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Abstract

Controlling Quantum Systems for Quantum Information Processing

by

Kevin Christopher Young

Doctor of Philosophy in Physics

University of California, Berkeley

Professor K. Birgitta Whaley, Co-Chair

Professor Irfan Siddiqi, Co-Chair

For several decades it has been appreciated that quantum computers hold incredible
promise to perform calculations intractable to classical computation. However, this promise
has be slow to realize. Dozens of quantum systems are currently being investigated for use in
quantum information processing - none of which have yet demonstrated algorithms involving
more than a handful of qubits and it remains unclear which, if any, of these systems will
ultimately compose a scalable, robust quantum information processing architecture. In this
thesis we employ analytical, optimal and algebraic control techniques to evaluate various
quantum systems for their potential use in quantum information processing. In doing so,
we have additionally identified several novel characterization procedures capable of probing
both the coherent and incoherent dynamics of quantum systems. The first part of this
thesis discusses work motivated by attempts to utilize donor qubits in silicon as quantum
bits. We first propose a measurement of the state of a single donor electron spin using
two-dimensional electron gas of a field-effect transistor and electrically detected magnetic
resonance. We analyze the potential sensitivity of this measurement and show that it is a
quantum nondemolition measurement of an electron-encoded state.

We then present the first of two novel qubit characterization procedures. We consider
the problem of rapidly characterizing a large number of similarly prepared qubits using
techniques from optimal experiment design. All qubits are assumed to evolve according
to the same physical processes, though the Hamiltonian parameters may vary from device
to device - an inevitability in solid state qubits. We use the Cramér-Rao bound on the
variance of a point estimator to construct the optimal series of experiments to estimate these
free parameters, and present a complete analysis of the optimal experimental configuration.
Though applied to dipole- and exchange-coupled qubits, this technique is widely applicable
to other systems.

The second part of the thesis discusses the role that control can play in measuring and
mitigating noise in qubit systems. Our first result describes a method for quickly simulating
the effects of arbitrary markovian noise on qubit systems through the use of a numerically
optimized, multi-state Markovian fluctuator. This ability to rapidly simulate the noisy qubit
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evolution allows us to compute control sequences capable of maximally decoupling the qubit
from the noise source.

We then introduce the second characterization procedure of the these, showing that a
single measurable and controllable qubit may act as a spectrometer of dephasing noise. We
show that the formalism of dynamical decoupling can be used to estimate the short-time
correlation function of the noise source, while long time correlations may be estimated by
a very simple series of free evolution experiments. This technique is applicable to the wide
range of physical implementations which suffer from dephasing noise.

The final part of this thesis demonstrates that trapped neutral atoms may be utilized
for the robust simulation of complex systems exhibiting a topological phase. We present a
method to simulate the toric code Hamiltonian stroboscopically, and demonstrate that our
technique preserves the ground state degeneracy . Furthermore, we introduce a dissipative
mechanism allowing for thermalization of the system to a finite temperature or direct cooling
to the ground state manifold.
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General introduction
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1.1 Overview

That quantum systems can be especially useful for performing calculations was first pointed
out in 1982 [1]. However, it wasn’t until Shor’s factoring algorithm [2] appeared in 1994 that
the field of quantum information began to attract mainstream attention. In the years that
followed, nearly every existing quantum technology has been investigated for its potential use
in quantum information processing (QIP), and several new technologies have been developed
specifically for this purpose. The field is currently engaged in a furious search for a viable
experimental system in which nontrivial quantum algorithms may be implemented; among
those considered are:

• Liquid-state nuclear magnetic resonance (NMR) [3]

• Trapped ions [4]

• Trapped neutral atoms in an optical lattice [5]

• Cavity quantum electrodynamics (QED) with atoms [6]

• Linear optics [7]

• Solid state (quantum dots [8], donor spin qubits [9], NV centers in diamond [10])

• Josephson junctions (charge, flux, phase) [11]

• Electrons on the surface of liquid helium [12]

However, each of these approaches has encountered challenges. Liquid-state NMR quantum
computing, though providing several spectacular early results [3], is inherently not scalable.
Solid state qubits, while easily controlled, are not easily measured and the route to inter-
qubit coupling is unclear. Noticing the successes and failures of the various implementations,
and to aid in the design of future QIP devices, DiVincenzo described a set of criteria [13]
that must be satisfied by a physical system for it to be useful for QIP. These criteria require
that the system:

1. Be a scalable physical system with well-defined qubits.

2. Be initializable to a simple fiducial state such as |000 . . .〉.

3. Have long coherence times.

4. Have a universal set of quantum gates.

5. Permit high quantum efficiency, qubit-specific measurements.

6. Allow the intraconversion of stationary and flying qubits.

7. Allow the faithful transmission of flying qubits between specified stationary qubits.
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For a given a physical system, it is rarely clear at first which, if any, of these criteria
are satisfiable. Furthermore, the failure of a system to satisfy the any of above requirements
may not be due not to an intrinsic inadequacy of the approach - more likely is that the
field has simply not found a way to make the system behave appropriately. or example, in
liquid-state NMR quantum computing, it is impossible to initialize the to a fiducial state at
finite temperature. However, a clever technique involving the construction of so-called pseu-
dopure initial states allowed for the successful implementation of the most intricate quantum
algorithm ever attempted [3], Shor’s algorithm on . By considering novel quantum comput-
ing architectures, and by exploiting analytical, optimal and algebraic control techniques,
the work presented in this thesis suggests several new approaches to the construction of a
functional, scalable quantum information processing devices.

Part II of this thesis presents work motivated by a long-term collaboration with Dr. Thomas
Schenkel and Professor Jeffrey Bokor studying the feasibility of isolated donor atoms in silicon
to act as qubits. Donors in silicon are an attractive route to scalable quantum information
processing because of the potential to bootstrap the massive infrastructure developed by the
semiconductor industry. In Chapter 3 we propose a technique for measuring the state of
a single donor electron spin using a field-effect transistor induced two-dimensional electron
gas and electrically detected magnetic resonance techniques. The scheme is facilitated by
hyperfine coupling to the donor nucleus. We analyze the potential sensitivity and outline ex-
perimental requirements. Our measurement provides a single-shot, projective, and quantum
non-demolition measurement of an electron-encoded qubit state.

With Chapter 4 we consider the problem of quantum multi-parameter estimation with
experimental constraints and formulate the solution in terms of a convex optimization.
Specifically, we outline an efficient method to identify the optimal strategy for estimat-
ing multiple unknown parameters of a quantum process and apply this method to a realistic
example. The example is two electron spin qubits coupled through the dipole and exchange
interactions with unknown coupling parameters – explicitly, the position vector relating
the two qubits and the magnitude of the exchange interaction are unknown. This coupling
Hamiltonian generates a unitary evolution which, when combined with arbitrary single-qubit
operations, produces a universal set of quantum gates. However, the unknown parameters
must be known precisely to generate high-fidelity gates. We use the Cramér-Rao bound on
the variance of a point estimator to construct the optimal series of experiments to estimate
these free parameters, and present a complete analysis of the optimal experimental configu-
ration. Our method of transforming the constrained optimal parameter estimation problem
into a convex optimization is powerful and widely applicable to other systems.

Part III describes the various roles that control may play in studying and mitigating the
effects of noise in quantum systems. In Chapter 5 we address the experimentally relevant
problem of robust mitigation of dephasing noise acting on a qubit. We first present an
extension of a method for representing 1/ωα noise developed by Kuopanportti et al. [14] to
the efficient representation of arbitrary Markovian noise. We then add qubit control pulses to
enable the design of numerically optimized, two-dimensional control functions with bounded
amplitude, that are capable of decoupling the qubit from the dephasing effects of a broad
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variety of Markovian noise spectral densities during arbitrary one qubit quantum operations.
We illustrate the method with development of numerically optimized control pulse sequences
that minimize decoherence due to a combination of 1/ω and constant offset noise sources.
Comparison with the performance of standard dynamical decoupling protocols shows that the
numerically optimized pulse sequences are considerably more robust with respect to the noise
offset, rendering them attractive for application to situations where homogeneous dephasing
noise sources are accompanied by some extent of heterogeneous dephasing. Application to
the mitigation of dephasing noise on spin qubits in silicon indicates that high fidelity single
qubit gates are possible with current pulse generation technology.

In Chapter 6 we investigate the extent to which a single qubit can act as a spectrometer
of classical dephasing noise. By analyzing the limitations of single-qubit initialization, con-
trol and measurement, we find a natural separation of the problem of measuring the noise
correlation function into two distinct timescales. By bootstrapping dynamical decoupling
sequences, we show that a qubit can be used to estimate the short-time correlation function
of the noise source, while long time correlations may be estimated by a very simple series of
free evolution experiments. Our technique is applicable to all qubit implementations which
suffer from dephasing noise.

Finally, Part IV shows that trapped neutral atoms offer a powerful route to the ro-
bust simulation of complex quantum systems. We present here a stroboscopic scheme for
realization of a Hamiltonian with n-body interactions on a set of neutral atoms trapped in
an addressable optical lattice, using only 1- and 2-body physical operations together with
a dissipative mechanism that allows thermalization to finite temperature or cooling to the
ground state. We demonstrate this scheme with application to the toric code Hamiltonian,
ground states of which can be used to robustly store quantum information when coupled to
a low temperature reservoir.

1.2 Additional information for the dissertation com-

mittee

The chapters that comprise this thesis each represent a separate research project. Several of
these projects were undertaken in collaboration with various coauthors, and we discuss the
division of labor here.

Chapter 3 is based on material from ”Quantum nondemolition measurements of sin-
gle donor spins in semiconductors,” written in collaboration with Mohan Sarovar, Thomas
Schenkel and K. Birgitta Whaley, published in Phys. Rev. B 78, 245302 (2008). The scat-
tering calculations were performed by M. Sarovar, while the present author worked out the
details of the electron-nuclear state transfer gate. The remaining mathematical work was
carried out jointly by M. Sarovar and the present author.

Chapter 4 presents material from ”Optimal quantum multiparameter estimation and
application to dipole- and exchange-coupled qubits.” This work was performed with Mohan
Sarovar, Robert Kosut and K. Birgitta Whaley, and was published as Phys. Rev. A 79,
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062301 (2009). This work was inspired by R. Kosut’s suggestion that classical experiment
design protocols could be implemented in a quantum setting. Nearly all mathematical work
and all simulations were carried out by the present author.

Chapter 5 is based on ”Fighting dephasing noise with optimal control,” written with
Dylan Gorman and K. Birgitta Whaley, available on the preprint arXiv, as arXiv:1005.5418
and submitted for publication to Phys. Rev. A. The technique of modeling of arbitrary
Markovian spectra was developed by the present author, while many of the optimal control
calculations were done by Dylan Gorman as part of his work with UC LEADS under the
supervision of the author.

Chapter 6 is based on as-yet-unpublished work that was performed entirely by the
present author under the supervision of K. Birgitta Whaley. This work was motivated
by a desire to understand dephasing dynamics of donor qubits in silicon due to fluctuations
at the silicon-silicon dioxide interface.

Chapter 7 is based on ”Stroboscopic Generation of Topological Protection,” work per-
formed in collaboration with Chris Herdman, Vito Scarola, Mohan Sarovar and K. Birgitta
Whaley and was published in Phys. Rev. Lett. 104, 230501 (2010). Application of the
Magnus expansion to simulating many-body interactions was developed by the present au-
thor and C. Herdman performed the numerical experiments demonstrating that topolog-
ical degeneracy was preserved by the stroboscopic implementation. C. Herdman and the
present author independently developed different approaches to the thermalization proce-
dure, though C. Herdman’s proved to be more general. The present author’s approach is
presented in Appendix. 7.7.4.
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Chapter 2

The model spin qubit
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In this chapter we introduce the spin-1
2

system as a model qubit. We begin by reviewing
the Bloch sphere representation of one qubit states and magnetic resonance. We close the
chapter with a brief discussion of decoherence and show that control is capable of making
decoherence effects less severe.

2.1 Single qubit states: the Bloch sphere

The density matrix of the spin-1
2

system can be decomposed into a weighted sum of Pauli
spin matrices as

ρ =
1

2
(1 + 〈~σ〉 · ~σ)

Here, and throughout this thesis, the notation, 1, will be used to represent the identity
matrix and, ~σ, the vector of Pauli matrices. The above expression defines the coherence
vector, 〈~σ〉 and provides us with a one-to-one mapping of single qubit states to the unit
3-sphere. This mapping is called the Bloch sphere, and is illustrated in Fig. 2.1. Points on

φ

�

z

x

y

ψ

Figure 2.1: The Bloch sphere.

the surface of the Bloch sphere represent pure quantum states,

|n̂〉 = sin(θ/2) |0〉+ cos(θ/2)e−iφ |1〉 . (2.1)

Here φ and θ correspond to the spherical coordinates of the point on the surface. The state
Eq. 2.1 is the +1 eigenstate of the operator n̂ · ~σ. Points on the interior of the Bloch sphere
are mixed states.
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2.2 Spin resonance

2.2.1 Larmor precession

In the presence of a magnetic field, the qubit will evolve under the Hamiltonian

H = −~µ · ~B =
1

2
γ~σ · ~B

where γ is the gyromagnetic ratio.
We shall now consider the time evolution of a state |ψ(t)〉, with the initial condition

|ψ(0)〉 = |x̂〉 = (|0〉+ |1〉) /
√

2, when placed in a constant magnetic field, ~B = B0ẑ. The
time evolution is given by solving the Schrödinger equation:

i
d

dt
|ψ(t)〉 = H |ψ(t)〉

Here, and for the remainder of this thesis we set ~ = 1. In terms of the above Hamiltonian,
the state evolves as,

|ψ(t)〉 = e−iγB0σz/2

(
1√
2

(|0〉+ |1〉)
)

=
1√
2

(
e−iγB0t/2 |0〉+ eiγB0t/2 |1〉

)
=

1√
2

(
|0〉+ eiγB0t |1〉

)
In the last equality we noted that we exploited our freedom to multiply the wavefunction by
an arbitrary phase, in this case, exp (iγBt). Comparison with Eq. (2.1) shows that this state
is precessing about the applied magnetic field at the Larmor frequency, ωL = γB0. This is
illustrated in Fig. 2.2. In fact, any state will evolve a relative phase, φ(t) = γB0t, and will
precess at the same frequency.

2.2.2 Resonance

We now consider the problem of computing the qubit evolution in the presence of an os-
cillating field, B1 cos (ωt) x̂, in addition to the applied static field. The Hamiltonian thus
becomes:

H(t) =
1

2
γ (B0σz +B1 cos (ωt)σx)

Note that, in general, [H(t), H(t′)] 6= 0, so we cannot write the time evolution operator

simply as, U(t) = exp
(
−i
∫ t

0
H(t′) dt′

)
. Instead, we would have to use the time ordering

operator, T
←

, but this does not help us evaluate the evolution operator in closed form.
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φ(t)

B

z

x

y

ψ(t)

Figure 2.2: Bloch sphere representation of spin procession in constant field. The state, |ψ(t)〉
is precessing about the applied field at frequency, ωL = γB0.

