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Summary

Chromatin is composed of DNA and a variety of modified histones and non-histone proteins, 

which impact cell differentiation, gene regulation and other key cellular processes. We present a 

genome-wide chromatin landscape for Drosophila melanogaster based on 18 histone 

modifications, summarized by 9 prevalent combinatorial patterns. Integrative analysis with other 

data (non-histone chromatin proteins, DNaseI hypersensitivity, GRO-seq reads produced by 

engaged polymerase, short/long RNA products) reveals discrete characteristics of chromosomes, 

genes, regulatory elements, and other functional domains. We find that active genes display 

distinct chromatin signatures that are correlated with disparate gene lengths, exon patterns, 

regulatory functions, and genomic contexts. We also demonstrate a diversity of signatures among 

Polycomb targets that include a subset with paused polymerase. This systematic profiling and 

integrative analysis of chromatin signatures provides insights into how genomic elements are 

regulated, and will serve as a resource for future experimental investigations of genome structure 

and function.

The model organism Encyclopedia of DNA Elements (modENCODE) project is generating 

a comprehensive map of chromatin components, transcription factors, transcripts, small 

RNAs, and origins of replication in D. melanogaster and C. elegans1,2. Drosophila has been 

used as a model system for over a century to study chromosome structure and function, gene 

regulation, development, and evolution. The availability of high-quality euchromatic and 

heterochromatic sequence assemblies3-5, extensive annotation of functional elements6, and 

a vast repertoire of experimental manipulations enhance the value of epigenomic studies in 

Drosophila.

Genome-wide profiling of chromatin components provides a rich annotation of the potential 

functions of the underlying DNA sequences. Previous work has identified patterns of post-

translational histone modifications and non-histone proteins associated with specific 

elements (e.g. transcription start sites, enhancers), as well as delineating the transcriptional 

status of genes and large domains7,8. Here, we present a comprehensive picture of the 

chromatin landscape in a model eukaryotic genome. We define combinatorial chromatin 

‘states’ at different levels of organization, from individual regulatory units to the 

chromosome level, and relate individual states to genome functions.

Combinatorial chromatin states

We performed chromatin immunoprecipitation (ChIP)-array analysis for numerous histone 

modifications and chromosomal proteins (Supp. Table 1), using antibodies tested for 

specificity and cross-reactivity9 (Supp. Figure 1). Here, we describe analyses of cell lines 

S2-DRSC (S2) and ML-DmBG3-c2 (BG3), derived from late male embryonic tissues 

(stages 16-17) and the central nervous system of male third instar larvae, respectively (see 

http://www.modencode.org for data from other cell lines and animal stages). Analysis 
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reveals groups of correlated features, including those associated with heterochromatic 

regions10, Polycomb-mediated repression11, and active transcription12 (Supp. Figure 2), 

similar to those observed in other organisms13,14. This suggests that specific histone 

modifications work together to achieve distinct chromatin “states”.

We utilized a machine-learning approach to identify the prevalent combinatorial patterns of 

18 histone modifications, capturing the overall complexity of chromatin profiles observed in 

S2 and BG3 genomes with 9 combinatorial states (Figure 1a, Methods). The model 

associates each genomic location with a particular state, generating a chromatin-centric 

annotation of the genome (Figure 1b). We examined each state for enrichment in non-

histone proteins (Figure 1a, Supp. Figure 3) and gene elements, as well as distribution across 

the karyotype (Figure 1b, Supp. Figure 4) and finer-scale levels (Figure 1c-e).

Most distinct chromatin states are associated with transcriptionally active genes. Active 

promoter and transcription start site (TSS)-proximal regions are identified by state 1 (Figure 

1; red), marked by prominent enrichment in H3K4me3/me2 and H3K9ac. The 

transcriptional elongation signature associated with H3K36me3 enrichment is captured by 

state 2 (purple), found preferentially over exonic regions of transcribed genes. State 3 

(brown), typically found within intronic regions, is distinguished by high enrichment in 

H3K27ac, H3K4me1, and H3K18ac. A related chromatin signature is captured by state 4 

(coral), distinguished by enrichment of H3K36me1, but notably lacking H3K27ac. The 

number of genes associated with each chromatin state and the distribution of states within 

genes are shown in Supp. Figure 5.

Several aspects of large-scale organization are revealed by the karyotype view (Figure 1b). 

