
UC Berkeley
UC Berkeley Previously Published Works

Title
Incremental Determinization

Permalink
https://escholarship.org/uc/item/67x817fp

ISBN
978-3-319-40969-6

Authors
Rabe, Markus N
Seshia, Sanjit A

Publication Date
2016

DOI
10.1007/978-3-319-40970-2_23

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/67x817fp
https://escholarship.org
http://www.cdlib.org/

Incremental Determinization

Markus N. Rabe and Sanjit A. Seshia

University of California, Berkeley
{rabe,sseshia}@berkeley.edu

Abstract. We present a novel approach to solve quantified boolean for-
mulas with one quantifier alternation (2QBF). The algorithm incremen-
tally adds new constraints to the formula until the constraints describe
a unique Skolem function - or until the absence of a Skolem function
is detected. Backtracking is required if the absence of Skolem functions
depends on the newly introduced constraints. We present the algorithm
in analogy to search algorithms for SAT and explain how propagation,
decisions, and conflicts are lifted from values to Skolem functions. The
algorithm improves over the state of the art in terms of the number of
solved instances, solving time, and the size of the certificates.

1 Introduction

Solvers for quantified boolean formulas (QBFs) have been considered as an algo-
rithmic backend in a variety of application areas, such as planning in uncertain
environments [3,32,38], chess [2,3,44], program verification [5,14], model check-
ing of Markov chains [42], circuit analysis [17, 18, 35], and synthesis [12, 16, 46].
However, the performance of the currently available solvers can be unsatisfac-
tory. For example, competitive solvers such as DepQBF [34], RAReQS [26], and
Qesto [27] cannot solve the quantified boolean formula ∀X.∃Y. X = Y in a rea-
sonable timeframe, where X and Y are 32-bit words and = states their bitwise
equivalence. Even though preprocessors like Bloqqer [11] help to solve this for-
mula, the example suggests that there is a fundamental problem with the solving
principle of state-of-the-art QBF solvers.

The formula describes a trivial problem. We can see that for every assign-
ment to X there is exactly one assignment to Y that satisfies the constraint.
That is, the formula describes the Skolem function that is the solution to the
problem. This reasoning, however, requires us to detect functional dependencies
in formulas that are typically given in conjunctive normal form.

In this paper we present an algorithm to determine the truth of formulas
with one quantifier alternation (2QBF) that detects existing functional depen-
dencies among variables and incrementally builds new Skolem functions when-
ever the problem does not imply a unique Skolem function. We employ the view
that the propositional part ϕ of a 2QBF ∀x1, . . . , xn ∈ B. ∃y1, . . . , ym ∈ B. ϕ
is a binary relation Rϕ over assignments x and y to the variables x1, . . . , xn
and y1, . . . , ym: Rϕ = {(x,y) | ϕ(x,y)}. We call Rϕ the Skolem relation. The

solution to a true 2QBF is a Skolem function f that assigns values to the ex-
istentially quantified variables depending on the universally quantified variables
such that the constraints are satisfied for all pairs of assignments (x, f(x)). Also
a Skolem function can be seen as a relation over assignments and it is a subset
of the Skolem relation Rϕ. The difference between the Skolem relation Rϕ and a
Skolem function f is that Rϕ may still provide multiple possible assignments y
for some assignment x, while f has to provide exactly one y for every x. The
presented algorithm adds constraints to ϕ to eliminate the remaining nondeter-
minism - we determinize the Skolem relation to obtain a Skolem function.

The algorithm is a generalization of the DPLL algorithm [15] with conflict-
driven clause learning (CDCL) [45]. We lift the concepts of propagation, deci-
sions, and conflicts from values for variables to Skolem functions for variables.
We thereby break the search for Skolem functions down to single variables, which
allows us to determinize the relation incrementally, giving rise to the name of
the algorithm - incremental determinization.

After presenting an overview of the algorithm in Section 3, we present a
propagation procedure in Section 4, which identifies variables that already have
unique Skolem functions and whether there is a conflicted variable. In Section 5
we discuss how to introduce additional constraints to fix a Skolem function for a
variable in case propagation cannot derive a unique Skolem function. Section 6
covers how to compute a conflict clause after a conflicted variable is detected.
Termination, correctness, and the generation of certificates is covered in Sec-
tion 7. In Section 8 we describe the implementation and give an experimental
evaluation of the approach. We sketch out relations to other algorithms and
preprocessing techniques for QBF in Section 9 and conclude with Section 10.

2 Quantified Boolean Formulas

We assume that the reader is familiar with the natural semantics of propositional
boolean formulas and summarize the basic notation for quantified boolean for-
mulas in the following. Quantified boolean formulas over a finite set of variables
x ∈ X with domain B = {0, 1} are generated by the following grammar:

ϕ := 0 | 1 | x | ¬ϕ | (ϕ) | ϕ ∨ ϕ | ϕ ∧ ϕ | ∃x. ϕ | ∀x. ϕ ,

We abbreviate multiple quantifications Qx1.Qx2. . . . Qxn.ϕ to the quantification
over a set of variables QX.ϕ, where xi ∈ X and Q ∈ {∀,∃}.

An assignment x to a set of variables X is a function x : X → B that maps
each variable x ∈ X to either 1 or 0. Given a propositional formula ϕ over
variables X and an assignment x′ for X ′ ⊆ X, we define ϕ(x′) to be the formula
obtained by replacing the variables X ′ by their truth value in x′. By ϕ(x′,x′′) we
denote the replacement by multiple assignments for disjoint sets X ′, X ′′ ⊆ X.

The dependency set of an existentially quantified variable y, denoted by
dep(y), is the set of universally quantified variables x such that ∃y. ϕ is a subfor-
mula of ∀x.ϕ′. A Skolem function fy maps assignments to dep(y) to assignments
to y. We define the truth of a QBF ϕ as the existence of Skolem functions
fY = {fy1

, . . . , fyn
} for the existentially quantified variables Y = {y1, . . . , yn},

such that ϕ(x, fY (x)) holds for every x, where fY (x) is the assignment to Y
that the Skolem functions fY provide for x.

A quantifier Qx.ϕ for Q ∈ {∃,∀} binds the variable x in its subformula ϕ. A
closed QBF is a formula in which all variables are bound. A formula is in prenex
normal form, if the formula is closed and starts with a sequence of quantifiers
followed by a propositional subformula. A formula ϕ is in the kQBF fragment for
k ∈ N+ if it is closed, in prenex normal form, and has exactly k− 1 alternations
between ∃ and ∀ quantifiers.

A literal l is either a variable x ∈ X, or its negation ¬x. Given a set of
literals {l1, . . . , ln}, their disjunction (l1 ∨ . . . ∨ ln) is called a clause and their
conjunction (l1 ∧ . . . ∧ ln) is called a cube. A propositional formula is in con-
junctive normal form (CNF), if it is a conjunction of clauses. A prenex QBF
is in prenex conjunctive normal form (PCNF) if its propositional subformula
is in CNF. W.l.o.g. we assume for all PCNF formulas that none of the clauses
contains two opposite literals, which would trivially satisfy the clause, and that
all clauses contain at least one literal from an existentially quantified variable.
To simplify the notation, we treat the propositional formulas ψ as sets of clauses
ψ = {C1, . . . , Cn}, clauses C as sets of literals C = {l1, . . . , lm}, and use set
operations like intersection and union for their manipulation. Every QBF ϕ can
be transformed into an equivalent PCNF with size O(|ϕ|) [47].

We assume that the reader is familiar with unit propagation and define
UP(ϕ) as the partial assignment to the variables in a propositional ϕ resulting
from applying the unit propagation rule until a fixpoint is reached. We define
UP(ϕ) = ⊥ if unit propagation results in a conflicting assignment for a variable.

3 Algorithm

Let ∀X.∃Y.ϕ be a 2QBF in PCNF, where ϕ is the propositional part. The algo-
rithm IncrementalDeterminization determines whether the formula is true.
The key principle of the algorithm is to maintain a set of variables D ⊆ Y for
which the set of clauses D = {C ∈ ϕ | C ⊆ D ∪X} that only have variables in
D and X defines a Skolem function for each variable in D: We say that ϕ is D-
consistent if for each assignment x to X, UP(D(x)) is not ⊥ and assigns a value
to all variables in D. (In particular, ∀X∃!D. D .) It is clear that a Y -consistent
2QBF is true and for each true 2QBF ∀X.∃Y.ϕ there exists a set of clauses ψ,
such that ∀X.∃Y.ϕ ∧ ψ is Y -consistent.

Given a D-consistent formula ∀X.∃Y.ϕ, we say a variable v ∈ Y has a unique
Skolem function, if ∀X.∃Y.ϕ is also (D ∪ {v})-consistent. For determining (D ∪
{v})-consistency we have to extend the clauses D by the clauses Uv in which v is
the only variable not in D and not in X. Clauses in Uv can be read as implications
where the consequence is a literal of v, because we know that all other variables
are already determined for all assignments x. We say that a clause C ∈ Uv has
the unique consequence v.

The algorithm checks for unique Skolem functions in two steps which require
the following definitions: Variable v is deterministic, if UP(D(x) ∧ Uv(x)) is ⊥

or gives a unique assignment to v for all assignments x to X, and v is conflicted,
if UP(D(x) ∧ Uv(x)) = ⊥ for some assignment x to X. Deterministic variables
that are not conflicted have a unique Skolem function.

