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Machine Learning to Predict the
Risk of Incident Heart Failure
Hospitalization Among Patients
With Diabetes: The WATCH-DM
Risk Score
Diabetes Care 2019;42:2298–2306 | https://doi.org/10.2337/dc19-0587

OBJECTIVE

To develop and validate a novel, machine learning–derived model to predict the
risk of heart failure (HF) among patients with type 2 diabetes mellitus (T2DM).

RESEARCH DESIGN AND METHODS

Using data from 8,756 patients free at baseline of HF, with <10%missing data, and
enrolled in the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial, we
used random survival forest (RSF)methods, a nonparametric decision treemachine
learning approach, to identify predictors of incident HF. The RSF model was
externally validated in a cohort of individuals with T2DM using the Antihypertensive
and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT).

RESULTS

Over a median follow-up of 4.9 years, 319 patients (3.6%) developed incident HF. The
RSF models demonstrated better discrimination than the best performing Cox-
based method (C-index 0.77 [95% CI 0.75–0.80] vs. 0.73 [0.70–0.76] respectively)
and had acceptable calibration (Hosmer-Lemeshow statistic x25 9.63, P5 0.29) in
the internal validationdata set. Fromthe identifiedpredictors, an integer-based risk
score for 5-year HF incidence was created: the WATCH-DM (Weight [BMI], Age,
hyperTension, Creatinine, HDL-C, Diabetes control [fasting plasma glucose], QRS
Duration, MI, and CABG) risk score. Each 1-unit increment in the risk score was
associated with a 24% higher relative risk of HF within 5 years. The cumulative 5-year
incidence of HF increased in a graded fashion from 1.1% in quintile 1 (WATCH-DM
score £7) to 17.4% in quintile 5 (WATCH-DM score ‡14). In the external validation
cohort, the RSF-based risk prediction model and the WATCH-DM risk score
performed well with good discrimination (C-index 5 0.74 and 0.70, respectively),
acceptable calibration (P ‡0.20 for both), and broad risk stratification (5-year HF
risk range from 2.5 to 18.7% across quintiles 1–5).

CONCLUSIONS

We developed and validated a novel, machine learning–derived risk score that
integrates readily available clinical, laboratory, and electrocardiographic variables
to predict the risk of HF among outpatients with T2DM.
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Prevention of atherosclerotic cardiovas-
cular events has been a major goal of
therapeutic approaches in type 2 diabe-
tes mellitus (T2DM) clinical practice
guidelines (1). Similarly, in response to
the 2008 U.S. Food and Drug Adminis-
tration and the European Medicines
Agency Committee for Medicinal Prod-
ucts for Human Use guidance to industry
for the development of antihyerglycemic
therapies for the treatment of T2DM,
exclusion of significant risk of composite
major adverse cardiovascular events has
been the focus of cardiovascular out-
come trial programs of novel and estab-
lished antihyperglycemic therapies over
the last decade (2). There has been
comparatively less attention toward pre-
venting heart failure (HF), despite its
frequency as an initial presentation of
cardiovascular disease in T2DM (3,4).
Patients with T2DM with adequate con-
trol of major risk factors within target
ranges appear to have risk of atheroscle-
rotic cardiovascular disease (ASCVD)
comparable with that of the general
population; however, even patients with
T2DM with no additional risk factors
face a substantial residual risk of hospi-
talization for HF (5). Unfortunately, these
patients with T2DM complicated by HF
experience particularly high rates of
mortality (5). As such, the prevention
of HF in T2DM is of upmost importance.
The sodium–glucose cotransporter

2 inhibitors (SGLT2i), a class of antihy-
perglycemic therapies, have been shown
to reduce risk of hospitalization for HF in
at-risk patients with T2DM (6–9) and are
now supported as second-line therapies
(after metformin) in patients with T2DM
and prevalent ASCVD or CKD (7,10,11).
However, limited guidance is available
regarding targeted introduction of these
therapies in patients with T2DM at
heightened risk of HF, independent of
ASCVD considerations. Importantly, cur-
rent risk prediction models with tradi-
tional risk factors incompletely capture
HF risk in T2DM (5). As such, we hypoth-
esized that a novel approach leveraging
machine learning methods that can han-
dle multidimensional data may offer
superior risk prediction abilities. We
aimed to develop a novel risk prediction
model and integer-based score for in-
cident HF in patients with T2DM at high
cardiovascular risk enrolled in the
ACCORD (Action to Control Cardiovascu-
lar Risk in Diabetes) trial and externally

validate the findings in the Antihyperten-
sive and Lipid-Lowering Treatment to Pre-
vent Heart Attack Trial (ALLHAT) database.

