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Abstract

Motivation: Driven by technological advances, the throughput and cost of mass spectrometry (MS) proteomics experiments have improved by
orders of magnitude in recent decades. Spectral library searching is a common approach to annotating experimental mass spectra by matching
them against large libraries of reference spectra corresponding to known peptides. An important disadvantage, however, is that only peptides
included in the spectral library can be found, whereas novel peptides, such as those with unexpected post-translational modifications (PTMs),
will remain unknown. Open modification searching (OMS) is an increasingly popular approach to annotate modified peptides based on partial
matches against their unmodified counterparts. Unfortunately, this leads to very large search spaces and excessive runtimes, which is especially
problematic considering the continuously increasing sizes of MS proteomics datasets.

Results: \We propose an OMS algorithm, called HOMS-TC, that fully exploits parallelism in the entire pipeline of spectral library searching. We
designed a new highly parallel encoding method based on the principle of hyperdimensional computing to encode mass spectral data to hyper-
vectors while minimizing information loss. This process can be easily parallelized since each dimension is calculated independently. HOMS-TC
processes two stages of existing cascade search in parallel and selects the most similar spectra while considering PTMs. We accelerate HOMS-
TC on NVIDIA’s tensor core units, which is emerging and readily available in the recent graphics processing unit (GPU). Our evaluation shows
that HOMS-TC is 31 x faster on average than alternative search engines and provides comparable accuracy to competing search tools.

Availability and implementation: HOMS-TC is freely available under the Apache 2.0 license as an open-source software project at https:/

github.com/tycheyoung/homs-tc.

1 Introduction

Mass spectrometry (MS) is a powerful analytical technique to
identify and quantify peptides and proteins present in com-
plex biological samples. A common strategy to analyze data
from shotgun proteomics experiments is using spectral library
searching, which matches experimental MS/MS spectra to ref-
erence MS/MS spectra corresponding to known peptides and
transfers peptide labels to high-scoring matches (Griss 2016,
Shao and Lam 2017). An important disadvantage of this ap-
proach, however, is that only peptides that are included in the
spectral library can be found, while novel peptides will remain
unknown. Even though spectral libraries are becoming in-
creasingly comprehensive, they cannot provide coverage of
the full proteome. Notably, current spectral libraries predomi-
nantly contain unmodified peptides, whereas a significant
portion of experimental spectra that remain unannotated
might correspond to peptides that include post-translational
modifications (PTMs) (Chick et al. 20135).

An increasingly popular approach to identifying modified
peptides is open modification searching (OMS). Unlike stan-
dard spectral library searching, which only compares experi-
mental MS/MS spectra to library candidates with a similar
precursor mass, OMS matches spectra irrespective of their

precursor mass. This makes it possible to compare spectra
corresponding to modified and unmodified peptides, even
when their precursor masses differ due to PTMs. An impor-
tant downside of OMS is that, because the precursor mass fil-
ter can no longer be used and instead each experimental
spectrum has to be compared against the full spectral library,
it suffers from a very large search space, which can lead to ex-
cessive runtimes. This is especially relevant as available spec-
tral libraries have grown significantly in size over the past few
years (Griss ef al. 2013, Griss et al. 2016, Wang et al. 2018,
Xu et al. 2022). For example, PRIDE-Cluster (Griss et al.,
2013, 2016) and MassIVE-KB (Wang et al. 2018) have been
generated by repository-scale reprocessing of public data on
the PRIDE (Martens et al. 2005) and MassIVE data reposito-
ries, respectively, and consist of millions of reference MS/MS
spectra.

To cope with the computational demand, various tools that
use algorithmic advances to efficiently process large search
spaces have been proposed, such as MSFragger (Kong et al.
2017), Open-pFind (Chi et al. 2018), TagGraph
(Devabhaktuni et al. 2019), MetaMorpheus (Solntsev ef al.
2018), ANN-SoLo (Bittremieux et al. 2018, 2019), and
others. Some tools can use specialized hardware, such as
graphics processing units (GPUs), to speed up OMS
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(Bittremieux et al. 2019). Although spectrum identification is
generally not the bottleneck compared with the data acquisi-
tion time, because there is a strong effort to reduce experimen-
tal runtimes, e.g. by using very short liquid chromatography
gradients (Messner et al. 2021), computational efficiency is
still an important point of attention. Additionally, as the
amount of MS data that is available in public data reposito-
ries, such as PRIDE (Martens et al. 2005) and MassIVE, con-
tinuously keeps growing, efficient bioinformatics tools are
essential for large-scale public data reanalysis efforts.
Unfortunately, however, due to the complexities of spectral
data processing, in practice, most OMS tools under-utilize the
hardware resources and still suffer from long runtimes.

