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Using Testing to Enhance Learning: A Comparison of Two Hypotheses

Michael C. Mozer
Department of Computer Science &
Institute of Cognitive Science
University of Colorado
Boulder, CO 80309 USA

Abstract

Students learning facts such as foreign language vocabu-
lary often rely on a self-testing procedure in which they
cue themselves with the English word and try to recall the
foreign language target, instead of simply memorizing
cue-target pairs. The value of this strategy has been
empirically verified by a long history of research, yet
existing computational models of human learning do not
address the enhancing-learning-through-testing phenom-
enon. Using a simple, well studied model—a feedforward
neural net with no hidden units—we propose two differ-
ent hypotheses for characterizing the phenomenon.
Hypothesis 1 is that self-testing generates a target which
is used for additional training. Hypothesis 2 is that self-
testing produces a more reliable error signal for training
than rote memorization. Through simulation studies, we
find that hypothesis 2 readily explains the phenomenon
whereas hypothesis 1 does not. Further, hypothesis 2
makes predictions worthy of further empirical study, and
can be viewed as a natural consequence of temporal dif-
ference learning.

When learning foreign language vocabulary and other
facts, students often study using index cards that have an
English vocabulary word (or cue) on one side and a for-
eign language vocabulary word (or targef) on the other.
The intuition is that by testing oneself, the associations
are better learned and retained.

This intuition has been supported by a long history
of empirical demonstrations (e.g., [zawa, 1966; Young,
1971). For example, Bartlett and Tulving (1974) asked
participants to learn a list of paired associates (the study
phase), and later tested retention of the pairs using free
recall or recognition (the final test). Before the final test,
subjects were given a cued-recall test (a self fest) of
some of the paired associates. Retention was better on
the final test for those items that received the self test.

In this paradigm, it is unclear whether the benefit of
the self test is attributable to attempting retrieval per se,
or to the fact that successful retrieval of an associate
also results in a re-presentation of the pair—an addi-
tional training trial.

An obvious strategy for examining the effect of
retrieval is to conduct and experiment with, in addition
to the initial study phase and the final test, an interven-
ing phase in which participants are given either a self
test or an experiment-provided re-presentation of the
paired associate (which we’ll refer to as study only). In
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this paradigm, the outcome is ambiguous (Carrier &
Pashler, 1992): self testing outperforms study in some
experiments (e.g. Hogan & Kintsch, 1971), but not oth-
ers (e.g., McDaniel & Masson, 1985). One explanation
for the inconsistency is that the rate of retrieval success
on self test trials varies among experiments, and the
mechanisms of learning are likely to be dependent on
retrieval success. The experiments have other problems,
including different amounts of time for study-only and
self-test conditions, and failure to control the time spent
on individual items (Carrier & Pashler, 1992).

To overcome these metholological difficulties, Car-
rier and Pashler (1992) compared a study-only or SO
condition in which each cue-target pair was presented
for ten seconds to a test/study or TS condition in which
the cue was presented alone for five seconds and then
the target appeared for the final five seconds. In TS tri-
als, participants were supposed to use the cue to retrieve
the target, but even if retrieval failed, the trial still had
value due to the presentation of cue and target together
for five seconds. Consequently, the dependence on
retrieval success rate is minimized. Also, the paradigm
matches the total time per item in SO and TS conditions.
If anything, self testing is at a disadvantage because the
total viewing time for cue plus target was lower.

In Experiments 1 and 2 of Carrier and Pashler, 40
cue-target pairs were used, half each assigned to the SO
and TS conditions. The experiment began with a study
only phase in which participants viewed each of the 40
pairs once for ten seconds. Then two more passes were
made through the pairs, presented in the manner desig-
nated for that pair—SO or TS. For both conditions, par-
ticipants were instructed to say aloud the target. In the
TS condition, this instruction required that participants
recall the target, or if they failed to recall, to wait until
the target appeared. Following the three presentations of
each pair, a final test phase evaluated performance in the
two conditions via cued recall.

