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A novel tool for visualizing chronic
kidney disease associated polymorbidity:
a 13-year cohort study in Taiwan

Chih-Wei Huang1,*, Shabbir Syed-Abdul1, Wen-Shan Jian2,3, Usman Iqbal1,
Phung-Anh (Alex) Nguyen1, Peisan Lee1,4, Shen-Hsien Lin1, Wen-Ding Hsu1,5, Mai-Szu Wu6,7,
Chun-Fu Wang8,*, Kwan-Liu Ma8,§, Yu-Chuan (Jack) Li1,9,§

ABSTRACT
....................................................................................................................................................

Objective The aim of this study is to analyze and visualize the polymorbidity associated with chronic kidney disease
(CKD). The study shows diseases associated with CKD before and after CKD diagnosis in a time-evolutionary type
visualization.
Materials and Methods Our sample data came from a population of one million individuals randomly selected from the
Taiwan National Health Insurance Database, 1998 to 2011. From this group, those patients diagnosed with CKD were
included in the analysis. We selected 11 of the most common diseases associated with CKD before its diagnosis and fol-
lowed them until their death or up to 2011. We used a Sankey-style diagram, which quantifies and visualizes the transi-
tion between pre- and post-CKD states with various lines and widths. The line represents groups and the width of a line
represents the number of patients transferred from one state to another.
Results The patients were grouped according to their states: that is, diagnoses, hemodialysis/transplantation proce-
dures, and events such as death. A Sankey diagram with basic zooming and planning functions was developed that
temporally and qualitatively depicts they had amid change of comorbidities occurred in pre- and post-CKD states.
Discussion This represents a novel visualization approach for temporal patterns of polymorbidities associated with any
complex disease and its outcomes. The Sankey diagram is a promising method for visualizing complex diseases and ex-
ploring the effect of comorbidities on outcomes in a time-evolution style.
Conclusions This type of visualization may help clinicians foresee possible outcomes of complex diseases by consider-
ing comorbidities that the patients have developed.
....................................................................................................................................................

Key words: visualize analytic; data visualization; CKD polymorbidity visualization; comorbidity visualization; CKD Sankey
diagram

BACKGROUND AND SIGNIFICANCE
Over the last few years, the rapid proliferation of electronic
health records has led to the accumulation of extraordinary
amounts of patient-level clinical data.1–4 Health databases are
constantly increasing in volume, variety, and veracity.5–7

Innovative analysis of these datasets can lead to new insights
into the essence of diseases. From an observer’s perspective,
disease is a spectrum of manifestations that evolve over time.
Conjoining pathogenesis could open up new dimensions for the
progression and outcome of diseases.8,9 Therefore, a complete
disease model has to include not only the temporal progression
but also the branching caused by comorbidities.

In several all-cause mortality studies on chronic kidney dis-
ease (CKD) in Taiwan, diabetes mellitus (DM), hypertension
(HTN), and hyperlipidemia were found to be independent risk
factors associated with the future development of CKD.10–13

Wen et al. reported in his study that smokers and obese indi-
viduals in the CKD group were at a significantly higher risk
than those without CKD. Previous studies showed that the
prevalence and variety of comorbidities may change over
different stages of CKD.10 For instance, the percentage of DM,
as a comorbidity of CKD, did not change significantly from CKD
stage IV (i.e., 25.6%). In contrast, the percentage of anemia
increased from 58.8% to 92.5% in stage V, stage IV,
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respectively.11 From the perspective of prevention, great inter-
est also lies in understanding what happened before CKD (pre-
CKD) and how this affects the progression and outcome of the
disease. By considering the occurrence of comorbidities in pre-
CKD, CKD, and post-CKD states, we will have a more complete
view of this complex disease.