Chromosome X is strikingly enriched for state 5 (green), distinguished by high levels of 

H4K16ac in combination with some enrichment in H3K36me3 and other marks of 

“elongation” state 2 (a pattern associated with dosage compensation in male cells15). 

Pericentromeric heterochromatin domains and chromosome 4 are characterized by high 

levels of H3K9me2/me3 (state 7, dark blue)10. Finally, the model distinguishes another set 

of heterochromatin-like regions containing moderate levels of H3K9me2/me3 (state 8, light 

blue, Figure 1e). Surprisingly, this state occupies extensive domains in autosomal 

euchromatic arms in BG3 cells, and in chromosome X in both cell lines16.

Further aspects of chromatin organization can be visualized by folding the chromosome 

using a Hilbert curve (Figure 2a)17, which maintains the spatial proximity of nearby 

elements. Thus, local patches of corresponding colors reveal the sizes and relative positions 

of domains associated with particular chromatin states (Figure 2b; Supp. Figures 6-9). For 

instance, specks of TSS-proximal regions (state 1) are typically contained within larger 

blocks of transcriptional elongation marks (state 2), which are in turn encompassed by 

extensive patches of H3K36me1-enriched domains (state 4) and variable-sized blocks of 

state 3. The clusters of open chromatin formed by these gene-centric patterns are separated 

by extensive silent domains (state 9) and regions of Polycomb-mediated repression (state 6). 

Factors responsible for domain boundaries were not identified in our analysis (Supp. Figure 

10).
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We also developed a multi-scale method to characterize chromatin organization at the 

spatial scale appropriate for the genome properties being investigated. For example, we 

observe that chromatin patterns most accurately reflect the replication timing of the S2 

genome at scales of ~170kb (Supp. Section 1). This is consistent with size estimates of 

chromatin domains influencing replication timing18, and suggests that multiple replication 

origins are coordinately regulated by the local chromatin environment (each replicon is 

~28-50kb 19).

To examine combinatorial patterns not distinguished by the simplified 9-state model, we 

also generated a 30-state combinatorial model that utilizes presence/absence probabilities of 

individual marks20 (Supp. Figure 11). The increased number of states may identify finer 

variations that are biologically significant, e.g., a signature corresponding to transcriptional 

elongation in heterochromatic regions16.

Chromatin state variation among genes

Active genes generally display enrichments or depletions of individual marks at specific 

gene segments (Figure 3a). When classified according to their chromatin signatures (Supp. 

Figure 12), active genes fall into subclasses correlated with expression magnitude (Supp. 

Section 2), gene structure, and genomic context (e.g. heterochromatic genes combine 

H3K9me2/me3 with some active marks). Of particular interest is one class of long expressed 

genes, many with regulatory functions, which are enriched for H3K36me1 (cluster 2, Supp. 

Figure 12; 131 genes in S2, 202 in BG3; Supp. Table 2).

To further examine the patterns associated with long genes, we clustered expressed 

autosomal genes ≥4kb based on blocks of enrichment for each chromatin mark (Figure 3b; 

1055 genes). We observe that genes with large 5’-end introns (green subtree, Figure 3b; 552 

genes) show extensive H3K27ac and H3K18ac enrichment, broader H3K9ac domains, and 

blocks of H3K36me1 enrichment (chromatin state 3, Figure 3b, last column). These genes 

are enriched for developmental and regulatory functions (Supp. Table 3), and are positioned 

within domains of Nipped-B21 (Figure 3b), a cohesin-complex loading protein previously 

associated with transcriptionally active regions21,22. In contrast, genes with more uniformly 

distributed coding regions (red subtree, Figure 3b) lack most state 3 marks, and H3K9ac 

enrichment is restricted to the 2kb downstream of the TSS. These differences are not 

explained by variation in histone density (Supp. Figure 13). Overall, the presence or absence 

of state 3 is the most common difference in the chromatin composition of expressed genes 

that are 1kb and longer (Supp. Figure 14), and the presence of state 3 consistently correlates 

with a reduced fraction of coding sequence in the gene body, mainly associated with the 

presence of a long first intron.

