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Incremental Determinization

Markus N. Rabe and Sanjit A. Seshia

University of California, Berkeley
{rabe,sseshia}@berkeley.edu

Abstract. We present a novel approach to solve quantified boolean for-
mulas with one quantifier alternation (2QBF). The algorithm incremen-
tally adds new constraints to the formula until the constraints describe
a unique Skolem function - or until the absence of a Skolem function
is detected. Backtracking is required if the absence of Skolem functions
depends on the newly introduced constraints. We present the algorithm
in analogy to search algorithms for SAT and explain how propagation,
decisions, and conflicts are lifted from values to Skolem functions. The
algorithm improves over the state of the art in terms of the number of
solved instances, solving time, and the size of the certificates.

1 Introduction

Solvers for quantified boolean formulas (QBFs) have been considered as an algo-
rithmic backend in a variety of application areas, such as planning in uncertain
environments [3,32,38], chess [2,3,44], program verification [5,14], model check-
ing of Markov chains [42], circuit analysis [17, 18, 35], and synthesis [12, 16, 46].
However, the performance of the currently available solvers can be unsatisfac-
tory. For example, competitive solvers such as DepQBF [34], RAReQS [26], and
Qesto [27] cannot solve the quantified boolean formula ∀X.∃Y. X = Y in a rea-
sonable timeframe, where X and Y are 32-bit words and = states their bitwise
equivalence. Even though preprocessors like Bloqqer [11] help to solve this for-
mula, the example suggests that there is a fundamental problem with the solving
principle of state-of-the-art QBF solvers.

The formula describes a trivial problem. We can see that for every assign-
ment to X there is exactly one assignment to Y that satisfies the constraint.
That is, the formula describes the Skolem function that is the solution to the
problem. This reasoning, however, requires us to detect functional dependencies
in formulas that are typically given in conjunctive normal form.

In this paper we present an algorithm to determine the truth of formulas
with one quantifier alternation (2QBF) that detects existing functional depen-
dencies among variables and incrementally builds new Skolem functions when-
ever the problem does not imply a unique Skolem function. We employ the view
that the propositional part ϕ of a 2QBF ∀x1, . . . , xn ∈ B. ∃y1, . . . , ym ∈ B. ϕ
is a binary relation Rϕ over assignments x and y to the variables x1, . . . , xn
and y1, . . . , ym: Rϕ = {(x,y) | ϕ(x,y)}. We call Rϕ the Skolem relation. The



solution to a true 2QBF is a Skolem function f that assigns values to the ex-
istentially quantified variables depending on the universally quantified variables
such that the constraints are satisfied for all pairs of assignments (x, f(x)). Also
a Skolem function can be seen as a relation over assignments and it is a subset
of the Skolem relation Rϕ. The difference between the Skolem relation Rϕ and a
Skolem function f is that Rϕ may still provide multiple possible assignments y
for some assignment x, while f has to provide exactly one y for every x. The
presented algorithm adds constraints to ϕ to eliminate the remaining nondeter-
minism - we determinize the Skolem relation to obtain a Skolem function.

The algorithm is a generalization of the DPLL algorithm [15] with conflict-
driven clause learning (CDCL) [45]. We lift the concepts of propagation, deci-
sions, and conflicts from values for variables to Skolem functions for variables.
We thereby break the search for Skolem functions down to single variables, which
allows us to determinize the relation incrementally, giving rise to the name of
the algorithm - incremental determinization.

After presenting an overview of the algorithm in Section 3, we present a
propagation procedure in Section 4, which identifies variables that already have
unique Skolem functions and whether there is a conflicted variable. In Section 5
we discuss how to introduce additional constraints to fix a Skolem function for a
variable in case propagation cannot derive a unique Skolem function. Section 6
covers how to compute a conflict clause after a conflicted variable is detected.
Termination, correctness, and the generation of certificates is covered in Sec-
tion 7. In Section 8 we describe the implementation and give an experimental
evaluation of the approach. We sketch out relations to other algorithms and
preprocessing techniques for QBF in Section 9 and conclude with Section 10.

2 Quantified Boolean Formulas

We assume that the reader is familiar with the natural semantics of propositional
boolean formulas and summarize the basic notation for quantified boolean for-
mulas in the following. Quantified boolean formulas over a finite set of variables
x ∈ X with domain B = {0, 1} are generated by the following grammar:

ϕ := 0 | 1 | x | ¬ϕ | (ϕ) | ϕ ∨ ϕ | ϕ ∧ ϕ | ∃x. ϕ | ∀x. ϕ ,

We abbreviate multiple quantifications Qx1.Qx2. . . . Qxn.ϕ to the quantification
over a set of variables QX.ϕ, where xi ∈ X and Q ∈ {∀,∃}.

An assignment x to a set of variables X is a function x : X → B that maps
each variable x ∈ X to either 1 or 0. Given a propositional formula ϕ over
variables X and an assignment x′ for X ′ ⊆ X, we define ϕ(x′) to be the formula
obtained by replacing the variables X ′ by their truth value in x′. By ϕ(x′,x′′) we
denote the replacement by multiple assignments for disjoint sets X ′, X ′′ ⊆ X.