In this work, we propose Hyperdimensional Open
Modification Search with Tensor Core (HOMS-TC) accelera-
tion, a novel spectral library searching framework that sup-
ports OMS. Our solution redesigns the MS/MS spectral
matching algorithm based on the principle of hyperdimen-
sional computing (HDC). HDC is designed to mimic the effi-
ciency of human memory in pattern-oriented computations
by representing data with high-dimensional (HD) vectors,
called hypervectors (HVs) (Kanerva 1988, 2009). HDC has
been used to enable parallel processing of pattern-matching
tasks, such as sequence alignment (Kim ez al. 2020, Zou et al.
2022) and image matching (Neubert and Schubert 2021).

Based on HDC, HOMS-TC simplifies spectral library
matching to efficient cosine similarity searching of HVs. Our
HV encoding captures spectral similarity by incorporating
peak position and intensity and is tolerant to changes in peak
intensity due to instrument errors or noise. Furthermore, the
encoding natively supports adding additional reference spec-
tra when the spectral library is updated because each data
point is independent. To this end, the proposed algorithm is
parallelizable and can be easily accelerated with hardware as
they are highly regularized. Thanks to a simplified pipeline
and scoring metric, HOMS-TC can be implemented using
state-of-the-art hardware accelerators, such as the emerging
tensor core units (TCUs). TCUs outperform CUDA cores for
matrix multiplication operations and are readily available
and programmable in modern NVIDIA GPUs. We evaluate
the proposed algorithm using CUDA v11.8 on an NVIDIA
GeForce RTX 4090 GPU. Compared with ANN-SoLo, which
is a traditional GPU-based OMS solution, HOMS-TC is 31 x
faster while offering comparable quality as other competing
search tools.

2 HDC preliminaries

HDC is an emerging computing paradigm that mathemati-
cally models features of the neuronal circuits in the human
brain by representing data with HVs. Using the following
operations, HDC mimics the way human memory works;
memorizing information, associating different pieces of infor-
mation, and understanding relationships between data.

Reasoning: The reasoning is done by measuring the similar-
ity between two HVs. For example, we can distinguish be-
tween two HVs, H; and H,, by examining the similarity
between them, i.e. §(Hy, Hy). If this value is close to zero, in-
dicating that the HVs are nearly orthogonal, then we can con-
clude that they are distinct. Here, hamming distance and
cosine similarity can be used for binary HVs and non-binary
HVs, respectively.
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Bundling: The bundling operation mimics memorization. It
is done by element-wise vector addition between HVs. For ex-
ample, let H= A + A; + A;. H memorizes patterns of HV
A4, Ay, and Aj; 6(H,A;) > 0 for i € {1,2,3}. Besides, for
randomly generated HV X, 6(H,X) ~ 0 as H does not con-
tain the information of X.

Binding: Using the coordinate-wise vector multiplication
(®), we can associate different information. This HDC opera-
tion is called binding. The resulting HV represents new infor-
mation, which is nearly orthogonal (dissimilar) to both
operand HVs, i.e. 6(A ® B,A) ~ 0.

Flip: To achieve the desired level of similarity between
HVs, we use the flip operation, which involves changing the
sign bit of HV elements. For example, ﬂip[?ing D/2 elements
of the HV represented by H= {+1,—1}" produces an HV
that is 50% similar to the original HV.

Permutation: The permutation operation, p”(H) shuffles
the components of H with an #-bit rotation. The result is a
near-orthogonal HV, i.e. 6(p”(H), H) ~ 0 for non-zero 7.

We can aggregate peak information to HVs with these
operations. In the following, we show how HOMS-TC uti-
lizes HDC operations to combine peak data from MS/MS
spectra to represent them in an HV format.

3 Methods

HOMS-TC is an HDC-based OMS tool that can be parallel-
ized and accelerated with GPU. It consists of two stages: (i) an
encoding stage during which MS/MS spectra are converted to
HVs and (ii) a search stage that matches query HVs to library
HVs to annotate the query spectra.

3.1 Data preprocessing and spectra vectorization

Before proceeding to the encoding stage, HOMS-TC enhances
the search quality by refining spectra using the spectru-
m utils package (Bittremieux 2020). The refined spectra
are then vectorized and saved in a compressed format (Fig. 1).
During refinement, HOMS-TC first limits the mass-to-charge
ratio (m/z) range and removes peaks outside the given m/z
range. Next, low-quality peaks are discarded, including those
whose intensity is less than 1% of the most intense peak in
the spectrum. Only the N most intense peaks are retained,
with previous studies (Lam ef al. 2007, Bittremieux et al.
2019) showing that empirically setting N between 50 and 150
effectively eliminates noise. Finally, peak intensities are nor-
malized to further enhance the accuracy of the results.

