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PHYSICS OF PLASMAS 13, 052306 (2006)

Radial transport of fluctuation energy in a two-field model

of drift-wave turbulence
0. D. Gurcan and P. H. Diamond

Center for Astrophysics and Space Sciences, University of California at San Diego, La Jolla,
California 92093-0424 and Department of Physics, University of California at San Diego, La Jolla,

California 92093-0319
T. 8. Hahm

Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451
(Received 7 November 2005; accepted 6 February 2006; published online 16 May 2006)

A theory of spatial propagation of turbulence, referred to as turbulence spreading, is developed for
the two-field model of drift wave turbulence. Markovian closure expressions for the flux of kinetic
and internal fluctuation energies are systematically derived. Simplified closure expressions are used
to obtain two coupled reaction-diffusion equations for kinetic and internal energy. The efficacy of
various nonlinear interaction mechanisms for spreading is analyzed systematically. Spreading of
internal energy is predicted to “lead” that of kinetic energy. The important role of zonal flow
damping in spreading is identified, but zonal flows are shown not to be the dominant agents of
turbulence spreading. © 2006 American Institute of Physics. [DOI: 10.1063/1.21806638]

I. INTRODUCTION
A. Motivation

Anomalous transport remains a critical problem for mag-
netic fusion theory todaly.l‘2 The traditional approach to the
problem of calculating turbulent transport fluxes is based on
local stability and local mixing length estimates of saturated
fluctuation levels and transport. This paradigm of local mix-
ing and transport, first advanced by Kadomtsev, necessarily
ties the fluctuation levels and transport at a particular radius
to the local gradient, which sets the local stability criterion.
Thus, for example, ion temperature gradient driven (ITG)
turbulence is usually expected to appear only in regions
where the VT/T exceeds a certain critical local value. How-
ever, there are now several observations, in both
simulations™® and experimem,6 of turbulence appearing in
regions of the plasma, which are predicted to be szable. Such
observations of “turbulence spreading” suggest that nonlin-
ear interactions (and possibly linear wave propagation) can
transport fluctuation energy in radius, and into Jocally stable
regions (see Fig. 1). This transport of fluctuation energy in
turn redistributes the profile of local transport activity by
modifying the profile of the effective local transport coeffi-
cient, and so is classified as a “nonlocal transport phenom-
enon.” The spatial transport of fluctuation energy has been
called turbulence spreading.

Turbulence spreading is one example of a mesoscale
transport process. Mesoscale or mesoscopic phenomena oc-
cur on scales ¢ such that Ar,< € <L, where Ar, is the tur-
bulence correlation length and L is a gradient scale length or
the system size. Thus, mesoscale phenomena all involve the
collective interaction or cooperation of localized sites of tur-
bualence. Turbulence spreading, avalanches [associated with
the self-organized criticality (SOC) paradigm], transport bar-
rier advance and retreat, pulse propagation, profile relaxation
oscillations and even edge localized modes (ELMs) are all
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examples of mesoscale phenomena. It is particularly instruc-
tive to situate turbulence spreading in the taxonomy of me-
soscopic phenomena by comparing it to the better known
processes of avalanches and transport barrier evolution. Gen-
erally speaking, an avalanche is a propagating “pulse” of
intense transport with extent in the range of mesoscales.
Such a pulse necessarily involves both a perturbation in the
local gradient and increase in the local fluctuation intensity,
each of which are locally of finite duration. Most avalanche
and pulse propagation models extend quasilinear approaches
to describe the evolution of the gradient perturbation. The
theory of turbulence spreading is concerned with fluctuation
intensity profile evolution. Obviously, a description of a
physical avalanche requires one to account for both effects in
the transport pulse. Turbulence spreading theory is con-
cerned with instances where the profiles are relatively stiff,
so that intensity transfer is more prominent than the profile
perturbation. Similarly, it should be apparent that “turbulence
spreading” and “retreat of an internal transport barrier at the
back transition” are really one and the same phenomena,
since barrier retreat necessarily implies fluctuation advance.
Thus, we see that turbulence spreading is an integral part of
the zoology of mesoscale phenomena.

A key implication of turbulence spreading theory, and
“nonlocality phenomena” in general, is that the radial profile
of the turbulence intensity should be considered as an inte-
gral part of the “answer” to the anomalous transport prob-
lem. This is because spreading enters via smearing or delo-
calizing the relation of the turbulence intensity profiles to the
plasma profiles, such as the profiles of temperature, density,
etc. Just as deposition profiles (i.e., heating, fuelling profiles)
“drive” the plasma profiles, so the plasma profiles in turn
“drive” the intensity profile. In simple terms, turbulence
spreading introduces spatial mixing or transport into this re-
lation. Such spatial mixing is due to turbulent transport of
fluctuation energy, but also may involve wave propagation
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Stable Region Unstable Region

FIG. I. Spreading can occur via nonlinear mode couplings. Both the inverse
cascade and the forward cascade (usually of different quantities) are impor-
tant for the spreading to be substantial. The inverse cascade of energy in the
unstable region may result in radially elongated convective cells that spread
the internal energy very effectively. The internal energy then cascades for-
ward and gets damped in the stable region. If the nonlinear transfer rate is
faster than the damping rate, turbulence can accumulate in the stable region.

effects etc, In multifield systems transport need not be diffu-
sive but may also involve “pinch” effects. We emphasize,
though, that the main effect of turbulence spreading on trans-
port is via alteration of the relation between the local gradi-
ents and the intensity profile, and not due to wave transport
or direct losses of fluctuation field energy‘7

Turbulence spreading in magnetically confined plasmas
was first discussed by Garbet et al.® who compared the ef-
ficacy of spreading via nonlinear coupling with that via lin-
ear coupling of poloidal harmonics due to toroidicity effects.
Following a surge of interest in avalanches and self-
organized criticality, a nonperturbative bivariate Burger’s
equation model of spreading was proposed.g’10 This model
described the co-evolution of the turbulence population den-
sity, radially (in space), and as a function of the poloidal
wave number k, (in wave number space), and thus consti-
tuted a simple model of turbulence spreading as well as spec-
tral cascade. However, since this model was based on sym-
metry properties (& la the Ginzburg-Landau theory of second
order phase transitions) it was not amenable to qualitative
predictions. Recently, the effect of realistic geometry and
zonal flows (at the expense of realistic nonlinear couplings)
was investigated,” which seems to conclude that zonal flows
are essential in spreading. Notice that our paper coniradicts
with this conclusion.

Also, more recently, a Fokker-Planck-type model of in-
tensity transport was applied to the spreading problem.lz*l4
This model, which was very much in the vein of a K-¢
model of fluid turbulence,” described the evolution of
e(x,1), the turbulence intensity field, using a reaction diffu-
sion equation similar in structure to the well-known Fisher
<3quation.'6’17 Here the “reaction” was spatially profiled
growth and nonlinear dissipation (i.e., intensity dependent
energy transfer to small scale dissipation), and “diffusion”
was nonlinear interaction-induced spatial scattering of inten-
sity [i.e., here D=D(g)]. The model illustrated many aspects
of spreading dynamics, most notably the possibility of non-
diffusive front propagation from the unstable region into the
stable region. While the predictions of this model correlate
well with several simulation results, it had two notable limi-
tations. First, it tacitly assumed quasi-Gaussian fluctuations
and the existence of the second moment of the probability
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distribution function (pdf) of transport event size. The latter
is formally required for the applicability of Fokker-Planck
theory. Second, the model treated the fluctuation energy
e(x,7) as a single field, lJumped sum and did not distinguish
between kinetic and internal fluctuation energy, etc.

In fact, based on experience with passive scalar advec-
tion, one may argue that the statistics are ultimately
non-Gaussian'™'® and so one must consider the distribution
of flight times and step sizes in order to resolve the power
law tails of the probability distribution function. This ap-
proach leads to a fractal kinetic descn'ptionzo’21 of the evolu-
tion of turbulence intensity. Such a description is generally
nondiffusive. The problem with this approach is that it re-
quires the distributions of flight-times and step-sizes as input
to the calculation, instead of predicting them from the theory.
Determination of those distributions is tantamount to solu-
tion of the problem, and almost always requires direct nu-
merical simulations (DNS).** This “chicken and egg” im-
passe must be short-circuited if we are to develop any
intuition for the spreading process in a complex multifield
system. For example we already learned that a diffusion
equation with additional terms and a nonlinear diffusion co-
efficient does not necessarily imply “diffusive” transport of
fluctuation energy. It is possible to obtain a multitude of
behaviors, including ballistic spreading, from such nonlinear
reaction-diffusion equations. From a practical point of view,
it is also useful to construct a single length scale and quantify
the effect of spreading using this “nonlocality 1ength.”23 In
order to make progress in this direction, a model that can
estimate (even if only roughly) the dominant length scales
involved in the problem, rather than one that asks them as
input, is required.