The dependency set of an existentially quantified variable y, denoted by
dep(y), is the set of universally quantified variables x such that ∃y. ϕ is a subfor-
mula of ∀x.ϕ′. A Skolem function fy maps assignments to dep(y) to assignments
to y. We define the truth of a QBF ϕ as the existence of Skolem functions
fY = {fy1

, . . . , fyn
} for the existentially quantified variables Y = {y1, . . . , yn},



such that ϕ(x, fY (x)) holds for every x, where fY (x) is the assignment to Y
that the Skolem functions fY provide for x.

A quantifier Qx.ϕ for Q ∈ {∃,∀} binds the variable x in its subformula ϕ. A
closed QBF is a formula in which all variables are bound. A formula is in prenex
normal form, if the formula is closed and starts with a sequence of quantifiers
followed by a propositional subformula. A formula ϕ is in the kQBF fragment for
k ∈ N+ if it is closed, in prenex normal form, and has exactly k− 1 alternations
between ∃ and ∀ quantifiers.

A literal l is either a variable x ∈ X, or its negation ¬x. Given a set of
literals {l1, . . . , ln}, their disjunction (l1 ∨ . . . ∨ ln) is called a clause and their
conjunction (l1 ∧ . . . ∧ ln) is called a cube. A propositional formula is in con-
junctive normal form (CNF), if it is a conjunction of clauses. A prenex QBF
is in prenex conjunctive normal form (PCNF) if its propositional subformula
is in CNF. W.l.o.g. we assume for all PCNF formulas that none of the clauses
contains two opposite literals, which would trivially satisfy the clause, and that
all clauses contain at least one literal from an existentially quantified variable.
To simplify the notation, we treat the propositional formulas ψ as sets of clauses
ψ = {C1, . . . , Cn}, clauses C as sets of literals C = {l1, . . . , lm}, and use set
operations like intersection and union for their manipulation. Every QBF ϕ can
be transformed into an equivalent PCNF with size O(|ϕ|) [47].

We assume that the reader is familiar with unit propagation and define
UP(ϕ) as the partial assignment to the variables in a propositional ϕ resulting
from applying the unit propagation rule until a fixpoint is reached. We define
UP(ϕ) = ⊥ if unit propagation results in a conflicting assignment for a variable.

3 Algorithm

Let ∀X.∃Y.ϕ be a 2QBF in PCNF, where ϕ is the propositional part. The algo-
rithm IncrementalDeterminization determines whether the formula is true.
The key principle of the algorithm is to maintain a set of variables D ⊆ Y for
which the set of clauses D = {C ∈ ϕ | C ⊆ D ∪X} that only have variables in
D and X defines a Skolem function for each variable in D: We say that ϕ is D-
consistent if for each assignment x to X, UP(D(x)) is not ⊥ and assigns a value
to all variables in D. (In particular, ∀X∃!D. D .) It is clear that a Y -consistent
2QBF is true and for each true 2QBF ∀X.∃Y.ϕ there exists a set of clauses ψ,
such that ∀X.∃Y.ϕ ∧ ψ is Y -consistent.

Given a D-consistent formula ∀X.∃Y.ϕ, we say a variable v ∈ Y has a unique
Skolem function, if ∀X.∃Y.ϕ is also (D ∪ {v})-consistent. For determining (D ∪
{v})-consistency we have to extend the clauses D by the clauses Uv in which v is
the only variable not in D and not in X. Clauses in Uv can be read as implications
where the consequence is a literal of v, because we know that all other variables
are already determined for all assignments x. We say that a clause C ∈ Uv has
the unique consequence v.

The algorithm checks for unique Skolem functions in two steps which require
the following definitions: Variable v is deterministic, if UP(D(x) ∧ Uv(x)) is ⊥



or gives a unique assignment to v for all assignments x to X, and v is conflicted,
if UP(D(x) ∧ Uv(x)) = ⊥ for some assignment x to X. Deterministic variables
that are not conflicted have a unique Skolem function.

1: procedure IncrementalDeterminization(∀X.∃Y.ϕ)
2: dlvl ← 0; D ← ∅
3: while true do
4: D,ϕ, conflict ,x← Propagate(∀X.∃Y.ϕ,D, dlvl)
5: if conflict then
6: c ← AnalyzeConflict(∀X.∃Y. ϕ,x, D, dlvl)
7: if c only contains variables in X then
8: return false
9: dlvl ← (maximal decision level in c)− 1

10: ϕ,D ← Backtrack(ϕ,D, dlvl)
11: ϕ← ϕ ∧ c
12: else
13: if D = Y then
14: return true
15: v ← PickVar(Y \D)
16: dlvl ← dlvl + 1
17: ϕ← ϕ ∧Decision(v, ϕ,D)

The elements of the algorithm are as follows: The procedure Propagate ex-
tends D with variables with unique Skolem functions until the procedure returns
an updated set D, or until a conflicted variable is detected upon which propa-
gation reports an assignment to X for which the conflict occurs (see Section 4).
In case of a conflict, AnalyzeConflict computes a conflict clause (Section 6).

Variables that are detected to have a unique Skolem function get labeled
with the current decision level (dlvl) during propagation, which is used during
backtracking (lines 10 to 12). The procedure Backtrack(ϕ, dlvl) resets the set
D and the formula ϕ to a certain decision level, but keeps the learnt clauses. In
case no conflict is detected during propagation, the procedures PickVar and
Decision fix a Skolem function for an additional variable (see Section 5).