1: procedure IncrementalDeterminization(∀X.∃Y.ϕ)
2: dlvl ← 0; D ← ∅
3: while true do
4: D,ϕ, conflict ,x← Propagate(∀X.∃Y.ϕ,D, dlvl)
5: if conflict then
6: c ← AnalyzeConflict(∀X.∃Y. ϕ,x, D, dlvl)
7: if c only contains variables in X then
8: return false
9: dlvl ← (maximal decision level in c)− 1

10: ϕ,D ← Backtrack(ϕ,D, dlvl)
11: ϕ← ϕ ∧ c
12: else
13: if D = Y then
14: return true
15: v ← PickVar(Y \D)
16: dlvl ← dlvl + 1
17: ϕ← ϕ ∧Decision(v, ϕ,D)

The elements of the algorithm are as follows: The procedure Propagate ex-
tends D with variables with unique Skolem functions until the procedure returns
an updated set D, or until a conflicted variable is detected upon which propa-
gation reports an assignment to X for which the conflict occurs (see Section 4).
In case of a conflict, AnalyzeConflict computes a conflict clause (Section 6).

Variables that are detected to have a unique Skolem function get labeled
with the current decision level (dlvl) during propagation, which is used during
backtracking (lines 10 to 12). The procedure Backtrack(ϕ, dlvl) resets the set
D and the formula ϕ to a certain decision level, but keeps the learnt clauses. In
case no conflict is detected during propagation, the procedures PickVar and
Decision fix a Skolem function for an additional variable (see Section 5).

4 Propagation and Conflicts

During propagation search algorithms for SAT consider which assignments to
the yet unassigned variables are entailed by the current partial assignment. In
this section we generalize propagation of values to a notion of propagation of
Skolem functions. To develop some intuition on the determinicity check let us
consider the following example:

∀x1.∀x2. ∃y1.∃y2. (x1 ∨ ¬y1) ∧ (x2 ∨ ¬y1) ∧ (¬x1 ∨ ¬x2 ∨ y1)︸ ︷︷ ︸
fy1 : (x1,x2)7→x1∧x2

(1)

∧ (¬x1 ∨ ¬y2) ∧ (¬y1 ∨ ¬y2) ∧ (x1 ∨ y1 ∨ y2)︸ ︷︷ ︸
fy2 : (x1,y1)7→¬(x1∨y1)

(2)

The first three clauses (clause group (1)) of the formula can easily be iden-
tified as a definition of a Skolem function for y1: For each assignment to x1
and x2, one of the first three clauses entails a unique value for y1. It helps to
consider each of these clauses as an implication, that is (¬x1 → ¬y1) ∧ (¬x2 →
¬y1) ∧ (x1 ∧ x2 → y1). Variable y1 thus satisfies the determinicity condition for
the empty set D. It is also easy to see that the antecedents of the implications
described by clause group 1 do not overlap; variable v is not conflicted. We can
conclude that there is no solution to the formula above in which y1 has a Skolem
function different from fy1 : (x1, x2) 7→ x1 ∧ x2.

After we identified that y1 has a unique Skolem function, we see that also the
Skolem function for variable y2 is unique. The second group of clauses (clause
group (2)) allows no Skolem function other than fy2

: (x1, y1) 7→ ¬(x1∨y1). The
use of an existentially quantified variable in the definition of this Skolem function
is a short form for the Skolem function fy2 : (x1, x2) 7→ ¬(x1∨fy1(x1, x2)).1 Note
that variable y2 does not have a unique Skolem function relative to an empty
set D. Identifying Skolem functions for some variables can thus help to identify
variables for further variables.

4.1 Checking for Determinicity

We consider D-consistent 2QBF in PCNF ∀X.∃Y.ϕ, where ϕ is the propositional
part and D ⊂ Y . For determining determinicity of a variable v ∈ Y \D, only the
clauses D and Uv play a role. As explained in Section 3 we can see each clause C
in Uv as an implication ¬(C \ {v,¬v}) =⇒ v from variables in X and variables
with a fixed Skolem function to a literal of v. If, and only if, for every pair of
assignments (x,d) (to variables X and D) satisfying D one of the antecedents
described by Uv applies, variable v is deterministic:D =⇒

∨
C∈Uv

¬(C\{v,¬v}).
To enable the use of SAT solvers we avoid the validity in the formulation and
negate the formula.

Lemma 1. Variable v is deterministic w.r.t. D iff the following is unsatisfiable:

D ∧
∧

C∈ Uv

C \ {v,¬v}

4.2 Local Under-Approximation of Determinicity

Checking determinicity with the formula above can be costly, as the check in-
volves the potentially large set of clauses D. We thus suggest to drop D and
obtain the under-approximation:

∧
C∈ Uv

C \ {v,¬v} . That is, the local under-
approximation does not take into account that certain assignments to D may
violate the definitions of the Skolem functions. We call a variable that satisfies
the local determinicity check locally deterministic.

1 The algorithm only constructs Skolem functions that depend on universally quan-
tified variables. The use of existentially quantified variables is just an abbreviation,
so there is no risk of circular dependencies.

Let us revisit the example in the beginning of Section 4. Assuming that
none of the variables have been identified yet to have a unique Skolem function
(D = ∅), we check local determinicity for variable y1 with the following propo-
sitional formula: x1 ∧ x2 ∧ (¬x1 ∨ ¬x2). As the formula is unsatisfiable, y1 is
deterministic. If we checked y2 first, there would be only a single clause with
unique consequence y2 and thus the local determinicity check consists of the sin-
gle clause ¬x1, which is trivially satisfiable. Only after identifying a Skolem func-
tion for y1, i.e. with y1 ∈ D, also the other two clauses in which y2 occurs have
a unique consequence. In this case we formulate the query ¬x1 ∧¬y1 ∧ (x1 ∨ y1),
determine its unsatisfiability, and conclude that y2 satisfies condition (1) as well.

4.3 Pure Literals

If an existentially quantified variable occurs in only one polarity in a formula in
PCNF we call it a pure literal and we can assign it this polarity while preserving
the truth of the formula. When we additionally consider a partial assignment,
we can easily generalize this to the following: when all literals of one polarity
are in clauses that are satisfied by literals of other variables, we can assign the
variable the opposite literal. We encode this condition as a constraint:

Lemma 2. Given a PCNF ∀X.∃Y.ϕ and a literals l of v ∈ Y , we have:

∀X.∃Y.ϕ ⇐⇒ ∀X.∃Y.ϕ ∧
((∧

C∈ϕ with l∈C

C \ {l}
)

=⇒ l
)

We call
(∧

C∈ϕ with l∈C C \ {l}
)

=⇒ l the pure literal constraint. We could

add the constraint for all variables, but this would increase the formula size
significantly. Instead we add the constraint only if during propagation v is not
locally deterministic and a literal l of v only occurs in clauses in Uv. Adding the
pure literal constraint then guarantees that v is deterministic.

Consider a variation of the previous example, where we only flip the negation
of the second occurrence of y2:

∀x1.∀x2. ∃y1.∃y2. (x1 ∨ ¬y1) ∧ (x2 ∨ ¬y1) ∧ (¬x1 ∨ ¬x2 ∨ y1)︸ ︷︷ ︸
fy1 : (x1,x2) 7→x1∧x2

(3)

∧ (¬x1 ∨ ¬y2)︸ ︷︷ ︸
fy2 : x1 7→¬x1

∧(¬y1 ∨ y2) ∧ (x1 ∨ y1 ∨ y2) (4)

Even when we test y2 for determinicity before we establish that y1 is deter-
ministic, we can now fix a Skolem function for y2: The only negative occurrence
of variable y2 is in the clause ¬x1 ∨¬y2, which happens to have ¬y2 as a unique
consequence. We can thus fix y2 to be positive in all remaining cases and set
fy2

: x1 7→ ¬x1 by adding the clause x1 ∨ y2 to the formula.

4.4 Checking for Conflicts

In algorithms for propositional SAT, we call variables conflicted, if unit prop-
agation resulted in conflicting assignments to the variable. In the incremental
determinization algorithm a variable v is conflicted in a D-consistent 2QBF, if
there is an assignment to the universally quantified variables that propagates
conflicting assignments to v. We consider the example from Subsection 4.3 to
develop some intuition on conflicted variables. Assume we first identified vari-
able y2 to have the unique Skolem function fy2

: x1 7→ ¬x1. Then all clauses in
clause group 3 and the latter two clauses of clause group 4 have a literal of y1
as a unique consequence. The determinicity check determines that the formula
x1 ∧ x2 ∧ (¬x1 ∨ ¬x2) ∧ ¬y2 ∧ (x1 ∨ y2) is unsatisfiable and concludes that y1
is deterministic. To see that the variable is conflicted, i.e. there is no Skolem
function satisfying all constraints, consider the assignment x1 ∧ x2, which sets
y2 to false according to fy2

. In this case we cannot give variable y1 a value that
satisfies all constraints: The last clause of clause group 3 requires y1 to be set
to true while the second clause of clause group 4 requires y1 to be set false.
We found a conflict!