In Experiment 1, the cues were consonant-vowel-
consonant trigrams and the targets were two digit num-
bers. For the sake of ecological validity, Experiment 2
used a language learning task with English language
word cues and the corresponding Siberian Eskimo
Yupik language translation targets. Table 1 shows the
percentage of error responses. In both Experiments 1
and 2, performance was better in the TS condition than



TABLE 1. Performance in Enhancing-Learning-Through-Testing Experiments

Human Data (% Error)

Simulation (Mean Squared Error)

Study Only Test Then Study Study Only Test Then Study
Carrier & Pashler, Expt. 1 42.0% 36.0% 389 11
Carrier & Pashler, Expt. 2 43.0% 36.0%
Carrier & Pashler, Expt. 3 40.0% 32.7% .356 258

the-SO-condition. These results indicate roughly 10%
fewer errors with testing, therefore, having to retrieve
the target is more effective than simply studying the tar-
get, when all else is controlled for.

Carrier and Pashler conducted a further experiment
to rule out an alternative explanation of their results. In
Experiments 1 and 2, participants may have used the
first retrieval attempt in the TS condition to determine
which items were difficult, and then increased their
encoding effort for the difficult items on the second
retrieval attempt, thereby learning the items better.
Experiment 3 ruled out this explanation by giving par-
ticipants only a single pass through the items in either
the TS or SO conditions, following two passes through
the items as study-only trials. The total number of items
was reduced to 30. The results were similar to Experi-
ments 1 and 2 (see Table 1), suggesting that the effect of
attempting retrieval on later retention does not depend
on strategic allocation of encoding effort.

Mechanism Underlying
Enhanced Learning Through Testing

Why does testing oneself—i.e., attempting to retrieve a
target from memory—have beneficial effects for later
retention, above and beyond the effects due to mere
study? A variety of explanations have been proposed for
the self-testing benefit.

® Landauer and Bjork (1978) considered that retrieval
attempts provide a general sort of practice or context
that boosts performance at a future time. However,
this account predicts that the benefits would not be
item specific, i.e., SO and TS items would benefit
equally in an experiment where the item types were
mixed within subject.

® Mandler (1979) suggested that cued recall might
strengthen the structural, integrative information
about a cue-target pair. Cooper and Monk (1976) pro-
posed that retrieval requires neural activity that con-
solidates the representation of the target in memory.
However, both of these accounts do not provide a
strong explanation for why TS should be better than
SO, because both conditions involve simultaneous
activation of cue and target.

® Bjork (1975) hypothesized that the act of retrieval
may strengthen existing retrieval routes to the target
representation, or may create new routes. Although
interesting and consistent with the data, it is unclear
what this hypothesis corresponds to in computational
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terms, and seems as if it might require novel, custom
learning mechanisms.

This paper explores two alternative hypotheses concern-
ing the enhancement of learning through testing, and we
evaluate their plausibility via simulation studies. In pro-
posing hypotheses, our aim was to determine whether an
existing, well-accepted model could explain the basic
phenomenon without requiring additional assumptions.
A model is not convincing if two novel assumptions are
needed to explain two data points. Further, an existing
model is already constrained and therefore has the
power to make strong predictions, which can guide the
design of behavioral experiments.

Our hypotheses lie within the framework of neural
network models. We explore the simplest architecture
that might be capable of explaining the phenomenon: an
associative network consisting of a pool of r, input units
fully connected to a pool of n,, output units. The activity
of output unit j, y;, is simply a weighted sum of the
inputs, x;, passed through a sigmoid squashing function
that limits the output in the range [-1, +1]:

n;
Vi = tanh z WX |-
i=1

A training sgt clonsists of n, paired associates to be
learned, {(x,d ), .., (x ',d ")}, where the super-
script is the index over pairs in the training set, and x
and d are the activity vectors of the cue and target of the
pair, respectively. To reflect the fact that items to be
learned in the behavioral studies are arbitrary, make lit-
tle contact with existing knowledge, and have no sys-
tematic similarity to one another, we assume that the cue
and target activity vectors are random. (Further details
in the methodology section that follows.)