4 Propagation and Conflicts

During propagation search algorithms for SAT consider which assignments to
the yet unassigned variables are entailed by the current partial assignment. In
this section we generalize propagation of values to a notion of propagation of
Skolem functions. To develop some intuition on the determinicity check let us
consider the following example:

∀x1.∀x2. ∃y1.∃y2. (x1 ∨ ¬y1) ∧ (x2 ∨ ¬y1) ∧ (¬x1 ∨ ¬x2 ∨ y1)︸ ︷︷ ︸
fy1 : (x1,x2)7→x1∧x2

(1)

∧ (¬x1 ∨ ¬y2) ∧ (¬y1 ∨ ¬y2) ∧ (x1 ∨ y1 ∨ y2)︸ ︷︷ ︸
fy2 : (x1,y1)7→¬(x1∨y1)

(2)



The first three clauses (clause group (1)) of the formula can easily be iden-
tified as a definition of a Skolem function for y1: For each assignment to x1
and x2, one of the first three clauses entails a unique value for y1. It helps to
consider each of these clauses as an implication, that is (¬x1 → ¬y1) ∧ (¬x2 →
¬y1) ∧ (x1 ∧ x2 → y1). Variable y1 thus satisfies the determinicity condition for
the empty set D. It is also easy to see that the antecedents of the implications
described by clause group 1 do not overlap; variable v is not conflicted. We can
conclude that there is no solution to the formula above in which y1 has a Skolem
function different from fy1 : (x1, x2) 7→ x1 ∧ x2.

After we identified that y1 has a unique Skolem function, we see that also the
Skolem function for variable y2 is unique. The second group of clauses (clause
group (2)) allows no Skolem function other than fy2

: (x1, y1) 7→ ¬(x1∨y1). The
use of an existentially quantified variable in the definition of this Skolem function
is a short form for the Skolem function fy2 : (x1, x2) 7→ ¬(x1∨fy1(x1, x2)).1 Note
that variable y2 does not have a unique Skolem function relative to an empty
set D. Identifying Skolem functions for some variables can thus help to identify
variables for further variables.

4.1 Checking for Determinicity

We consider D-consistent 2QBF in PCNF ∀X.∃Y.ϕ, where ϕ is the propositional
part and D ⊂ Y . For determining determinicity of a variable v ∈ Y \D, only the
clauses D and Uv play a role. As explained in Section 3 we can see each clause C
in Uv as an implication ¬(C \ {v,¬v}) =⇒ v from variables in X and variables
with a fixed Skolem function to a literal of v. If, and only if, for every pair of
assignments (x,d) (to variables X and D) satisfying D one of the antecedents
described by Uv applies, variable v is deterministic:D =⇒

∨
C∈Uv

¬(C\{v,¬v}).
To enable the use of SAT solvers we avoid the validity in the formulation and
negate the formula.

Lemma 1. Variable v is deterministic w.r.t. D iff the following is unsatisfiable:

D ∧
∧

C∈ Uv

C \ {v,¬v}

4.2 Local Under-Approximation of Determinicity

Checking determinicity with the formula above can be costly, as the check in-
volves the potentially large set of clauses D. We thus suggest to drop D and
obtain the under-approximation:

∧
C∈ Uv

C \ {v,¬v} . That is, the local under-
approximation does not take into account that certain assignments to D may
violate the definitions of the Skolem functions. We call a variable that satisfies
the local determinicity check locally deterministic.

1 The algorithm only constructs Skolem functions that depend on universally quan-
tified variables. The use of existentially quantified variables is just an abbreviation,
so there is no risk of circular dependencies.



Let us revisit the example in the beginning of Section 4. Assuming that
none of the variables have been identified yet to have a unique Skolem function
(D = ∅), we check local determinicity for variable y1 with the following propo-
sitional formula: x1 ∧ x2 ∧ (¬x1 ∨ ¬x2). As the formula is unsatisfiable, y1 is
deterministic. If we checked y2 first, there would be only a single clause with
unique consequence y2 and thus the local determinicity check consists of the sin-
gle clause ¬x1, which is trivially satisfiable. Only after identifying a Skolem func-
tion for y1, i.e. with y1 ∈ D, also the other two clauses in which y2 occurs have
a unique consequence. In this case we formulate the query ¬x1 ∧¬y1 ∧ (x1 ∨ y1),
determine its unsatisfiability, and conclude that y2 satisfies condition (1) as well.

4.3 Pure Literals

If an existentially quantified variable occurs in only one polarity in a formula in
PCNF we call it a pure literal and we can assign it this polarity while preserving
the truth of the formula. When we additionally consider a partial assignment,
we can easily generalize this to the following: when all literals of one polarity
are in clauses that are satisfied by literals of other variables, we can assign the
variable the opposite literal. We encode this condition as a constraint:

Lemma 2. Given a PCNF ∀X.∃Y.ϕ and a literals l of v ∈ Y , we have:

∀X.∃Y.ϕ ⇐⇒ ∀X.∃Y.ϕ ∧
(( ∧

C∈ϕ with l∈C

C \ {l}
)

=⇒ l
)

We call
(∧

C∈ϕ with l∈C C \ {l}
)

=⇒ l the pure literal constraint. We could

add the constraint for all variables, but this would increase the formula size
significantly. Instead we add the constraint only if during propagation v is not
locally deterministic and a literal l of v only occurs in clauses in Uv. Adding the
pure literal constraint then guarantees that v is deterministic.