RESEARCH DESIGN AND METHODS

The ACCORD Trial
The detailed protocol, study design (12),
and primary results (13) of ACCORD have
previouslybeen reported.Briefly,ACCORD
was conducted in 77 centers across the
U.S. and Canada. The trial included a total
of 10,251 men and women, aged 40–79
years, with T2DM and inadequate gly-
cemic control (glycated hemoglobin
[HbA1c] $7.5% [58 mmol/mol]). All par-
ticipants had established ASCVD or were
55–79 years of age with anatomic evi-
dence of atherosclerosis, albuminuria,
left ventricular hypertrophy, or two or
more other cardiovascular risk factors
(current smoking, hyperlipidemia, hyper-
tension, or obesity). InACCORD, random-
ization to a more intensive glycemic
control group (target HbA1c ,6% [42
mmol/mol]) versus usual care did not
affect risk of major adverse cardiovas-
cular events compared with standard
glycemic control (target HbA1c 7–7.9%
[53–63 mmol/mol]) (13). As more inten-
sive glycemic control did not influence HF
risk and as ACCORD was conducted prior
to the availability of SGTL2i, patients
randomized into both trial arms were
included in the present risk modeling for
incident HF, and randomized treatment
assignmentwas includedasa covariate in
the risk prediction models. Participants
with prevalent HF at baseline and those
with.10% missing data were excluded.

Incident HF Events
The primary end point of interest for the
current study was incident hospitalization
ordeathduetoHF,whichwasaprespecified
secondary outcome that was prospec-
tively captured and centrally adjudicated
by two independent multidisciplinary re-
viewer physicians (general internists, car-
diologists, and endocrinologists). Specific
event definitions have been detailed pre-
viously (14).Hospitalization forHF required
documented clinical and radiologic evi-
dence of clinical HF and congestion. Death
due to HF or cardiogenic shock was de-
fined as a death with clinical, radiologic, or
postmortem evidence of HF, in the ab-
sence of acute ischemic event. We com-
pared descriptive statistics in patientswho
did anddid not experience an incident HF
event during follow-up.

Candidate Variables
In total, 147 covariates collected at base-
line were considered as candidates for
analysis. Covariates encompassed a
range of domains including demograph-
ics, clinical variables, laboratory data,
electrocardiographic parameters, base-
line antihyperglycemic therapies, and
treatment randomization (to intensive
vs. standard glycemic control). Covari-
ates with .10% missing data were ex-
cluded. We further removed variables
with a correlation coefficient.0.7; how-
ever, no highly correlated covariates
were identified. The present analysis
included 109 predictor variables (Supple-
mentary Table 1). Continuous variables
that did not follow a normal distribution
were log transformed. Missing values
were imputed using a random forest
imputation (15).

Model Development
Predictionmodel development consisted
of two main stages: variable selection
and relationship modeling (Supple-
mentary Fig. 1). The different methods
used in each of the stages and the
resulting prediction models are de-
scribed below.

Variable Selection

The variable selection stage reduces
the number of variables used in
the prediction model by evaluating
changes in performance resulting
from addition or removal of variables
(16). We considered three variable
selection methods, including step-
wise backward selection, stepwise for-
ward selection, and permutation-based
random survival forest (RSF) selec-
tion. Stepwise backward selection re-
moves variables sequentially according
to their strength of association with
the outcomes until the Akaike informa-
tion criterion stops improving (i.e., is
minimized) (16). Similarly, stepwise for-
ward selection adds variables sequen-
tially until the Akaike information
criterion reaches a minimum value.
The permutation-based selection was
conducted using the variable importance
(VIMP) metric of the RSF. For VIMP, a
random subset of predictor variable val-
ues was permuted and the difference in
prediction error between the observed
and randomly permutated variables was
calculated. A high VIMP suggests that
misspecification worsens the predictive
accuracy in the forest, while a low VIMP
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suggests noise is more informative than
the observed variable.

Relationship Modeling

For each of the variable selection meth-
ods, the relationship between the se-
lected variables and the outcome of
interest was assessed using traditional
Cox proportional hazards (PH) models.
The best performing variable selection
method was further assessed using a
machine learning–based method, RSFs.
Briefly, an RSF is an ensemble classifica-
tion method that determines a consen-
sus prediction by averaging the results of
many individual decision trees (17). Each
individual tree is fitted using randomly
selected data using a subset of the ob-
servations (18). Competing risks were
modeled using a log-rank split rule (19).