Instead we work in an interaction picture, in reference frame rotating at the Larmor
frequency. We begin by defining a new state variable in this rotating frame,

|ψ′(t)〉 = eiωLσzt/2 |ψ(t)〉

The time evolution of this state is

i
d

dt
|ψ′(t)〉 = (i)iωLσz/2 |ψ′(t)〉+ eiωLσzt/2i

d

dt
|ψ(t)〉

= −ωLσz
2
|ψ′(t)〉+ eiωLσzt/2H(t) |ψ(t)〉

= −ωLσz
2
|ψ′(t)〉+ eiωLσzt/2H(t)e−iωLσzt/2eiωLσzt/2 |ψ(t)〉

=
(
−ωLσz

2
+ eiωLt/2H(t)e−iωLσzt/2

)
|ψ′(t)〉

= H ′(t) |ψ′(t)〉

Which defines the Hamiltonian in the rotating frame:

H ′(t) =
(
−ωL

2
σz + eiωLσzt/2H(t)e−iωLσzt/2

)
Focusing on this last term:

eiωLσzt/2H(t)e−iωLσzt/2 =
γ

2
eiωLσzt/2 (B0σz +B1 cos (ωt)σx) e

−iωLσzt/2

=
γ

2

(
B0σz + eiωLσzt/2B1 cos(ωt)σxe

−iωLσzt/2
)
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We now rewrite the linearly polarized field as the sum of two counter rotating circular waves:

cos(ωt)σx =
1

2
((cos(ωt)σx + sin(ωt)σy) + (cos(ωt)σx − sin(ωt)σy))

=
1

2

((
e−iωtσ+ + eiωtσ−

)
+
(
eiωtσ+ + e−iωtσ−

))
Here we have used the raising and lowering Pauli operators, σ± = (σx ± iσy) /2. We calculate
the transformations, exp(iασz)σ± exp (−iασz):

eiασzσ+e
−iασz =

(
eiα 0
0 e−iα

)(
0 1
0 0

)(
e−iα 0

0 eiα

)
=

(
0 e2iα

0 0

)
= e2iασ+

eiασzσ+e
−iασz =

(
eiα 0
0 e−iα

)(
0 0
1 0

)(
e−iα 0

0 eiα

)
=

(
0 0

e−2iα 0

)
= e−2iασ−

This gives,

H ′(t) = −ωL
2
σz +

γ

2

(
B0σz +B1e

iωLσzt/2 cos (ωt)σxe
−iωLσzt/2

)
= −ωL

2
σz +

ωL
2
σz

+
γ

4

(
B1e

iωLσzt/2
((
e−iωtσ+ + eiωtσ−

)
+
(
eiωtσ+ + e−iωtσ−

))
e−iωLσzt/2

)
=
γ

4
B1

((
ei(ωL−ω)tσ+ + ei(ω−ωL)tσ−

)
+
(
ei(ω+ωL)tσ+ + e−i(ω+ωL)tσ−

))
If the frequency of the applied field is equal to the Larmor frequency, ωL, a condition known
as resonance, then this simplifies:

H ′(t) =
γ

4
B1

(
(σ+ + σ−) +

(
e2iωLtσ+ + e−2iωLtσ−

))
However, the second term oscillates so fast that its effect on the qubit dynamics are negligible,
so we drop it. This is known as the rotating wave approximation. The Hamiltonian under
this approximation is then,

H ′(t) =
γ

4
B1 (σ+ + σ−) =

γ

4
B1σx

This Hamiltonian will cause the Bloch sphere representation of the state to rotate about
the x̂-axis at the Rabi frequency, ωR = γB1/2. The path on the Bloch sphere of a state
experiencing a pi rotation is illustrated in Fig. 2.3.

2.3 Decoherence

2.3.1 The Lindblad master equation

While unitary evolution corresponds to ridged rotations of the Bloch sphere, physics permits
much more general operations on qubit states. Many of these transformations may be
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Figure 2.3: Lab frame Bloch sphere representation of Rabi oscillation.

described phenomenologically through the use of quantum master equations [15],

ρ̇(t) = L(t)ρ(t).

Here we have introduced the Liouville superoperator, L. Its is a linear operator on the
elements of the density matrix. For instance, one may describe the usual Hamiltonian
evolution in terms of superoperators as,

ρ̇(t) = −i[H(t), ρ(t)] = LH(t)ρ(t).

The Liouville-Hamiltonian operator is thus defined as LH · = −i[H, ·]. However, more gen-
eral, nonunitary evolution is also possible, and this behavior may be generally modeled by
Lindblad form of the master equation,

ρ̇(t) = −i[H(t), ρ(t)] +
∑
j

(
2Ljρ(t)L†j −

{
L†jLj, ρ(t)

})
= LH(t)ρ(t) +

∑
j

D(Lj)ρ(t)

Here we have used the anticommutator {A,B} = AB + BA, Lj is a Lindblad operator and
D(L) is the dissipator superoperator. Lindblad master equations are especially useful for
describing the effective dynamics of a reduced density matrix.

2.3.2 Dephasing and the Hahn Echo

Dephasing

We consider here a qubit interacting with a large (many degrees of freedom) environment
with initial state, ρB. We suppose that after a time, t, the system has evolved under the
unitary operator,

U = |0〉〈0| ⊗ U0 + |1〉〈1| ⊗ U1
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The initial state of the system is assumed separable,

ρ(0) = ρ0
S ⊗ ρ0

B

where
ρ0
S = a00 |0〉〈0|+ a01 |0〉〈1|+ a10 |1〉〈0|+ a11 |1〉〈1|

and
ρ0
B =

∑
i

|ψi〉〈ψi| .

At time t = 0, the reduced density matrix of the qubit is the trace of the full density matrix
over the bath degrees of freedom.

ρS(0) = TrB
(
ρ0
S ⊗ ρ0

B

)
= ρ0

S

At later times, however, the state evolves as

ρ(t) = U(ρ0
S ⊗ ρ0

B)U †

= U((a00 |0〉〈0|+ a01 |0〉〈1|+ a10 |1〉〈0|+ a11 |1〉〈1|)⊗ ρ0
B)U †

=
(
a00 |0〉〈0| ⊗ U0ρ

0
BU
†
0 + a01 |0〉〈1| ⊗ U0ρ

0
BU
†
1

+a10 |1〉〈0| ⊗ U1ρ
0
BU
†
0 + a11 |1〉〈1| ⊗ U1ρ

0
BU
†
1

)

Tracing out the bath now gives,

ρS(t) = TrB (ρ(t))

= a00 |0〉〈0|+ a11 |1〉〈1|+ a10 |1〉〈0|Tr
(
U1ρ

0
BU
†
0

)
+ a01 |0〉〈1|Tr

(
U0ρ

0
BU
†
1

)
For systems with large bath degrees of freedom, this trace is likely to vanish,

Tr (U0ρ
0
BU
†
1) = Tr (U1ρ

0
BU
†
0)∗

=
∑
k

∑
i

〈k|U0 |ψi〉 〈ψi|U †1 |k〉

=
∑
i

〈ψi|U †1U0 |ψi〉

' 0

This implies that the final reduced density matrix of the qubit is

ρS(t) ' a00 |0〉〈0|+ a11 |1〉〈1| .
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Dephasing

Figure 2.4: Illustration of the effect of dephasing on the Boch sphere. The qubit loses
quantum coherences, and the Bloch sphere becomes more prolate.

We see that the off diagonal entries of the density matrix have decayed away through the
interaction with the bath. This process is known generally as dephasing, specific example of
decoherence. The effect on an aribitrary state is illustrated in Fig. 2.4.

Dephasing can be described quite easily in the Lindblad master equation picture. Let
L =
√
γσz/2. The master equation for a qubit subject to dephasing is then,

ρ̇(t) =
γ

4

(
2σzρ(t)σz − σ2

zρ− ρσ2
z

)
=
γ

2
(σzρ(t)σz − ρ)

The density matrix at any time may be written,

ρ(t) =

(
a(t) c(t)
c(t)∗ b(t)

)
.

Under the above master equation, this evolves as,

ρ̇(t) =

(
0 −γc(t)

−γc(t)∗ 0

)
The coherences, as measured by 〈σ+〉 evolve as

〈σ̇+(t)〉 = Trσ+ρ̇(t) = −γc(t) = −γ 〈σ+(t)〉 .

Leading to 〈σ+(t)〉 = 〈σ+(0)〉 e−γt, an exponential decay in the coherence with rate γ.

Hahn Echo

To illustrate the possible benefits of control for mitigating decoherence, we shall now briefly
review the Hahn echo [16] as applied to an ensemble of uncoupled spin-1

2
systems precessing in
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an spatially inhomogeneous magnetic field. Each qubit, which we’ll label with the subscript
i, evolves under its own Hamiltonian,

H(ω) =
1

2
ωσz.

The inhomogineity of the magnetic field results in a precession rate, ωi, which will be different
for each qubit. We assume that each qubit begins in the same initial state,

ρ(0) =
1

2
(1 + σx) .

and that the precession rates are distributed as P (ω) = 1√
2πσ2

e−ω
2/2σ2

. Any given qubit will
then evolve in time as

ρ(t;ω) =
1

2

(
1 + e−iω t σz/2σxe

iω t σz/2
)

=
1

2
(1 + cos(ωt)σx + sin(ωt)σy)

The full density matrix of the system is then the average over all possible precession fre-
quencies,

ρ(t) =

∫ ∞
−∞

ρ(t;ω)P (ω)dω

=
1

2

(
1 +

∫ ∞
−∞

1√
2πσ2

e−ω
2/2σ2

dω (cos(ωt)σx + sin(ωt)σy)

)
=

1

2

(
1 + e−σ

2t2/2σx

)
We see that the total coherence of the system decays exponentially in t2.

What if instead of the free evolution we had applied a π pulse in the middle of the free
evolution at time T/2. At times longer than T/2, the unitary evolution experienced by the
qubit is,

U(t > T/2;ω) = e−iω (t−T/2)σz/2σxe
−iω T σz/4 = cos(ω(t− T )/2)σx + sin(ω(t− T )/2)σy

Therefore, the state of the system at times greater than T/2 is given by,

ρ(t > T/2;ω) =
1

2

(
1 + U(t;ω)σxU

†(t;ω)
)

=
1

2
(1 + cos(ω(t− T ))σx + sin(ω(t− T ))σy)

Averaging over the environment gives,

ρ(t > T/2) =
1

2

(
1 + e−σ

2(t−T )2/2σx

)
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Figure 2.5: Trace of 〈σx(t)〉 with Hahn echo. Bold black line represents the π-pulse.

Which, at time t = T , is

ρ(t) =
1

2
(1 + σx)

Thus by applying a π-pulse, we have recovered the coherence of the system. This is the
famous Hahn echo [16]. More complicated pulse sequences, like those described in Part III,
are capable of recovering the coherence of a system subjected to much more damaging noise.

2.3.3 Other decoherence processes

Depolarizing

We saw in the previous section how noise along the z-axis can cause the qubit to dephase.
Noise along the x- or y-axes instead cause probabilistic bit-flip errors. The Lindblad operators
that model such a situation are L1 =

√
γσx/2 and L2 =

√
γσy/2. The result on the Bloch

sphere is shown in Fig. 2.6.

Depolarizing

Figure 2.6: Illustration of the effect of depolarizing on the Bloch sphere. This may be thought
of as a probabilistic bit flip error, and causes the Bloch sphere to shrink.
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Amplitude damping

Amplitude damping is caused by relaxation processes, such as spontaneous emission or cou-
pling to a low-temperature reservoir, which result in the upper state decaying to the lower
state. This process may be modeled by the relaxation Lindblad operator, LR =

√
(γ)σ−,

where γ is the classical relaxation rate. The effect of this operation on the Bloch sphere is
shown in Fig. 2.7.

Amplitude
Damping

Figure 2.7: Illustration of the effect of amplitude damping on the Bloch sphere. Similar to
spontaneous emission, the upper state probabilistically decays to the lower state, causing the
Bloch sphere to shrink and move towards the lower state. This is an example of a nonunital
channel.
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Part II

Donor qubits in silicon
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Chapter 3

Quantum nondemolition measurement
of donor spins in silicon
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3.1 Introduction

Semiconductor implementations of quantum computation have become a vibrant subject
of study in the past decade because of the promise quantum computers (QCs) hold for
radically altering our understanding of efficient computation, and the appeal of bootstrapping
the wealth of engineering experience that the semiconductor industry has accumulated. A
promising avenue for implementing quantum computing in silicon was proposed by Kane
[17], suggesting the use of phosphorous nuclei to encode quantum information. However,
while the long coherence times of the nuclei are advantageous for information storage tasks,
their weak magnetic moment also results in long gate operation times. In contrast, donor
electrons in Si couple strongly to microwave radiation and permit the fast execution of gates;
and while electron spin decoherence times are shorter than their nuclear counterparts, the
tradeoff of decreased robustness to noise for faster operation times could be appropriate to
implementing a fault-tolerant QC. This has led several authors to suggest the use of electron
spin qubits as a variant on the original Kane proposal (e.g. [18, 19, 20]), and we focus on
such a modified Kane architecture here.

An integral part of any quantum computation architecture is the capacity for high-
fidelity qubit readout. While small ensembles of donor spins have been detected [21, 22]
and single spin measurements have been demonstrated (e.g. [23, 24]), detection of spin
states of single donor electrons and nuclei in silicon has remained elusive. In this paper we
analyze spin dependent scattering between conduction electrons and neutral donors [25, 26]
as a spin-to-charge-transport conversion technique, and show that quantum non-demolition
(QND) measurements of single electron spin-encoded qubit states are realistically achievable
when mediated via nuclear spin states. Such a measurement will also be of value to the
developing field of spintronics [27] where the electrical detection of spin states is valuable.
Our readout takes advantage of two features: i) the ability to perform electron spin resonance
spectroscopy using a two-dimensional electron gas (2DEG), and ii) the hyperfine shift induced
on dopant electron Zeeman energies by the dopant nuclear spin state.

In the next section we describe the experimental apparatus and the techniques of 2DEG
mediated spin resonance spectroscopy. In section 3.3 we present our proposal for spin state
measurement in detail, and then in section 3.4 we analyze the sensitivity of the measure-
ment scheme and establish the key factors that determine signal-to-noise. Then section 3.5
concludes with a discussion.

3.2 The physical setting

The use of electrical conductivity properties of semiconductors to investigate spin properties
of (bulk-doped) impurities has a long history [28, 29], including studies of donor polarization
using a 2DEG probe [25]. Figure 3.1 shows a cross section of a 2DEG spin readout device
with a single implanted donor. Prior studies have used similar devices with bulk-doping
[25, 30] or a large number of implanted donors ( 106) [26] in the 2DEG channel. The 2DEG
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Figure 3.1: A cross section of the field-effect transistor (FET) used to create the 2DEG. In
order to reduce qubit decoherence, it is beneficial to implant into isotopically purified silicon.

is operated in accumulation mode and thus conduction electrons scatter off the electron(s)
bound to the shallow donor(s). The basic principle exploited in these studies is the role
of the exchange interaction in electron-electron scattering. At a scattering event between
a conduction electron and a loosely bound donor impurity electron, the Pauli principle
demands that the combined wave function of the two electrons be antisymmetric with respect
to coordinate exchange. This constraint, together with the fact that the combined spin state
can be symmetric (triplet) or antisymmetric (singlet), imposes a correlation between the
spatial and spin parts of the wave function and results in an effective spin dependence of
the scattering matrix, leading to a spin dependent conductance. Application of a static
magnetic field will partially polarize conduction and impurity electrons leading to excess
triplet scattering. A microwave drive will alter these equilibrium polarizations when on
resonance with impurity (or conduction) electron Zeeman energies and hence alter the ratio
of singlet versus triplet scattering events, registering as a change in the 2DEG current.
Thus, the spin dependent 2DEG current can be used as a detector of spin resonance and
accordingly this technique is commonly known as electrically detected magnetic resonance
(EDMR). Ghosh and Silsbee, and later Willems van Beveren et. al., employed EDMR in bulk
doped natural silicon to resolve resonance peaks corresponding to donor electron spins that
are hyperfine split by donor P nuclei [25, 30]. Recently, Lo et. al. have used this technique to
investigate spin dependent transport with micron-scale transistors on isotopically enriched
28Si implanted with 121Sb donors [26].

