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The peripheral axons of tactile somatosensory neurons are 
among the longest axons in vertebrate animals, projecting from 
ganglia just outside the central nervous system to the skin, 
where they detect thermal, chemical, and mechanical stimuli. 
As they navigate to the periphery and establish their receptive 
territories in the skin, these axons encounter many different 
tissues and signals, including other cells in the ganglia from 
which they originate, the mesenchyme through which they 
navigate, axons of other neurons with which they fasciculate, 
and the skin cells at their termini. This review focuses on the 
somatosensory neurons that innervate the skin to detect touch, 
but other peripheral neurons, including proprioceptive and 
sympathetic neurons, as well as specialized neurons of cranial 
ganglia, share some of the same initial axon guidance mecha-
nisms, despite innervating different terminal tissues. Since axon 
guidance and branching morphogenesis is usually studied on a 
step-by-step basis, it is easy to lose sight of the fact that a single 
neurite must integrate many instructive cues emitted by vari-
ous tissues as they develop. To sense multiple navigational cues, 
individual neurons must express a variety of receptors, each of 
which is deployed at precise developmental stages and some of 
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The peripheral axons of vertebrate tactile somatosensory 
neurons travel long distances from ganglia just outside the 
central nervous system to the skin. Once in the skin these 
axons form elaborate terminals whose organization must be 
regionally patterned to detect and accurately localize different 
kinds of touch stimuli. This review describes key studies that 
identified choice points for somatosensory axon growth cones 
and the extrinsic molecular cues that function at each of 
those steps. While much has been learned in the past 20 years 
about the guidance of these axons, there is still much to be 
learned about how the peripheral axons of different kinds of 
somatosensory neurons adopt different trajectories and form 
specific terminal structures.
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which serve multiple distinct roles during different phases of 
outgrowth.

Most vertebrates possess two main populations of somatosen-
sory neurons, clustered in ganglia just outside the central nervous 
system: trigeminal neurons that innervate the head and dorsal 
root ganglia (DRG) neurons that innervate the rest of the body 
(Fig. 1A). Larval fish and amphibians have an additional, tran-
sient population of somatosensory neurons located in the dorsal 
spinal cord, called Rohon-Beard (RB) neurons (Fig. 1B). These 
neurons are typically pseudo-unipolar, projecting central axons 
into the spinal cord or brain that connect to downstream circuits 
and peripheral axons to the skin (Fig. 1C) that innervate dermal 
sensory structures or terminate as free endings in the dermis or 
epidermis. This review highlights a selection of findings from all 
of these systems to illustrate the diverse navigational decisions 
that peripheral axon growth cones must make along their lengthy 
trajectories. Somatosensory neurons fall into many different sub-
classes that project at different stages of development and inner-
vate different kinds of terminals.1,2 Thus, different somatosensory 
neuron types face distinct navigational challenges but all must 
interpret multiple signals as they develop their complex, mature 
forms.

Initiation of Outgrowth

Neurotrophins were the first extracellular signals identified as 
regulators of somatosensory neuron development—nerve growth 
factor (NGF), a founding member of the neurotrophin family, 
was discovered over 60 y ago for its role in maintaining sensory 
neuron survival.3 Numerous in vitro and in vivo studies have 
shown that neurotrophin (NT) signaling is not only essential for 
the survival of sensory neurons, but also required in many other 
processes, such as neuronal differentiation and axon outgrowth.4 
The discovery of programmed cell death pathways provided an 
opportunity to separate the survival effects of NTs from their 
other functions. In mice with a null mutation in Bax, a proapop-
totic member of the Bcl-2 family, naturally occurring neuronal 
death was eliminated in peripheral ganglia but gross development 
of the nervous system appeared normal.5 Combining Bax knock-
out with knockout of NGF or its receptor, tropomyosin-related 
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Guidance to the Skin

