
UCLA
UCLA Electronic Theses and Dissertations

Title
Integration, Provenance, and Temporal Queries for Large-Scale Knowledge Bases

Permalink
https://escholarship.org/uc/item/67x5d0n2

Author
Gao, Shi

Publication Date
2016

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/67x5d0n2
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Integration, Provenance, and Temporal Queries for Large-Scale
Knowledge Bases

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Shi Gao

2016

c© Copyright by

Shi Gao

2016

ABSTRACT OF THE DISSERTATION

Integration, Provenance, and Temporal Queries for Large-Scale
Knowledge Bases

by

Shi Gao
Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2016

Professor Carlo Zaniolo, Chair

Knowledge bases that summarize web information in RDF triples deliver many benefits, in-

cluding support for natural language question answering and powerful structured queries that ex-

tract encyclopedic knowledge via SPARQL. Large scale knowledge bases grow rapidly in terms

of scale and significance, and undergo frequent changes in both schema and content. Two criti-

cal problems have thus emerged: (i) how to support temporal queries that explore the history of

knowledge bases or flash-back to the past; (ii) how to integrate knowledge from difference sources

and improve the quality of integrated knowledge base while preserving the provenance informa-

tion. In this dissertation, we propose a framework that supports knowledge integration, temporal

query evaluation and user-friendly interfaces for large-scale knowledge bases. Towards this goal,

we make the following contributions:

(i) We propose SPARQLT , a temporal extension of structured query language SPARQL based on

a point temporal model which simplifies the expression of temporal joins and eliminates the need

for temporal coalescing. This approach makes possible an end-user interface HKB (Historical

Knowledge Browser) where users can browse the evolution history of knowledge bases and express

historical queries via simple by-example conditions in the infoboxes of Wikipedia pages.

(ii) We have designed and implemented RDF-TX (RDF Temporal eXpress), an efficient system

for managing temporal RDF data and evaluating SPARQLT queries. RDF-TX takes advantage

ii

of compressed Multiversion B+ trees to achieve fast evaluation of temporal queries. The exper-

imental result demonstrates that our indexing and query optimization techniques deliver superior

performance over other systems.

(iii) We propose a framework for knowledge extraction and integration. We first introduce IB-

Miner, a novel NLP-based system that derives knowledge bases from free text and preserves the

provenance of extracted triples. IBminer uses a deep NLP-based approach to extract subject-

attribute-value triples from free text, and maps the attributes to those introduced in existing knowl-

edge bases. Then we integrate public knowledge bases with the knowledge base generated by

IBMiner into one of superior quality and coverage, called IKBStore. User-friendly interfaces are

provided to manage the knowledge in IKBStore while maintaining provenance information.

iii

The dissertation of Shi Gao is approved.

Yingnian Wu

Wei Wang

Junghoo Cho

Carlo Zaniolo, Committee Chair

University of California, Los Angeles

2016

iv

To my family and friends

v

TABLE OF CONTENTS

1 Introduction . 1

1.1 Temporal Query over the History of Knowledge Bases 1

1.2 Knowledge Integration . 3

1.3 Overview and Contributions . 4

1.3.1 Query Language, Interface, and System for Querying the History of Knowl-

edge Bases . 4

1.3.2 Knowledge Integration . 5

2 RDF-TX: A Fast, User-Friendly System for Querying the History of RDF Knowledge

Bases . 8

2.1 Overview and Data Model . 10

2.1.1 System Architecture . 10

2.1.2 Temporal RDF Graph . 11

2.2 SPARQLT Query Language . 14

2.3 Storage and Index . 18

2.3.1 Index Scheme . 18

2.3.2 Index Compression . 21

2.4 Query Processing . 23

2.4.1 Compiling SPARQLT Query . 23

2.4.2 Executing Query Plan . 25

2.5 Optimization . 27

2.5.1 RDF-TX Query Optimizer . 27

2.5.2 Temporal Histogram . 28

vi

2.5.3 Statistics Estimation . 34

2.6 Experimental Evaluation . 35

2.6.1 Experiment Setup . 35

2.6.2 Index Space . 37

2.6.3 Query Performance . 38

2.6.4 Effectiveness of Query Optimizer . 42

2.6.5 Index Construction & Maintenance . 43

2.7 Historical Knowledge Browser . 44

2.8 Related Work . 46

3 SWIM: A Framework for Knowledge Extraction and Integration 48

3.1 Overview . 51

3.2 IKBStore: Integrated Knowledge Base . 53

3.2.1 Data Gathering . 53

3.2.2 Initial Knowledge Integration . 54

3.2.3 Further Knowledge Integration . 55

3.3 IBMiner: Deriving Structured Summaries from Text 56

3.3.1 From Text to TextGraphs . 57

3.3.2 Generating Semantic Links . 58

3.3.3 Mapping Links to Attributes . 63

3.4 CS3: Discovering Attribute and Entity Synonyms 69

3.4.1 Generating Attribute Synonyms . 70

3.4.2 Generating Entity Synonyms . 72

3.5 Knowledge Provenance Management . 73

3.6 User-Friendly Interfaces for Browsing and Editing Knowledge 75

vii

3.7 Experimental Evaluation . 76

3.7.1 Data Sets . 77

3.7.2 Completing Knowledge by IBminer . 78

3.7.3 Completing Knowledge by Attribute Synonyms 84

3.7.4 Summary . 85

3.8 Related Work . 86

4 Conclusion and Future Work . 89

References . 91

viii

LIST OF FIGURES

2.1 RDF-TX Architecture . 10

2.2 RDF graph based on the Wikipedia Infoboxes of University of California on 09/01/2013 12

2.3 An Example of MVBT (* denotes now) . 20

2.4 (a) Compressed MVBT Entry Format (b) Compression Time 22

2.5 An Example of MVBT Backward Link . 26

2.6 An Example of MVSBT Record Split . 29

2.7 Algorithms for Record Split in CMVSBT . 32

2.8 An Example of CMVSBT Leaf Record Split . 33

2.9 Example of Query Reduction . 35

2.10 Compression Saving for MVBT Index . 37

2.11 Index Size Comparison. The size of dictionary is included in the results. 38

2.12 Time Performance for Temporal Selection in Wikipedia and GovTrack 39

2.13 Time Performance for Temporal Join in Wikipedia and GovTrack 39

2.14 Time Performance for Temporal Join in Wikipedia and GovTrack 41

2.15 Query Execution Time of the best/worst plans, and the plan generated by SPARQLT op-

timizer for complex queries in Wikipedia . 42

2.16 Index Construction Time . 43

2.17 Index Maintenance Time . 43

2.18 Historical Knowledge Browser Interface . 45

2.19 Navigation Window for Property Mayor . 45

3.1 Part of the TextGraph for our example sentence. 57

ix

3.2 Part a) shows the graph pattern for Rule1, and b) depicts one of the possible

matches for this pattern. 60

3.3 Results for Musicians data set: a) Precision/Recall diagram for best matches, b)

Precision/Recall diagram for attribute synonyms, and c) the size of generated re-

sults for the test data set. 79

3.4 a) Precision/Recall diagram for best matches (Actors), b) Precision/Recall diagram

for best matches (Institutes), and c) the size of generated results for Actors and

Institutes. 80

3.5 a) The impact of increasing level number on Recall, b) The impact of increasing

Categories number on Recall, and c) InfoBox generation delay per abstract. 81

3.6 Number of results generated for different queries using DBpedia and IBminer

knowledge bases. 83

3.7 The Precision/Recall diagram for the attribute synonyms generated for existing

InfoBoxes in the Musicians data set. 85

x

LIST OF TABLES

1.1 Statistics about the updates of Wikipedia Infobox 2

2.1 The evolution history of subject University of California from 09/01/2013 to present,

represented as temporal RDF triples. 13

3.1 Some of the publicly available Knowledge Bases 48

3.2 Description of data sets used in experiments. 77

xi

ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor Professor Carlo Zaniolo for his guidance,

support, and trust in my PhD study. He gave me valuable suggestions and tremendous freedom,

which makes the past five years a great memory for me. I would also like to thank Professor

Junghoo Cho, Professor Wei Wang, and Professor Yingnian Wu for their time and help on my

research.

Then I wish to thank the faculty members and students in ScAi lab for their support and encour-

agement, especially my frequent collaborators: Mohan Yang, Jiaqi Gu, Muhao Chen, Alexander

Shkapsky, Massimo Mazzeo, Ariyam Das, and Jin Wang. Moreover, I would like to thank Hamid

Mousavi and Kai Zeng, who gave me generous help and suggestions in my first two years of PhD

study. We collaborated on the IBMiner and ABM projects, in which I learnt a lot about research

skills.

At last, I would like to thank my parents for their unconditional love. Their support and under-

standing made the difficult times easier for me.

xii

VITA

2009 Summer Exchange Student, UCLA

2010 Bachelor of Engineering in Software Engineering, Zhejiang University,

Hangzhou, China.

2011 – 2012 Teaching Assistant, Computer Science Department, UCLA.

2011 Summer Intern, Teradata Optimization Group, El Segundo.

2012 Summer Intern, Teradata Optimization Group, El Segundo.

2010 – 2015 Research Assistant, Computer Science Department, UCLA.

xiii

CHAPTER 1

Introduction

Knowledge bases that summarize valuable information in the RDF format are rapidly growing in

terms of scale and significance and playing a crucial role in many important applications such as

text summarization, semantic search, and question answering. Significant research progress on

text mining and crowdsourcing has lowered the barrier to constructing and accessing knowledge

bases. While the volume of knowledge bases keeps growing, large-scale knowledge base undergo

frequent changes in both schema and content. New challenges are brought to researchers: (i)

how to support temporal queries that explore the history of knowledge bases or flash-back to the

past; (ii) how to integrate knowledge from difference sources and improve the quality of integrated

knowledge base while preserving the provenance information. The study of knowledge integration

and temporal query support for large-scale knowledge bases has not yet received full attention it

deserves. Next we discuss the unsolved issues in these aspects and the solutions we proposed to

address the issues.

1.1 Temporal Query over the History of Knowledge Bases

As the real world evolves, the information in knowledge bases inevitably changes over time. Large

knowledge bases undergo frequent changes. When the information in the real world evolves,

the RDF triples stored in the knowledge bases are updated correspondingly by human editors

and knowledge discovery systems. Table 1.1 lists the statistics of Wikipedia Infobox edit history,

which shows that updates are quite common in many properties: e.g., on average each value in

the population property of the city pages is updated more than 7 times. This is not specific to

1

Category Property Average Number of Updates

Software Release 7.27

Player Club 5.85

Musician Genre 7.24

Country GDP(PPP) 11.78

City Population 7.16

Table 1.1: Statistics about the updates of Wikipedia Infobox

Wikipedia, but also happens in other knowledge repositories.

The management of historical information has emerged as a critical problem for knowledge

bases, motivating the launching of projects such as DBpedia Live [dbp]. In fact, timestamping

is an important part of the provenance information that is associated with each RDF triple in the

knowledge base. The evolution history of knowledge bases captures and describes the change of

real world entities and properties, and thus is of great interest to users. However, the size of the

evolution history is very large and the schema of knowledge base is also under evolution, which

poses challenges in query language, indexing and query processing.

As the RDF model for representing knowledge bases is gaining great popularity, the importance

of managing and querying the evolution history of knowledge bases is also recognized. Gutierrez et

al. [GHV07] extended the RDF model with time elements and several approaches [Gra10, PSH07,

PUS08, TB09, KPG12] have been proposed to support the queries on temporal RDF datasets.

Most previous works employ relational databases and RDF engines to store temporal RDF triples

and rewrite temporal queries into SQL/SPARQL for evaluation. The languages proposed in these

works use an interval-based temporal model which leads to complex expressions for temporal

queries, e.g., those requiring joins and coalescing [CZ99, Tom96].

At the physical level, previous works rely on relational databases/RDF engine to store and

query temporal RDF triples, which results in complex SPARQL and SQL queries in evaluation.

Although some works exploit indices such as tGrin [PUS08] and keyTree [TB09] to accelerate

the processing of temporal queries, these indices only support a limited set of temporal queries.

2

Queries that involve temporal join are not supported. On the other hand, as the size of histori-

cal knowledge base is rapidly growing, comprehensive indexing of temporal RDF data becomes

prohibitively expensive. Existing temporal index suffers from its high space overhead and slow

index scan. At last, none of previous works explore the query optimization techniques for tempo-

ral queries. These issues in existing systems limits their scalability on large knowledge bases and

complex queries.

1.2 Knowledge Integration

The extraordinary success of Wikipedia and DBpedia [BLK09] shows that large-scale knowledge

bases and powerful structure queries can achieve accurate knowledge retrieval and provide richer

information comparing with normal web documents. In recent years, a tremendous amount of

knowledge bases haven been released, including some general knowledge bases such as DBpedia

and Yago [HSB13], and domain specific ones such as Geonames [GEO] and MusicBrainz [MUS].

Besides being very valuable for human readers, these knowledge bases have many applications in

various information systems [MRS11, ATS11, JT10].

However, there remain the obstacles that existing knowledge bases are quite incomplete and

inconsistent. For example, about 40% of Wikipedia pages are missing their InfoBoxes (subject-

attribute-value triple) entirely, and the others contain InfoBoxes with missing entries. The problem

of incompleteness is largely due to the crowdsourcing process used to populate knowledge bases,

which is often compounded by the lack of general ontologies and the pervasive use of synonyms

and coreferences to denote the same concept. Inconsistency is caused by the same reasons. When

the information is present, it might be represented using synonymous attributes, such as birth date,

date of birth, and born, as it is in fact the case for DBpedia and many manually created knowledge

bases.

These problems limit the use of knowledge bases in the applications that require complete and

robust results. There have been some works on knowledge extraction [HCH08, BEP08, SKW08,

ECD04, PGR10, LBN10] to solve these problems. These works either consider structured data

3

sources [HCH08, BEP08, SKW08] or use limited forms of NLP-based techniques to extract knowl-

edge from text [ECD04, PGR10, LBN10]. None of existing approaches (i) take full advantage of

the linguistic morphologies of sentences to drive high-quality structured information from text;

(ii) integrate the knowledge from text documents, structured knowledge bases, and crowdsourcing

interfaces into a super knowledge base which covers more structured summaries with consistent

terminology and ontology.

A general knowledge base with superior coverage and accurate information benefits a large set

of semantic applications such as SWiPE [AZ12] and Facet Search [HBS10] by ensuring the quality

of facts and providing more complete results. In the integrated knowledge bases, it is important to

capture the provenance of knowledge. The provenance of knowledge is very valuable for human

readers to identify the causes of changes and trace the evolution history. It is also important for

semantic applications since provenance information can be used to ensure the reproducibility and

quality of data. However, most works for provenance management in semantic web focus on the

provenance of SPARQL queries [GKC13, DAA12]. New techniques are needed for managing

provenance in knowledge integration.

1.3 Overview and Contributions

In this dissertation, we aim at addressing the issues of knowledge integration and temporal query

support for large-scale knowledge bases. Towards this goal, we made the following contributions.

1.3.1 Query Language, Interface, and System for Querying the History of Knowledge Bases

We first introduce SPARQLT, a temporal extension of SPARQL that can express powerful struc-

tured queries on temporal RDF triples. SPARQLT is based on a point temporal model which sim-

plifies the expression of temporal joins and eliminates the need for temporal coalescing. Then we

demonstrate a query interface HKB (Historical Knowledge Browser) [GCA15] that allows users

who are unfamiliar with knowledge base schema and SPARQLT syntax to query the history of

knowledge bases. In HKB, the Wikipedia Infoboxes are extended with temporal fields, where the

4

user can enter temporal query conditions. From the modified Infoboxes and query conditions, our

interface derives equivalent queries that are optimized and executed in our query engine. It also

allows users to browse the historical knowledge base by specifying a previous version or a period.

Then we implement a fast query engine RDF-TX (RDF Temporal eXpress) [GGZ15, GCA15]

that efficiently supports the data management and query evaluation of large temporal RDF datasets

while simplifying the temporal queries for SPARQL programmers and consequently, for end-user

interfaces facilitating the expression of the same queries.

To achieve fast query evaluation, we use efficient storage and index schemes for temporal

RDF triples based on Multi-Version B+ Tree (MVBT) [BGO96], and then build a query proces-

sor [GGZ15] that takes full advantage of such comprehensive indices to process SPARQLT queries.

RDF-TX also features a query optimizer that uses the statistics of temporal RDF graphs to find the

efficient join orders for complex SPARQLT queries.

1.3.2 Knowledge Integration

We tackled the problem of incompleteness with the use of IBMiner [MAG14, MKI13a], a text-

mining system that derives knowledge bases from free text. IBminer first extracts semantic links

from text using NLP framework Semscape [MGK14]. Then, by learning from the current In-

foBoxes in Wikipedia, and relying on a large body of categorical information, IBminer converts the

semantic links into the final InfoBox triples. IBminer also introduces a type-checking mechanism

that automatically infers the acceptable value domains for each attribute, a piece of information

that contributes greatly to the accuracy of final results.

Furthermore, we integrate public knowledge bases with the knowledge base generated by IB-

Miner into one of superior quality and coverage, called IKBStore [MGZ13a]. To eliminate the

duplicates and improve the inconsistency in the integrated knowledge base, we propose new tech-

niques to generate context-aware synonyms for the entities and attributes that are used to reconcile

knowledge extracted from various sources. IKBStore archives the provenance of knowledge for de-

bugging and verification. Two user-friendly interfaces InfoBox Knowledge-Base Browser (IBKB)

5

and InfoBox Editor (IBE) [MGZ13b] are provided to manage the knowledge in IKBStore while

maintaining provenance information.

In summary, in this dissertation we have made the following contributions:

(i) We propose SPARQLT , a simple and effective extension of SPARQL for querying the history of

RDF knowledge base. SPARQLT employs a point temporal model which simplifies the expression

of temporal joins and eliminates the need for temporal coalescing.

(ii) We designed and implemented an efficient system RDF-TX for managing temporal RDF data

and evaluating SPARQLT queries. Our system exploits MVBT to store and index temporal RDF

triples. Then a hybrid method combining dictionary based compression and prefix encoding is

adopted to reduce the storage overhead of indices. The algorithms on MVBT are extended and

optimized to exploit the characteristics of the compression scheme and query patterns. The exper-

imental result demonstrates superior performance and scalability of our query engine compared

with other approaches.

(iii) We designed and implemented Semantic Web Information System, which consists of a set

of tools for knowledge extraction and integration: IBMiner, CS3, IBKB and IBE. IBminer uses

a deep NLP-based approach to extract subject-attribute-value triples from free text, and maps the

attributes to those introduced in existing knowledge bases. We then integrated public knowledge

bases with the knowledge base generated by IBMiner into one of superior quality and coverage,

called IKBStore. We also propose Context-Aware Synonym Suggestion System (CS3) to gen-

erate contextaware synonyms for the entities and attributes that are used to reconcile knowledge

extracted from various sources. Two interfaces IBKB and IBE were developed for browsing and

editing the knowledge base, and archiving the provenance for verification.

The rest of this dissertation is organized as two main parts: (i) temporal query support over the

history of knowledge bases in Chapter 2 and (ii) knowledge extraction and integration framework

in Chapter 3 .

In Chapter 2, we provide an overview of RDF-TX system and temporal RDF model in Sec-

tion 2.1. Then we present the design and syntax of SPARQLT in Section 2.2. Section 2.3 describes

6

the storage model and index compression techniques. We explain our query evaluation techniques

in Section 2.4. Section 2.5 introduces a query optimizer for join order optimization in complex

SPARQLT queries. We evaluate our approach on real world datasets in Section 2.6, followed by

interface in Section 2.7 and related work in Section 2.8.

In Chapter 3, we begin with an overview of the Semantic Web Information Management Sys-

tem for knowledge extraction and integration in Section 3.1. Then we introduce our knowledge

integration techniques in Section 3.2, and present two subsystems: the text-mining system IBMiner

which is described in Section 3.3 and the Context-aware Synonym Suggestion System described in

Section 3.4. Section 3.5 describes our work on provenance management and Section 3.6 shows our

crowdsourcing tools for knowledge browsing and editing. The evaluation results of SWIM system

are presented in Section 3.7. We discuss the related work on knowledge extraction and integration

in Section 3.8.

At last, we conclude this dissertation and discuss further work in Chapter 4.

7

CHAPTER 2

RDF-TX: A Fast, User-Friendly System for Querying the

History of RDF Knowledge Bases

There is a growing interest in large scale knowledge bases such as DBpedia and Yago2, which

play a key role in semantic applications. Many important properties such as occupation, role, and

marriage status are time-dependent. As the real world evolves, the knowledge base is updated

and the evolution history of entities and their properties becomes of great interest to users. Thus,

users need query tools of comparable power and usability to explore such evolution histories or

flash-back to the past. However, the size of the evolution history is very large and the schema of

knowledge base is also under evolution, which poses challenges in query language, indexing and

query processing.

As the RDF model for representing knowledge bases is gaining great popularity, the importance

of managing and querying the evolution history of knowledge bases is also recognized. Gutierrez et

al. [GHV07] extended the RDF model with time elements and several approaches [Gra10, PSH07,

PUS08, TB09] have been proposed to support the queries on temporal RDF datasets. Most previous

works employ relational databases and RDF engines to store temporal RDF triples and rewrite

temporal queries into SQL/SPARQL for evaluation. The languages proposed in these works use

an interval-based temporal model which leads to complex expressions for temporal queries, e.g.,

those requiring joins and coalescing [CZ99, Tom96]. At the physical level, previous approaches

exploit indexes such as tGrin [PUS08] to accelerate the processing of simple temporal queries, but

they do not explore the use of general temporal indices and query optimization techniques. This

limits their scalability and performance on large knowledge bases and complex queries.

In this chapter, we describe a vertically integrated system RDF-TX (RDF Temporal eXpress)

8

that efficiently supports the data management and query evaluation of large temporal RDF datasets

while simplifying the temporal queries for SPARQL programmers and consequently, for end-user

interfaces facilitating the expression of the same queries.