3.3 The proposal: EDMR based single spin measure-

ment

From hereon we will consider the experimental setup described above in the particular situ-
ation where there is a single donor P nucleus present, the electron spin of which encodes the
quantum information that we wish to measure. A crucial question in the context of quan-
tum computing is whether the spin-dependent 2DEG current can be used to measure the
state of an electron-spin qubit, as spin-dependent tunneling processes have been employed
[23, 24]. The fundamental concern here is whether the spin exchange scattering interaction
at the core of the spin-dependent 2DEG current allows for a quantum state measurement of
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a single donor impurity electron spin.
A spin (1/2) state measurement couples the microscopic state of the spin, given in

general by a (normalized) density matrix,

ρi =

(
a c
c∗ b

)
(3.1)

(in the measurement basis, with a + b = 1), to a macroscopic meter variable I, the 2DEG
current in our case. The meter variable can take one of two values, and at the conclusion
of the measurement, a faithful measuring device would register each meter variable with the
correct statistics, i.e., I↑ with probability a and I↓ with probability b. A QND measurement
device will have the additional property that once a meter variable has been registered, the
measured spin remains in the state corresponding to the value registered so that a second
measurement gives the same result [31, 32].

One might expect that because the exchange interaction is destructive (in the sense that
it will change the state of the target (donor electron) spin with some probability), it will only
produce a faithful measurement if the time over which it acts is extremely short. We will
now show that this is indeed the case and that direct measurement of the electron spin via
the 2DEG current is consequently not possible within experimentally realizable times. This
negative result will motivate our subsequent presentation in Section 3.3.2 of a more complex
scheme for measurement that is both faithful and experimentally realizable.

3.3.1 Direct measurement of electron spin

To investigate the ability of the spin-dependent 2DEG current to measure the electronic
spin state, we shall use a minimal model of the scattering process. Since we are primar-
ily concerned with the spin state of the particles involved in the scattering, we examine
the transformation that a single scattering event induces on the spinor components of the
conduction and impurity electrons. We write this transformation as

ρout(k,k
′) =

Tk,k′ρinT †k,k′
Tr (Tk,k′ρinT †k,k′)

, (3.2)

where ρin/out are the density operators for the spin state of the combined two-electron system,
and: Tk,k′ = Fd(k,k′) +Fx(k,k′)σc ·σi [33]. Here Fd (Fx) is the amplitude for un-exchanged
(exchanged) conduction and impurity electron scattering 1. Note that the spatial aspects
of the problem only enter into the amplitudes. We will assume elastic scattering with the
donor electron remaining bound, and no scattering of conduction electrons outside the 2DEG.
Therefore the amplitudes can be parameterized by two parameters: Fd/x ≡ Fd/x(θ, k), the
scattering angle within the 2DEG, θ; and the incoming momentum magnitude k (determined
by the Fermi energy of the 2DEG electrons). These amplitudes are free parameters in our

1We assume throughout that the operating temperature is above the Kondo temperature of the device.
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model and we explore a wide range of values for them in the simulations below. The direct
and exchange scattering amplitudes are simply related to the more familiar singlet (fs) and
triplet (ft) scattering amplitudes as:

Fd(θ, k) =
1

4
(fs + 3ft)

Fx(θ, k) =
1

4
(ft − fs) (3.3)

Now, assume an initial state ρin = (p |↑〉c 〈↑|+(1−p) |↓〉c 〈↓|)⊗ρi, where the first term in
the tensor product is the state of the conduction electron (the conduction band is assumed
to be polarized to the degree P 0

c = 2p − 1, 0 ≤ p ≤ 1), and the second term is the general
state of the donor electron given above. After applying the scattering transformation and
tracing out the conduction electron (because we have no access to its spin after the scattering
event in this experimental scheme) we get a map that represents the transformation of the
impurity electron state due to one scattering event:

ρi → ρ′i(θ, k) =
(1− p)
N

[
(Fd + Fxσz)ρi(F

∗
d + F ∗xσz) + 4|Fx|2σ−ρiσ+

]
+

p

N
[
(Fd − Fxσz)ρi(F

∗
d − F ∗xσz) + 4|Fx|2σ+ρiσ−

]
(3.4)

where N is a normalization constant to ensure Tr (ρ′i) = 1, and we have not explicitly written
the (θ, k) dependence of the scattering amplitudes for brevity.

In order for the measurement to be faithful, the diagonal elements of the impurity
spin state (the population probabilities) must be preserved under the interaction – that
is, the measurement interaction may induce dephasing (in the measurement basis), but
no other decoherence. However, the terms proportional to |Fx|2 in Eq. (3.4) suggest that
there will be population mixing. Using this equation, we can write the transformation of the
diagonal elements (which are uncoupled from the off diagonal elements by the transformation
Eq. (3.4)) as:

a→ a′(θ, k) =
(1− 2P 0

c Λ cosχ+ (2P 0
c − 1)Λ2)a+ 2(1− P 0

c )Λ2

4P 0
c Λ(Λ− cosχ)a+ 1 + 3Λ2 + 2P 0

c Λ cosχ− 2P 0
c Λ2

where Λ(θ, k) ≡ |Fx(θ, k)|/|Fd(θ, k)|, and χ(θ, k) ≡ argFx(θ, k) − argFd(θ, k), and we have
used the fact that a+ b = 1 to normalize the transformation.

We can iterate this recursion to simulate the effects of the repeated scattering events
that contribute to the current. An appropriate quantification of measurement quality is the
measurement fidelity [34]:

Fn = 2|(
√
a(n)
√
a(0) +

√
b(n)
√
b(0))2 − 0.5|, (3.5)

where a(n) and b(n) are the diagonal elements of ρi after n scattering events. An ideal
measurement has Fn = 1, while Fn = 0 indicates a measurement that yields no information
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– i.e. no correlation between the original qubit state and the meter variables. Since the
measurement should work for all initial states, we consider the worst-case measurement
fidelity: Fwn = mina(0),b(0) Fn.

In order to calculate this fidelity we need to determine how many scattering events will
take place within the time required to do the measurement. Given the current state of the art,
and factoring in improvements in 2DEG mobility [35] and conduction electron polarization,
we estimate a shot-noise limited measurement time of τm ∼ 10−3 s (this calculation is given
below, in section 3.4). Within this time, there will be ∼ 109 scattering events (see the
Appendix for details on calculating the number of scattering events per second). Although
we do not assume specific values of the scattering amplitudes, we find from iterating the
above recursion for a broad range of values Fx/Fd that after ∼ 109 scattering events Fwn is
� 1 for any non-zero value of the exchange amplitude |Fx| and for any polarization, P 0

c .
Figure 3.2 shows worst-case fidelity decay as a function of scattering amplitude parameters for
various values of 2DEG polarization P 0

c . These simulations clearly show that the relaxation
of a general electron spin state is rapid across virtually all reasonable parameter ranges. In
fact, for realistic 2DEG polarization values Fwn typically drops to near zero already after
∼ 103 − 104 scattering events. Thus the measurement induced population mixing time
is Tmix ∼ 1 − 10ns, which is drastically smaller than τm. These simulations thus show
conclusively that whatever the precise values of the scattering amplitudes, under realistic
experimental conditions the electron spin relaxation induced by the scattering interaction
makes the 2DEG current an ineffective measurement of the electron spin state. This makes
it impossible to faithfully map the electron spin state onto the meter variable, and hence
impossible to perform a single electron spin state measurement using the 2DEG current
directly.

For completeness we note that since we only have access to the total 2DEG current and
no angle-resolving detectors, the actual impurity electron density matrix must also involve
an average over θ and k over the 2DEG Fermi surface in Eq. (3.4). However, as we have
shown that the direct measurement will not work for any value of θ and k, the averaged
dynamics will only result in a worse performance analysis.

However, as we will now show, it is possible to make use of the nuclear spin degree of
freedom in order to utilize EDMR for projective and QND measurement of single spin states.
The key is that the state of the nuclear spin affects the Zeeman splitting of the electron spin
(and thus its resonant frequency) via the mutual hyperfine coupling. Therefore our strategy
is to transfer the qubit state from the electron to the nucleus and then to perform an EDMR
readout.

3.3.2 Nuclear spin mediated electron spin state measurement

The low-energy, low-temperature Hamiltonian describing the electron and nuclear spins of a
phosphorous dopant in a static magnetic field, B = Bẑ is

H =
1

2
[geµBBσ

e
z − gnµnBσnz ] + Aσe · σn (3.6)
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where µB and µn are the Bohr and nuclear magnetons, ge (gn) is the electron (nuclear)
g-factor, and A characterizes the strength of the hyperfine interaction between the two
spins [17] (we set ~ = 1 throughout the paper). For moderate and large values of B,
the σz terms dominate and we can make the secular approximation, to arrive at: H ≈
1/2 [geµBBσ

e
z − gnµnBσnz ] + Aσezσ

n
z . The energy levels and eigenstates of this Hamiltonian

are shown in Fig. 3.3. Note that we have ignored the coupling of both spins to uncontrolled
degrees of freedom such as paramagnetic defects and phonons (coupling to lattice spins can
be mitigated by the use of a 28Si substrate). These environmental couplings will contribute
to decoherence of the nuclear and electron spin states (e.g. [36]), and we will simply assume
that this results in some effective relaxation and dephasing of the electron and nuclear spins.

We see that the resonance frequency (Zeeman energy) of the electron is a function of
the nuclear spin state. Therefore, our strategy will be to transfer the qubit state from the
electron to the nucleus and then use EDMR to measure the nuclear spin. This is in effect a
spin-to-resonance-to-charge conversion measurement.

To perform the state transfer, we appeal to the qubit SWAP gate: SWAP[ρe⊗τn]SWAP† =
τe ⊗ ρn. SWAP can be decomposed into the sequence of three controlled-not (CNOT)
gates [15] SWAP = CNOTnCNOTeCNOTn, where the subscript indicates which of the
two qubits is acting as the control. However, the complete exchange of electron-nuclear
states is unnecessary, since the spin state of the impurity electron is lost to the environment
by the application of resonant pulses and elastic scattering with conduction electrons in the
2DEG. Therefore, the final operator in the sequence can be neglected since it only alters the
state of the electron. This leads to the definition of the electron-to-nucleus transfer gate,
TRANSe = CNOTeCNOTn. To apply these CNOT gates we use resonant pulses: CNOTe

interchanges the states |↑〉e |⇑〉n and |↑〉e |⇓〉n and so can be implemented by application
of a resonant π-pulse at frequency ωn (see Fig. 3.3), an RF transition; similarly, CNOTn

interchanges |↑〉e |⇑〉n and |↓〉e |⇑〉n and is implemented by a resonant π-pulse at ωe, a mi-
crowave transition. Each of these transitions is dipole-allowed, ensuring that gate times
are sufficiently fast. The ability to apply pulses faster than relevant decoherence times is
required for successful implementation of the state transfer. We note that after this work
was completed, a state swap scheme very similar to the state transfer scheme outlined above
was successfully performed in experiments on bulk-doped Si:P samples [37].

Suppose the electron is in an initial (pure) state, |ψ〉e = α |↑〉e+β |↓〉e, while the nucleus
is in a general mixed state,

τn =

(
u w
w∗ v

)
. (3.7)

After performing the state transfer on the combined state and tracing over the electron
degrees of freedom (because it is lost to the environment), we are left with the reduced
density matrix describing the nucleus,

Tr e
(
TRANSe [ρe ⊗ τn] TRANS†e

)
=

(
|α|2 αβ∗(w + w∗)

α∗β(w + w∗) |β|2
)
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Figure 3.2: Evolution of worst-case measurement fidelity, Fwn , during 2DEG scattering dy-
namics as a function of the number of scattering events n, for a range of values of the ratio of
direct and exchange scattering amplitudes and of 2DEG equilibrium polarization. The inde-
pendent (base plane) axes on the plots parametrize the complex scattering amplitude ratio
Fx/Fd ≡ |Fx|/|Fd|eiχ: one axis is the magnitude, Λ ≡ |Fx|/|Fd| (shown for 0 < |Fx|/|Fd| < 1;
the plots are restricted to this range because the worst-case fidelity is negligibly small out-
side it), and the other is the phase, χ (shown for 0 < χ/2π < 1). The number of scattering
events, n, varies across the columns, with values n = 10, 102 and 104 shown here. The 2DEG
equilibrium polarization, P 0

c , varies across the rows, with values P 0
c = 0.01, 0.1 and 1 shown

here. For P 0
c ≥ 0.1, we see that there are fairly large regions in the Fx/Fd parameter space for

which the worst-case measurement fidelity is non-zero: however, (i) Fwn still decays rapidly
with number of scattering events, and is rarely > 0.9 (the fidelities desirable for high-quality
measurement), and (ii) Fwn is highly sensitive to the precise value of Fx/Fd and P 0

c in these
regions.

Because of the hyperfine coupling (Fig. 3.3), electron resonance will occur at the lower fre-
quency with probability |α|2 and at the higher frequency with probability |β|2. The electrical
detection of this shift from the free electron resonance frequency by EDMR constitutes a
single-shot, projective measurement in the σz basis of the original electron state (and there-
fore, qubit state) with the correct statistics.
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Figure 3.3: Four-level system of electron-nuclear spin degrees of freedom. The energy eigen-
states in the secular approximation are the eigenstates of σez and σnz . The transitions indicated
by arrows are required for the state transfer described in the text.

In detail, the single qubit spin readout can proceed as follows. Following state transfer to
the nuclear spin, one of the two hyperfine split electron spin resonance lines that corresponds
to a given nuclear spin projection is addressed by dialing in the corresponding microwave
frequency for resonant excitation of electron spin transitions. At the same time, the transistor
is turned on and the channel current is monitored. Now, assume that the magnetic fields
have been tuned to address the |↑〉n nuclear state projection. Then with probability |α|2 the
transistor current will differ from the off-resonant current value and with probability |β|2 it
will be just equal to the off-resonant channel current. In either case, monitoring the current
at one hyperfine resonance for the τm measurement duration constitutes a readout of the
nuclear spin. And due to the prior state transfer, it effectively measures the spin state of
the original donor electron spin.