Consider a variation of the previous example, where we only flip the negation
of the second occurrence of y2:

∀x1.∀x2. ∃y1.∃y2. (x1 ∨ ¬y1) ∧ (x2 ∨ ¬y1) ∧ (¬x1 ∨ ¬x2 ∨ y1)︸ ︷︷ ︸
fy1 : (x1,x2) 7→x1∧x2

(3)

∧ (¬x1 ∨ ¬y2)︸ ︷︷ ︸
fy2 : x1 7→¬x1

∧(¬y1 ∨ y2) ∧ (x1 ∨ y1 ∨ y2) (4)

Even when we test y2 for determinicity before we establish that y1 is deter-
ministic, we can now fix a Skolem function for y2: The only negative occurrence
of variable y2 is in the clause ¬x1 ∨¬y2, which happens to have ¬y2 as a unique
consequence. We can thus fix y2 to be positive in all remaining cases and set
fy2

: x1 7→ ¬x1 by adding the clause x1 ∨ y2 to the formula.



4.4 Checking for Conflicts

In algorithms for propositional SAT, we call variables conflicted, if unit prop-
agation resulted in conflicting assignments to the variable. In the incremental
determinization algorithm a variable v is conflicted in a D-consistent 2QBF, if
there is an assignment to the universally quantified variables that propagates
conflicting assignments to v. We consider the example from Subsection 4.3 to
develop some intuition on conflicted variables. Assume we first identified vari-
able y2 to have the unique Skolem function fy2

: x1 7→ ¬x1. Then all clauses in
clause group 3 and the latter two clauses of clause group 4 have a literal of y1
as a unique consequence. The determinicity check determines that the formula
x1 ∧ x2 ∧ (¬x1 ∨ ¬x2) ∧ ¬y2 ∧ (x1 ∨ y2) is unsatisfiable and concludes that y1
is deterministic. To see that the variable is conflicted, i.e. there is no Skolem
function satisfying all constraints, consider the assignment x1 ∧ x2, which sets
y2 to false according to fy2

. In this case we cannot give variable y1 a value that
satisfies all constraints: The last clause of clause group 3 requires y1 to be set
to true while the second clause of clause group 4 requires y1 to be set false.
We found a conflict!

As for the determinicity check, we can easily construct a formula for the
global conflict check that represents the assignments to X that prove a variable
v ∈ Y \ D to be conflicted. Let us consider a D-consistent 2QBF in PCNF
∀X.∃Y.ϕ, where ϕ is the propositional part and D ⊂ Y . The clauses D represent
the known Skolem functions and are guaranteed to provide unique values to D
for every assignment x to X. In particular, UP(x) cannot result in ⊥ and so it
suffices to check for conflicting assignments to variable v. Variable v can only be
propagated if one of the antecedents of the clauses Uv with unique consequence v
is true. We thus know that variable v is conflicted if, and only if, there is a pair of
assignments (x,UP(x)) that satisfies the antecedents of two clauses C,C ′ ∈ Uv
with v ∈ C and ¬v ∈ C ′.

Lemma 3. Variable v is conflicted if, and only if, the following is satisfiable:

D ∧

( ∨
C∈Uv with v∈C

¬(C \ {v})

)
∧

( ∨
C∈Uv with ¬v∈C

¬(C \ {¬v})

)

4.5 Local Over-Approximation for Conflict Detection

The global conflict check is a relatively expensive step, as it involves the poten-
tially large set of clauses D. Similar to the local determinicity check, we drop
D from the conflict check to first check for local conflicts. If the local conflict
check returns an assignment to X and D, we cannot be sure that the assignment
satisfies D, so we then resort to the global conflict check.

4.6 The Propagation Procedure

The procedure Propagate extends a given set D of variables that have a unique
Skolem function and it checks whether there is a conflicted variable. The returned



set D may be an under-approximation of the set of variables with unique Skolem
functions, just as propagation for SAT computes an under-approximation of the
set of variables having a unique value. This may lead to unnecessary decisions,
but avoids the costly global determinicity check. Also, the procedure does not
check all variables for conflicts. Instead it only makes sure that deterministic
variables are not conflicted, so no conflicted variable gets added to the set D.
In this way all variables will still be checked for conflicts eventually (unless the
algorithm terminates with false).

Given a set D of variables, a D-consistent 2QBF, and a decision level, Prop-
agate returns a 4-tuple indicating the updated set of variables D, whether there
is a conflict, the formula (which may be modified by pure literal detection), and
an assignment x to the universally quantified variables:

1: procedure Propagate(∀X.∃Y. ϕ, D, dlvl)
2: U ← variables occurring as unique consequence in ϕ
3: while U ∩ (Y \D) 6= ∅ do
4: v ← pick a variable in U ∩ (Y \D)
5: U ← U \ v
6: if v is locally deterministic then
7: if local conflict for v then
8: if global conflict for v for assignment x then
9: return (D, true, ϕ, x)

10: v.dlvl ← dlvl
11: D ← D ∪ {v}
12: check for new clauses with unique consequences; update U
13: else
14: if v occurs only in Uv or ¬v occurs only in Uv then
15: ϕ← ϕ ∧ pure literal constraint
16: U ← U ∪ {v}
17: return (D, false, ϕ, N/A)

With the set U we remember which variables we still have to check for deter-
minicity. Whenever a variable is detected to have a unique Skolem function, we
check for clauses that now have a unique consequence and update U (line 12). It
is possible (and desirable) to start with a smaller set U than shown above: only
variables v for which we added a new clause with unique consequence v since
the last propagation phase can possibly become deterministic. For the sake of
simplicity we omitted the additional bookkeeping in this exposition.