State 3 domains are highly enriched for specific chromatin remodeling factors (SPT16 and 

dMI-2; Supp. Figures 15,16), whereas state 1 regions around active TSSs are preferentially 

bound by NURF301 and MRG15. ISWI is enriched in both states 1 and 3 (Supp. Figures 

16,17). State 3 domains also exhibit the highest levels of nucleosome turnover23, and show 

higher enrichment of the transcription-associated H3.3 histone variant24 than either the 

TSS- or elongation-associated states 1 and 2 (Supp. Figures 15,16). Consistent with earlier 
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analyses of cohesin-bound regions25, state 3 sequences tend to replicate early in G1 phase, 

and show abundance of early replicating origins (Supp. Figure 18). A regulatory role for 

state 3 domains is suggested by enrichment for a known enhancer binding protein (dCBP/

p300 26) in adult flies, and for enhancers validated in transgene constructs27 (Supp Figure 

19).

Modes of regulation in Polycomb domains

In Drosophila, loci repressed by Polycomb group (PcG) proteins are embedded in broad 

H3K27me3 domains that are regulated by Polycomb Response Elements (PREs) bound by 

E(Z), PSC, and dRING (Figure 1d)28,29. We find that regions of H3K4me1 enrichment 

surround all PREs, 90% of which also display narrower peaks of H3K4me2 enrichment 

(Supp. Figure 20). While this pattern is reminiscent of transcriptionally-active promoter 

regions, PREs lack H3K4me3, suggesting that a different mechanism of H3K4 methylation 

is employed, perhaps involving the Trithorax H3K4 histone methyltransferase (HMTase) 

found at all PREs29.

To examine chromatin states associated with PcG targets, we analyzed the chromatin and 

transcriptional signatures of TSSs in Polycomb-bound domains (Figure 4a, Supp. Figure 

21). In addition to fully repressed TSSs (cluster 1, Figure 4a), we identify TSSs maintained 

in the “balanced” state29 (cluster 2, Figure 4a), distinguished by coexistence of Polycomb 

with active marks (including the HMTase ASH1) and production of full-length mRNA 

transcripts (e.g. Psc domain, Figure 1d).

TSSs in clusters 3 and 4 are distinguished by the presence of adjacent PREs (Figure 4a). 

Surprisingly, 53% of the PRE-proximal TSSs produce short RNA transcripts30 (cluster 3, 

Figure 4a), suggesting stalling of engaged RNA pol II 30. Using the global run-on 

sequencing (GRO-seq) assay to accurately assess engaged RNA polymerases31, we observe 

that cluster 3 TSSs produce short transcripts in the sense orientation. The level of GRO+ 

signal is similar to that found at fully-transcribed genes (Supp. Figure 22); thus, transcription 

initiates in cluster 3, but elongation fails. Interestingly, these genes are enriched for 

regulatory and developmental functions, even more than other genes within Polycomb 

domains (see Supp Tables 4,5). Genes without TSS-proximal PREs generally lack short 

transcript signatures (e.g. clusters 1 in Figure 4a; see Supp. Figure 21 for exceptions). 

Importantly, engaged polymerases and transcripts are not a general feature of PREs; TSS-

distal PREs typically lack short RNA and GRO-seq signals (Figure 4b, Supp. Figure 22) 

despite being similarly enriched in H3K4me1/me2. The striking link between TSS-proximal 

PREs and the production of short RNAs suggests a potential mechanism for control of these 

developmental regulatory genes, whereby the same features that recruit H3K4 methyl marks 

to PREs also facilitate RNA pol II recruitment to nearby TSSs.

DHS plasticity and chromatin states

We utilized a DNase I hypersensitivity assay32,33 to examine the distributions of putative 

regulatory regions and their relationships with chromatin states. DHS mapping broadly 

identifies sites with low nucleosome density and regions bound by non-histone 

proteins34,35. Short-read sequencing identified 8616 high-magnitude DNase I 
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hypersensitive sites (DHSs) in S2 cells and 6354 in BG3 cells (and a comparable number of 

low-magnitude DHSs, Supp. Figure 23; see Methods). Approximately half of the high-

magnitude DHSs are found at transcriptionally-active TSSs (Supp. Figure 24). Thus, the 

chromatin context of the TSS-proximal DHSs is dominated by the features expected for an 

active TSS, including RNA Pol II, H3K4me3 and other state 1 marks (clusters 1,2 Figure 5a, 

Supp. Figure 25).

Of the 36% TSS-distal DHSs, most (60%) are positioned within annotated expressed genes 

(Supp. Figure 24). These gene-body DHSs are distinguished from TSS-proximal DHSs by 

low H3K4me3, higher levels of H3K4me1, H3K27ac, and other marks linked to chromatin 

state 3 (clusters 3,4 Figure 5a, Supp. Figure 26). An additional 20% of the TSS-distal DHSs 

are outside of annotated genes, but show signatures associated with active transcription 

starts or elongation, suggesting new alternative promoters or unannotated genes (Supp. 