As for the determinicity check, we can easily construct a formula for the
global conflict check that represents the assignments to X that prove a variable
v ∈ Y \ D to be conflicted. Let us consider a D-consistent 2QBF in PCNF
∀X.∃Y.ϕ, where ϕ is the propositional part and D ⊂ Y . The clauses D represent
the known Skolem functions and are guaranteed to provide unique values to D
for every assignment x to X. In particular, UP(x) cannot result in ⊥ and so it
suffices to check for conflicting assignments to variable v. Variable v can only be
propagated if one of the antecedents of the clauses Uv with unique consequence v
is true. We thus know that variable v is conflicted if, and only if, there is a pair of
assignments (x,UP(x)) that satisfies the antecedents of two clauses C,C ′ ∈ Uv
with v ∈ C and ¬v ∈ C ′.

Lemma 3. Variable v is conflicted if, and only if, the following is satisfiable:

D ∧

(∨
C∈Uv with v∈C

¬(C \ {v})

)
∧

(∨
C∈Uv with ¬v∈C

¬(C \ {¬v})

)

4.5 Local Over-Approximation for Conflict Detection

The global conflict check is a relatively expensive step, as it involves the poten-
tially large set of clauses D. Similar to the local determinicity check, we drop
D from the conflict check to first check for local conflicts. If the local conflict
check returns an assignment to X and D, we cannot be sure that the assignment
satisfies D, so we then resort to the global conflict check.

4.6 The Propagation Procedure

The procedure Propagate extends a given set D of variables that have a unique
Skolem function and it checks whether there is a conflicted variable. The returned

set D may be an under-approximation of the set of variables with unique Skolem
functions, just as propagation for SAT computes an under-approximation of the
set of variables having a unique value. This may lead to unnecessary decisions,
but avoids the costly global determinicity check. Also, the procedure does not
check all variables for conflicts. Instead it only makes sure that deterministic
variables are not conflicted, so no conflicted variable gets added to the set D.
In this way all variables will still be checked for conflicts eventually (unless the
algorithm terminates with false).

Given a set D of variables, a D-consistent 2QBF, and a decision level, Prop-
agate returns a 4-tuple indicating the updated set of variables D, whether there
is a conflict, the formula (which may be modified by pure literal detection), and
an assignment x to the universally quantified variables:

1: procedure Propagate(∀X.∃Y. ϕ, D, dlvl)
2: U ← variables occurring as unique consequence in ϕ
3: while U ∩ (Y \D) 6= ∅ do
4: v ← pick a variable in U ∩ (Y \D)
5: U ← U \ v
6: if v is locally deterministic then
7: if local conflict for v then
8: if global conflict for v for assignment x then
9: return (D, true, ϕ, x)

10: v.dlvl ← dlvl
11: D ← D ∪ {v}
12: check for new clauses with unique consequences; update U
13: else
14: if v occurs only in Uv or ¬v occurs only in Uv then
15: ϕ← ϕ ∧ pure literal constraint
16: U ← U ∪ {v}
17: return (D, false, ϕ, N/A)

With the set U we remember which variables we still have to check for deter-
minicity. Whenever a variable is detected to have a unique Skolem function, we
check for clauses that now have a unique consequence and update U (line 12). It
is possible (and desirable) to start with a smaller set U than shown above: only
variables v for which we added a new clause with unique consequence v since
the last propagation phase can possibly become deterministic. For the sake of
simplicity we omitted the additional bookkeeping in this exposition.

5 Decisions

Decisions are made when the propagation procedure comes to a stop and no
conflict was detected. The procedure PickVar picks a variable v ∈ Y \ D,
which we call the decision variable. The procedure Decision then adds clauses,
the decision clauses, that make variable v locally deterministic. Note the decision
variable may be conflicted, though not yet detected as such, at the time of the

decision, as the propagation procedure does not guarantee that all variables are
conflict free. In the next propagation phase, after the decision variable is detected
to be deterministic, it may thus be detected to be conflicted.

In this section we propose a simple way to take decisions that avoids intro-
ducing additional conflicts—between decision clauses and clauses in Uv—for the
decision variable. We simply fix the Skolem function that assigns 1 to v whenever
the clauses Uv do not require otherwise. That is, we consider the clauses with
unique consequence that may require v to be set to 0, i.e. C ∈ Uv with ¬v ∈ C,
and define the result of Decision as the constraint that sets v to 1 when all
their antecedents are false:(∧

C∈Uvwith¬v∈C

C \ {¬v}
)

=⇒ v

We again consider the example of Subsection 4.3 with an empty set D. In
case we were to take a decision over variable y2 instead of considering the pure
literal rule, we would fix the cases described by the only clause in Uv, which is
¬x1 ∨ ¬y2. Then we fix y2 to be true in all remaining cases, i.e. by adding the
clause x1 ∨ y2.

Given a D-consistent 2QBF ∀X.∃Y.ϕ it is clear that a variable v ∈ Y \ D
is deterministic in ∀X.∃Y.ϕ ∧Decision(v, ϕ,D). It is also easy to see that the
procedure does not introduce additional conflicts for v. Also, for all assignments
x to X and d to D we have:

UP
(
D ∧ Uv ∧Decision(v, ϕ,D)(x,d)

)
= ⊥ =⇒ UP

(
D ∧ Uv(x,d)

)
= ⊥

This property guarantees that the conflict analysis, which we cover in Sec-
tion 6, always results in a new clause and thereby provides us with an argument
for the termination of the algorithm. The procedure Decision also marks the
added clauses as decision clauses. During conflict analysis and during backtrack-
ing we have to distinguish decision clauses from learnt clauses.

6 Conflict Analysis

Conflict analysis for incremental determinization stays remarkably similar to
CDCL. Once a (global) conflict is detected, we compute a conflict clause along
an implication graph. If the conflict clause contains only universally quantified
variables, we proved the formula to be false. Otherwise, we have to backtrack to
the largest decision level that contributed to the conflict, add the conflict clause
to the formula, and continue with propagation.

Let us consider a D-consistent 2QBF ∀X.∃Y. ϕ, and let δ ⊆ ϕ be the set
of decision clauses for the decision variables E ⊆ Y . Assume we detected a
conflict for a variable v ∈ Y \D for which the global conflict check returned the
assignment x to X. The procedure AnalyzeConflict first computes UP(D(x))
to obtain an assignment e for the variables D∩E. Then the algorithm computes
a conflict clause as for CDCL [45] along the implication graph of:

UP
((

(D ∧ Uv) \ δ)(x, e)
)

which is guaranteed to return ⊥. That is, we omit the decision clauses and
instead treat decision variables as a decisions in the sense of CDCL with the
values obtained by UP(D(x)).

Lemma 4. Let ∀X.∃Y. ϕ be a D-consistent 2QBF and let δ ⊆ ϕ be the set
of decision clauses in ϕ. The algorithm AnalyzeConflict(∀X.∃Y. ϕ,D, dlvl)
returns a clause C such that ϕ \ δ ⇔ (ϕ \ δ) ∧ C and C /∈ ϕ \ δ.

Proof. Let v ∈ Y \D be a conflicted variable, provoked by an assignment x to
X. After every decision the first variable that is checked for determinicity and
conflictedness, is the decision variable. So we have E ⊆ (D ∪ {v}) and if v /∈ E
then we even have E ⊆ D. In either case UP(D(x)) returns an assignment to all
decision variables that are not conflicted. Since v is conflicting with the decision
clauses, it is also conflicting when we replace the decision clauses by the values

of the decision variables: UP
((

(D ∧ Uv) \ δ)(x, e)
)

= ⊥.

Any conflict clause C derived by CDCL can be derived by a sequence of
resolution steps [40] and we thus know (D ∧ Uv) \ δ ⇔ ((D ∧ Uv) \ δ) ∧ C by
the soundness of the resolution rule [43]. Since C is over the same variables as
D this extends to ϕ ⇔ ϕ ∧ C. Also, a conflict clause computed as for CDCL is
guaranteed to be not contained in the formula it is derived from, so it is not in
(D∧Uv)\ δ. Since C only contains variables from X and D and since D includes
all clauses over X and D in ϕ, C cannot be in ϕ \ (D ∪ Uv) either. ut

Consider the following example:

∀x1.∀x2. ∃y1.∃y2. (x2 ∨ ¬y1) ∧ (¬x1 ∨ ¬x2 ∨ y1) (5)

∧ (x1 ∨ ¬y2) ∧ (¬y1 ∨ ¬y2) ∧ (x1 ∨ y1 ∨ y2) (6)

This time, neither y1 nor y2 can be propagated. Let us pick y2 as the de-
cision variable. According to the decisions discussed in Section 5 we add the
clause ¬x1 ∨ y2 to complement the only other clause in which y2 occurs as its
unique consequence, i.e., x1 ∨ ¬y2. The variable y2 is thus assigned the Skolem
function fy2

: x1 7→ x1. Now variable y1 is conflicted: The conflict test could
return the assignment for the universal variables represented by the conjunction
x1 ∧ x2, which determines y2 to be true according to fy2 . The second clause of
clause group 5 and the second clause of clause group 6 then require conflicting
assignments to y1. Consider the implication graph:

x1

x2 y1

¬y1
y2

(¬x1 ∨ y2)

(¬x1 ∨ ¬x2 ∨ y1)
(¬x1 ∨ ¬x2 ∨ y1)

(¬y1 ∨ ¬y2)

The presence of both nodes y1 and ¬y1 represents a conflict, indicated by the
red edge. The labels on the edges indicate the clauses with unique consequence

that correspond to the edges. The clause ¬x1 ∨ ¬y2 added in the decision cor-
responds to the dashed edge from x1 to y2. AnalyzeConflict considers the
implication graph for the formula without the dashed edge and instead assumes
the value 1 for the decision variable y2 as an additional decision. The only conflict
clause that could be computed in this case is ¬x1 ∨ ¬x2 ∨ ¬y2.

