tool to visualize and analyze cuts of white matter structures normal to
medial axes, was used to demonstrate that particular white matter tracts exhibit significant regional variations in
radiosensitivity based on diffusion biomarkers.

1. Introduction

Brain radiotherapy is standard of care for most primary and meta-
static brain tumors. However, the decline of neurocognitive function is
an unfortunate sequelae among brain tumor patients treated with
radiotherapy, likely driven in part by damage to white matter, cortex,
and neurogenic stem cell niches [1]. In particular, radiation-induced
damage to normal-appearing white matter has been studied using ad-
vanced diffusion imaging [2–6], with evidence associating diffusion

biomarkers of white matter damage with neurocognitive decline after
brain radiation. How to prevent such neurocognitive decline in terms of
selective avoidance of white matter regions is unclear. The QUANTEC
report [7] on radiation dose-effects in the brain stipulates constraints
for radiation necrosis, but acknowledges that there is limited data on
constraints to avoid neurocognitive decline. It encourages the use of
advanced neuroimaging to identify signatures of microstructural da-
mage and relate these imaging biomarkers to functional changes.

We have previously reported on radiation-induced damage to white
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matter following brain RT for primary brain tumors [8]. Specifically,
using diffusion tensor imaging, it was demonstrated that changes in
water diffusion characteristics correlate with dose and that these
changes are observed for the full dose range, including<10 Gy [5]. We
further investigated whether these changes vary regionally across the
brain [4]. Overall, 21 structures were identified and mean values for
fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity
(RD), and mean diffusivity (MD) were calculated for each structure for
scans acquired before and 9–12months after RT. These changes were
shown to correlate with maximum and mean dose for some, but not all
structures, with the corpus callosum, cingulum bundle and fornix
showing the most pronounced dose-response. Traditionally, diffusivity
metrics are averaged over the volume of the structure, and so any in-
formation on spatial variation of the sensitivity of the tract along its
principal (primary) axis is lost. Studies employing a more sophisticated
along-tract analysis have been reported in the neuroimaging literature.
For example, the superiority of along-tract analysis of diffusion imaging
metrics over the tract-averaged approach has been demonstrated in a
study of children with fetal alcohol spectrum disorders vs typically
developing controls [9]. The emphasis of the along-tract analysis of FA
and MD following brain radiotherapy is different. Literature, including
our preliminary results [10], suggests that diffusion tensor imaging
predicts decline in cognitive function [11]. If differential radio-
sensitivity along the tract axis is demonstrated, this would pave way to
tract-geometry driven, rather than tract-averaged-driven constraints to
guide radiotherapy planning.

In order to determine how radiation sensitivity measures change
along a tract, the tract must first be correctly partitioned, which is a
complex procedure. In the case of perfectly cylindrical geometry, this
problem can be solved by a basic rotation of the volume. However,
tracts are often curved in 3-dimensional space and so traditional par-
allel (axial, sagittal, coronal) slice planes neither uniformly subdivide a
tract nor provide a true representation of a local cross-section. In the
extreme case of curved tracts which subtend an angle> 180°, parallel
slicing would sometimes result in these tracts being sampled in two
disconnected locations at once, regardless of any possible rotations.
Computation of an anatomical central axis to calculate normal-tissue
metrics to correlate with the risk of radiation-induced complications
has been attempted for reasonably well shaped structures. Hoogeman
et al. [12] used the minimum distance field approach to define the axis
of a rectum to guide digital unfolding of the rectal wall. White matter
tracts present a more complicated challenge as they are not necessarily
cylindrical, and vary in size and shape.

In this report we describe a novel method to define the tract axis,
and use this method to explore differential sensitivity to radiation along
the axes for 23 white matter tracts.

2. Material and methods

2.1. Study design

A detailed description of the study patients and MRI image pre-
processing can be found elsewhere [4]. In brief, 49 patients with pre-
and post-RT MRI imaging were selected for analysis. The MRI acquisi-
tion protocol consisted of a T1-weighted, T2-weighted FLAIR, and a
diffusion-weighted sequence. Diffusion data (TE, 97ms, TR, 1700ms;
diffusion time, ∼90ms; matrix, 128×128×48; resolution (mm),
1.875×1.875×2.5) were acquired with b= 0, 500, 1500, and
4000 s/mm2. One instance of the non-diffusion weighted images
(b=0 s/mm2) was acquired, while 6, 6, and 15 unique gradient di-
rections were acquired for b=500, 1500, and 4000 s/mm2, respec-
tively. Anatomical scans were corrected for distortions arising from
gradient nonlinearities [13] while diffusion-weighted scans were cor-
rected for distortions arising from static field inhomogeneity [14] using
in-house algorithms. A diffusion tensor was fit, per-voxel, to the diffu-
sion data, from which the mean diffusivity (MD) and fractional aniso-
tropy (FA) were extracted. The anatomical scans were used to register
the patient data set, including the MD and FA maps, into the standard
space, from which the white matter tracts could be segmented using the
JHU-ICBM 1mm atlas [15–17]. RT planning data, including the plan-
ning CT and volumetric calculated dose, were also non-linearly regis-
tered to the standard space. The quality of the final registrations was
manually assessed by visual inspection. Overall, 48 tracts (left and
right) were automatically segmented using a non-linear registration to
the JHU-ICBM atlas [18]. The study was approved by the institutional
review board.