Figures 27,28). The remaining 20% of TSS-distal DHSs that appear intergenic (6% of all 

DHSs) are typically enriched for H3K4me1, but lack other active marks (cluster 5, Figure 

5a).

Most DHS positions fall into the TSS-proximal state 1 or the intron-biased state 3 (Figure 

5b). State 3 lacks H3K4me3 and is enriched for H3K4me1/H3K27ac/H3K18ac, similar to 

mammalian enhancer elements36,37. Many state 3 DHS positions bind regulatory proteins: 

GAGA factor binds to 49% of these DHSs in S2 cells, and developmental transcription 

factors bind to 44% of these DHSs in embryos38. Intriguingly, we find that TSS-distal 

DHSs in Drosophila exhibit low-level bi-directional transcripts (Figure 5a shortRNA panel, 

Supp Figures 29,30), analogous to the enhancer RNAs (eRNAs) characterized in mice39. 

Analysis of GRO-seq data (Figure 5e) suggests that eRNA-like transcripts are common to 

both intra- and inter-genic TSS-distal DHSs in Drosophila, a feature that is conserved with 

mammals.

The association of DHSs with chromatin states 1 and 3 (Figure 5c) persists even in 

chromosome 4 and pericentromeric heterochromatin, where such states are infrequent 

(Supp. Figure 31). This suggests that these chromatin states and associated remodeling 

factors (e.g. ISWI, SPT16) provide the context necessary for non-histone chromosomal 

protein binding at DHSs, or are the consequence of such binding events. To investigate this 

interdependency, we analyzed a high-confidence set of loci that exhibit DHSs in only one of 

the two examined cell lines (Supp. Figure 32). Surprisingly, although in general more DHSs 

are in state 1 regions, 91% of the cell type-specific DHSs are found within state 3 domains 

(14-fold increase compared to state 1 DHSs; Supp. Table 6, Figure 5d). Comparison with 

DHSs in an additional cell type (Kc167, Supp. Figure 33) confirms that DHSs displaying 

plasticity between cell types are mostly found in state 3. When DHSs are absent, the altered 

loci maintain chromatin state 3 in 23% of the cases (Figure 5d), indicating that the presence 

of state 3 is not always dependent on the DHS. More frequently, the altered loci transition to 

state 4 (43% of the cases), an open chromatin state that lacks many of the histone 

modifications and chromatin remodelers characteristic of state 3. While the less frequent 

transitions to the Polycomb state 6 (7%) or background state 9 (17%) typically coincide with 

gene silencing, most of the genes that maintain state 3 or transition to state 4 remain 

transcriptionally active (Supp. Figure 34). These observations provide further support for an 
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enhancer-like function for state 3 DHSs, and suggest a more subtle regulatory role than 

simple linkage to the presence or absence of gene expression.

Chromatin annotation of genome functions

The genomic chromatin state annotation and discovery of refined chromatin signatures for 

chromosomes, domains, and subsets of regulatory genes demonstrate the utility of a 

systematic, genome-wide profiling of an organism that is already understood in considerable 

detail. Clearly, the definition and functional annotation of chromatin patterns will be 

enhanced by incorporation of data for different types of components. Five ‘colors’ of 

chromatin were recently identified in Kc167 cells using chromosomal protein maps40. 

Comparison with our 9-state model shows similarities as well as differences in the ability to 

distinguish functional elements (Supp. Figure 35); thus, further integration of such data in 

the same cell type may resolve additional functional features. Our results illustrate the utility 

of integrating multiple data types (histone marks, non-histone proteins, chromatin 

accessibility, short RNAs, and transcriptional activity) for comprehensive characterization of 

functional chromatin states.

An important, repeated theme is that chromatin state analysis identifies unexpected 

distinctions between subsets of active genes. Besides the differences linked to genomic 

context (e.g., male X chromosome, heterochromatin), the main source of variability is the 

presence of the acetylation-rich state 3 (Figure 6). Several lines of evidence suggest that the 

intronic positions marked by state 3 are important for gene regulation. State 3 regions show 

specific associations with known chromatin remodelers (SPT16, dMi-2 and ISWI) and gene 

regulatory proteins (e.g. GAF, dCBP/p300), and the highest rates of nucleosome turnover 

and transcription-dependent deposition of the H3.3 variant. State 3 genes are also bound by 

cohesin complex proteins, thought to associate with decondensed chromatin21 to promote 

looping interactions with promoter regions22.