7 Correctness, Termination, Certificates

Theorem 1. Incremental determinization is correct and terminates.

Proof sketch: We first show that the algorithm maintains D-consistency and
terminates as there are only finitely many clauses that could be learnt. If the
algorithm terminates with true, the computed formula is Y -consistent and con-
tains the original formula. This represents a Skolem function satisfying all orig-
inal constraints. Lemma 4 and Lemma 2 imply soundness for the case that the
algorithm terminates with false.

Certificates. Once terminated, the correctness of the result can be checked by
an independent, simpler algorithm. This is important in practice since highly op-
timized logic solvers can easily contain programming errors. In some applications
the proof object, that is the Skolem function, may also represent an interesting
object like an implementation or a strategy.

For the presented method, certification is straightforward: The final set of
clauses is Y -consistent and we can thus obtain an assignment to the existen-
tially quantified variables Y for every assignment to the universally quantified
variables through propagation - the clauses represents the Skolem function. To
check the correctness of the Skolem function via existing QBF proof checkers
such as QBFCert [36,41], we translate the function into a circuit in the AIGER
format [1]. The circuit reads the values of the universally quantified variables
and its outputs provide the values for the existentially quantified variables.

We can exploit the order in which the algorithm added variables to the set
D. This order provides us a unique direction in which the clauses can propagate.
Let Uv be the set of clauses with unique consequence at the time variable v was
added last to the set D. For every variable v we then define the circuit’s output
for variable v as ∨

C∈Uv withv∈C

¬(C \ {v}) .

The order among the existentially quantified variables then guarantees the ab-
sence of circular dependencies.

In case the algorithm determines that the given QBF is false, the implemen-
tation provides the assignment to the universally quantified variables from the
last global conflict check.

CADET RAReQS quantor Qesto CAQE DepQBF GhostQ
Family total - +b - +b - +b - +b - +b - +b -

Terminator 590 583 513 0 382 12 138 1 491 32 288 547 572 480
Hardware Fixpoint 131 110 92 8 67 16 62 8 67 7 78 22 68 8
Ranking Functions 365 365 365 0 363 13 360 0 363 0 363 168 360 6

Reduction Finding 48 0 4 21 38 2 5 22 36 16 26 14 16 2
Circuit Underst. 78 20 44 2 50 2 6 2 34 2 48 36 17 36
Partial Equivalence 300 217 201 2 246 80 102 20 235 56 261 86 159 11
Reactive Synthesis 153 153 153 133 153 153 153 129 153 106 153 137 153 149

Random 254 242 243 246 238 90 91 226 220 249 250 231 224 183

Table 1. Number of instances solved within 10 minutes and 4 GB memory for various
benchmarks. For columns labeled with +b we applied the preprocessor Bloqqer before
running the solver. Numbers in bold font indicate the best result for a benchmark.

8 Implementation and Experimental Evaluation

We implemented the algorithm in a tool we named the Cal incremental determi-
nizer (CADET)2, using PicoSAT [10] to solve the propositional problems. The
implementation emphasizes simplicity over speed and consists of about 4000
lines of code (not counting the SAT solver) in the programming language C.
For global conflict detection, we make use of the incremental solving features of
PicoSAT. We maintain an instance of PicoSAT containing the clauses D that
have only literals of universally quantified variables and deterministic existen-
tially quantified variables. Each global conflict check can then be performed by
adding only few clauses. Whenever we detect new variables to be deterministic,
we push more clauses into the SAT solver, and accordingly pop clauses during
backtracking. We implemented two further optimizations:

Restarts: After a certain threshold of conflicts, we backtrack all decisions and
continue with propagation. The restart threshold is then increased by a constant
factor >1. Thus there will eventually be a large enough interval such that the
termination argument holds.

Constant propagation: When the algorithm starts and whenever we identify
variables as deterministic, we check for unit clauses. Unit clauses imply a unique
value for a variable, which we propagate among the not yet determined variables.

Experimental Evaluation. We performed experiments on several sets of
benchmarks of 2QBF instances to compare CADET to state-of-the-art QBF
solvers. The experiments were conducted on machines with a quadcore 3.6 GHz
Intel Xeon processor, with a 10 minute timeout and 4GB memory limit. Table 1
summarizes the number of instances solved for different benchmark families.

The first group of benchmarks was taken from QBFLIB [19]. These bench-
marks consist of interesting software and hardware verification problems (Ter-
minator [5], Hardware Fixpoint [48], Ranking Functions [14]) and demonstrate
the strength of incremental determinization compared to existing algorithms.

2 CADET is available via https://eecs.berkeley.edu/~rabe/cadet.html

https://eecs.berkeley.edu/~rabe/cadet.html

0 500 1,000 1,500
0.001

0.01

0.1

1

10

100

Number of instances solved

T
im

e
in

se
co

n
d
s

CADET

DepQBF

DepQBF+b

GhostQ

Qesto

Qesto+b

CAQE

CAQE+b
quantor

quantor+b

RAReQS

RAReQS+b

Fig. 1. Log-scale cactus plot comparing the performance over all instances.

CADET solved more instances than any other approach while not being depen-
dent on preprocessing.

The second group of benchmarks is from recent papers on QBF applications:
Reduction Finding [29] (also used in QBFGallery 2014 [25]), Circuit Understand-
ing [18], Partial Equivalence [17], Reactive Synthesis [12]. We included the second
group of benchmarks to also present cases in which incremental determinization
is not superior to the existing approaches. The last benchmark, Random, consists
of all 2QBFs from the randomly generated instances listed on QBFLIB [19].

Fig. 1 shows that CADET is the strongest solver overall. The log-scale allows
us to observe that there is a substantial gap between the solving times of CADET
and the other approaches. This is also reflected in the overall solving times,
where CADET leads with 144009 seconds before Qesto+b, DepQBF+b, and
RAReQS+b taking 224220, 243575, and 259125 seconds.

The scatter plot in Fig. 2 compares the relative runtimes of RAReQS (with
Bloqqer) and CADET. The scatter plot suggests that incremental determiniza-
tion and abstraction refinement perform quite differently and that their relative
performance highly depends on the benchmark. The comparison to the other
solvers shows similar features.

The certificates computed by CADET are typically much smaller than those
by DepQBF. In Fig. 3 we compare the certificate sizes of DepQBF and CADET.
For CADET we present the size of the certificates before and after simplifica-
tion with the ABC model checker. For DepQBF we used the --simplify during
the generation with qrpcert. DepQBF’s certificate cannot be simplified further
using ABC, as DepQBF encodes some information in the structure of the certifi-
cates. The plot reveals an enormous difference in the ability to certify and the
quality of the produced certificates.

10−3 10−2 10−1 100 101 102

10−3

10−2

10−1

100

101

102

Runtime of RAReQS+Bloqqer in s

R
u
n
ti

m
e

o
f

C
A

D
E

T
in

s

Terminator

Hardware F.

Ranking F.

Reduction F.

Circuit U.

Partial Equ.

Synthesis

Random

Fig. 2. Relative performance of CADET and RAReQS+Bloqqer.

0 100 200 300 400 500 600

10

1,000

100,000

10,000,000

Number of instances

G
a
te

s
in

ce
rt

ifi
ca

te

CADET+ABC

CADET

DepQBF

Fig. 3. Log-scale cactus plot showing the distribution of sizes of the certificates.

9 Related Work

Early approaches to solving QBFs focused on expanding the quantifiers using
data structures like CNF [9,33], BDDs [4,37] or AIGs [39]. Skolemization helps
to reduce the expansion effort [7]. QDPLL is a generalization of DPLL to QBF
where we propagate and decide on values of variables, as for propositional SAT [6,
13, 20, 34]. QDPLL solvers often explore a large portion of the exponentially
many assignments to the universally quantified variables as the example from the
introduction shows. The incremental determinization algorithm encapsulates the
reasoning about the assignments to the universal variables in the global conflict
check, which is a propositional formula and can thus be offloaded to SAT solvers.

The CEGAR approach for QBF [26–28, 41] was most competitive in recent
evaluations [19,25]. The basic idea is to maintain one SAT solver for each quanti-
fier level. In each iteration these algorithms exclude all assignments to universal
variables that can be matched with one assignment to the existential variables.
Skolem functions that require many different outputs, like the identity example
∀X.∃Y. X = Y from the introduction, thus need an exponential number of iter-
ations. Incremental determinization does not have to explore single assignments
to Y in cases, like the identity example, where we can derive parts of the Skolem
function directly.

Non-CNF solvers. Recently there has been a surge of interest in QBF solvers
that are not based on the PCNF representation of formulas. Exploiting the
formula structure [21,30,31] or even the word-level structure [48] has been argued
to be superior to pure CNF-level reasoning. The experimental results in this
paper suggest that this question is not yet settled. For example, the circuit-based
solver GhostQ is significantly less effective than CADET on most benchmarks.
After the initial circuit-extraction current circuit-based solvers suffer from the
same principal problem as solvers using QDPLL or CEGAR.