Figure 3.4: Illustration of single spin readout. In experiments with large ensembles of donor
spin qubits, lines from all nuclear spin projections are present in EDMR measurements (left).
In measurements with single donors (right), only single lines are present for measurement
times shorter then the nuclear spin relaxation time. Monitoring the current at a given
resonant field measures the spin state of the donor nucleus with the correct statistics.
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3.4 Measurement sensitivity and

measurement-induced decoherence

Two critical practical issues need to be addressed for realization of this protocol for measure-
ment of the donor electron spin quantum state. These are: i) the sensitivity of the EDMR
measurement needs to be sufficiently high to allow single donor spins to be detected, and ii)
the measurement time τm must be small compared to the lifetime of the nuclear spin.

We first address the issue of the sensitivity of the differential EDMR current in the limit
of single donor scattering. As detailed above, the spin state of the donor electron is con-
tinually changing due to the scattering interaction, and hence is time-dependent. However,
ignoring the transient, we can approximate it with a time independent value given by the
steady state solution of the recursion relation, Eq. (3.4). This approximation can be thought
of as taking the equilibrium spin value, where the “spin temperature” of the impurity has
equilibrated with that of conduction electrons via the scattering interaction. The explicit
simulations of the scattering recursion Eq. (3.5) shown in Section 3.3.1 indicate that this
equilibration happens within 104 scattering events for all possible values of scattering ampli-
tudes. Thus the time scale for this equilibration is ∼ 10ns, much faster than the observable
times scales of the measurement, justifying our use of the steady-state solution of the recur-
sion (see the Appendix for details on calculating the number of scattering events per second).

Solving for the steady-state (ρ
(n)
i = ρ

(n−1)
i ≡ ρssi ), gives us a time-independent, non-resonant

single donor “polarization” equal to

〈σz〉ssi ≡ Tr (σzρ
ss
i ) =

Λ−
√

(P 0
c )2 cos2 χ+ Λ2(1− (P 0

c )2)

P 0
c (Λ− cosχ)

(3.8)

It should be noted that this expression for the steady state “polarization” is not valid when
P 0
c = 0 or Λ = 0, but neither of these limits is relevant to spin measurement. Now, we can

follow the analysis of Ref. [25], using donor “polarization” 〈σz〉ssi , to estimate the on-resonant
(I) and off-resonant (I0) current differential (normalized) as:

∆I

I0

≡ I − I0

I0

≈ −α′ s 〈σz〉ssi P
0
c

1/τn
1/τt

. (3.9)

Here α′ ≡ 〈Σs − Σt〉 |z=zi/ 〈Σs + 3Σt〉 |z=zi , Σs and Σt are singlet and triplet scattering cross
sections, respectively, and 〈·〉 |z=zi denotes an average over the scattering region with the
donor location in z (see Fig. 3.1) held fixed [38]. s = 1 − (1 − si)(1 − sc), and si and
sc (both between 0 and 1) are saturation parameters which characterize how much of the
microwave power is absorbed by the impurity and conduction electrons, respectively [25]. si
is a function of the broadening at the single donor electron resonance frequency: if we work
in a regime where this broadening is minimal (as required to perform the quantum state
transfer described above), si ≈ 1 and thus s ≈ 1. The final term in Eq. (3.9) represents
the ratio between impurity scattering (1/τn) and total scattering (1/τt) rates. We assume
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1/τt = 1/τ0 + 1/τn, where 1/τ0 is the scattering rate due to all other processes (such as
surface roughness scattering and Coulomb scattering by charged defects).

To estimate the expected magnitude of this current differential, we begin by considering
present state of the art 2DEG mediated EDMR experiments where this current differential is
∼ 10−7 (with T ∼ 5K,B ∼ 0.3T , a 2DEG channel area of 160× 20µm2, probe current 1µA,
and a donor density of 2× 1011donors/cm2) [26]. We assume that α′ will be similar for the
single donor device as in current experiments. Then in scaling down to a single donor, the first
aspect to consider is the scattering rate ratio: % ≡ 1/τn

1/τt
. To first order this ratio can be kept

constant if we scale the 2DEG area concomitantly with the donor number. From the channel
area and density of current experiments, we extrapolate that a 2DEG area of ∼ 30× 30nm2

– well within the realm of current technology [39] – would keep % unchanged. Optimization
of donor depth might relax this size requirement [38]. A higher order analysis would require
detailed investigation of the device specific interface and intrinsic contributions to the other
scattering processes, and hence to the channel mobility and τ0. Related to this concern,
the mobility of the 2DEG channel can be improved – e.g., by using hydrogen passivation
to mitigate surface roughness at the oxide interface [35] – to increase %. We conservatively
estimate a factor of 10 increase in ∆I/I0 from such improvements. The saturation parameter
s ∼ 1 for large enough microwave powers in the recent measurements [26] and so does not
present an area for improvement. Finally, an avenue for significant improvement in signal
is to increase the conduction electron polarization, P 0

c , which is currently ∼ 0.1− 1%. This
polarization is roughly proportional to the applied static magnetic field, and therefore a
factor of 10 improvement is possible by operating at B = 3T . Additionally, spin injection
techniques can be employed to achieve P 0

c > 10% (e.g. [40, 41]), resulting in a 100-fold
improvement in ∆I/I0. Hence, by improvements in device scaling and channel mobility,
and by incorporating spin injection, we estimate a realistic, improved current differential of
∆I/I0 ∼ 10−4. Given this ∆I/I0 and a probe current of I0 ∼ 1µA, to achieve an signal-to-
noise (SNR) of 10 through shot-noise limited detection we require a τm satisfying:(

∆I

I0

)
I0τm
e

> 10

√
I0τm
e

(3.10)

where the left hand side is the signal, the right hand side is the accumulated shot-noise
multiplied by the SNR, and e is the fundamental unit of electric charge. Solving this yields
a measurement integration time of τm ∼ 10−3 s.

In order to complete the measurement analysis we need to address the second issue
identified above and confirm that the state of the nuclear spin does not flip within the
measurement time – i.e. the measurement time τm has to be shorter then the nuclear spin
flip time T1. Once the 2DEG current is switched on (the 2DEG current is off during the
electron-nucleus state transfer) the dynamics of the donor electron due to scattering and
microwave driving will contribute to the decoherence of the nuclear spin. Donor nuclear
spin relaxation is not well characterized under these conditions but we expect that in large
magnetic fields the donor electron dynamics contributes primarily only to dephasing of the
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nuclear state. This can be made precise by performing perturbation theory on Eq. (3.6) in
the parameter A/∆, where ∆ ≡ ωe − ωn = B(geµB − gnµn). In the detuned regime where
A/∆� 1, the effective Hamiltonian describing the coupled systems is

H ≈ Heff =
1

2
ωeσ

e
z −

1

2
ωnσ

n
z + Aσezσ

n
z +

A2

∆
(σez − σnz ) (3.11)

This effective Hamiltonian is of course also the justification for the secular approximation
made earlier (see below Eq. (3.6)). Therefore we see that to first order in A/∆ the donor
electron can only dephase the nuclear spin and that direct contributions to nuclear spin
T1 through the hyperfine interaction are small. Secondary mechanisms such as phonon-
assisted cross relaxation can, in principle, also contribute to the nuclear T1 during electron
driving. However, these contributions were shown to be very small by Feher and Gere who
demonstrated that the electron-nuclear cross relaxation time, Tx, under electron driving
conditions is on the order of hours [42]. Given this extremely long cross-relaxation time and
the equivalently long nuclear T1 in a static electron environment at low temperatures [42, 43],
we conclude that the nuclear T1 in the presence of electron driving will be comfortably larger
than τm ∼ 10−3 s. Indeed, this has very recently been confirmed by explicit measurements
of nuclear T1 under the conditions of electron driving [44]. This analysis implies that once
the measurement collapses onto a nuclear basis state, the nuclear spin state does indeed
effectively remain there and therefore the EDMR measurement satisfies the QND requirement
on the qubit state.

3.5 Conclusion

By utilizing resonant pulse gates and 2DEG-mediated-EDMR readout, we have proposed a
realistic scheme for measuring the spin state of a single donor electron in silicon. By making
use of the hyperfine coupled donor nuclear spin, the readout scheme provides a single shot
measurement that is both projective and QND. The QND aspect also makes this technique
an effective method for initializing the state of the nuclear spin.

We have analyzed the measurement procedure, the factors which influence the signal-to-
noise ratio, and the experimental apparatus to arrive at realistic modifications/improvements
that can be made to current 2DEG-based EDMR apparati [26] so that a single nuclear spin
can be measured. One concern is that at the required transistor size of ∼ 30 × 30nm2,
the MOSFET device will no longer act as a 2DEG but rather more like a quantum dot.
However, while the proposed MOSFET is small, there are no physical tunnel barriers between
the transistor island and the source and drain leads (no intentional confinement). Important
Coulomb blockade effects have indeed been observed in such MOSFETs, but only in a biasing
regime with very low source-drain biases [45, 39, 46] and in sub-threshold currents at very
low gate biases [47]. In these studies, confinement was found to be induced by impurity
potentials [45, 46]. It has also been shown that one can easily tune in and out of the
Coulomb blockade regime by suitable gate and source-drain biasing [45] (and see also Ref.
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[46] for related results with tunable tunnel barriers). In the experiments we envision, which
are closely related to and inspired by recent demonstrations of spin dependent transport in
micron-scale devices [25, 26], the source-drain as well as the gate bias can be tuned over a
large range of voltages, from the very low values needed to study interesting and important
Coulomb blockade effects in a low current regime (< 50 nA) to higher bias values desirable
for electrical detection of magnetic resonance through scattering of conduction electrons off
neutral donors [25, 26] with much higher channel currents (∼ 1 µA). Such MOSFET devices
can be operated as 2DEGs and away from the quantum dot regime, by imposing large enough
source-drain and gate biases.

Finally, we note that the fact that the measurement is facilitated by the nucleus of the
donor atom intimates a hybrid donor qubit where quantum operations are carried out on
the electron spin and the state is transfered to the nucleus for measurement and storage
(advantageous due to the longer relaxation times). Although the above analysis was done
with the example of a phosphorous donor, it applies equally well to other donors, such
as antimony [20, 26], and some paramagnetic centers [48]. One merely has to isolate two
(dipole-transition allowed) nuclear spin levels to serve as qubit basis states and transfer the
electron state to these nuclear states with resonant pulses as outlined here.

3.6 Appendix

Here we detail the procedure used in the main text for calculating the amount of time
taken for n scattering events. We assume a MOSFET channel of width W = 30nm probed
with a current of 1µA. This means that there are I/e ≈ 1.6 × 1013 electrons per second
crossing the channel. However, to gain a more accurate estimate of the number of electrons
interrogating the donor electron per second we scale this total number by a ratio of the
scattering length to the width of the channel:

√
σ/W . A crude estimate of the scattering

cross section, σ, can be obtained using the singlet and triplet scattering lengths given in
Ref. [28]: as = 6.167Å and at = 2.33Å. These scattering lengths are for three dimensional
electron-hydrogen scattering in bulk-doped systems, however we consider them sufficient for
an order of magnitude estimate of the number of interrogating electrons per second. In
terms of these scattering lengths, the scattering cross section for the 2DEG interacting with
an ensemble of donors is [25]:

σ = 2π
[
(a2
s + 3a2

t )− (a2
s − a2

t )P
0
c P

0
i

]
(3.12)

where P 0
c and P 0

i are the conduction band and impurity polarization. Since P 0
c � 1 we will

approximate the above expression as:

σ ≈ 2π(a2
s + 3a2

t ) = 341.3 Å2 (3.13)

For a single donor, Eq. (3.12) should be modified to take into account the time-dependent
“polarization” of the single donor spin (see Sec. 3.4). However, since this quantity drops out
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in the final approximate expression for the cross section, Eq. (3.13), we will not be concerned
with this modification.

Using this estimate of the average scattering cross section, the number of electrons
interrogating the donor per second is given by

ne ≈ 1.6× 1013 · 18.5× 10−10

30× 10−9
≈ 1× 1012 (3.14)

Therefore we estimate that the time taken for n scattering events is n× 10−12 seconds.
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Chapter 4

Quantum multi-parameter estimation
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4.1 Introduction

The tremendous allure of quantum information processing has fueled recent progress in the
experimental and theoretical understanding of physical systems operating in regimes where
classical physics fails to hold. The precise control and characterization of physical systems
demanded by quantum information processors, e.g. for performing high-fidelity quantum
gates, has extended our mastery of optical, gas phase, and condensed phase physical systems.

Typically, as the precision to which one must characterize a physical system increases,
the sophistication of the techniques used to study the system must also increase. Recent
tour-de-force experiments have fully characterized quantum systems of small dimension by
performing exhaustive process tomography (e.g. [49, 50]). Such exhaustive tomography re-
quires resources that scale exponentially with the dimension of the system being studied
and so is infeasible for systems much larger than those already characterized in this man-
ner. Consequently, many techniques for approximate characterization of large dimensional
quantum systems have been formulated in recent years [51, 52, 53, 54].

In many situations one is not completely ignorant about the dynamical system being
studied. An experimentalist may have partial knowledge of the system through information
from system preparation or prior characterization studies. In such cases the system char-
acterization often becomes a problem of parameter estimation, and an important question
arises: how does one design an experiment to identify the unknown parameters of the dy-
namical process most efficiently, or even optimally with respect to some metric? Experiment
design for optimal parameter estimation in quantum systems is a natural extension of the
equivalent classical design problem; one typically attempts to rapidly reduce the variance
in the unknown parameters by performing as few experiments as possible. The goal of ex-
periment design is to identify the input states to probe the dynamical process with and the
measurements to perform on the outputs, so that the variance in the unknown parameters
can be decreased as quickly as possible (with the number of experiments performed). An-
alytical and numerical methods for optimal experiment design have been widely explored
for one parameter quantum processes (e.g. [55, 56, 57, 58, 59, 60]), but very few analytic
optimality results exist for the multi-parameter case (for exceptions, see Refs. [61, 62]),
in part because of difficulties in optimizing over noncompatibile (noncommuting) quantum
observables [63]. Numerical approaches to optimal experiment design for quantum tomog-
raphy (when all parameters of the quantum process or state are unknown) and Hamiltonian
parameter estimation using convex optimization were first proposed in Ref. [64], and applied
to experiments in Refs. [65, 66]. The method follows from the optimal experiment design
approach described in Ch. 7.5 of Ref. [67]. Recently, a similar numerical approach to multi-
parameter quantum process estimation, using convex optimization, was formulated [68] and
we shall further refer to it below. Experimentally motivated techniques for multi-parameter
estimation have also been proposed [69, 70], but the optimality and asymptotic performance
of these are unknown.

In this chapter we examine this problem of optimal multi-parameter estimation for
quantum processes when there are constraints on the possible input probe states and on
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the possible measurements. The constraints on the input states and spin measurements
result from experimental limitations on the types of input states (measurements) that can
be realistically prepared (performed). We consider a concrete example motivated by an
experimental platform for quantum information processing: donors in semiconductors with
electrical control and measurement [17, 71, 72]. We solve the problem of precisely identi-
fying the coupling between two electron spin qubits that interact through a combination of
exchange and dipole-dipole interactions by a preparation of input states and measurement
of electron spins after a suitable interaction period. Note that precise knowledge of the
qubit-qubit interaction is crucial for the execution of two-qubit gates which typically work
by transforming this interaction into the desired gate by single qubit manipulation pulses
[73]. We apply a recently re-formulated numerical approach to optimal experiment design
for multi-parameter quantum estimation [64] which also incorporates available experimen-
tal configurations into a convex optimization [68]. This formulation allows us to efficiently
identify the optimal characterization experiment and estimate the number of experimental
runs necessary to achieve a desired accuracy in the estimated parameters.