To support the queries over the evolution history of knowledge bases, we develop efficient stor-

age and index schemes for temporal RDF triples using multiversion B+ tree (MVBT) [BGO96] and

implement a query engine which achieves fast query evaluation by taking advantage of compre-

hensive indices. We also develop a query optimizer that generates efficient join orders for complex

queries using a cost-based model and the statistics of temporal RDF graphs.

RDF-TX provides a general and scalable solution for the problem of managing and querying

the evolution history of RDF knowledge bases based on three main contributions:

1. We propose SPARQLT , a temporal extension of structured query language SPARQL based

on a point-based temporal model which simplifies the expression of temporal joins and elim-

inates the need for temporal coalescing. This approach makes possible end-user interfaces,

such as those in [AZ12, GCA15], where queries are entered via simple by-example condi-

tions in the infoboxes of Wikipedia pages.

2. We present an efficient system for managing temporal RDF data and evaluating SPARQLT queries.

Our system uses MVBT to store and index temporal RDF triples. An effective delta encoding

scheme is introduced to reduce the storage overhead of indices. The algorithms on MVBT

are extended and optimized to exploit the characteristics of the compression scheme and

query patterns. The experimental result demonstrates superior performance and scalability

of SPARQLT query engine compared with other approaches.

3. We develop a query optimizer that finds the efficient join orders of SPARQLT query patterns

using the statistics of temporal RDF graphs. To manage temporal statistics, we introduce

compressed Multi-Version SB Trees (MVSBT) that provides highly accurate estimation of

statistics with a small storage overhead.

9

Figure 2.1: RDF-TX Architecture

2.1 Overview and Data Model

In this section, we first provide a general overview of RDF-TX system and overall workflow. Then

we discuss the temporal RDF model introduced in [GHV07] and illustrate how we model the

evolution history of knowledge bases using the temporal RDF model.

2.1.1 System Architecture

We design and implement from scratch a comprehensive system RDF-TX for managing and query-

ing the evolution history of knowledge bases. Figure 2.1 shows the high level architecture of

RDF-TX , which can be divided into two main components: (i) Historical Query Compiler that

transparently compiles SPARQLT queries and optimizes the query plans; (ii) Execution Engine

that manages temporal data and evaluates the SPARQLT queries.

10

Historical Query Compiler. The goal of SPARQLT is to allow users to express a wide variety

of historical queries in a simple way. To this end, we introduce SPARQLT , a temporal extension

of SPARQL. Users can write and submit SPARQLT queries through a user-friendly interface. Our

interface extends the By-Example Structured Query (BEStQ) to help casual users formulate histori-

cal queries without having to learn the schema of knowledge base and the SPARQLT syntax. Since

the usability is beyond the scope of this paper, interested readers are referred to [GCA15] for more

details about the by-example query interface.

The SPARQLT queries are compiled to query plans represented as graphs of query patterns and

passed to temporal query optimizer to improve the order of joins. The optimized query plans are

submitted to Execution Engine for evaluation.

Execution Engine. In our engine, the historical information is represented as temporal RDF triples

and stored using MVBT indices that support fast query processing. We propose an effective delta

encoding scheme to reduce the storage overhead of indices. The query processor transforms the

query plans from compiler to execution plans expressed in query operators (e.g. temporal join) and

executes them on the compressed MVBT indices.

2.1.2 Temporal RDF Graph

Knowledge bases such as DBpedia [BLK09] and Yago [HSB13] can be represented as RDF graphs

which consist of a set of RDF triples in the format (subject, predicate, object) 1. The subject and

predicate of a RDF triple are elements from the set of Uniform Resource Identifiers U , while the

object is a URI from U or a value from the set of literals L. For example, the RDF triple for

“a university identified by http://www.w3.org/edu/University of California has 18,896 academic

staff” is:

1For the sake of simplicity, we do not discuss the concept of blank nodes in this paper.

11

Mark Yudof

10.3 billion

22.7 billion

184,562 18,896

University of California

president

endowment

budget

staffundergraduate

URI literal

1

Figure 2.2: RDF graph based on the Wikipedia Infoboxes of University of California on

09/01/2013

• subject: http://www.w3.org/edu/University of California

• predicate: http://www.w3.org/elements/Staff

• object: 18896

In the rest of this paper, we assume the prefix parts of URI (e.g. http://www.w3.org/edu/)

are given and simplify the representation of above RDF triple as (University of California, staff,

18896). Figure 2.2 shows an RDF graph based on the Infoboxes of subject University of California,

which is taken from the Wikipedia page on 09/01/2013. The predicate names are slightly modified

to better illustrate our problem. In the RDF graph, each rectangle corresponds to a URI, and each

ellipse corresponds to a literal value. Each edge represents an RDF triple and is labeled with a

predicate name.

In reality, the RDF triples in the knowledge bases are updated frequently by human editors and

knowledge discovery systems. The historical triples are usually archived in the backend databases

or system logs. There is no support in existing knowledge management systems for reasoning

such historical information. For example, when we check the Wikipedia page of University of

California on 03/01/2015, most Infoboxes are different from the knowledge in Figure 2.2 due to

12

Predicate Object Timestamp

president
Mark Yudof 06/16/2008 . . . 09/29/2013

Janet Napolitano 09/30/2013 . . . now

endowment

(billions)

10.3 07/01/2013 . . . 06/30/2014

13.1 07/01/2014 . . . now

undergraduate
184,562 05/14/2013 . . . 01/29/2015

188,300 01/30/2015 . . . now

staff
18,896 08/29/2013 . . . 01/29/2015

19,700 01/30/2015 . . . now

budget

(billions)

22.7 01/30/2013 . . . 01/29/2015

25.46 01/30/2015 . . . now

Table 2.1: The evolution history of subject University of California from 09/01/2013 to present,

represented as temporal RDF triples.

the change of facts in the real world. In many knowledge bases such as DBpedia, the history is

stored as many snapshots, which is inefficient in storage and difficult to search.

To make the evolution history queriable, we store it in the temporal RDF model [GHV07] that

extends the RDF Graph with temporal elements. Each RDF triple is annotated with a temporal

element to represent the time when this triple is valid. Formally, given a temporal element set T , a

Temporal RDF Graph consists of a set of temporal RDF triples that each temporal RDF triple is a

RDF triple (s, p, o) annotated with a temporal element t ∈ T . T is a point-based temporal domain.

A set of temporal RDF triples with consecutive time points {(s, p, o) [t] | ts ≤ t ≤ te} can be

encoded using interval-based expression as: (s, p, o) [ts . . . te].

The evolution history of subject University of California is represented as a set of temporal

RDF triples, as shown in Figure 2.1.2. All the triples share the same subject University of Califor-

nia. We use DAY as the granularity of time and now as the current time. Typically, one triple is

valid over several days, which we represent with . . . between the start day and the end day (start

and end included): e.g. [07/01/2013 . . . 06/30/2014] represents all the days between 07/01/2013

and 06/30/2014.

13

2.2 SPARQLT Query Language

To query the temporal RDF graphs, we propose a temporal extension of SPARQL called SPARQLT.

In the design of SPARQLT, the first issue to be addressed is the choice of the temporal model.

Many existing works [PSH07, PUS08, TB09] use the interval-based model because of efficiency

considerations. However, to express temporal queries, the interval-based representation requires

additional operators such as temporal interval overlap, intersect and coalesce, which introduce

complications and difficulties [CZ99, ZWZ06], particularly for casual users working with friendly

wysiwyg interfaces. Therefore, we use a point-based temporal model that resolves these problems

at the logical level; however at the physical level we retain the interval representation for efficiency

reasons. We combine the benefits of both models, exploiting the fact that queries expressed on the

point-based model can be easily mapped into equivalent queries on the interval-based model for

execution.

SPARQLT preserves all the standard syntax of SPARQL and has additional temporal pat-

terns and constructs to express temporal que-ries. The input of a SPARQLT query is a temporal

RDF graph and the output is a set of mappings that replace the variables in SPARQLT queries

with values from the input temporal RDF graph. Next we explain the semantics and syntax of

SPARQLT queries via simple examples.

SPARQLT Query Pattern. In SPARQL, a query consists of a set of graph query patterns {s

p o}. To express a query, users specify the known parts with literals and the unknown parts with

variables. For example, the SPARQL query pattern that finds the budget of University of California

is: {University of California budget ?o} in which subject and predicate are literals and object is

a variable. Matching this query pattern against the RDF graph in Figure 2.2 returns the literal 22.7

billion.

While SPARQL is powerful but it was not designed for temporal reasoning, thus we extend

SPARQL query patterns with temporal elements to match the triples in the temporal RDF graphs.

The syntax of SPARQLT query pattern is: {s p o t}. Each element of a SPARQLT query pattern

14

is a literal or a variable.

SPARQLT query. Given the set of variables V , a SPARQLT query is a set of SPARQLT query

patterns {s p o t} with optional FILTER clause f where s ∈ U ∪V , p ∈ U ∪V , o ∈ U ∪L∪V , t

∈ T ∪ V , and f is a set of constraints with the elements from U ∪ L ∪ T ∪ V .

In SPARQL, there are 8 types of query patterns as: S, P, O, SP, SO, PO, SPO, and full scan. For

example, SP refers to a query pattern in which subject and predicate are literals and object is a vari-

able. Full scan refers to the query pattern in which all three elements are variables. SPARQLT sup-

ports 16 types of query patterns 2, which enable the expression of many interesting queries over

temporal RDF graphs, as shown in following examples.

Temporal Selection. We first discuss temporal selection queries that have one SPARQLT query

pattern. An example of temporal selection query is the “when” query that retrieves the valid times-

tamps of given facts. Users only need to specify the values for RDF elements (s, p, o) and a variable

for the temporal element.

EXAMPLE 1. When did Janet Napolitano served as the president of University of California.

SELECT [?t]

{University of California president Janet Napolitano ?t.}

The square brackets in the SELECT clause indicate that the timestamps will be displayed in

the compact format [ts . . . te]. Running Example 1 against the temporal RDF graph in Figure 2.1.2

returns [09/30/2013 . . . now].

One common type of temporal selection queries retrieves information from a previous version

of the knowledge base. The temporal constraints (at a time point or within a period) can be easily

specified in FILTER clause.

2The list of all query patterns in SPARQLT : S, ST, P, PT, O, OT, SP, SPT, SO, SOT, PO, POT, SPO, SPOT, T, and
full scan.

15

EXAMPLE 2. Find the budget of University of California in 2013. 3

SELECT ?budget

{University of California budget ?budget ?t .

FILTER(YEAR(?t) = 2013) . }

Temporal Join. More complex queries often use temporal joins which, in SPARQLT , are

expressed by multiple query patterns that share the same temporal element. General temporal join

may involve both key and temporal dimensions.

EXAMPLE 3. Find the name of the university in which Mark Yudof served as the president and

the number of undergraduate students when he was in office.

SELECT ?university ?number [?t]

{?university undergraduate ?number ?t .

?university president Mark Yudof ?t . }

Queries using multiple temporal joins are rather simple to express in SPARQLT, whereas in lan-

guages based on interval-based temporal model, such queries tend to be much more complex. For

example, if users want to search the number of undergraduate and graduate students when Mark

Yuodf was in office, we only need to add one more query pattern: {?university graduate ?num-

ber2 ?t} to Example 3. If we switch to interval-based model, the query will consist of three query

patterns and three temporal conditions: ?I1 overlap ?I2, ?I1 overlap ?I3, ?I2 overlap ?I3 where

?I1, ?I2, ?I3 are three variables for intervals.

Besides temporal join, the point-based query patterns also support the expression of other tem-

poral operations such as MEET and CONTAIN and more flexible temporal constraints. We define

two built-in functions to facilitate the expression of complex constraints: TSTART and TEND.

Given a temporal variable ?t, TSTAR-T(?t) refers to the earliest time point; TEND(?t) refers to

the latest time point. With these two functions, SPARQLT can readily express Allen’s interval

3YEAR is a built-in function that returns the year of a date.

16

operators [All83].

EXAMPLE 4. Find who succeeded Mark Yudof as the president of University of California .

SELECT ?successor

{ University of California president Mark Yudof ?t1 .

University of California president ?successor ?t2 .

FILTER(TEND(?t1) = TSTART(?t2)) . }

Temporal Aggregates. Temporal aggregation has been widely studied in the field of temporal

databases. In SPARQLT , temporal aggregates allow users to aggregate over a group of temporal

RDF triples using “GROUP BY ?t”. The semantics of temporal aggregate is defined by assuming

that (i) aggregate is first computed on all the snapshots, which results in a set of aggregate values

annotated with timestamps (e.g. {100, 01/01/2008}, {100, 01/02/2008} . . . {100, 03/01 /2008});

(ii) then the results that have identical non-temporal values and adjacent timestamps are merged

(e.g. {100, [01/01/2008 . . . 03/01/2008]}). In our system, this naive implementation has been

replaced with the optimized techniques discussed in [YW01, ZMT08].

EXAMPLE 5. Find the total number of undergraduate students in the universities in California.

SELECT SUM(?student) [?t]

{ ?university category University In California ?t .

?university undergraduate ?student ?t . }

GROUP BY ?t

Duration. Many temporal queries involve the reasoning of duration. For instance, find the

person who served as the president of University of California for more than one year. We define

a built-in function LENGTH that counts the number of time points within the same consecutive

period of time. If there are multiple valid intervals for a fact, we return the length of max duration.

Another similar function TOTAL LENGTH is defined to compute the total length of all valid inter-

vals.

17

EXAMPLE 6. Find each person who served as the president of University of California for

more than one year.

SELECT ?person [?t]

{ University of California president ?person ?t .

FILTER(LENGTH(?t) > 365 DAY) . }

2.3 Storage and Index

Since the performance of the query engine is heavily influenced by data index, it is important to

choose appropriate index structure and storage schema for temporal RDF data.

A natural approach followed by previous works [PSH07] consists in managing temporal RDF

triples using existing RDBMS. However, for searching both RDF information and temporal in-

formation, two sets of indices are required, and this can result in significant costs in storage and

retrieval time, which are shown in Section 2.6. A second natural approach will be using RDF

engines, such as Jena and Virtuoso, which have seen recent improvements in performance and

functionality. However, this requires the standard RDF reification approach in which a temporal

RDF triple is represented as an entity instance with five properties: subject, predicate, object, start

time, and end time. Thus we need to use five triples for each temporal fact, whereby the space cost

increases along with complexity of the queries and time required to optimize and execute them.

Therefore, rather than modifying and extending existing systems we design and build a new

system that integrates advanced indexing and data compression techniques into an architecture

conceived for efficient support of SPARQLT queries

2.3.1 Index Scheme

Many index structures [BGO96, JSL00, LHN08, ND] have been proposed for temporal data. Each

index has its own strength and they have shared issues such as space overhead and limited support

18

for general temporal queries.4 After studying the literature and applications, we employ Multi-

version B+ Tree (MVBT) to index temporal RDF data for the following reasons. First, MVBT

is a bi-dimensional index with asymptotic worst-case guarantee and delivers good performance in

real world datasets. Second, we propose an effective approach to compress MVBT which greatly

reduces the space cost. The algorithms [BS96, ZTS02] are extended and optimized on compressed

MVBT to improve the performance of index scan and join. Next we will briefly review the struc-

ture of MVBT and discuss the index scheme in RDF-TX system.

Multiversion B+ Tree. Multiversion B+ Tree [BGO96] is a temporal index structure with

optimal worst case guarantees for data insert, update, and delete. Suppose the number of existing

data items in MVBT isN . The space complexity of MVBT isO(N). The complexity of a temporal

query in version i is asymptotically equal to the complexity of the query on a B+ tree that maintains

all the data valid in version i.

Rather than a single tree, an MVBT is actually a forest of trees. It has multiple root nodes

and each of them corresponds to a temporal partition of data. Comparing with the entries in B+

tree, the entries in MVBT are extended with start version and end version to represent the live

period of data. Thus the MVBT entry can be represented as (key, start version, end version, data

value/pointer). An entry that stores data inserted in version i carries a valid period of (i, now).

Delete operation modifies the end version (te) of a live period. The entries are sorted first by ts

and then by key. When there are too many entries or not enough live entries in an MVBT node,

node structure changes (split or merge) are triggered. A simple example of MVBT is shown in

Figure 2.3. We first insert five values into an empty MVBT in Version 1, which results in an

MVBT tree shown in Figure 2.3 (a). Then we insert key 14 in Version 2 and delete key 46 in

Version 3. The MVBT index becomes (b) with <14, 2, *> added to Node A and <46, 1, *>

changed to <46, 1, 3> in Node B.

Indexing Temporal RDF. We implement in-memory MVBT and store all the temporal RDF

triples in the MVBT indices. The insertion of an interval-encoded RDF triple {(s, p, o) [ts, te]} on

MVBT index M is decomposed into two operations : (i) insert data item (s, p, o) into M at time

4We leave the detailed discussion of temporal index in Section 2.8.

19

Figure 2.3: An Example of MVBT (* denotes now)

ts; (ii) delete data item (s, p, o) at time te. We use the unix time format for temporal elements (ts,

te) and store them as 64-bit integers.

Since the variable may be located in any position of (s, p, o), we create four MVBT indices

(SPO, SOP, POS, OPS) for different orders of keys (s, p, o). These MVBT indices cover all 16

SPARQLT query patterns discussed in Section 2.2. For example, the MVBT index for temporal

RDF triples in POS order can cover four patterns: P, PT, PO, POT. In query evaluation, the query

engine parses the SPARQLT query and its prefix pattern to identify the corresponding MVBT

index.

We employ dictionary encoding in the index construction. The use of dictionary reduces the in-

dex size and avoids the slow comparison between long string literals. Thus, before constructing the

MVBT indices, our system scans the temporal RDF triples and replaces the literals with dictionary

IDs. Then the triples that consist of IDs and timestamps are inserted into our indices. The mapping

relations are maintained in our in-memory dictionary for index update and query evaluation. Since

the main space cost in our indices is the large number of MVBT entries, dictionary encoding only

reduces space cost by 10% - 20%. After dictionary encoding, we exploit delta compression which

significantly reduces the space cost of MVBT indices, as shown in next section.

20

2.3.2 Index Compression

For the Wikipedia Infobox History, the size of one standard MVBT index implemented in Java

is 1.5–2.2 times of the raw data. Moreover, a temporal RDF graph requires four MVBT indices.

Therefore, if a naive approach is used, comprehensive indexing of temporal RDF data becomes

prohibitively expensive. We next discuss effective compression techniques that address this prob-

lem.

We observe two characteristics of MVBT. First, the entries in MVBT node are sorted and

neighboring entries often share the same prefix, which could be utilized to reduce space cost.

Second, in MVBT all node structure operations start from an operation called version split that

copies all the live entries to a new node. This guarantees the query performance but leads to a lot

of long intervals. Given these characteristics, we introduce an effective delta encoding method to

compress MVBT indices.

2.3.2.1 Compression Techniques

We design a compression scheme for variable delta encoding of MVBT entry. An MVBT entry

for temporal RDF data consists of five values: (v1, v2, v3, ts, te) where v1, v2, v3 are elements in

RDF triples. We store the minimum values for keys and timestamps in each node as base values.

Since the data entries are sorted first by start version (ts) then by key, most entries have very close

start versions (ts). Therefore for start versions, we only keep the minimal value of each node,

and compute and store the delta start versions. For te, the compression rules are as follows: (i) if

the valid interval (ts, te) is a short interval, te is stored as the length of intervals; (ii) if the valid

interval is long, te is stored as the delta value between te and minimum te in the node; (iii) if the

valid interval is a live interval (te is now), a special flag is set and te is stored as empty. Other

values (v1, v2, v3) are compressed as the delta values (i) between current value and the value in

neighbor entry or (ii) between current value and minimum value in leaf node.

The compressed values are stored in a compact byte array. Figure 2.4(a) illustrates the format

of compressed MVBT entry. Every entry consists of three parts: header, key block (v1, v2, and v3),

21

(a)

of triples (million) 5 10 15 20 25 30

Time (seconds) 1.36 2.65 3.87 4.81 6.18 7.25
(b)

Figure 2.4: (a) Compressed MVBT Entry Format (b) Compression Time

and time block (ts and te). A normal header (2 bytes) contains a flag (H Flag, 1 bit) for header type

(normal/compact), a payload (13 bits in total, 7 bits for key block and 6 bits for time block) that

stores the number of bytes for each delta value, and the te flag (2 bits) that records the compression

rule for te. For the delta values in key block, we use 1 bit to record how the delta is computed (with

neighbor or with node minimum value).

We observe that in large datasets, it is very common that two neighboring MVBT entries (i)

share at least one element in key block; (ii) have very close ts (delta size ≤ 4 bytes) (iii) both te

are now. Case (iii) is common in MVBT due to version split operation. Thus for these entries,

we propose a compact header which consists of 1 bit header type and 7 bits payload (for two delta

values in key block and ts delta value).

There is a trade-off between the compression ratio and query performance. Since the number

of index nodes is much smaller than the number of leaf nodes and the index nodes are accessed

more frequently than leaf nodes, we only compress the leaf nodes of MVBT indices. As shown in

evaluation (Section 2.6), the size of compressed MVBT is about 24% of standard MVBT.

We build MVBT indices for different subsets of Wikipedia dataset and then test the time of

compressing MVBT entries, as shown in Figure 2.4(b). The result shows that it takes very little

22

time to apply the delta encoding technique. Given an MVBT index built from 30 million temporal

RDF triples, the time for compressing all the leaf nodes is only 7.25 seconds.

2.3.2.2 Index Maintenance and Search

An important principle of index compression is to reduce the storage overhead while maintaining

the performance of index update and search. For data insertion, we first look up index nodes and

identify the leaf node to be updated. In the leaf node, we decompress the start versions (ts) to find

the position of input start version i and compute the delta values of input data. Then we modify the

(i + 1)th entry if its delta values are changed. One issue is that we need to scan from the beginning

of all entries. To address this issue, we add a checkpoint in each node that stores the position of

MVBT entry with largest ts. Then in data insertion, since the ts of input data must be larger than

existing ts, we only decompress the entries after checkpoint. Deletion in MVBT only updates the

end version of a live entry. Thus we simply scan all the entries and modify the te of matched entry.

As shown in Section 2.6, insertion/deletion on compressed MVBT only takes 5% more time than

standard MVBT.