Proof systems for QBF. Resolution based proof calculi, like resolve and
expand [9] and IR [8], also add clauses to the QBF. The generation of con-
flict clauses in this work relies on the instantiation of the universally quantified
variables, which resembles the proof rules in IR. In contrast, incremental de-
terminization adds constraints that possibly change the truth of the formula.
This comes at the cost of backtracking, in case the added constraints (during
decisions) were too strong.

Certification. Previous certifying QBF solvers produce proof traces from
which certificates (Skolem functions) can be reconstructed [36,41]. Also prepro-
cessing techniques such as QBCE [11] can be certified [22,23] and combined with
certificates for solvers [24]. In this work, the final set of clauses is the certificate
and can easily be translated into a circuit representing the Skolem function.

10 Conclusions

Quantified boolean formulas are a natural choice to encode problems in verifica-
tion, synthesis, and artificial intelligence. We give a completely new algorithm to
solve problems in 2QBF that is based on incrementally adding constraints un-
til the Skolem relation collapses to a Skolem function. The algorithm employs a
propagation step that directly constructs Skolem functions out of the constraints
of the formula. We thereby exploit the formula structure despite working on the
level of the CNF. The example from the introduction, ∀X.∃Y. X = Y , is thus
solved instantly. Working on the level of Skolem functions avoids situations in
which other approaches have to explore an exponential number of cases and also
helps to certify the results.

Most parts of the algorithm are kept simplistic on purpose. Likely there are
stronger and more efficient ways to propagate, take decisions, and to analyze
conflicts in this setting. The purpose of this work is to introduce a framework
for the direct manipulation of Skolem functions in a search-based algorithm.
Still, the experimental evaluation suggests that the algorithm already improves
over existing approaches.

Acknowledgements. We thank our anonymous reviewers for their comments
and Marcell Vazquez-Chanlatte, Leander Tentrup, Ashutosh Trivedi, and Chris-
toph Wintersteiger for fruitful discussions on this work. Adrià Gascón and Le-
ander Tentrup kindly provided 2QBF benchmarks. This work was supported in
part by NSF grants CCF-1139138 and CCF-1116993, by SRC contract 2460.001,
NSF STARSS grant 1528108, and by gifts from Toyota and Microsoft.

References

1. AIGER toolset. http://fmv.jku.at/aiger/.

2. Rajeev Alur, P Madhusudan, and Wonhong Nam. Symbolic computational tech-
niques for solving games. Software Tools for Technology Transfer, 7(2):118–128,
2005.

3. Carlos Ansotegui, Carla P Gomes, and Bart Selman. The Achilles’ heel of QBF.
In Proceedings of AAAI, volume 2, pages 2–1, 2005.

4. Gilles Audemard and Lakhdar Sais. A symbolic search based approach for quan-
tified boolean formulas. In Proceedings of SAT, pages 16–30, 2005.

5. Gérard Basler, Daniel Kroening, and Georg Weissenbacher. SAT-based summa-
rization for boolean programs. In Proceedigns of Model Checking Software, pages
131–148. Springer, 2007.

6. Sam Bayless and Alan J. Hu. Single-solver algorithms for 2QBF. In Proceedings
of SAT, pages 487–488, Berlin, Heidelberg, 2012. Springer-Verlag.

7. Marco Benedetti. skizzo: A suite to evaluate and certify QBFs. In Proceedings of
CADE, pages 369–376, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

8. Olaf Beyersdorff, Leroy Chew, and Mikoláš Janota. On unification of QBF
resolution-based calculi. In Mathematical Foundations of Computer Science 2014,
pages 81–93. Springer, 2014.

9. Armin Biere. Resolve and expand. In Proceedings of SAT, 2004.

10. Armin Biere. PicoSAT essentials. JSAT, 4(2-4):75–97, 2008.

11. Armin Biere, Florian Lonsing, and Martina Seidl. Blocked clause elimination for
QBF. In Proceedings of CADE, pages 101–115, 2011.

12. Roderick Bloem, Uwe Egly, Patrick Klampfl, Robert Könighofer, and Florian Lon-
sing. SAT-based methods for circuit synthesis. In Proceedings of FMCAD, pages
31–34, 2014.

13. Marco Cadoli, Marco Schaerf, Andrea Giovanardi, and Massimo Giovanardi. An
algorithm to evaluate quantified boolean formulae and its experimental evaluation.
Journal of Automated Reasoning, 28(2):101–142, 2002.

14. Byron Cook, Daniel Kroening, Philipp Rümmer, and Christoph M. Wintersteiger.
Ranking function synthesis for bit-vector relations. In Proceedings of TACAS,
pages 236–250, 2010.

15. Martin Davis, George Logemann, and Donald Loveland. A machine program for
theorem-proving. Communications of the ACM, 5(7):394–397, 1962.

16. Peter Faymonville, Bernd Finkbeiner, Markus N Rabe, and Leander Tentrup. 3
encodings of reactive synthesis. In Proceedings of QUANTIFY, pages 20–22, 2015.

17. Bernd Finkbeiner and Leander Tentrup. Fast DQBF refutation. In Proceedings of
SAT, pages 243–251, 2014.

18. Adria Gascón, Pramod Subramanyan, Bruno Dutertre, Anish Tiwari, Dejan Jo-
vanovic, and Sharad Malik. Template-based circuit understanding. In Proceedings
of FMCAD, pages 83–90. IEEE, 2014.

19. E. Giunchiglia, M. Narizzano, L. Pulina, and A. Tacchella. Quantified Boolean
Formulas satisfiability library (QBFLIB), 2005. www.qbflib.org.

20. Enrico Giunchiglia, Massimo Narizzano, and Armando Tacchella. QuBE: A system
for deciding quantified boolean formulas satisfiability. In Proceedings of IJCAR,
pages 364–369, 2001.

21. Alexandra Goultiaeva and Fahiem Bacchus. Recovering and utilizing partial dual-
ity in QBF. In Proceedings of SAT, pages 83–99. Springer, 2013.

http://fmv.jku.at/aiger/
www.qbflib.org

22. Marijn Heule, Martina Seidl, and Armin Biere. Efficient extraction of skolem
functions from QRAT proofs. In Proceedings of FMCAD, pages 107–114, 2014.

23. Marijn Heule, Martina Seidl, and Armin Biere. A unified proof system for QBF
preprocessing. In Proceedings of IJCAR, volume 8562 of LNCS, pages 91–106.
Springer, 2014.

24. Mikolás Janota, Radu Grigore, and João Marques-Silva. On QBF proofs and
preprocessing. In Proceedings of LPAR, pages 473–489, 2013.

25. Mikolas Janota, Charles Jordan, Will Klieber, Florian Lonsing, Martina Seidl, and
Allen Van Gelder. The QBFGallery 2014: The QBF competition at the FLoC
olympic games. Journal on Satisfiability, Boolean Modeling and Computation,
9:187–206, 2016.

26. Mikolás Janota, William Klieber, João Marques-Silva, and Edmund M. Clarke.
Solving QBF with counterexample guided refinement. In Proceedings of SAT,
pages 114–128, 2012.

27. Mikolás Janota and Joao Marques-Silva. Solving QBF by clause selection. In
Proceedings of IJCAI, pages 325–331. AAAI Press, 2015.

28. Mikolás Janota and João P. Marques Silva. Abstraction-based algorithm for 2QBF.
In Proceedings of SAT, pages 230–244, 2011.

29. Charles Jordan and Lukasz Kaiser. Experiments with reduction finding. In Pro-
ceedings of SAT, pages 192–207. Springer, 2013.

30. Charles Jordan, Will Klieber, and Martina Seidl. Non-cnf qbf solving with qcir.
In Proceedings of BNP (Workshop). 2016.

31. William Klieber, Samir Sapra, Sicun Gao, and Edmund Clarke. A non-prenex,
non-clausal QBF solver with game-state learning. In SAT, pages 128–142, Berlin,
Heidelberg, 2010. Springer-Verlag.

32. Martin Kronegger, Andreas Pfandler, and Reinhard Pichler. Conformant planning
as a benchmark for QBF-solvers. In Report on the International Workshop on
QBF, pages 1–5, 2013.

33. Florian Lonsing and Armin Biere. Nenofex: Expanding NNF for QBF solving. In
Proceedings of SAT, pages 196–210, 2008.

34. Florian Lonsing and Armin Biere. DepQBF: A dependency-aware QBF solver.
JSAT, 7(2-3):71–76, 2010.

35. C. Miller, C. Scholl, and B. Becker. Proving QBF-hardness in bounded model
checking for incomplete designs. In Proceedings of MTV, pages 23–28, 2013.

36. Aina Niemetz, Mathias Preiner, Florian Lonsing, Martina Seidl, and Armin Biere.
Resolution-based certificate extraction for QBF - (tool presentation). In Proceed-
ings of SAT, pages 430–435, 2012.

37. Oswaldo Olivo and E. Allen Emerson. A more efficient BDD-based QBF solver.
In Proceedings of CP, pages 675–690, 2011.

38. Charles Otwell, Anja Remshagen, and Klaus Truemper. An effective QBF solver
for planning problems. In MSV/AMCS, pages 311–316. Citeseer, 2004.

39. Florian Pigorsch and Christoph Scholl. An AIG-based QBF-solver using SAT for
preprocessing. In Proceedings of DAC, pages 170–175. IEEE, 2010.

40. Knot Pipatsrisawat and Adnan Darwiche. On the power of clause-learning {SAT}
solvers as resolution engines. Artificial Intelligence, 175(2):512 – 525, 2011.