5 Decisions

Decisions are made when the propagation procedure comes to a stop and no
conflict was detected. The procedure PickVar picks a variable v ∈ Y \ D,
which we call the decision variable. The procedure Decision then adds clauses,
the decision clauses, that make variable v locally deterministic. Note the decision
variable may be conflicted, though not yet detected as such, at the time of the



decision, as the propagation procedure does not guarantee that all variables are
conflict free. In the next propagation phase, after the decision variable is detected
to be deterministic, it may thus be detected to be conflicted.

In this section we propose a simple way to take decisions that avoids intro-
ducing additional conflicts—between decision clauses and clauses in Uv—for the
decision variable. We simply fix the Skolem function that assigns 1 to v whenever
the clauses Uv do not require otherwise. That is, we consider the clauses with
unique consequence that may require v to be set to 0, i.e. C ∈ Uv with ¬v ∈ C,
and define the result of Decision as the constraint that sets v to 1 when all
their antecedents are false:( ∧

C∈Uvwith¬v∈C

C \ {¬v}
)

=⇒ v

We again consider the example of Subsection 4.3 with an empty set D. In
case we were to take a decision over variable y2 instead of considering the pure
literal rule, we would fix the cases described by the only clause in Uv, which is
¬x1 ∨ ¬y2. Then we fix y2 to be true in all remaining cases, i.e. by adding the
clause x1 ∨ y2.

Given a D-consistent 2QBF ∀X.∃Y.ϕ it is clear that a variable v ∈ Y \ D
is deterministic in ∀X.∃Y.ϕ ∧Decision(v, ϕ,D). It is also easy to see that the
procedure does not introduce additional conflicts for v. Also, for all assignments
x to X and d to D we have:

UP
(
D ∧ Uv ∧Decision(v, ϕ,D)(x,d)

)
= ⊥ =⇒ UP

(
D ∧ Uv(x,d)

)
= ⊥

This property guarantees that the conflict analysis, which we cover in Sec-
tion 6, always results in a new clause and thereby provides us with an argument
for the termination of the algorithm. The procedure Decision also marks the
added clauses as decision clauses. During conflict analysis and during backtrack-
ing we have to distinguish decision clauses from learnt clauses.

6 Conflict Analysis

Conflict analysis for incremental determinization stays remarkably similar to
CDCL. Once a (global) conflict is detected, we compute a conflict clause along
an implication graph. If the conflict clause contains only universally quantified
variables, we proved the formula to be false. Otherwise, we have to backtrack to
the largest decision level that contributed to the conflict, add the conflict clause
to the formula, and continue with propagation.

Let us consider a D-consistent 2QBF ∀X.∃Y. ϕ, and let δ ⊆ ϕ be the set
of decision clauses for the decision variables E ⊆ Y . Assume we detected a
conflict for a variable v ∈ Y \D for which the global conflict check returned the
assignment x to X. The procedure AnalyzeConflict first computes UP(D(x))
to obtain an assignment e for the variables D∩E. Then the algorithm computes
a conflict clause as for CDCL [45] along the implication graph of:

UP
((

(D ∧ Uv) \ δ)(x, e)
)



which is guaranteed to return ⊥. That is, we omit the decision clauses and
instead treat decision variables as a decisions in the sense of CDCL with the
values obtained by UP(D(x)).

Lemma 4. Let ∀X.∃Y. ϕ be a D-consistent 2QBF and let δ ⊆ ϕ be the set
of decision clauses in ϕ. The algorithm AnalyzeConflict(∀X.∃Y. ϕ,D, dlvl)
returns a clause C such that ϕ \ δ ⇔ (ϕ \ δ) ∧ C and C /∈ ϕ \ δ.

Proof. Let v ∈ Y \D be a conflicted variable, provoked by an assignment x to
X. After every decision the first variable that is checked for determinicity and
conflictedness, is the decision variable. So we have E ⊆ (D ∪ {v}) and if v /∈ E
then we even have E ⊆ D. In either case UP(D(x)) returns an assignment to all
decision variables that are not conflicted. Since v is conflicting with the decision
clauses, it is also conflicting when we replace the decision clauses by the values

of the decision variables: UP
((

(D ∧ Uv) \ δ)(x, e)
)

= ⊥.

Any conflict clause C derived by CDCL can be derived by a sequence of
resolution steps [40] and we thus know (D ∧ Uv) \ δ ⇔ ((D ∧ Uv) \ δ) ∧ C by
the soundness of the resolution rule [43]. Since C is over the same variables as
D this extends to ϕ ⇔ ϕ ∧ C. Also, a conflict clause computed as for CDCL is
guaranteed to be not contained in the formula it is derived from, so it is not in
(D∧Uv)\ δ. Since C only contains variables from X and D and since D includes
all clauses over X and D in ϕ, C cannot be in ϕ \ (D ∪ Uv) either. ut

Consider the following example:

∀x1.∀x2. ∃y1.∃y2. (x2 ∨ ¬y1) ∧ (¬x1 ∨ ¬x2 ∨ y1) (5)

∧ (x1 ∨ ¬y2) ∧ (¬y1 ∨ ¬y2) ∧ (x1 ∨ y1 ∨ y2) (6)

This time, neither y1 nor y2 can be propagated. Let us pick y2 as the de-
cision variable. According to the decisions discussed in Section 5 we add the
clause ¬x1 ∨ y2 to complement the only other clause in which y2 occurs as its
unique consequence, i.e., x1 ∨ ¬y2. The variable y2 is thus assigned the Skolem
function fy2