CKD has emerged as a global public health burden due to
the increasing number of patients, high risk of progression to
end-stage renal disease (ESRD), and poor prognosis of morbid-
ity and mortality.14–16 Compared to other countries, Taiwan
has a relatively high incidence and prevalence rates of CKD pa-
tients. The prevalence of clinically recognized CKD increased
from 1.99% in 1996 to 9.83% in 2003.11 In particular, CKD
was nearly three times more prevalent among low socioeco-
nomic status individuals than among their high socioeconomic
status counterparts. Clinicians’ and researchers’ attention
tends to focus on its epidemiology, risk factors, treatment
plans, and preventive actions.17

Researchers have tried to develop models or scoring sys-
tems by weighing common variables associated with CKD. For
example: The National Kidney Foundation Kidney Disease
Outcomes Quality Initiative guidelines,18 Creatinine Clearance
(Cockcroft–Gault Equation),19 SCORED,20 the Kidney Early
Evaluation Program,21 MDRD GFR Equation,22 and so on.
However, using one single model to represent a complex
chronic disease such as CKD is difficult and controversial.

OBJECTIVE
“A picture is worth a thousand words” is the biggest ad-
vantage of visualization. This web-based visualization tool
displays a zoomable time-evolution diagram of pre- and
post-CKD comorbidities. Due to the complexity of the rela-
tionship between CKD and its comorbidities, it would be dif-
ficult for a clinician to associate specific combinations of
comorbidities with patient outcomes. Traditional biostatistics
and personal experiences may offer little help in terms of
determining the time it will take for CKD to evolve into
ESRD, much less the time from ESRD to death. Therefore,
we aim to marry the big data approach with novel visuali-
zation techniques, in order to reveal the true spectrum of
CKD. We believe such an approach could lead to a more in-
tuitive understanding of possible patient disease pathways
and outcomes.

METHODS AND MATERIALS
In this study, a CKD dataset and a novel multi-dimensional
visualization method were used to render the state of the dis-
ease. Data visualization processing included data generation,
data conversion, and visual presentation. Using CKD as an ex-
ample, we obtained data from NHIDB, which contains millions
of people with CKD medical records. We highlighted eleven un-
derlying CKD-related diseases with nephrologists’ opinions in-
cluding three ESRD procedures and four states illustrating the
conditions of CKD patients’ entry and exit. We developed algo-
rithms to incorporate the data into visual charts as well as to
apply visual analytics and graphics in further research studies.

Study design
The aims of the study were: a) to define CKD progression, in-
cluding the most related disease causes and outcomes; b) to
collect patients’ medical records in this CKD study from Taiwan
National Health Insurance’s one-million cohort dataset; c) to
represent and visualize CKD development in an interactive dis-
ease spectrum; and d) to interpret the spectrum so that the
knowledge discovered may lead to a better understanding of
diseases and their associations. The study model is shown in
Figure 1 and the data process with visualization approach is
shown in Figure S1 of the Appendix.

Study Population
The CKD sample data derived from the one million NHIDB from
1998 to 2011. On the basis of nephrologists’ opinions, we se-
lected eleven underlying diseases which were considered to be
most closely related to causing CKD and three following proce-
dures within the ESRD stage after patients had been diagnosed
with CKD (see Figure 2).

We used the ICD-9-CM (International Classification of
Diseases, Ninth Revision, Clinical Modification) codes from
NHIDB to identify CKD patients with outpatient visits (see
Table S1 in Appendix). The selection of target subjects is de-
scribed in Figure S2 of the Appendix. Regarding the input data
and attributes in this pilot study, we selected the essential infor-
mation for constructing the Sankey diagram for CKD individuals,
such as anonymous patient ID, date of clinic visit, ICD9-CM
codes, and procedure codes. To confirm the date of CKD diagno-
sis as the index date, the outpatient visit records were checked
in 1998 to see whether the patients had CKD before 1999 or
not. We excluded the patients who had already been diagnosed
with CKD before 1998. We followed a total of 39 928 patients
from 1999 to 2011, observing whether they were diagnosed
with CKD, their underlying diseases, and the procedures applied
in their treatment. Patients who made less than two visits for
CKD in each year during the study period were excluded. Finally,
we were left with 14 567 eligible patients who fulfilled our study
criteria and we monitored them during the study years.

Visualization techniques
We aligned the date of each patient’s first CKD diagnosis in
“0y,” down-sampled and aggregated them in every 2 years,
and then clustered them into nonoverlapping groups. The out-
put results are shown in a Sankey diagram–style timeline.