Model Evaluation
For elucidation of the contribution of
various clinical variables and model de-
velopment strategies, the performance
of the three models was compared as
illustrated in Supplementary Fig. 1. For
development and comparison of the
models, the following procedure was
repeated 1,000 times. First, the study
cohort was randomly split into a devel-
opment set (50%) and a validation set
(50%). The threemodels were built using
data fromthedevelopmentdata setonly.
Imputationwas performed separately on
the development and internal validation
data sets. Finally, the relative discrim-
ination performance of the models
against the validation data set was calcu-
lated using the Harrell concordance index
(C-index). A C-index ranges from 0.5 (no
better than chance) to 1.0 (perfect discrim-
ination) and is analogous to the area under
the receiver operating characteristic (ROC)
curve for survival data. Performance was
reported as mean and 95% CI from the
1,000 bootstrapped replicates. Improve-
ment in discrimination between models
was assessed by the DeLong test (20).

Integer-BasedRisk ScoreDevelopment
For improvementof theclinicalutilityofour
risk prediction model, an integer-based
score was developed to estimate the
5-year risk of incident HF using regression
coefficients from the Cox PHmodel and an
age-standardized points scoring system
similar to the Framingham framework
(21).Calibrationofthemodelwasevaluated
by the Hosmer-Lemeshow statistic x2.

Similarly, the final model was visualized
graphically by comparing the observed
probability with the predicted probabil-
ity across 10deciles of predicted risk (22).
Finally, participants were further divided
intofive equally sized risk strata using the
quintiles of the calculated risk score.

External Validation of the Risk Scores
The RSF risk prediction model and the
integer-based WATCH-DM risk score
were externally validated in a separate
cohort of patients with baseline T2DM
and free of HF fromALLHAT (23). ALLHAT
was a randomized, double-blind, multi-
center clinical trial designed to investi-
gate whether treatment with a calcium
channel blocker (amlodipine), an ACE
inhibitor (lisinopril), or an a-adrenergic
blocker (doxazosin) would reduce the
incidence of fatal coronary heart disease
or nonfatal myocardial infarction com-
pared with treatment with a thiazide-
type diuretic (chlorthalidone) (24). The
study enrolled 42,418 participants aged
$55 years with baseline hypertension
and at least one additional coronary
artery disease risk factor (including
T2DM, hyperlipidemia, current cigarette
smoking, left ventricular hypertrophy,
previous myocardial infarction or stroke,
or ASCVD). The participants of ALLHAT in
the chlorthalidone, lisinopril, or amlodipine
arms of the study with prevalent T2DM at
baseline were considered for inclusion in
the external validation analysis (N 5
12,063). Given that the a-adrenergic
blocker arm was terminated early due
to increased incidence of major cardio-
vascular events, patients enrolled in that
armwerenot considered for the analysis.

The final external validation cohort
included 10,819 participants (25.5% of
ALLHAT) after further exclusion of par-
ticipants with prevalent HF (N5 791) and
missing data for the risk prediction model
(N 5 453). The outcome of interest for
our analysis, as defined in ALLHAT, was
new-onset HF. A subset of participants in
ALLHAT also had available data on HF
subtype, HFwith preserved ejection frac-
tion (HFpEF), and HF with reduced ejec-
tion fraction (HFrEF) at the time of HF
diagnosis. All HF eventswere adjudicated
using the hospitalization data in a cen-
trally blinded manner (25).

Data Sharing Statement
All patients provided written informed
consent to participate in ACCORD and

ALLHAT, and study protocols were ap-
proved by local institutional review
boards. Both ACCORD and ALLHAT
were supported by the National Heart,
Lung, and Blood Institute, and limited
anonymizeddataareavailableby request
to the National Institutes of Health Bi-
ologic Specimen and Data Repository
Information Coordinating Center.

Analyses were computed using R 3.5.1
(R Foundation for Statistical Computing,
Vienna, Austria). The RSF and stepwise-
selection models were implemented
using the randomForestSRC and MASS
packages, respectively (26,27).

RESULTS

In ACCORD (n5 10,251), 492 (4.8%) had
history of diagnosed HF at baseline and
1,003 (9.8%) had .10% missing data;
our final study sample included 8,756
participants (85.4%). Overall, 319 (cumu-
lative rate 3.6%) developed incident
HF during a median follow-up of 4.9
years. Participants who developed HF
were older, more commonly men, and
had a higher BMI (mean 33.0 vs. 32.1
kg/m2, P , 0.01). Patients who experi-
enced incident HF events also had higher
frequencies of prevalent ASCVD and had
longer average durations of T2DM, hy-
pertension, and hyperlipidemia (all P ,
0.05) (Table 1).