In neural net models of cognition, the training of
the model is often viewed as an abstract procedure for
loading knowledge into a network, and as having no
direct correspondence to the sequence of episodes a
human learner experiences. In contrast, we commit to a
one-to-one correspondence: An SO trial in a behavioral
experiment is modeled as one weight update in the neu-
ral network. For many neural net architectures and
learning procedures, this correspondence is implausible;
training the network requires dozens if not hundreds of
passes through the training examples, and training on
one example can result in catastrophic interference with
other examples. We avoid these problems in two ways.
First, our architecture has direct connections from input
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units to output units, in contrast to strictly layered archi-
tectures with hidden units. Second, we endow our archi-
tecture with as many inputs as training examples, i.e.,
n; = n;; consequently, cues are approximately orthog-
onal to one another, and interference among examples is
minimal. Due to the architecture, the model can learn
associations with roughly the same number of exposures
as a human participant in a paired-associate experiment.

We use the standard supervised learning procedure
for associative networks, a generalization of the Wid-
row-Hoff or LMS learning algorithm (Widrow & Hoff,
1960) to nonlinear outputs. Following presentation of a
cue x to be paired with target d, a weight update is per-
formed:

iji = S(dj—yj)xi(l +yj)(1 _yj)
where ¢ is a step size (learning rate).
Having described the general class of models we

consider, we turn to two specific hypotheses concerning
the nature of learning via self testing.

Hypothesis 1: Self-generated training

One hypothesis is based on the notion of Guthrie (1952)
that one learns what one does. That is, when individuals
test themselves, they generate a candidate response, and
then learn the association between the cue and the can-
didate response, whether it is correct or incorrect. If the
candidate is correct, existing connections are strength-
ened and are therefore more resilient to decay or inter-
ference; if the candidate is incorrect, the wrong
association is reinforced, making it more difficult to
unlearn.

This interpretation of self testing suggests that test-
ing should benefit an individual only if the material is
already somewhat familiar. Some evidence indeed sug-
gests that testing on novel paired associates—when
individuals cannot possibly know the correct
response—is detrimental to learning (Cunningham &
Anderson, 1965).

By this hypothesis, a TS trial involves the following
steps: (1) The cue is presented and a candidate response
is generated. (2) The LMS weight update is computed
for the candidate response. (3) When the target is even-
tually presented, the LMS weight update is computed
for the experiment-provided target. In contrast, an SO
trial involves only the third step. In a TS trial, two
weight updates are generated; the weight updates are
added together and performed at the end of the trial.

How does the model generate a candidate response?
It might produce an output and then deterministically
select the nearest well formed state, defined as a state
which has a meaning in the domain (e.g., the set of all
targets used for training, plus some distractor alterna-
tives, plus a null or “no response” state). However, indi-
viduals are essentially guessing at early stages of
learning, and the deterministic rule implies an ability to
find the best response among a set of barely-known
alternatives. Instead, one might wish to introduce a sto-
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chastic selection rule. A standard stochastic procedure

for reading out from a neural network is to use a Luce

choice or Boltzmann rule (Luce, 1959). By this rule, the

distance between each possible response, #, and the net-
. e 2

work output, y, is computed, v, —lﬂr - y|F , and the

probability of choosing response i is

p; = exp(=pv;)/ ZjeXp(—ij),

where large 3 achieves a more deterministic selection.

Rather than treating [ as a free parameter, we chose
[ such that the mean correct-response probability is 0.95
if the network produces the correct response on each
trial. The model has other free parameters, though,
including learning rates for supervised and self-gener-
ated targets, the number of distractor vectors considered
as candidates for response selection, and the possibility
of memory (weight) decay that introduces forgetting.