Upon proceeding from first principles, one notes that,
even for a simple, two-field model of drift wave turbulence
(such as the Hasegawa-Wakatani model) and even when only
“direct interactions” are calculated in the closure, a full de-
scription of nonlocal mode coupling involves four equations,
with a concomitantly larger number of nonlinear diffusion
and drag coefficients. Therefore in practice, this “more accu-
rate” description is nearly intractable. In this paper, we in-
stead give a simple derivation that demonstrates how to rec-
oncile the practical desire for simpler models with the
requirement of a description appropriate to the multifield
character of the problem. In particular we will consider the
model equation

de de d de

= + Vg o~ E(Dy;“(x,t);) = y(x)e — mux)e* !,
and present a direct derivation of this from a simple, two-
fluid model of drift wave turbulence. Here ¢ is the energy
density, v, is the radial group velocity, Dy is the diffusion
coefficient, v and ;. are linear growth and nonlinear damp-
ing rates. This model describes weak turbulence for a=1 and
strong turbulence for a@=1/2. We will show when and how
this single equation accurately describes the turbulent
spreading of energy. We do this by proposing a two-field
spreading model, appropriate to the weak turbulence limit of
the Hasegawa-Wakatani model. The two-field model extends
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the single equation model given above and describes the co-
evolution of kinetic and internal energy using the coupled
reaction-diffusion equations:

L 2%’£<DK£K»—(N (1-BK)
gt e T e\ ok =NBN+(1 -8

- VNLKzs

aJ J d a ad ad
—Ntuv, N~ ’—<D2N—K> - T‘<D3K"~N>
dt ox dx ax ox ax

= YBK + (1 - BIN) = i V°.

Here K is the kinetic energy and N is the internal energy, D;’s
are various coefficients that define the strengths of various
diffusive nonlinear processes in nondimensionalized forms,
and « is a coupling coefficient describing the linear coupling
between N and K in the Hasegawa-Wakatani model. From
the two-field model, we conclude that in almost all cases of
interest, the spreading of N “leads™ and K follows (slightly
behind) for the weak turbulence regime. Also, in most cases
of interest, the “nonlocality length” associated with N (the
amount of internal energy overshoot in the steady state) is
slightly larger than that of K. These are testable predictions,
which will ultimately decide the validity and applicability of
the suggested model, and the assumptions leading to it. We
believe that the tendency of N to spread faster than K is a
manifestation of the corresponding spectral transport dynam-
ics of internal and kinetic energy, respectively. Dual cascade,
where the kinetic energy couples to larger scales, while the
“passive” scalar energy flows to smaller scales is a well
known result in 2D fluid turbulence (and the Hasegawa-
Wakatani model®®). This implies that internal energy (i.e.,
(#%/n%)) mixes faster than the kinetic energy or enstrophy.
This fact manifests itself in two ways. First, the dissipation
of the N field will be dominated by the small scales and thus
cause it to behave diffusively, as assumed in the simple
model. Second, since the kinetic energy (hence the flow)
tends toward large scales, it can “spread” the N field more
effectively than simple diffusion (possibly also leading to
large scale Levy flights and non-Gaussian statistics). Both of
these effects will preferentially spread internal energy, in-
stead of kinetic energy. Notice that both the inverse cascade
(and large scale structures as effective spreaders) and the
forward cascade (and the small scale dynamics as “spread-
ees”) are needed for effective spreading as depicted in Fig. 1.
Notice that unlike previous work, ' the model that we sug-
gest, reduces correctly to the local paradigm in the limit of
no spreading. Note also that Naulin ez al.® include the effect
of an accumulated 7 as a possible cause of the propagation of
the instability boundary (as in penetrative convection),
whereas our model deals in the propagation of turbulence
itself, once the stability boundary is set (as in turbulence
overshoot). )

It is important to state why we think the Hasegawa-
Wakatani model is a good model for the study of turbulence
spreading. The primary reasons are of course its simplicity
and the fact that it contains the basic ingredients, including
internal instability drive, necessary for the discussion of drift
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wave turbulence. Another reason is the fact that even though
the three-wave interaction driven radial flux of energy or
enstrophy can be shown to vanish in the Hasegawa-Mima
model (see Sec. V A below), the Hasegawa-Wakatani model
removes this degeneracy and allows turbulence spreading via
nonlinear wave coupling. In addition, inhomogeneities can
be incorporated into the Hasegawa-Wakatani system, in a
two-scale sense, by making the background profiles func-
tions of the slow spatial scale AX [i.e., L,~L,(X), c~c(X)
or v=v(X) etc.]. This implies that the question of instability
in this “locally” Hasegawa-Wakatani system is no longer a
question of a global nature since the “global” scale in this
two-scale approach is replaced by the “cell” scale AX. Here
AX is the length scale corresponding to the slowly varying
spatial scale, which in turn is represented in the final model
as an inhomogeneous growth rate (for the adiabatic limit
with y~v ) as

KR
2 233
LAX)e(X) (1 +42)

y=yX)= V(XK

where Lo is the global average of the scale length corre-
sponding to the background density gradient. This second
scale, AX, also corresponds to the scale at which the wave
envelopes are modulated (with an ordering L,>AX>k™!).
Thus the expansion parameter for the two-scale approach
(i.e., kAX) is in fact set by the changes in the background
profiles.

Notice that depending on the ordering of time scales
between the nonlinearities and the large-scale inhomogene-
ities, global linear eigenmode solutions might possibly be
unimportant., Here, since we assume linear growth and non-
linear damping occur at a rate faster than the spreading rate
(in other words two spatio-temporal scales corresponding to
the wave and the envelope are taken as disparate), the spatial
structure of the linear eigenmode is mixed by nonlinear cou-
plings much faster than a global eigenmode forms (in other
words 7,3 7Ty, >0,/ L,). In this limit, the stability condition
is effectively local (i.e., in X).

One could of course consider the opposite limit of small
box size, where no scale separation is possible. Notice that
this case does not correspond to the state in the tokamak
where profiles evolve on a large scale. In that case, “spread-
ing” would manifest itself as the excitation of (low k) global
eigenmodes, that are regularly damped in the linear theory
(i.e., those that are symmetric with respect to the local sta-
bility boundary), and have nonvanishing intensity in regions
where the local gradient is subcritical. Coupling to such
“damped eigenmodes,” is a feature of the theory of drift-
wave turbulence in the hydrodynamic limit® (i.e., low k). We
have included the coupling to the damped mode in our cal-
culation of the nonlinear diffusion coefficient in the hydro-
dynamic limit, though we focused on the two-scale case, as
this seems to be of greater interest in the context of MFE.

In this paper, we derive the two-field model (introduced
above) using a two-scale weak turbulence theory (i.e., the
weak turbulence limit of the two-scale direct interaction
approximation27 developed in order to treat second order mo-
ments when the mean flows are either weak or absent), of the
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Hasegawa-Wakatani system. The method outlined here can,
in principle, be used for any other multifield system within
any closure framework (e.g., resonance broadening or
EDQNM instead of weak turbulence). We also impose the
additional simplifying assumption that the cross-correlation
between flelds is small, so only linear coupling between N
and K results. This leads to simplified coupled equations,
which can be solved analytically for a saturated state. The
diffusion coefficients given above (such as Ds) are in fact
functionals of the entire turbulence spectrum. Therefore, if
the turbulence consists of different types of modes (e.g.,
zonal flows and drift waves), the coefficients include the
spreading due to all these different types of modes (e.g., both
the zonal flows and the drift waves). However one can, in
principle, separate various classes of fluctuations and study
the “spreading effect” of one type of structure on the other.
Notice that it is important to clarify that we consider only the
net spreading effect, as there are surely other effects. One
such case, for example, is the generation of the zonal flow by
the drift waves+the damping effect by the zonal flow on the
drift waves.”® These two effects cancel one another when
summed over the whole spectrum (since total energy is con-
served). Some of these effects may even cause spatial modi-
fications of the turbulence profile. However since the “net”
effect of all such couplings vanishes when summed over the
entire spectrum, they are neglected. This is so, even when the
action of one mode on the other, rather than the total spread-
ing, is considered.

The remainder of the paper is organized as follows. Sec-
tion II is intended as background. First, the Hasegawa-
Wakatani system is introduced and the linear dispersion re-
lation and its solutions are given for important limiting cases.
Then, the conservation laws in Poynting’s form are given
and the kinetic and internal energy fluxes are defined. Sec-
tion II ends with a brief review of the closure theory and the
Markovian assumption. In Sec. III, a method of computing
the fluctuation energy fluxes based on a two-scale version of
the weak turbulence theory is outlined and a derivation of the
energy flux is presented. In Sec. IV, the fluctuation energy
fluxes are computed in a general way using this two-scale
methodology, and the resulting model is introduced in a gen-
eral manner. In Sec. V, an extensive study of various limiting
cases, such as adiabatic and hydrodynamic limits, and vari-
ous different types of interactions, such as those between a
zonal flow or a streamer and drift waves is performed and the
diffusion coefficients for each of these cases are calculated.
Section VI discusses the results obtained by numerical inte-
gration of the two-field model, and its correspondence to the
previous one-field model. Section VII contains results and
conclusions.