The Sankey diagram was developed by Irish engineer Riall
Sankey to analyze the thermal efficiency of steam engines
more than a hundred years ago. It is a specific type of flow
diagram, in which the width of each state and transition is
shown proportionally to the quantity of flow. The use of Sankey
diagrams has been standard practice in science and engineer-
ing since its development.23 These diagrams are typically used
to visualize energy, materials, or cost transfers between
processes. This study is the first to use a Sankey diagram to
depict the evolution of CKD.

Our system workflow resembles a visual analytic frame-
work24,25 and incorporates three types of tasks: a) modeling;
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Figure 2: Chronic kidney disease progression from a Nephrologist’s perspective.

Figure 1: Study model.
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b) similarity analysis; c) visual encoding; and d) interactions to
provide the analytical supports. In this study, we conducted six
tasks sequentially as follows:

1. Disease/procedure code aggregation: Using domain expert-
defined association rules to cluster the 11 024 ICD9-CM
codes and 42 351 procedure codes down to 15 representa-
tive groups with labels, such as CKD, HTN, hemodialysis
(HD), and peritoneal dialysis (PD),etc.

2. Re-constructing patient states: Using outpatient visit re-
cords and then group labels to re-construct the patient
health states over time.

3. Constructing patient state trajectory network: To compare
and study between different patient trajectories, we aligned
these trajectories according to the time of their first CKD di-
agnosis and projected it onto a network where each node
is a patient state and each patient trajectory is a path trav-
elling through the network.

4. Clustering with user-specified rules: We simplified the net-
work by: a) aggregating nodes into several 2-year partitions
and merging those with the same states in a partition; b)
aggregating nodes with small patient quantities; and c) let-
ting users choose label-of-interests for each time partition
to remove unwanted information.

5. Visual encoding as Sankey diagram of unique patient states
over time: We visualized the network in a representation
similar to a Sankey diagram26 or a parallel set.27 In addi-
tion, the nodes were strictly laid out along the time axis to
reveal the temporal patterns. We assigned the color to dis-
tinguish between different combinations of diseases. Each
node was colored based on patient state, and each edge
was colored based on the transition which two nodes con-
nected. However, as there were many more combinations
than colors, they were not always uniquely mapped. Thus,
you may find two different combinations of diseases shar-
ing the same color. In this case, the user can distinguish
each patient’s state by hovering the mouse cursor over the
cluster to get a popup showing the cluster’s name. When
the two nodes of an edge were of different states and thus
different colors, a gradient was applied for a smoother
visual transition.

6. Interactions: The user can select a cohort or an associa-
tion between two cohorts by clicking on the node or the
edge. The system highlights the selected patients with a
dark shaded area on the diagram. As a result, it reveals
all the paths that the selected patients have been
through as well as their proportions to the rest of the
cohorts. Within each time step, all patient clusters were
nonoverlapped. That means two things: a) each cluster
represented a unique combination of diseases; and b) a
patient only belonged to the cluster if he or she had the
exact combination of diseases which the cluster repre-
sented. For example, one patient had diseases A and B,
another had diseases B and C; they were put in
different cluster groups even though they both had
disease B.

In addition, we added four special groups to provide contex-
tual information and support the exploration processes. They
were “no records” patients who did not have any disease at all
due to a lack of records; “others with/without CKD” for minor
groups whose number of patients was below the customizable
threshold; “death” patients for whom we could not find any re-
cords in 1 year after the last visit until 2011 (Table S1).
Therefore we grouped them together and only differentiated
between them according to whether they had ever had CKD
before or not.

Our system’s user interface is web-based, tested with a
commodity desktop as the application server and another
desktop as the client. Most of the programs are written in
Python and raw data were stored as static files in the hard
drive. We cache less frequently, updating intermediate results
of each step in the analysis process to improve end-user re-
sponsiveness. Comparing patient clustering, risk factor aggre-
gation, and patient state reconstruction usually only happen at
the beginning of a case study. Caching the output of such steps
helps us to reduce unnecessary processing time. For 14 567
patients and 6 031 579 records, it took 6 min to filter and ag-
gregate the risk factors. The average duration to see an update
of patient clustering was 5 s.