In section 4.2 we provide background on the quantum parameter estimation problem and
recap the formulation of the multi-parameter constrained estimation problem as a convex
optimization from Refs. [68, 64]. Section 4.3 presents the experiment design framework in full
generality and sketches an algorithm for optimally estimating a set of unknown parameters
of a quantum process. Section 4.4 introduces the example we explicitly solve: two coupled
electron spin qubits. We summarize the experimental capabilities of this implementation of
quantum information processing and give a detailed description of the coupling dynamics.
Then in section 4.5 we apply our experiment design framework to formulate the optimal
estimation scheme for identifying the unknown parameters under the given constraints.

4.2 Parameter estimation

Suppose a sequence of data that is independent and identically distributed (iid) is drawn from
a distribution that is parametrized by one or several unknown quantities. For instance, the
distribution could be Gaussian with unknown mean and variance. The parameter estimation
problem is to estimate the value(s) of the unknown quantities from the sample data.

A central task of parameter estimation is the construction of an estimator, Tθ(X), which
maps the sampled data, X, to an estimate, θ̂, of the parameters. In what follows, we will
assume the use of unbiased estimators,

〈θ̂〉 ≡ 〈Tθ(X)〉 = θ.

The generalization to biased estimators is well known, but needlessly complicates our dis-
cussion.

However, some probability distributions are more easily estimable than others. Take for
example a Dirac-delta distribution centered at x0, so that the probability density function
is px0(x) = δ(x − x0). The parameter to be estimated in this case is x0 and only a single
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measurement is required. On the other hand, accurately estimating the mean of a large-
variance Gaussian distribution requires many samples. Estimability of a parameter is thus a
property of the probability distribution and is independent of the estimator used. This idea
is encapsulated by the Cramér-Rao bound, which places a lower limit on the variance of any
single-parameter estimator [74],

varTθ(X) ≥ 1

NF (θ)
.

Here, N is the number of samples and F (θ) is the Fisher Information, defined as a functional
of the probability distribution,

F (θ) ≡

〈(
d

dθ
ln pθ(x)

)2
〉

where we use the shorthand pθ(x) for the conditional distribution p(x|θ) and 〈f(x)〉 =∫
f(x) p(x|θ) dx (or

∑
i f(xi)p(xi|θ) if the probability distribution is discrete) is the expecta-

tion value of f(x). Note that the Fisher information is a function of the true value (not the
estimate) of the parameter. Intuitively it represents the amount of “information” about the
parameter in the conditional probability distribution for the data.

In the multi-parameter case the generalized Cramér-Rao inequality bounds the covari-
ance matrix of the (now vector-valued) estimator [74],

covθ Tθ(X) ≥ I(θ )−1

N
(4.1)

where I(θ ) is the Fisher information matrix:

I(θ) ≡
〈

(∇θ ln pθ(x)) (∇θ ln pθ(x))T
〉

We have used the notation ∇θf(θ) =
(

d
dθ1
f, d

dθ2
f, . . . , d

dθn
f
)T

.

The Cramér-Rao inequality provides a bound on how well we can do when estimating
the parameter(s) from the data. A derivation of this bound in the single parameter case is
given in Appendix 4.7.1 of this chapter. While the actual variance in the parameter estimate
is dependent on the particular estimator used, there exist estimators that are known to
saturate this bound asymptotically (in the limit of large N) [74]. An example, that we shall
employ below, is the the maximum likelihood estimator (MLE). The MLE is defined as

TMLθ (X) = arg max
θ

pθ(X) (4.2)
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4.3 Optimal experiment design for quantum parame-

ter estimation

Up to this point we have discussed the mathematics of parameter estimation. The physics
of a particular problem becomes important only in calculating the probability distributions
(and their derivatives). Quantum mechanics provides the tools with which these distributions
can be obtained.

We begin by defining an experiment, E , as a choice of the initial state, ρ0; evolution
time, t; and a positive operator valued measure (POVM), M = {Mi} [75]. The POVM, also
known as a generalized measurement, satisfies

∑
iMi = 1 and Mi ≥ 0, 0 ≤ i ≤ nout. Each

Mi corresponds to a possible outcome from applying the measurement M. Through the
application of the Born rule, each experiment determines a parametrized family of discrete
probability distributions,

pEθ(i) = Tr
(
Mi

(
Uθ(t)ρ0Uθ(t)

†))
= Tr (Miρθ(t)) (4.3)

Here Uθ(t) = T exp
(
−i
∫ t

0
Hθ(t

′)dt′/~
)

is the unitary time evolution operator and Hθ(t) is

the Hamiltonian whose parameters, θ, we wish to estimate. pEθ(i) is the probability, given a
fixed experiment E = {ρ0,M, t} and assuming the parameter takes the value θ, that we get
the measurement result i. From this probability distribution one can calculate the Fisher
information matrix associated to this experiment:

IE(θ) =
∑
i

(
∇θp

E
θ(i)
) (

∇θp
E
θ(i)
)T

pEθ(i)
(4.4)

Inserting this quantity into Eq. (4.1) gives a lower bound on the variance of our estimate. We
will restrict our discussion to closed-system (i.e. Hamiltonian) evolution and, for the sake of
clarity, to finite-dimensional Hilbert spaces. The generalization to non-unitary processes is
straightforward; the most difficult step being the calculation of ∇θp, which must often be
performed numerically.

It is often the case that an experimentalist has access to a number of different initial
conditions and measurement bases. We would like to answer the question: which of these
initial conditions and measurements should the experimentalist use in order to best estimate
the unknown parameters in the quantum process? In order words, we would like to design
our experiment so that we sample the quantum process in a manner that produces the most
information about the unknown parameters. Formally. suppose we are given a menu of
possible experiments, {E} and each time we sample our quantum process, an experiment, E =
{ρE0 ,ME , tE}, is chosen with probability λE (so

∑
E λE = 1). The result of that measurement

is governed by the probability distribution, pEθ(·), and so is associated with its own Fisher
matrix – i.e. Eq. (4.4). The probability of any particular measurement result must now
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be scaled by the probability that a particular experiment will be performed. So the Fisher
matrix for the combined experimental scheme defined by E and λE is

I(θ) =
∑
E,i

(
∇θλEp

E
θ(i)
) (

∇θλEp
E
θ(i)
)T

λEpEθ(i)

=
∑
E

λEIE(θ)

It is now natural to ask, given a menu of experiments, what choice of λminimizes Tr (I−1(θ)) =

Tr
(∑

E λEIE(θ)
)−1

and thereby provides the best upper bound on the average of the esti-
mate variance across all parameters through Eq. (4.1). This optimization problem, known
as A-optimal experiment design, can be written as [67]:

minimize Tr

[∑
E

λEIE(θ)

]−1

subject to λi ≥ 0,
∑
i

λi = 1

Note that the optimization parameter is the vector of probabilities λE . This optimization
is difficult because the cost function is not linear or convex in the optimization parame-
ter. However, through the use of the Schur complement (see Appendix 4.7.2), it can be
reformulated as the convex optimization problem:

minimize TrQ

subject to

(
Q I
I F

)
� 0, F =

∑
E

λEIE(θ),

λi ≥ 0,
∑
i

λi = 1. (4.5)

To make this problem tractable, the menu of experiments can be chosen as a discretiza-
tion of the continuous space of all possible experiments. The exact nature of the discretization
must be determined for each problem individually, but, in general, a finer grained discretiza-
tion produces a larger optimization problem. A coarser graining will result in a smaller
optimization problem, but one whose solution will more poorly approximate the true achiev-
able lower bound on the variance given by Eq. (4.1). In practice, one will discretize the space
of initial states, the space of POVMs, and time. Given nρ initial states, nM POVM’s, and
nt times, we have ñ = nρ × nM × nt experiments, and thus an optimization vector, λE , of
length ñ.

This procedure for framing the optimal estimation problem as a convex optimization
over a discrete space space of experiments is extremely powerful. Experimental constraints
can be used to limit the menu of possible experiments and the optimal distribution can be
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found quickly, even for large problems. Such a restriction to exclude unfeasible experiments
is very difficult to incorporate into a continuous optimization technique. From the convex
structure of the optimization, we also gain insight into the expected results. By the comple-
mentary slackness theorem [67], we expect only a small subset of the possible experiments
to contribute to the optimal distribution. This expectation is borne out in the example
presented in section 4.5.

Given this formulation for identifying the optimal experiment, we now detail the entire
optimal experiment design procedure:

1. Guess parameters. We always need an initial estimate of the unknown parameters
with which to begin. This assumed value of the parameters, θp, can be based on prior
knowledge about the quantum process, other studies, or even an educated guess.

2. Enumerate possible experiments. The menu of possible experiments E is dictated
by experimental constraints.

3. Calculate Fisher matrices. For each experiment on the menu from step 2, the proba-
bility distribution for the outcome data, pEθp(i), and associated Fisher matrices IE(θp),
must be calculated using the assumed value of the parameters.

4. Perform optimization. The optimization specified by Eq. (4.5) must be performed to
obtain an optimal probability distribution of experiments, λE .

5. Perform experiments. The unknown quantum process should be probed with exper-
iments distributed according to λE . That is, if a total of N samples are taken, dλE/Ne
of them should be using experiment E .

6. Estimate parameter(s). Use the collected data to estimate the parameters using an
estimator of choice. This results in the refined parameter estimate, θe. If the maximum
likelihood estimator is used, we can readily form the likelihood function since the N
samples are independent – the likelihood function will be a multinomial distribution:

pθ(X) ∝ N !
∏
E

1

nE !

nEout∏
i=1

(
λEp

E
θ(i)
)nEi (4.6)

where nE is the number of times experiment E was performed (nE = dλE/Ne, and nEi is
the number of times result i (corresponding to POVM element ME

i ) is obtained. The
θ that maximizes this likelihood function is θe, the maximum likelihood estimate.

7. Repeat if necessary. This procedure can be repeated, with θp in step 1 replaced by
θe from step 6. The decision of whether or not to repeat the procedure can be based
on a number of factors: (i) experimental resources, (ii) desired accuracy: if θe is very
different from θp then repeating the steps is likely to be helpful. Such an adaptive
procedure will converge on the true value of the parameter(s), θt, through repetition.
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We now illustrate this procedure by treating a specific example of constrained multi-
parameter estimation that is very relevant to quantum computing: the identification of
coupling parameters in a multi-qubit system.

4.4 Dipole- and exchange-coupled qubits

Donors in silicon have been of increasing interest in the quantum computing community since
the seminal paper by Kane in Ref. [17]. Most donor based quantum computing schemes
use the spins of electrons bound to donors to encode qubits. Single qubit readout for this
implementation is an active area of research, but electrically detected magnetic resonance
techniques [22, 21, 26, 72, 76] are showing potential for delivering high-quality single qubit
measurements. In order to execute high-fidelity quantum gates, accurate knowledge of the
coupling Hamiltonian between two donor-bound electron spins is required. Given exact
knowledge of the location of the donors in the substrate, this coupling could in principle
be computed theoretically. However, donors in silicon devices are subject to uncertainty in
location that is only magnified by subsequent annealing processes. Hence it is highly likely
that it will be necessary to characterize the qubit couplings for each device separately and
therefore an efficient (and preferably optimal) method of doing this characterization is highly
desirable. As we will demonstrate in the next section our constrained parameter estimation
scheme is well suited to this task because it is numerically efficient and can handle realistic
experimental constraints. Before applying our technique we present some details about the
physical system.

Two electrons bound to donors implanted in silicon will interact through a combination
of the dipole and exchange interactions. The spin Hamiltonian governing dipole coupling
between two qubits is

Hd =
∑
i,j

γ1γ2

〈
3r̂ir̂j − δij

4π |r|3
+

2

3
δijδ

3(r)

〉
σ

(1)
i ⊗ σ

(2)
j

where γi is proportionality factor relating the magnetic dipole moment operator to the Pauli
matrices:

µ̂ = γiσ
i,

r = r2− r1 is the vector connecting the two qubits, and 〈Ô〉 = 〈Ψ| Ô |Ψ〉 is the expectation
value of Ô over the two electron spatial wavefunction, Ψ(r1, r2).

The exchange Hamiltonian, a consequence of the Coulomb interaction applied to iden-
tical spin-1

2
particles, is

He = Jσ(1) · σ(2).

Here, J is the magnitude of the exchange interaction, calculable from the localized, single-
qubit wavefunctions, φ, ψ, by:

J = e2

∫∫
φ∗(r1)ψ∗(r2)φ(r2)ψ(r1)

|r|
dr1dr2
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The qubits are also subjected to a magnetic field, B = B0ẑ, leading to the Hamiltonian,

H0 = −γ1B0σ
(1)
z − γ2B0σ

(2)
z .

The dipole moments, γi, of the two qubits may be different due to local inhomogeneities
in the substrate or the magnetic field. This results in each qubit, even without any dipole
or exchange interaction, having a distinct resonance frequency ωi = γiB0/~, with difference
∆ω = ω2 − ω1 << ω1, ω2.

The static interaction, H0, is presumed to be much larger than either Hd or He, so it
is helpful to work in the interaction picture (also known as the rotating frame) [16]. The
effective Hamiltonian in the interaction picture is:

HI =
∑
i,j

(
γ1γ2

〈
δij − 3r̂ir̂j

|r|3
− 8π

3
δ3(r)δij

〉
+ Jδij

)
σ̃

(1)
i ⊗ σ̃

(2)
j (4.7)

Where, σ̃
(α)
i = e−iωασ

(α)
z tσ

(α)
i eiωασ

(α)
z t, is the ith Pauli matrix in the rotating frame of the αth

qubit. These are, explicitly,

σ̃(α)
x = e−2iωαtσ

(α)
+ + e2iωαtσ

(α)
−

σ̃(α)
y = −i e−2iωαtσ

(α)
+ + i e2iωαtσ

(α)
−

σ̃(α)
z = σ(α)

z

Substituting these into (4.7), we find many terms proportional to e±2i(ω1+ω2)t. These terms
are very rapidly oscillating and will average to zero in a short time. We take the rotating
wave approximation and neglect these terms, keeping only those that rotate no faster than
e±2i∆ωt. This leaves us with:

HI ≈ ~Gσ(1)
z ⊗ σ(2)

z +
(
~Fe2i∆ωtσ

(1)
+ ⊗ σ

(2)
− + h.c.

)
where,

~F = 2J − γ1γ2

〈
(1− 3r̂2

z)

|r|3
+

16π

3
δ3(r)

〉
~G = J + γ1γ2

〈
(1− 3r̂2

z)

|r|3
− 8π

3
δ3(r)

〉
In the basis {|↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉}, this Hamiltonian can be expressed in matrix form as:

HI = ~


G 0 0 0
0 −G F e2i∆ωt 0
0 F e−2i∆ωt −G 0
0 0 0 G
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The unitary evolution operator, UI(t) = T exp
(
−i
∫ t

0
H(t′)dt′/~

)
generated by this Hamil-

tonian is found to be:

UI(t) =


e−iGt 0 0 0

0 χ− Ξ 0
0 Ξ χ+ 0
0 0 0 e−iGt

 (4.8)

where we have defined the following,

Ω =
√
F 2 + ∆ω2,

χ± = e−i(∆ω−G)t (cos(Ωt)± i∆ω sin(Ωt)/Ω) ,

Ξ = −iFe−i(∆ω−G)t sin(Ωt)/Ω.