To vectorize spectra, the m/z range is discretized, resulting
in spectrum vectors—sparse vectors of floating-point values
(intensities). This is realized by dividing the m/z range into

Preprocessed Spectra

Vectorization

[10.04,.,1 [10.20.,2] [ 1600.,4 |

1 CSR Compression

idx_arr
(compressed) ]
Vector nl-l

Figure 1. Spectrum vector representation. Preprocessed spectra are
converted to spectrum vectors by binning the m/zrange, after which the
resulting vectors are compressed using the CSR format.

idx_start_arr



Open modification search in HD space

bins and assigning each peak in a spectrum to a bin based on
its m/z value. If multiple peaks fall into the same bin, their in-
tensities are summed up. The bin width determines the level
of detail in the vectorized spectrum. A larger bin width leads
to a loss of information, while a smaller bin width results in a
higher dimensionality for the spectrum vector. For instance, if
the mass range is 0 — 2000 m7/z and the bin width is 0.04 Da
(based on the mass spectrometer resolution), the spectrum
vector would have a dimensionality of 50 000. Note that the
current HOMS-TC only supports the Da-level bin width,
which is ideal for low-resolution ion traps where m/z errors
do not increase with the m/z.

Vectorizing spectra produce HD, sparse vectors with a
sparsity of around 0.1%, which need to be efficiently repre-
sented and stored. To accomplish this, we use the compressed
sparse row (CSR) format to compress a matrix of spectrum
vectors. The compressed spectrum vector consists of three
one-dimensional arrays: (i) intensity arr contains peak
intensities for all spectra, (ii) 1dx_arr contains the m/z bin
indexes matching intensity values for all spectra, and (iii)
idx start arr contains the start indices of each spectrum
in the intensity arr and idx_arr arrays. By doing so,
only non-zero intensity values are stored, resulting in optimal
data reduction, and individual spectra can be accessed effi-
ciently. During preprocessing, library spectra and query spec-
tra are encoded in a similar manner and saved to disk for
efficient reuse in subsequent analyses. Note that HOMS-TC
splits spectra based on their precursor charge since matched
spectra must have the same charge.

3.2 HV encoding

In the encoding stage, spectrum vectors are converted to HVs.
It captures the 7/z values and intensities of peaks and spreads
this information over all vector dimensions while also reduc-
ing the dimensionality of the original spectrum vectors. The
encoding process is illustrated in Fig. 2. First, the m/z loca-
tions of the fragments (idx_arr) are captured using
“position HVs” denoted as P. Each bin index is assigned a
unique HV P;, where P; corresponds to bin 7 and P; is a mem-
ber of the set {P1,P,,...,Ps}, with f being the dimensionality
of the spectrum vector. Furthermore, we require that all HVs
are orthogonal to each other. Orthogonality helps to ensure
that each bin index is represented by a unique position HV,
which is important for accurately capturing the m/z locations
of fragments in the spectrum. Without orthogonality, it would
be difficult to distinguish between different bin indices, which
could lead to errors in the search process. To ensure that P;

Spectrum Vector
intensity_arr

idx_arr

e
Hypervector (HV) [ CTT———]

D—1

Figure 2. Encoding spectrum vectors to HVs with D dimensions using
HDC operations. The peak m/z values are captured by the position HVs P;.
The peak intensity values are quantized and captured by the level HVs L;.
The spectrum HVs I; are computed using element-wise multiplication
between P and L. The encoding stage is accelerated using CUDA cores.

and P; are orthogonal for i#j, previous works used a
permutation-based method (Salamat et al. 2019, 2020).
However, P; and P; can be the same when using a
permutation-based method if the dimensionality of the HV
(D) is smaller than that of the spectrum vectors (f), for some i
and ;. Instead, each element of the position HV P is randomly
generated by drawing it from a normal distribution with
mean zero and standard deviation one in HOMS-TC. In this
way, P; and P; are nearly orthogonal for bin index i and j
where i # j. In other words, we can distinguish the position of
each peak even when f > D.