RESULTS
For each type of disease, procedure, or state extracted from
the records, we connect the dates of visits and convert them
into a single interval-based event. Thus we have several par-
tially overlapped events, and each of them represents a type of
disease, procedure, or state. Figure 3 shows: pre- and post-
CKD status, the threshold of patients with minimum to
maximum, and the number of patients and their disease transi-
tions. This tool clearly demonstrates the comorbidities that de-
velop CKD and how the comorbidities change the outcomes
and influence diseases. Users can explore the data, and un-
cover and interpret insights from the interactive capabilities of
the system.

It is effectively a nonlinear, low-pass filter to reduce trivial
transitions caused by a patient’s chronic visits or interleaved
visits for different purposes. The filtered events are then
aligned by the date of each patient’s first CKD diagnosis so that
the user can easily compare the CKD pathways between pa-
tients. Transitions between events are down-sampled with a 2-
year period to reduce over-plotting. Meanwhile, all events
within a sampling period are aggregated, so that shorter dura-
tion events are not lost due to down-sampling.

Our overall visual design follows the principle of a Sankey
diagram, which visualizes the transfers between groups with
lines and quantities by line width. In our study we focused
on the transfers between groups of CKD patients over time.
The patients were grouped according to their states, defined
by the combinations of the patients’ active diseases, proce-
dures, and their states at that time. Note that none of the
groups are overlapped. The overall layout has been optimized
to reduce the number of line intersections during the
transfer.
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The ICD9-CM disease codes and the procedure codes were
used to classify a patient’s symptoms and treatments, respec-
tively. However, there are hundreds of different codes and
thousands of possible combinations which could be used to

drive the Sankey diagram, but we would always end up with
over-plotted and unreadable results. Therefore, it is important
to classify codes into several focused areas. In our case, the
consultation with nephrologists was very helpful for grouping

Figure 3: Illustration of chronic kidney disease spectrum interface.
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into focused areas before and after patients were diagnosed
with CKD.

Figure 4 shows how this interactive CKD spectrum and
their nodes are strictly laid out along the time axis to reveal
the temporal patterns. We have chosen one combination of
CKD and HD to explain multi-dimension information using the
Sankey diagram. The CKD spectrum visually encodes nodes
in the flow graph using vertical rectangles. Transition is
between two nodes, the patient’s progression and patient
numbers presented by clicking transitions or nodes. Colors
have been used to encode the same disease or disease com-
binations. In Figure 4A, we set up a threshold of at least 250
patients in one group as an example. We observed 1459 CKD
patients who had been diagnosed with CKD first and took the
HD within the same year. We found 10 combinations in the
pre-CKD stage. Figure 4B shows that three conditions oc-
curred in the post-CKD stage with HD within 2 years. From
this group, 1399 patients still took HD, 32 patients died and
28 did not take HD continually. From 28 patients classified in
the “Others with CKD” group, we observed 6 patients who
started to take PD.

DISCUSSION
In this study, we have demonstrated an innovative approach for
the visualization of temporal patterns for diseases and out-
comes. We found that using a Sankey diagram in healthcare is
a promising method for visualizing a specific disease of inter-
est, especially for observing its development over time. By ad-
justing the threshold of patient numbers, users can target
different aspects to explore how diseases, comorbidities, and
polymorbidities affect patients’ outcomes.

In this article, we set the threshold at 250 out of 14 567
CKD patients as an example. The interactive CKD spectrum dis-
plays the development of the 11 pre-CKD diseases and 3 pro-
cedures over the span of 2 years. About 3.4% of patients took
HD in the first year of CKD. DM, HTN, and Proteinuria have
been found to be single entity diseases which are related to
causing CKD. Besides these, other polymorbidities such as a)
hyperlipidemia, HTN, and DM group, b) DM, congestive heart
failure (CHF), HTN, hyperlipidemia, coronary artery disease, and
cerebrovascular disease group, c) hyperlipidemia, HTN, DM,
CHF, and coronary artery disease group, d) hyperlipidemia,
HTN, DM, CHF group, and e) DM, CHF, HTN, hyperlipidemia,
systemic lupus erythematosus, coronary artery disease, and
cerebrovascular disease group, include eight main diseases
which also lead to CKD. Interestingly, we found 966 patients
who did not have underlying diseases prior to being diagnosed
with CKD and HD. Therefore, we should pay more attention to
discovering patients who did not have any of the underlying
diseases suggested by nephrologists. We need to determine
what other diseases and comorbidities can potentially lead to a
greater risk of developing CKD.