In query evaluation, instead of decompressing the whole tree, the query engine only decom-

presses the entries that are accessed for input query. When a leaf node is visited, query engine first

reads the timestamps to see if the node region intersects the query region. Then partial or complete

key blocks of temporally overlapped entries are decompressed and checked for other conditions.

2.4 Query Processing

In this section, we present the design and implementation of RDF-TX query engine, which makes

use of MVBT to process the temporal operations of the language.

2.4.1 Compiling SPARQLT Query

The overall evaluation of SPARQLT queries consists of four steps:

23

• Parse the input query and translate point-based query patterns to interval-based query pat-

terns.

• Construct a query plan. The plan is represented as a graph in which each node is an interval-

based query pattern.

• When the query contains multiple temporal joins, optimize the query plan to improve the

join order.

• Translate the query plan to an execution plan that is evaluated on compressed MVBT indices.

Next we elaborate each step with more details.

Translating Query Patterns. Since the temporal RDF graph is stored as interval-based tem-

poral RDF triples, we translate the point-based SPARQLT query patterns to the interval-based

patterns that can be converted to range queries and executed on MVBT. For key elements, we take

the literals as prefix and convert the unknown parts to key ranges. For temporal element (t), if there

exist temporal constraints in the FILTER clause, we generate time ranges based on the constraints;

otherwise, the default range is [0, now] where 0 refers to the minimum time point. Consider the

query pattern {University of California budget ?budget ?t} (YEAR(?t) = 2013) in Example 2.

The interval-based query pattern can be described as a query region with key range and time range

as follows:

• key range: (University of California, budget,) – (University of California, budget,∞)

• time range: 01/01/2013 – 12/31/2013

Here and∞ denote the extrema of the string domain.

Constructing and Optimizing Query Plan. The query engine generates a query plan that

consists of interval-based query patterns from the first step. This query plan can be represented as

a graph in which the edges between the nodes are added when two query patterns share the same

variable. If there are multiple join operations, the query optimizer (discussed in Section 2.5) is

24

called to find efficient query plans using the statistics of temporal RDF graphs.

Executing the query plan on MVBT. Lastly, the optimized plan is translated to an execution

plan which is similar to the query plan in relational databases. Every query pattern is converted

to an index scan operator on MVBT indices. For instance, the SPARQLT query in Example 2

is executed by performing an index scan on the MVBT for SPO order since it only contains one

SP query pattern. Then the join operators are added based on the optimized join order. Finally,

appropriate filter operators are added using the FILTER clause of SPARQL.

2.4.2 Executing Query Plan

Next we describe the implementation of index scan and temporal join in our query processor. Other

operators such as filter and aggregate are implemented similar to their counterparts of existing

engines thus omitted.

2.4.2.1 Index Scan

We perform an index scan for each interval-based query pattern. For the index scan on MVBT, we

employ the link-based range-interval algorithm [BS96] which introduces Backward Link in MVBT

to process the range queries. The MVBT leaf nodes are equipped with backward links that point

to the temporal predecessors. The index scan is performed as: (i) search all the nodes that intersect

the right border of query region; (ii) follow the backward links of the nodes to find all the nodes that

intersect query region; (iii) scan the leaf nodes found in the first two steps to retrieve the entries.

An example of linked index scan is shown in Figure 2.5. The shadowed rectangle represents a

query. MVBT nodes D and E are first visited. Then as the predecessor of D and E, node B is

checked. Lastly, node A is visited. Note that index scan is performed on compressed indices, thus

step (iii) is implemented based on our compressed index search in Section 2.3.2.2.

25

Figure 2.5: An Example of MVBT Backward Link

2.4.2.2 Temporal Join

Temporal join represents one of the most expensive operations in the temporal query language,

especially when the size of knowledge base is very large. In our implementation, we explore three

types of joins: Merge Join, Hash Join, and Synchronized Join.

Merge join is very popular and widely used in existing SPARQL engines [NW10, YLW13].

These systems build indices for all permutations so that the optimizer leverages the indices to

perform order-preserving merge joins. However, this does not work for MVBT index since the

entries are sorted by time. With MVBT, we need to materialize and sort the intermediate result to

do merge join, which is much slower than hash join. For temporal join, we first build hash tables

based on the joint key variables (s, p, o). Then for matched triples, we check if their valid intervals

are overlapped.

When the size of result is large, the cost of building a hash table may be very expensive. Thus

we extend the synchronized join [ZTS02]. The basic idea of synchronized join is as follows: (i)

synchronously find the set of all MVBT node pairs (e1, e2) that intersect each other and the right

border of query region; (ii) join e1 and e2; (iii) join the predecessors of e1 and e2 by following the

backward links. This algorithm avoids materializing the intermediate result, but it is much slower

than hash-based join since one page and its predecessors are visited many times. So we optimize

this algorithm by caching recently visited records; that is, given a page e from step (i), we cache

the records in e and its predecessors, and perform joins between e and other pages. This optimized

synchronized join is used when the query pattern in the join accesses a large portion of index (e.g.

26

find all the triples valid in a certain period).

2.5 Optimization

In RDF-TX , improper join orders may generate large intermediate results and slow down exe-

cution. Therefore, a natural step is to optimize complex SPARQLT queries by finding efficient

join orders. The key of join optimization is to efficiently estimate the costs of different join or-

ders, which is not a trivial task for temporal queries. In this section, we present a query optimizer

that uses estimated statistics of temporal RDF graph to optimize the orders of temporal joins in

SPARQLT queries.

2.5.1 RDF-TX Query Optimizer

For queries that involve multiple temporal joins, we implement a query optimizer that uses bottom-

up dynamic programming strategy [MN06] to find the cost-optimal query plans. Our optimizer

generates multiple query plans and finds the plan with lowest estimated cost. A large query plan is

generated by joining two small optimal query plans. The cost is computed based on the cardinali-

ties of query patterns and intermediate results.

The cardinality estimation is a well-studied problem in relational databases and SPARQL en-

gines [NM11, NW10, SSB08]. To estimate the cardinality of join result, an effective approach is

characteristic set [NM11]. In a RDF graph R, the characteristic set SC(s) of a subject s is the set

of related predicates: SC(s) = {p|∃o, (s, p, o) ∈ R}.

The idea of characteristic set is that semantically similar subjects (e.g. University of California

and University of Michigan) usually have the same characteristic set. For every characteristic set,

the number of distinct subjects that belong to the characteristic set, and the number of occurrences

of the predicates in these subjects are recorded and used to estimate the cardinality. For example,

given a characteristic set {president, undergraduate}, there are 100 distinct subjects belong to this

characteristic set. The numbers of occurrences for president and undergraduate are 150 and 110

27

respectively. Consider a SPARQL query with two query patterns:

SELECT ?s ?o1 ?o2 .

{?s president ?o1 .

?s undergraduate ?o2 . }

Suppose that only this characteristic set contains both predicates in the query. Then the result

cardinality is estimated as: 100 × 150
100
× 110

100
= 165.

Characteristic sets provide highly accurate estimation of cardinality. But it can not be used to

estimate the cardinality of SPARQLT queries since the statistics of temporal RDF graph vary on

different time points. Consider following SPARQLT query:

SELECT ?s ?o1 ?o2 ?t

{?s president ?o1 ?t.

?s undergraduate ?o2 ?t.

FILTER(?t ≤ 01/01/2013) . }

To estimate the cardinality of this SPARQLT query, we need to know the number of subjects

that (i) belong to the set of temporal RDF triples valid in the period [0, 01/01/2013] and (ii) share

the the characteristics set {president, undergraduate}. These statistics change with time and none

of existing data structures can provide estimation of these statistics. Thus we introduce a tem-

poral histogram to maintain the statistics of temporal RDF data in next Section. With temporal

histogram, the characteristics sets can be easily integrated into our query optimizer. For each par-

tial query plan, we compute the time ranges and search the histogram to retrieve the statistics of

characteristic sets. Then the cardinalities are used to compute the cost and find efficient join orders.

2.5.2 Temporal Histogram

Join order optimization for SPARQLT query needs the total number of subjects and predicates for

a given characteristic set in the time range specified by input queries. This problem is similar to

the temporal aggregation that computes the aggregate value in a certain period. Thus we propose

28

(a) (b)

Figure 2.6: An Example of MVSBT Record Split

Compressed MVSBT that extends the temporal aggregate index Multiversion SB Tree [ZMT08] to

maintain the statistics of characteristic sets. Next we review the structure of Multiversion SB Tree,

and then introduce compressed MVSBT.

Multiversion SB Tree (MVSBT). MVSBT [ZMT01, ZMT08] is a data structure that combines

the features of MVBT and SB Tree [YW01] to compute temporal aggregates. Similar to MVBT,

MVSBT is a forest of trees with multiple root nodes and each of them points to an SB Tree for a

temporal partition of data. Each data record in MVSBT has a key range (ks, ke), an interval (ts, te),

and a value v. The key range and the interval represent the rectangle covered by this record in key-

time space. v maintains the aggregate value. The key-time rectangles of the records are mutually

disjoint and the union of all the rectangles is equal to the whole key-time space. The split operation

splits the rectangle on the new point. Given a query (k, t), MVSBT computes the aggregate values

in the query region (key range: [0, k], time range: [0, t]). An example of MVSBT for aggregate

COUNT is shown in Figure 2.6. Figure 2.6(a) shows the initial record of an empty MVSBT. The

aggregate value is 0 since no point is inserted. Then one point with key 30 and timestamp 2 is

inserted. The initial record is split into three records as shown in Figure 2.6(b). The record on the

top right corner has aggregate value 1 and other records has aggregate value 0 since all the points

in top right record are larger than split point (30, 2). Suppose we have two queries (10, 1) and (40,

5). The first query point falls in the left record (time range is [0, 2]) and returns 0. The second

query points falls in the top right record and thus gets the result 1.

29

Compressed MVSBT. Although MVSBT has good performance on temporal aggregation,

it takes too much space for storage. Since query optimization does not require very accurate

estimates, we can trade accuracy with efficiency. Compressed MVSBT (CMVSBT) is based on

the idea that instead of accurately recording the points and splitting rectangles for every new point,

a CMVSBT record can contain m (m ≥ 1) points. Then we can estimate the aggregate value using

the ratio of covered space to full space. Instead of storing the exact values of points, we store

the statistic values such as total number of points and max value. The structure of leaf and index

CMVSBT records is as follows:

• Leaf Record: < ks, ke, ts, te, km, tm, v, c >

• Index Record: < ks, ke, ts, te, list, ptr, c >

where ks and ke are the start value and end value of key range; ts and te are the start value and end

value of interval; km and tm store the max key value and time value of the points located in the

rectangle of this record; list is a list of points; ptr is the pointer to a CMVSBT node; v and c are

fixed and current statistic values. fixed statistic value refers to the aggregate value, while current

statistic value refers to the aggregate value computed over the points contained in the current

record. The final statistic value is estimated by combining both values (discussed in Section 2.5.3).

Since the index nodes are visited more frequently than leaf nodes, we store the exact values

of points in a list in the index nodes, while in leaf nodes we only maintain three statistics (km,

tm, c). The algorithm for data insertion in CMVSBT is similar to the one for MVSBT. Instead of

splitting the record for every input point, CMVSBT record is split when the number of points in a

record is larger than the threshold. The split point is (km, tm). The algorithm for record splitting in

CMVSBT for COUNT is shown in Figure 2.7. Let cm and lm denote the thresholds for the number

of points in leaf nodes and index nodes. When a new point p (k, t) is inserted into compressed

MVSBT, we look up the index nodes to find a set of nodes N whose rectangles cover this point.

In a leaf node nf , if p falls in the rectangle of record, c is increased by 1, and the max values

(km, tm) are updated if p.k > km or p.t > tm. Then if c = cm, we split the record based on the

position (km, tm). After split, the statistical values (v) of new records will be equal to (i) c/2 + v

30

if the new record has the same ks with old one; (ii) c/2 otherwise (based on the logical splitting

in MVSBT [ZMT08]). We use c/2 since we assume the points are uniformly distributed in the

record. The c of new records are initialized to be 0. In an index node ni ∈ N , if ri is the lowest

record that fully covers p, p is appended to the end of list. Like MVSBT, compressed MVSBT

also assumes that the data items come in nondecreasing time order. Thus list is automatically

sorted by time. If length(list) = lm, the record is split on p.t and c is copied to new record. If

r.km = r.k or r.tm 6= r.ts, the split point (r.km, r.tm) falls on the borders of rectangle. Then r is

split into two records. When we set cm = 1 and lm = 1, the algorithm in Figure 2.7 is the same

with the split algorithm of MVSBT. More details about CMVSBT construction are available in our

technical report [GGZ15].

31

Algorithm: leafRecordSplit(nf , r, q)

Input: CMVSBT leaf node nf , record r, new point p (k, t)

1: r.c = r.c + 1

2: if p.k > r.km then

3: r.km = p.k

4: end if

5: r.tm = p.t

6: if r.c = cm then

7: if r.km 6= r.ks and r.tm 6= r.ts then

8: // Split r to three records

9: v′ = r.c/2 + r.v

10: r1 = new record(r.ks,r.km,r.tm,r.te,ks,tm,v′,0)

11: r2 = new record(r.km,r.ke,r.tm,r.te,km,tm,r.c/2,0)

12: nf .add(r1); nf .add(r2)

13: r.te = r.tm

14: else

15: // Split r to two records, similar to step 7 - 11, omit

16: end if

17: end if

Algorithm: indexRecordSplit(ni, r, p)

Input: CMVSBT index node ni, record r, new point p (k, t)

1: r.list.add(p)

2: if length(r.list) == lm then

3: r1 = new record(r.ks,r.ke,p.t,r.te,new list(),r.ptr,r.c)

4: ni.add(r1)

5: r.te = p.t

6: end if

Figure 2.7: Algorithms for Record Split in CMVSBT

32

(a) (b)

Figure 2.8: An Example of CMVSBT Leaf Record Split

Here we prepare a simple example to illustrate the process of record split in CMVSBT. We

assume that we have inserted six points into a compressed MVSBT, as shown in Figure 2.8(a).

The threshold cm is set to be 6. The max key r1.km is 30 and the max time r1.tm is 6. Although the

rectangle of r1 is the whole space, all the points fall in the effective rectangle rec (key range:[0,

km], time range:[0, tm]). Since r1.c ≥ 6, we split it into three rectangles as shown in Figure 2.8(b).

The values of r1 are not changed since all the points still fall in r1. r2.v is approximated by the

number of points covered by the virtual center of r2 (the red point). As we can see, the red rectangle

covers half of rec, so r2.v = r1.c/2 + r1.v = 3, r3.v = r1.c/2 = 3.

For each characteristic set, we need to maintain: (i) the number of distinct subjects and (ii)

the number of predicate occurrences. As discussed in next section, each type of statistic values

requires two CMVSBTs: one for start points and one for end points. Thus our temporal histogram

consists of four CMVSBTs and the schema of characteristic sets. In RDF-TX , we set the max

size of temporal histogram as 10% of raw data. If the size of temporal histogram is larger than the

threshold, we increase cm and lm and merge the neighbor records until the temporal histogram is

small enough.

33

2.5.3 Statistics Estimation

Given a query q (k, t), compressed MVSBT estimates the statistics va in the query region (key

range: [0, k], time range: [0, t]). The algorithm consists of two main steps: (i) starting from root

node, we look up the CMVSBT nodes whose rectangle covers q; (ii) in each node, we find all the

rectangles whose time range contains t and ks ≤ k, and accumulate the approximate statistic value

va of these rectangles. In a CMVSBT record, va equals to the sum of fixed statistics value v and

current statistic value ve. ve is approximated by multiplying c by the proportion of query region in

the rectangle ratio, as c×ratio where ratio = ratiok×ratiot. If q.k ≥ r.k, ratiok = 1; otherwise,

ratiok = (r.km − q.k)/(r.km − r.ks). And ratiot can be computed in a similar way.

CMVSBT supports the point-based query that estimates the number of points in the query rect-

angle between (0,0) and query point (k, t). However, the query pattern in SPARQLT is translated to

a range query whose start version and key are not necessarily 0. Thus we use the query reduction

approach [ZMT08] which reduces one range query into four point queries. In this approach, we

need two CMVSBTs for the start points and end points of temporal RDF triples. Then the statistics

in the query region (key range: [k1, k2], time range: [t1, t2]) is calculated as:

Qs(k2, t2) - Qe(k2, t1) - Qs(k1, t2) + Qe(k1, t1)

where Qs(k, t) and Qe(k, t) refer to the point queries on the CMV-SBT of start points and end

points respectively.

An example of query reduction is shown in Figure 2.9. The shadowed rectangle represents the

interval query. Then the value is: Qs(kC , tC) - Qe(kA, tA) - Qs(kD, tD) + Qe(kB, tB). Assume that

CMVSBT returns accurate value, then the result is 5 -2 -2 + 1 = 2.

During query optimization, we cache all the statistics to reduce the time on scanning CMVS-

BTs. When one statistic value is required, we first search the statistics cache. If it is not cached,

then we use the CMVSBTs to estimate the statistic value.

34

Figure 2.9: Example of Query Reduction

2.6 Experimental Evaluation

RDF-TX is implemented in Java as a sequential main memory query engine. To evaluate the

performance of our system, we conduct experiments on two real world datasets and compare results

with other approaches including RDF Reification, RDBMS-based approach, and Named Graph.

2.6.1 Experiment Setup

2.6.1.1 Dataset

Wikipedia. Wikipedia [AGD13] is a real world dataset extracted from the edit history of English

Wikipedia (2003–2012). The dataset is in JSON format. We parse the raw file and generate 38.5

million temporal RDF triples as our test benchmark. This dataset contains the edit history of

1.8 million subjects and 110,000 predicates. The number of predicates is very large since many

predicates are used only once in the edit history (some of them are spelling mistakes).

GovTrack. GovTrack [gov] is a public dataset about US congress. It contains the information of

congressman/house of representative, bills, and votes. We parse the XML source files and generate

22 million temporal RDF triples. There are 0.4 million subjects and 60 predicates in this dataset.

35

2.6.1.2 Implementation and Configuration

RDF Reification. RDF reification provides a way to store RDF triple and its meta knowledge in

standard RDF model by representing annotated RDF triple as an entity with following properties:

subject, predicate, object, meta knowledge. Similarly, we represent a temporal RDF triple as an

entity with five properties: subject, predicate, object, start time, end time. Then SPARQLT queries

are easily rewritten to SPARQL queries. We evaluate the reification approach in three well known

RDF engines: Jena v2.13 [WSK03], Virtuoso v7.20 [vir] and RDF-3X v0.3.8 [NW10].

RDBMS-based Approach. An alternative approach to store temporal RDF data is to use relational

databases. Temporal RDF triples can be stored in a relational table with five columns subject,

predicate, object, start time, end time. We choose MySQL memory engine (v5.5) in our evaluation

since it supports in-memory B+ tree index, which makes it a good competitor for our compressed

MVBT implementation. We build four B+ tree indices on SPO, SOP, PSO, and OPS, which are

similar to the index design of RDF-TX query engine. Additionally, we build two B+ tree indices

on start time and end time for the evaluation of temporal constraints. The SPARQLT queries are

rewritten to SQL queries with self joins.

Named Graphs. Named graph [CBH05] is an extension of RDF model that identifies graphs

with URLs and allows graph metadata such as provenance and trust. We implement the approach

described in [TB09] that stores temporal information as graph metadata using Jena Named Graph

implementation. We also test Ng4j v0.9.3 implementation [BCW05], but it is much slower than

Jena and other approaches. Thus we only report the results on Jena Named Graph. The results on

Ng4j are available in our technical report [GGZ15]. In the rest of this paper, we use “Jena Ref”

and “Jena NG” to denote Jena Reification and Jena Named Graph respectively.

RDF-TX . Our query engine is a single-thread implementation using compressed MVBT as in-

dices. Only the construction of compressed MVBT is paralleled (using at most four threads). The

node capacity of MVBT is 200 for storage efficiency.5

We also test STUN system [KPG12] that supports queries on annotated RDF. Building STUN

5The relationship between node capacity and MVBT size has been discussed in previous works [AS13, BGO96].

36

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

5 10 15 20 25 30

In
d

e
x
 S

iz
e

 (
M

B
)

Dataset Size (million triples)

Standard MVBT
Compressed MVBT

Figure 2.10: Compression Saving for MVBT Index

index for large temporal datasets takes a lot of time. For a subset of Wikipedia with 10 million

triples, index construction is not finished within 12 hours. Thus it is not reported in our evaluation.

All the experiments are performed on a machine with 4 AMD Opteron 6376 CPUs (64 cores)

and 256GB RAM running Ubuntu 12.04 LTS 64-bit. The index decompression time is included

in the query execution time. The execution time reported is calculated by taking the average of 5

runs.

2.6.2 Index Space

We first investigate the effectiveness of our delta encoding techniques (Section 2.3.2). We imple-

ment the standard MVBT indices (4 indices: SPO, SOP, POS, OPS) with numeric keys as baseline.

Figure 2.10 shows the space costs of standard MVBT and compressed MVBT in Wikipedia dataset.

On average, our delta encoding technique reduces the space cost of MVBT by 76%.

Then we compare the space overhead of compressed MVBT and other types of index in

Wikipedia, as shown in Figure 2.11. Since Wikipedia has a large number of unique timestamps,

most named graphs are very small (≤ 5 triples). Thus indexing named graph incurs a lot of over-

head and Jena Named Graph takes far more space than other approaches. The space cost of MySQL

memory engine and Jena Reification are similar, which are 3-4 times of raw data. RDF-3x has a

size of only twice the raw data due to its implementation of runtime execution engine (almost no

37

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

5 10 15 20 25 30

In
d
e
x
 S

iz
e
 (

M
B

)

Dataset Size (million triples)

Jena-NG
Jena-Ref

MySQL
Virutoso
RDF-3X

Compressed MVBT
Raw Data

52436 60465

Figure 2.11: Index Size Comparison. The size of dictionary is included in the results.

extra indices need to be created in advance). For Virtuoso, index size is similar because of its

column-wise compressed storage and a clustered index scheme for both row and column-wise ta-

bles introduced in recent versions. The index space of our implementation is almost the same with

Virtuoso and RDF-3X, while the query performance is much better as shown in Section 2.6.3. The

space of our comprehensive indices (4 compressed MVBT + dictionary) is about 1.3 - 1.8 times of

raw data. The results for GovTrack dataset are similar and thus omitted.