To capture the peak intensities (intensity arr), we use
“level HVs.” This involves first uniformly discretizing the
peak intensities into a finite set of values. Next, we assign a
HV L, to each quantization level i, with the number of levels
O, where i € [1,Q] and L; € {L1,L,,...,Lo}. Note that the
encoder does not use Ly since the intensity of a peak is always
greater than 0. Here, the assigned HVs L for each level should
reflect the similarity of the corresponding intensities, given
that intensity is originally continuous. In other words, the
similarity between L; and L;;; should be greater than that be-
tween L;,1 and L, where x > 1. The flip operation is used
to achieve this closeness. To obtain the level HV L, for a tar-
get level p among a total of Q levels, we flip (D/2) x (q/Q)
elements of L;. Note that reflecting intensity similarities using
level HVs in this way is robust to changes in peak intensities,
e.g. due to experimental variability.

Finally, given a set of position HVs P and level HVs L, we
aggregate peak information in a spectrum into an HV by
binding the HVs P and L, which correspond to peak positions
and intensities, respectively. In turn, we bundle those results
to memorize patterns in a spectrum HV I as follows:

I= Z P;® L, (1)
(

i.j)EP

with P the set of tuples (i,/), where i is the peak index and j
the quantized level of its intensity in the spectrum vector. In
this fashion, both the positional information and intensity of
each peak are captured and aggregated into the spectrum HV
I. A key aspect of the HV representation is its robustness to
spectrum variability. For varying peak intensities, only a few
elements (fewer than the HV’s dimensionality) in the level HV
will change. Hence, the similarity between the HVs of
matched reference and query pairs remains stable.
Additionally, if peaks are added or removed, the bundling op-
eration used to memorize the peak information in I ensures
that the remaining peak information is memorized, and thus
the similarity is well-preserved.

Unlike the existing HDC encoding method, ID-Level encod-
ing (Imani et al. 2017), the proposed encoder skips the spec-
trum vector component with zero values. The capture of these
values works as an offset in the HV. Exploiting the sparsity of
the spectrum vector reduces the number of additions dramati-
cally. Since there are up to 150 peaks per spectrum (after pre-
processing) and 30 000 bins in most cases, the required
number of addition is reduced by one or two orders of
magnitude.

3.3 Spectral library search

HOMS-TC uses a two-step cascade search strategy (Kertesz-
Farkas et al. 2015) to optimize the identification of unmodi-
fied and modified peptides while controlling the false



discovery rate (FDR). During the first step, unmodified pepti-
des are identified using a small precursor m/z tolerance, while
during the second step, a wide precursor m/z tolerance is used
to identify modified peptides using OMS. FDRs are computed
after each step based on the target-decoy strategy (Elias and
Gygi 2007). During the first step of the cascade search, FDR
calculations proceed in the standard fashion. In contrast, dur-
ing the second step of the cascade search, a subgroup FDR
strategy (Fu 2012, Fu and Qian 2014) is used to capture var-
iations in the score distributions incurred by different PTMs
(Bittremieux et al. 2018).

Figure 3 illustrates the flow of the spectrum search, includ-
ing selecting candidates from the spectral library based on the
precursor m/z tolerance and the pairwise similarity computa-
tions. Both library and query spectra are encoded into HVs,
which are used to identify the best match between a query
spectrum and a library spectrum based on cosine similarity.
Note that we use the same similarity value for two levels. As
such, for efficiency, HOMS-TC processes both levels of the
cascade search in parallel and the accepted identifications are
merged at the end. In other words, HOMS-TC overlaps the
two levels of cascade search, thereby avoiding redundant
computations and maximizing parallelism.

3.4 Acceleration using GPUs

Two stages of HOMS-TC are parallelizable using GPUs. The
encoding stage can be parallelized across HV dimensions and
datapoints as they are independent of each other. It can be
implemented in a similar way to existing GPU-based HDC
framework (Kang et al. 2022a,b). The CUDA cores in the
GPU process the encoding and store spectrum HVs in the
GPU global memory. For the encoding stage, HOMS-TC gen-
erates HVs for query and reference spectra on-the-fly, not sav-
ing the encoded results to the disk. Like other tools, e.g.
ANN-SoLo (Bittremieux et al. 2018, 2019), the encoded refer-
ence HVs can be reused. However, our results show that gen-
erating HVs in place is faster due to the data transfer time
from the disk to the host memory and from the host memory
to GPU memory.