41. Markus N Rabe and Leander Tentrup. CAQE: A certifying QBF solver. In Pro-
ceedings of FMCAD, pages 136–143, 2015.

42. Markus N Rabe, Christoph M Wintersteiger, Hillel Kugler, Boyan Yordanov, and
Youssef Hamadi. Symbolic approximation of the bounded reachability probability
in large Markov chains. In Proceedings of QEST, pages 388–403. Springer, 2014.

43. J. A. Robinson. A machine-oriented logic based on the resolution principle. J.
ACM, 12(1):23–41, January 1965.

44. Ashish Sabharwal, Carlos Ansotegui, Carla P Gomes, Justin W Hart, and Bart
Selman. QBF modeling: Exploiting player symmetry for simplicity and efficiency.
In Proceedings of SAT, pages 382–395. Springer, 2006.

45. João P Marques Silva and Karem A Sakallah. GRASP - A new search algorithm
for satisfiability. In Proceedings of CAD, pages 220–227. IEEE, 1997.

46. Armando Solar-Lezama. Program synthesis by sketching. PhD thesis, University
of California, Berkeley, 2008.

47. Grigori S Tseitin. On the complexity of derivation in propositional calculus. Studies
in constructive mathematics and mathematical logic, 2(115-125):10–13, 1968.

48. Christoph M Wintersteiger, Youssef Hamadi, and Leonardo De Moura. Efficiently
solving quantified bit-vector formulas. Proceedings of FMSD, 42(1):3–23, 2013.

Appendix

A Proof of Theorem 1

Proof. The algorithm maintains the invariant that ∀X.∃Y.ϕ is D-consistent. It
starts with an empty set D, for which any 2QBF in PCNF is D-consistent.
The procedure Propagation only adds variables to D after they have been
identified to be locally (and thus globally by Lemma 1) deterministic and passed
the conflict checks (by Lemma 3). The procedure BackTrack reverts the data
structures to a previous D-consistent state. When we add a conflict clause c, we
know that the clause is not in D, as we previously backtracked to a decision level
smaller than the maximal decision level in c. The algorithm also adds clauses
during decisions and by the pure literal rule, but these are not in D either at
the time they are added.

For proving termination, we first consider the propagation procedure. The
size of D is monotonically increasing during the execution of Propagate and is
bounded by |Y |. Between two additions to the set D (after executing line 12 until
the execution of line 11), the size of U is monotonically decreasing, except when
the pure literal rule applies. The pure literal rule only reintroduces the variable
last taken out of the set U and guarantees that during the next iteration of
the while loop this variable is identified to be deterministic, forcing D to grow
or the procedure to terminate with a conflict. The other procedures used in
the algorithm trivially terminate. The number of iterations of the main loop
in the algorithm IncrementalDeterminization between any two conflicts is
bounded by the number of variables in Y \D as each decision makes D grow by
at least one variable. The number of conflicts is also bounded, as every conflict
results in a new non-trivial clause over the variables X and D, and there are
only finitely many such clauses.

If the algorithm terminates with true, the formula is Y -consistent, thus true.
The function includes the original clauses and thus cannot violate any constraints
for any assignment to X - the clauses represent a Skolem function satisfying all
original constraints.

It remains to show soundness for the case that the algorithm terminates with
false. The conflict does not depend on decision clauses and by Lemma 2 we know
that the clauses introduced by the pure literal rule are sound with the original
set of clauses. Lemma 4 guarantees that the conflict clauses, including the final
one is sound. The final conflict clause only consists of universally quantified
variables, which is equivalent to false by universal reduction. ut

B Supplemental Experimental Data

In the following we provide additional scatter plots comparing CADET to various
solvers. We start with solvers that use Bloqqer as a preprocessor.

10−3 10−2 10−1 100 101 102

10−3

10−2

10−1

100

101

102

Runtime of CADET+Bloqqer in s

R
u
n
ti

m
e

o
f

C
A

D
E

T
in

s

10−3 10−2 10−1 100 101 102

10−3

10−2

10−1

100

101

102

Runtime of DepQBF+Bloqqer in s

R
u
n
ti

m
e

o
f

C
A

D
E

T
in

s
10−3 10−2 10−1 100 101 102

10−3

10−2

10−1

100

101

102

Runtime of Qesto+Bloqqer in s

R
u
n
ti

m
e

o
f

C
A

D
E

T
in

s

10−3 10−2 10−1 100 101 102

10−3

10−2

10−1

100

101

102

Runtime of quantor+Bloqqer in s

R
u
n
ti

m
e

o
f

C
A

D
E

T
in

s

10−3 10−2 10−1 100 101 102

10−3

10−2

10−1

100

101

102

Runtime of CAQE+Bloqqer in s

R
u
n
ti

m
e

o
f

C
A

D
E

T
in

s

10−3 10−2 10−1 100 101 102

10−3

10−2

10−1

100

101

102

Runtime of Qesto in s

R
u
n
ti

m
e

o
f

C
A

D
E

T
in

s

10−3 10−2 10−1 100 101 102

10−3

10−2

10−1

100

101

102

Runtime of quantor in s

R
u
n
ti

m
e

o
f

C
A

D
E

T
in

s

10−3 10−2 10−1 100 101 102

10−3

10−2

10−1

100

101

102

Runtime of GhostQ in s

R
u
n
ti

m
e

o
f

C
A

D
E

T
in

s

10−3 10−2 10−1 100 101 102

10−3

10−2

10−1

100

101

102

Runtime of RAReQS in s

R
u
n
ti

m
e

o
f

C
A

D
E

T
in

s

10−3 10−2 10−1 100 101 102

10−3

10−2

10−1

100

101

102

Runtime of DepQBF in s

R
u
n
ti

m
e

o
f

C
A

D
E

T
in

s

10−3 10−2 10−1 100 101 102

10−3

10−2

10−1

100

101

102

Runtime of CAQE in s

R
u
n
ti

m
e

o
f

C
A

D
E

T
in

s

The second group of plots shows that without Bloqqer the solvers Qesto,
quantor, RAReQS, and DepQBF either solve instances in less time than CADET
or produce a timeout. The majority of the instances are lined up at the right
fringe of the plots. An interesting observation is that GhostQ, like the CEGAR
and QDPLL solvers, appears to have groups of benchmarks that are almost
orthogonal in the scatter plot. Note that the upper part of the right fringe of

the plot comparing quantor to CADET is much less populated than for the
other plots. This is an artifact of the evaluation where instances on which a
solver produced a MEMOUT are not indicated in the plot. Quantor was the
only solver to produce MEMOUTs.

C Certificates

While the primary use of certificates is to make sure that the computed result is
correct, there are some applications in which the certificates are of further use as
they represent implementations or strategies. It is therefore considered important
to extract reasonably small certificates. Here we present more experimental data
on the size of the produced certificates. Consider the scatter plot in Fig. 4,
which compares the number of clauses in the formulas (that have been identified
by CADET to be true) to the number of gates in the certificates provided by
CADET after minimization with the ABC model checker. We see that for some
benchmarks certificate sizes roughly correlate with the problem size. For the
benchmarks Random and Partial Equivalence, however, this does not hold true.

5 10 50 500 5000

5

10

50

100

500

1000

5000

10000

5 10 50 500 5000

5

10

50

100

500

1000

5000

10000

5 10 50 500 5000

5

10

50

100

500

1000

5000

10000

5 10 50 500 5000

5

10

50

100

500

1000

5000

10000

5 10 50 500 5000

5

10

50

100

500

1000

5000

10000

5

10

50

100

500

1000

5000

10000

5 10 50 500 5000

M
in

im
iz

ed
 g

at
e

nu
m

be
r

Clause number CADET

cadet − SAT 2016 − certificate evaluation 2

Group 0
Group 1
Group 2
Group 3
Group 4

Fig. 4. Comparing certificate sizes (number of gates) to problem sizes (number of
clauses). Diamond shapes are represent the Random benchmark, green crosses rep-
resent the Partial Equivalence benchmark, yellow triangles represent the Synthesis
benchmark, grey-green boxes represent the Hardware Fixpoint benchmark, and red
crosses represent the Ranking Function benchmark.

C.1 Example Certificates

In the following we present two certificates that were computed by CADET.
They are presented as Aiger circuits, which have the following elements: Blue
triangles are input and output signals, square nodes are input signals, and oval
nodes are And gates. The inputs are at the bottom of the plots and connections
always go up. Black dots indicate that the signal is negated.

The two examples shown in Fig. 5 are taken from the Ranking Functions
benchmark and the Terminator benchmark. The circuits were simplified by ABC
using the command dc2. In both cases we cropped a number of constant outputs
to fit the certificates onto the pages. We can observe that the certificates involve
a relatively low number of gates. The ranking function example shows several
disconnected repetitive structures that could be arithmetic operations.