A regulatory role for state 3 chromatin is further suggested by the high density of DHSs, 

comparable to that of active TSS state 1, and the fact that state 3 accounts for most of the 

DHS plasticity among cell types. The combinations of histone marks found in state 3 are 

similar to signatures of mammalian enhancers36, which also show high variability between 

cell types37. Furthermore, state 3 DHSs exhibit low levels of short, non-coding bidirectional 

transcripts reminiscent of eRNAs identified in mice39. Together, these findings suggest that 

state 3 regions contain enhancers or other regulatory elements, and that a combination of 

modifications can be used to identify new elements in the genome.

Genes within repressive Polycomb domains also display several distinct combinatorial 

chromatin patterns (Figure 4a), which likely represent a range of functional states: repressed, 

paused, or expressed genes in either balanced29 or fully activated states. Alternatively, 

distinct signatures might mark subsets of regulatory genes that require either long-term 

repression or the ability to reverse functional states, depending on environmental or 

developmental cues. The PRE-proximal paused TSSs have some similarity to the “bivalent” 

genes in mammalian cells, which also display transcriptional pausing of key regulatory and 

developmental genes41,42. However, the mammalian “bivalent state” is characterized by the 
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simultaneous presence of PcG proteins, H3K27me3 and H3K4me3, which in Drosophila is 

found only in the fully-elongating “balanced” state29,43.

In summary, comprehensive analysis of chromatin signatures has enormous potential for 

annotating functional elements in both well-studied and new genomes. Going forward, our 

systematic characterization of the epigenomic and transcriptional properties of Drosophila 

cells should spur in-depth experimental analyses of the relationship between chromatin 

states and genome functions, ranging from whole chromosomes down to individual 

regulatory elements and circuits.

Methods Summary

Histone modification and chromosomal protein antibodies were characterized for cross-

reactivity. ChIP-chip was performed in duplicate, using Affymetrix Drosophila Tiling 2.0R 

Arrays. Digital DNaseI-seq assays were performed as described previously44, and Global 

Run-On library (GRO-seq) data was generated as described in Core et al31. Short RNA data 

was generated by Nechaev et al30, and RNA-seq data was generated by Graveley et al.45. 

The chromatin state models were generated as Hidden Markov Models of different histone 

marks. DHSs were identified as read density peaks significantly enriched relative to the 

genomic DNA control. Clustering of chromatin signatures was determined using the PAM 

algorithm.

Methods

Growth conditions

ML-DmBG3-c2 cells were obtained from DGRC (https://dgrc.cgb.indiana.edu/), and S2-

DRSC cells were from the DRSC (http://www.flyrnai.org/). All cell lines were grown to a 

density of ~5×106 cells/ml in Schneider’s media (Gibco) supplemented with 10% FCS 

(HyClone). 10 μg/ml insulin was added to the ML-DmBG3-c2 media.

Antibodies

Antibodies are listed in Supplemental Table 1. Commercial antibodies against modified 

histones were tested by Western-blot for the lack of cross-reactivity with the corresponding 

recombinant histone produced in E.coli and non-histone proteins from embryonic nuclear 

extracts. Antibody specificity was further assayed by Western dot/slot blot against a panel of 

synthetic modified histone peptides. Only antibodies that showed <50% of total signal 

associated with non-histone proteins, and more than 5-fold higher affinity for the 

corresponding histone peptide, were used in ChIP experiments.

The specificity of antibodies against chromosomal proteins was tested by Western blots with 

nuclear extracts prepared from mutant flies or S2 cells subjected to RNAi knockdown.46. 

An antibody was considered specific if it recognized a major band of expected mobility that 

was absent in the sample prepared from mutant flies, or diminished 2-fold or more after 

RNAi depletion. When possible, distributions of a chromosomal protein were mapped with 

two antibodies generated against different epitopes (see Supp. Figure 17). Data from 

chromatin proteins for which only one antibody was available was validated by comparison 
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with published genomic distributions for a different component of the same complex, or to 

published genomic distributions generated with a different antibody.