Performance of Models With Different
Variable Selection and Risk Prediction
Methods
Of the three different methods for vari-
able selection, each method selected a
unique subset of the available candidate
variables. The stepwise backward selec-
tion method identified 11 significant
variables, the stepwise forward selection
method identified 8 significant variables,
and the RSF method identified 10 signif-
icant variables. The variables identi-
fied by each method are shown in
Supplementary Table 2. A total of eight
variables were common between all
threemethods (age, diastolic blood pres-
sure, glycated hemoglobin, serum creat-
inine, HDL-C, T-wave axis, QRS duration,
and history of myocardial infarction).
T-wave axis, PR duration, and QTc dura-
tion were not included in the relationship
modeling stage, as they were not routine
clinical markers (T-wave axis), were clin-
ically similar to other variables, or were
not available in the validation cohort.
Both fasting plasma glucose and HbA1c
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Table 1—Baseline characteristics of the study participants with versus without incident HF during the study period

ACCORD patients
(free from baseline HF)

No HF event
during follow-up

Incident HF
event during follow-up P

n 8,756 8,437 319

Demographics
Female, n (%) 3,370 (38.5) 3,275 (38.8) 95 (29.8) ,0.01
Age (years), n (%) 62.7 (6.6) 62.6 (6.5) 65.3 (6.9) ,0.01
Race, n (%) ,0.01
Black 1,622 (18.5) 1,558 (18.5) 64 (20.1)
Hispanic 658 (7.5) 643 (7.6) 15 (4.7)
Other 987 (11.3) 967 (11.5) 20 (6.3)
White 5,489 (62.7) 5,269 (62.5) 220 (69.0)

BMI (kg/m2), mean (SD) 32.1 (5.4) 32.1 (5.4) 33.0 (5.6) ,0.01
Waist circumference (cm), mean (SD) 106.6 (13.6) 106.4 (13.5) 110.8 (14.6) ,0.01
Current cigarette smoker, n (%) 1,078 (12.3) 1,031 (12.2) 47 (14.7) 0.21
Lives with one or more adults, n (%) 371 (4.2) 338 (4.0) 33 (10.3) ,0.01
Highest level of education, n (%)
Less than high school graduate 1,260 (14.4) 1,191 (14.1) 69 (21.6) ,0.01
High school graduate or GED 2,300 (26.3) 2,223 (26.4) 77 (24.1)
Some college or technical school 2,891 (33.0) 2,770 (32.9) 121 (37.9)
College graduate 2,300 (26.3) 2,248 (26.7) 52 (16.3)

Alcoholic drinks consumed weekly,
mean (SD) 1.0 (2.7) 1.0 (2.7) 0.9 (2.7) 0.70

Vital signs at baseline, mean (SD)
Systolic blood pressure (mmHg) 136.4 (16.9) 136.3 (16.9) 139.4 (18.4) ,0.01
Diastolic blood pressure (mmHg) 75.0 (10.5) 75.1 (10.5) 72.5 (11.6) ,0.01
Heart rate (bpm) 72.6 (11.7) 72.6 (11.7) 73.0 (12.2) 0.56

Medical history
History of myocardial infarction, n (%) 1,237 (14.1) 1,138 (13.5) 99 (31.0) ,0.01
History of stroke, n (%) 502 (5.7) 472 (5.6) 30 (9.4) 0.01
History of angina, n (%) 928 (10.6) 880 (10.4) 48 (15.0) 0.01
History of coronary artery bypass

graft surgery, n (%) 918 (10.5) 830 (9.8) 88 (27.6) ,0.01
History of percutaneous coronary intervention, n (%) 870 (10.1) 818 (9.8) 52 (18.1) ,0.01
History of other revascularization procedure, n (%) 325 (3.7) 297 (3.5) 28 (8.8) ,0.01
History of foot ulcer requiring

antibiotics, n (%) 371 (4.2) 338 (4.0) 33 (10.3) ,0.01
Years of diabetes diagnosis, median (IQR) 9.0 (10.0) 9.0 (10.0) 11.0 (13.0) ,0.01
Years of hyperlipidemia diagnosis,

median (IQR) 7.0 (12.0) 7.0 (11.0) 10.0 (15.0) ,0.01
Years of hypertension diagnosis,

median (IQR) 4.0 (6.0) 4.0 (6.0) 5.0 (7.3) 0.05
Health Utilities Index Mark 3 score,

mean (SD)* 0.5 (0.3) 0.5 (0.3) 0.4 (0.3) ,0.01
Health Utilities Index Mark 2 score,