Hypothesis 2: Complete processing of cue

Carrier and Pashler (1992) speculated on an intriguing
basis for the self-testing benefit. They reasoned that in
neural net models that learn by error correction, which
includes the LMS algorithm, learning requires a com-
parison between the desired output and the actual out-
put—the output that the network produces given its
current state of knowledge. If presentation of the target
simultaneously with the cue “contaminates” (to use their
term) production of the actual output, learning would be
less efficient. Essentially, presentation of the target ter-
minates ongoing processing and interferes with the esti-
mation of error needed for learning.

An elegant instantiation of this hypothesis in the
context of neural net models is via the incorporation of
time into the neural net, specifically, the notion that
units in a neural net are slow integrators of information
and therefore require many time steps for information to
propagate from the input layer to the output layer
(McClelland, 1979). We can do this in the network by
indexing its output by the (discrete) time step ¢, i.e.,
y;(t), and adding a time constant to the activation
dynamics:

yj(t) =(1- T)yj(t— 1)+ ‘Etanh(ijl.xi) ,

where y;(0) = 0 Asymptotically, the output is inde-
pendent of the time constant t, for 0 <t<1, but t
determines the rate at which convergence is achieved,
i.e., how rapidly information is transmitted from the
input to the output.

If we assume that activation dynamics freeze—
equivalent to setting T = 0—when the target is pre-
sented, the model will produce a more accurate estimate
of its output in the TS condition than in the SO condi-
tion, and the learning procedure will have a better esti-
mate of the error. From another perspective, note that if
activation dynamics freeze at t = 1, the actual output y
will be zero, and the training procedure reduces to a
form of Hebbian learning; at the other extreme, if the
activation dynamics do not freeze and the asymptotic



value y(o0) is used for training, the learning procedure
is exactly the LMS gradient descent step. Because LMS
is a more powerful procedure than Hebb, it should yield
better performance.

For our simulations, we established a relatively
coarse-grained correspondence between time steps in
the neural net and real-world time by designating the
duration of each time step to be 250 msec. Rather than
leaving the time constant t as a free parameter, we
chose t in advance such activation would reach half-
way to asymptote by 2000 msec. To match the TS con-
dition in the behavioral studies, 20 time steps (= 5
seconds) of processing was allowed before the onset of
the target. For the SO condition, we had some freedom
to determine the time step at which activation dynamics
freeze. Although the cue and target appeared simulta-
neously in the behavioral experiments, participants may
nonetheless have done some amount of processing of
the cue before the target is processed. We experimented
with 0, 1, and 2 time steps of processing in the SO con-
dition, and all yielded similar results; we chose 1 time
step in modeling Carrier and Pashler, because that was a
sufficient amount of processing to ensure that with
enough practice, the model could learn the items in the
SO condition. For evaluation of the model during the
final test, the activity at time step 80 was used.

Simulation Studies

General Methodology

In all simulations, we used networks with n; = n,
= ng. Cue and targets were random binary vectors in
{-1,1}". To model Experiments 1-3 of Carrier and
Pashler, we used the same number of items as in their
experiment, n; = 40 for Experiments 1 and 2, and
n; = 30 for Experiment 3. Because Experiment 2 is
essentially a replication of Experiment 1 with different
stimulus materials, and the materials in both experi-
ments were intended to be unfamiliar to participants, we
capture both experiments with one simulation. Half of
the items were assigned to the SO condition and half to
the TS condition.

Weights in the neural network were initialized to
zero. We also conducted stimulations in which the initial
weights were chosen from a normal distribution with
mean zero and standard deviation 0.001. However,
because the variability of the weights had no systematic
effect on the results, we simplified by eliminating this
source of noise from the simulation.

The experiments of Carrier and Pashler each
involved three epochs of training, followed by a final
test. An epoch is a presentation of all items in the train-
ing set. Within an epoch, order of presentation was ran-
domized, with the constraints that Carrier and Pashler
imposed to ensure an intermixing of SO and TS items.