: x1 7→ x1. Now variable y1 is conflicted: The conflict test could
return the assignment for the universal variables represented by the conjunction
x1 ∧ x2, which determines y2 to be true according to fy2 . The second clause of
clause group 5 and the second clause of clause group 6 then require conflicting
assignments to y1. Consider the implication graph:

x1

x2 y1

¬y1
y2

(¬x1 ∨ y2)

(¬x1 ∨ ¬x2 ∨ y1)
(¬x1 ∨ ¬x2 ∨ y1)

(¬y1 ∨ ¬y2)

The presence of both nodes y1 and ¬y1 represents a conflict, indicated by the
red edge. The labels on the edges indicate the clauses with unique consequence



that correspond to the edges. The clause ¬x1 ∨ ¬y2 added in the decision cor-
responds to the dashed edge from x1 to y2. AnalyzeConflict considers the
implication graph for the formula without the dashed edge and instead assumes
the value 1 for the decision variable y2 as an additional decision. The only conflict
clause that could be computed in this case is ¬x1 ∨ ¬x2 ∨ ¬y2.

7 Correctness, Termination, Certificates

Theorem 1. Incremental determinization is correct and terminates.

Proof sketch: We first show that the algorithm maintains D-consistency and
terminates as there are only finitely many clauses that could be learnt. If the
algorithm terminates with true, the computed formula is Y -consistent and con-
tains the original formula. This represents a Skolem function satisfying all orig-
inal constraints. Lemma 4 and Lemma 2 imply soundness for the case that the
algorithm terminates with false.

Certificates. Once terminated, the correctness of the result can be checked by
an independent, simpler algorithm. This is important in practice since highly op-
timized logic solvers can easily contain programming errors. In some applications
the proof object, that is the Skolem function, may also represent an interesting
object like an implementation or a strategy.

For the presented method, certification is straightforward: The final set of
clauses is Y -consistent and we can thus obtain an assignment to the existen-
tially quantified variables Y for every assignment to the universally quantified
variables through propagation - the clauses represents the Skolem function. To
check the correctness of the Skolem function via existing QBF proof checkers
such as QBFCert [36,41], we translate the function into a circuit in the AIGER
format [1]. The circuit reads the values of the universally quantified variables
and its outputs provide the values for the existentially quantified variables.

We can exploit the order in which the algorithm added variables to the set
D. This order provides us a unique direction in which the clauses can propagate.
Let Uv be the set of clauses with unique consequence at the time variable v was
added last to the set D. For every variable v we then define the circuit’s output
for variable v as ∨

C∈Uv withv∈C

¬(C \ {v}) .

The order among the existentially quantified variables then guarantees the ab-
sence of circular dependencies.

In case the algorithm determines that the given QBF is false, the implemen-
tation provides the assignment to the universally quantified variables from the
last global conflict check.



CADET RAReQS quantor Qesto CAQE DepQBF GhostQ
Family total - +b - +b - +b - +b - +b - +b -

Terminator 590 583 513 0 382 12 138 1 491 32 288 547 572 480
Hardware Fixpoint 131 110 92 8 67 16 62 8 67 7 78 22 68 8
Ranking Functions 365 365 365 0 363 13 360 0 363 0 363 168 360 6

Reduction Finding 48 0 4 21 38 2 5 22 36 16 26 14 16 2
Circuit Underst. 78 20 44 2 50 2 6 2 34 2 48 36 17 36
Partial Equivalence 300 217 201 2 246 80 102 20 235 56 261 86 159 11
Reactive Synthesis 153 153 153 133 153 153 153 129 153 106 153 137 153 149

Random 254 242 243 246 238 90 91 226 220 249 250 231 224 183

Table 1. Number of instances solved within 10 minutes and 4 GB memory for various
benchmarks. For columns labeled with +b we applied the preprocessor Bloqqer before
running the solver. Numbers in bold font indicate the best result for a benchmark.

8 Implementation and Experimental Evaluation

We implemented the algorithm in a tool we named the Cal incremental determi-
nizer (CADET)2, using PicoSAT [10] to solve the propositional problems. The
implementation emphasizes simplicity over speed and consists of about 4000
lines of code (not counting the SAT solver) in the programming language C.
For global conflict detection, we make use of the incremental solving features of
PicoSAT. We maintain an instance of PicoSAT containing the clauses D that
have only literals of universally quantified variables and deterministic existen-
tially quantified variables. Each global conflict check can then be performed by
adding only few clauses. Whenever we detect new variables to be deterministic,
we push more clauses into the SAT solver, and accordingly pop clauses during
backtracking. We implemented two further optimizations:

Restarts: After a certain threshold of conflicts, we backtrack all decisions and
continue with propagation. The restart threshold is then increased by a constant
factor >1. Thus there will eventually be a large enough interval such that the
termination argument holds.

Constant propagation: When the algorithm starts and whenever we identify
variables as deterministic, we check for unit clauses. Unit clauses imply a unique
value for a variable, which we propagate among the not yet determined variables.

Experimental Evaluation. We performed experiments on several sets of
benchmarks of 2QBF instances to compare CADET to state-of-the-art QBF
solvers. The experiments were conducted on machines with a quadcore 3.6 GHz
Intel Xeon processor, with a 10 minute timeout and 4GB memory limit. Table 1
summarizes the number of instances solved for different benchmark families.