From this expression for the time evolution operator, the Fisher information matrices can
be computed through Eq. (4.3).

4.5 Optimal estimation for dipole- and exchange-coupled

qubits

In the model described above, the parameters to be estimated are F , G, and ∆ω. To
simplify the presentation and for ease of visualization, we assume here that ∆ω has been
found through standard resonance techniques, and focus our attention on the two remaining
parameters. The general technique is of course valid for any number of parameters (within
computational constraints). We choose ∆ω = 1 and take as the true parameter values,
θt = (Ft = 1.1, Gt = 0.9). We work in units where these parameters are dimensionless.

Realistic experimental constraints for the optimization are that the initial states be easy
to prepare and the measurements be experimentally accessible. This is satisfied by assuming
that all initial states and POVMs are separable. Both the initial state and the POVM set
can be specified by the choice of a Bloch-vector for each of the two qubits. To discretize
the space of initial states and POVMs, the Bloch vectors are chosen from among the 26
unit-norm vectors, v, of the form

v = (αx̂+ βŷ + γẑ)/
√
α2 + β2 + γ2

where α, β, γ ∈ {±1, 0} are not all zero. These vectors are illustrated in Fig. (4.1)

Given a choice of two Bloch vectors
〈
σ

(1)
0

〉
and

〈
σ

(2)
0

〉
, the density matrix which de-

scribes the resulting initial state is

ρ0 =
1

4

(
I +

〈
σ

(1)
0

〉
· σ(1)

)
⊗
(
I +

〈
σ

(2)
0

〉
· σ(2)

)
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Figure 4.1: (Color online) The single qubit states and measurements used to probe the
process represented on the Bloch sphere.

Here σ ≡ (σx, σy, σz) is a vector formed from the three non-trivial Pauli matrices. Similarly,

given a choice of two Bloch vectors
〈
σ

(1)
M

〉
and

〈
σ

(2)
M

〉
the corresponding POVM elements,

which we choose in this case projective quantum measurements, are

M1 =
1

4

(
I +

〈
σ

(1)
M

〉
· σ(1)

)
⊗
(
I +

〈
σ

(2)
M

〉
· σ(2)

)
M2 =

1

4

(
I +

〈
σ

(1)
M

〉
· σ(1)

)
⊗
(
I −

〈
σ

(2)
M

〉
· σ(2)

)
M3 =

1

4

(
I −

〈
σ

(1)
M

〉
· σ(1)

)
⊗
(
I +

〈
σ

(2)
M

〉
· σ(2)

)
M4 =

1

4

(
I −

〈
σ

(1)
M

〉
· σ(1)

)
⊗
(
I −

〈
σ

(2)
M

〉
· σ(2)

)
These are projectors onto anti-podal points (along the axes defined by

〈
σ

(1)
0

〉
and

〈
σ

(2)
0

〉
)

on the Bloch spheres of the two qubits. The set of initial states and POVMs are explicitly
enumerated in Appendix 4.7.3. For simplicity, we will fix the duration of each experiment
in the menu to t = 1. Therefore, we have nρ = 262, nM = 132, nt = 1.

The Fisher matrices are calculated using an initial guess θp = (Fp = 1, Gp = 1) and the
optimal experiment is then identified using the convex optimization defined in section 4.3.
This optimization over ñ ≡ nρnMnt = 114244 experiments takes < 3 minutes on an average,
consumer-grade desktop computer. The result of this optimization is an experimental con-
figuration with only two elements of λoE > 0 (λoE is the probability distribution describing
the optimal configuration). This means that the optimal process probe need only sample
using two experimental configurations out of the 114244 possible ones. These optimal ex-
perimental configurations are shown in Appendix 4.7.3. The non-zero elements of λoE are 0.8
and 0.2, which means 4/5 of the process probes should be performed with one experimental
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configuration and the remaining 1/5 with the other. The Fisher information matrix of the
optimal configuration is:

Io(θp) =

(
1.8853 −0.18431
−0.18431 3.3578

)
The results of the experiments were simulated using θt, the actual value of the parameters

and the unitary transformation given by Eq. (4.8). We sampled the process N = 200 times
with initial states and POVMs dictated by the optimal distribution, λoE , and the resulting
data was used to estimate the parameters using the maximum likelihood estimator, Eq. (4.2).
The likelihood function, Eq. (4.6), is plotted for a large range of the parameters F and G in
Fig. 4.2(a). Finding the maximum over this surface yields θoe = (F o

e = 1.10028, Go
e = 0.8845).

The estimate of the parameters is extremely close to the real values given by θt. In addition,
we can bound the variance of this estimate using the Cramér-Rao bound:

Var[F o
e ] + Var[Go

e] ≥
Tr (Io(θp)−1)

200
= 0.0042

As noted earlier, we know that as the number of samples, N , increases this bound will be
saturated. Thus the estimation error is controlled and well-known. In figures 4.2(b) and
4.2(c) we show cross sections across the likelihood function at the estimated values Fe and
Ge. These cross sections show how estimation performance is non-uniform for F and G.
While the value of F is fairly well resolved, the likelihood function is highly periodic in
G. This periodicity reflects the periodic manner in which G enters the evolution unitary,
Eq. (4.8). We can break the periodicity of the likelihood function by varying the time for
which the quantum process is probed. Figs. 4.2(d)–4.2(f) show that likelihood function and
its cross sections when the optimal configuration (for t = 1) is used to probe the process
for times t = 1, 1.1, 1.4. Again, a total of N = 200 samples were taken of the process.
Periodicity in G is largely absent in 4.2(f), and furthermore, that the likelihood function
in 4.2(d) has a dominant central peak around the true values of F and G. This technique
of probing a quantum process for varied times is essential when estimating parameters in
unitary processes because of the potential for parameters to appear in a periodic manner in
unitary maps. We note that since the probe time, t, is actually a parameter of the process
it should also be optimized over when identifying the optimal experimental configuration.
However, we have not here included this step in the optimization in the interest of keeping
the search space of the optimization small enough to explore within ≈ 3 minutes on our
simulation computer.

To further evaluate the optimal experiment design we compare its performance against
a sub-optimal estimation strategy. The sub-optimal strategy we choose is a discrete set
of initial preparations and measurements all aligned along the principal Bloch sphere axes
(x, y, z). The 12 possible experimental configurations for this sub-optimal strategy are listed
explicitly in Appendix 4.7.3. This is a reasonable naive strategy, and we again collected N =
200 samples with experiments distributed uniformly among the 12 possible configurations.
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(a) Log likelihood function
attained using optimal con-
figuration for a single probe
time.

(b) Cross section of the log
likelihood function in (a) at
the value G = Ge.

(c) Cross section of the log
likelihood function in (a) at
the value F = Fe.

(d) Log likelihood function
attained using optimal con-
figuration for multiple probe
times.

(e) Cross section of the log
likelihood function in (d) at
the value G = Ge.

(f) Cross section of the log
likelihood function in (d) at
the value F = Fe.

(g) Log likelihood function
attained using sub-optimal
configuration for a single
probe time.

(h) Cross section of the log
likelihood function in (g) at
the value G = Ge.

(i) Cross section of the log
likelihood function in (g) at
the value F = Fe.

Figure 4.2: (Color online) The logarithm of the likelihood function, Eq. (4.6), for a set
of simulated data. Darker areas indicate a larger likelihood function. Sub-figures (a)–(c)
show the likelihood function attained using the optimal experiment design. Sub-figures (d)–
(f) show the likelihood function attained using the optimal experiment design when the
quantum process is probed for different times to break the periodicity of the likelihood in
G. Figures (g)–(i) show the likelihood function attained using a sub-optimal configuration
of experiments to probe the quantum process. In sub-figures (a), (d) and (g) the regions
of white along the F = 0 axis are where the likelihood function is zero and hence its log
diverges.
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Figure 4.3: (Color online) Plot of the mean squared error (MSE) of the MLE estimator for
the optimal (red squares) and suboptimal (yellow diamonds) configurations. Also shown
(solid blue line) is the Fisher bound for the mean squared error of any estimator as given by
the optimal experiment.

The resulting likelihood function is shown in Fig. 4.2(g), and cross sections of it in Figs.
4.2(h) and 4.2(i). Taking the maximum over this likelihood surface yields an estimate of
the parameters: θsoe = (F so

e = 1.085, Gso
e = 0.969). This is clearly a poorer estimate of the

true parameters. We can also calculate the Fisher information matrix for this suboptimal
strategy:

Iso(θp) =

(
0.5417 0.1662
0.1662 0.8562

)
This Fisher matrix results in the following bound on the combined estimation variance:

Var[F so
e ] + Var[Gso

e ] ≥ Tr (Iso(θp)−1)

200
= 0.016

The poorer estimate and the larger bound on the variance for the suboptimal configuration
are clear indications of the superiority of the optimal experiment design. Furthermore, the
number of experimental configurations required to produce a precise estimate of θ is vastly
smaller for the optimal design. In Fig. 4.3, we plot the mean squared error of the maximum
likelihood estimate as a function of the number of experiments performed, N . While the
MLE for both the optimal and sub-optimal configurations approaches the Fisher information
bound (provided by the optimal configuration) as N → ∞, the optimal configuration more
rapidly approaches this bound. Furthermore, the mean squared error of the MLE is lower
for the optimally configured experiments for all N . To achieve the same mean squared error,
one must perform roughly twice as many experiments with the suboptimal configuration
as are required with the optimal configuration for this particular set of guessed and actual
parameters.

To quantify the estimability of the the parameters in this example, we plot the diagonal
elements of the inverse of the Fisher information matrix as of function of the parameters, F



47

(a) (1, 1) element of I−1(F,G)

(b) (2, 2) element of I−1(F,G)

Figure 4.4: (Color online) The diagonal elements of the optimal inverse Fisher information
matrix over a range of values for the unknown parameters, F and G.

and G in Fig. 4.4. Note that the optimal (constrained) probe configuration has been deter-
mined for each (F,G) in the plot since this determines the ultimate estimation performance
limit. Fig. 4.4(a) shows element [I−1]11(F,G) and Fig. 4.4(b) shows element [I−1]22(F,G).
As the values of F and G are changed these elements of the inverse Fisher information matrix
remain fairly constant apart from a few notable excursions. This implies that the parameters
are nearly equally well estimable across all possible values. If the optimal probe configura-
tion is utilized the single sample variance bound is ∼ 0.5 for F and G. If the parameters
happen to lie on one of the few peaks of [I−1]11(F,G), or [I−1]22(F,G) then they are slightly
more difficult to estimate (i.e., a larger number of process probes, N , will be necessary to
reduce the estimate variance) for any possible experimental configuration. However, note
that neither [I−1]11(F,G) nor [I−1]22(F,G) diverge for any value of (F,G), and hence the
parameters are always estimable.

4.5.1 Robustness of estimation procedure

Finally, we turn to the issue of the robustness of the optimal experimental configuration
identified by our method. To evaluate robustness, we calculate the inverse Fisher information
matrix as a function of the parameters F and G for a fixed experimental configuration (the
configuration that is optimal for (F,G) = (1, 1)). For comparison, we also calculate the
inverse Fisher information matrix as a function of the parameters for the fixed sub-optimal
process probe configuration used above. The diagonal elements of these matrices are shown in
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Fig. 4.5. These figures clearly show that the optimal configuration is much more sensitive to
parameter variations than the sub-optimal configuration. In fact, the single sample variance
bound for the optimal experiment is quite large at some points. This is a consequence
of the small number of finely tuned experimental configurations utilized by the optimal
experiment. On the other hand, the large number of experimental configurations exploited
by the suboptimal experiment allows for a moderate performance for almost all (F,G). That
the optimal experiment is rather sensitive to the accuracy of the initial guess emphasizes the
importance of going to the adaptive strategy mentioned in section 4.3. That is, as better
estimates of the parameters are produced, the process probes should be adapted to be the
optimal configurations for the current guess for the parameters. We expect that this lack
of robustness of the optimal experiment will be present for the vast majority of parameter
estimation problems and is not a special feature of the example considered here. The cost
of finely tuning the process probes to optimally estimate the parameters based on an initial
guess is that these probes become less adept at identifying values of parameters too far from
the initial guess.

Another important point governing the success of the optimization procedure deals with
the experimental ability to accurately prepare and measure the qubit states. In a real ex-
periment, single qubit operations cannot be performed perfectly, and as such will always
include a small error. The state prepared under such a noisy operation will be a mixed
state that is proximate to the desired target state. Such inaccuracies in preparation and
measurement can be easily incorporated into our procedure by replacing the probe state
(POVM measurement) constellations with the corresponding achievable mixed states (aver-
aged POVMs). Appendix 4.7.4 analyzes the specific case of small, random gate error in a
single-qubit, single-parameter estimation problem. The presence of such error is shown to
increase the number of experiments required by an amount proportional to a certain measure
of the error.

4.6 Conclusion

The precise estimation of quantum processes is a key ingredient in the engineering of robust
quantum information processing devices. For example, to construct two-qubit gates for a
quantum computer the interaction between qubits must be precisely known. This estimation
task is an increasingly demanding one as the scale of the quantum process being estimated
increases. Thus it is essential to have experimental techniques that use minimal resources,
but are also accurate. In this work we have demonstrated a method for designing the
optimal experiments for multi-parameter quantum process estimation. Particular advantages
of the method are that it can tackle multi-parameter estimation, it naturally incorporates
realistic experimental constraints, and that the numerical optimization it involves can be
implemented efficiently. To demonstrate our approach we have applied it to the estimation
of parameters dictating the coupling of two donor electron qubits in silicon. We found the
optimal experimental configuration among a very large candidate set (> 105 experiments)
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(a) [I−1
11 ]

Opt
Mean:2.03, Min:0.416,

Max:27.2
(b) [I−1

22 ]
Opt

Mean:0.981, Min:0.300,
Max:20.5

(c) [I−1
11 ]

Sub
Mean:1.32, Min:0.234,

Max:2.54
(d) [I−1

22 ]
Sub

Mean:1.30, Min:0.213,
Max:3.48

Figure 4.5: (Color online) The diagonal elements of the inverse Fisher Information matrix
over a range of values for the unknown parameters, F and G for fixed process probe configu-
rations. Subfigures (a) and (b) show the diagonal elements of the inverse Fisher matrix when
the optimal experimental configuration for the guess (F,G) = (1, 1) is used, and subfigures
(c) and (d) show these matrix elements when the suboptimal experimental configuration
identified in the text is used. As evident from the large deviations in (a) and (b), the
small number of experiments used in the optimal configuration reduces the robustness of the
procedure to errors in the initial guess.

and simulated the parameter estimation using this optimal configuration. The results show
that the our method can drastically reduce the number of experiments required to perform
parameter estimation for quantum processes. We compared the optimal configuration found
by our method with a sub-optimal approach and quantified the performance improvement
of the optimal configuration. We also found that while the optimal experiments designed
by our procedure – which are based on an initial guess of the parameters – perform very
well, they are very sensitive to variations in the actual values of the parameters, and hence
lack robustness. However, the general algorithm outlined in 4.3 takes this into account by
specifying a recipe for adapting the estimation procedure as data about the values of the
parameters is obtained, and hence is capable of compensating for this lack of robustness in
the results of the optimization.
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A useful extension of this work is to investigate the feasibility of including a robustness
measure directly into the cost function of the optimization. It remains to be seen if this
can be done while maintaining the optimization’s convexity. Robust estimation procedures
have been addressed in the context of classical control theory [77] and the extension of these
results to quantum models would increase the practicality and appeal of optimal estimation
in the quantum setting.