mean (SD)† 0.6 (0.2) 0.6 (0.2) 0.51 (0.2) ,0.01

Laboratory values, mean (SD)
Glycated hemoglobin (mg/dL) 8.3 (1.1) 8.3 (1.1) 8.6 (1.1) ,0.01
Total cholesterol (mg/dL) 183.6 (41.7) 183.7 (41.6) 180.7 (44.0) 0.20
Triglycerides (mg/dL) 190.6 (149.8) 190.3 (150.8) 197.7 (118.9) 0.39
VLDL cholesterol (mg/dL) 36.6 (24.5) 36.6 (24.6) 38.1 (20.1) 0.27
LDL cholesterol (mg/dL) 105.1 (33.9) 105.2 (33.8) 104.3 (35.4) 0.63
HDL cholesterol (mg/dL) 41.9 (11.5) 42.0 (11.5) 38.3 (10.4) ,0.01
Fasting plasma glucose (mg/dL) 171.2 (55.9) 171.0 (55.6) 180.6 (63.1) 0.03
Alanine aminotransferase (mg/dL) 27.8 (16.7) 27.9 (16.8) 24.3 (10.9) ,0.01
Creatine kinase (mg/dL) 139.5 (127.4) 139.6 (128.0) 136.5 (109.6) 0.67
Potassium (mg/dL) 4.5 (0.5) 4.5 (0.5) 4.5 (0.5) 0.31
Serum creatinine (mg/dL) 0.9 (0.2) 0.9 (0.2) 1.0 (0.3) ,0.01
Estimated glomerular filtration

rate (mL/min) 91.5 (27.3) 91.8 (27.4) 84.3 (23.5) ,0.01
Urinary albumin (mg/dL) 10.0 (36.2) 9.4 (34.8) 26.2 (61.2) ,0.01
Urinary creatinine (mg/dL) 124.6 (66.4) 124.7 (66.4) 121.2 (65.7) 0.36
Urinary albumin-to-creatinine ratio (mg/g)‡ 95.1 (351.6) 88.9 (333.1) 254.7 (653.7) ,0.01
Electrocardiogram, mean (SD)
PR duration (ms) 164.4 (31.5) 164.3 (30.9) 168.2 (44.9) 0.03

Continued on p. 2302
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were identified as significant predictors
of incident HF in the RSF and backward
selection models. Fasting plasma glucose
was preferentially included over HbA1c in
the relationship modeling stage owing to
lack of HbA1c data in the validation co-
hort. Presence of atrial fibrillation was
noted in the baseline electrocardiogram
assessment in 1.1% of the participants.
While presence of atrial fibrillation was
significantly associated with risk of HF in
univariate Cox regression (hazard ratio
3.45 [95% CI 1.94–6.47]), it was not
identified as a top predictor of inci-
dent HF in any of the variable selection
models (ranked 53, 59, and 55 in the RSF,
forward selection, and backward selec-
tion models, respectively).
The RSF-selected variables had a

higher overall C-index, 0.74 (95% CI
0.71–0.74), compared with the step-
wise forward, 0.71 (95% CI 0.67–
0.74) and backward 0.73 (95% CI
0.70–0.76) selection methods when
used with Cox PH relationshipmodeling
(P , 0.01 and P 5 0.01, respectively).
With use of the same RSF-selected
variables with RSF relationship model-
ing, the performance improved to an
overall C-index of 0.77 (95% CI 0.75–
0.80, P, 0.001) (Fig. 1A). Calibration of
the RSF-based model was acceptable
(Hosmer-Lemeshow statistic x25 9.63,
P 5 0.29) (Fig. 1B). An online tool to
calculate the RSF-based risk models has
been made publicly available at www
.cvriskscores.com to allow for its use with
other data sets.

Development and Internal Validation
of the WATCH-DM Score
From the 10 identified top-performing
RSF-selected predictors, a risk score
for 5-year HF incidence was created

(Fig. 2): the WATCH-DM risk score
(Weight [BMI], Age, hyperTension, Cre-
atinine, HDL-C, Diabetes control [fasting
plasma glucose], QRS Duration, MI, and
CABG). The Cox PH b-coefficients, haz-
ard ratios, and 95% CIs for each of the
RSF-selected variables are displayed in
Supplementary Table 3. TheWATCH-DM
risk score model demonstrated good
discrimination with an overall C-index
of 0.72 (95%CI 0.69–0.75)andacceptable
calibration (Hosmer-Lemeshow x2 5
10.58, P 5 0.23) (Supplementary Fig.
2) for predicting HF risk in the internal
validation subset of the ACCORD trial
cohort.

The median WATCH-DM risk score
was 10 with a theoretical range of 0–36.
The observed scores ranged from3 to 27.
A 1-unit increment in the risk score was
associated with a 24% higher risk of HF
at 5 years. The cumulative 5-year inci-
dence of HF increased in a graded fashion
across data-derived quintiles of the risk
score (Fig. 3), from 1.1% in quintile 1
(WATCH-DMscore#7) to 17.4% in quintile
5 (WATCH-DM score$14). No significant
interaction was observed between the
intensive glucose control arm and the
WATCH-DM risk score for the risk of
incident HF.