ChIP and microarray hybridization

Crosslinked chromatin from cultured cells was prepared as described in Schwartz et al.28 

with the following modifications. Prior to ultrasound shearing, cells were permeabilized 

with 1% SDS, and shearing was done in TE-PMSF (0.1% SDS, 10mM Tris-HCl pH8.0, 

1mM EDTA pH8.0, 1mM PMSF) using a Bioruptor (Diagenode) (2 × 10 min, 1 × 5 min; 

30sec on, 30 sec off; high power setting).

ChIP was performed as in Schwartz et al.28 and IP’d DNA was amplified using the whole 

genome amplification kit (WGA2, Sigma) according to the manufacturer’s instructions 

(chemical fragmentation step was omitted). The amplified material was labeled and 

hybridized to Drosophila Tiling Arrays v2.0 (Affymetrix) as in Schwartz et al.28.

Processing of ChIP data

At least two independent biological replicates were assessed for each ChIP profile. The log2 

intensity ratios (M values) were calculated for each replicate. The profiles were smoothed 

using local regression (lowess) with 500bp bandwidth, and the genome-wide mean was 

subtracted. The regions of significant enrichment were determined as clusters of at least 1kb 

in length, with gaps no more than 100bp where M value exceeds a statistically significant 

(0.1% FDR) enrichment threshold. The set of biological replicates was deemed consistent if 

the enriched regions from individual experiments had a 75% reciprocal overlap, or if at least 

80% of the top 40% of the regions identified in each experiment were identified in the other 

replicate (before comparison the replicates were size-equalized by increasing the 

significance threshold for a replicate with more enriched sequence). The data from 

individual replicates were then combined using local regression smoothing, and used for all 

of the presented analysis, unless noted otherwise.

DNaseI hypersensitivity

Digital DNaseI-seq assays were performed as described previously44. The sequenced reads 

were aligned to the dm3 genome assembly, recording only uniquely mappable reads. To 

detect DNase I hypersensitive sites, hotspot positions were identified based on a 300bp 

scanning window statistic (Poisson model relative to 50kb background density, Z-score 

threshold of 2), and peaks of read density were selected within the hotspots using 

randomization-based thresholding at 0.1% FDR. The set of high-magnitude DHSs analyzed 

here (except for Supp. Figure 23) was identified as a subset of all peaks that show 

statistically significant enrichment over the normalized genomic DNA read density profile 

(using a 300bp window centered around the peak, binomial model, with Z-score threshold of 

3). This method controls for copy number variation and sequencing/mapping biases, 

however it may also reduce the sensitivity of DHS detection. In the DHS chromatin profile 

clustering analysis (Figure 5a, relevant supplementary figures), DHSs found within 1kb of 

another DHS were excluded if their enrichment magnitude (relative to genomic background) 

was lower (to avoid showing the same region more than once).
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RNA sequencing

The preparation of RNA-seq libraries and sequencing is described in Graveley et al.45. The 

sequenced reads were aligned to the dm3 genome assembly and annotated exon junctions, 

recording only uniquely mappable reads. The RPKM (reads per kilobase of exonic sequence 

per million reads mapped) was estimated for each exon. The total transcriptional output of 

each annotated gene was estimated based on the maximum of all exons within the gene. The 

presented analysis uses log10(RPKM+1) values unless otherwise noted.

GRO sequencing

Global Run-On library was prepared from S2 cells and sequenced as described in Core et 

al31. The reads were aligned to the dm3 genome assembly, recording only uniquely 

mappable reads. The smoothed profiles of reads mapping to each strand were calculated 

using Gaussian smoothing (σ=100bp). The analysis uses log10(d+1), where d is the 

smoothed density value.

Short RNA data processing

The short RNA data for S2 cells was generated by Nechaev et al30, and was aligned and 

processed in the same way as the GRO-seq data.

Chromatin state models

To derive a nine-state joint chromatin state model for S2 and BG3 cells (Figure 1a), the 

genome was first divided into 200bp bins, and the average enrichment level was calculated 

within each bin based on unsmoothed log2 intensity ratio values taking into account 

individual replicates, using all histone enrichment profiles and PC to discount the genome-

wide difference in S2 H3K27me3 profiles. The bin-average values of each mark were 

shifted by the genome-wide mean, scaled by the genome-wide variance, and quantile-

normalized between the two cells. The HMM with multivariate normal emission 

distributions was then determined from the Baum-Welch algorithm using data from both cell 

types, and 30 seeding configurations determined with K-means clustering. States with minor 

intensity variations (Euclidian distance of mean emission values < 0.15) were merged. 