Peripheral sensory axons often travel 
toward the periphery alongside motor axons 
before branching from the nerve trunks 
and approaching the skin. How are sen-
sory peripheral axons guided to skin rather 
than muscle? In vitro assays and embryo-
logical experiments suggest that cues in the 
developing skin attract them. For example, 
axons from Xenopus DRG neurons projected 
toward skin explants in vitro, a phenomenon 
that appeared to be independent of NTs.9,10 
To test whether the skin regulates sensory 
axon guidance in vivo, Martin and colleagues 
ablated patches of chick dorsal wing ecto-
derm with UV irradiation. This treatment 
eliminated the cutaneous nerve plexus and 
its branches that should target the damaged 
field.11 This finding supported the idea that 
a long-range signal from the ectoderm trig-
gers divergence of cutaneous nerve branches 
from the deep mixed nerve. Since irradiation 

of ectoderm also damages underlying dermal tissue, Honig and 
colleagues used a surgical approach to remove patches of ecto-
derm from the chick hindlimb at various stages and assessed the 
consequences on peripheral nerve guidance.12 These experiments 
showed that cutaneous nerves failed to form when ectoderm was 
removed at specific developmental stages. Together these studies 
suggest that the skin produces a long-range attractant for sensory 
axons that has yet to be identified.

Studies in trigeminal neurons provided another example for 
how a target-derived attractant might guide axons to the skin, 
while also contributing to the formation of specific patterns of 
innervation. Trigeminal neurons segregate into three branches 
(ophthalmic, maxillary, and mandibular) that project to dis-
tinct regions of the face. It has long been known from co-culture 
experiments that explanted maxillary or mandibular tissues can 
stimulate the directed outgrowth of trigeminal sensory axons, 
implying the existence of a target-derived attractant, termed 
“Maxillary Factor.”13 More than a decade later, the NTs brain-
derived neurotrophic factor (BDNF) and Neurotrophin-3 (NT-
3) were identified as the molecular components of Maxillary 
Factor in co-culture experiments.14 However, these factors are 
expressed by both the target epithelium and the pathway mes-
enchyme of the maxillary and mandibular processes, arguing 
that NT-3 and BDNF may act as short-range signals instead of 
directional cues to instruct initial axon migration into the maxil-
lary process. Moreover, mice deficient in both NT-3 and BDNF 
adopted the normal trajectory of trigeminal axons.14 This find-
ing hinted that multiple, redundant cues likely work together to 
guide axons, but left open the question of whether a long-range 
target-derived signal guides sensory axons to the skin.

Recent studies of zebrafish RB neurons identified another sig-
naling system that regulates sensory axon guidance to the skin. 
Simultaneously knocking down two members of the leukocyte 

kinase A (TrkA), allowed NGF/TrkA-dependent DRG neurons 
to survive. The central projections of these axons extended col-
lateral branches into the dorsal horn of the spinal cord but their 
axon branches in the dermis and epidermis of the hindlimb were 
absent.6 Axon counts performed in the saphenous nerve suggested 
that peripheral axons either never entered the major cutaneous 
nerve branches or could not be maintained. These experiments 
demonstrated that, for at least a subset of TrkA-dependent neu-
rons, NT signaling is required at early steps of peripheral axon 
outgrowth. Not all NTs and NT receptors play analogous roles in 
the early outgrowth of their respective subtypes, but all regulate 
aspects of axon morphogenesis.4

Once a peripheral axon begins extending from a sensory neu-
ron cell body, it must choose its initial outgrowth trajectory, a 
particular challenge for these pseudo-unipolar neurons since cen-
tral and peripheral axons project in different directions, implying 
that the two axons respond to different cues. A study of RB neu-
ron axon outgrowth in zebrafish larvae demonstrated that cen-
tral and peripheral axons respond differently to the guidance cue 
Semaphorin 3D (Sema3D). Sema3D is expressed in the roof plate 
of the spinal cord, between the two rows of RB cell bodies.7 In 
Sema3D-deficient embryos, fewer peripheral projections exited 
the spinal cord,8 suggesting that they might normally be pro-
pelled toward the periphery by repulsive Semaphorin cues. Live 
in vivo imaging showed that peripheral, but not central, growth 
cones were repelled by ectopic Sema3D. Conversely, in transient 
axonal glycoprotein-1 (TAG-1)-knockdown embryos, central 
axons were defasciculated and apparently shorter, but periph-
eral axons were normal. Live imaging revealed that the overall 
advance of central, but not peripheral, growth cones was slower 
after TAG-1 knockdown. Together, these experiments indicated 
that axon guidance of central and peripheral axons can be speci-
fied by differential activation of receptors on these neurites.