2.6.3 Query Performance

To evaluate the query performance of our system, we created three sets of queries: (a) Temporal

selection queries. Each query consists one query pattern and several temporal constraints, as in

Example 2 discussed in Section 2.2; (b) Temporal join queries. Each query has 2 query patterns (1

temporal join), as in Example 4; (c) Complex queries which have 3 or more query patterns (2 or

more temporal joins). We use the first two query sets to evaluate the performance as the dataset size

increases, and the third query set to evaluate the performance as the query pattern size increases.

The test queries are rewritten to standard SPARQL and SQL for execution in MySQL and RDF

engines. For all the implementations, we report the average warm-cache query execution time.

38

10
0

10
1

10
2

10
3

10
4

5 10 15 20 25 30R
u

n
n

in
g

 T
im

e
 (

m
ill

is
e

c
o

n
d

s
)

Dataset Size (million triples)

(a) Temporal Selection in Wikipedia

RDF-3X

Jena NG

Jena Ref

Virtuoso

MySQL

RDF-TX

10
0

10
1

10
2

10
3

10
4

4 8 12 16 20R
u

n
n

in
g

 T
im

e
 (

m
ill

is
e

c
o

n
d

s
)

Dataset Size (million triples)

(b) Temporal Selection in GovTrack

Figure 2.12: Time Performance for Temporal Selection in Wikipedia and GovTrack

10
1

10
2

10
3

10
4

5 10 15 20 25 30R
u

n
n

in
g

 T
im

e
 (

m
ill

is
e

c
o

n
d

s
)

Dataset Size (million triples)

(a) Temporal Join in Wikipedia

RDF-3X

Jena NG

Jena Ref

Virtuoso

MySQL

RDF-TX

10
1

10
2

10
3

10
4

10
5

4 8 12 16 20R
u

n
n

in
g

 T
im

e
 (

m
ill

is
e

c
o

n
d

s
)

Dataset Size (million triples)

(b) Temporal Join in GovTrack

Figure 2.13: Time Performance for Temporal Join in Wikipedia and GovTrack

Temporal Selection and Join. We create 10 temporal selection and 10 temporal join queries for

each dataset and conduct the experiments as the size of dataset N increases (N : 5-30 million in

Wikipedia and 4-20 million in GovTrack).

Figure 2.12(a) shows the query execution time for temporal selection in Wikipedia. RDF-

TX and MySQL show similar performance in small datasets. As the size of dataset increases,

RDF-TX shows better performance than MySQL. In the largest dataset (30 million), RDF-TX is

about 3X faster than MySQL and 10X faster than Virtuoso. Jena Named Graph and Reification are

39

2 orders of magnitude slower than SPARQLT engine due to the slow index scan.

RDF-3X is much slower than other systems due to its poor support of constraints. Most his-

torical queries involve temporal constraints. For instance, consider Example 2 in Section 2.2 that

searches the budget of University of California in 2013. This query has one temporal constraint

that the valid period of temporal RDF triple should overlap (01/01/2013, 12/31/2013). This con-

straint can be expressed as: ?ts ≤ 12/31/2013 && ?te ≥ 01/01/2013. In RDF-3X, the numbers

are encoded as strings. So for temporal constraints, RDF-3X converts strings back to integers at

running time to evaluate the constraints, which is inefficient.

The results of temporal join in Wikipedia are shown in Figure 2.13(a). RDF-TX is about 2

orders of magnitude faster than MySQL and Jena, and 6X faster than Virtuoso. RDF-3X is still

slow since the condition of temporal join (e.g. OVERLAP and MEET) is expressed as constraints

in FILTER clause.

Figure 2.12 (b) and Figure 2.13 (b) show the query execution time for temporal selection and

join in GovTrack. These approaches use more time to execute the queries on GovTrack than

Wikipedia because the number of distinct predicates in GovTrack is 60, which is very small com-

paring with Wikipedia (∼ 110000 predicates). Thus the query patterns (e.g. P and PT) return

much more results in GovTrack. The RDF-3x performs better than Jena on this dataset since it

has a smaller number of distinct time periods (∼ 10000) and predicates. MySQL and Virtuoso are

about 1 order of magnitude slower than RDF-TX on selection and 2 orders of magnitude slower

on Join.

RDF-TX performs 1-2 orders of magnitude faster than most competitors for selection and join.

An important reason behind this is that MVBT can process two-dimensional (key and time) range

query in one operation, while SPARQL and SQL engines need additional join and index scan.

Complex Queries. We generate 25 complex queries for each dataset with increasing query pattern

size (3-7). The generation process is as follows: a set of 5 queries is created initially, and each

query has 3 query patterns; then we incrementally add query patterns to existing queries until the

size of query patterns reaches 7. The experiment is conducted on two datasets (each has 20 million

40

10
1

10
2

10
3

10
4

10
5

3 4 5 6 7R
u

n
n

in
g

 T
im

e
 (

m
ill

is
e

c
o

n
d

s
)

Number of Query Patterns

(a) Complex Query in Wikipedia

Jena Ref

Virtuoso

MySQL

RDF-TX

10
2

10
3

10
4

10
5

3 4 5 6 7R
u

n
n

in
g

 T
im

e
 (

m
ill

is
e

c
o

n
d

s
)

Dataset Size (million triples)

(b) Complex Query in GovTrack

Figure 2.14: Time Performance for Temporal Join in Wikipedia and GovTrack

triples) and the optimizers are enabled in all compared approaches.

The evaluation results in Wikipedia are shown in Figure 2.14 (a)6. Jena Named Graph and

RDF-3X are not reported since they are much slower than other approaches so we omit them. For

RDF engine and RDBMS, a query with more patterns is translated to more joins, which increases

the complexity of parsing and optimization. On average, RDF-TX is 2 orders of magnitude faster

than MySQL and Jena, and 1 order of magnitude faster than Virtuoso.

The evaluation results for GovTrack are shown in Figure 2.14 (b). A notable change in this

graph is that Jena is not reported in this experiment. Jena is too slow compared to other approaches

on GovTrack since the query patterns usually cover a large portion of dataset, which leads to

slow execution time if an inefficient join order is generated; meanwhile, the column-store traits

of Virtuoso excel in this small predicate cardinality case. On average, our system is still about 2

orders of magnitude faster.

As the size of query pattern increases, the query execution time does not change much because

in most queries, the optimizers can generate the query plans that start from the query patterns with

small cardinalities.
6The query running time of Virtuoso on pattern size 6/7 is averaged over four queries since Virtuoso generates a

very inefficient join order for one query which takes more than 1 hour to finish.

41

 0

 50

 100

 150

 200

 250

3 4 5 6 7R
u

n
n

in
g

 T
im

e
 (

m
ill

is
e

c
o

n
d

s
)

Number of Query Patterns

Best Plan
Optimization Time

RDF-TX
Worst Plan

Figure 2.15: Query Execution Time of the best/worst plans, and the plan generated by

SPARQLT optimizer for complex queries in Wikipedia

2.6.4 Effectiveness of Query Optimizer

In this section, we explore the impact of query optimizer in the query evaluation. We enumerate all

the possible query plans of the complex queries (Section 2.6.3) in Wikipedia and find the best and

worst execution times. Figure 2.15 shows the query execution times of best/worst plans and the

plan generated by RDF-TX query optimizer (blue bar) in a Wikipedia set with 20 million triples.

The result shows that the plan generated by our query optimizer is very close to the best performing

execution plan. On average, the execution time of optimized query plan is about half of the time

used by worst plan. In the relatively simple queries (3 query patterns), the difference between the

best plan and the worst plan is small. As the number of query patterns increases, the difference

becomes much larger. Thus, the optimizer is important for scaling up towards complex queries

with a lot of query patterns. We also measure the time used for query optimization, which varies

from 3.5 to 10 milliseconds as the size of query increases.

Then we measure the storage overhead of temporal histogram. The CMVSBTs for temporal

statistics are built using the dictionary IDs. As discussed in Section 2.5.2, we merge CMVSBT

records and increase cm and lm until the size is small enough. In this experiment, the size of

temporal histogram is 177.5 MB, which is about 8.5% of raw data size.

42

 0

 500

 1000

 1500

 2000

5 10 15 20 25 30
R

u
n

n
in

g
 T

im
e

 (
s
e

c
o

n
d

s
)

Dataset Size (million triples)

Figure 2.16: Index Construction Time

0.010

0.015

0.020

0.025

0.030

2 4 6 8 10

A
v
g

 U
p

d
a

te
 T

im
e

 (
m

ill
is

e
c
o

n
d

s
)

Number of Updates (×10
5
)

Stanard MVBT
Compressed MVBT

Figure 2.17: Index Maintenance Time

2.6.5 Index Construction & Maintenance

For large datasets, we first build standard MVBT and then compress the MVBT indices. In RDF-

TX , the process of index construction is paralleled using at most 4 threads. We evaluate the

index construction time for compressed MVBT time on different sizes of subsets of Wikipedia in

Figure 2.16 (compression time included). The time for index construction is approximately linear

with the size of datasets, and it increases slightly faster in the datasets with 25 million and 30

million triples due to degraded performance caused by JVM garbage collection.

RDF-TX also supports the index update on compressed MVBT, which is important for real-

time applications. Thus we further measure the average index maintenance time on a compressed

MVBT index built from a 25 million subset of Wikipedia. We perform 1 million updates (68%

43

insert, 32% delete) which simulates the changes in real Wikipedia edit history. Figure 2.17 shows

the results by comparing maintenance time of compressed MVBT with the time used on standard

MVBT. Our compression technique shows a decent performance. Comparing with the update

on MVBT, the update on compressed MVBT only takes 5% more time. This little overhead is

negligible w.r.t. 76% space saved using compression.

2.7 Historical Knowledge Browser

The goal of SPARQLT is to express a wide variety of temporal queries with minimum extension

of SPARQL. However, for users who are unfamiliar with the schema of knowledge bases and

the syntax of SPARQLT , it is still a difficult task to write a SPARQLT query. Thus we develop

a query interface called Historical Knowledge Browser that extends the By-Example Structured

Query (BEStQ) approach introduced in the SWiPE system [AZ12, AZ14]. The interface uses

the Wikipedia Infoboxes extended with temporal fields, where the user can enter temporal query

conditions. From the modified Infoboxes and query conditions, our system derives equivalent

queries that are optimized and executed in our query engine.

The interface supports (i) querying the current knowledge base and its history and (ii) browsing

the history of entities and properties. Our user who wants to find the population of San Diego when

Bob Filner served as the mayor, might start by loading subject San Diego in our interface, as shown

in Figure 2.18. Since all the fields are editable, he enters “Bob Filner” in the Government Mayor

and variable “?pop” in City Population and these two InfoBoxes are set with the same temporal

variable “?t” to indicate the temporal join. Then our system generates and executes SPARQLT

query following SPARQLT query.

SELECT ?pop [?t]

{ San Diego Mayor Bob Filner ?t .

San Diego Population ?pop ?t . }

Our system also provides navigation toolbars so that users can browse the history of entities

44

Figure 2.18: Historical Knowledge Browser Interface

Figure 2.19: Navigation Window for Property Mayor

and properties. For example, if the user clicks on a property, the interface will show a navigation

window where the user can see the property type and its history and specify temporal conditions,

as shown in Figure 2.19. The interface is implemented as middleware systems on Wikipedia and

45

demonstrated in International Semantic Web Conference 2015.

2.8 Related Work

Temporal Index. There has been a large body of research on temporal index in the litera-

ture [BGO96, JSL00, LHN08, ND, ST99, TML99]. MAP21 [ND] is an index over B+Tree by

mapping time ranges to one dimensional points, thus time intervals/points can be used as keys and

queried in a B+Tree. OB+tree [TML99] organizes B+Trees in a versioned way with shared nodes

whose contents do not change over versions. However, MAP21 and OB+tree only support single

dimension query. BT-tree [JSL00] enables branched versions along with the temporal index, while

the time in our system is linear, i.e. no branching. MVBT [BGO96] and TSB-Tree [LHN08] are

bi-dimensional indices, which satisfy our requirements exactly. TSB-Tree is a temporal index very

similar to MVBT and implemented in Immortal DB [LBM05] on Microsoft SQL Server, with bet-

ter integration to SQL Server’s existing index structures. The major difference between these two

is that TSB-Tree migrates old data to a historical store during node splitting, while MVBT moves

new data. Since MVBT is a general approach which is not targeted on specific platforms, we adopt

and extend it in RDF-TX .

Temporal RDF Model. Temporal RDF is first studied in [BC02] in which Buraga et al. in-

troduced the XML-based Temporal Relation Specification Language (TRSL) to express temporal

relations in RDF. Later, Gutierrez et al. [GHV05, GHV07] provide complete semantics for tempo-

ral RDF model and a query language for reasoning temporal RDF graph. The discussion of query

language is limited to query examples and evaluation complexity. No implementation or experi-

mental evaluation is provided. The temporal RDF model is used in many works on temporal RDF

reasoning [PSH07, PUS08, TB09] and temporal knowledge discovering [HSB11, HSB13]. The

SPARQLT language proposed in this paper is also based on this model.

Query Languages and Systems for Temporal RDF. The progress of knowledge discov-

ery has enabled us to construct large temporal knowledge bases [AGD13, HSB13] which thus

need powerful query language and efficient query processor for reasoning. Several query lan-

46

guages [Gra10, MB09, PSH07, PUS08, TB09] are proposed for temporal RDF triples. T-SPARQL [Gra10]

is a temporal extension of SPARQL based on a multi-temporal RDF model. The RDF triple is an-

notated with a temporal element that represents a set of temporal intervals. Thus a temporal join

is expressed using additional functions (e.g. OVERLAP). At the best of our knowledge, no actual

implementation of T-SPARQL is available. The τ -SPARQL system reported in [TB09] uses the

temporal RDF model [GHV07] and augments SPARQL query patterns with two variables ?s and ?e

to bind the start time and end time of temporal RDF triples and express temporal queries. The eval-

uation is done by rewriting τ -SPARQL queries to standard SPARQL queries. Perry et al. [PSH07]

propose a framework to support temporal and spatial semantic queries. Simple selection and join

queries are expressed using two temporal operators. These operators are implemented in Oracle by

extending Oracle Semantic Data Sore and SQL functions. These works rely on relational databas-

es/RDF engine to store and query temporal RDF triples, which results in complex SPARQL and

SQL queries in evaluation.

The tRDF system [PUS08] extends the temporal RDF model [GHV07] with indeterminate

temporal annotations. The temporal elements could be timestamps or indeterminate temporal val-

ues. The temporal queries are evaluated using tGrin index that clusters the temporal RDF triples

based on graphical-temporal distance. However, tRDF only supports a subset of temporal queries

discussed in this paper. Most significantly, temporal joins are not supported since tGrin index

relies on the temporal distance to filter the triples, while the temporal distance between two tem-

porally joined query patterns can not be determined. STUN [KPG12] system supports queries on

annotated RDF, but it is not scalable for large temporal datasets as discussed in Section 2.6.1.2.

47

CHAPTER 3

SWIM: A Framework for Knowledge Extraction and

Integration

The importance of knowledge bases in semantic-web applications has motivated the endeavors

of several important projects that have created the public-domain knowledge bases shown in Ta-

ble 3.1. In this chapter, we present the Semantic Web Information Management system (SWIM),

which consists of an integrated set of powerful tools [MGZ13b, MGZ13a, MAG14, MGK14] for

knowledge extraction and integration. The goal of SWIM system is to (i) extract structured sum-

maries from free text, (ii) integrate the knowledge in web documents and existing knowledge bases

into a more complete and consistent repository, and (iii) preserve provenance information for ver-

ification. SWIM provides much better support for advanced web applications, and in particular

for user-friendly search systems that support Faceted Search [HBS10] and By-Example Structured

Queries [AZ12]. Our approach in achieving this ambitious goal involves the five main tasks of:

Name Size (MB) Number of Entities (106) Number of Triples (106)

ConceptNet [LS04] 3075 0.30 1.6

DBpedia [BLK09] 43895 3.77 400

Geonames [GEO] 2270 8.3 90

MusicBrainz [MUS] 17665 18.3 131

NELL [CBK10] 1369 4.34 50

OpenCyc [OPE] 240 0.24 2.1

YaGo2 [HSB13] 19859 2.64 124

Table 3.1: Some of the publicly available Knowledge Bases

48

1. Integrating existing knowledge bases by converting them into a common internal represen-

tation and store them in IKBStore.

2. Completing the integrated knowledge base by extracting more facts from free text using

text-mining system IBMiner.

3. Generating a large corpus of context-aware synonyms that can be used to resolve inconsis-

tencies in IKBStore and to improve the robustness of query answering systems.

4. Archiving the provenance of knowledge bases for debugging and verification.

5. Developing user-friendly interfaces for browsing and editing IKBStore.

The first step was greatly simplified by the fact that many projects, including DBpedia [BLK09]

and YaGo [HSB13], represent the information derived from the structured summaries by RDF

triples of the form <subject, attribute, value>, which specifies the value for an attribute (prop-

erty) of a subject. This common representation facilitates the use of these knowledge bases by

a roster of semantic-web applications, including queries expressed in SPARQL, and user-friendly

search interfaces [AT10, AZ12]. In this project, we convert all the knowledge bases into RDF for-

mat and employ the interlinking information and semantic similarity to align the entities, attributes,

and categories in knowledge bases.

The integrated knowledge base so obtained will represent a big step forward, since it will (i)

improve coverage and quality of the knowledge available to semantic web applications and (ii)

provide a common ground for different contributors to improve the knowledge bases in a more

standard and effective way. However, since the process of generating structured summaries is

usually manual and a standard ontology is often not used, the resulting knowledge bases are prone

to the issue of incompleteness. For example in Wikipedia, around 40% of pages are missing their

entire InfoBox. Many other pages are also missing part of their InfoBoxes. This mainly indicates

Wikipedia’s coverage is quite incomplete. Other similar knowledge bases suffer from the same

problem as well.

To address this issue, we proposed InfoBox Miner (IBMiner). IBMiner employs an NLP-

based text mining framework, called SemScape, to extract initial triples from the text. Then using

49

a large body of categorical information and learning from matches between the initial triples and

existing InfoBox items in the current knowledge base, IBMiner translates the initial triples into

more standard InfoBox triples. IBMiner significantly improves the coverage of the integrated

knowledge base.

Another obstacle in achieving the goal of SWIM is that different systems do not adhere to

a standard terminology to represent their knowledge, and instead use plethora of synonyms and

polysemy. Thus, we need to resolve synonyms and polysemy for the entity names as well as the at-

tribute names. For example, by knowing “Johann Sebastian Bach” and “J.S. Bach” are synonyms,

the knowledge base can merge their triples and associate them with one single name.

For synonym and polysemy issues, we proposed Context-aware Synonym Suggestion System

(CS3). CS3 first extracts context-aware attribute and entity synonyms, and then uses them to

improve the consistency of IKBStore. CS3 learns attribute synonyms by matching morphological

information in free text to the existing structured information. Similar to IBMiner , CS3 takes

advantage of a large body of categorical information available in Wikipedia, which serves as the

contextual information. Then, CS3 improves the attribute synonyms so discovered, by using triples

with matching subjects and values but different attribute names. After unifying the attribute names

in different knowledge bases, CS3 finds subjects with similar attributes and values as well as

similar categorical information to suggest more entity synonyms.

The process of knowledge integration is complex and time-consuming which makes the prove-

nance management of integrated data set to be a non-trivial task. Since knowledge integration

involves multiple steps, it is necessary to record the provenance of knowledge for debugging and

verification. Existing semantic web systems lack efficient provenance management to ensure the

quality and reproducibility of integrated knowledge base. In our system, we archive the provenance

of every fact, including source repositories, contributors, and integration operations.

At last, usability remains as a major problem since the knowledge base is usable only by people

who can write SPARQL queries thus casual users are excluded. To this end, we propose two user-

friendly interfaces InfoBox Knowledge-Base Browser (IBKB) and InfoBox Editor (IBE). These

interfaces support knowledge browsing and editing, and query functions needed for managing and

50

upgrading knowledge bases.

In the rest of this chapter, we first introduce the various intertwined aspects of SWIM system,

while the remaining sections provide an in-depth coverage of the techniques used for knowledge

extraction and integration.

3.1 Overview

As already mentioned, our goal is to address the issues of incompleteness and inconsistency and in-

tegrate existing knowledge bases into a more consistent and complete one, in which the knowledge

provenance is well preserved. SWIM performs five tasks to achieve this goal. Here we elaborate

these five tasks in more details:

Task A: Collecting publicly available knowledge bases, unifying knowledge representation format,

and integrating knowledge bases using existing interlinks and structured information. Creating the

initial knowledge base is actually a straightforward task, since many of the existing knowledge

bases are representing their knowledge in RDF format. Moreover, they usually provide informa-

tion to interlink a considerable portion of their subjects to those in DBpedia. Thus, we use such

information to create the initial integrated knowledge base. We refer to initial integrated knowl-

edge base as initial KB. However, the coverage and consistency provided by each individual system

remain limited. To overcome these problems, we propose new techniques for merging, completing,

and integrating these knowledge bases at the semantic level, as discussed in Section 3.2.

Task B: Completing knowledge base using accompanying text. In order to do so, we employ

the IBMiner system [MAG14, MGK14] to generate structured data from the free text available at

Wikipedia or similar resources. IBMiner first generates semantic links between entity names in

the text using recently proposed text mining SemScape [MGK14]. Then, IBMiner learns common

patterns called Potential Matches (PMs) by matching the current triples in knowledge base to the

semantic links derived from free text. It then employs the PMs to extract more InfoBox triples from

text. These newly found triples are then merged with knowledge base to improve its coverage.

More details of IBMiner are discussed in Section 3.3.