Epochs were of two sorts: in a pure study epoch, all
items were studied without testing, regardless of
whether they were SO or TS items; in an experimental
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FIGURE 1. Testing error for TS minus SO as a function of the
learning rates for self-generated and experiment-provided
targets. The difference is nonnegative everywhere, indicating
no enhancement through testing. For this simulation, no
additional distractor states or weight decay are included.

epoch, presentation of an item depended on whether it
was assigned to the SO or TS condition. In Experiments
1 and 2, the first epoch was pure study (denoted S), and
epochs 2 and 3 were experimental (denoted E); we use
the shorthand notation SEE for this design. In Experi-
ment 3, the first two epochs were pure study and the
third was experimental, i.e., an SSE design.

All results reported are a mean computed from
1,000 independent simulations, where the simulations
differ from one another in the choice of random training
vectors and the randomization of items within an epoch.

We use mean squared-error (MSE) as a measure of
performance of the model. With additional assumptions,
we could classify a response as correct or incorrect (e.g.,
using the stochastic read out procedure that is built into
Hypothesis 1), but there is little value in transforming a
qualitative fit to a quantitative fit if several new assump-
tions are required. Consequently, we focus on obtaining
qualitative measures of recall, and determining how
manipulations of the model affect relative recall.

Hypothesis 1: Self-generated training

After a systematic exploration of the model parameter
space, we failed to find any parameter settings that
yielded an enhancement of learning by testing. Error
was consistently higher in the TS condition than in the
SO condition. The two conditions converge as the learn-
ing rate for the self-generated target approaches zero,
where at the limit SO and TS become identical. Figure 1
illustrates one exploration of the parameter space.

In retrospect, the negative result should not have
been surprising. After one or two epochs, the model—
like people—is about as likely to make an error as to
guess correctly. Consequently, the model will receive as
much training from self-generated targets that steers it
away from veridical recall as training that steers it
toward veridical recall.



Hypothesis 2: Complete processing of cue

Fortunately, our second hypothesis yields more encour-
aging results. Consistent with Carrier and Pashler, the
model produces an enhancement of learning by test-
ing—a lower error for TS than SO—in simulations of
Experiment 1/2 (one simulation for both experiments,
since they are identical except for the stimulus materi-
als) and Experiment 3 (right side of Table 1). In these
simulations, we chose a learning rate that yielded the
best possible performance, averaged over TS and SO
items. However, the testing benefit was robust over the
choice of learning rate.

Figure 2 facilitates a better understanding of the
phenomenon in terms of the model. The Figure shows
mean-squared error for TS and SO items for four differ-
ent experimental designs. All designs involve three
epochs of training, but they differ in how many epochs
of pure study (S) precede the experimental (E) epochs.
The designs range from all study (SSS) to all experimen-
tal (EEE). SEE and SSE correspond to Experiment 1/2
and Experiment 3, respectively.

The Figure shows that two testing trials helps more
than one (SEE versus SSE). Interestingly, three testing
trials shows little benefit over two (EEE versus SEE).
This latter result was at first surprising to us, because it
would seem that the more accurate error estimate that is
obtained via testing would benefit epoch 1 as well as
epochs 2 and 3. However, with an untrained net whose
weights are all zero or close to zero, the initial output of
the net is close to zero regardless of the number of time
steps of activation dynamics.

Comparing SO items in SSS versus EEE designs, it
appears that the SO items benefit from being in a con-
text where testing is occurring; this is a bit surprising
considering that the training of these items is identical
and learning rates are identical across designs.The result
also cannot be explained by virtue of generalization
from the better-learned TS items to the SO items,
because the items were generated with no systematic
similarity structure. Instead, we suggest that the transfer
from TS to SO is due to the TS items generating a more
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FIGURE 2. Mean-squared error in TS (white bar) and SO
(black bar) conditions for experimental designs with three
training epochs. +/—1 standard error of the mean is indicated.
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meaningful error signal—an error signal that reflects the
sort of outputs the network is likely to produce if it is
allowed to run to asymptote. Although the precise out-
puts will differ from one cue to another, the TS items
provide information about the distribution of activity
values for each output unit across items. This informa-
tion can certainly be used to determine characteristics of
the weight vector (e.g., its overall magnitude, and the
sign of biases).
We discuss the implication of these results next.