Figure 1. Anatomy of vertebrate somatosensory neurons. (A) Diagram of an ~E11 mouse em-
bryo showing the location of the trigeminal ganglion (orange) and dorsal root ganglia (green) 
with growing peripheral axons. (B) Diagram of a zebrafish at ~3 d post-fertilization showing 
the location of the trigeminal ganglion (orange), Rohon-Beard neuron cell bodies (green), and 
incipient DRGs (purple). At this stage trigeminal neurons innervate the skin of the head and 
Rohon-Beard neurons innervate the rest of the body. DRGs, which at this stage consist of just a 
few cells each, arborize below the developing muscles; eventually, Rohon-Beard neurons will 
die and DRG neurons will innervate the skin. (C) Structure of DRG, Rohon-Beard and trigeminal 
neurons. DRG and trigeminal neuron cell bodies are located in ganglia and Rohon-Beard neu-
rons are located in the spinal cord. All of these neurons project central axons into the central 
nervous system and peripheral axons into the skin.
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nearby axons of cultured embryonic chick DRG neurons.24 
Studies of regeneration and collateral sprouting of cutaneous sen-
sory nerves in rats provided early in vivo evidence for NGF’s role 
in regulating terminal sensory axon branching. Diamond and 
colleagues isolated the receptive field of individual sensory nerves 
(emanating from a particular DRG) innervating the dorsal skin 
of the rat by removing surrounding nerves.25-27 The nociceptive 
components of isolated nerves frequently expanded their sensory 
fields by sprouting collaterals into the neighboring, denervated 
skin. This process was completely halted by daily administration 
of antiserum to NGF.25 Interestingly, regeneration of isolated 
sensory nerves following nerve crush was unaffected by blocking 
NGF signaling, indicating that NGF is essential for stimulating 
collateral sprouting of sensory axons but not for their guidance to 
the skin during regeneration.27

Mouse genetic studies have demonstrated that NGF promotes 
branching not only after injury, but also during development. 
For example, overexpressing NGF in mouse skin during devel-
opment promoted increased innervation of the mouse mysta-
cial pad, presumably due to more axon sprouting, as increased 
survival of trigeminal neurons alone could not account for the 
excess innervation in animals overexpressing NGF.28 Conversely, 
as described above, Patel and colleagues observed reduced der-
mal and epidermal sensory innervation in the distal hindlimbs 
of NGF/Bax and TrkA/Bax double knockout mice.6 However, 
there were also dramatically fewer axons in the saphenous nerve 
of double knockout mice, suggesting that reduced sensory inner-
vation may be attributable to fewer axons reaching the skin, as 
opposed to a deficit in collateral branching at the axon terminals. 
A more recent study found that a majority of sensory axons were 
able to coarse into the limb buds of embryonic NGF/Bax double 
mutant mice, but failed to innervate and branch normally within 
the target territory.29

Similar to NTs, Slit/Robo signaling also promotes axon 
branching in the periphery. The Slit family of secreted proteins 
has been extensively characterized as repulsive signals for growing 
axons, most notably commissural interneurons in the develop-
ing spinal cords of mammals and ventral nerve cords of flies,30 
but Slit proteins appear to also positively regulate somatosen-
sory axon branching. This function was first demonstrated by a 
series of biochemical purifications that isolated the N-terminal 
fragment of Slit2 for its collateral branch-promoting activity in 
dissociated rat DRG neuron cultures.31 In vivo experiments in 
embryonic zebrafish supported a role for Slit in promoting axon 
branching: Global overexpression of Slit2 increased the branch-
ing and elongation of peripheral axons from trigeminal32 and RB 
neurons.33 Surprisingly, PlexinA4, commonly known for its role 
as a Semaphorin receptor, was required for the branch-promoting 
activity of Slit2 in zebrafish sensory neurons.33 This function of 
Slit appears to be conserved in mammals, since in Slit2/Slit3 or 
Robo1/Robo2 double mutant mice branching of trigeminal axons 
surrounding the eye was reduced.34 This branching defect was 
limited to the ophthalmic branch of the trigeminal nerve that 
innervates skin just above the eye, while peripheral innervation 
patterns of the maxillary and mandibular branches, as well as 
DRG axons, appeared largely normal. This finding illustrates the 