The search stage consists of score calculation and top-1 ref-
erence HV search (Fig. 3). Here, the score calculation is inher-
ently equivalent to matrix multiplication. Recent GPUs have
TCUs that are specialized for such operations, which can be
easily used with CUTLASS (Kerr et al. 2022) or the CUBLAS
(NVIDIA 2022) application programming interface. By using
TCUs to calculate similarity scores, throughput can be maxi-
mized. Note that using TCUs does not result in data move-
ments since TCUs and CUDA cores share the same GPU
global memory. However, to exploit TCU hardware, several
constraints need to be satisfied. First, the HV dimensionality
and the batch size need to be multiples of 8. Also, the choice

TCU (GPU) CUDA core (GPU) cPU
- Query HVs | Precursor m/z filtering
:|:|: w/ narrow window FDR
H 5 :» & filtering
i : | o Pick Top-1 ref. HV
:......@ H ;27;’;’;?; Merge
- Ref.HvVs - | computation — Results
I (encoded offline) | Precursor m/z filtering
:|:|: w/ wide window FDR
i : = & filtering
——— Pick Top-1 ref. HV

Figure 3. Search stage in HOMS-TC. TCUs and CUDA cores perform
similarity computation and search, respectively. Search using two window
conditions is done in parallel.
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of HV precision is limited. Using half-precision floating-point
(FP16) or eight-bit integer (INT8) precision is required. In
HOMS-TC, the precision determines the amount of informa-
tion that the HVs can represent, which can affect search qual-
ity. Figure 4 illustrates how HOMS-TC can manage the
precision of the encoded HVs. FP16 spectrum HVs can be
obtained by using FP16 position HVs. To use INT8 precision
for I, we binarize the position HV by taking the sign bit for
each component. The level HV is {—1, 1}”. If there are up to
50 peaks per spectra, each component of the spectrum HV is
in the range between —50 and +350, satisfying the range of
INT8 ([—128, 127]). Empirically, we found that INTS8 is
enough to get sufficient search quality. We discuss the impact
of precision in Section 4.3.1.

The top-1 reference HV search part is accelerated using
CUDA cores. We use a conventional parallel maximum re-
duction strategy (Harris 2007) while satisfying precursor m/z
tolerance conditions. HOMS-TC targets OMS with cascade
search; searching with two precursor m/z conditions runs in
parallel. Finally, the CPU processes subsequent FDR filtering
and merges the results from both levels of the cascade search.

4 Results

4.1 Experimental setup

4.1.1 System configuration

The evaluation was conducted on a system with an Intel i7-
11700K CPU and 64 GB of RAM, and NVIDIA Geforce
RTX 4090 with 24 GB of VRAM and fourth-generation
TCUs. The HOMS-TC algorithm was implemented on the
GPU using a state-of-the-art GPU-based HDC framework
(Kang et al. 2022a,b). Due to the limited memory on the
GPU, the reference and query data were divided into batches.
The batch size was set to use the maximum amount of
VRAM available for GPU-based solutions.

4.1.2 Dataset

We tested the performance of HOMS-TC on two real-world
datasets. The first dataset consists of the iPRG2012 dataset
(Chalkley et al. 2014) with 17 993 query spectra, which was
searched against a combined reference library derived from a
TripleTOF yeast spectral library (Selevsek et al. 2015) and a
human HCD spectral library compiled by NIST (version
2016/09/12), totaling 1 188 168 library spectra. To create the
spectral library, we removed decoy hits from the yeast spectral
library and concatenated it to the human HCD spectral li-
brary using SpectraST (Lam et al. 2007). Additionally, dupli-
cates were removed and decoy spectra were added in a 1:1

(@) P, [Fals] - [l
S
P! [eafn] . [malwa)

> ® c)
i (Ll Ta]+] P, [rp32[rp32] .- [ep3a[rp32]
< L-sign
| S R e 2 2 N T W N R N N
®
®) p, il DA S T N Y
Type casting

h 2
P [FPic]Feie] - [roie[eeie] I [wa]wea] - wa[wg]
> ®
ol I RN AT N

I [rpic[epic] --- [rpic[reic]

Figure 4. Various spectrum HV precision used in HOMS-TC. (a) FP32
precision, (b) FP16 precision, and (c) INT8 precision. Depending on the
precision, HOMS-TC is run on either CUDA cores or TCUs.
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ratio using the shuffle-and-reposition method (Lam et al.
2010).

The second dataset consists of HEK293 data from 24 peak
files, with on average 46 715 spectra per file (Chick et al.
2015). These data were searched against the MassIVE-KB
spectral library (version 2017/11/27) (Wang et al. 2018),
which was compiled using repository-scale reprocessing of
public human proteomics data on MassIVE, and contains
3 009 902 spectra. Library spectra were processed as de-
scribed above to remove duplicate spectra and add decoy
spectra.