Discussion

In simulations of two models, we found that one hypoth-
esis for the enhancement-of-learning-through testing
effect—the hypothesis that self-generated responses are
used as targets for further training—is not supported.
Another hypothesis—that presentation of the target ter-
minates processing of the cue—is consistent with the
experimental data. In the remainder of the paper, we dis-
cuss predictions, extensions, and implications of the
second hypothesis.

Predictions

® Our model predicts little difference between an EEE
design and the SEE design used in Experiment 1/2.
That there is no cost to testing on the first epoch runs
against at least one experimental study (Cunningham
& Anderson, 1965), but that study used a quite differ-
ent methodology, and the finding of an initial-epoch-
testing cost has not been widely reported in the litera-
ture.

® Our model predicts that an SO item should benefit
from being embedded among TS items. If it is
observed experimentally, a natural interpretation of
this effect is that the greater effort on TS items spills
over to the SO items. However, the model achieves
this spillover without any notion of generalized
“effort.”

® Our model predicts the relative magnitude of the test-
ing enhancement as a function of the cue-target asym-
metry (CTA), i.e., the difference in time between the
onset of the cue and the onset of the target. The Car-
rier and Pashler experiment used a CTA of 5 seconds
(20 time steps in the model). One could conduct an
experiment in which the CTA was longer or shorter.
(Because the time scale of retrieval in the model was
set arbitrarily, there is a degree of indeterminacy in
the model’s predictions. Nonetheless, with one free
parameter tied down, the model can characterize the
effect of shorter or longer CTAs) Figure 3 shows the
model’s performance as the CTA is varied. For small
CTAs, there is little difference between SO and TS
conditions; for large CTAs, the conditions are similar
to those studied in the present simulations. Clearly,
increasing the CTA has diminishing returns.
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FIGURE 3. Test performance as the cue-target asynchrony in
training is varied in the TS condition.

Extensions to the Model

In both SO and TS conditions, each simulation trial
began by presenting the cue for 7 time steps—7 being
different for SO and TS conditions—at which point a
weight update was performed to reduce the difference
between the actual response, y(7), and the target. An
alternative procedure involves updating the weights to
reduce the difference between each of y(1), y(2), ...,
y(T) and the target. This alternative procedure encour-
ages the net to produce the target as rapidly as possible,
and is equivalent to a form of temporal difference (TD)
learning known as TD(1) (Sutton, 1988). Temporal dif-
ference learning is concerned with learning to predict
the future given successively better information over
time—exactly the situation experienced by the network
with time constants, because the propagation of infor-
mation occurs gradually. However, TD(1) is often not
useful in practice because the earliest predictions, e.g.,
y(1), are treated as important as later, better predic-
tions, e.g., y(T). To remedy this problem, Sutton pro-
posed a family of algorithms, denoted TD(A), for
0 <A <1, where A is roughly the emphasis on achiev-
ing correct early predictions. The A that yields optimal
performance depends on the domain. Although it would
be interesting to discover how the self-testing benefit
depends on A, the deeper contribution of casting the
learning procedure in the TD framework is that it offers
a rationale for the termination of processing when the
target is presented.

The TD framework is based on the notion that
learning mechanisms are fundamentally concerned with
predicting eventual outcomes at the earliest possible
moment. The adaptive value of prediction is clear; accu-
rate prediction can avoid danger and missteps. Consid-
ering the associative learning task in this manner, the
cue is a predictor of the target, and TD learning aims to
get from the cue to the target as rapidly as possible.
However, once a target has been presented, nothing
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remains to be predicted. The TD framework has been
valuable for explaining a broad range of data, from the
animal conditioning literature (Sutton & Barto, 1981) to
the neural basis of reward (Schultz, Dayan, & Mon-
tague, 1997). It seems a natural extension to the mecha-
nisms of associative learning, although one must
confront the finding that associative learning appears
symmetric (Kahana, 2002).
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