External Validation of the RSF-Based
Risk Prediction Model and the
WATCH-DM Risk Score
The RSF-based model for predicting
HF risk among individuals with T2DM
was externally validated in the subgroup
of ALLHAT participants with prevalent
T2DM at baseline. The external valida-
tion cohort included 10,819 participants
with 942 incident HF events (cumula-
tive rate 8.7%) over a median follow-up
of 4.8 years. The differences in baseline

characteristics between the ACCORD
and ALLHAT participants are shown in
Supplementary Table 4. The RSF-based
risk prediction model had good discrim-
ination (C-index 0.74 [95% CI 0.72–0.76])
and acceptable calibration (Hosmer-
Lemeshow statistic x2 5 11.05, P 5 0.20)
(Fig. 1D) in the ALLHAT T2DM cohort.

The integer-based WATCH-DM risk
score also demonstrated good discrim-
ination (C-index 0.70 [95% CI 0.67–0.72])
and acceptable calibration (Hosmer-
Lemeshow statistic x2 5 10.11, P 5
0.29) (Supplementary Fig. 3) for predicting
HF risk in the ALLHAT T2DM cohort.
The cumulative incidence of HF increased
from2.5% in the lowestquintile (score#7)
based on the WATCH-DM risk score to
18.7% in the highest quintile (total
score$14), indicating good risk stratifica-
tion (Supplementary Fig. 4).

Information on HF subtype was avail-
able in 37% of the incident HF cases,
with 44.3% identified as HFpEF (N 5 154)
and 55.7% as HFrEF (N 5 194)
(Supplementary Fig. 5). The median
integer-based WATCH-DM risk score was
higher in participantswith incidentHFrEF
versus HFpEF events (median 14 [25–75%
percentile 11–16] vs. 12 [9–15], P, 0.01).
The WATCH-DM risk score also demon-
strated better discrimination of risk in
HFrEF versus HFpEF (C-index 0.72 [95%
CI 0.67–0.75] vs. 0.64 [0.59–0.68], respec-
tively, P , 0.001]. The cumulative inci-
dence of HFrEF and HFpEF in the lowest
quintile of WATCH-DM risk score were
0.4% and 0.8%, respectively, and in the
highest quintile was 7.1% and 4%, re-
spectively (Supplementary Fig. 6). Calibra-
tion was acceptable for each phenotype
(Hosmer-Lemeshow statistic x2 5 8.11
and 10.49 and P 5 0.42 and 0.23 for
HFrEF and HFpEF, respectively).

Table 1—Continued

ACCORD patients
(free from baseline HF)

No HF event
during follow-up

Incident HF
event during follow-up P

P-axis 48.1 (21.6) 48.0 (21.5) 51.7 (23.9) ,0.01
QRS-axis 12.9 (33.4) 13.2 (33.1) 6.9 (38.1) ,0.01
T-axis 44.2 (39.1) 43.3 (38.0) 69.1 (55.7) ,0.01
QRS duration (ms) 94.9 (16.6) 94.6 (16.2) 102.8 (22.2) ,0.01
Bazzett QTc calculated (ms) 420.7 (20.5) 420.4 (20.3) 429.4 (25.1) ,0.01
R-wave amplitude in aVL 622.3 (312.8) 621.1 (311.8) 652.5 (336.9) 0.08
S-wave amplitude in V3 836.8 (477.7) 830.6 (471.6) 1,000.3 (595.0) ,0.01
Heart rate variability SD of NN intervals 16.6 (14.0) 16.7 (14.0) 14.4 (14.2) 0.01
Cornell voltage 1,461.6 (578.2) 1,454.2 (572.1) 1,657.1 (694.3) ,0.01

GED, General Educational Development; IQR, interquartile range. *Health Utilities Index Mark 3 (HUI3): aggregate score of vision, hearing, speech,
ambulation, dexterity, emotion, cognition, and pain. †Health Utilities IndexMark 2 (HUI2): aggregate score of sensation, mobility, cognition, self-care,
emotion, pain, and fertility. ‡Estimated by the MDRD four-variable equation.
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CONCLUSIONS

We present a novel, machine learning–
derived risk score (WATCH-DM) that
integrates readily available clinical, lab-
oratory, and electrocardiographic varia-
bles to efficiently predict incident HF risk
among high-risk patients with T2DM. The
machine learning–based risk prediction
model yielded favorable discrimination
and greater accuracy compared with
traditional risk scores. We derived this
streamlined integer-based risk score af-
ter assessment of .60 candidate varia-
bles in a well-characterized population
free from HF at baseline. Patients in the
highestWATCH-DM risk category faced a
5-year risk of incident HF approaching
20%. The machine learning–based risk
prediction model and the WATCH-DM
risk score for HF performed well in an
external cohort of patients with T2DM.
Taken together, our study findings may
inform risk-based monitoring strategies

and targeted introduction of therapies
known to influence HF risk.