Il. BACKGROUND

The Hasegawa-Wakatani model, which describes the
evolution of “dissipative” drift waves can be written as

(3,438 X VO . V)V2D - vViD =~ ' V(D - n), (la)

(342X VD . Vn+3,®~xVin=~u'Vi(@-n). (Ib)
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The usual dimensionless drift wave variables are used,
so that

ed ni
b — , n - Qe
G*Te €=l
Ux T T,
% o K PR 1_ TeilioPs
Ps> I s )
n Cy m,C €x
v
V—= 5" X .
PROTS P20

Here 7, is the electron temperature, n; is the background
density, n;; is the fluctuation density of ions, ¢ is the elec-
trostatic potential, £; is the jon cyclotron frequency, p, is the
ion Larmour radius at electron temperature, and 7,; is the
electron-ion collision frequency, so that x can be considered
as a dimensionless resistivity. Notice that diffusion of the
density term (i.e., x) does not appear in the original set of
equations.29

Taking the Fourier transforms of (1a) and (1b) yields

2 c c
§,+ vk +;{’2' q)k_ﬁ”k

. ¢’ -r%
> ixq-p D_ D,

5
2 prg=—k K

(0”, + sz + C)nk + (lk) - C)q)k

== 2 iXq p PP ny),

1
2 p+q=-k

where ¢= u“lkﬁ. This set of two ordinary differential equa-
tions can be written compactly in the form:

o HP =S S M, ooy
p+q=—k
with
o= (CDk) H{:ﬁ _ (Vk2 +olk? —cik? )
ne/’ ik,—c Xk +c
and

22
M= [5”19815’1%@-5“26‘”}“(1-1),

where 6% is the Kronecker delta and e'?=—€?!=1. Notice
that M is symmetrical with respect to the joint exchange
(p,B)—(q,7y) as it should be.

The linear theory of the Hasegawa-Wakatani system is

well known, and is contained in the dispersion relation (see
the Appendix A for details)

@ +iofc(l + VK + (x + vKZ] — c(vk? + x) — vxk*
~ick/k*=0. (2)

A useful form for the frequency that passes smoothly and
explicitly from the adiabatic limit to hydrodynamic limit is
the general expression for the y=wv case:
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1657k,
(1+k% \/ \/ ST 17
2 2 2(1+ k%)

where the “adiabaticity” depends on whether the term in-
volving ¢ in the above expression is greater or less than 1
(i.e., adiabatic for ¢> | and hydrodynamic for ¢<<1).

til. ATWO SCALE WEAK TURBULENCE THEORY FOR
THE SPATIAL EVOLUTION OF SECOND ORDER
MOMENTS

Yoshizawa’s two scale direct interaction approximation
(TSDIA) (Ref. 27) provides a systematic framework for de-
scribing the large scale, slow evolution of mean flows in the
presence of inhomogeneous turbulence. His method is a two-
scale generalization of the direct interaction approximation
(DIA),***! based on an assumption of scale separation be-
tween turbulent scales and those associated with mean flows.
He postulates that direct three wave interactions occur lo-
cally, while being modulated by the large scale dynamics,
and advected by the mean flows, Here we will consider a
Markovian (see Ref. 32 for discussion on realizability) TS-
DIA, in the limit of weak turbulence, and weak mean flows.

On the other hand, the relevant formalism for large scale,
slow evolution of second order moments such as energy or
intensity (with little or no mean flow), is the wave kinetic
equation or Landau equation:

IN(x, k,t) N Q_Q_&N(x,k,t) &Q IN(x,k, t)
dt dk ox Jx dk

¢y, (3)

where N(x,k.1) is the wave action, {) is some renormalized
angular frequency, which includes the effects of mean-flows
and coherent nonlinear dampings due to fluctuations as well
as the linear frequency. In particular, if one is interested only
in spatial evolution, one can integrate out the wave number
dependence of the wave kinetic equation and obtain a con-
servation law for the relevant quantity of the form

ON(x,t) 9 aQ
TWE{ f EN(x,k,t)dk} & f C(N)dk.

Here N(x,7) is the integrated wave action density. Since this
is a two-scale theory however, the k integral has to have a
low-wave number cutoff, which might be regarded as a
“source term” for this conservation law. Here we assume
“separation of scales,” i.e., no flux of energy across the
boundary between the large scales and the small scales. One
is tempted based on these assumptions to write the flux of the
conserved quantity as:

Q)
1—‘coherenl -~ —O,,—k'N(x,k, l)dk

However this is not true, as I' is not complete. The wave
kinetic equation in the form (3) was derived based on a “two-

» 33,34 : - .
scale” approach. In this approach, the collision term is
usually not expanded. Instead it is commonly stated that col-
lisions respect the conserved quantity, and as such
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J C(N)dk=0.

However, if there are significant spatial inhomogeneities, this
simple story is no longer true. Collisions in regions where
the wave population density is larger may transport energy
into regions where it is not. So, collisions do not conserve
wave action at each point in space, but rather do so only in
some averaged or integrated sense, where the average is
over the scale of inhomogeneity of N. In this case, all we can
say is:

[ f C(N)dkdx=0

which is always true. The subtlety is to ascertain what, in
fact, sets the limits of integration over x. This implies, in
general, that

f C(N)dk == ‘?chol]isional

so that

= Iﬁcoherfzm + Fcollisional'

This result means that, unless the “collision” term in the
wave Kinetic equation is confronted, adiabatic theory cannot
be used to properly describe turbulence spreading, apart from
that which occurs via simple advection. The method outlined
in this paper may be viewed as a way of including the effects
of the “collision term” in the wave kinetic equation in the
calculation of spreading. Here our starting point is the exact
conservation laws such as (B1) and (B2). Since these are
exact, they include all the effects (i.e., collisions or incoher-
ent noise as well as coherent damping).

When averaged, these conservation laws yield a new set
of conservation laws, which describe the evolution of con-
served quantities by the long time dynamics and large scale
motions. These average conservation laws include the aver-
age effects of collisions and damping. However, since they
are integrated over the spectrum, only the “net average ef-
fect” of all collisions and dampings can be known. In fact it
is even not possible to separate coherent damping from in-
coherent noise in these “exact” expressions, since the spec-
tral dimension of the initial information is lost. It is clear,
however, that such an approach is sufficient for a study of
strictly spatial spreading.

Also, a rigorous Wigner distribution function treatment
of the Hasegawa-Wakatani system, requires evolution equa-
tions for all four conserved quantities. Even though this may
be necessary in order to determine the asymptotic form of
the spectra, it is unnecessarily laborious for an estimate of
the transport of turbulent intensity. Here we instead use a
formulation that is simpler than the wave action formulation
but contains more than a nonrenormalized (hence “weak”
turbulence theory) version of the TSDIA formalism (in the
sense of dealing with second order moments), with and with-
out weak mean flows. The two scale field equations can be
written in general notation as
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g+ HiPpfd = = 2 % p~q77ﬂp77:/q
p+q -k .
- iPak Zp g
—k —q, p77B &X77~ (4)
where
aﬁy
pabr — ﬁﬂf )
kpag ™ d'pv\.

Notice that (4) is simply the Hasegawa-Wakatani system in
our abstract notation, where the amplitudes on the right-hand
side are assumed to have slow spatial variation in the radial
direction. In Eq. (4), p and q are wave numbers of the fast
spatial fluctuation; however k is the full wave number, which
includes both the fast spatial fluctuations and the modula-
tions induced by envelope dynamics. In other words, k
=-p-q+Ak, where AK is the wave number of the envelope.
Hence the expressions

a1
Ny = (ol 75 = 5 (md?), (5)

1(k = <(T§771) >

<(1 +i3)| P, (6)

=2 (o neno = 2 (Kig+ N
ka k

are exact. Once the equation for N is written, we will also
consider a two-scale expansion for k, but the nonlinear term
will then be independent of k and the expansion of the linear
part [say of Hi? in (4)] will simply result in a group velocity
term and linear diffusion, if y and v are nonzero.

Equations for N=2%\ N, and K=2Ky could also be
constructed from (4) using (5) and (6). The results should be
nothing but the statistical averages of (B1} and (B2). Three
correlations that appear in these equations for nonlinearly
conserved quantities will then be computed via the direct
interaction approximation (DIA), using the two-scale equa-
tions for the beat mode. Thus

o= f RANL MNP ()77 (1)

+z’fR (LPYY ok )2 ()

PP oot ) axmT ()" 7

Of course for a fully renormalized system, one should use
the response function R{™(¢,1'), which satisfies an equation
of the form

GRENE ) + HEPREM1, 1) + vp REM(t,0") = St — 1) 8.

Here, however, we intend to focus primarily on the case of
weak turbulence, hence the nonlinear damping as well as
linear growth or damping are assumed to be small compared
to the wave frequency. More rigorously, it is the smallness of
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the net damping rate as compared to the mismatch that jus-
tifies the weak turbulence approximation.

A contrast with what is usually called the Whitham
theory of modulations,*>?® is also somewhat useful here. The
basic method of Whitham modulations consists of casting
conservation laws in a Poynting’s theorem form, as in (B1),
and using basic solutions such as

@ =A sinlk,(y - V,))sin kx + P,

n=-B sin(k,(y - V,1))sin kx + P

and using the fact that the conservation law applies to the
adiabatic, slow evolution of the parameters of this sine wave
solution, such as amplitudes of the sine waves [i.e., A
=A(X,T) and B=B(X,T)] or the Doppler velocity [i.e., V,
=V (X,T)]. This gives slow spatio-temporal evolution equa-
tions of equal number to the number of independent conser-
vation laws the system has. These can be solved to describe
the modulations of the basic solution under the action of
slow inhomogeneities (e.g., the effect of sheared flow on
amplitude modulations, etc.). The method of Whitham
modulations is based mathematically on a variational formu-
lation. Its limitation is that it describes the evolution of “iso-
lated modes” {or isolated solitons if the system permits them
as exact solutions, see for instance, Ref. 37) but does not
take mode coupling into account. The method we outline
here can be considered as a statistical generalization of this
method, especially in the sense that evolution due to mode
couplings is accounted for.