The query and library spectra were preprocessed using the
hyperparameters listed in Table 1. Additionally, low-quality
spectra with less than 10 peaks and a 250#2/z mass range
were discarded, and peaks within a 0.05 m/z window around
the precursor m/z were removed. After preprocessing, there
were 15 867 query spectra and 1 162 392 library spectra in
the iPRG2012 dataset remaining. For the HEK293 dataset,
on average 46 665 query spectra per peak file remained, as
well as 2 992 672 library spectra. All MS data, spectral librar-
ies, preprocessed spectra, and identification results are avail-
able on the MassIVE repository with the dataset identifier
MSV000091183.

4.2 Baselines

We evaluate HOMS-TC in terms of search quality and speed
improvement. Also, we show HOMS-TC performance
according to the three key parameters in HDC: HV precision,
HYV dimensionality, and quantization level. We compare them
to those obtained using existing search tools, including the
state-of-the-art OMS solution running on GPU, ANN-SoLo
GPU v0.3.3 (Bittremieux et al. 2019), and the CPU-based
OMS tools, ANN-SoLo CPU v0.3.3 (Bittremieux et al. 2018),
MSFragger v3.3 (Kong et al. 2017), and SpectraST v5.0 (Lam
et al. 2007, Ma and Lam 2014). For ANN-SoLo, we set the
number of clusters (C), the number of clusters to visit (N),
and batch size (B) to 512, 128, and 8192, respectively, to fully
utilize GPU memory in the HEK293 dataset case. The same
C, N, and B are used for all datasets for fair speed compari-
son. We evaluated all search results at a fixed FDR threshold
of 1% using Pyteomics (Goloborodko et al. 2013). Note that
we compare the speed of HOMS-TC to ANN-SoLo only,
which is currently the fastest OMS tool. We sum all the execu-
tion times for each precursor charge. For the HEK293 data-
set, we run the search tool for all query files and compute an
average of the runtime. Also, we assume that the preprocess-
ing was done offline, as this only needs to be done once.

4.3 Impact of HV configuration
4.3.1 HV precision

The precision of the HV impacts the amount of information
they are able to represent. While limited precision has the

Table 1. Parameters used for the evaluation.

Dataset
Parameter iPRG2012 HEK293
Max peaks per spectrum 50
Min/Max m/z 101/1500
Bin size 0.05Da 0.04 Da
Precursor m/z tolerance (narrow) 20ppm Sppm
Precursor m/z tolerance (wide) 500 Da 500 Da

advantage that the data can be compressed more efficiently
and specific precision such as FP16 and INT8 can enable the
use of TCUs, it may reduce the search quality. We evaluate
the search quality and the runtime according to the precision
of the spectrum HVs, 1. Here, we fixed the HV dimension and
quantization level to 8192 and 32, respectively. As shown in
Supplementary Table S1, using FP16 or INT8 offers similar
search quality to the single-precision floating-point (FP32)
case. However, the spectral library search stage in HOMS-TC
can be accelerated with TCUs when using FP16 and INTS8
spectrum HV. Thanks to the TCU acceleration, using INT8
(FP16) can accelerate the search stage by up to 3.5%x (2.4x)
and the end-to-end HOMS-TC by up to 2.9x (2.1x) com-
pared with the FP32 case that uses CUDA cores
(Supplementary Fig. S1). Since at most 50 peaks exist in our
evaluation, we use INT8 precision in HOMS-TC, considering
the search quality and performance tradeoff.

4.3.2 HV dimensionality

Another important hyperparameter that allows a trade-off be-
tween search results and runtime is the HV dimensionality
(D). Because the time complexity of the cosine similarity cal-
culations is proportional to D, a higher dimensionality will
lead to increased runtimes (Supplementary Fig. S2). In con-
trast, an overly low dimensionality limits the fidelity with
which the HVs can encode the spectral data, negatively
impacting the identification performance. We can clearly ob-
serve the influence of D on the identification performance
(Supplementary Table S2). Note that we use INT8 HV and 32
quantization level. Optimal identification performance is
achieved at high D, while the number of identified spectra
decreases for lower HV dimensionalities. Therefore, a suffi-
ciently high HV dimensionality is required to achieve a good
search quality. We use D = 8192 since search quality is satu-
rated at this value.

4.3.3 Quantization level

High quantization levels may not be flexible to the peak inten-
sity changes due to noise and PTMs. A low quantization level
leads to low resolution in intensity capturing of the encoder.
To observe the impact of Q, we fixed D to 8192 and HV pre-
cision to INT8. We set the quantization level Q from 8 to 64
and measured the search quality. As shown in Supplementary
Table S3, the search quality is less sensitive to Q. We set the
default value for the O to 32.