2

pi000

4

pi001

6

pi002

8

pi003

10

pi004

12

pi005

14

pi006

16

pi007

18

pi008

20

pi009

22

pi010

24

pi011

26

pi012

28

pi013

30

pi014

32

pi015

34

pi016

36

pi017

38

pi018

40

pi019

42

pi020

44

pi021

46

pi022

48

pi023

50

pi024

52

pi025

54

pi026

56

pi027

58

pi028

60

pi029

62

pi030

64

pi031

66

pi032

68

pi033

70

pi034

72

pi035

74

pi036

76

pi037

78

pi038

80

pi039

82

pi040

84

pi041

86

pi042

88

pi043

90

pi044

92

pi045

94

pi046

96

pi047

98

pi048

100

pi049

102

pi050

104

pi051

106

pi052

108

pi053

110

pi054

112

pi055

114

pi056

116

pi057

118

pi058

120

pi059

122

pi060

124

pi061

126

pi062

128

pi063

130

pi064

132

pi065

134

pi066

136

pi067

138

pi068

140

pi069

142

pi070

144

pi071

146

pi072

148

pi073

150

pi074

152

pi075

154

pi076

156

pi077

158

pi078

160

pi079

162

pi080

164

pi081

166

pi082

168

pi083

170

pi084

172

pi085

174

pi086

176

pi087

178

pi088

180

pi089

182

pi090

184

pi091

186

pi092

188

pi093

190

pi094

192

pi095

194

pi096

196

pi097

198

pi098

200

pi099

202

pi100

204

pi101

206

pi102

208

pi103

210

pi104

212

pi105

214

pi106

216

pi107

218

pi108

220

pi109

222

pi110

224

pi111

226

pi112

228

pi113

230

pi114

232

pi115

234

pi116

236

pi117

238

pi118

240

pi119

242

pi120

244

pi121

246

pi122

248

pi123

250

pi124

252

pi125

254

pi126

256

pi127

258

pi128

260

pi129

262

pi130

264

pi131

266

pi132

268

pi133

270

pi134

272

pi135

274

pi136

276

pi137

278

pi138

280

pi139

282

pi140

284

pi141

286

pi142

288

pi143

290

pi144

292

pi145

294

pi146

296

pi147

298

pi148

300

pi149

302

pi150

304

pi151

306

pi152

308

pi153

310

pi154

312

pi155

314

pi156

316

pi157

318

pi158

320

pi159

322

pi160

324

pi161

326

pi162

328

pi163

330

pi164

332

pi165

334

pi166

336

pi167

338

pi168

340

pi169

342

pi170

344

pi171

346

pi172

348

pi173

350

pi174

352

pi175

354

pi176

356

pi177

358

pi178

360

pi179

362

pi180

364

pi181

366

pi182

368

pi183

370

pi184

372

pi185

374

pi186

376

pi187

378

pi188

380

pi189

382

pi190

384

pi191

386 388

390 392 394

396 398 400

402

404 406

408

410 412

414

416 418

420

422

424

426

428

430

432

434

436

438

440

442

444

446

448

450

452

454

456

458

460

462

464

466

468

470

472

474

476

478

480

482

484

486

488

490

492

494

496

498

500

502

504

506

508

510

512

514

516

518

520

522

524

526

528

530

532

534

536

538

540

542

544

546 548

550

552 554

556 558 560

562 564 566

568 570 572

574 576 578

580 582 584

586 588 590

592 594 596

598 600 602

604 606 608

610 612 614

616 618 620

622 624 626

628 630 632

634 636 638

640 642 644

646 648 650

652 654 656

658 660 662

664 666 668

670 672 674

676 678 680

682 684 686

688 690 692

694 696 698

700 702 704

706 708 710

712 714 716

718 720 722

724 726 728

730 732 734

736

738

740

742

744

746

748

750

752

754

756

758

760

762

764

766

768

770

772

774

776

778

780

782

784

786

788

790

792

794

796

798

800 802

804

806 808

810 812 814

816 818 820

822 824 826

828 830 832

834 836 838

840 842 844

846 848 850

852 854 856

858 860862

864 866868

870 872874

876 878880

882 884886

888 890892

894 896898

900 902904

906 908910

912 914916

918 920922

924 926928

930 932934

936 938940

942 944946

948 950952

954 956958

960 962964

966 968970

972 974976

978 980982

984 986988

990

992

994

996

998

1000

1002

1004

1006

1008

1010

1012

1014

1016

1018

1020

1022

1024

1026

1028

1030

1032

1034

1036

1038

1040

1042

1044

1046

1048

1050

1052

1054 1056

1058

10601062

1064 1066 1068

10701072 1074

10761078 1080

10821084 1086

10881090 1092

10941096 1098

11001102 1104

11061108 1110

11121114 1116

11181120 1122

11241126 1128

11301132 1134

11361138 1140

11421144 1146

11481150 1152

11541156 1158

11601162 1164

11661168 1170

11721174 1176

11781180 1182

11841186 1188

11901192 1194

11961198 1200

12021204 1206

12081210 1212

12141216 1218

122012221224

12261228 1230

1232 1234 1236

12381240 1242

1244

1246

1248

1250

1252

1254

1256

1258

1260

1262

1264

1266

1268

1270

1272

1274

1276

1278

1280

1282

1284

1286

1288

1290

1292

1294

1296

1298

1300

1302

1304

1306

po0000

0

po0001 po0002

po0003

po0004

po0005

po0006

po0007

po0008 po0009 po0010 po0011 po0012 po0013 po0014 po0015 po0016 po0017 po0018 po0019 po0020 po0021 po0022 po0023 po0024 po0025 po0026 po0027 po0028 po0029 po0030 po0031 po0032 po0033 po0034 po0035 po0036

po0037

po0038 po0039 po0040

po0041

po0042 po0043 po0044

po0045

po0046 po0047 po0048 po0049 po0050 po0051 po0052 po0053 po0054 po0055 po0056 po0057 po0058 po0059 po0060 po0061 po0062 po0063 po0064 po0065 po0066 po0067 po0068 po0069 po0070 po0071 po0072 po0073 po0074 po0075 po0076 po0077 po0078 po0079 po0080 po0081 po0082 po0083 po0084 po0085 po0086 po0087 po0088 po0089 po0090 po0091 po0092 po0093 po0094 po0095 po0096 po0097 po0098 po0099 po0100 po0101 po0102

po0103

po0104

po0105

po0106 po0107 po0108 po0109 po0110 po0111 po0112 po0113 po0114 po0115 po0116 po0117 po0118 po0119 po0120 po0121 po0122 po0123 po0124 po0125 po0126 po0127 po0128 po0129 po0130 po0131 po0132 po0133 po0134 po0135 po0136 po0137 po0138 po0139

po0140

po0141

po0142

po0143

po0144

po0145 po0146 po0147 po0148 po0149 po0150 po0151 po0152 po0153 po0154 po0155 po0156 po0157 po0158 po0159 po0160 po0161 po0162 po0163 po0164 po0165 po0166 po0167 po0168 po0169 po0170 po0171 po0172 po0173 po0174 po0175 po0176 po0177 po0178 po0179 po0180 po0181 po0182 po0183 po0184 po0185 po0186 po0187 po0188 po0189 po0190 po0191 po0192 po0193