Larger models (up to 30 states) were examined, and the final number of states was chosen 

for optimal interpretability.

An extensive discrete chromatin state model (Supp. Figure 11) was calculated as described 

in Ernst et al.20. The model was trained using 200bp grid with binary calls (enriched/not 

enriched). The binary calls were made based on a 5% FDR threshold determined from 10 

genome-wide randomizations for each mark. For H1, H4 and H3K23ac regions of 

significant depletion rather than enrichment were called.

Regions of enrichment for individual marks (Figure 3)

To determine contiguous regions of enrichment for individual marks, a three-state HMM 

was used, with states corresponding to enriched, neutral, and depleted profiles (normally-

distributed emission parameters: (μ=[-0.5 0 0.5], σ2=0.3). The enriched regions were 

determined from the Viterbi path. The HMM segmentation was applied to unsmoothed M 
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value data taking into account individual biological replicates. The genes were clustered 

based on the combinatorial pattern of occurrence of enriched regions (coding exons and state 

panels were not used for clustering).

Classification of enrichment profiles (Figures 4,5)

Clustering of chromatin signatures around TSSs (Figure 4a), PREs (Figure 4b), and DHSs 

(Figure 5a, relevant supplements) was determined using the PAM algorithm. For clustering, 

each profile was summarized with average values within bins spanning ±2kb regions. 100bp 

bins were used for the central ±500bp region, 300bp bins outside.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Chromatin annotation of the Drosophila melanogaster genome
a. A 9-state model of prevalent chromatin states found in S2 and BG3 cells. Each chromatin 

state (row) is defined by a combinatorial pattern of enrichment (red) or depletion (blue) for 

specific chromatin marks (first panel, columns). For instance, state 1 is distinguished by 

enrichment in H3K4me2/me3 and H3K9ac, typical of transcription start sites (TSS) in 

expressed genes. The enrichments/depletions are shown relative to chromatin input S2 data 

shown, see (Supp. Figure 3 for BG3 data and histone density normalization). The second 

panel shows average enrichment of chromosomal proteins. The third panel shows fold over/

under-representation of genic and TSS-proximal (±1kb) regions relative to the entire tiled 

genome. The enrichment of intronic regions is relative to genic regions associated with each 

state.

b. A genome-wide karyotype view of the domains defined by the 9-state model in S2 cells. 

Centromeres are shown as open circles, and dashed lines span gaps in the genome assembly. 

Several prominent chromatin organization features are illustrated (color code in a), including 

the extent of pericentromeric heterochromatin (state 7), and the H4K16ac-driven signature 

of the dosage-compensated male X chromosome (state 5). (BG3 genome in Supp. Figure 4.)

c-e. Examples of chromatin annotation at specific loci. c. Two distinct chromatin signatures 

of transcriptionally active genes: one (left) is associated with enrichment in marks of states 3 

and 4, while the other (right) is limited to states 1 and 2, recapitulating well-established TSS 

and elongation signatures (note: small patches of state 7 in CG13185 illustrate H3K9me2 

found at some expressed genes in S2 cells16). d. A locus containing two Polycomb-

associated domains, silent (left) and balanced (right). e. A large state 8 domain located 

within euchromatic sequence in BG3 cells, enriched for chromatin marks typically 

Kharchenko et al. Page 14

Nature. Author manuscript; available in PMC 2011 September 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



associated with heterochromatic regions, but at lower levels than in pericentromeric 

heterochromatin (state 7).
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Figure 2. Visualization of spatial scales and organization using compact folding
a. The chromosome is folded using a geometric pattern (Hilbert space-filling curve) that 

maintains spatial proximity of nearby regions. An illustration of the first four folding steps is 

shown. Note that while this compact curve is optimal for preserving proximity relationships, 

some distal sites appear adjacent along the fold axis (green dots).

b. Chromosome 3L in S2 cells. A domain of a given chromatin state appears as a patch of 

uniform color of corresponding size. Thin black lines are used to separate regions that are 

distant on the chromosome. The folded view illustrates chromatin organization features that 

are not easily discerned from a linear view: active TSSs (state 1) appear as small specks 

surrounded by elongation state 2, commonly next to larger regions marked by H3K36me1-

driven state 4, which also contains patches of intron-associated state 3. These open 

chromatin regions are separated by extensive domains of state 9. See Supp. Figures 6,7 for 

other chromosomes and BG3 data. The folded views can be browsed alongside the linear 

annotations and other relevant data online: http://compbio.med.harvard.edu/flychromatin.
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Figure 3. Chromatin patterns associated with transcriptionally active genes
a. Location and extent of chromatin features relative to boundaries of expressed genes 