The first group of benchmarks was taken from QBFLIB [19]. These bench-
marks consist of interesting software and hardware verification problems (Ter-
minator [5], Hardware Fixpoint [48], Ranking Functions [14]) and demonstrate
the strength of incremental determinization compared to existing algorithms.

2 CADET is available via https://eecs.berkeley.edu/~rabe/cadet.html

https://eecs.berkeley.edu/~rabe/cadet.html
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Fig. 1. Log-scale cactus plot comparing the performance over all instances.

CADET solved more instances than any other approach while not being depen-
dent on preprocessing.

The second group of benchmarks is from recent papers on QBF applications:
Reduction Finding [29] (also used in QBFGallery 2014 [25]), Circuit Understand-
ing [18], Partial Equivalence [17], Reactive Synthesis [12]. We included the second
group of benchmarks to also present cases in which incremental determinization
is not superior to the existing approaches. The last benchmark, Random, consists
of all 2QBFs from the randomly generated instances listed on QBFLIB [19].

Fig. 1 shows that CADET is the strongest solver overall. The log-scale allows
us to observe that there is a substantial gap between the solving times of CADET
and the other approaches. This is also reflected in the overall solving times,
where CADET leads with 144009 seconds before Qesto+b, DepQBF+b, and
RAReQS+b taking 224220, 243575, and 259125 seconds.

The scatter plot in Fig. 2 compares the relative runtimes of RAReQS (with
Bloqqer) and CADET. The scatter plot suggests that incremental determiniza-
tion and abstraction refinement perform quite differently and that their relative
performance highly depends on the benchmark. The comparison to the other
solvers shows similar features.

The certificates computed by CADET are typically much smaller than those
by DepQBF. In Fig. 3 we compare the certificate sizes of DepQBF and CADET.
For CADET we present the size of the certificates before and after simplifica-
tion with the ABC model checker. For DepQBF we used the --simplify during
the generation with qrpcert. DepQBF’s certificate cannot be simplified further
using ABC, as DepQBF encodes some information in the structure of the certifi-
cates. The plot reveals an enormous difference in the ability to certify and the
quality of the produced certificates.
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9 Related Work

Early approaches to solving QBFs focused on expanding the quantifiers using
data structures like CNF [9,33], BDDs [4,37] or AIGs [39]. Skolemization helps
to reduce the expansion effort [7]. QDPLL is a generalization of DPLL to QBF
where we propagate and decide on values of variables, as for propositional SAT [6,
13, 20, 34]. QDPLL solvers often explore a large portion of the exponentially
many assignments to the universally quantified variables as the example from the
introduction shows. The incremental determinization algorithm encapsulates the
reasoning about the assignments to the universal variables in the global conflict
check, which is a propositional formula and can thus be offloaded to SAT solvers.

The CEGAR approach for QBF [26–28, 41] was most competitive in recent
evaluations [19,25]. The basic idea is to maintain one SAT solver for each quanti-
fier level. In each iteration these algorithms exclude all assignments to universal
variables that can be matched with one assignment to the existential variables.
Skolem functions that require many different outputs, like the identity example
∀X.∃Y. X = Y from the introduction, thus need an exponential number of iter-
ations. Incremental determinization does not have to explore single assignments
to Y in cases, like the identity example, where we can derive parts of the Skolem
function directly.



Non-CNF solvers. Recently there has been a surge of interest in QBF solvers
that are not based on the PCNF representation of formulas. Exploiting the
formula structure [21,30,31] or even the word-level structure [48] has been argued
to be superior to pure CNF-level reasoning. The experimental results in this
paper suggest that this question is not yet settled. For example, the circuit-based
solver GhostQ is significantly less effective than CADET on most benchmarks.
After the initial circuit-extraction current circuit-based solvers suffer from the
same principal problem as solvers using QDPLL or CEGAR.

Proof systems for QBF. Resolution based proof calculi, like resolve and
expand [9] and IR [8], also add clauses to the QBF. The generation of con-
flict clauses in this work relies on the instantiation of the universally quantified
variables, which resembles the proof rules in IR. In contrast, incremental de-
terminization adds constraints that possibly change the truth of the formula.
This comes at the cost of backtracking, in case the added constraints (during
decisions) were too strong.

Certification. Previous certifying QBF solvers produce proof traces from
which certificates (Skolem functions) can be reconstructed [36,41]. Also prepro-
cessing techniques such as QBCE [11] can be certified [22,23] and combined with
certificates for solvers [24]. In this work, the final set of clauses is the certificate
and can easily be translated into a circuit representing the Skolem function.

10 Conclusions

Quantified boolean formulas are a natural choice to encode problems in verifica-
tion, synthesis, and artificial intelligence. We give a completely new algorithm to
solve problems in 2QBF that is based on incrementally adding constraints un-
til the Skolem relation collapses to a Skolem function. The algorithm employs a
propagation step that directly constructs Skolem functions out of the constraints
of the formula. We thereby exploit the formula structure despite working on the
level of the CNF. The example from the introduction, ∀X.∃Y. X = Y , is thus
solved instantly. Working on the level of Skolem functions avoids situations in
which other approaches have to explore an exponential number of cases and also
helps to certify the results.