51

Task C: Generating a large corpus of context-aware synonyms. Since IBMiner learns by matching

structured data to the morphological structure in the text, it may find more than one acceptable

matching attribute name for a given link name from the text. This in fact implies possible attribute

synonyms, and it is the main intuition that CS3 uses to learn attribute synonyms. Based on PM,

CS3 creates the Potential Attribute Synonyms (PAS) which is in nature similar to PM. However

instead of mapping link names into attribute names, PAS provides mapping between different at-

tribute names based on the categorical information of the subject and the value. Similar to the case

of IBMiner , the categorical information serves as the contextual information, and improves the

final results of the generated attribute synonyms. As described in Section 3.4, CS3 improves PAS

by learning from the triples with matching subjects and values but different attribute names in the

current knowledge base. CS3 also recognizes context-aware entity synonyms by considering the

categorical information and InfoBoxes of the entities. These synonyms help realign attributes and

entity names to construct the final IKBStore.

Task D: Archiving the provenance of knowledge. In many knowledge bases, every piece of knowl-

edge is assigned with a value indicating the confidence on the correctness of this information

[CBK10, MGZ13b]. The use of such confidence value and other similar values (e.g. evidence

value [MGZ13b]) can help determine the quality of knowledge. In SWIM, we use provenance

semiring to annotate the fact with knowledge lineage and confidence value to preserve these im-

portant properties of knowledge. We will talk more about knowledge provenance in Section 3.5.

Task E: In order to browse into our final knowledge base, we propose the InfoBox Knowledge-

Base Browser (IBKB) which provides structured summaries and their originating sources. We

also demonstrate our editing tool called InfoBox Editor (IBE), which is able to provide relevant

attributes for a user-specified subject, so the user can easily improve the knowledge base without

needing to know the underlying terminology of the system.

Applications: SWIM can benefit a wide variety of applications, since it covers a large num-

ber of structured summaries represented with a standard terminology. Knowledge extraction and

population systems such as IBminer and OntoMiner [MKI13b], knowledge browsing tools such as

DBpedia Live [dbp] and InfoBox Knowledge-Base Browser (IBKB)[MGZ13b], and semantic web

52

search such as Faceted Search [AT10] and By-Example Structured queries [AZ12] are three promi-

nent examples of such applications. In particular for semantic web search, SWIM improves the

coverage and accuracy of structured queries due to superior quality and coverage with respect to

existing knowledge bases. Moreover, SWIM can serve as a common ground for different contrib-

utors to improve the knowledge bases in a more standard and effective way. Using the knowledge

provenance, SWIM is also a good mean for verifying the correctness of the current structured

summaries as well as those generated from the text.

3.2 IKBStore: Integrated Knowledge Base

SWIM allows us to integrate the existing knowledge bases into one of superior quality and cover-

age. In this section, we elaborate the steps in the process of knowledge base integration.

3.2.1 Data Gathering

We process the knowledge bases listed in Table 3.1, which include some domain specific knowl-

edge bases (e.g. MusicBrainz [MUS], Geonames [GEO], etc.), and some domain independent

ones (e.g. DBpedia [BLK09], YaGo2 [HSB13], etc.). Although most knowledge bases such as

DBpedia and YaGo already provide there knowledge in RDF, some of them may use other repre-

sentations. Thus, for all knowledge bases, we convert their knowledge into <Subject, Attribute,

Value> triples and store them in IKBStore. IKBStore is currently implemented over Apache Cas-

sandra which is designed for handling very large amount of data. IKBStore recognizes three main

types of information:

• InfoBox triples: These triples provide information on a known subject (subject) in the

<subject, attribute, value> format. E.g. <J.S. Bach, PlaceofBirth, Eisenach> which

indicates the birthplace of the subject J.S.Bach is Eisenach.

• Subject/Category triples: They provide the categories that a subject belongs to in the form

of subject/link/category where, link represents a taxonomical relation. E.g. <J.S.Bach, is

53

in, Cat:German Composers> which indicates the subject J.S.Bach belongs to the category

Cat:German Composers.

• Category/Category triples: They represent taxonomical links between categories. E.g. <Cat:German

Composers, is in, Cat:German Musicians> which indicates the category Cat:German Composers

is a sub-category of Cat:German Musicians.

3.2.2 Initial Knowledge Integration

The aim of this phase is to find the initial interlinks between subjects, attributes, and categories

from the various knowledge sources to eliminate duplication, align attributes, and reduce incon-

sistency using only the existing interlinks. At the end of this phase, we have an initial knowledge

base which is not quite ready for structured queries, but provides a better starting point for IBminer

to generate more structured data and for CS3 to resolve attribute and entity synonyms.

• Interlinking Subjects: Fortunately, many subjects in different knowledge bases have the

same name. Moreover, DBPedia is interlinked with many existing knowledge bases, such as

YaGo2 and FreeBase, which can serve as a source of subject interlinks. For the knowledge

bases which do not provide such interlinks (e.g. NELL), in addition to exact matching, we

parse the structured part of knowledge base to derive candidate interlinks for existing entities,

such as redirect and sameAs links in Wikipedia.

• Interlinking Attributes: As we mentioned previously, attributes interlinks are completely

ignored in the current studies. In this phase, we only use exact matching for interlinking

attributes.

• Interlinking Categories: In addition to exact matching, we compute the similarity of the

categories in different knowledge bases based on their common instances. Consider two

categories c1 and c2, and let S(c) be the set of subjects in category c. The similarity function

for categories interlink is defined as Sim(c1, c2) = |S(c1) ∩ S(c2)|/|S(c1) ∪ S(c2)|. If the

Sim(c1, c2) is greater than a certain threshold, we consider c1 and c2 as aliases of each other,

54

which simply means that if the instances of two categories are highly overlapping, they might

be representing the same category.

After retrieving these interlinks, we merge similar entities, categories, and triples based on the

retrieved interlinks. The provenance information is generated and stored along with the triples.

3.2.3 Further Knowledge Integration

Once the initial knowledge base is ready, we first employ IBMiner to extract more structured data

from accompanying text and then utilize CS3 to resolve synonymous information and create the

final knowledge base. More specifically, we perform the following steps in order to complete and

integrate the final knowledge base:

• Improving Knowledge base coverage: The web documents contain numerable facts which

are ignored by existing knowledge bases. Thus, we first enrich the knowledge base by em-

ploying our knowledge extraction system IBMiner . IBMiner learns PM from free text and

the initial knowledge base to derive more triples which will greatly improve the coverage of

existing knowledge bases. These new triples are then added to IKBStore. For each gener-

ated triple, we also update the confidence and evidence frequency in IKBStore. That is if

the triple is already in IKBStore, we only increase and update its confidence and evidence

frequency.

• Realigning attribute names: Next we employ CS3 to learn PAS and generate synonyms

for attribute names and expand the initial knowledge base with more common and standard

attribute names.

• Matching entity synonyms: This step merges the entities base on the entity synonyms

suggested by CS3. For the suggested synonym entities such as s1, s2, we aggregate their

triples and use one common entity name, say s1. The other subject (s2) is considered as a

possible alias for s1, which can be represented by RDF triple <s1, alias, s2>.

55

3.3 IBMiner: Deriving Structured Summaries from Text

Current knowledge bases suffer from the issue of incompleteness, largely due to the fact that they

are created manually. An important information source in the web is the free text in web pages.

Previous research addressing such problems has relied on approaches that exploit the structured

information in web documents, but do not fully exploit the morphological information in the text.

In this section, we present a new system, called IBMiner that uses deep NLP to extract structured

summaries. IBMiner uses morphological information in the text to infer graph-based structures

called TextGraphs, which summarize the information extracted from text as links representing

grammatical relations between single- or multi-word terms. Then, IBMiner generates semantic

links between words and terms in TextGraphs by using a set of predefined SPARQL-like patterns.

Finally, by learning from the current InfoBoxes in existing knowledge bases, and relying on a

large body of categorical information, IBMiner converts the semantic links into the final RDF

triples, and also infers new attribute synonyms. This deep text-mining process produces more

complete knowledge base, significantly improving the recall for structured queries. In the rest of

this section, we use InfoBox to denote the final RDF triples used in existing knowledge bases, such

as Wikipedia.

Although IBMiner ’s process is quite complex, we can divide it into three high-level steps

which are elaborated in this section. The first step is to parse the sentences in text and convert

them to a more machine friendly structure called TextGraphs which contain grammatical and se-

mantic links between entities mentioned in the text. As discussed in subsection 3.3.1, this step

is performed by the NLP-based text mining framework SemScape [MKI11a]. The second step is

to extract semantic links from TextGraph. As explained in Subsection 3.3.2, using SPARQL-like

graph patterns on the TextGraphs, IBminer generates a set of initial triples called semantic links

in the form of <subject, link, value> where subject is an entity, value is either an entity or

a value, and link is a semantic relation between subject and value. Each semantic link repre-

sents a small piece of information that is potentially useful to generate an InfoBox triple (fact in

RDF format <subject, predicate, object>). As the third step, IBminer generates an intermediate

56

structure called Potential Matches (PM). PM is a very large set of automatically generated patterns

which will be used to translate link names in the semantic links into appropriate attribute names

and generate new InfoBox triples. This step is described in Subsection 3.3.3.

3.3.1 From Text to TextGraphs

To have a deeper understanding of the knowledge in the text, IBMiner converts the sentences in

the text into a weighted graph structure called TextGraphs. This task is performed by employing

the NLP-based text mining framework SemScape [MKI11b, MKI14]. TextGraphs are machine-

friendly weighted graph structures, that represent grammatical connections between words and

terms in the sentence, where terms are single- or multi-word phrases identifying an entity or a

concept. Each link in the TextGraph is assigned a confidence value (weight) indicating our confi-

dence on the correctness of the link and an evidence count indicating the frequency. TextGraphs

generated in this way provide a semantic representation of the connections between words, terms,

and phrases through labeled and weighted links. For instance, Figure 3.1 shows the TextGraph for

following sentence:

Example Sentence: Johann Sebastian Bach (31 March 1685 - 28 July 1750) was a German com-

poser, organist, harpsichordist, violist, and violinist of the Baroque Period.

For the sake of brevity, we did not include all links and weights in this graph. This graph con-

nects words and terms to each other trough grammatical links such as ‘subj of ’, ‘obj of ’, ‘prop of ’,

‘det of ’, etc. The graph also identifies multi-word terms (shown in dashed boxes) and their links

to other components of the sentence. For instance, consider the following possible subjects for the

main verb: ‘Johann Sebastian Bach’, ‘Sebastian Bach’, and ‘Bach’. These terms are referred to as

candidate terms.

3.3.2 Generating Semantic Links

The next step to generate InfoBoxes or RDF-like triples is to find the semantic connections between

terms used in the TextGraphs. These connections are referred to as semantic links throughout the

57

Figure 3.1: Part of the TextGraph for our example sentence.

paper, and will be used later to generate the final InfoBox triples. Before continuing, let us first

define semantic links:

Semantic Link. Semantic link is a triple, denoted as <subject, link, value> where subject and

value are two candidate terms in a TextGraph connected through the phrase link. For instance,

<Bach, was, composer>, <Bach, was, German>, and <Bach, was, organist> are three possible seman-

tic links in our running example.

It is important to understand that with the above definition some of the links in the TextGraph

are also semantic links (e.g. <Date-3-31-1685, was, Bach>). However, there are many more seman-

tic links that can be extracted from the TextGraphs. This section explains how IBMiner extracts

such links with a pattern-based approach.

3.3.2.1 Extracting Semantic Links

To generate semantic links such as the ones introduced above, IBMiner uses a limited set of care-

fully created graph-based patterns. These patterns, which are also called Graph Domain rules,

capture common structures in the TextGraphs that indicate possible semantic links between candi-

date terms. Then from the matching sub-graphs for these patterns, IBMiner constructs the semantic

58

links. Semantic links that are created more than once from different patterns or different sentences

are also merged as explained later in this section.

Graph Domain Rules. Given a TextGraph T , Graph Domain (GD) rule is a graph query executed

on T which returns semantic links matching certain conditions. The format of GD rules is similar

to SPARQL, with some extended key words for TextGraphs. To understand our GD rules and the

process of using them to generate semantic links, we provide several examples in this section. We

should stress that the GD rules in IBMiner are completely generic and domain independent. In the

current implementation of IBMiner , we have created 59 such GD rules which are available for

online access [Sem].

As shown in Figure 3.1, terms are represented by nodes in the graph and connected in various

ways. For instance, the term ‘Johann Sebastian Bach’ is connected to the term ‘composer’ though

a connecting node (verb) ‘was’. This is actually a very common pattern that can generate sev-

eral small facts such as <Johann Sebastian Bach, was, composer>. Generating such a fact in bag

of keyword approaches or even in shallow NLP-based techniques is indeed very challenging. IB-

Miner uses the following GD rule to extract similar facts to the mentioned one:

—————————————– Rule 1. —————————————–

SELECT (?1 ?3 ?2)

WHERE {

?1 “subj of” ?3.

?2 “obj of” ?3.

NOT(”not” “prop of” ?3).

NOT(”no” “det of” ?1).

NOT(”no” “det of” ?2). }

——————————————————————————————-

As depicted in the part a) of Figure 3.2, the pattern graph (WHERE clause) of Rule 1, specifies

two nodes with names ?1 and ?2 which are connected to a third node (?3) respectively with ‘sub-

ject of’ (sub of) and ‘object of’ (obj of) links. One possible match for this pattern in the TextGraph

59

Figure 3.2: Part a) shows the graph pattern for Rule1, and b) depicts one of the possible matches

for this pattern.

of our running example is shown in part b) of Figure 3.2. Due to the structure of the TextGraphs,

matching multi-word terms (hyper nodes in the TextGraphs) to the nodes in the patterns is an easy

task for IBMiner whereas this is actually a challenging issue in works such as [WW10] which are

based on dependency parse trees. Using the SELECT clause in Rule 1, the rule returns several

triples for our running example such as:

• <Johann Sebastian Bach, was, composer>,

• <Sebastian Bach, was, composer>,

• <Bach, was, composer>,

• <Johann Sebastian Bach, was, organist>,

• <Sebastian Bach, was, organist>, etc.

Subsection 3.3.2.2 discusses how IBMiner assigns confidence value to each of the above triples.

As can be seen, we have made the syntax of the GD rules similar to that of SPARQL [SPA]. The

SELECT clauses in GD pattern may indicate more than one triple. However, we added the notation

of ‘NOT’ to indicate the absence of some links in the pattern, which requires a more complex

expression in SPARQL.

As a more complex example, consider Rule 2 which captures Bach’s nationality in our running

example. This rule looks for a ‘to be’ verb (?3) with an object (?2), where the object has an

adjective (?4). If such a pattern is found, the subject (?1) of the verb is connected to that adjective

(?4) via the verb (?3). The following results are generated by this rule for our running example:

60

• <Johann Sebastian Bach, was, German>,

• <Sebastian Bach, was, German>,

• <Bach, was, German>, etc.

—————————————– Rule 2. —————————————–

SELECT (?1 ?3 ?4)

WHERE {

?1 “subj of” ?3.

?2 “obj of” ?3.

?4 “prop of” ?2.

?4 “POS Tag” ?5.

NOT(”not” “prop of” ?3).

NOT(”no” “det of” ?1).

FILTER (regex(?3, “ˆamˆ|ˆisˆ|ˆareˆ|ˆwasˆ|ˆwereˆ|ˆbe|ˆ...”, “i”))

FILTER (regex(?4, “ˆJJˆ|ˆADJPˆ”, “i”)) }

——————————————————————————————-

Note that by using POS-Tag information which carried up from parse trees to the TextGraph

and the FILTER keyword which accepts Regular Expressions, it is easy to verify that the node

matching to the variable ?4 is an adjective. Without this filter, Rule 2 will generate wrong triples

such as <Bach, was, music> for sentence “Bach was a music composer.”.

Many of the semantic links in text can be found in prepositional phrases. In order to capture

this type of information, we have considered rules such as the following one1.

—————————————– Rule 3. —————————————–
1Similar rules are generated for cases such as passive sentences, sentences including verbs with modifier, preposi-

tions that are connected to nouns, etc.

61

SELECT (?1 ?3+?4 ?2)

WHERE {

?1 “subj of” ?3.

?2 ?4 ?3.

NOT(”no” “det of” ?1).

NOT(”not” “prop of” ?3).

FILTER (regex(?4, “ˆtoˆ|ˆonˆ|ˆinˆ|ˆwithˆ|ˆfromˆ|ˆatˆ|...”, “i”)) }

——————————————————————————————–

This rule captures semantic links in prepositional phrases that are connected to a verb. The link

in this case is specified by ?3+?4 which indicates the concatenation of the verb and the preposition.

For the rest of the paper, we refer to this set of semantic links generated by IBminer as Tn.

To unify similar link names, IBMiner uses their stems as new link names for triples in Tn. To

this end, IBMiner replicates each triple by replacing the link name with its stem. The stem and

synonym information is provided by WordNet [Wor12]. As an example for the semantic link

<Johann Sebastian Bach, was, composer>, IBMiner also generates the triple <Johann Sebastian Bach,

be, composer>. This simple expansion technique improves the process of interpreting attributes

names (Section 3.3.3) by populating verb tenses and word variations.

3.3.2.2 Computing Links Confidence

As discussed in Section 3.3.1, every edge in TextGraph is assigned with confidence values. To

compute the confidence value of the generated semantic links, we simply use the minimum confi-

dence among the matching edges of TextGraph as the final confidence of each triple. The intuition

behind using the minimum is that if one of the links in the matching subgraph is of low confidence,

it makes the entire match low confident.

Since the same semantic link may be generated more than once from different rules or TextGraphs,

we need to combine its evidence count e and confidence value c. Similar to [LWW11], the only

62

assumption for the combination process is that evidences of the same piece of information are in-

dependent from each other. Thus, if a piece of information has been generated twice, once with

evidence count and confidence of e1 and c1, and once with e2 and c2, we combine the evidence

count to e1 + e2 and the confidence to 1−(1−c1)(1−c2)= c1+(1−c1)c2. This new confidence is

higher than both c1 and c2 which indicates the link’s correctness probability is now higher.

3.3.3 Mapping Links to Attributes

In this step, IBMiner uses contextual information about subjects and values in the semantic links to

map the link names in Tn to attribute names used in the original InfoBoxes. In this process, many

of the inaccurate or irrelevant triples in Tn will be dropped since no good maps for their links can

be found. For the rest of this section, we refer to the set of triples taken from the original InfoBoxes

in WikiPedia as Ti.

The key idea in mapping the link name of a semantic link (Tn) to the attribute name in current

InfoBoxes (in Ti) is to learn the attribute mapping by example. To understand the concept of

attribute mapping and the intuition behind IBMiner approach to create this mapping, we continue

with some examples. Consider the following two semantic links which have been generated from

the TextGraphs in the previous section:

• <Johann Sebastian Bach, was, composer>

• <Johann Sebastian Bach, was, German>

Although the attribute names in both triples denote the same term, ‘was’, they connect the sub-

jects and values with completely different relations. As the attribute names in the actual InfoBox

triples (Ti) suggest, the first ‘was’ is mostly interpreted as ‘occupation’ while the second one is

usually called ‘nationality’. This kind of interpretation for the link names in semantic links based

on the best match in existing InfoBoxes is referred to as attribute mapping throughout this paper.

The difference in subject part of the triples also implies different mappings. For instance, consider

the following triples:

63

• <Benz, was, German>

• <Johann Sebastian Bach, was, German>

Although the title ‘nationality’ for both attributes is not completely wrong, a better interpreta-

tion for the first attribute could be ‘made-in’ or ‘founded-in’ since the subject is not a person.

In other words, the meaning or interpretation of a link in semantic link <s, l, v> depends not

only on the link name (l) but also on the taxonomical/categorical information of the subject (s) and

the value (v). Under this intuition, to correctly map link name l to attribute names used in Ti, IB-

Miner considers the categorical information of the subject and value provided by Wikipedia under

categories section. For instance, in the triple <Johann Sebastian Bach, was, composer>, knowing that

1) ‘Johann Sebastian Bach’ is in category ‘people’, 2) ‘composer’ is in category ‘occupations in mu-

sic’, and 3) according to the matching examples, link ‘was’ between these two categories is mostly

called ‘occupation’ in Ti, we can infer the new InfoBox triple <Johann Sebastian Bach, occupation,

composer>. Next, we formally explain this technique for attribute mapping.

3.3.3.1 Generating Potential Matches

To map links in Tn to attributes in Ti, IBMiner constructs a structure called Potential Matches (PM)

by learning from the existing examples. To understand this structure, let us start with the definition

of triple match.

Matching triples: Given two triples tn =< s1, l, v1 > and ti =< s2, α, v2 > where tn ∈ Tn and

ti ∈ Ti, we say tn and ti match each other iff s1 = s2 and v1 = v2.

For instance, <Johann Sebastian Bach, was, German> from semantic links (Tn) matches <Johann

Sebastian Bach, nationality, German> from InfoBoxes triples (Ti), since both subjects and both val-

ues in the two triples are the same. The set of all triples in Tn that match with at least one triple in

Ti is referred to as Tm in this paper. Using such matching triples between Ti and Tn, IBMiner auto-

matically generates a set of patterns in a structure called Potential Matches or PM which is defined

64

as follows:

Potential Matches: Potential Matches are records in the form of <cs, l, cv> : α, each associated

with a confidence value c and an evidence frequency e. Each record in PM indicates that if a

subject from category cs is connected to a value from category cv with link l in Tn, α may be a map

for l with confidence c and evidence e.

As an example, consider PM record <people, was, occupations in music> : occupation. This

record specifies a simple pattern indicating the link name ‘was’ between a subject from ‘people’

category to a value from ‘occupations in music’ category may be interpreted as the attribute ‘occu-

pation’. Next we explain how IBMiner used triples in Tm to generate these patterns and build the

PM structure.

Assume tm =<s, l, v> (tm ∈ Tm) with confidence cm matches ti =<s, α, v> (ti ∈ Ti).