A. Derivation of the fluctuation energy flux

In order to derive a spatial evolution equation for energy,
the statistical averages of Egs. (B1) and (B2) must be con-
sidered. The only major challenge in writing these average
conservation laws is the computation of the third order mo-
ments in the flux terms. Notice that it does not matter if we
first compute the inhomogeneous evolution of the statisti-
cally averaged spectrum (2 la the wave kinetic equation) and
then average out the k dependence or if we start with (B1)
and (B2) and compute the statistical averages later. This in-
dependence from the order of operations is guaranteed by the
fact that closure approximations invoked here (such as the
DIA) respect the conservation laws.

Since averaging and differentiation commute (i.e.,
(05" ) =0x(T'x)), we need to compute the average nonlinear
flux terms in order to compute the statistically averaged evo-
lution equations for kinetic and internal energies [using (B1)
and (B2)}, i.e.,

<FN>:—<%5Y®>=—é 2

p+q+k=0

Im([p,nqPy

(k,Dynpng + p,Ppngny
+ qu)annp) = 2
k+p+q=0
+ gynp @y 6y — g ngny + pyngng16Py)
= 2 Im(AWPE Enlon), (®)

k+p+q=0
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Ty=-{ —0,Vd)==
(g <2 y > p

+ quz)q)kQDp<Dq == 22

p+q+k=0
+ quz)d?pfb 5P, ]

Radial transport of fluctuation energy...

>, (kyk2 + pyp2
p+q+k=0

Im[(k_\:kz + pyp2

= 2 ImAKE Anlond. 9)
k+p+q=0
where
|
<IjN,K> = k.p.q
k+p+q=0
where

ch(rﬁ =il ﬁﬁaxﬁfk - 77631(‘9)(77105] ~ AkCE”

is the “probability current,” which is a nonlinear, two-scale
correction to the group velocity term and is negligible in
most cases that are considered here (since Ak<<{k, p,,q.})
and

T
o = f it -o_po -0 el 5elile=r) gy
P4

| = gmidaWnrtdy
= A — T

is the triad interaction time. Notice that in the weak turbu-
lence limit, only Re[ 6k,p,q] contributes due to resonances, as
it approaches a delta function. Notice also that in general
7 in (10) is a matrix with complex elements (see Appen-
dix A).

The method outlined in this chapter is essentially a Mar-
kovian two-scale DIA, where the mean flows are weak or
nonexistent. This form is especially suitable for applications
to second moments, and therefore applicable to fluctuation
energy flux calculations. The reason we call this closure a
“two-scale” closure is that here, the beat mode is assumed to
evolve on two separate spatial scales, namely that of the
fluctuations and that of mesoscale modulations [ie., Z
Xp q—iX(p-id,)-(q-1idy)], which is the slow spatial
scale corresponding to the evolution of the fluctuation en-
ergy. In practice we will also assume the wave dynamics
dominate near saturation and, so we formally take the weak

turbulence limit.

IV. THE FULL MODEL

We aim to consider various limiting cases, namely the
adiabatic, near-adiabatic and hydrodynamic limits of the
Hasegawa-Wakatani system. However the present frame-

Phys. Plasmas 13, 052306 (2006)

0 0 0 p
18y _ 28y _ y
A(N)k‘p?q—<0 —qy—py>’ A(N)k’p?q_<q 0 )

y

AK)LBY (kyk2 +p,p°+ 4,

0
2
kp.q ™ 0 0 ) A(K)kiyq =
Substituting (7) into (8) and (9) and assuming Markovian
evolution, we find the general expression for the flux of a
nonlinearly conserved second order moment:

2 AWK Im(@kp qrw{mgﬂp GCE Lprow g CTICE + 5% + = Piﬁf’_q,_pcg“(axcg’wiJgP)D,

(10)

work [i.e., Bgs. (7) and (10)] can be applied to any model,
and within the framework of any desired closure approxima-
tion. Even though our challenge is to derive minimal analyti-
cal models, sacrificing simplicity in some cases is necessary
to gain further insight into the dynamics of spreading. Ini-
tially, we will consider the full model but assume that the
cross-correlations are small. This is consistent with a weak
turbulence approximation and necessary to justify the neglect
of nonlinear terms with any sort of cross-correlation in them,
even though linear couplings induced by the cross correla-
tions are retained. Moreover, we take

)\f) -xk*-¢ )\5(2) - vk? — clk? 1

A AD T aAPN? 2

which is true either close to the hydrodynamic limit or for
x~vand k<1, since )\“) )\(7) 2)\(7 — kP —c—vk?=clk?
(see Appendix A). This assumptlon makes

Bt~ 51

p.a’k kpq]

where 0( - - and 0 kp.q 3T€ triad interaction times for the cases
when all the members of the triad are growing modes, and
when one of them is damped, respectlvely For the adiabatic
and near adiabatic cases we will set 0k =0 explicitly, as in
those cases the damped mode is very strongly damped in-
deed, so that interactions with the damped mode are negli-
gible.
Given these assumptions, the fluxes become:

(kK +p r 9,99
My~ S wlolAe?) + Shw) 0l 29
k+p+q=0 k“p*q
X[(q,(q* - PP +2p.2 X q - p)KydxK,
+(p,(p* - ¢%) + 29,2 X p - QK,0xK,], (11)
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FIG. 2. The resonance manifold for a given value of q (¢,=0.5,4,=0.8) and
parameters ¥=0.2, x=0.27, and c=1.6 is depicted. The tip of the p vector
that is in resonance with the given q, spans the above curve, where the final
wave number of the triad is k=-p—q.

2
moAw?) + a(Aw-)][fq%anXNp

Fy= b

k+p+q=0

2
~Dry aek,+ P2 0N, - @L’}Npaqu} (12)

q P P
Notice that Onsager relations do not apply in this case and
there is no counterpart of the last term of Eq. (12) in Egq.
(11). In order to obtain an answer, we need to compute the
sums (or integrals) over the resonance manifold that is de-
fined by the resonance condition Aw™®=0. In general, deter-
mining this resonance manifold is a formidable analytical
task, except for very simple dispersion relations or various
limiting cases. Hence, here we only emphasize that there
indeed is such a manifold (see Fig. 2), and that, on this
manifold, the “flux coefficients” (i.e., Ak,p_q’s) do not vanish,
in general.

One can then write the flux in the form of a Fick’s law

Ty~ 2 DOk, (13)
p
where
(ke +p,p* + 9,9%)
B = f 255 8k +p+q)[dAw?)
k"p=q
+ 88w)(g,(g* - p*) +2p.8 X q D)
X K,d*qd’k (14)
and
Ty~ 2 DYMaxk, + 2 DYNMaxN,, (15)
p p
where
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2
DY = j f §5<k+p+q>[amw+>

+ d(Aw™) K d*qd’k, (16)

Dﬁ,”"’z—fj%é(kwm)[&mw)

+ §Aw™) N d*qd%k. (17)

In practice, we will further claim [based on Egs. (13) and
(14)] that

Ty~ D KoK
and based on Egs. (15)=(17), that
FN s DzN(ny + D}KﬁxN

Using these approximations, the general model equations for
kinetic and internal energy densities take the form

d J J a
—K+v,,—K- ———(D,K—-—K)
ot T ox ox dx

= YBN+ (1 - B)K) - m K2, (18a)

d J a J J 7
—N+ qu'__N— ——(D2N—K) - '—(D3K——N>
oat T ox ox dx ax dx

= ¥(BK + (1 - BN) ~ YNLNZ,

where D, —0 as we approach the adiabatic limit, and both
D, and D, vanish for g,=0. Here, 8 is a parameter that
allows linear coupling between kinetic energy and internal
energy (mocking up the effect of the cross-correlation), v, is
the radial group velocity, y is the linear growth rate (y
=~2(y)) and yy_ is nonlinear damping. These additional
terms are necessary to capture linear dynamics and saturation
physics. Notice that the radial group velocity v,, is purely
linear here. There are convection-like nonlinear corrections
to this term in the general expression (10), however in the
limit of weak turbulence, these corrections are neglected.

The physical meanings of the diffusion coefficients can
be identified: DK, is the diffusion coefficient of kinetic en-
ergy, D,N is some sort of “stress” on internal energy by the
kinetic energy profile, and DK is the diffusion coefficient of
internal energy, for which the particle diffusion coefficient
Dgp can be used as a crude estimate via D3~ Dgp/K.

This two-field model suggests that near saturation
(where K= N), the one-field model given previously,lz’13 was
in fact accurate. Moreover, the fact that we have rigorously
derived (18a) and (18b) from the Hasegawa-Wakatani model
clarifies the range of validity of these type of spreading mod-
els. For instance single field model such as the one given in
Ref. 12 is not only valid for the turbulent evolution of a
passive scalar (as commonly thought) but also for more com-
plicated reactive systems, such as the Hasegawa-Wakatani
system.

This system contains reaction, manifested by its ten-
dency toward local saturation, and diffusion as a result of
nonlinear mode coupling, and thus in general is a reaction-
diffusion system with nonlinear (and nondiagonal) diffusion.

(18b)
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Flux Coefficient of Kinetic Energy
T s A AN I

i hydrodynamic limil
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» o for the growing mode
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adiabatic limit
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. I 1 ]t
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FIG. 3. (Color online) In order to answer the question of sign of D;, we
need to evaluate the integral (14) along the resonance manifold. The figure
shows the sign of {(k&2+pp°+q,97) g lg*—pPY+2p 2 X q-p)/k2pPq?
(shaded regions are positivé) and the resonance manifolds in the adiabatic
limit and the hydrodynamic limit (¢=0.01) superimposed, for the case p
=(0.5,0.2).