Most parts of the algorithm are kept simplistic on purpose. Likely there are
stronger and more efficient ways to propagate, take decisions, and to analyze
conflicts in this setting. The purpose of this work is to introduce a framework
for the direct manipulation of Skolem functions in a search-based algorithm.
Still, the experimental evaluation suggests that the algorithm already improves
over existing approaches.
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Appendix

A Proof of Theorem 1

Proof. The algorithm maintains the invariant that ∀X.∃Y.ϕ is D-consistent. It
starts with an empty set D, for which any 2QBF in PCNF is D-consistent.
The procedure Propagation only adds variables to D after they have been
identified to be locally (and thus globally by Lemma 1) deterministic and passed
the conflict checks (by Lemma 3). The procedure BackTrack reverts the data
structures to a previous D-consistent state. When we add a conflict clause c, we
know that the clause is not in D, as we previously backtracked to a decision level
smaller than the maximal decision level in c. The algorithm also adds clauses
during decisions and by the pure literal rule, but these are not in D either at
the time they are added.

For proving termination, we first consider the propagation procedure. The
size of D is monotonically increasing during the execution of Propagate and is
bounded by |Y |. Between two additions to the set D (after executing line 12 until
the execution of line 11), the size of U is monotonically decreasing, except when
the pure literal rule applies. The pure literal rule only reintroduces the variable
last taken out of the set U and guarantees that during the next iteration of
the while loop this variable is identified to be deterministic, forcing D to grow
or the procedure to terminate with a conflict. The other procedures used in
the algorithm trivially terminate. The number of iterations of the main loop
in the algorithm IncrementalDeterminization between any two conflicts is
bounded by the number of variables in Y \D as each decision makes D grow by
at least one variable. The number of conflicts is also bounded, as every conflict
results in a new non-trivial clause over the variables X and D, and there are
only finitely many such clauses.

If the algorithm terminates with true, the formula is Y -consistent, thus true.
The function includes the original clauses and thus cannot violate any constraints
for any assignment to X - the clauses represent a Skolem function satisfying all
original constraints.

It remains to show soundness for the case that the algorithm terminates with
false. The conflict does not depend on decision clauses and by Lemma 2 we know
that the clauses introduced by the pure literal rule are sound with the original
set of clauses. Lemma 4 guarantees that the conflict clauses, including the final
one is sound. The final conflict clause only consists of universally quantified
variables, which is equivalent to false by universal reduction. ut

B Supplemental Experimental Data

In the following we provide additional scatter plots comparing CADET to various
solvers. We start with solvers that use Bloqqer as a preprocessor.
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The second group of plots shows that without Bloqqer the solvers Qesto,
quantor, RAReQS, and DepQBF either solve instances in less time than CADET
or produce a timeout. The majority of the instances are lined up at the right
fringe of the plots. An interesting observation is that GhostQ, like the CEGAR
and QDPLL solvers, appears to have groups of benchmarks that are almost
orthogonal in the scatter plot. Note that the upper part of the right fringe of



the plot comparing quantor to CADET is much less populated than for the
other plots. This is an artifact of the evaluation where instances on which a
solver produced a MEMOUT are not indicated in the plot. Quantor was the
only solver to produce MEMOUTs.

C Certificates

While the primary use of certificates is to make sure that the computed result is
correct, there are some applications in which the certificates are of further use as
they represent implementations or strategies. It is therefore considered important
to extract reasonably small certificates. Here we present more experimental data
on the size of the produced certificates. Consider the scatter plot in Fig. 4,
which compares the number of clauses in the formulas (that have been identified
by CADET to be true) to the number of gates in the certificates provided by
CADET after minimization with the ABC model checker. We see that for some
benchmarks certificate sizes roughly correlate with the problem size. For the
benchmarks Random and Partial Equivalence, however, this does not hold true.
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Fig. 4. Comparing certificate sizes (number of gates) to problem sizes (number of
clauses). Diamond shapes are represent the Random benchmark, green crosses rep-
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crosses represent the Ranking Function benchmark.



C.1 Example Certificates

In the following we present two certificates that were computed by CADET.
They are presented as Aiger circuits, which have the following elements: Blue
triangles are input and output signals, square nodes are input signals, and oval
nodes are And gates. The inputs are at the bottom of the plots and connections
always go up. Black dots indicate that the signal is negated.

The two examples shown in Fig. 5 are taken from the Ranking Functions
benchmark and the Terminator benchmark. The circuits were simplified by ABC
using the command dc2. In both cases we cropped a number of constant outputs
to fit the certificates onto the pages. We can observe that the certificates involve
a relatively low number of gates. The ranking function example shows several
disconnected repetitive structures that could be arithmetic operations.
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Fig. 5. Certificates computed by CADET for rankfunc60 unsigned 32.qdimacs (upper) and stmt9 350 351.qdimacs (lower).
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Fig. 6. Certificates for stmt6 13 14.qdimacs computed by CADET (upper, 5 gates)
and DepQBF (lower, 32 gates).

C.2 Comparison to Certificates Generated by DepQBF

A comparative evaluation is difficult, because the other certifying solvers CAQE
and DepQBF terminate only on a fraction of the benchmarks that can be solved
by CADET (without using Bloqqer). We nevertheless want to give an impression
and compare the certificates for the instance stmt6 13 14.qdimacs, which has
34 variables and 76 clauses and is solved almost instantly by both CADET
and DepQBF. Without simplification the CADETs certificate has 8 gates, and
DepQBF’s certificate has 78 gates. After simplifying the certificates using the
ABC model checker they look as depicted in Figure 6.
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