In the following, Cs = {cs1, cs2, ...} and Cv = {cv1, cv2, ...} denote the categorical information

respectively for s and v. This categorical information is retrieved from Wikipedia. If no category

is found for a subject (or a value), we will consider them to be in the most general categories (e.g.,

‘Category:Things’). Moreover, in addition to the direct categories, Cs and Cv may contain indirect

(more general) categories that will be described in next subsection. We say attribute α is a potential

match for link l from any category in Cs to any category in Cv with confidence cm and evidence

count 1. To construct the final list of potential matches (PM), for each cs ∈ Cs and cv ∈ Cv, we

add the following record to the PM structure:

<cs, l, cv> : α

For each newly generated PM record, confidence value c is initiated by cm and evidence fre-

quency e is initiated by 1. It is worthy to mention that the number of potential matches for tm

is |Cs| × |Cv| where |Cx| is the number of categories for the entity x. If we encounter more ev-

idence for the same record in PM, IBMiner increases its confidence and evidence by combining

the records as explained in Subsection 3.3.2.2. At the end of this step, PM will contain a big list

of potential matches with their confidence values and evidence frequencies. In Section 3.3.3.3, we

explain how PM is used to generate the final InfoBox triples by attribute mapping.

65

3.3.3.2 Selecting Best Categories

A very important issue in generating potential matches is the quality and quantity of the categories

for the subjects and values. The direct categories provided for most of the subjects are too specific

and only a few subjects are listed in each of these categories. Generating the potential matches over

direct categories does not generalize the matches for newly observed subjects. On the other hand,

exhaustively adding all the indirect (or ancestor) categories will generate too many inaccurate

potential matches and significantly increase the processing time. For instance considering only

four levels of categories in Wikipedia’s taxonomy, the subject ‘Johann Sebastian Bach’ belongs to

422 categories. In this list, there are some useful indirect categories such as ‘German Musicians’

and ‘German Entertainers’, as well as many categories which are either too general or inaccurate

(e.g. ‘People by Historical Ethnicity’ and ‘Centuries in Germany’). Considering the same issue

for the value part, hundreds of thousands of potential matches may be generated for a single triple

in Tm. This issue not only wastes our resources, but also impacts the accuracy of the final results.

To address this issue, we use a flow-driven technique to rank all the categories to which entity s

belongs, and then select the bestNC categories. The main intuition is to propagate flows or weights

through different paths from s to each of its categories. The categories receiving more weights are

considered to be more related to s. Now, L being the number of allowed ancestor levels, we create

the categorical structure for s up to L levels. Starting with node s as the root of this structure and

assigning weight 1.0 to it, we iteratively select the closest node to s, which has not been processed

yet, propagate its weight to its parent categories, and mark it as processed. To propagate weights of

node ci with k ancestors, we increment the current weights of each k ancestors with wi/k, where

wi is the current weight of node ci. Although wi may change even after ci is processed, we will not

re-process ci after any further updates on its weight to facilitate the algorithm. After propagating

the weight to all the nodes, we select the NC categories with the highest weight for generating

potential matches and final InfoBox triples.

66

3.3.3.3 Generating InfoBox Triples

Once PM is generated, IBMiner uses it to map the link names of semantic links (Tn) into the

attribute names of InfoBoxes (Ti). Let tn =<s, l, v> (tn ∈ Tn) be the triple whose link (l) needs

to be mapped, and s and v are listed in category sets Cs = {cs1, cs2, ...} and Cv = {cv1, cv2, ...}

respectively. The key idea to map l is to take a consensus among all pairs of categories in Cs and

Cv and decide which attribute name is the best possible match.

To this end, for each cs ∈ Cs and cv ∈ Cv, IBMiner finds all potential matches such as <cs, l,

cv>: αi. The resulting set of potential matches are then grouped by the InfoBox attribute names,

αi’s, and for each group we compute the average confidence and the aggregate evidence frequency

of the matches. IBMiner uses two thresholds at this point to remove low-confidence (named τc)

or infrequent (named τe) potential matches. Next, IBMiner filters the remaining results by a very

effective type-checking technique explained in the next subsection. At this point, there should be

only a few matches left in the set, which are called ranked matches. If there exists any match in

this list, we consider the one with the largest evidence count, say pm, as the only attribute map and

report the new InfoBox triple <tn.s, pm.ai, tn.v> with confidence tn.c× pm.c and evidence tn.e.

3.3.3.4 Type-checking

Attributes may take values from specific domains. For instance, attribute ‘origin’ may accept only

values from ‘geopolitical locations’ domain. This sort of information on domain of values for

attributes can be used as a simple, yet effective type-checking technique which in turn improves

accuracy of the final results. For example, the value ‘German’ fails the type-checking for attribute

‘origin’ since in the original InfoBoxes they are not used together at all. On the other hand,

‘German’ passes the check for attribute ‘nationality’ since in several instances these two are used

in the same triple in the original InfoBoxes. To automatically identify the correct domain for

values of a given attribute, currently IBMiner learns from Ti triples. That is, for each attribute α,

IBMiner counts the number of times that any value, say v, is used in a triple in Ti with attribute α.

This number is called the value rank of v in α’s domain. Value ranks are then used to verify the

67

correctness of the generated results.

One of the drawbacks of type-checking is that if we eliminate all the triples with wrong value

types, we will never find new values for some of the attributes. For instance, attribute short de-

scription accepts a variety of values which might not be listed in its domain. To avoid this issue,

IBMiner performs type checking on ranked matches for tn, only if tn.v belongs to the domain of

one (or more) attribute in the ranked matches. For instance assume for link ‘was’ in semantic link

<Johann Sebastian Bach, was, organist>, two attributes ‘occupation’ and ‘instrument’ are suggested

using potential matches. Since value ‘organist’ is frequently used with attribute ‘occupation’ but

not with attribute ‘instrument’, our type checking will cancel the latter and only accepts ‘occupation’ as

the final attribute map. On the other hand, assume for link ‘was’ in semantic link <Johann Se-

bastian Bach, was, organist of Baroque Period>, two attributes ‘short description’ and ‘occupation’ are

suggested. This time value ‘organist of Baroque Period’ has not co-occurred with any of the two

attributes, and thus the type checking will not eliminate any of the maps.

Finally for generic data types such as integers, floating points, dates, and URL addresses,

IBMiner records the number of times any value from each data type is used with an attribute to

do a more effective type-checking. For instance, if for an attribute, say height, mostly integer or

floating point values are used, the type checking will cancel any other value types (e.g. strings,

dates, etc.) for this attribute.

3.3.3.5 Suggesting Secondary Matches

As mentioned earlier, IBMiner may find more than one ranked match for a triple in Tn. Intuitively,

such cases are implying a possible synonym for the mapped attributes. Synonyms play a crucial

role in unifying different terminologies used in Wikipedia or other date sources. As an example,

consider the triple <Johann Sebastian Bach, was born in, Eisenach> in Tn. The technique mentioned

in Subsection 3.3.3.1 finds three ranked matches for link ‘was born in’. These matches are ‘born’,

‘birthPlace’, and ‘origin’. Although all of these are correct matches, IBMiner only picks the most

evident one (‘born’ in this case) since for many cases the less evident ranked matches are wrong.

68

To verify which of the secondary ranked matches are actually correct, IBMiner uses a very sim-

ilar idea to that for PM. The idea is that if two attributes are synonyms, they are usually expressed

in similar ways in the text (e.g. attributes ‘birthdate’ and ‘dateOfBirth’ are synonyms and they are

both presented in the text with links such as ‘was born on’, ‘born on’, or ‘birthdate is’). Thus,

IBMiner constructs a structure, called Potential Attribute Synonyms (PAS), to count the number of

times each pair of attributes in the InfoBoxes are presented in the text in the same form (i.e. with

the same link). These numbers are then used to compute the probability of that any given two

attributes are synonyms. Since PAS is also used in Context-aware Synonym Suggestion System

(CS3), thus we leave the detailed discussion of PAS in Section 3.4.1.

3.4 CS3: Discovering Attribute and Entity Synonyms

Synonyms are terms describing the same concept, which can be used interchangeably. According

to this definition, no matter what context is used, the synonym for a term is fixed (e.g. ‘birthdate’

and ‘date of birth’ are always synonyms). However, the meaning or semantic of a term usually

depends on the context in which the term is used. The synonym also varies as the context changes.

For instance, in an article describing IT companies, the synonym of the attribute name ‘wasCre-

atedOnDate’ most probably is ‘founded date’. In this case, knowing that the attribute is used for

the name of a company is a contextual information that helps us find an appropriate synonym for

‘wasCreatedOnDate’. However, if this attribute is used for something else, such as an invention,

one can not use the same synonym for it.

Being aware of the context is even more useful for resolving polynymous phrases, which are

in fact much more prevalent than exact synonyms in the knowledge bases. For example, consider

the entity/subject name ‘Johann Sebastian Bach’. Due to its popularity, a general understanding is

that the entity is describing the famous German classical musician. However, what if we know that

for this specific entity the birthplace is in ‘Berlin’. This simple contextual information will lead

us to the conclusion that the entity is refereing to the painter who was actually the grandson of the

famous musician Johann Sebastian Bach. A very similar issue exists for the attribute synonyms.

69

For instance considering attribute ‘born’, ‘birthdate’ can be a synonym for ‘born’ when it is used

with a value of type ‘date’; but if ‘born’ is used with values which indicate places, then ‘birthplace’

should be considered as its synonym.

CS3 constructs a structure called Potential Attribute Synonyms (PAS) to extract attribute syn-

onym. In the generation of PAS, CS3 essentially counts the number of times each pair of attributes

are used between the same subject and value and with the same corresponding semantic link in the

TextGraphs. The context in this case is considered to be the categorical information for the subject

and the value. These numbers are then used to compute the probability that any given two attributes

are synonyms. Next subsection describes the process of generating PAS. Later in Subsection 3.4.2,

we will discuss our approach to suggest entity synonyms and improve existing ones.

3.4.1 Generating Attribute Synonyms

Intuitively, if two attributes (say ‘birthdate’ and ‘dateOfBirth’) are synonyms in a specific context,

they should be represented with the same (or very similar) semantic links in the TextGraphs (e.g.

with semantic links such as ‘was born on’, ‘born on’, or ‘birthdate is’). In simpler words, we

use text as the witness for our attribute synonyms. Moreover, the context, which is defined as the

categories for the subjects (and for the values), should be very similar for synonymous attributes.

More formally, let attributes αi and αj be two matches for link l in initial triple <s, l, v>. Let

Ni,j (= Nj,i) be the total number of times both αi and αj are the interpretation of the same link

(in the initial triples) between category sets Cs and Cv. Also, let Nx be the total number of time

αx is used between Cs and Cv. Thus the probability that αi (αj) is a synonym for αj (αi) can be

computed byNi,j/Nj (Ni,j/Ni). Obviously this is not always a symmetric relationship (e.g. ‘born’

attribute is always a synonym for ‘birthdate’, but not the other way around, since ‘born’ may also

refer to ‘birthplace’ or ‘birthname’ as well). In other words having Ni and Ni,j computed, we can

resolve both synonyms and polynyms for any given context (Cs and Cv).

With the above intuition in mind, the goal in PAS is to compute Ni and Ni,j . Next we explain

how CS3 constructs PAS in one-pass algorithm which is essential for scaling up our system. For

70

each two records in PM such as <cs, l, cv>: αi and <cs, l, cv>: αj respectively with evidence

frequency ei and ej (ei ≤ ej), we add the following two records to PAS:

<cs, αi, cv>: αj

<cs, αj , cv>: αi

Both records are inserted with the same evidence frequency ei. Note that, if the records are

already in the current PAS, we increase their evidence frequency by ei. At the very same time we

also count the number of times each attribute is used between a pair of categories. This is necessary

for estimating Ni and computing the final weights for the attribute synonyms. That is for the case

above, we add the following two PAS records as well:

<cs, αi, cv>: ‘’ (with evidence ei)

<cs, αj , cv>: ‘’ (with evidence ej)

Improving PAS with Matching InfoBox Items: Potential attribute synonyms can be also de-

rived from different knowledge bases which contain the same piece of knowledge, but in different

attribute names. For instance let<J.S.Bach, birthdate, 1685> and<J.S.Bach,wasBornOnDate,

1685> be two InfoBox triples indicating bach’s birthdate. Since the subject and value part of the

two triples matches, one may say birthdate and wasBornOnDate are synonyms. To add these

types of synonyms to the PAS structure, we follow the exact same idea explained earlier in this

section. That is, consider two triples such as <s, αi, v> and <s, αj , v> in which αi and αj

may be a synonym. Also, let s and v respectively belong to category sets Cs = {cs1, cs2, ...} and

Cv = {cv1, cv2, ...}. Thus, for all cs ∈ Cs and cv ∈ Cv we add the following triples to PAS:

<cs, αi, cv>: αj (with evidence 1)

<cs, αj , cv>: αi (with evidence 1)

71

This intuitively means that from the context (category) of cs to cv, attributes αi and αj may be

synonyms. Again more examples for these categories and attributes increase the evidence which

in turn improve the quality of the final attribute synonyms. Much in the same way as learning from

initial triples, we count the number of times that an attribute is used between any possible pair of

categories (cs and cv) to estimate Ni.

Generating Final Attribute Synonyms: Once PAS structure is built, it is easy to compute

attribute synonyms as described earlier. Assume we want to find best synonyms for attribute αi

in InfoBox Triple t=<s, αi, v>. Using PAS, for all possible αj , all cs ∈ Cs, and all cv ∈ Cv,

we aggregate the evidence frequency (e) of records such as <cs, αi, cv>: αj in PAS to compute

Ni,j . Similarly, we compute Nj by aggregating the evidence frequency (e) of all records in form

of <cs, αi, cv>: ‘’. Finally, we only accept attribute αj as the synonym of αj , if Ni,j/Ni and Ni,j

are respectively above predefined thresholds τsc and τse. We study the effect of such thresholds in

Section 3.7.

3.4.2 Generating Entity Synonyms

There are several techniques to find entity synonyms. Approaches based on the string similar-

ity matching [Nav01], manually created synonym dictionaries [SR98], automatically generated

synonyms from click log [CLP10, CLP12], and synonyms generated by other data/text mining ap-

proaches [Tur01, MKI13b] are only a few examples of such techniques. Although performing very

well on suggesting context-independent synonyms, they do not explicitly consider the contextual

information for suggesting more appropriate synonyms and resolving polynyms.

Very similar to context-aware attribute synonyms in which the context of the subject and value

used with an attribute plays a crucial role on the synonyms for that attribute, we can define context-

aware entity synonyms. For each entity name, CS3 uses the categorical information of the entity

as well as all the InfoBox triples of the entity as the contextual information for that entity. Thus to

complete the exiting entity synonym suggestion techniques, for any suggested pair of synonymous

entities, we compute entities context similarity to verify the correctness of the suggested synonym.

72

It is important to understand that this approach should be used as a complementary technique

over the existing ones for two main reasons. First, context similarity of two entities does not always

imply that they are synonyms specially when many pieces of knowledge are missing for most of

entities in the current knowledge bases. Second, it is not feasible to compute the context similarity

of all possible pairs of entities due to the large number of existing entities. In this work, we use the

OntoMiner system [MKI13b] in addition to simple string matching techniques (e.g. Exact string

matching, having common words, and edit distance) to suggest initial possible synonyms.

Let ‘Johann Sebastian Bach’ and ‘J.S. Bach’ be two synonyms that two different knowledge

bases are using to denote the famous musician. A simple string matching would offer these two

entity as being synonyms. Thus we compare their contextual information and realize that they have

many common attributes with similar values for them (e.g. same values for attributes occupation,

birthdate, birthplace, etc.). Also they both belong to many common categories (e.g. Cat:German

musician, Cat:Composer, Cat:people, etc.). Thus we suggest them as entity synonyms with high

confidence. However, consider ‘Johann Sebastian Bach (painter)’ and ‘J.S. Bach’ entities. Al-

though the initial synonym suggestion technique may suggest them as synonyms, since their con-

textual information is quite different (e.i. they have different values for common attributes occupa-

tion, birthplace, birthdate, deathplace, etc.) our system does not accept them as being synonyms.

3.5 Knowledge Provenance Management

The quality of knowledge in semantic web is very important for semantic applications, especially

for semantic search systems. To access the quality of knowledge generated by a knowledge dis-

cover process, we need to archive the provenance for every fact in knowledge base. In reality,

different applications may require different types of qualities, such as the confidence value, evi-

dence frequency, lineage, etc. Therefore, a general model is needed for knowledge provenance

management.

There have been several models for capturing provenance in semantic web [TFK11, MWF07].

In SWIM, we extend the abstract provenance model discussed in [TFK11] to archive knowledge

73

provenance. The process of capturing knowledge provenance consists of two main phases: (i)

constructing the provenance polynomial for every fact using semiring; (ii) materializing the poly-

nomial for each type of provenance. As we discussed earlier, the advantage of such model is the

generality. It does not only work for specific provenance, but also any provenance that can be

expressed using semiring. In this way, we just need to do single round evaluation to construct the

expression of provenance process (how provenance). Then SWIM can evaluate various types of

provenance by computing the provenance value based on corresponding semirings.

In order to support different applications on knowledge base, SWIM archives two types of

knowledge provenance: knowledge lineage and confidence level. Knowledge lineage of a fact f

is the set of source facts which involves in the generation of f . The knowledge lineage can help

us identify the source facts of questionable results. Confidence level is a number that indicates the

confidence on the correctness of this fact. It can be generated by applications or manually specified

by users. Confidence level is important to reflect the reliability of knowledge.

Knowledge provenance has several important applications such as restricted search on specific

sources, tracking erroneous knowledge pieces to the emanating source, and better ranking tech-

niques based on reliability of the knowledge in each source. In SWIM, some provenance-based

functions are being investigated. First, provenance-based knowledge maintenance. For some facts

in knowledge base, the generation process may be very complex, which means that it may be

time-consuming to regenerate the knowledge and related provenance when the source knowledge

bases are changed. To facilitate the maintenance of knowledge, we can materialize the provenance

expression to a graph structure. Then when we need to update the knowledge and its provenance

value, we can directly use the intermediate results in materialized nodes. Second, provenance

based debugging. In SWIM, we support semantic search using SPARQL. Then the knowledge

provenance of SPARQL queries can be captured to debug the suspicious results.

74

3.6 User-Friendly Interfaces for Browsing and Editing Knowledge

Usability represents a major problem in semantic web, since the knowledge base is now usable only

by people who can write SPARQL queries thus casual users are excluded. Even expert program-

mers will need to spend a fair amount of time to learn DBpedia and thousands of names of entities

and properties there used (e.g., names such as: foaf:givenName and dbpprop:populationTotal). On

the other hand, it is a painful task for users to prepare structured summaries for a given document

since he/she needs to remember the schema and pick correct attribute names. Thus, we propose

two interfaces: InfoBox Knowledge-Base Browser (IBKB) and InfoBox Editor (IBE).

The InfoBox Knowledge-Base Browser (IBKB): IBKB is implemented to let users browse the

current knowledge base. For a given subject, the tool provides i) structured summary items in user

specified order, ii) the synonyms found by IBminer for the attributes used in the summaries, and iii)

wrong summary items recognized by IBminer. The tool also includes the sources of each piece of

information which can be one or more of the initial knowledge-bases and/or IBminer. By clicking

on each source name, the user will be provided with the original form of the triple in that source.

Each entity in the result pages is also connected to its own page to make the browsing easier for

the users.

Using IBKB, users can select one or more summary items from the user interface, and provide

their feedback on the correctness, relevance, and significance of the items. In addition to using

such feedback to improve IBminer’s performance and to tune its patterns, users’ feedback will be

used to ranking the structured summaries.

The InfoBox Editor (IBE): In addition to the browsing tool for the current knowledge base, we

provide an easy-to-use tool, referred to as IBE, for enhancing the manual process of generating

structured information by the users such as in Wikipedia. For the existing subjects, IBE allows

users to add more textual information and structured summaries. To create a new subject, users

are asked to enter the name (a descriptive subject), one or more categories for the subject, and

a descriptive text for it. They can optionally add as many structured summaries as they desire.

The tool suggests a domain, a InfoBox template, and some structured summaries extracted from

75

the entered text. In this way, users can easily edit the summaries and fill the missing spots in

the suggested templates without worrying about the underlying attribute names. As a result, the

manually generated summaries will follow a more standard terminology; this will improve the

quality of the final knowledge base.

IBKB and IBE outline a new level of functionality required for curated Web corpora to take

a central role in advanced applications. Thus the new responsibility of curators will go beyond

that of enabling the creation of textual documents and supervising their contents. They will also

be responsible for promoting and supervising the process of knowledge creation and integration,

crucial for the many applications that rely on the knowledge bases created from Web document

corpora. Recent developments, including Wikidata [Wik], underscore the significance of this trend.

More details about IBKB and IBE are available in [MGZ13b].

3.7 Experimental Evaluation

In this section, we test and evaluate different steps of creating IKBStore in terms of precision

and recall. To this end, we create an initial knowledge base using subjects listed in Wikipedia

for three specific domains (Musicians, Actors, and Institutes). For these subjects, we add their

related structured data from DBpedia and YaGo2 to our initial knowledge bases. Then, to learn

PM and PAS structures, we use the entire Wikipedia’s long abstracts provided by DBpedia for

the mentioned subjects. We should state that IBMiner only uses the free text and thus can take

advantage of any other source of textual information.

All the experiments are performed in a single machine with 16 cores of 2.27GHz and 16GB of

main memory. This machine is running Ubuntu12. On average, SemScape spends 3.07 seconds

on generating initial semantic links for each sentence on a singe CPU. That is, using 16 cores, we

were able to generate initial semantic links for 5.2 sentences per second.

76

Dataset Name Subjects InfoBox Subjects with Subjects with Sentences

Triples # Abstract InfoBox per Abstract

Musicians 65835 687184 65476 52339 8.4

Actors 52710 670296 52594 50212 6.2

Institutes 86163 952283 84690 54861 5.9

Table 3.2: Description of data sets used in experiments.

3.7.1 Data Sets

To perform our evaluation studies, we created three data sets for the domains of Musicians, Actors,

and Institutes from the subjects and their accompanying abstracts in Wikipedia. These data sets do

not share any subject, and in total they cover around 7.9% of Wikipedia subjects. To build each

data set, we started from a general WikiPedia category describing the domain of the data set (e.g.

Category:Musicians for Musicians data set) and collected all the Wikipedia pages in this category

or any of its descendant categories up to four levels. Table 3.2 provides more details on each data

set.