It also has the form of two coupled nonlinear Fisher equa-
tions and thus suggests front propagation with more or less
constant speed, with possible additional interplay between
the two fields. Thus, one might speculate that, if non-
Markovian effects are included, the time delay might pro-
duce cycles, or periodic bursts of transport activity.

Fisher-type reaction-diffusion equations predict that the
front propagation begins only after a quasisaturated state is
reached. The spreading is subdiffusive initially, before local
saturation takes place. Here we do not claim to represent the
initial linear growth and nonlinear damping in a quantita-
tively accurate way, since we model it with a single growth
rate and a single nonlinear damping rate. However this guar-
antees that Eqs. (18a) and (18b) agree with the local satura-
tion paradigm when spreading is neglected. The basis for this
is an assumption of modest time scale separation between the
time scales associated with local saturation and time scales
for which the nonlocal spreading takes place.

One of the essential problems for the mode! to be useful
is the determination of the signs of D, and D, (as Dy is
positive definite). The crucial point for D, is that for any
reasonably symmetrical spectral distribution (p,q,) <0,
when the average is taken over the resonant modes, thus
making D, ~—(g,p,)>0. The same is true for the {p,q,) av-
erage as well. However it seems it may be possible to con-
struct asymmetrical distributions where D,=<0. Similar
analyses are not readily available for D;, which vanishes in
most important limits, anyway. See Fig. 3 for a discussion.

V. ENERGY FLUX IN VARIOUS LIMITING CASES

We defined the diffusion coefficient via expressions of
the form

afl 2eas 2
Dy ~fff(p,q,k)d qd’k

and fluxes via, the Fick’s law, where

Phys. Plasmas 13, 052306 (2006)

T, =~ 2 DFPoyNE = DPayNP.
P

It is important to symmetrize the diffusion coefficients with
respect to k and q so that when we fix q=q’, we also take
the k=q' contribution into account, as well. This will allow
us to restrict g and p into regions in spectral space and study
spreading processes by the interactions between these spec-
tral regions,

(kyk* +pyp* + 4,9%)
D;’KK)EJJ Y k?.;;ZqZ Y 5(k+p+q)[5(Acu+)

1
+ 5(Aw‘)]5[(qy(q2 -p)+2p2 X q-pK,

+(k,(k* - p*) - 2p,2 X q - p)K,Jd*qd’k,  (19)

Pe= f f 8k +p+q[AAw) + H(Aw)]

R P
x5 ququszk dPqd’k, (20)

Do = - f f Sk+p+ @A) + Hdw)]

1 qpy, . kb
><—2—<€%’qu + J%Nk>d2qd2k, (21)
P P

where N{f :(KP,NP), etc. This particular form has the advan-
tage of showing the total contributions of all possible q and
k modes to the spreading of a single p mode. Strictly speak-
ing, the energy flux for a particular p mode is not necessarily
equal to the pth component of the above sum. Instead we can
write I'} ~DgﬁaXN€ + &y, where J, denotes “other terms” that
vanish when summed over p, and thus do not contribute to
the spreading of total turbulence intensity. Such terms are
neglected even when we talk about the effect of spreading of
one part of the turbulence on the other parts. This is because
only the flux terms that do not cancel really are the bit that
corresponds to spreading. Note that this ansatz is necessary
because it is impossible to separate the mechanisms of
“spreading” and “nonlinear transfer.”

Within this picture, we can ask questions such as, “how
much does a g,=0 mode (and a suitably selected ‘other
mode’) spread an arbitrary drift mode?,” even though the
total diffusion coefficient will include the back-reaction in-
duced spreading by the test modes on the ¢,=0 modes, as
well. Therefore, from this point on, we will refer to ¢ (and k)
“the spreader” and p “the spreadee,” and try to use this con-
vention consistently throughout the paper. Notice that for
total spreading, we need ultimately to compute the sum over
p. This includes the effects of all the processes (such as a
g,=0 mode and a drift wave spreading another drift wave)
and their inverses (two drift waves spreading a p,=0 mode).
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A. The adiabatic limit

It is well known that the Hasegawa-Wakatani system
reduces to the Hasegawa-Mima equation in the adiabatic
limit, for which the weak turbulence expression for the flux
becomes

Ty= > Ay p.qTOAW)(Pyp qCqdxCy
k+p+q=0

+ Py pCpdxCq)s
where Ay, 4 is either
A pa=hk+pyp +q,4°
for the energy, or
Axpq=—(a,(1+p)p*+2q-p)+p,(1 +4°)(q*
+2q-p))

for the enstrophy and

b D’ =p)+2piXq P
kpq 1+ 41 '
However the mismatch is

(gL 4D +2q - p) +p,((1+4°)(g" + 2q - )
(1+p)(1+g(1 +k%)

Aw=

=0,

so the coefficient of the enstrophy flux in the x direction
vanishes exactly when the resonance condition is satisfied. In
fact,

AgpgW) =1+ pH(1 + ) (1 +k)Aw (22)

for enstrophy, where Aw is the wave mismatch.

This is not exactly the case for energy. Nevertheless, in
the long wavelength limit (k, p;<<1), which, one might ar-
gue, is the most relevant case for drift wave turbulence,

(0P’ +29 ) +p,(a’+2q-P) _
(1+p2(1 +gH (1 +E)

Aw =~ - 0 (23)

and

Ay pqle) = kyk2 + pyp2 + quz
=~ (1+p)(1+g)(1 +k)Aw

as well.

These results mean that, energy and enstrophy are con-
served “locally” in the Hasegawa-Mima equation, within the
framework of weak-turbulence theory. It should be noted that
there is also linear dispersion, which can “disperse” a wave
packet and destroy its localization. Nonresonant interactions
(or resonance broadening) would similarly break down the
local conservation constraints. Notice also that introduction
of zero-frequency modes, such as zonal flows, or convective
cells, might also change this picture. This result is not sur-
prising, and it can be viewed simply as a critique of the
application of simple weak turbulence theory to describe the
spreading of turbulence in the Hasegawa-Mima model.

Phys. Plasmas 13, 052306 (2006)

B. Near-adiabatic limit

The Hasegawa-Wakatani equation has a special form in
the limit of large ¢ (i.e., c=1). Assuming y=v,

k
~ Y
TR
1K
W Ty T e
) 1+k) 1 ki
7}( ) ~—C 4 sz — Veddy’ (24)

2 c(+k)3

where Veqq, is the eddy damping rate, which is an ad hoc
coefficient describing the effect of higher order moments on
the second order, included here for flexibility. Notice here
that even though the growing mode is weakly growing, the
damped mode is actually strongly damped (75{_ ~—c¢). This
is in contrast to the hydrodynamic limit, where the two
modes grow or damp at approximately equal rates. Based on
this observation, we will completely neglect the damped
mode in the near-adiabatic limit. Since the dispersion rela-
tion is still the same, this implies D¥M =0, We will compute
the rest of the diffusion coefficients in various limiting cases.
An important point to note is that, as we shall see below,
in all the cases considered either DX ~D®® ~0 when
D;NN) is finite, or D(NN)>D;NK). This indicates that the inter-
nal energy spreads diffusively, with a diffusion coefficient
proportional to the kinetic energy. Thus one can speak of a
“spreader” (the flow) and a “spreadee” (the density). This
tendency remains prevalent as long as D3> (D) —D,), which
, : : - YY)
is very easy to satisfy, since for almost all p: D
>(DY-p ). ’
All these results point to the conclusion that, except for
very restricted cases (i.e., when most of the wave numbers
are suppressed for example), the internal energy will lead the
enstrophy or kinetic energy in spreading into a stable region
at least by a few linear growth times (since the time scale for
the linear coupling between N and K is the linear growth
time). As we shall see, this is also consistent with what is
observed when (18a) and (18b) are numerically integrated.

C. Resonant interactions

In order to make any practical sense out of expressions
such as (16), an understanding of the three wave resonance is
necessary. Even though a general calculation is not feasible
(in the sense that the results are too complicated), certain
limits can be explored. One such case is when one member
of the triad is a zonal flow (i.e., ¢,~0). It is important to
note that this will immediately qualify the interaction as a
resonant interaction with k,=—p, and k*=p?. This is one way
to see why zonal flows are essential to the dynamics of
Hasegawa-Wakatani turbulence. Here we will discuss this
case, along with the case when one of the modes is a
streamer (i.e., has g, ~0).
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1. q,~0: The spreader is a small scale streamer

Evaluating (20) and (21) using the resonance condition
(23), where ¢, is set to zero, yields the diffusion coefficients:

h(p.py)
DENN)“——“; =1 K(0,- p,(1 +p/3p3))

+ —7%/9——1((— P p§/3p),):| (25a)
py/py+ 119 :
and
2, 2
DIV /1(19.\2-717\') { (P;-/f; j/;/z 3) N(0,— p,(1+ py/3p2))
13 ,

- WN(— px,p;/3py):[ , (25b)
where
Hpupy) = (P*+ D(piQ +p§/3) - p;‘/zx(pf +p3) )

3p,(py +pif3)

Here D™ is positive definite (note that Ip,| =lg,]). A par-

ticularly interesting limit of this case is when p, is also zero,
for which

Do DY 2+ 1)?
L e 4 e (p» 5 ) (26)
K©0,-p,) N(O,-p,) Py

Notice that a streamer is actually the radially elongated
limit of the convective cell solution. In other words, a
streamer has ¢,~0 as well as g,~0. The mode discussed in
this section has finite g, since we used the adiabatic disper-
sion relation. Nevertheless it is also common to call those
linear solutions streamers. This is in fact the reason we call it
a “small scale” streamer (“small scale” denoting the scale of
fluctuations in the z direction). In fact, a true streamer should
also have g,~ 0, hence c¢<<1. Let us consider this particular
case (which also requires treating the damped modes) next.