4.4 Search quality

To compare search quality, we count the number of identified
spectra after FDR filtering. Note that the high-performing (in
general) hyperparameters are used for HOMS-TC: HV preci-
sion, HV dimensionality (D), and quantization level (Q) are
set to INTS8, 8192, and 32, respectively. For the iPRG2012
dataset, we compare the search results to the consensus identi-
fications from multiple participants of the iPRG2012 study
(Chalkley et al. 2014). The analysis result shows that HOMS-
TC is able to correctly identify around 60% of identical spec-
tra of the iPRG2012 consensus results (see Fig. 5a). Although
HOMS-TC identifies slightly fewer spectra than ANN-SoLo,
the extra ANN-SoLo identifications predominantly do not
match or conflict with the iPRG2012 consensus results, and
thus are presumably less reliable.

Additionally, we compare the search results of HOMS-TC
to ANN-SoLo, MSFragger, and SpectraST using the larger
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Figure 5. Comparison of the search quality (the number of unique
peptides) of HOMS-TC to baselines visualized with UpSet plot. (a) HOMS-
TC versus ANN-SoLo and consensus results on iPRG2012 dataset. (b)
HOMS-TC versus baseline identification results on HEK293 dataset.

HEK293 dataset. As no ground truth is available for the
HEK293 dataset, we compare the number of identified spec-
tra and unique identified peptides from HOMS-TC and base-
line OMS tools, SpectraST (Lam et al. 2007, Ma and Lam
2014), ANN-SoLo (Bittremieux et al. 2018, 2019), and
MSFragger (Kong et al. 2017). The results indicate that
HOMS-TC identified a similar number of spectra as
SpectraST and MSFragger. Although ANN-SoLo managed to
identify more spectra, a significant number of identifications
were only unique to ANN-SoLo, while the number of spectra
commonly identified by HOMS-TC, ANN-SolLo, and
SpectraST was similar (see Fig. 5b). Meanwhile, a high por-
tion of identifications from MSFragger is unique or conflict-
ing matches compared with ANN-SoLo, SpectraST, and
HOMS-TC. MSFragger adopts a different approach to per-
form OMS, a sequence database search, and it uses a se-
quence database containing the entire human proteome.
These results clearly demonstrate that HOMS-TC achieves a
similar spectrum identification performance as alternative
spectral library search engines.

Figure 6 shows the possible modifications on the protein
sample based on the precursor mass difference of the identi-
fied spectra. Specifically, we compute the precursor mass dif-
ference, collect only modified peptides, and compare results
with the Unimod public database of protein modifications
(Creasy and Cottrell 2004). For example, for the HEK293
dataset, the mass shift caused by various amino acid substitu-
tions, such as Asn to Ala and Phe to Tyr, was observed. Also,
HOMS-TC detected chemical changes such as oxidation, and
hydroxylation, as well. The modification, including GlyGly,
acetylation, and phosphorylation, was also observed at a
lower rate. This implies that HOMS-TC can identify biologi-
cally relevant PTMs through the OMS. Note that HOMS-TC
does not determine modification identities, but they can be
obtained from the precursor mass difference using post-
processing tools like PTM-Shepherd (Geiszler et al. 2021) and
AA_stat (Levitsky er al. 2021).

4.5 Speed improvement and analysis

We compare the runtime of HOMS-TC to ANN-SoLo using
GPU acceleration (Bittremieux et al. 2019), which offers the
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Figure 6. Precursor mass difference of unique identified peptides from
HOMS-TC. Only non-zero precursor mass differences are visualized and
the five most frequent modifications are annotated. (a) iPRG2012 dataset.
(b) HEK293 dataset.

fastest spectral search speed among competing tools. ANN-
SoLo first needs to build an index or encode the original data,
which can be reused for subsequent processing. For the first
run of ANN-SoLo, which includes the reference indexing
time, HOMS-TC is 32 x faster than ANN-SoLo GPU on aver-
age. When indexes are reused on ANN-SoLo, HOMS-TC
achieves 35x and 28x speedup on iPRG2012 and HEK293
dataset, respectively, resulting in 31x speedup on average
(geomean) over the baseline (see Table 2). Due to massive par-
allelization and simplified pipeline, the search stage itself is
51x faster on average. Note that we averaged the execution
time of run for each query file on the HEK293 experiment. In
other words, HOMS-TC generates the reference HVs for ev-
ery run in an on-the-fly manner. The baseline tool does not
find the most similar spectra directly. Instead, it first reduces
the search space and subsequently computes similarity scores,
with this final score calculation step amounting to 53% of the
total search time on average. In contrast, HOMS-TC per-
forms a one-pass search, leading to a significant speedup.
Also, while ANN-SoLo uses CUDA cores with FP16 precision
during the candidate selection, the proposed tool utilizes
TCUs with lower precision (INTS).