As for our initial knowledge base, we used DBpedia and Yago2, which provide a better starting

point for our text mining tools. Then we used IBminer to mine the text of the entire long abstract

of each article to create our data set. We should stress that no structured data was associated with

the text in our experiments. In other words, for each subject one can also collect text from different

sources, and employ IBMiner and CS3 to generate InfoBox triples and synonyms from that text.

To evaluate the quality of existing knowledge base, we randomly selected 50 subjects (which

have both abstract and InfoBox) from the Musicians data set. For each subject, we compared the

information provided in its abstract and in its InfoBox. For these 50 subjects, 1155 unique InfoBox

triples (and 92 duplicate triples) are listed in DBpedia. Interestingly, only 305 of these triples are

inferable from the abstract text (only 26.4% of the InfoBoxes are covered by the accompanying

text.) More importantly, we have found 47 wrong triples (4.0%) and 146 (12.6%) triples which

are not useful in terms of main knowledge (e.g. triples specifying upload file name, image name,

format, file size, or alignment). Thus an optimistic estimation is that at most 76% of facts provided

77

in DBpedia are useful for semantic-related applications. We may call this portion of the knowledge

base as useful in this section. Moreover, the accuracy of DBpedia in this case is less than 96%.

3.7.2 Completing Knowledge by IBminer

3.7.2.1 Precision/Recall Performance

In our experiment, we built the Potential Match from 80% of the Musicians data set, using 50

categories (NC = 50) and 4 levels (L = 4). The total number of initial triples for this chunk of

data set is |Tn| = 3.7M , while 52.9K of them match with original InfoBoxes (|Tm| = 52.9K).

Using these PMs and the initial triples generated from the remaining 20% of the abstracts, we

generated our InfoBox triples without any frequency and confidence constrains (i.e. τe = 0 and

τc = 0.0). Later in this section, we analyze the effect of NC and L selection on the results.

To estimate the accuracy of the final triples, we randomly selected 5% of the generated triples

(≈ 42K) and carefully graded them by matching against their abstracts. Many similar systems such

as [CBK10, HSB11, WLW12] have also used manual grading due to the lack of good benchmarks.

Recall estimation is also very hard since we again do not know what portion of the InfoBoxes in

Wikipedia are covered or mentioned in its accompanying text (long abstract for our case). Thus,

we only used those InfoBox triples which match at least one of our initial triples, and compute

how many of them are also generated by IBMiner . In this way, we make sure that the resulting

InfoBox triples were most likely to be mentioned in the text.

To have a better understanding of the issue, we studied the relation between the abstracts and

existing InfoBox triples in DBpedia for 50 randomly selected subjects (which have both abstract

and InfoBox) from the Musicians domain. Interestingly, out of 1155 unique2 InfoBox triples, only

305 are covered by their abstracts (i.e. only 24.4%). We should also add that many of the covered

cases need extra or common-sense knowledge to be converted to the exact InfoBox format (e.g.

different formats for names or dates). More importantly, we have found 47 wrong triples (3.8%)

and 146 unimportant triples (11.7%) (e.g. file names, image names, formats, size, or alignment).

2We had encountered 92 (7.4%) duplicate triples.

78

Figure 3.3: Results for Musicians data set: a) Precision/Recall diagram for best matches, b) Pre-

cision/Recall diagram for attribute synonyms, and c) the size of generated results for the test data

set.

Next we will present our results on the Musicians data set.

Best Matches: Part a) in Figure 3.3 depicts the precision/recall diagram for best matches. As

we decrease our thresholds on potential match evidence count (τe) and confidence (τc), we generate

more triples with lower recall and precision. To ease our analysis, we study the effect of both

threshold in the same experiment by multiplying them. As can be seen, for the first 20% coverage,

IBMiner is generating only correct information. For these cases, τe is very high. To reach 97%

precision which is more than what DBpedia offers, one should set τc.τe to 6,300 (≈ .12|Tm|). For

this case as shown in Part c) of the figure, IBMiner generates around 96.6K triples with 37.3%

recall.

Secondary matches: We also generate the secondary matches or what we refer to as attribute

synonyms for all the InfoBox triples generated in the previous step. Precision and recall are com-

puted similarly and depicted in part b) of Figure 3.3 (while the potential attribute synonym evidence

count (τse) decreases from right to left). For instance, to have 97% accuracy one need to set τsc.τse

to 24,000(≈ .9|Tm|). Although synonym results indicate only 3.6% improvement on the overall

recall, the number of correct new triples that they generate are relatively large (53.6K triples).

Part c) of Figure 3.3 summarizes the number of best matching triples, the total number of

generated items, and the total number of correct items for various τe and τse. It shows that for

τe=.12|Tm|, we reach up to 97% accuracy while the total number of new InfoBox triples is 146.3K.

If we do not consider duplicate, unimportant, and wrong triples in the original InfoBoxes, then the

79

Figure 3.4: a) Precision/Recall diagram for best matches (Actors), b) Precision/Recall diagram for

best matches (Institutes), and c) the size of generated results for Actors and Institutes.

coverage of the current InfoBoxes is improved by at least 27.6%. This is actually very impressive

considering that IBMiner only uses the long abstract of the page.

To study IBMiner ’s performance on different domains, we ran it on two other data sets: i)

Actors data set which has similar attributes with the Musicians, and ii) Institutes data set which has

completely different set of attributes from the other two. For these experiments, we used NC=50

and L=4. The PM for each case is constructed considering the entire data set. As shown in Table

3.2, the average number of sentences in these two data sets is less than that for Musicians, however

the total number of resulted triples are still comparable to that for Musicians data set.

As in the case of Musicians data set, we manually graded triples from the resulted triples for

Actors and Institutes for minimum possible thresholds (5000 triples from each). Part a) and b)

in Figure 3.4 depict the precision/recall diagrams for Actors and Institutes data sets respectively

when τc.τe decreases from left to right. Although we did not create any specific GD rule for these

two data sets, their accuracy can still reach high values. This simply shows that our technique is

domain-independent.

Part a) of Figure 3.4 depicts the precision in Actors results drops early. The main reason for

this outcome is that many triples with same attribute and same value (more than 300 in some cases)

in the original InfoBoxes are simply wrong (e.g., values TV, Film, and Television are frequently

listed as the occupation of a person). A very similar problem exists for the Musicians data set (e.g.

singer is listed as the instrument for a person in more than 300 evidences). Since the the same

errors are repeated in several examples, IBMiner generates some high-confidence wrong triples.

80

Figure 3.5: a) The impact of increasing level number on Recall, b) The impact of increasing

Categories number on Recall, and c) InfoBox generation delay per abstract.

Evenso, IBMiner is still able to generate 270, 8K results with 97.0% accuracy and 25.6% recall.

On the other hand, the InfoBox triples in the Institutes data set are organized very loosely, with

different names used for similar attributes. Thus many more attribute names are used in this data

set than the other two, and as a result, for many attributes, IBMiner is given very few example

to learn from,. This directly affects the number of final results (Part b in Figure 3.4). Even so,

IBMiner manages to generate 102.9K results for this data set, with 97.0% accuracy and 25.4%

recall. Interestingly, if one can tolerate 95% accuracy, the recall for this case can reach up to 56.1%

which is quite impressive.

In Part c) of Figure 3.4, we provide the total number of generated results for various evidence

and confidence thresholds. Although better tuned thresholds could be used, we kept the same

thresholds used for Musicians (scaled by the size of Tm) and report the total number of generated

results and the number of accurately generated ones for each data set in this figure. Although

better coverage is reported for the Institutes data set, for accuracy more than 96% much fewer

results were generated. This is due to the large number of attribute names and few examples for

each of the attributes in the original InfoBoxes in Wikipedia. IBMiner also generates more results

for Actors data set than Musicians data sets, which is mainly due to higher popularity of pages in

the Actors data set which contains many contemporary people.

81

3.7.2.2 The Impact of Category Selection

To understand the impact of category selection technique, we repeat the previously mentioned

experiments for different levels (L) and category numbers (NC). Here, we only compare the results

based on the recall estimation. First, we fix theNC at 40 and change L from 1 to 4. Part a) of Figure

3.5 depicts the estimated recall (only for the best matches) while PM’s frequency threshold (τe)

increases. Not surprisingly, as L increases, the recall improves significantly, since more general

categories are considered in PM construction. On the other hand, using more categories also

improves the recall as depicted in Part b) of the figure. In this part, we fix L at 4 and change

NC from 10 to 50. The results indicate that even with 10 categories, we may obtain good recalls

for lower frequency thresholds (τe). This manly proves the efficiency of our category selection

technique, since even with few categories the system is able to reach high coverage.

In Part c) of Figure 3.5, we compare the time performance of all the above cases. This diagram

shows the average time spent on generating final InfoBoxes for each abstract. As we increase the

levels, the processing time increases exponentially since IBminer performs more database accesses

to generate the categories structure. However, we observe very small changes with the increase in

NC , since it does not require any additional database accesses.

3.7.2.3 Application-based Evaluation

In previous sections, we showed that the recall of the generated information by IBminer can reach

high values. However, to understand how this improvement in recall actually helps the applications

of knowledge bases, we carried out an application based experiment. In this experiment, we create

a set of popular queries (explained next) and compare the search results obtained after DBpedia is

extended by IBminer with the original ones. We also compare these with the results produced by

the iPopulator [LBN10] system. Although other similar systems have been proposed recently, we

selected iPopulator for two main reasons: i) it is designed for generated information from free text

in Wikipedia pages, and more importantly ii) the iPopulator’s results are publicly available.

Creating the query set: In order to create a set of popular queries for our evaluation, we used

82

Figure 3.6: Number of results generated for different queries using DBpedia and IBminer knowl-

edge bases.

Google Search Auto-Complete system, and found around 150 keyword queries suggested by this

system to complete two phrases: “musicians who” and “actors who”. We were able to translate 120

of these keyword-based queries to SPARQL. The remaining keyword queries, (e.g., “Actors who

are tall”, “Musicians who married normal people”, etc.) are too vague for a precise translation and

quantification and were thus ignored.

Knowledge Bases: Three different knowledge bases (KBs) are used in this evaluation. As for

the baseline KB, we use DBpedia’s InfoBox triples. Note that both IBminer and iPopulator use

DBpedia as their initial knowledge bases. Since the goal is to measure how much IBminer’s result

improves DBpedia, we combine the triples in DBpedia and IBminer into our second KB called

IBminer+DBpedia. We create the third KB similarly for iPopulator by adding its results to those

of DBpedia.

After preparing the queries and the knowledge bases, we employed Apache Jena [Jen], and

ran the queries using the three knowledge bases. For more than 44% of the queries, no answer

is found from any of the knowledge bases. This very clearly proves the incompleteness of the

current knowledge bases. Nevertheless, for the remaining queries, the IBminer case almost always

(except 4 queries) finds more answers than the baseline case. Figure 3.6 shows what portion

of the answers (for each query) that are found using IBminer+DBpedia is also inferable using

83

only DBpedia’s knowledge base. To better present the results, we sort the queries based on the

percentage introduced above. We also exclude the queries with no answer in any of the knowledge

bases from the figure.

As Figure 3.6 indicates, there are several cases (11.6%) in which DBpedia is not able to provide

any answer for the queries as opposed to IBminer. Using IBminer, we are actually able to find

between 1 to 29 answers for these queries. The number of found results using IBminer+DBpedia

is included in the horizontal axis in addition to the query IDs in Figure 3.6. In total for all queries,

IBminer improves original DBpedia by 53.3% on answering structured queries. This value for

iPopulator is less than 1%. In fact, iPopulator was able to slightly improve DBpedia in query

answering only for 6.6% of the queries. This is mainly because of three reasons: i) the recall

of iPopulator is much lower than IBminer (at least 10 times). ii) iPopulator does not recognize

synonymous attributes, and iii) some of the generated values in iPopulator are not accurate and in

addition to the correct values, they usually contain other unrelated textual phrases as well.

All queries and their answers from the introduced knowledge bases are available at SWIMS

website [Sem]. In this website, users can also use our recently proposed demo at PVLDB13

[MGZ13b] and find the list of InfoBox triples for the answers provided for each query. We provide

the provenance of each triples, which indicates if the triple is taken from DBpedia, IBminer, etc.

Thus verifying the quality of the answers for these queries is quite easy.

3.7.3 Completing Knowledge by Attribute Synonyms

In order to compute the precision and recall for the attribute synonyms generated by CS3, we

use the Musicians data set and construct the PAS structure as described in section 3.4. Using

PAS, we generated possible synonyms for 10, 000 InfoBox items in our initial knowledge base.

Note that these synonyms are for already existing InfoBoxes which differentiate them from sec-

ondary matches evaluated in previous section. This has generated more than 14, 900 synonym

items. Among the 10, 000 InfoBox items, 1263 attribute synonyms were listed and our technique

generated 994 of them. We used these matches to estimate the recall value of our technique for

84

Figure 3.7: The Precision/Recall diagram for the attribute synonyms generated for existing In-

foBoxes in the Musicians data set.

different frequency thresholds (τcs) as shown in Figure 3.7. As for the precision estimation, we

manually graded the generated synonyms.

As can be seen in Figure 3.7, CS3 is able to find more than 74% of the possible synonyms

with more than 92% accuracy. In fact, this is a very big step in improving structured query results,

since it increase the coverage of the IKBStore by at least 88.3%. This in some sense improves the

consistency of the knowledge base by providing more synonymous InfoBox triples. In aggregate

with the improvement we achieved by IBMiner , we can state that our IKBStore doubles the size

of the current knowledge bases while preserving their precision (if not improving) and improving

their consistency.

3.7.4 Summary

After initial integration, knowledge completion and alignment, IKBStore contains 9.2 million En-

glish subjects and 105.4 million triples. All triples in our integrated KB are assigned accuracy,

confidence, and frequency values, as explained in previous Sections. The sources from which

the triples are generated are also stored to support provenance auditing in our KB. We are also

processing the whole wikipedia text, which will produce more Infoboxes for IKBStore.

85

3.8 Related Work

Knowledge Integration There are several attempts to generate large-scale knowledge bases [OPE,

CBK10, LS04, BEP08, BLK09, GEO, MUS]. However, none of them are providing any auto-

matic integration technique among existing knowledge bases. There are only a few recent ef-

forts on integrating knowledge bases in both domain-specific and general topics. GeoWordNet

[GMF10] is an integrated knowledge base of GeoNames [GEO], WordNet [SR98], and MultiWord-

Net [PBG02]. However, the integration is based on the manually created concept mapping which is

time-consuming and error-prone for large scale knowledge base integration. In [HSB13, HSB11],

Yago2 is integrated with GeoNames and structured information in Wikipedia. The category (class)

mapping in Yago2 is performed by simple string matching which is not reliable for large tax-

onomies such as the one in Wikipedia. Recently, Wu et al. proposed Probase [WLW12] which

aims to generate a general taxonomy from web documents. Probase merged the concepts and in-

stances into a large general taxonomy. In taxonomy integration, the concepts with similar context

properties (e.g. derived from the same sentence or with similar child nodes) are merged.

Knowledge Extraction A large body of research currently focuses on pattern-based knowledge

generation from free text. Etzioni et al. in KnowItAll created a general purpose ontology by

finding unary and binary predicate instances from the text [ECD04]. Later, Yates et al. proposed

a similar system called TextRunner which improves the accuracy of KnowItAll by considering all

meaningful relations in the text [YCB07]. Despite the impressive accuracy in their evaluations,

they both suffer from limited coverage issues.

In [NMI07], Nguyen et al. used both semantic and syntactic information to extract relations

from Wikipedia. However, their approach focuses on the relations between existing entities in

Wikipedia, which is not easily applicable on InfoBox generation and population. Other similar

systems such as PROSPERA [NTW11] also suffer from the very same problem. Wu and Weld used

an automatic technique to create a training set [WW10]. Their main idea, which was originally

proposed in [HZW10], is to assign each attribute/value pair in the InfoBoxes to a sentence in the

page using some straightforward heuristics. Then, these assignments are used to learn extractors

86

which in turn generate more attribute/values. Although it is shown impressive improvement with

respect to TextRunner, their accuracy is still limited to less than 90% for most cases.

NELL [CBK10] performs a pattern-based fact generation on a large-scale text set and itera-

tively improves their knowledge base. In 66 days experiment, NELL generated about 230,000

unary relations (Subject/Category triples) and 12,000 binary relations (InfoBox-like triples) with

74% accuracy. Comparing with the size of the input data set which contains 500 million web

pages, the coverage seems too low. Another approach which attempts to generate a large scale

commonsense knowledge base is CYC [EG06]. Although, CYC has been recently equipped with

several NLP-based and automatic techniques, the main core still relies on supervised techniques

on semi-structured data sets.

Another large scale pattern-based knowledge construction system is Probase [WLH11, WLW12],

which iteratively induces taxonomical information from large text. At each iteration, Probase uses

existing taxonomies to identify new ‘isA’ pairs from text and integrates the new pairs into the tax-

onomies. It also proposes an algorithm to merge and connect concepts. Probase produces a general

taxonomy with more than 2.7 million concepts from the textual web documents. However, Probase

is only able to generate taxonomical information which is not the focus of this paper.

Recently, two similar approaches to IBminer are proposed by Lange et al. called iPopulator

[LBN10] and Liu et al. called DeepDive [NZR12]. iPopulator presents a new technique which

uses existing InfoBox triples in Wikipedia to discover structures in the text, that represent pos-

sible attribute/value for the subjects. However, iPopulator also suffers from low coverage issue.

DeepDive, on the other hand, first employs NLP tools to extract relations from raw text. Then,

the relations are used to train statistical models which convert the initial relations into a knowl-

edge base. Although this approach in nature is very similar to IBminer, it does not provide any

evaluation or experiment on the quality of the generated triples.

Synonym Suggestion One of the early work in this area is WordNet [SR98] which provides man-

ually defined synonyms for general words. Words and very general terms in WordNet are grouped

to set of synonyms called Synset. Although WordNet contains 117,000 high quality Synsets, it

87

is still limited to only general words which miss most of multi-word terms, and as a result it is

not effective to be used in large scale knowledge base integration systems. Another approach to

extract synonyms is based on approximate string matching (fuzzy string searching) [Nav01]. This

technique is effective in detecting certain kinds of format-related synonyms, such as normalization

and misspelling. However, this technique can not discover semantic synonyms.

To overcome the shortcomings of the aforementioned approaches, more automatic approaches

for generating entity synonyms from web scale documents were presented in recent years. In

[CGX09a, CGX09b], Chaudhuri et al. proposed an approach to generate a set of synonyms which

are substrings of given entities. This approach exploits the correlation between the substrings and

the entities in the web documents to identify the candidate synonyms. In [CLP10, CLP12], Cheng

et al. used query click logs in web search engine to derive synonyms. First, according to the click

logs, every entity is associated with a set of relevant web pages. Then, the queries which result in

certain web pages are considered as possible synonyms for the associated entities of those pages.

The synonyms are then refined by evaluating the click patterns of queries. Later in [CCC12],

Chakrabarti et al. refined this approach by defining similarity functions, which solves click log

sparsity problem and verifies that candidate synonym string is of the same class of the entity. In

[Tur01], the author proposed a machine learning algorithm, called PMI-IR to mine synonyms from

web documents. In PMI-IR, if two sets of documents are correlated, the words associated with the

two sets are taken as candidate synonyms.

88

CHAPTER 4

Conclusion and Future Work

The success of semantic applications such as semantic search and question answering systems

shows that major advances in knowledge discovery and retrieval can be achieved once large-scale

knowledge bases are available and the quality of knowledge is guaranteed. Most of efforts in

this research area focus on constructing knowledge bases using structured information, whereas

knowledge integration techniques are neglected, and so was the use of deep NLP techniques for

extracting knowledge from free text. On the other hand, the information in the knowledge base

is evolving over time. The history of knowledge base is of great interest to users, who thus need

powerful tools to explore it. In this dissertation, we tackled these problems and made significant

progress as follows:

(i) We proposed SPARQLT and implemented RDF-TX which supports powerful queries over

the evolution history of RDF knowledge bases. SPARQLT enables the expression of a wide variety

of temporal queries via simple extension of SPARQL query pattern and built-in functions. The

evolution history is stored as temporal RDF triples in compressed MVBT. Temporal queries over

temporal RDF graphs are efficiently evaluated in the backend query engine that achieves excel-

lent performance by exploiting MVBT as index and leveraging fast algorithms for range selection

and temporal join on MVBT. RDF-TX also features a query optimizer that uses the statistics of

temporal RDF graphs to find the efficient join orders for complex SPARQLT queries. Exten-

sive experiments on real world datasets show that RDF-TX outperforms other approaches that use

state-of-art RDF engines and relational databases in all kinds of queries and delivers 1 - 2 orders

of magnitude performance improvement in complex queries. This confirms the effectiveness and

superior performance of our approach.

89

(ii) We proposed SWIM framework, which consists of a set of tools for knowledge extraction

and integration. We first integrate currently existing knowledge bases into a more complete and

consistent knowledge base IKBStore. IKBStore merges existing knowledge bases using the in-

terlinks they provide. Then, it employs the text-based knowledge discovery system IBMiner to

improve the coverage of the initially integrated knowledge bases by extracting knowledge from

free text. Finally, we utilize the CS3 to extract context-aware attribute and entity synonyms and

use them to reconcile among different terminologies used by different knowledge bases. In this

way, we create an integrated knowledge base which outperforms existing knowledge bases in terms

of coverage, accuracy, and consistency. The provenance information is well preserved in the in-

tegrated knowledge base. Our preliminary evaluation also proves this claim as it shows that the

integrated knowledge base greatly improves the coverage of the existing knowledge base while

slightly improving accuracy and resolving many inconsistencies.

The work presented in this dissertation introduces many opportunities for further studies and

improvements. For temporal queries over the history of knowledge bases, we plan to improve

RDF-TX on the parallel computing over MVBT indices. The structure of MVBT makes it easy to

be partitioned based on the timestamps. The temporal operations are executed in parallel by first

computing on different partitions and then merging the results. For many large knowledge bases,

the size of history may grow very fast. Thus we also plan to explore more efficient index scheme

for temporal RDF data.