While we illustrated the method here with the example of electron qubits in silicon, the
general technique of optimal experiment design for parameter estimation outlined in section
4.3 is applicable to a wide array of physical systems. An interesting avenue for further
research would be to apply this method to identify the Hamiltonians governing small dipole-
coupled spin clusters such as those probed in recent experiments with diamond [78, 79].

Finally, although the numerical optimization required to find the optimal experimental
configuration is convex, and therefore efficient, in the process of applying our technique to the
example detailed above we noticed that current optimization libraries were unable to handle
a very large (ñ > 150, 000) search space. Therefore a possible extension of this work is to use
the inherent structure in the parameter estimation problem to form a smaller optimization
program, or possibly to iteratively identify the optimal solution.

4.7 Appendices

4.7.1 Derivation of the Cramér-Rao bound for a single-parameter

In this appendix we provide a derivation of the Cramér-Rao bound on the variance of a single-
parameter estimator. We denote by Eθ(X) the function which estimates the parameter, θ
from a set of data, X. Furthermore, we define the score function as the derivative of the
log-likelihood,

S =
∂

∂θ
ln f(X; θ)

The likelihood function is the probability of getting the results, X, given that the parameter,
θ. We begin by calculating the covariance of the score function and the estimator,

covθ (S,Eθ(x)) = 〈V Eθ(X)〉 − 〈S〉 〈Eθ(X)〉



51

However, the expectation value of the score is zero,

〈S〉 =

〈
∂

∂θ
ln f(X; θ)

〉
=

∫
dXf(X; θ)

∂

∂θ
ln f(X; θ)

=

∫
dXf(X; θ)

∂
∂θ
f(X; θ)

f(X; θ)

=

∫
dX

∂

∂θ
f(X; θ)

=
∂

∂θ

∫
dXf(X; θ)

=
∂

∂θ
1

= 0

We can now write the above covariance as

covθ (S,Eθ(x)) = 〈SEθ(X)〉

Expanding this,

covθ (S,Eθ(x)) = 〈SEθ(X)〉

=

∫
dXf(X; θ)Eθ(X)

∂
∂θ
f(X; θ)

f(X; θ)

=

∫
dXEθ(X)

∂

∂θ
f(X; θ)

=
∂

∂θ

∫
dXEθ(X)f(X; θ)

=
∂

∂θ
〈Eθ(X)〉

If the estimator is unbiased, then its expectation value should be

〈Eθ(X)〉 = θ.

Thus the above covariance is

covθ (S,Eθ(X)) =
∂

∂θ
θ = 1

We can use the Cauchy-Schwartz inequality to relate the covariance of the score and the
estimator as, √

var (S)var (Eθ(X)) ≥ |covθ (S,Eθ(X))| = 1
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Squaring and rearranging this, we have

var (Eθ(X)) ≥ 1

var (S)

And we define the Fisher Information as the variance of the score,

F (θ) = var (S) =

∫
dXf(X; θ)

(
∂

∂θ
ln f(X; θ)

)2

=

∫
dX

(
∂
∂θ
f(X; θ)

)2

f(X; θ)
.

Thus we recover the single-parameter Cramér-Rao bound,

var (Eθ(X)) ≥ 1

var (S)

4.7.2 Schur complement

Consider a nonsingular block matrix,

M =

(
A B
C D

)
,

where A is an invertible submatrix. The Schur complement of M with respect to A is defined
as,

M/A ≡ D − CA−1B.

A principal theorem in the study of the Schur complement [80] says that

M ≥ 0 ⇐⇒ both A ≥ 0 and M/A ≥ 0.

Where M ≥ 0 means that M is positive semi-definite. Now consider the minimization
problem

minimize TrF−1

subject to some constraints

As stated in the main text, this objective function is not convex. We then propose a matrix
Q ≥ F−1 which is an upper-bound on the matrix F−1. This definition implies that

Q− F−1 = Q− IF−1I ≥ 0.

And, because F is positive semi-definite, F−1 is as well, implying Q ≥ 0. So, by the above
theorem, (

Q I
I F

)
≥ 0.
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So we construct the following optimization problem:

minimize TrQ

subject to same constraints,(
Q I
I F

)
≥ 0.

The (convex) matrix positivity constraint enforces the (non-convex) constraint Q ≥ F−1,
leaving us with a convex optimization problem (assuming the remaining constraints are also
convex).

4.7.3 Probe constellation and optimal experiments from section
4.5

The 26 single qubit initial states available to probe the quantum process in the example
presented in section 4.5 are given in table 4.1. Explicitly, for each set of Bloch angles, the
initial state is: |ψ(φ, θ)〉 = cos(φ/2) |0〉z + eiθ sin(φ/2) |1〉z where |i〉z are σz eigenstates. The
13 single qubit POVMs assumed available in section 4.5 are defined by the first 13 angles
in table 4.1, and each POVM has two projector elements given by: |ψ(φ, θ)〉 〈ψ(φ, θ)| and
I − |ψ(φ, θ)〉 〈ψ(φ, θ)|.

The sub-optimal estimation strategy used in section 4.5 used a fixed set of state prepara-
tions and measurements to probe the quantum process. There were 12 possible experimental
configurations and they are explicitly enumerated in table 4.2. The initial states and POVM
elements are defined explicitly in terms of these Bloch sphere angles by the same procedure
outline above.

Table 4.1: Bloch sphere angles for the 26 initial states in section 4.5. φ is the polar angle
and χ ≡ cos−1(1/

√
3). Antipodal points are equivalent when choosing POVM’s, leading to

13 inequivalent, single-qubit measurement bases.

φ θ
0 0
π/4 {0, π/2, π, 3π/2}
χ {π/4, 3π/4, 5π/4, 7π/4}
π/2 {0, π/4, π/2, 3π/4, π, 5π/4, 3π/2, 7π/4}
π − χ {π/4, 3π/4, 5π/4, 7π/4}
3π/4 {0, π/2, π, 3π/2}
π 0

The optimal experimental design from the ñ = 114244 possible configurations (defined
by all possible combinations of initial state and POVM parameters from Table 4.1) consists
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Table 4.2: Bloch sphere angles (φ, θ) for the 12 experimental configurations used by the
sub-optimal estimation strategy in section 4.5. φ is the polar angle, and Q1 and Q2 refer to
qubit 1 and qubit 2.

Init. state Q1 Init. state Q2 POVM Q1 POVM Q2
(0, 0) (0, 0) (0, 0) (0, 0)
(0, 0) (π, 0) (0, 0) (0, 0)

(π/2, 0) (−π/2, 0) (0, 0) (0, 0)
(π/2, 0) (0, 0) (0, 0) (0, 0)
(0, 0) (0, 0) (π/2, π/2) (π/2, π/2)
(0, 0) (π, 0) (π/2, π/2) (π/2, π/2)

(π/2, 0) (−π/2, 0) (π/2, π/2) (π/2, π/2)
(π/2, 0) (0, 0) (π/2, π/2) (π/2, π/2)
(0, 0) (0, 0) (π/2, 0) (π/2, 0)
(0, 0) (π, 0) (π/2, 0) (π/2, 0)

(π/2, 0) (−π/2, 0) (π/2, 0) (π/2, 0)
(π/2, 0) (0, 0) (π/2, 0) (π/2, 0)

of only two experiments. These are given in Table 4.3, and graphical representations of the
initial states and POVM axes are given in Fig. 4.6.

Given below are the Fisher information matrices for the experimental configurations
chosen by the optimization procedure. Following these is the inverse of the total Fisher
matrix, Iopt(θp) =

∑
E λEI

opt
λE

(θ).

Iopt
0.2 =

(
2.03 −0.034
−0.034 2.82

) [
Iopt

0.2

]−1
=

(
0.49 0.0059

0.0059 0.35

)
Iopt

0.8 =

(
1.85 −0.22
−0.22 3.49

) [
Iopt

0.8

]−1
=

(
0.54 0.035
0.035 0.29

)
[
0.2× Iopt

0.2 + 0.8× Iopt
0.8

]−1
=

(
0.53 0.029
0.029 0.30

)
Table 4.3: Bloch sphere angles (φ, θ) and relative weights in λoE for the two experimental
configurations that are optimal for the estimation problem of section 4.5. φ is the polar
angle, and Q1 and Q2 refer respectively to qubit 1 and qubit 2.

λoE Init. state Q1 Init. state Q2 POVM Q1 POVM Q2
0.2 (3π/4, 3π/2) (χ, π/4) (π/4, 0) (π/4, π)
0.8 (π − χ, 7π/4) (χ, π/4) (π/4, 0) (χ, 5π/4)
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(a) λo
E = 0.2 experiment (b) λo

E = 0.8 experiment

Figure 4.6: (Color online) Bloch sphere representations of the initial states and POVM axes
for the two experiments of the optimal configuration. The green (dotted) lines are Bloch
vectors for the initial states of each qubit, and the red (solid) lines define the axes whose
antipodal points define the projectors of the optimal POVM for each qubit.

4.7.4 Robustness to gate errors

When a pure state is acted upon by a noisy gate, the result is a mixed state. This mixed state
can be represented by a Bloch vector which terminates on the interior of the Bloch sphere.
Though the details depend on the error model for the gate, imperfections in preparation and
measurement can easily be taken into account by our formalism. One simply optimizes over a
discretized set of imperfectly prepared input states and imperfect measurements. Note that
even though all inputs states and measurements treated in the example were pure states
and projective measurement, respectively, our formalism is not restricted to optimizing over
such states and POVMs. Specifically, imperfections in state preparation can be taken into
account by considering the result of these imperfections on the Bloch vector, ~v, of the state,
defined through it’s relation to the single-qubit density matrix.

If we assume that our target state is pure, then ~vf is of unit-norm and the density matrix
is:

ρ =
1

2
(I + ~vf · ~σ)

Random error in preparation of the initial state corresponds to the creation of a mixed state.
If this error is assumed to be such that the final state is instead created with some finite
probability density surrounding the target state, the effect on the Bloch vector is that it is
contracted by some factor, ~v′f = (1− ε)~vf . The details of the error govern the magnitude of
ε. (Of course, there are errors which do not just shrink the Bloch vector, but also rotate it.
As long as these errors are well characterized, then a similar analysis may be performed.)
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The density matrix is then,

ρ′ =
1

2
(I + (1− ε)~vf · ~σ)

In the case where there exists only a single parameter, θ, the Fisher information takes the
form:

I =
∑
i

(
∂
∂θ
pi(θ)

)2

pi(θ)

The probability, pi(θ), as given by the Born rule for a POVM element, Mi, is

pi(θ) = Tr (Miρ
′)

=
1

2
Tr (Mi(I + (1− ε)~vf · ~σ))

=
1

2
(Tr (Mi) + (1− ε)Tr (~vf · ~σMi))

Then the Fisher information becomes, in terms of the Bloch vector,

I =
1

2

∑
i

(
(1− ε) d

dθ
Tr (~vf · ~σMi)

)2

Tr (Mi) + (1− ε)Tr (~vf · ~σMi)

≈ (1− ε)2 1

2

∑
i

(
d
dθ

Tr (~vf · ~σMi)
)2

Tr (Mi) + Tr (~vf · ~σMi)

= (1− ε)2I0

Here, I0, is the Fisher Information achieved without the presence of gate error. The estimator
error, varEθ, is bounded by the Cramer-Rao inequality,

varEθ ≥
I−1

N
=

1

(1− ε)2

I
N
.

So to achieve the same bound on the estimator variance as is found with perfect gates, one
must increase the number of measurements from N to N ′ ≈ N(1 + 2ε). If there are similar
POVM errors as well, then a nearly identical calculation shows that N ′ ≈ N(1 + 4ε).
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Part III

Noise in quantum systems



58

Chapter 5

Noise simulation and mitigation by
pulse sequences
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5.1 Introduction

Coherent control of the interactions between quantum bits (qubits) and their environment is
essential for any physical system to be useful for quantum computation. Exercising control
of coherence by application of carefully designed pulse sequences is a standard tool in NMR
and ESR, where powerful sets of tools have been developed for protection against qubit
dephasing. Such coherent control provides a complementary approach to the protection
of quantum information by encoding, whether with active quantum error correction codes
or passive encoding into decoherence free (’noiseless’) subspaces and subsystems. In the
quantum information processing community, the application of coherent control ideas to
preservation of qubit coherence has prompted an explosion of work in the field of dynamical
decoupling [81, 82] which builds on the classic spin echo techniques from NMR. An alternative
approach is the design of numerically optimized control pulse sequences, which have the
advantage of flexibility and ready applicability to both quantum memory and protection of
arbitrary quantum gates against dephasing and leakage errors [14, 83, 84].

In this chapter we consider the design of optimal pulse sequences for control of decoher-
ence during single qubit operations when the qubit is coupled to source of Markovian noise
that possesses an arbitrary noise spectrum. The Hamiltonian governing the evolution of the
qubit is taken to be

H(t) =
1

2
(ax(t)σx + ay(t)σy + η(t)σz) , (5.1)

where we are working in a rotating frame so that the qubit energy level splitting is, on
average, zero. Here, ax(t) and ay(t) are bounded-amplitude control fields, while η(t) is a
classical stochastic process. In the absence of control, this Hamiltonian generates dephasing
of the qubit, at a rate that depends on both the amplitude distribution and the temporal
correlation function of the stochastic process η(t), as discussed in Chapters 2 and 6. Previous
work in our group has modeled this stochastic process as a multi-state Markovian fluctuator,
the dynamics of which may be tuned to mimic a particular noise source [14] The use of a
multi-state Markovian fluctuator allows the evolution under the Hamiltonian, Eq. (5.1) to be
efficiently solved through use of a deterministic master equation [85]. In the present work, we
extend this approach from the 1/ωα spectral noise sources for which analytic representations
of the fluctuator dynamics could be found [14], to representation of a broad variety of Marko-
vian spectral noise distributions by making use of convex optimization techniques. We then
use gradient ascent methods as in Ref. [14] to derive control sequences for single qubit oper-
ations. Following established literature convention, these pulse sequences will be generically
refered to as “GRAPE sequences” (i.e., gradient-ascent pulse engineering sequences) [86].
We provide examples of two single-qubit operations: i) the identity, which is equivalent to
extension of qubit coherence, i.e., to quantum memory; ii) the Hadamard gate. We analyze
the robustness of these pulse sequences for protection against the combined effects of 1/ω
noise and zero frequency noise (the latter is equivalent to a resonance frequency error) and
compare with the corresponding performance of standard dynamical decoupling sequences,
in particular with Carr–Purcell sequences. We find that the numerically optimized control
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sequences improve on the dynamical decoupling sequences over a broad range of zero fre-
quency noise offsets, resulting in considerably greater robustness in addition to improved
decoherence mitigation. Finally, we demonstrate the applicability of the method for current
day experiments by making explicit application to the protection of coherence for dopant
spin qubits in silicon using realistic estimates of spectral noise and control pulse capabilities.
The results indicate that gates with errors less than 10−5 can be designed and implemented
with current technology. This is well below current estimates of the fault-tolerant threshold
[87].