common antigen-related (LAR) family of receptor tyrosine phos-
phatases in RB neurons, or inhibiting their function with domi-
nant negative proteins, disrupted skin innervation by peripheral 
sensory axons.15 Time-lapse imaging indicated that peripheral 
axon guidance, rather than outgrowth or maintenance, was 
defective in LAR-deficient neurons. The identification of LAR 
receptor tyrosine phosphatases as axonal receptors required for 
peripheral guidance raised the possibility that heparan sulfate 
proteoglycans (HSPGs), which guide axons in other systems 
via activation of LAR family members,16-18 might be involved 
in skin innervation. Indeed, peripheral axons were misrouted 
in dackel mutants, which are defective in HSPG production.19 
Additionally, axons avoided HSPG-depleted areas created locally 
by injecting the enzyme heparinase III.15 Together, these results 
support a model in which skin-produced HSPGs are attractive 
ligands for LAR receptors on RB neurons. Since the expression of 
LAR receptors in somatosensory neurons is conserved,20 it is pos-
sible that they are also involved in innervation of the embryonic 
skin in other vertebrate animals. RB peripheral axons navigate a 
short distance from the cell body to the skin, and HSPGs can be 
membrane-bound or secreted, so it is not clear whether contact-
dependent or diffusible HSPGs activate LAR guidance receptor 
proteins on peripheral growth cones. Identifying the specific 
HSPG core proteins that serve as attractants would help answer 
this question.

Positive Cues Contribute to Branching  
and Patterning in the Skin

Not all skin is the same: once in the periphery, some sensory 
neurons preferentially innervate specific regions of the skin. This 
distinction is most obvious for regions of the periphery inner-
vated by axons that grow in stereotyped patterns, like the three 
branches of the trigeminal, and regions of skin that are innervated 
by different classes of neurons, such as hairy and glabrous skin 
in mice.21,22 Regions of skin can also differ in the quantity, rather 
than the quality, of innervation. For example, there is a strik-
ing difference in the density of sensory fiber innervation between 
the hand and digit tips of humans, a pattern that correlates with 
differential sensitivity to mechanical and painful stimuli.23 At 
least two mechanisms are used to create regionalized patterns 
of innervation. First, long-range or local cues attract or repel 
growth cones, thus steering sensory axons toward specific regions 
of the periphery. Second, factors that regulate the degree of axon 
branching in the skin influence the density of terminals, as well 
as territorial patterning, since axons that branch more have larger 
receptive territories. Guidance and branching cues thus together 
determine the characteristics of sensory innervation in specific 
regions of skin.

NGF was one of the first extrinsic factors found to stimulate 
branching of sensory axons. NGF is expressed in many areas of 
the skin at early stages of development, when DRG and trigemi-
nal sensory neurons are extending axons, and its expression per-
sists into adulthood.4 In vitro studies demonstrated that NGF 
could promote the branching of sensory axons. For example, 
NGF-coated beads triggered directed collateral sprouting from 
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supporting this idea, NRTN overexpression in the skin caused 
a corresponding increase in the density of nonpeptidergic, but 
not peptidergic, free nerve endings in the epidermis of the mouse 
footpad.46 Overexpression of NRTN in the skin also increased 
expression of sensory ion channels and made animals more sensi-
tive to mechanical pressure, cooling and menthol exposure, dem-
onstrating that peripheral cues can contribute to specifying the 
functional properties of specific somatosensory neurons.

Negative Cues Contribute to Branching  
and Patterning at the Target

In addition to positive factors, repulsive cues restricting axon 
guidance and branching in certain regions of the periphery also 
contribute to creating patterns of somatosensory innervation. 
Semaphorins are the most extensively characterized negative reg-
ulators of sensory axon development and are perhaps best known 
for their role as repellents during axon guidance. Seminal experi-
ments characterizing Sema1A (previously known as fasciclin IV) 
function in the development of Ti1 sensory neuron axons in the 
grasshopper limb bud showed that semaphorins also regulate 
branching. Blocking Sema1A signaling with monoclonal anti-
bodies caused not only axon guidance defects, but also induced 
ectopic axonal branching of Ti1 axons.47 This role for semaphorins 
in branching is broadly conserved, since mouse Sema3A inhibits 
the branching of peripheral sensory axons. Mutant mice lacking 
functional Sema3A displayed increased branching of peripheral 
axons from both trigeminal ganglia and DRGs.48 Additional 
genetic studies demonstrated that Sema3A-mediated negative 
regulation of axon branching requires neuropilin and plexin co-
receptors located on growing peripheral axons. Knocking out the 
gene encoding Neuropilin-1, or mutating its Semaphorin binding 
domain, eliminated Sema3A-mediated axon repulsion of DRG 
neurons in culture and increased peripheral branching in vivo, 
similar to Sema3A mutants.49,50