Meanwhile, as spectral libraries are continuously growing,
their efficient indexing of them is significant. HOMS-TC
improves the indexing time by parallelizing across HV dimen-
sions and datapoints, which can be accelerated with GPUs. As
shown in Table 2, the encoding of reference spectra using
HOMS-TC shows 10.9x speedup on average compared with
the baseline. Note that the encoding of new datapoints in
HOMS-TC is independent of previous data, which can be eas-
ily parallelized.

According to the profiling results, we found that during the
encoding stage and the search stage, 70% of the CUDA core
and 95.01% of the TCU were utilized, respectively. The entire
HOMS-TC process was executed on GPUs, resulting in high
hardware utilization when compared with ANN-SoLo GPU
(Bittremieux et al. 2019), which only utilizes GPUs for the
nearest neighbor search step. Figure 7 illustrates the break-
down of HOMS-TC by stage. The miscellaneous section
includes the time taken for GPU memory allocation and mem-
ory copying from the CPU (host) to the GPU.

The encoding of query spectra has a low impact on the
overall runtime, accounting for only 1.5% of the total
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Table 2. HOMS-TC speedup over the state-of-the-art high-performance
OMS tool [ANN-SoLo GPU (Bittremieux et al. 2019)].

End-to-end (second run)  Reference encoding (indexing)

iPRG2012 HEK293  iPRG2012 HEK293
ANN-SoLo 72.77s (1x) 290.08s (1x) 12.01s (1x)  20.82s (1x)
HOMS-TC 2.08s (35x) 10.4s (28x) 0.95s (12.6x) 2.21s(9.4x)

In the HEK293 experiment, the runtime was averaged over the execution of
each query file.

HEK293
(per query file)

iPRG2012

0% 20% 40% 60% 80% 100%

u Reference Encoding  m Query Encoding = Searching = Misc.

Figure 7. HOMS-TC runtime breakdown by stage. On larger datasets, the
portion of the search stage increases.

execution time on average. The search stage’s contribution to
the total runtime increases from 51% to 73% in the HEK293
dataset. Encoding reference spectra takes up 33% of the total
runtime on average. HOMS-TC encodes the reference spectra
on-the-fly, but this can be minimized when reference HVs are
reused, like the HEK293 dataset that shares the same refer-
ence database for multiple query files.

4.6 Discussion and future work

In order to further improve the search quality, an advanced
encoding method that takes into account other OMS charac-
teristics can be developed. One potential approach is to use
population-based discretization of peak intensities, similar to
MyriMatch (Tabb et al. 2007), to generate level HVs.
Additionally, we can consider various peak changes resulting
from PTMs, such as peak shifts during the encoding.

Two approaches can accelerate HOMS-TC further. First,
since the search stage is mainly handled by TCUs, we expect
that a future GPU with the next-generation TCU can enhance
the performance of our tool. For example, when compared
with HOMS-TC running on NVIDIA Geforce RTX 3090
with previous (third) generation TCU, we can get 1.8x
speedup on the search stage using the latest GPU used in the
evaluation. Secondly, we can scale HOMS-TC to multiple
GPUs. We have demonstrated the spectral library search ac-
celeration on a single GPU in this article, and it runs in a
batched manner due to memory capacity limitation and lim-
ited TCUs. Exploiting multiple GPUs with TCUs can offer
more parallelism and lead to execution time reduction; this
remains our future work.

5 Conclusion

In this article, we proposed an HDC-based OMS solution ac-
celerated with TCUs dubbed HOMS-TC. HOMS-TC encodes
spectra into HVs that reflect the position and intensity of
peaks and are tolerant to peak intensity changes. We enable
OMS in one shot. Every dimension of the HVs can be com-
puted independently, which makes the algorithm easily paral-
lelizable. As HOMS-TC employs a simplified OMS pipeline
and cosine similarity metric with reduced precision, the algo-
rithm can be accelerated with TCUs. In addition, our

proposed encoding method achieves 10.9x speedup on aver-
age, which implies that HOMS-TC can effectively handle the
constantly growing spectral libraries. The evaluation results
show that HOMS-TC offers comparable search quality to
existing OMS tools, with 31x faster execution time on aver-
age compared with the state-of-the-art tool running on GPU.
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