As for knowledge integration, IKBStore will be extended and improved with knowledge taken

from Wikidata and Freebase, and our interface will be extended with multilingual query capabili-

ties. Moreover, we plan to apply our tools and approach to document corpora other than Wikipedia,

e.g., medical and technical encyclopedias.

90

REFERENCES

[AGD13] Enrique Alfonseca, Guillermo Garrido, Jean-Yves Delort, and Anselmo Penas.
“WHAD: Wikipedia historical attributes data.” LRE, p. 28, 2013.

[All83] James F. Allen. “Maintaining Knowledge About Temporal Intervals.” Commun. ACM,
26(11):832–843, 1983.

[AS13] Daniar Achakeev and Bernhard Seeger. “Efficient Bulk Updates on Multiversion B-
trees.” PVLDB, 6(14):1834–1845, 2013.

[AT10] Witold Abramowicz and Robert Tolksdorf, editors. Business Information Systems,
13th International Conference, BIS 2010, Berlin, Germany, May 3-5, 2010. Proceed-
ings, volume 47 of Lecture Notes in Business Information Processing. Springer, 2010.

[ATS11] P. Adolphs, M. Theobald, U. Schafer, H. Uszkoreit, and G. Weikum. “YAGO-QA: An-
swering questions by structured knowledge queries.” In Semantic Computing (ICSC),
2011 Fifth IEEE International Conference on, pp. 158–161. IEEE, 2011.

[AZ12] Maurizio Atzori and Carlo Zaniolo. “SWiPE: searching wikipedia by example.” In
WWW (Companion Volume), pp. 309–312, 2012.

[AZ14] Maurizio Atzori and Carlo Zaniolo. “Expressivity and Accuracy of By-Example
Structure Queries on Wikipedia.” CSD Technical Report #140017, UCLA, 2014.

[BC02] Sabin C. Buraga and Gabriel Ciobanu. “A RDF-based Model for Expressing Spatio-
Temporal Relations Between Web Sites.” In WISE, pp. 355–361, 2002.

[BCW05] Christian Bizer, Richard Cyganiak, and E Rowland Watkins. “Ng4j-named graphs api
for jena.” In ESWC, 2005.

[BEP08] Kurt D. Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor.
“Freebase: a collaboratively created graph database for structuring human knowl-
edge.” In SIGMOD, pp. 1247–1250, 2008.

[BGO96] Bruno Becker, Stephan Gschwind, Thomas Ohler, Bernhard Seeger, and Peter Wid-
mayer. “An Asymptotically Optimal Multiversion B-tree.” VLDB, 5(4):264–275,
1996.

[BLK09] Christian Bizer, Jens Lehmann, Georgi Kobilarov, Sören Auer, Christian Becker,
Richard Cyganiak, and Sebastian Hellmann. “DBpedia - A crystallization point for
the Web of Data.” J. Web Sem., 7(3):154–165, 2009.

[BS96] Jochen Van den Bercken and Bernhard Seeger. “Query Processing Techniques for
Multiversion Access Methods.” In VLDB, pp. 168–179, 1996.

[CBH05] Jeremy J. Carroll, Christian Bizer, Patrick J. Hayes, and Patrick Stickler. “Named
graphs, provenance and trust.” In WWW, pp. 613–622, 2005.

91

[CBK10] Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam R. Hruschka
Jr., and Tom M. Mitchell. “Toward an Architecture for Never-Ending Language Learn-
ing.” In AAAI, 2010.

[CCC12] Kaushik Chakrabarti, Surajit Chaudhuri, Tao Cheng, and Dong Xin. “A framework
for robust discovery of entity synonyms.” In Proceedings of the 18th ACM SIGKDD
international conference on Knowledge discovery and data mining, KDD ’12, pp.
1384–1392, New York, NY, USA, 2012. ACM.

[CGX09a] Surajit Chaudhuri, Venkatesh Ganti, and Dong Xin. “Exploiting web search to gen-
erate synonyms for entities.” In Proceedings of the 18th international conference on
World wide web, WWW ’09, pp. 151–160, New York, NY, USA, 2009. ACM.

[CGX09b] Surajit Chaudhuri, Venkatesh Ganti, and Dong Xin. “Mining document collections to
facilitate accurate approximate entity matching.” Proc. VLDB Endow., 2(1):395–406,
August 2009.

[CLP10] Tao Cheng, Hady Wirawan Lauw, and Stelios Paparizos. “Fuzzy matching of Web
queries to structured data.” In ICDE, pp. 713–716, 2010.

[CLP12] Tao Cheng, Hady Wirawan Lauw, and Stelios Paparizos. “Entity Synonyms for Struc-
tured Web Search.” IEEE Trans. Knowl. Data Eng., 24(10):1862–1875, 2012.

[CZ99] Cindy Xinmin Chen and Carlo Zaniolo. “Universal Temporal Extensions for Database
Languages.” In ICDE, pp. 428–437, 1999.

[DAA12] Carlos Viegas Damásio, Anastasia Analyti, and Grigoris Antoniou. “Provenance for
SPARQL Queries.” In The Semantic Web - ISWC 2012 - 11th International Semantic
Web Conference, Boston, MA, USA, November 11-15, 2012, Proceedings, Part I, pp.
625–640, 2012.

[dbp] “DBpedia Live.” http://live.dbpedia.org.

[ECD04] Oren Etzioni, Michael J. Cafarella, Doug Downey, Stanley Kok, Ana-Maria Popescu,
Tal Shaked, Stephen Soderland, Daniel S. Weld, and Alexander Yates. “Web-scale
information extraction in knowitall: (preliminary results).” In WWW, pp. 100–110,
2004.

[EG06] C. Elkan and R. Greiner. “Building large knowledge-based systems: representation
and inference in the Cyc project.” Artificial Intelligence, 61(1):41–52, 2006.

[GCA15] Shi Gao, Muhao Chen, Maurizio Atzori, Jiaqi Gu, and Carlo Zaniolo. “SPARQLT and
its User-Friendly Interface for Managing and Querying the History of RDF Knowledge
Bases.” In ISWC, 2015.

[GEO] “GeoNames.” http://www.geonames.org.

92

http://www.geonames.org

[GGZ15] Shi Gao, Jiaqi Gu, and Carlo Zaniolo. “RDF-TX: A Fast, User-Friendly System for
Querying the History of RDF Knowledge Bases.” UCLA CS Tech Report 150004,
2015.

[GHV05] Claudio Gutiérrez, Carlos A. Hurtado, and Alejandro A. Vaisman. “Temporal RDF.”
In ESWC, pp. 93–107, 2005.

[GHV07] Claudio Gutierrez, Carlos A. Hurtado, and Alejandro A. Vaisman. “Introducing Time
into RDF.” TKDE, 19(2):207–218, 2007.

[GKC13] Floris Geerts, Grigoris Karvounarakis, Vassilis Christophides, and Irini Fundulaki.
“Algebraic structures for capturing the provenance of SPARQL queries.” In Joint 2013
EDBT/ICDT Conferences, ICDT ’13 Proceedings, Genoa, Italy, March 18-22, 2013,
pp. 153–164, 2013.

[GMF10] Fausto Giunchiglia, Vincenzo Maltese, Feroz Farazi, and Biswanath Dutta. “Ge-
oWordNet: A Resource for Geo-spatial Applications.” In ESWC (1), pp. 121–136,
2010.

[gov] “GovTrack Dataset.” https://www.govtrack.us/.

[Gra10] Fabio Grandi. “T-SPARQL: a TSQL2-like temporal query language for RDF.”
GraphQ, pp. 21–30, 2010.

[HBS10] Rasmus Hahn, Christian Bizer, Christopher Sahnwaldt, Christian Herta, Scott Robin-
son, Michaela Bürgle, Holger Düwiger, and Ulrich Scheel. “Faceted Wikipedia
Search.” In BIS, 2010.

[HCH08] Jinpeng Huai, Robin Chen, Hsiao-Wuen Hon, Yunhao Liu, Wei-Ying Ma, Andrew
Tomkins, and Xiaodong Zhang, editors. WWW 2008, Beijing, China, April 21-25,
2008. ACM, 2008.

[HSB11] Johannes Hoffart, Fabian M. Suchanek, Klaus Berberich, Edwin Lewis-Kelham, Ger-
ard de Melo, and Gerhard Weikum. “YAGO2: Exploring and Querying World Knowl-
edge in Time, Space, Context, and Many Languages.” WWW, pp. 229–232, 2011.

[HSB13] Johannes Hoffart, Fabian M. Suchanek, Klaus Berberich, and Gerhard Weikum.
“YAGO2: A spatially and temporally enhanced knowledge base from Wikipedia.” Ar-
tif. Intell., 194:28–61, 2013.

[HZW10] Raphael Hoffmann, Congle Zhang, and Daniel S. Weld. “Learning 5000 Relational
Extractors.” In ACL, pp. 286–295, 2010.

[Jen] “Apache Jena.” http://jena.apache.org/.

[JSL00] Linan Jiang, Betty Salzberg, David B. Lomet, and Manuel Barrena Garcı́a. “The BT-
tree: A Branched and Temporal Access Method.” In VLDB, pp. 451–460, 2000.

93

http://jena.apache.org/

[JT10] Xing Jiang and Ah-Hwee Tan. “CRCTOL: A semantic-based domain ontology learn-
ing system.” JASIST, 61(1):150–168, 2010.

[KPG12] Chanhyun Kang, Andrea Pugliese, John Grant, and V. S. Subrahmanian. “STUN:
Spatio-Temporal Uncertain (Social) Networks.” In ASONAM, pp. 543–550, 2012.

[LBM05] David B. Lomet, Roger S. Barga, Mohamed F. Mokbel, German Shegalov, Rui Wang,
and Yunyue Zhu. “Immortal DB: transaction time support for SQL server.” In SIG-
MOD, 2005.

[LBN10] Dustin Lange, Christoph Böhm, and Felix Naumann. “Extracting structured informa-
tion from Wikipedia articles to populate infoboxes.” In Proceedings of the 19th ACM
international conference on Information and knowledge management, CIKM ’10, pp.
1661–1664, New York, NY, USA, 2010. ACM.

[LHN08] David B. Lomet, Mingsheng Hong, Rimma V. Nehme, and Rui Zhang. “Transaction
time indexing with version compression.” PVLDB, 1(1):870–881, 2008.

[LS04] H. Liu and P. Singh. “ConceptNet: A Practical Commonsense Reasoning Tool-Kit.”
BT Technology Journal, 22(4):211–226, October 2004.

[LWW11] Taesung Lee, Zhongyuan Wang, Haixun Wang, and Seung won Hwang. “Web Scale
Taxonomy Cleansing.” PVLDB, 4(12):1295–1306, 2011.

[MAG14] Hamid Mousavi, Maurizio Atzori, Shi Gao, and Carlo Zaniolo. “Text-Mining, Struc-
tured Queries, and Knowledge Management on Web Document Corpora.” SIGMOD
Record, 43(3):48–54, 2014.

[MB09] Brian McBride and Mark Butler. “Representing and Querying Historical Information
in RDF with Application to E-Discovery.” HP Laboratories Technical Report HPL-
2009-261, 2009.

[MGK14] Hamid Mousavi, Shi Gao, Deirdre Kerr, Markus Iseli, and Carlo Zaniolo. “Mining
Semantics Structures from Syntactic Structures in Web Document Corpora.” Int. J.
Semantic Computing, 8(4):461–490, 2014.

[MGZ13a] Hamid Mousavi, Shi Gao, and Carlo Zaniolo. “Discovering Attribute and Entity Syn-
onyms for Knowledge Integration and Semantic Web Search.” SSW, 2013.

[MGZ13b] Hamid Mousavi, Shi Gao, and Carlo Zaniolo. “IBminer: A Text Mining Tool for
Constructing and Populating InfoBox Databases and Knowledge Bases.” PVLDB,
6(12):1330–1333, 2013.

[MKI11a] Hamid Mousavi, Deirdre Kerr, and Markus Iseli. “A New Framework for Textual
Information Mining over Parse Trees.” In (CRESST Report 775). University of Cali-
fornia, Los Angeles, 2011.

94

[MKI11b] Hamid Mousavi, Deirdre Kerr, and Markus Iseli. “A New Framework for Textual
Information Mining over Parse Trees.” In ICSC, 2011.

[MKI13a] Hamid Mousavi, Deirdre Kerr, Markus Iseli, and Carlo Zaniolo. “Deducing InfoBoxes
from Unstructured Text in Wikipedia Pages.” In CSD Technical Report #130001,
UCLA, 2013.

[MKI13b] Hamid Mousavi, Deirdre Kerr, Markus Iseli, and Carlo Zaniolo. “OntoHarvester:
An Unsupervised Ontology Generator from Free Text.” In CSD Technical Report
#130003, UCLA, 2013.

[MKI14] Hamid Mousavi, Deirdre Kerr, Markus Iseli, and Carlo Zaniolo. “Mining Semantic
Structures from Syntactic Structures in Free Text Documents.” In CSD TR #140005,
UCLA, 2014.

[MN06] Guido Moerkotte and Thomas Neumann. “Analysis of Two Existing and One New
Dynamic Programming Algorithm for the Generation of Optimal Bushy Join Trees
without Cross Products.” In VLDB, pp. 930–941, 2006.

[MRS11] Y. Mass, M. Ramanath, Y. Sagiv, and G. Weikum. “Iq: The case for iterative querying
for knowledge.” In CIDR, 2011.

[MUS] “MusicBrainz.” http://musicbrainz.org.

[MWF07] Simon Miles, Sylvia C. Wong, Weijian Fang, Paul Groth, Klaus-Peter Zauner, and Luc
Moreau. “Provenance-based validation of e-science experiments.” Web Semant., 5(1),
March 2007.

[Nav01] Gonzalo Navarro. “A guided tour to approximate string matching.” ACM Comput.
Surv., 33(1):31–88, March 2001.

[ND] Mario A. Nascimento and Margaret H. Dunham. “Indexing Valid Time Databases via
B+-Trees.” TKDE, 11(6):929–947.

[NM11] Thomas Neumann and Guido Moerkotte. “Characteristic Sets: Accurate Cardinality
Estimation for RDF Queries with Multiple Joins.” ICDE, pp. 984–994, 2011.

[NMI07] Dat P. T Nguyen, Yutaka Matsuo, and Mitsuru Ishizuka. “Exploiting syntactic and
semantic information for relation extraction from wikipedia.” In IJCAI07-TextLinkWS,
2007.

[NTW11] Ndapandula Nakashole, Martin Theobald, and Gerhard Weikum. “Scalable knowl-
edge harvesting with high precision and high recall.” WSDM ‘11, pp. 227–236, New
York, NY, USA, 2011. ACM.

[NW10] Thomas Neumann and Gerhard Weikum. “The RDF-3X Engine for Scalable Manage-
ment of RDF Data.” VLDBJ, 19(1):91–113, 2010.

95

[NZR12] Feng Niu, Ce Zhang, Christopher Re, and Jude W. Shavlik. “DeepDive: Web-scale
Knowledge-base Construction using Statistical Learning and Inference.” In VLDS, pp.
25–28, 2012.

[OPE] “OPENCYC.” http://www.cyc.com/platform/opencyc.

[PBG02] Emanuele Pianta, Luisa Bentivogli, and Christian Girardi. “MultiWordNet: devel-
oping an aligned multilingual database.” In Proceedings of the First International
Conference on Global WordNet, 2002.

[PGR10] Aditya G. Parameswaran, Hector Garcia-Molina, and Anand Rajaraman. “Towards
The Web of Concepts: Extracting Concepts from Large Datasets.” PVLDB, 3(1):566–
577, 2010.

[PSH07] Matthew Perry, Amit P. Sheth, Farshad Hakimpour, and Prateek Jain. “Supporting
Complex Thematic, Spatial and Temporal Queries over Semantic Web Data.” In GeoS,
pp. 228–246, 2007.

[PUS08] Andrea Pugliese, Octavian Udrea, and V. S. Subrahmanian. “Scaling RDF with Time.”
In WWW, pp. 605–614, 2008.

[Sem] “Semantic Web Information Management System (SWIMS).”
http://semscape.cs.ucla.edu.

[SKW08] Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. “YAGO: A Large On-
tology from Wikipedia and WordNet.” J. Web Sem., 6(3):203–217, 2008.

[SPA] “SPARQL Query Language for RDF.” http://www.w3.org/TR/rdf-sparql-query/.

[SR98] Michael M. Stark and Richard F. Riesenfeld. “WordNet: An Electronic Lexical
Database.” In Eurographics Workshop on Rendering. MIT Press, 1998.

[SSB08] Markus Stocker, Andy Seaborne, Abraham Bernstein, Christoph Kiefer, and Dave
Reynolds. “SPARQL basic graph pattern optimization using selectivity estimation.”
In WWW, pp. 595–604, 2008.

[ST99] Betty Salzberg and Vassilis J. Tsotras. “Comparison of Access Methods for Time-
Evolving Data.” ACM Comput. Surv., 31(2):158–221, 1999.

[TB09] Jonas Tappolet and Abraham Bernstein. “Applied Temporal RDF: Efficient Temporal
Querying of RDF Data with SPARQL.” In ESWC, pp. 308–322, 2009.

[TFK11] Yannis Theoharis, Irini Fundulaki, Grigoris Karvounarakis, and Vassilis
Christophides. “On Provenance of Queries on Semantic Web Data.” IEEE
Internet Computing, 15(1), 2011.

[TML99] Theodoros Tzouramanis, Yannis Manolopoulos, and Nikos A. Lorentzos. “Overlap-
ping B+-Trees: An Implementation of a Transaction Time Access Method.” DKE,
29(3):381–404, 1999.

96

[Tom96] David Toman. “Point vs. Interval-based Query Languages for Temporal Databases.”
In PODS, pp. 58–67, 1996.

[Tur01] Peter D. Turney. “Mining the Web for Synonyms: PMI-IR versus LSA on TOEFL.”
In Proceedings of the 12th European Conference on Machine Learning, EMCL ’01,
pp. 491–502, London, UK, UK, 2001. Springer-Verlag.

[vir] “Virtuoso.” https://github.com/openlink/virtuoso-opensource.

[Wik] “Wikidata.” http://www.wikidata.org.

[WLH11] W.Wu, H. Li, H.Wang, and K. Zhu. “Towards a probabilistic taxonomy of many
concepts.” Technical report, 2011.

[WLW12] Wentao Wu, Hongsong Li, Haixun Wang, and Kenny Q. Zhu. “Probase: a probabilistic
taxonomy for text understanding.” SIGMOD ‘12, pp. 481–492, New York, NY, USA,
2012. ACM.

[Wor12] “WordNet.” http://wordnet.princeton.edu/, 2012.

[WSK03] Kevin Wilkinson, Craig Sayers, Harumi A. Kuno, and Dave Reynolds. “Efficient RDF
Storage and Retrieval in Jena2.” In SWDB, pp. 131–150, 2003.

[WW10] Fei Wu and Daniel S. Weld. “Open Information Extraction Using Wikipedia.” In ACL,
pp. 118–127, 2010.

[YCB07] Alexander Yates, Michael Cafarella, Michele Banko, Oren Etzioni, Matthew Broad-
head, and Stephen Soderland. “TextRunner: open information extraction on the web.”
In Proceedings of Human Language Technologies, pp. 25–26, Stroudsburg, PA, USA,
2007.

[YLW13] Pingpeng Yuan, Pu Liu, Buwen Wu, Hai Jin, Wenya Zhang, and Ling Liu. “TripleBit:
a Fast and Compact System for Large Scale RDF Data.” PVLDB, 6(7):517–528, 2013.

[YW01] Jun Yang and Jennifer Widom. “Incremental Computation and Maintenance of Tem-
poral Aggregates.” In ICDE, pp. 51–60, 2001.

[ZMT01] Donghui Zhang, Alexander Markowetz, Vassilis J. Tsotras, Dimitrios Gunopulos, and
Bernhard Seeger. “Efficient Computation of Temporal Aggregates with Range Predi-
cates.” In PODS, 2001.

[ZMT08] Donghui Zhang, Alexander Markowetz, Vassilis J. Tsotras, Dimitrios Gunopulos, and
Bernhard Seeger. “On Computing Temporal Aggregates with Range Predicates.”
TODS, 33(2):12:1–12:39, 2008.

[ZTS02] Donghui Zhang, Vassilis J. Tsotras, and Bernhard Seeger. “Efficient Temporal Join
Processing Using Indices.” In ICDE, pp. 103–113, 2002.

[ZWZ06] Xin Zhou, Fusheng Wang, and Carlo Zaniolo. “Efficient Temporal Coalescing Query
Support in Relational Database Systems.” In DEXA, pp. 676–686, 2006.

97

	Introduction
	Temporal Query over the History of Knowledge Bases
	Knowledge Integration
	Overview and Contributions
	Query Language, Interface, and System for Querying the History of Knowledge Bases
	Knowledge Integration

	RDF-TX: A Fast, User-Friendly System for Querying the History of RDF Knowledge Bases
	Overview and Data Model
	System Architecture
	Temporal RDF Graph

	SPARQLT Query Language
	Storage and Index
	Index Scheme
	Index Compression

	Query Processing
	Compiling SPARQLT Query
	Executing Query Plan

	Optimization
	RDF-TX Query Optimizer
	Temporal Histogram
	Statistics Estimation

	Experimental Evaluation
	Experiment Setup
	Index Space
	Query Performance
	Effectiveness of Query Optimizer
	Index Construction & Maintenance

	Historical Knowledge Browser
	Related Work

	SWIM: A Framework for Knowledge Extraction and Integration
	Overview
	IKBStore: Integrated Knowledge Base
	Data Gathering
	Initial Knowledge Integration
	Further Knowledge Integration

	IBMiner: Deriving Structured Summaries from Text
	From Text to TextGraphs
	Generating Semantic Links
	Mapping Links to Attributes

	CS3: Discovering Attribute and Entity Synonyms
	Generating Attribute Synonyms
	Generating Entity Synonyms

	Knowledge Provenance Management
	User-Friendly Interfaces for Browsing and Editing Knowledge
	Experimental Evaluation
	Data Sets
	Completing Knowledge by IBminer
	Completing Knowledge by Attribute Synonyms
	Summary

	Related Work

	Conclusion and Future Work
	References