Tumor, tumor bed, surgical cavity, and surgical scars were manually
censored on each patient. A white matter mask was computed from the
T1-weighted sequence at the baseline time-point using automatic seg-
mentation software [19]. In order to avoid partial volume effects from
gray matter and CSF at the edges of the volume, the mask was shrunk to
its six-connected voxels (voxels whose six face neighbors were also
white matter) [5].

2.2. Fractional anisotropy and mean diffusivity analysis

A computational neuroimaging tool, Tract-Crawler, was developed
in MATLAB (Mathworks, Natick, MA) to create slice planes for in-
dividual white matter tracts in the brain normal to the tract’s computed
medial axis. This software requires the definition of terminal points of a
tract, and therefore only tracts where clear identification of these points
was possible could be used. Following a visual examination, 23 of 48
white matter tracts were selected for this analysis, as described in
Table 1. These data demonstrate that the selected tracts are indeed

Table 1
Medial axis lengths for each of the 23 tracts analyzed and maximum and mean tract diameters, calculated from the cross-sectional area assuming circular geometry.

Tract Length along Medial Axis
(mm)

Maximum Diameter (mm) Mean Diameter (mm)

Fornix (column and body of fornix) 31 5 3
Corticospinal Tract L/R 37 9 5
Medial Lemniscus L/R 21 7 5
Inferior Cerebellar Peduncle L/R 37 5 4
Superior Cerebellar Peduncle L/R 29 6 5
Anterior Corona Radiata L/R 54 14 11
Sagittal Stratum (includes inferior longitudinal fasciculus and inferior fronto-occipital

fasciculus) L/R
53 9 6

Cingulum (cingulate gyrus) L/R 107 6 4
Cingulum (hippocampus) L/R 51 5 3
Fornix (cres) L/R 43 6 4
Superior Longitudinal Fasciculus L/R 81 12 8
Superior Fronto-Occipital Fasciculus L/R 28 5 4
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narrow, elongated structures for which there are clear terminal ends.
The final shape of the medial axis is not sensitive to small variations

in the selection of terminal endpoints. The preferred step size (mm)
between the final slice planes was determined for each tract, so that the
resulting slice planes were as close as possible without intersecting. The
medial axis for each tract was computed in several steps. Each structure
first underwent a medial axis transform by thinning [20]. Typically,

undesired medial axis skeleton branches were created due to noisy
surfaces and thus it was necessary to perform post-processing by a 3-
dimensional curve fitting process to remove the unwanted branches
[21]. The vertex points of the medial axis were taken as a 3-dimensional
point cloud, and an algorithm was run which created a final curve of 'n'
equally spaced control points between the previously determined
terminal points. Initially, ‘n’ was set as the number of original points in

Fig. 1. Voxel-wise (top) and slice-wise (bottom) analysis for the corticospinal tract; Top Left: 3D view of Tract-Crawler volumetric sections; Axes are labeled such that
A (Axial), S (Sagittal) and C (Coronal) represent the Superior-Inferior, Left-Right and Anterior-Posterior directions, respectively. Bottom Left: 3D view of Tract-
Crawler slices overlaid on right hemisphere tract structure; Middle column: FA (rows 1 and 3) and MD (rows 2 and 4) relative sensitivities versus distance along the
medial axis for the left hemispheres; Right column: FA (rows 1 and 3) and MD (rows 2 and 4) relative sensitivities versus distance along the medial axis for the right
hemispheres; Error bars are 95% confidence intervals. Asterisks denote data with p < 0.05.
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the point cloud, and was typically of order 100. An initial set of control
points was defined along a straight line between the terminal points of
the tract. All of the original points (sample points) in the point cloud
were assigned to their nearest control point, and the control point was
then shifted to the mean of its sample points. Any control points
without sample points in its domain were linearly distributed between
its neighbors which did have sample points in their domains [22]. A 3-

dimensional parametric cubic spline was then fit to the curve, such that
each point was spaced apart equally by the step size. The number of
control points, 'n', was varied until the medial axis was acceptably
smooth, typically resulting in values of ‘n’ around five. Slice planes
were then computed normal to the medial axis. Each of our user inputs
for each tract was recorded as a tract parameter, such that Tract-
Crawler could then operate automatically. Fig. S1 (supplementary