Several related studies have been conducted on visualiza-
tion methods.25,28–30 One came from the Outflow project,24,31

and was conceptually similar to our study, focusing on severe
disease crucial issues by using cohort patients’ data. The study

processed temporal event data and visualized aggregated
event progression pathways with diseases. We also aimed to
discover correlations within the disease progression by using
interactive visualization. However, they built a system by using
Framingham symptoms as entities to visualize CHF disease
progression.32 In contrast, our study focused primarily on the
temporal analytics by visually emphasizing three main proper-
ties of patients: sub-populations’ temporal statistics of patients,
quality assessment, and uncertainty of patients. Moreover, they
used specific indicators for CHF such as Framingham symp-
toms, whereas there are still a lot of known and unknown risk
factors that can lead to CKD.32 CKD progression and develop-
ment is more complicated than most diseases. For that reason,
we need a useful visualization tool to help improve our under-
standing of CKD evolution.

In a recent study, “the disease map” visualized how human
diseases evolved over time and age.33 The map visualized the
data by classifying into age and gender to represent disease
evolution over time. Whilst many of such positive associations
between disorders are already well-known and understood,
many still remain either entirely unnoticed or not properly rec-
ognized. Those unnoticed and unrecognized associations could
be novel discoveries. Therefore, the study assumed that certain
human disorders can be associated negatively. Although this
study provides a novel tool for validating already known dis-
eases and can even be utilized to discover new or hitherto
unnoticed empirical association patterns between human dis-
eases, it nonetheless lacks the incorporation of temporal data
and information. Moreover, this tool is insufficient for observing
one specific disease and its progression and development over
time.30,34 Therefore, our study is novel in providing a complete
picture of a focused disease and its progression and develop-
ment in relation to other underlying diseases. Representing
these comorbidities and polymorbities in a spectrum is very ef-
fective and simple to understand for both lay people and health
professionals.35–37 Therefore, we think our Sankey diagram vi-
sualization technique could provide more authentic and inter-
esting disease spectrums overtime.

As this is a pilot study at this stage, it has its limitations
which we must deal with in future work. First, gender and age
need to be taken into consideration for the next step of visuali-
zation. Some CKD studies have shown that females and elderly
people were associated with a high risk of developing
CKD.10,11,15,17 We should also incorporate variables that we ig-
nored in this pilot study, such as drug use and laboratory data
which could make the CKD spectrum more useful and func-
tional for clinicians to use.38,39 After that, we should know
more about CKD related features via visualization at a glance.
The 11 underlying diseases selected by nephrologists could
also limit the generalizability of results. Moreover, we found
that CKD progresses by lying in three stages: pre-CKD, post-
ESRD, and outcome (stable or death). Thus, we will focus on
patients lying in these three stages and their disease variation
in the following step of our future research. The NHIDB data
used in this study is mainly for billing purposes, which could in-
troduce bias in accurate disease diagnosis.
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Figure 4: The pre- and post-combination of chronic kidney disease with hemodialysis in the first year.
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CONCLUSION
We developed a visualization tool based on a Sankey diagram
that can represent the comorbidity and progression of CKD
over time. This tool has the potential to help clinicians when
deciding on the management of pre-CKD and CKD patients. In
terms of medical education, it can be used to help students un-
derstand the nature of a complex chronic disease by showing
the dynamics between the comorbidities and CKD outcomes in
a time-evolution fashion. Patients can benefit from this tool in
terms of preventive measures to anticipate the plethora of lon-
ger term medical outcomes.

We believe that the visualization of comorbidities and out-
comes of pre-CKD, CKD, and post-CKD can lead us to a better
understanding of underlying pathogenesis. Efforts in this direc-
tion will eventually aid in prediction and prevention of the dis-
ease, personalization of diagnosis and treatment, as well as
the participation of patients in our healthcare system.40
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