In addition to limiting branching, regionally expressed repul-
sive cues contribute to differential patterning of innervation terri-
tories by funneling axons into particular regions of the periphery. 
For example, the repulsive semaphorins Sema3A and Sema3F are 
expressed in specific patterns in the face. Knocking down both 
of their receptors, PlexinA3 and A4, caused the three trigemi-
nal branches to defasciculate and become severely disorganized.51 
The ophthalmic branch was the most affected, misprojecting in 
multiple directions and invading regions from which it is nor-
mally excluded. At E12.5, heavily branched ophthalmic axons in 
the double mutant covered the entire face, including the eyes, 
demonstrating that repulsive cues pattern sensory territories by 
excluding innervation from certain regions of the skin.

Tiling of Axon Terminals in the Skin

Partitioning the skin into discrete sensory receptive fields is criti-
cal for animals to accurately detect and localize stimuli along 
the surface of the body. Each sensory neuron projecting to the 
periphery must coordinate the location of its peripheral projection 
with neighboring terminals to achieve an orderly arrangement of 

principle that different peripheral targets produce unique molecu-
lar signals to stimulate innervation by appropriate sensory fibers.

Perhaps a clearer example of a signal that promotes innerva-
tion of specific peripheral targets is provided by the neurotrophin 
BDNF, which is required for innervation of Xenopus cement glands 
and mouse mammary glands. In Xenopus tadpoles, the cement 
gland expresses BDNF and receives mechanosensory innervation 
from the mandibular branch of the trigeminal nerve. Mandibular 
axons projected aberrantly following cement gland ablation and 
failed to innervate transplanted cement glands with reduced 
BDNF expression. Moreover, swapping out the cement gland for 
ectoderm overexpressing BDNF stimulated mandibular fibers to 
target and arborize within the ectopic tissue.35 In contrast to its 
apparent guidance role in cement gland innervation, BDNF was 
recently shown to influence sensory innervation of mouse mam-
mary glands by regulating axon survival. The sensory innervation 
of mammary glands is sexually dimorphic; while both male and 
female mammary glands receive innervation during embryonic 
development, at later stages it is rapidly lost in male embryos, 
prior to mammary gland regression. Androgen receptor signaling 
triggers this sensory pruning, since treatment of male embryos 
with androgen receptor antagonists preserved sensory innerva-
tion, and treatment of female embryos with testosterone caused 
loss of innervation, similar to that seen in males. This process 
was BDNF-dependent, as knocking out BDNF or its receptor 
TrkB similarly reduced sensory innervation in female embryos. 
The mechanism underlying this process of sensory denervation 
requires androgen-dependent overexpression of a truncated form 
of TrkB (lacking the intracellular tyrosine kinase domain) in the 
mammary gland mesenchyme. This truncated receptor presum-
ably sequesters extracellular BDNF, thereby preventing signaling 
that maintains sensory axons. Indeed, knocking out expression of 
this truncated form of TrkB significantly increased sensory fiber 
density in male embryonic mammary glands.36