Fig. 2. Voxel-wise analyses for the medial lemniscus (top) and inferior cerebellar peduncle (bottom); Top and Bottom Left: 3D view of Tract-Crawler volumetric
sections; Axes labeling as in Fig. 1. Middle column: FA (rows 1 and 3) and MD (rows 2 and 4) relative sensitivities versus distance along the medial axis for the left
hemispheres; Right column: FA (rows 1 and 3) and MD (rows 2 and 4) relative sensitivities versus distance along the medial axis for the right hemispheres; Error bars
are 95% confidence intervals. Asterisks denote data with p < 0.05.
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material) shows the process progression for the right inferior cerebellar
peduncle.

Two methods were used to analyze the data: a slice-wise analysis in
which the 2-dimensional slice planes were 3-dimensionally linearly
interpolated into the data volume and a voxel-wise analysis taking the
volume between each slice plane. For the slice-wise analysis, DTI data,
FA and MD, and RT dose data were mapped to the angled slices with
interpolated pixel spacing of 0.25mm after restricting these data to the
masked white matter tracts for each patient, and a radiosensitivity
measure was calculated as the percent change in mean FA or MD per
patient and slice divided by the mean RT dose per patient and slice,
scaled by the mean over all the slices, and averaged over all 49 patients
studied. Similarly, for the voxel-wise analysis, masked FA, MD, and
dose data were partitioned into volumetric sections between slice
planes and the sensitivity measure was calculated as the percent change
in mean FA or MD per patient and volumetric section divided by the
mean RT dose per patient and section, scaled by the mean over all the
voxels, and averaged over all 49 patients studied.

2.3. Statistical analysis

All statistical tests were performed in MATLAB. Diffusion (FA/MD)
radiosensitivity at each slice or volumetric section location was tested
for statistical significance using a one-sample t-test. Pearson correlation
coefficients, R, and their corresponding p-values were calculated for the
association between the FA/MD sensitivities of the left and right
hemispheres for each of 23 tracts used in this study. Correlation was
also calculated between the two analysis methods used.

3. Results

Both slice-wise and voxel-wise analysis yielded very similar results
(R > 0.98, p < 0.01). Under both methods, distinct patterns of FA/
MD sensitivity to dose (percent change in diffusivity per Gy, relative to
the tract’s mean) along the tract axis were seen for the corticospinal
tract, medial lemniscus, and inferior cerebellar peduncle. Fig. 1 shows

FA and MD sensitivity calculated using both the slice-wise and voxel-
wise approaches. Fig. 2 shows the results for medial lemniscus and
inferior cerebellar peduncle obtained using the voxel-based method.
Notably, a statistically significant difference from baseline was ob-
served on consecutive data points in the corticospinal tract and inferior
cerebellar peduncle, and these stretches of differential sensitivity were
constrained to the terminal ends of the tracts. Figs. 1 and 2 show that
the sensitivity patterns persisted for corresponding tracts in both the
left and right brain hemispheres. Sensitivity as given in Figs. 1 and 2 is
formulated in a manner relative to the mean over a tract to demonstrate
deviations from the mean, therefore absolute changes in diffusion me-
trics cannot be ascertained. Fig. 3 shows absolute along-tract changes in
FA and MD for the inferior cerebellar peduncle without referencing to
the tract’s mean. A persistent, but not significant, increase in MD is
notable and consistent between the left and right hemispheres. All other
structures analyzed did not display any clear trends, an example being
the cingulate gyrus, as shown voxel-wise in Fig. S2 (supplementary
material). Fig. 4 illustrates the voxel-wise correlation between the left
and right hemispheres for the corticospinal tract, medial lemniscus and
inferior cerebellar peduncle (R > 0.88, p < 0.01 for all structures).
Table 2 summarizes data for these three structures at their terminal
ends.

4. Discussion

Neurocognitive decline following brain RT has been acknowledged
for a long time, which is driven in part by dose dependent damage to
white matter. Previous work has demonstrated the exquisite dose sen-
sitivity of white matter based on diffusion biomarkers of white matter
damage [5] and the regional sensitivity among discrete white matter
tracts in the brain [2–4]. Our group has also previously demonstrated
that there exist component-wise differences in the associations between
radiation dose and directional diffusion coefficients in the 9months
after radiotherapy [8]. However, many questions remain. How can we
evaluate dose dependency to radiation-associated damage along a
white matter tract? Are the terminal ends of the tract more sensitive

Fig. 3. Voxel-wise analysis for the inferior cerebellar peduncle relative to the pre-RT FA without scaling relative to the tract mean.
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than the middle? Is the exterior portion of a given white matter tract
more or less sensitive to dose than the interior portion? In order to
answer these questions, we needed a tool to regionally segment white
matter tracts along their curvatures. We have successfully created a
novel neuroanatomic segmentation tool which meets these needs by
creating cross-sectional slice planes normal to a computed medial axis,
similar to methodology developed for application in the rib cage [23]
and rectum [12].