2. q,=0, c<1: The spreader is a large scale
streamer

When one of the modes involved in the triad is a g,
=~ ( hydrodynamic mode, the resonance condition becomes
P k, clg,|

——Lo 1 [ 2 =0,
L+p? 1+ 24

Aw'® =

where Aw'™ and Aw'” are the mismaiches for the growing
and the damped hydrodynamic modes, respectively. The ap-
proximate solution of the resonance condition is
sign(1 + p2 - p2)c(1 + p2)*?
/ 72
21 3(1 +p2 __py)2/3

9y= £q,(pepy) = *

(27)
and

k_v =Py * qv\'(p,\”py) E

This determines the diffusion coefficients to be
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2(1+p%
DI ~ —————1 K(0,q,(p,
P 3l1+pz_p§[ ( Qy(px py))
(_ py + Qy(px’py))z
P;2( + (_ Py + qy(px’py)

)ZK(_ Pxs

-py ¥ q).v(px,py))] (28)

and

NK) M(p_%
2

- 3 N(- o LT g s )
A T (= pu=py ¥ 4,(P0op))

The diffusion coefficients are both positive definite.
Another interesting observation is that when we set p,
=0 in these expressions, the diffusion coefficients become

2
w40 4p)

P 31— 4 K(0,9,(p..py)

and

DN 21+py)

NO,-p, T 4,(prpy
) 1=p (0.,-py  g,(popy))

both of which are singular as p,~ 1. Notice that p,~1 and
p,=~0 is usually the most unstable mode for various types of
drift instabilities. This means a large scale streamer will
“most effectively spread” the most unstable mode. Note that
even though p,~1 also causes (27) to become large, it is
also proportional to ¢!** which may be arbitrarily small. This
means if pzz 1+e¢, as long as € is small but at the same time
large compared to Ve, interaction between a large scale
streamer and a drift wave is feasible. Not surprisingly this is
also the most efficient mechanism for spreading of all the
cases considered in this study, and is comparable only to the
case when all the interacting modes are hydrodynamic.

3. q,/=0: Spreader is a zonal flow

Zonal flows, being poloidal flows, do not cause radial
transport. This is true for the transport of fluctuation energy
as well as particles. However, if a certain “nonlinear model”
considers only the couplings via the zonal flows (e.g., Ref.
11) and neglects all direct fluctuation-fluctuation couplings,
this simple fact becomes obscured. To the extent that nonlin-
ear interactions drive the transport, it may seem as if the
zonal flows were the cause of the transport. For example if
one turns-off the zonal flow, since all the nonlinear interac-
tion is also turned-off, no spreading occurs. One might,
therefore, be mislead into believing that, zonal flow is the
“cause” of spreading. Here we try to demonstrate conclu-
sively that, this is not the case.

The distinction that was introduced for streamers based
on their g, is irrelevant for zonal flows in practice, since
w(g,—0)~0, whether the mode is hydrodynamic or not (in
other words, zonal flows are always hydrodynamic). In this
case, zonal flows may only “mediate” the interaction, by
allowing two oppositely directed drift waves to interact with
each other thus letting them also spread one another, while
being spread by them. Zonal flows do not cause spreading
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FI1G. 4. (Color onling) Cartoon of the two-scale direct interaction between a
zonal flow and two drift waves of equal and opposite poloidal wave num-
bers. Drift waves spread one another as well as the zonal flow. Zonal flow
allows that only by completing the triangle. Notice that there are many other
triangles completed by many other k’s. In fact when one of the legs is not a
zonal flow, all the legs contribute to spreading unlike the zonat flow, which
gets a free ride.

themselves, as the diffusion coefficient is independent of the
zonal flow amplitude. The resonance condition with g,=0
gives q,==2p, and

oy (L+ pz)PiK(
=TT B\Py—p r) 5
P 4lpplp? "

(29)

(1+p2p;
DO~ 2N (p,,~ p,)-
4p.pylp

Here D;KK) is already zero, due to the fact that flux coeffi-
cient is proportional to mismatch.

Notice that the spreading here is caused by the “other”
drift wave, i.e., the k,=-p, mode, and not the zonal flow (see
Fig. 4). Physically, spreading occurs via inhomogencous
scattering of the drift wave by the zonal flow.

4. p,=0: Spreadee is a zonal flow

Even though zonal flows do not “spread” drift waves, a
drift wave can spread a zonal flow, along with the other drift
wave in the triad, resulting in spreading of the total turbu-
lence (i.e., the sum of the zonal flows and the fluctuations).
In this case the diffusion coefficients become

2 2 2.2
(NN) _ J Utg,*pif4)a, +q"+px/4)7q"[K(~P 12,q,)
) X ey

P 2lq.p.l(q; + pira
+K(p,/2,- q,))dq, (30)
which is positive definite. On the other hand, e vanishes,

' p
since for py:O,

D~ Py EPuy o

q

Therefore turbulence with zonal flows may in fact spread, via
nonlinear interactions (between q and k in this case) “medi-
ated” by the zonal flow (p here). However the role of the
zonal flow in this type of spreading is predominantly passive.
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The zonal flow allows two drift waves that are oppositely
aligned in the y direction to resonantly interact and therefore
spread each other. While doing that, they also spread the
zonal flow as a side effect. This is neither the dominant in-
teraction, nor do zonal flows play any essential role in the
spreading here.

D. Consequences

Before continuing further, it is absolutely necessary to
summarize these results and explain what they mean, physi-
cally. First and foremost of all, the primary observation is
that for all the cases considered here, be it the near-adiabatic
or hydrodynamic limits, D(NN)BD(NK)>D;KK) consistently,
which implies, D:K=D,N> DK for any reasonable en-
semble of drift wave turbulence (i.e., containing a variety of
modes). Since the dominant diffusion coefficient D;K ac-
counts for the diffusion of N by K, we can talk about a
“spreader” K and a “spreadee” N. Such an ordering strongly
implies that the spreading of N will lead the spreading of K.
This is a concrete observation and a testable prediction.

Second, the process by which the zonal flows are in-
volved in the spreading of turbulence is clarified. Zonal
flows do not cause spreading directly (none of the diffusion
coefficients are proportional to the zonal flow amplitude so
long as zonal flow damping is neglected), however they “me-
diate” spreading by scattering the drift modes, while in fact
being spread by them. It is clear from expressions such as
(29) and (30), that the drift modes [i.e., (-p,/2.q,) and
(-p./2,=g,)] in fact cause spreading of the zonal flow and
each other at the same time. Thus we call the drift modes the
“spreaders” and the zonal flow the “spreadee.” Notice that it
is in fact the conserved sum of the drift wave and the zonal
flow energies that actually spreads.

When the effect of zonal flow damping is included, it
results in broadening of the three wave resonance and thus in
a radial energy flux proportional to the zonal flow damping.
This is not surprising, because zonal flows inhibit transport
and spreading by shearing apart structures with radial extent.
Thus, anything that damps the zonal flows will necessarily
lead to turbulence spreading. Also, secondary instabilities of
the zonal flow (i.e., tertiary instabilities of the drift waves),
such as the Kelvin-Helmholtz break—up,38 would result in a
similar outcome. Once again, any process that reduces the
inhibitor enables spreading.

It is also important to note that there is a very large
number of other modes which could similarly mediate
spreading, and in addition contribute to the spreading them-
selves. The total sum of this large number of modes conirib-
utes much more to the spreading than zonal flow mediated
spreading process alone. Therefore it is not in any way jus-
tifiable to neglect the effects of all these other modes based
on arguments about zonal flow interaction being stronger
when compared with only one of the other modes. In fact,
since 1/¢ does not appear in the expressions Egs. (29) and
(30), even that claim may not be justified.

Another interesting observation concerns the most effi-
cient path to spreading. Finite g, streamers, just like any
other drift mode on the resonance manifold, may contribute
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to the spreading phenomenon even though they are not par-
ticularly effective. On the other hand, streamers as large
scale convective cells elongated in the radial direction (and
thus having ¢<€1), are very interesting from the point of
view of being particularly efficient in enabling spreading.
First of all, the properties of such structures do not change
when they themselves are subjected to spreading. This is
essential, because they can keep spreading other modes effi-
ciently without being scattered into other parts of & space.
The condition that a large scale streamer interacts with a
small scale drift wave seems to be that 1+p _E must be
small, but at the same time large compared to ve {which is
already very small as, the streamer is assumed to be hydro-
dynamic). Pragmatically speaking thls allows the diffusion
coefficient to be as large as 0(]/\0) Notice also that the
most unstable modes in most drift wave turbulence problems
satisfy these conditions. This makes large scale streamers
particularly interesting, because they can spread the most un-
stable modes, most efficiently.