A Machine Learning–Derived Risk
Score
Although a number of risk predic-
tion models have become available
in T2DM (28), none to our knowledge
have been specific to HF risk. This ma-
chine learning–based approach has
unique advantages over traditional risk
prediction, as it can handle large multi-
dimensional sets of time-to-event data
without need for assumptions of nor-
mality of distributions, linearity of risk
prediction, and overfitting of models.
Approaches adequately handling these
issues may be especially important for
complex phenotypes such as HF. Indeed,
in the ACCORD and ALLHAT T2DM co-
horts, the RSF-based methods offered
better risk prediction than standard Cox-
based methods. A web-based version of

the RSF-based risk prediction model has
beenmade available on www.cvriskscores
.com to allow for widespread use of the
risk prediction tool. This tool will calcu-
late the 5-year incident HF risk for pa-
tients with T2DM using patient data on
risk factors. Furthermore, we have also
developed an integer-based risk score,
the WATCH-DM risk score, to facilitate
the ease of use in clinical settings with-
out the need for a web-based platform or
programming into the electronic health
record system.

Transition From Cardiometabolic
Disease to HF
Our robust risk prediction model also
contributes to further understanding of
broad mechanistic contributions to de-
velopment of HF among at-risk patients
with T2DM. Although in clinical prac-
tice, risk categories (such as obese
BMI category) are commonly used, we

Figure 1—A: TheROCcurve for theRSF-basedmodel for predicting incidentHF at year 5 in thederivation data set (ACCORD). AUC, area under the curve.
B: Calibration of the RSF-based model in the derivation data set. Predicted vs. observed 5-year incidence of HF based on deciles of predicted risk.
Calibration was acceptable (Hosmer-Lemeshow statistic x25 9.63, P5 0.29). C: The ROC curve for the RSF-basedmodel for predicting incident HF at year
5 in the external validation data set (ALLHAT).D: Calibration of the RSF-basedmodel in the externally validated data set. Predicted vs. observed 5-year
incidence of HF based on deciles of predicted risk. Calibration was acceptable (Hosmer-Lemeshow statistic x25 11.05, P5 0.20). Q1 to Q10 refer to
deciles of WATCH-DM risk score.
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demonstrate that risk associated with
many of these clinical parameters oper-
ates on a continuum. In fact, most of
these measures could be considered
clinically silent and may not be routinely
flagged as abnormal in many patients.
Furthermore, these data serve to vali-
date the multisystem inputs (spanning
cardiovascular, kidney, and general
health domains) that may inform the
transition from cardiometabolic disease
to HF. Beyond established risk factors of
incident HF (such as age, adiposity, and

blood pressure), these data also help to
identify potential markers that were not
hypothesis driven (such as select elec-
trocardiographic parameters and HDL
cholesterol) in forecasting future HF
risk. It is reassuring that nearly identical
predictors of incident HF risk were iden-
tified as the Prevent HF tool (29), which
was derived from ,33,000 patients
across seven community-based cohorts.
Importantly, Prevent HF was derived
from a general sample of patients free
from cardiovascular disease and was not

specific for T2DM. In this higher-risk
cohort with T2DM with or at risk for
ASCVD, we additionally found prior
ASCVD and serum creatinine to be im-
portant predictors of incident HF.

In a subset of patients in the external
validation cohort (ALLHAT T2DM), we
uniquely assessed the performance of
our risk models in predicting future in-
cident HFrEF or HFpEF. Although the
WATCH-DM carried modest ability in
predicting incident HFrEF, discrimination
was lower for incident HFpEF events.
These data highlight the need that risk
predictors, and potentially strategies to
attenuate risk,may differ betweenHFrEF
and HFpEF and should be evaluated
independently.

SGLT2i and HF Risk Reduction
Strategies
The SGLT2i class has been shown to
reduce risk of HF and kidney events in
at-risk patients with T2DM (6–9). In the
BI 10773 (Empagliflozin) Cardiovascular
Outcome Event Trial in Type 2 Diabetes
Mellitus Patients (EMPA-REGOUTCOME)
trial, the benefits of empagliflozin were
consistent across risk strata identified
by the nine-variable Health ABC HF Risk
Score (30). However, unlike our study,
the trial enrolled only patients with
prevalent cardiovascular disease, and the
Health ABC HF Risk Score was not derived
in a T2DM cohort. Given the attendant
costs of global introduction of SGLT2i
especially in limited resource settings (2)
and since limited guidance is available
regarding use of these therapies among
T2DM without prevalent ASCVD, tar-
geted integration of this therapeutic
class in patients with T2DM at highest
risk for HF based on the WATCH-DM
score may be important and requires
further study. Beyond the SGLT2i class,
guideline-recommended strategies (31),
including greater engagement with
team-based care and control of target
risk factors, may be particularly relevant
in patients identified as at higher risk by
WATCH-DM. Conversely, this risk score
may also be used to select patients to
avoid or limit use of therapies that may
increase the risk of HF. For instance,
cautious use of certain antihyperglyce-
mic therapies, including the thiazolidine-
diones and select dipeptidyl peptidase-4
inhibitors (namely, saxagliptin and
possibly alogliptin) that have been dem-
onstrated to increase risk of HF in