In this study we have demonstrated that some, but not all, white
matter structures clearly exhibit non-uniform sensitivity to radiation
dose along their axes. It is notable that this pattern has been highly
reproducible in such tracts between the left and right hemispheres.
Even for locations where the change from baseline was not statistically
significant, the overall pattern persisted in both hemispheres, Figs. 1
and 2. There are at least two ways to interpret that long stretches of
tracts show similar sensitivity. One is that sensitivity is indeed slowly

Fig. 4. Voxel-wise association scatterplots for sensitivities in FA (left) and MD (right) for right versus left hemisphere, parametrized by distance along the medial axis,
for the corticospinal tract, medial lemniscus, and inferior cerebellar peduncle, p < 0.01 in all cases.
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changing along the tract axis. Another, which may numerically lead to
the same result but is mechanistically different, is that changes in FA
and MD are influenced by those of the neighboring regions. This
question cannot be answered with our data.

The along-tract approach revealed clear variations in sensitivity. In
contrast, the volume-averaged approach did not show significant
changes. Specifically, the volume-averaged mean FA and MD changes
and 95% confidence intervals, in percent per Gy, were 6 ± 35 and
9 ± 27 for the right corticospinal tract, 4 ± 30 and 4 ± 25, right
medial lemniscus, and 1 ± 34 and 7 ± 27, right cerebellar peduncle.
Similar results were observed for the left hemisphere.

Our formulation of sensitivity is designed to reveal local deviations
in response compared to the tract mean. It can be seen from the data,
Table 2, that local radiosensitivity compared to the tract mean can
reach magnitudes as high as ∼40% per Gy, which could constitute a
very significant effect, depending on dose. For example, a locus with a
relative sensitivity of 40% per Gy exposed to only 20 Gy would ex-
perience a change in the diffusion metric of 800% in addition to that of
the tract mean.

Imaging-driven treatment planning has been making its way into
radiation therapy. The premise is that tumors and normal tissues are
heterogeneous in their properties. For tumors this can be cell density,
proliferation rate, hypoxia [24–26]. These properties can be visualized
using modern positron emission tomography and MRI means. For
normal tissue this can be functional burden distribution [27] or pre-
ferred location of stem cells [28] to preserve the function. Clinical trials
are in progress and the emphasis thus far has been on tumor properties
[29]. This study demonstrates that white matter tracts exhibit variation
in dose sensitivity of diffusion metrics along their principal axis. Re-
gions with increased sensitivity may be at greater risk for micro-
structural changes following irradiation. Although no associations be-
tween neurocognitive outcomes and dose sensitivity were examined in
this study, there are several examples within the literature in both
oncology [2] and other disease states [30], demonstrating the asso-
ciation between changes in diffusion properties of white matter and
cognitive function. Together, these results can help inform the identi-
fication of new organs-at-risk for treatment planning optimization
whose value can be assessed using prospective clinical trials.

Limitations to our study include its retrospective nature and po-
tential confounding effects from chemotherapy or surgery. These data
are from a single institution using a standardized imaging protocol. The
generalization of both the method and the findings still need to be
explored. It is also assumed, as a first approximation, throughout the
analysis that changes in diffusivity vary linearly with RT dose. This
assumption cannot be true for parameters with bound values, e.g. be-
tween zero and unity, as is FA. Therefore, extrapolation of our results to
substantial variations from the mean would be incorrect. Our analysis is
an advancement over the tract-averaged approach. However, slice-
averaged or voxel-averaged approaches have been used. A detailed
voxel-based analysis will require a more sophisticated voxel

connectivity approach. This will require combining tract geometry with
dosimetric data, for example minimum, maximum, or above/below pre-
set threshold dose in any voxel in any slice. Voxel-based analysis will
unavoidably introduce more statistical noise and a larger data set
(number of patients) will be required.

The Tract-Crawler software is currently only semi-automated and
required a fair amount of human intervention, i.e. determination of
tract terminal ends and medial axis smoothness. The former can be
solved using computer vision, while the latter requires an optimization
algorithm. The association between regional radiosensitivity of diffu-
sion metrics and neurocognitive or clinical function is yet to be ex-
plored.

The Tract-Crawler software was developed and used to calculate
changes in MD and FA for 23 white matter tracts along the tract axes.
Specific tracts, in particular the corticospinal tract, medial lemniscus
and inferior cerebellar peduncle, exhibited strong regional dependence.
This regional sensitivity was consistent between tracts in the left and
right hemispheres.
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