Similarly hydrodynamic interactions in general are more
efficient than near-adiabatic ones, as near the hy,grodynamic
limit all the diffusion coefficients scale as 1/Vc¢, which is
large. However this may in fact be unphysical, as it may be
argued that due to resonance broadening, weak turbulence
will not be valid for those types of modes. Here we argued
that local saturation is robust enough that a weak turbulence
theory (for the purpose of spreading) may be based on a
locally saturated state.

VI. SOLUTIONS AND IMPLICATIONS OF THE
SPREADING MODEL

N=K=1vy/yy. is a fixed point of the two-field model. In
fact by letting N~ K~ ¢g/2, the equation for the total energy
becomes

(0, + vgu0x)e = dy(Dosdye) + ve — ynLE"» 31

where Dy=(D;+D,+D3)/4. This is the usual nonlinear
Fisher equation, which frequently appears in the study of
spreading phenomena.m‘17 Thus all the solutions of (31),
which were already given in some detail in Ref. 13 are also
solutions of (18a) and (18b) near the fixed point. However,
since there are more degrees of freedom in the two-field
model, various other things may be expected fo happen.
Even though there is a host of exact analytical solutions (for
instance those of the one-field model), it is not clear a priori,
which of those solutions will actually be realized. However
numerical solutions of this 1D, two-field system is quite fea-
sible. Here we use a two-field version of the same numerical
method used in Ref. 13 which employs an implicit Crank-
Nicolson scheme for the linear terms, a third order Runge-
Kutta-Wray scheme (RKW-3) for nonlinear terms, and
simple finite differencing approximations for the spatial de-
rivatives. The agreement of this numerical method, with ex-
act analytical solutions was tested and found to be quite ac-
curate. The result, as expected, is a slight enhancement of
spreading due to the internal energy dynamics. In fact it is
clear that spreading of internal energy “leads” that of kinetic
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energy by some finite amount in most cases of interest (see
Fig. 5).

VIl. DISCUSSION AND CONCLUSIONS

In this paper, we developed a theory of turbulence
spreading for the two-field Hasegawa-Wakatani system. The
principal results of this paper are:

(a) The systematic derivation of Markovian closure ex-
pressions for the flux of kinetic and internal fluctuation en-
ergy. These expressions may be thought of as a statistical
generalization of the Whitham modulation theory which ac-
counts for mode couplings.

(b) The simplification of the closure expressions to ob-
tain two coupled, nonlinear reaction-diffusion equations for
the kinetic and internal energy density. These equations re-
duce to earlier, simpler models in the appropriate limits.

(c) The calculation of the fluctuation energy flux in vari-
ous limits. Specifically we have systematically studied the
efficacy of different interaction mechanisms for turbulence
spreading. These results are summarized in Tables I and II.

(d) The conclusion that spreading of internal energy
“leads” the spreading of kinetic energy. This prediction is
easily testable via numerical simulation.

(e) The conclusion that zonal flows are not the predomi-
nant agents of spreading.

The model agrees qualitatively with earlier models of
spreading, in that it can be reduced to the single equation
model with additional assumptions, and it also verifies their
validity in the appropriate limit. There are various additional
observations that can be made via the two-field model, how-
ever.

It is our belief that, the tendency of X to lag behind N is
connected to the fact that, in two-dimensional turbulence,
kinetic energy tends to inverse cascade, whereas internal en-
ergy set by the “passive” scalar, tends to cascade forward.
Diffusion coefficients D and D5 are linked to the concept of
eddy viscosity in homogeneous isotropic turbulence. Since it
is well known that eddy viscosity is negative (at least for
fluid) 2D hydrodynamic turbulence, such a correspondence
is not unexpected. Simply put, N spreads faster because it is
mixed on small scales.

However as noted in the Introduction, the synergy be-
tween forward and inverse cascades possible in a two-field
model may facilitate spreading into stable region. Notice that
if one measures the E X B flow energy, it is Eossible to find
larger scale structures in the damped region.”™ This may be a
manifestation of the fact that the turbulence at the scale of
the driver (i.e., mixing scale corresponding to the most un-
stable mode) is spread most effectively by “streamers” or
large scale, radially elongated convective cells, which have
low k, (i.e., c<<¢1). This is a manifestation of the fact that we
need both the large scale structures, which effectively spread
the turbulence, and the smaller scale turbulence, which can
be spread by the large scale structures. However if one mea-
sures the density or the internal energy in the damped region,
it should consist mainly of small scale contributions if the
spreading is a result of nonlinear mode coupling.

Another point is that the kinetic energy is mixed at a
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FIG. 5. (Color online) Numerical solutions of the two-field model across the full radius. Here, dotted lines correspond to the internal energy, N and the solid
lines to the kinetic energy, K. In all the cases considered with equal, or similar diffusion coefficients, N leads K slightly even though K saturates first. Also
there is much more N in the “stable” region than K. Shown here are (a) D) ~D,~0, D3=Dgy, and a@=0.2; (b) D|=D3=Dgz and a~0.2; (c)D,=D,=D;
=Dgp and =0.8; and (d) D, ~D,~0, D3=Dgp and @=0.9, where Dgp=D.

smaller scale (the scale of the most unstable mode) in the  should be observed in the internal energy spectrum in the
unstable region, which then inverse cascades to larger scales damped region.

and either gets damped by back-coupling to small scales or Another important result is on the role played by zonal
accumulates at the largest scale. In any case the process is flows (g,=0 modes) in the process of spreading. First of all,
continuous, so all the scales between the mixing scale and if the drift waves are “adiabatic” (i.e., consistent with the
the largest scales exist in the unstable region. However, once Hasegawa-Mima dispersion relation), there is effectively no
the turbulence enters the damped region, it is no longer flux of energy or enstrophy for resonant interactions. This is
mixed. The inverse cascade continues as the turbulence  true unless zonal flow damping is introduced, which causes
propagates in the damped region. However there is no longer ~ resonance broadening. Then the energy diffusion becomes
instability driven mixing at the small scales, therefore the  proportional to the zonal flow damping. It should be noted
small scales are not populated. Therefore it is not surprising that it is the total energy of the zonal flow and the fluctuation
to find more large scale structures in the damped region than that spreads. Hence, the zonal flow is only one of infinitely
in the unstable region. Again, this argument should be re- many mediators. Removing the zonal flow does not remove
versed for internal energy, and more small scale turbulence spreading, and probably does not even reduce it. Even

fent to AN how
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TABLE 1. Table of results for the diffusion coefficients in the near-adiabatic limit, giving information about the
relative values of the diffusion coefficients. Recall that DX = DKK is the coefficient of 3K in the expression for
the flux of K, D™V is the coefficient of dyN in the expression for the flux of N, and DX is the coefficient of dyK
in the expression for the flux of N. D always corresponds to D™ and \ is simply a p dependent coefficient
which is always less than 1. In addition to these we have also considered the interactions between a hydrody-
namic streamer and two adiabatic drift waves. The result for that case is given in Eqs. (28).
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spreader— 4,=0 and k,=—p, (a q,=0(c® 1) and k,=—p, other q and
spreadee zonal flow and a (a small scale streamer k=p—q (two drift
i drift wave) and a drift wave) waves)
p,=0 (i, zonal flow) D¥K=0 D¥E=0 D¥K=(
DNN=DNK=O DN1V=DNK:0 DNNZD,DNK=O
no resonance see Eq. (30)
p,=0, c>1 (i.e., small DX¥=0 D¥k=0 DX =0
scale streamer)
D¥V=pNE=(Q D"W=p, DY =D D¥N=D, DY £0
see Eq. (26) not computed
other p (i.e., drift wave) D¥K=0 DXk=0 D¥K=(
DMW=pN=D DD DV =D DM=p D"+ 0
see Eq. (29) see Eqgs. (25a) and (25b) not computed

though the zonal flows automatically satisfy the resonance
condition, they also make the coefficient of the kinetic en-
ergy flux vanish, effectively removing resonant interactions.
Thus, any advantage gained from resonant interaction is lost
from the point of view of spreading.

There are various modes on the other hand, for which
the resonance condition is satisfied and the kinetic energy
flux coefficient does not vanish. At least from the point of
view of a weak turbulence analysis, these modes are the most
important ones in terms of facilitating spreading. In particu-
lar, spreading induced by hydrodynamic streamers (on either
other hydrodynamic modes, or drift wave turbulence) is
shown to be the most efficient. In fact, other physical effects,
such as the shearing of the streamers by the zonal flows, that
reduce this tendency should probably be included in order to
justify the claim that the resulting diffusion coefﬁ<:1ent is
quantitatively accurate.

Notice that, we mainly considered weak turbulence and
weak zonal flows in this work. One should also consider
strong turbulence and strong zonal flow cases separately.
Strong zonal or mean flows are usually incorporated into the
framework of TSDIA as Doppler shifted Fourier transforms.
If the linear eigenmodes have the time to form, this would
imply modified eigenmode structure. We also tried to isolate
the effects of all kinds of modes individually. Alternatively,
one could assume homogeneous, isotropic turbulence (for
small scales), calculate the diffusion coefficients under these
assumptions and check if introducing (strong) zonal flows
{or external shear flows) enhance or reduce spreading. We
believe future studies on spreading should tackle these is-
sues.