Figure 2—The WATCH-DM score for 5-year HF incidence and the five risk groups by quintiles of
WATCH-DM (very low#7, low 8–9, average 10, high 11–13, and very high$14). CABG, coronary
artery bypass grafting; CR, creatinine; DBP, diastolic blood pressure; FPG, fasting plasma glucose;
HDL-C, HDL cholesterol; MI, myocardial infarction; SBP, systolic blood pressure; yrs, years.

Figure 3—Cumulative incidence of HF across quintiles of WATCH-DM: quintile 1 (#7), 2 (8–9),
3 (10), 4 (11–13), and 5 ($14).
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randomized clinical trials (2,32,33), may
be considered.

Study Strengths and Limitations
Our study has several strengths including
the large sample size and event rates for
HF in the derivation cohort; use of a
machine learning–based statistical tool
for variable selection and risk model-
ing that could handle large, multidimen-
sional sets of time-to-event data and
was not limited by the statistical assump-
tions of traditional risk prediction tech-
niques; independent validation in an
external cohort of patients with T2DM;
and availability of HF subtype data in the
validation cohort that allowed us to con-
trast the performance of the risk pre-
diction model for HFpEF versus HFrEF
events.
Our study is also subject to certain

limitations. ACCORD was conducted be-
tween 1999 and 2009, and the relative
importance of predictors of HFmay have
evolved over the last decade. Certain
biomarkers, including circulating natri-
uretic peptides (which is a class IIA
recommendation for HF risk screening
in the American College of Cardiology/
American Heart Association/Heart Fail-
ure Society of America heart failure
guidelines) (31) and high-sensitivity tro-
ponin (34,35), were not available to
assess incremental risk predictive value;
however, these assays are not routinely
collected in stable patients with T2DM
without HF. Similarly, data on other
potential predictors of HF such as atrial
fibrillation, anemia (hemoglobin levels),
and cardiorespiratory fitness levels were
not available or inadequately captured
(atrial fibrillation status only reported
based on baseline electrocardiogram as-
sessment) in the ACCORD trial cohort.
More details regarding incident HF
events (such as HF severity, ischemic
vs. nonischemic etiology, and ejection
fraction) were also not available in the
derivation cohort, and risk predictors
may be different in patients with HF
with reduced, midrange, and preserved
ejection fraction. However, considering
the high predictive value of prior history
of myocardial infarction and coronary
artery bypass grafting in theWATCH-DM
risk score, it is expected that the risk score
identifies participants at a higher risk of
developing ischemic cardiomyopathy.
Furthermore, we were able to assess
the performance of our risk prediction

model for HFpEF versus HFrEF events in
the validation cohort and observed bet-
ter performance for HFrEF than HFpEF.
Future studies are needed to develop
specific risk scores for predicting HFpEF
risk in the general population as well as
among those with T2DM. As incident HF
risk trajectories are known to vary widely
by sex, race, and socioeconomic status
(36), WATCH-DMwill need to be tested in
broader and more diverse cohorts be-
yond clinical trial settings. Furthermore,
both ACCORD and ALLHAT included pa-
tients with higher cardiovascular risk
(.10% with prior myocardial infarction
in both cohorts), and future studies are
needed to validate the WATCH-DM risk
score in lower-risk cohorts of individuals
with T2DM. Finally, studies are also
needed to assess the efficacy of SGLT2i
and other HF risk reduction strategies
across a spectrum of HF risk based on this
integer-based score.

Conclusion
In a well-phenotyped clinical trial pop-
ulation of patients with T2DM and car-
diovascular disease or risk factors, but
free from baseline HF, our novel risk
prediction tool, WATCH-DM, identifies
patients who face a HF risk of up to 20%
in the next 5 years. As data elements
needed to calculate the WATCH-DM risk
score are collected in the routine clinical
care of patients with T2DM, its integra-
tion in electronic health record systems
or mobile health applications may facil-
itate its practical use. This risk score
benefits from not requiring specific car-
diovascular biomarker or adjunctive im-
aging assessment. Future investigations
are needed to understand whether this
identified risk is modifiable with cur-
rently available therapeutic strategies,
including with SGLT2i. Machine learning–
based approaches, which appear to outper-
form traditional risk prediction modeling
in this setting, may efficiently validate
known and uncover novel subclinical
markers that inform the dynamic transi-
tion between cardiometabolic disease
and manifest HF.
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