Molecular signals can also selectively stimulate particular sub-
types of somatosensory axons to innervate appropriate targets. 
One example of this phenomenon comes from studies of the 
Neurturin (NRTN) protein in the development of mouse noci-
ceptive neurons. NRTN is a member of the glia cell line-derived 
neurotrophic factor (GDNF) family of ligands and binds specifi-
cally to a signaling complex composed of the common GDNF 
receptor tyrosine kinase Ret and the coreceptor GDNF family 
receptor α 2 (GFRα2).37-40 Nociception is mediated by peptide-
rgic and nonpeptidergic unmyelinated C-fibers that terminate as 
free nerve endings.1 Expression of GFRα2 is restricted primarily 
to a subpopulation of nonpeptigeric C-fiber neurons41,42 and its 
ligand NRTN is expressed in the epidermis beginning at embry-
onic stages.43,44 Knocking out GFRα2 dramatically reduced the 
density of nonpeptidergic free nerve endings innervating the foot-
pad but had no effect on peptidergic nerve endings in the same 
area.41 Importantly, this effect was not due to decreased survival or 
axon outgrowth, since the number of neurons in mutant DRGs, 
as well as unmyelinated axons in the saphenous nerve, did not 
change.41,45 These results indicate that NRTN signaling through 
the GFRα2 receptor complex is important for stimulating termi-
nal innervation by nonpeptidergic nociceptive neurons. Further 
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encountered by many peripheral somatosensory axons—for 
example, whether to grow toward the periphery or the central 
nervous system, when to exit from nerve bundles and grow 
toward the skin, and where and how much to branch in particu-
lar regions of the skin. Although there are surely guidance cues 
still to be discovered, these studies have identified many of the 
major players, some of which (most notably NTs and semapho-
rins) function at multiple stages of axon pathfinding and mor-
phogenesis. Many of these cues affect particular populations of 
somatosensory axons, but are not limited to a single subtype. One 
of the major challenges for the future will be to identify the cues 
that make the axon morphologies of each kind of somatosensory 
neuron subtype different from one another.

Somatosensory neurons are a diverse group of cells, reflect-
ing the heterogeneity of the chemical, thermal, and mechani-
cal stimuli that they sense. Differential responsiveness to some 
of the guidance cues discussed in this review helps explain how 
different populations of sensory neurons adopt distinct trajec-
tories, but responses to those cues alone are unlikely to generate 
the impressive diversity of somatosensory neuron morphologies. 
This morphological diversity is most apparent at the axon ter-
minals in the skin. For example, some free nerve endings, which 
are often referred to as “unspecialized”, form intimate structural 
associations with epidermal cells57 and can display distinctive, 
subtype-specific termination patterns at particular strata of 
the epidermis.58 The axon endings innervating dermal corpus-
cles and hair follicles are perhaps even more striking, forming 
unique, stereotyped terminals onto their targets. The intricate 
association between axons and these sensory organs suggests that 
corpuscles and hair follicles provide instructive molecular cues 
that sculpt terminal axon morphologies, but virtually nothing 
is known about the nature of those cues. The recent creation of 
genetic tools for visualizing specific classes of axon terminals59-62 
will make it possible to study their development and identify 
the molecular interactions that allow them to adopt their elegant 
morphologies.
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sensory fields. This may be an easier task for those axons that 
innervate discrete structures in the dermis that are already spaced 
in an organized manner, such as hair follicles, Merkel cells, and 
various corpuscles, but poses a challenge to axons that invade the 
epidermis and terminate as free endings.

During embryonic stages interactions between growing neu-
rites appear to play a role in arranging the territories of free end-
ings with respect to one another. Studies in developing frog and 
fish embryos demonstrated that axon arbors of trigeminal neu-
rons segregate from one another to form a “tiled” arrangement, 
promoting comprehensive innervation of the target territory 
while minimizing redundant innervation by neighboring arbors. 
In both systems, ablating the trigeminal ganglion on one side of 
the head allowed sensory axons from the contralateral ganglion 
to cross the midline, presumably due to removal of contralateral 
neighbors that compete for innervation territory.52,53 Although 
time-lapse imaging in zebrafish suggested that contact-depen-
dent repulsion between growing axons is the main mechanism 
limiting overlap between neighboring arbors,8,53 competition for 
a limiting positive factor (such as an NT) may also contribute 
to tiling. The collateral sprouting and expansion of receptive 
fields observed by Diamond and colleagues following peripheral 
nerve isolation in rats suggests that somatosensory innervation in 
mammals is also governed by competitive innervation between 
somatosensory axons in the skin and requires NGF, at least as a 
permissive factor.54,55 Intriguingly, one study of human patients 
who received trigeminal sensory root section to treat trigeminal 
neuralgia—effectively eliminating sensory innervation to one 
side of the face—observed similar expansion of mechanosensory 
and nociceptive receptive fields across the facial midline.56 This 
receptive field expansion was presumably due to collateral sprout-
ing of intact sensory arbors from the contralateral side of the face. 
Together these studies indicate that tiling is a conserved strategy 
for arranging sensory territories of free nerve endings.

Diversity in Somatosensory Axon Morphogenesis

Studies of peripheral sensory axon guidance during the past 
20 y have collectively identified the key navigational challenges 
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