In accordance with our model, a proper numerical ex-
periment of turbulence spreading in the Hasegawa-Wakatani
model requires carefully designed profiles of local dissipa-

Downloaded 3

TABLE II. Table of results for the diffusion coefficients in the hydrodynamic limit, giving information about
the relative values of the diffusion coefficients. Recall that D¥¥ = DKK is the coefficient of dyK in the expression
for the flux of K, DM is the coefficient of dxN in the expression for the flux of N, and DY is the coefficient of
dyK in the expression for the flux of N. D always corresponds to D™ and \ and \' are simply p dependent
coefficients which are always less than 1.

spreader— q,=0 and k,=—p, (a q.=0 and k,=—p, (a other g and
spreadee zonal flow and a drift streamer and a drift k=—p—q (two drift
1 wave) wave) waves)
p,=0 (i.e., zonal flow) DXK=Q DXk=0 DXK=(
DMV =pVK =0 DNV DK _q DVN=p DNE=(
no resonance see Eq. (C4)
p.=0 (Le., streamer) DXK=0 DVE=0 D¥K=Q
DN =K =0 DM =0, DNV =0 DW=D,DNK#0Q
see p,— 0 limit of Eqgs. (C5a)—(C5c)
not computed
other p (i.e., drift wave) DKK=0 D¥K=\"D DfK=Q
P D= D DW=D ,D"€=\D D"W=D,D¥£0
see Eq. (C3) see Egs. (C5a)—(C5c¢) not computed
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tion, parallel collisionality, and density gradient such that
there are regions, in which significant fluctuation intensity is
excited, and regions, in which it is weak or absent. The scale
at which those regions can be distinguished (i.e., AX) should
be much larger than the characteristic scale of the turbulence,
but small compared to the system size, so that it can define
an envelope scale for the turbulence which is not confused
by interactions with the boundaries. This probably implies
that a very large box size is necessary. One way to check if
the suggested mechanism of three wave coupling plays an
important role in turbulence spreading, is to examine
bicoherence/bispectrum40 around the boundary of excited re-
gion [i.e., where y(X) changes most rapidly]. One could of
course, pick two neighboring cells (of size AX), take win-
dowed Fourier transforms, and compute a nonlocal bispec-
trum where two of the modes are selected from the unstable
region and one from the damped region. This would be a
measure of how much intensity is being nonlocally trans-
ported via three-wave interactions.

Note that many predictions in this paper are easily test-
able also by gyrokinetic codes. The major testable prediction
is that N leads K in spreading. Another one is the prediction
that zonal flows do not play an essential role in spreading
and removing the zonal flows would not stop spreading. Fi-
nally, the role played by streamers or convective cells should
also be testable by simulations. This can be achieved for
instance by comparing two different types of turbulence {say
ETG and ITG) i.e., one case where the code is known to [ead
to the formation of streamers and another case where it is
known to lead to the formation of zonal flows. Notice that
this is insensitive to the fact that ETG may also actually form
zonal flows in the long time limit. What is important here is
to use a code (and a value of the magnetic shear) that leads to
the formation of streamers, and look for the spreading in the
presence of these streamers.
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APPENDIX A: LINEAR THEORY OF THE HASEGAWA-
WAKATANI SYSTEM

The linear response function to the Hasegawa-Wakatani
problem is

R{fﬁ(t,l') - rsﬁve—kl{lt—ﬂl,
where
1
P
OGN ke Nk )

Downfoaded 31
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LB _ -1 ()\i—xkz—c - clk? )
MM\ k—c N -vkE-ok)

¥

where
2
o' = T \SVB + Pk - —
and
Yi=-Ax \/— % —\,B4+ czkzlk
where

B=%{(Xk2+c)—<£5+ vkz)]
= l[()(k2+c) + <£ + vk2>]
2 K ‘

Notice that this implies that the eigenmodes for the decaying
and the growing modes may be put together in to the form

)\(] =—isign(k )\/

1
\/——+— B4+c2k 1k,

B2
2k2/k +A
2

N =i sign(k,) \/ VB + MK -

B 1
—\/ T+ 5\/34 + /K,

2

respectively.

APPENDIX B: CONSERVATION LAWS

If we take (la) and multiply by & and rearrange we get
the law of conservation of total kinetic energy:

v&)?
&,([ 2] >+V (- P9,V P+ 1DV VD
(VD V) VD) + vV VD:VVD - cP(n— D)
@2
+V-(—2—2><VV2<D)=O (B1)

Similarly multiplying (1b) by n, and rearranging, we get the
law of conservation of total internal energy:

2
a(%) +nd, @ +en(n— @)~V - (x Vn) + x(Vn)?

n2
+V-<—2—i><V®)= (B2)

The last terms in each of these equations correspond to the
nonlinear spatial flux of the conserved quantity due to the
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advection by the EXB flow associated with the fluctuating
scalar potential ®. There is no internal energy analog for the
electrostatic field (i.e., ®%) since P cannot advect itself.
However ® may advect vorticity. This is the reason why the
kinetic energy equation has more derivatives.

When the two equations are added, the equation for total
energy,

e=K+N=

is obtained in Poynting’s form
de+V.-I,+0Q=0,

where ( is the total dissipation minus the total internal drive
and the total flux of energy I', is the sum of the flux of
internal energy and the flux of kinetic energy, i.e.,

CDZ i’t2
To= 2 X VWP + =i X VO =T+ Ty.

Since the Hasegawa-Wakatani system is linearly unstable
and there is dissipation, Q is nonzero, in general. This means
none of these quantities are actually conserved “linearly.”
However they are still very important as they are “nonlin-
early” conserved. In other words, the mode coupling pro-
cesses respect these quantities.

Notice that for the Hasegawa-Wakatani system there are
at least two more similarly conserved (i.e., nonlinearly con-
served) quantities, the enstrophy ((V2®)?) and the “cross-
helicity” (nV*®). Here we will not consider the independent
evolution of those quantities and instead only point out that
they can induce linear coupling between N and K. Notice
that similar conservation laws of the gyrokinetic equation
(from which the Hasegawa-Wakatani model may be derived)
are known to be useful in benchmarking simulation codes. !

APPENDIX C: SPREADING IN THE HYDRODYNAMIC
LIMIT

The spreading of energy vanishes for the adiabatic limit.
Even in the near-adiabatic limit, the spreading is exclusively
due to the spreading of N. Even though this tendency pre-
vails in the more general case as well, the diffusion coeffi-
cient for kinetic energy is not always strictly zero. In order to
demonstrate this, let us consider the hydrodynamic limit (¢
—0) of the Hasegawa-Wakatani equations (with y ~ »):
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(%)

clk,
Yo =~ =sign(k,) ——| }| - vk -

212 Veddy -

Notice that in order to justify weak turbulence (w> 7) treat-
ment, we have to assume saturation, i.e., yff)%O‘, which
means that both the growing and the damped modes may
contribute to the resonance. Of course, if all the modes are
damped one does not expect any nonlinear interaction, there-
fore we only consider two cases, namely when all the modes
are growing and when only one of the modes is damped.

Resonant interactions: Again, a general calculation of
the resonance manifold is not feasible. Therefore we will
consider various limiting cases.

=0 (Spreader is a zonal flow): Using the hydrody-

namical limit of the dispersion relation the resonance condi-
tion for the case ¢,=0 (i.e., k,=—p,) is easily solved to give
k.=p, (ie., g,=—2p,). Hence an isosceles triangle with one
leg having g,=0 represents a resonant interaction. In this
limit

(NN) _L K (px’ P v
l ||

2 p2
DY ~ \| === 2N (- p))
P clpy! p.l !

When one of the modes is a zonal flow, the resonance con-
dition causes the flux coefficient g,k*+p,p?+k,k* to vanish
for the hydrodynamic limit as well as the adiabatic limit,
resulting in

DY ~ 0.

(C3)

px=0 (Spreadee is a zonal flow): Similarly, the resonance
condition yields ¢,=-p,/2, which in turn yields

2 /4)!
Dl(;,NN) — j _w[[((_ pX/Z,q),)dqy
clgt 2l
(NK)
+ K(px/27_ p.\" - q.\’)]dq_\” Dp -~ 0 (C4)
and
D ~ 0,

as usual since the resonance condition causes the flux coef-
ficient to vanish.
q,=0 (Spreader is a streamer): The resonance condition

e \/ \/ clp,] \/ |p> +4q,
2|g,| 207+ +2pyay)

(0,+2 X VP . V)V - V4P =-cn (C1)  cannot be solved in a simple manner. Therefore we will use
the approximate solution
A 2
(G, +EX VD -Vin+ 4,0 -1Vn=0 (C2) gy=-p,(1 +pt /4Pf)
which gives the wave frequency yielding
[ck, ~ ‘
wg{:) ~ +sign(k,) \| =2 D h(px,py){K(O - pyll +pX/4py))
N 2k.—
PP, N(=p,pH1ap) (C5a)
ampi + T, I PpLp /APy s a
and the growth and damping rates | +Px/16 2 PP 5Py
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2
DK = n(p,, pv‘.)l:i—;N(O,—- py(1+piap))

4
p».
+ Z?N(— P p:/4py)} (C5b)

and

ki Mpep)piGpia -1
b p(2p}+ (p/2))
= py(L+pi/ap)) + (= (p,2)* + pipl +4p2)

(o2 + PPy~ 6K,

XK(=popirap)], (C5c¢)
— 2 4 2
h(px’])_\') - C|]? ’(1 + px/4py
( 207 (p? + 16p2)plip,| )
2pllp|8p% + 16p, = p) + pi(pd + 16p})*"?

Notice that the first two are positive definite, whereas the
sign of the last one uncertain, but usually positive for 1

> Dy > Dy
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