po0194 po0195

po0196

po0197

po0198

po0199

po0200

po0201 po0202

po0203

po0204

po0205

po0206

po0207

po0208

po0209

po0210

po0211

po0212

po0213

po0214

po0215

po0216

po0217

po0218

po0219

po0220

po0221

po0222

po0223

po0224

po0225

po0226

po0227 po0228

po0229

po0230

po0231

po0232

po0233

po0234

po0235

po0236

po0237

po0238

po0239

po0240

po0241

po0242

po0243

po0244

po0245

po0246

po0247

po0248

po0249

po0250

po0251

po0252

po0253

po0254

po0255

po0256

po0257

po0258

po0259

po0260 po0261

po0262

po0263

po0264

po0265

po0266

po0267

po0268

po0269

po0270

po0271

po0272

po0273

po0274

po0275

po0276

po0277

po0278

po0279

po0280

po0281

po0282

po0283

po0284

po0285

po0286

po0287

po0288

po0289

po0290

po0291

po0292

po0293 po0294

po0295

po0296

po0297

po0298

po0299

po0300

po0301

po0302

po0303

po0304

po0305

po0306

po0307

po0308

po0309

po0310

po0311

po0312

po0313

po0314

po0315

po0316

po0317

po0318

po0319

po0320

po0321

po0322

po0323

po0324

po0325

po0326po0327

po0328 po0329 po0330 po0331 po0332 po0333 po0334 po0335 po0336 po0337 po0338 po0339 po0340 po0341 po0342 po0343 po0344 po0345 po0346 po0347 po0348 po0349 po0350 po0351 po0352 po0353 po0354 po0355 po0356 po0357 po0358 po0359 po0360 po0361 po0362 po0363 po0364 po0365 po0366 po0367 po0368 po0369 po0370 po0371 po0372 po0373 po0374 po0375 po0376 po0377 po0378 po0379 po0380 po0381 po0382 po0383 po0384 po0385 po0386 po0387 po0388 po0389 po0390 po0391 po0392 po0393 po0394 po0395 po0396 po0397 po0398 po0399 po0400 po0401 po0402 po0403 po0404 po0405 po0406 po0407 po0408 po0409 po0410 po0411 po0412 po0413 po0414 po0415 po0416 po0417 po0418 po0419 po0420 po0421 po0422 po0423 po0424 po0425 po0426 po0427 po0428 po0429 po0430 po0431 po0432 po0433 po0434 po0435 po0436 po0437 po0438 po0439 po0440 po0441 po0442 po0443 po0444 po0445 po0446 po0447 po0448 po0449 po0450 po0451 po0452 po0453 po0454 po0455 po0456 po0457 po0458 po0459 po0460 po0461 po0462 po0463 po0464 po0465 po0466 po0467 po0468 po0469 po0470 po0471 po0472 po0473 po0474 po0475 po0476 po0477 po0478 po0479 po0480 po0481 po0482 po0483 po0484 po0485 po0486 po0487 po0488 po0489 po0490 po0491 po0492 po0493 po0494 po0495 po0496 po0497 po0498 po0499 po0500 po0501 po0502 po0503 po0504 po0505 po0506 po0507 po0508 po0509 po0510 po0511 po0512 po0513 po0514 po0515 po0516 po0517 po0518 po0519 po0520 po0521 po0522 po0523 po0524 po0525 po0526 po0527 po0528 po0529 po0530 po0531 po0532 po0533 po0534 po0535 po0536 po0537 po0538 po0539 po0540 po0541 po0542 po0543 po0544 po0545 po0546 po0547 po0548 po0549 po0550 po0551 po0552 po0553 po0554 po0555 po0556 po0557 po0558 po0559 po0560 po0561 po0562 po0563 po0564 po0565 po0566 po0567 po0568 po0569 po0570 po0571 po0572 po0573 po0574 po0575 po0576 po0577 po0578 po0579 po0580 po0581 po0582 po0583 po0584 po0585 po0586 po0587 po0588 po0589 po0590 po0591 po0592 po0593 po0594 po0595 po0596 po0597 po0598 po0599 po0600 po0601 po0602 po0603 po0604 po0605 po0606 po0607 po0608 po0609 po0610 po0611 po0612 po0613 po0614 po0615 po0616 po0617 po0618 po0619 po0620 po0621 po0622 po0623 po0624 po0625 po0626 po0627 po0628 po0629 po0630 po0631 po0632 po0633 po0634 po0635 po0636 po0637 po0638 po0639 po0640 po0641 po0642 po0643 po0644 po0645 po0646 po0647 po0648 po0649 po0650 po0651 po0652 po0653 po0654 po0655 po0656 po0657 po0658 po0659 po0660 po0661 po0662 po0663 po0664 po0665 po0666 po0667 po0668 po0669 po0670 po0671 po0672 po0673 po0674 po0675 po0676 po0677 po0678 po0679 po0680 po0681 po0682 po0683 po0684 po0685 po0686 po0687 po0688 po0689 po0690 po0691 po0692 po0693 po0694 po0695 po0696 po0697 po0698 po0699 po0700 po0701 po0702 po0703 po0704 po0705 po0706 po0707 po0708 po0709 po0710 po0711 po0712 po0713 po0714 po0715 po0716 po0717 po0718 po0719 po0720 po0721 po0722 po0723 po0724 po0725 po0726 po0727 po0728 po0729 po0730 po0731 po0732 po0733 po0734 po0735 po0736 po0737 po0738 po0739 po0740 po0741 po0742 po0743 po0744 po0745 po0746 po0747 po0748 po0749 po0750 po0751 po0752 po0753 po0754 po0755 po0756 po0757 po0758 po0759 po0760 po0761 po0762 po0763 po0764 po0765 po0766 po0767 po0768 po0769 po0770 po0771 po0772 po0773 po0774 po0775 po0776 po0777 po0778 po0779 po0780 po0781 po0782 po0783 po0784 po0785 po0786 po0787 po0788 po0789 po0790 po0791 po0792 po0793 po0794 po0795 po0796 po0797 po0798 po0799 po0800 po0801 po0802 po0803 po0804 po0805 po0806 po0807 po0808 po0809 po0810 po0811 po0812 po0813 po0814 po0815 po0816 po0817 po0818 po0819 po0820 po0821 po0822 po0823 po0824 po0825 po0826 po0827 po0828 po0829 po0830 po0831 po0832 po0833 po0834 po0835 po0836 po0837 po0838 po0839 po0840 po0841 po0842 po0843 po0844 po0845 po0846 po0847 po0848 po0849 po0850 po0851 po0852 po0853 po0854 po0855 po0856 po0857 po0858 po0859 po0860 po0861 po0862 po0863 po0864 po0865 po0866 po0867 po0868 po0869 po0870 po0871 po0872 po0873 po0874 po0875 po0876 po0877 po0878 po0879 po0880 po0881 po0882 po0883 po0884 po0885 po0886 po0887 po0888 po0889 po0890 po0891 po0892 po0893 po0894 po0895 po0896 po0897 po0898 po0899 po0900 po0901 po0902 po0903 po0904 po0905

po0906 po0907

po0908

po0909

po0910

po0911

po0912

po0913

po0914

po0915

po0916

po0917

po0918

po0919

po0920

po0921

po0922

po0923

po0924

po0925

po0926

po0927

po0928

po0929

po0930

po0931

po0932

po0933

po0934

po0935

po0936

po0937

po0938 po0939 po0940 po0941 po0942 po0943 po0944 po0945 po0946 po0947 po0948 po0949 po0950 po0951 po0952 po0953 po0954 po0955 po0956 po0957 po0958 po0959 po0960 po0961 po0962 po0963 po0964 po0965 po0966 po0967 po0968 po0969 po0970 po0971

po0972 po0973

po0974

po0975

po0976

po0977

po0978

po0979

po0980

po0981

po0982

po0983

po0984

po0985

po0986

po0987

po0988

po0989

po0990

po0991

po0992

po0993

po0994

po0995

po0996

po0997

po0998

po0999

po1000

po1001

po1002

po1003

po1004 po1005 po1006 po1007 po1008 po1009 po1010 po1011 po1012 po1013 po1014 po1015 po1016 po1017 po1018 po1019 po1020 po1021 po1022 po1023 po1024 po1025 po1026 po1027 po1028 po1029 po1030 po1031 po1032 po1033 po1034 po1035 po1036 po1037

po1038po1039

po1040

po1041

po1042

po1043

po1044

po1045

po1046

po1047

po1048

po1049

po1050

po1051

po1052

po1053

po1054

po1055

po1056

po1057

po1058

po1059

po1060

po1061

po1062

po1063

po1064

po1065

po1066

po1067

po1068

po1069

po1070 po1071 po1072 po1073 po1074 po1075 po1076 po1077 po1078 po1079 po1080 po1081 po1082 po1083 po1084 po1085 po1086 po1087 po1088 po1089 po1090 po1091 po1092 po1093 po1094 po1095 po1096 po1097 po1098 po1099 po1100 po1101 po1102 po1103

2

2

4

3

6

4 8

5

10

6 12

7

14

8

16

12

18

17

20

19

22

21

24

22

26

23

28

26

30

28

32

30

34

31

36

33

38

35

40

37

42

38

44

40

46

42

48

44

50

46

52

48

54

50

56

52

58

55

60

56

62

63

64

65

66

69

68

73

70

75

72

77

74

81

76

88

78

93

80

98

82

101

84

103

86

105

88 90

92

94

96 98

100

102

104

106

108

110

112

114 116

118

120

122

124 126

128

130

132

134136

138 140

142

144

146

148

150

152

154

156

158

160

162

164

166

168170

172174

176

178180

182

184

186

188

190 192 194196

198

200 202

204206 208210 212214 216 218220222224 226228 230 232234 236238

1

0

9 10 11 1314 15 16 18 20

24

25

27

29

32

34

36

39 41

43 45

47 49

51

5354

57 58 59

60

61

6264

6667

68

7071

72

74

76

78

79

80

8283

84

85

86

87

899091

92

949596

97

99100102 104 106107

108

109

110

111

112

113

114

115116 117

118

119

120121

122

123 124 125

126 127

128

129 130

131

132 133

134135

136

137 138

139 140 141 142

143

144

145

146 147

148

149150

151

152153

154

155156

157

158159

160

161162 163 164165

166

167

168

169

170

171

172

173174 175

176

177

178179

180

181 182 183

184 185

186

187

188

189 190

191192

193

194 195

196 197 198

199

200

201

202 203

204

205206

207

208209

210

211212

213

214215

216

217218 219 220221

222

223

224

225

226

227

228

229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455

456 457 458

Fig. 5. Certificates computed by CADET for rankfunc60 unsigned 32.qdimacs (upper) and stmt9 350 351.qdimacs (lower).

2

2

4

3

6

5

8

8

10

9

1214

16 1820

1

046

7 1011 1213

14

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

2

pi0

4

pi1

6

pi2

8

pi3

10

pi412 1416

18

20

22

24

26

28

30 32

34

36

38

40

42

44

46

48

50

52

54

56

58

6062

64

66

68

70

72

74

po00

0

po01 po02

po03

po04

po05 po06

po07

po08

po09 po10 po11 po12 po13 po14 po15 po16 po17 po18 po19 po20 po21 po22 po23 po24 po25 po26 po27

Fig. 6. Certificates for stmt6 13 14.qdimacs computed by CADET (upper, 5 gates)
and DepQBF (lower, 32 gates).

C.2 Comparison to Certificates Generated by DepQBF

A comparative evaluation is difficult, because the other certifying solvers CAQE
and DepQBF terminate only on a fraction of the benchmarks that can be solved
by CADET (without using Bloqqer). We nevertheless want to give an impression
and compare the certificates for the instance stmt6 13 14.qdimacs, which has
34 variables and 76 clauses and is solved almost instantly by both CADET
and DepQBF. Without simplification the CADETs certificate has 8 gates, and
DepQBF’s certificate has 78 gates. After simplifying the certificates using the
ABC model checker they look as depicted in Figure 6.

	Incremental Determinization