(>1kb) in BG3 cells. The color intensity indicates the relative frequency of enrichment/

depletion of a given mark within the gene (normalized independently for each mark).

b. Regions enriched for ‘active’ chromatin marks in long transcribed genes. The plot shows 

the extent of regions enriched for various active marks at transcriptionally-active genes 

(>4kb) on BG3 autosomes. Each row represents a scaled gene. The first column illustrates 

coding exons; the last column shows chromatin state annotation. The clustering of the genes 

according to the spatial patterns of chromatin marks separates genes with a high fraction of 

coding sequence (red subtree, bottom) from genes containing long introns (green subtrees, 

top), which are associated with chromatin state 3 (last column) and binding of specific 

chromosomal proteins, such as Nipped-B21 (also see Supp. Figure 13).
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Figure 4. Signatures of TSSs within domains of Polycomb-mediated repression
a. Distinct classes of TSSs in S2 cell Polycomb domains. Each row represents a TSS. 

Clusters 1-5 illustrate distinct TSS states (see Supp. Figure 21 for complete set of clusters). 

Cluster 1 shows fully repressed TSSs with the expected pattern of PC and H3K27me3 

enrichment; cluster 2 shows 21 TSSs found within ASH1 domains, maintained in a 

“balanced” state. Clusters 3 and 4 distinguish TSSs located in the immediate proximity of 

Polycomb response elements (PREs), showing the symmetric H3K4me1/me2 enrichment 

typical of all PREs. Many such TSSs (cluster 3, 42 TSSs) produce short, non-polyadenylated 

transcripts along the sense strand (GRO+/shortRNA+ columns), indicating the presence of 

paused polymerase.

b. PRE positions distant from annotated TSSs. TSS-distal PREs exhibit enrichment for 

H3K4me1/me2, but are not associated with GRO or shortRNA signatures.

Kharchenko et al. Page 18

Nature. Author manuscript; available in PMC 2011 September 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Chromatin signatures of regulatory elements identified by DNaseI hypersensitivity
a. Representative classes of high-magnitude DNaseI hypersensitive sites (DHSs) and 

chromatin signatures in S2 cells. TSS-proximal (within 2kb) DHSs show chromatin 

signatures expected of expressed gene promoters : high H3K4me3 and RNA pol II signal 

extending in the direction of transcription (left to right; cluster 2 groups bidirectional 

promoters). TSS-distal DHSs are associated with high H3K4me1 and low H3K4me3 levels. 

Most TSS-distal DHSs found within the bodies of expressed genes (clusters 3, 4) are 

associated with chromatin state 3. A cluster of rare intergenic DHSs (cluster 5) is associated 

with localized peaks of H3K4me1/2 (complete sets of clusters in Supp. Figures 25,26,28).

b. Distribution of DHS positions among chromatin states. The vast majority of DHSs are 

found within the TSS-proximal state 1 or enhancer-like state 3 regions.

c. States 1 and 3 exhibit the highest density of DHSs.

d. Cell line-specific DHSs are positioned predominantly within the enhancer-like state 3. 

The transition matrix shows the chromatin state of loci containing DHSs in one cell line (x-

axis), and the state of the same locus in the other cell line where the DHS is absent (y-axis). 

Most of the DHSs that differ between cell lines originate from state 3. When DHSs are 

absent, the loci typically transition to an open chromatin state 4 (43%), or maintain state 3 

(23%). In both scenarios, most of the associated genes remain transcriptionally active (see 

Supp. Figure 34).

e. Low levels of engaged RNA polymerase are associated with TSS-distal DHSs. The top 

plot shows the local increase in the antisense GRO-seq signal for DHSs located within 

transcribed genes; dashed lines show median levels. Intergenic DHS positions (bottom plot) 

also show bi-directional GRO-seq signal of comparable magnitude. See Supp. Figures 

29,27,30.
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Figure 6. Spatial arrangements of chromatin states associated with active transcription
Unlike short or exon-rich expressed genes, expressed genes with long intronic regions 

commonly contain one or more regions of enhancer-like state 3, associated with specific 

chromosomal proteins, high nucleosome turnover and DHSs displaying cell-type plasticity.
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