5.2 Simulated noise model

Simulating the noisy evolution of a quantum system is a notoriously difficult task. In this
chapter, evolution under classical noise η(t) is simulated using an extension of a method first
developed in [85, 14] using a deterministic master equation to evaluate the evolution under a
stochastic fluctuator whose dynamics are chosen to best approximate a target noise spectrum.
Prior to the development of this method, one had to rely on Monte Carlo simulations of
stochastic dynamics. This technique is computationally expensive and therefore did not
allow for the fast optimization of noise mitigating pulse sequences.

To illustrate our method, we consider the model Hamiltonian Eq. (5.1). We shall restrict
the possible values of η(t) to any of N possible noise states, allowing Markovian fluctuations
between states. We denote the amplitude of noise state k as ηk. The probability of the
fluctuator to be in noise state k is given by pk(t) at time, t. These noise amplitudes and
occupation probabilities will be represented as vectors, ~η and ~p. Transitions between noise
states are governed by a rate matrix, Γ,

d

dt
~p(t) = Γ ~p(t).

To conserve probability, the transition rate matrix must satisfy
∑

k Γkj = 0. This constraint
implies that the vector ~ps = (1/N, 1/N, . . . , 1/N) is a stationary probability vector, and is
an eigenvector of Γ with zero eigenvalue. We shall limit our study of the rate matrices to
those satisfying the additional requirement, Γ = ΓT. This condition makes the forward and
backward transition rates between any two noise states to be equal, enforcing time-reversal
invariance on the fluctuator dynamics.

The noise source may be further characterized by its temporal correlation function

C(t) = 〈η(t)η(0)〉

=
∑
i,j

P (ηj, t|ηi, 0)ηjP (ηi(0))ηi

=
1

N

∑
i,j

ηi
[
eΓ|t|]

ij
ηj,
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where P (ηi(0)) ≡ pi(0) denotes the probability of the fluctuator being in state i at time
t = 0 and P (ηj, t|ηi, 0) the conditional probability of it being in state j at time t, given
state i at t = 0. Here we have chosen as the initial noise probabilities the stationary vector
~P (t) = ~ps = (1/N, 1/N, . . . , 1/N). Because Γ is a symmetric matrix, it can be diagonalized
by an orthogonal matrix, Γ = V †ΛV , so that

C(t) =
1

N
~η †V †eΛ|t|V ~η = ~b †eΛ|t|~b, (5.2)

where we have defined the transformed noise amplitude vector ~b = V ~η/
√
N and Λ =

diag{λ1, λ2, . . . , λN} is the diagonal matrix of eigenvalues of Γ. For convenience, the eigen-
values are ordered i > j ⇒ λi < λj. The power spectrum, S(ω) =

∫
C(t)e−iωtdt, of the

multistate fluctuator is a sum of zero-mean Lorentzian distributions:

S
(
ω;~λ,~b

)
=
∑
j

−2 b2
jλj

λ2
j + ω2

(5.3)

Ref. [14] derived an analytic form of Γ and V that generates noise with a 1/ωα, 0 < α < 2,
power spectrum. As noted there, numerical optimization may result in a more accurate
representation.

As with all Markovian processes, the form of Eq. (5.3) is, in accordance with Doob’s
theorem [88], a sum of Lorentzians. This form constrains the possible target spectra to
those which are monotonically decreasing and which never decay faster than 1/ω2. We have

found that by proper choice of ~λ and ~b, this spectrum may indeed be brought arbitrarily
close to a given target spectrum, St(ω), (chosen with the above constrains in mind) over a

finite specified range of frequencies, ω ∈ [ωmin, ωmax]. The choice of ~λ and ~b is made by a
numerical optimization that minimizes the deviation of Eq. (5.3) from the target spectrum.
In particular, we carry out the following optimization:

minimize
~λ,~b

∫ ∞
0

W (ω)
(
S
(
ω;~λ,~b

)
− St(ω)

)2

dω

subject to bi ≥ 0, λi ≤ 0.

Since i) ω can span many orders of magnitude, and ii) analytic representations of power
spectra often diverge at ω = 0, we have incorporated here a weighting function, W (ω), into
the usual L2 distance measure. In particular, we have set W (ω) = 1/ω for ω ∈ [ωmin, ωmax]
and W (ω) = 0 otherwise. This weight function is uniformly distributed in logω, preventing
higher frequencies from dominating the integral. Restricting ourselves to the range λi ≤ 0
is physically realistic, since positive eigenvalues would not conserve probability and would
cause the correlation function Eq. (5.2) to diverge at long times.

The results of this optimization are the two vectors ~bopt and ~λopt. Recall that the con-
straints on Γ imply the existence of a stationary probability vector, ~ps with eigenvalue λ1 = 0.
This implies that one component of ~bopt, say b1, can be taken to be a free parameter and
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may be chosen to make the arithmetic mean of ~η =
√
NV †~b equal to zero, guaranteeing the

existence of the stationary solution ~ps = (1/N, 1/N, . . . , 1/N). We note that it is convenient
to further make a restriction to bi ≥ 0 during the numerical optimization, because the power
spectrum depends only on b2

i . However, following the optimization, we may subsequently
adjust the signs of all components bi 6=1 so that |b1| is as small as possible, consistent with
the existence of the stationary probability vector.

It now remains to construct a valid transition rate matrix Γ with eigenvalues given by
~λopt. This is again done by a numerical optimization, namely

minimize
Γ

(
eigs(Γ)− ~λopt

)2

subject to Γ = ΓT, Γi 6=j ≥ 0 (5.4)∑
j

Γij = 0,

with eigs(Γ) the vector of eigenvalues of Γ.
Both of the above optimizations can performed very quickly using standard convex

optimization tools [89, 90], though the optimization in Eq. (5.4) may be accelerated via
the methods given in Appendix. 5.6.1. Our numerical approach is quite general and may be
readily applied to generate other spectral distributions (subject to the constraints mentioned
above). In the remainder of this paper we shall employ a multi-state Markovian fluctuator
representation of 1/ω noise together with a zero frequency component ηos that describes
possible sources of inhomogeneous dephasing. This combination is experimentally relevant
to a broad range of physical qubits.

To illustrate the efficiency and flexibility of this generation of arbitrary noise spectral
densities by numerical optimization of a multi-state Markovian fluctuator, we applied the
approach to calculation of a 4-state Markovian fluctuator representation of a target spectrum
St ∝ 1/ω + η2

osδ(ω). The result is

~η = ηos + ε(−0.875, 1.36,−1.36, 0.875) (5.5)

Γ = Γm


−7.69 7.64 0.0322 0.0123
7.64 −8.41 0.694 0.0694

0.0322 0.694 −0.730 0.00437
0.0123 0.0694 0.00437 −0.0861

 .

with ηos the constant noise offset responsible for zero frequency noise, ε the scaling of the
noise amplitude (represented as a fraction of the maximum control amplitude) and Γm a
constant that tunes the range of frequencies over which the fluctuator best approximates St.
The resulting power spectrum for parameter set ε = 10−3, Γm = 1/30 and ηos = 0 is shown
for a range of finite frequency ω in Fig. 5.1. For comparison we also show the corresponding
approximation to the 1/ω power spectrum derived from a 32-state Markovian fluctuator with
the analytic form of Ref. [14]. It is evident that the numerically optimized 4-state Markovian
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fluctuator provides a significantly improved fit relative to the analytic approximation, as
well as a significantly greater range of representation. Such enhanced accuracy, together
with the considerable increase in efficiency and greater flexibility, illustrated here by the
addition of the zero frequency noise component in the fit (see Eq. (5.5)), render this numerical
optimization approach to generation of arbitrary spectral noise densities extremely attractive.

0.1 1 10 100
Ω

0.01

0.1

1

10

100
SHΩL

Figure 5.1: (Color online) Numerically optimized noise power spectral density (red, dashed
line) with optimization constructed to match the target noise spectrum St ∝ 1/ω + η2

osδ(ω)
(blue, solid line) over two decades of frequency ω. Also shown is the fit obtained with the
analytic representation of Ref. [14] using 32 noise states (yellow, dotted line).

Qubit evolution with noise

The evolution of this one qubit system under classical dephasing noise η(t) is exactly solvable
through the use of conditional density matrices, ρk(t), as described in [85]. We outline here
a slightly modified version of this approach. Defining ρk(t) as the density operator of the
system conditioned on the environment being in the state k, the total density operator of the
system is given by the sum of the conditional density operators weighted by the probability
of occupation of the associated noise state:

ρ(t) =
N∑
j=1

pk(t)ρk(t).

We choose as the initial probability vector ~p(0) the stationary probability, ~ps. For a single
qubit, we can parameterize the conditional density matries ρk(t) by their Bloch vectors,
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~ζk(t),

ρk(t) =
1

2

(
I + ~ζk(t) · ~σ

)
,

where I is the identity operator and ~σ is the vector of Pauli spin-1/2 matrices. The resulting
stochastic Liouville equation for the conditional density matrices can be transformed to yield
the dynamics of the conditional Bloch vectors, which are given by

d

dt
~ζk(t) = Mk(t)~ζk(t) +

∑
j

Γkj~ζj(t). (5.6)

Here Mk ∈ so(3) is the generator of Bloch vector rotations,

Mk(t) =

 0 −ηk ay(t)
ηk 0 −az(t)
−ay(t) az(t) 0

 .

The second term in Eq. (5.6) describes the effect of the noise switching on the conditional
Bloch vectors. We have thus arrived at a set of N coupled matrix differential equations for
the evolution of the N conditional Bloch vectors. These can be solved by treating the set of
Bloch vectors as a single vector composed by stacking the conditional Bloch vectors to get
a single 3N -dimensional vector, ~Z(t) =

⊕N
k=1

~ζk(t). The equation of motion for ~Z(t) can be
straightforwardly derived from Eq. (5.6) and is given by

d

dt
~Z(t) =

(
N⊕
k=1

Mk(t) + Γ⊗ I

)
~Z(t) ≡ L(t)~Z(t).

This is solved formally in the usual way, namely as ~Z(t) = T
←

exp
(∫ t

0
L(t′)dt′

)
~Z(0), where the

symbol, T
←

, is the usual Dyson time-ordering operator. This time-ordered integral becomes

a time-ordered product if we restrict the control functions, ax(t) and ay(t), to those that are
piecewise-constant in time. The Lindblad operators, L(t), are also then piecewise constant,
taking values Li for times δi. For future convenience, we divide the control functions into
2Np subintervals, where subinterval i will in general take nonzero amplitude for i even (and
be called a ”pulse”), and will take zero amplitude for i odd, corresponding to a quiescent
time between pulses. Thus, Np is understood to mean the number of pulses in the control
pulse sequence. Each control has time duration δi and the total time for a pulse sequence
is equal to τ =

∑
i δi. With 2Np control function values, the corresponding Bloch vector

dynamics are given by

~Z(τ) =

(
T
←

2Np∏
i=1

exp (Li δi)

)
~Z(0).

Calculating the evolution of a given initial state is then a matter of matrix multiplication.
Because the probability vector ~p(t) = ~ps, all noise states are equally probable and the relation



65

between ~Z(t) and the Bloch vector, ~ζ(t), is given by

~ζ(t) =
1

N

 1 0 0 1 0 0 · · ·
0 1 0 0 1 0 · · ·
0 0 1 0 0 1 · · ·

 ~Z(t) ≡ 1

N
IN ~Z(t).

The inverse relation is simply ~Z(0) = I†N~ζ(0) and the final Bloch vector is then ~ζ(τ) = E~ζ(0),
where

E ≡ 1

N
IN ·

(
T
←

Np∏
i=1

exp (Li δti)

)
· I†N . (5.7)

Using the above expression allows one to compute the evolution of a quantum system under
the action of both noise and control by simple matrix multiplication.

Numerically optimized control

The control functions must now be chosen to realize a desired target operation on the Bloch
vector, ~ζ → G~ζ. We choose the operator fidelity to measure the efficacy of these control
functions. We define the fidelity function as [15],

ΦG[ax(t), ay(t)] =
1

2

(
1 + ~ζ(τ) ·G~ζ(0)

)
=

1

2

(
1 + E ~ζ(0) ·G~ζ(0)

)
.

Note that the fidelity is a functional of the control fields, ax/y(t). From the perspective of
quantum information, no state is any more important that any other, so we would ideally
like our pulse sequences to maximize the worst-case fidelity over all possible initial states.
However, the minimization over initial states to find the worst-case fidelity is too expensive
a computation to yield a useful cost function. Therefore we use instead as our cost function
the average case fidelity and compare this with the worst case fidelity obtained from the
optimized pulse sequence at the end of the computation in order to ascertain the range of
errors. Thus we

maximize
ax(t),ay(t)

〈ΦG[ax(t), ay(t)] 〉~ζ(0)

subject to ax(t)
2 + ay(t)

2 ≤ 1,
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where the notation, 〈·〉~ζ , implies an average taken over the surface of the Bloch sphere. The
above average can be evaluated as

〈ΦG[ax(t), ay(t)] 〉~ζ(0) =
1

2
+

1

2

∑
i,j,k

〈EijGikζj(0)ζk(0)〉~ζ(0)

=
1

2
+

1

2

∑
i,k

EikGik

〈
ζk(0)2

〉
~ζ(0)

=
1

2
+

1

6
Tr
(
EGT

)
.

We have used the result that the average over the surface of a unit sphere is given by
〈ζiζj〉~ζ = δij/3. Finally, as discussed above, we demand that the optimized pulse sequences
be insensitive to zero-frequency noise. This is achieved by including a constant offset value,
ηos, to the noise vector, as in Eq. 5.5. We systematically analyze the effect of this additional
zero frequency noise by choosing the offset to take values within the range |ηos| ≤ 10ε. The
optimization problem then becomes

maximize
ax(t),ay(t)

min
ηos

Tr
(
EGT

)
(5.8)

subject to ax(t)
2 + ay(t)

2 ≤ 1.

It is in general possible to find analytic gradients of ΦG[ax(t), ay(t)] in terms of the pulse
sequence parameters by straightforward methods of [91] when ηos is fixed. However, because
the objective function has the form of a minimum value over some range of ηos, the objective
function is not in general differentiable everywhere. We therefore use the solver [89, 90] which
employs finite difference approximations to the gradient (which may be undefined in certain
regions). A finite difference minimization approach requires many more function evaluations
than an explicit gradient calculation, greatly increasing optimization time.

The optimization is performed by undertaking a sampling over the allowed parameter
space. We begin by randomly selecting an initial point in the space, and applying numerical
optimization techniques to find a locally optimal value of the objective function. We repeat
this process many times, each time obtaining a value for ΦG. After some fixed number
of initial conditions are sampled (typically thousands), the pulse sequence obtaining the
greatest value of the operator fidelity, ΦG, is selected as the optimal sequence.

It is important to note that the dimension of the parameter space for optimization is
4Np. A pulse sequence contains Np pulses, each of which can be characterized by four
parameters: the amplitude, duration, phase angle of the control fields, and quiescent period
before the next pulse. To thoroughly sample the enlarging parameter space, the number of
initial points sampled for optimization should grow as n

4Np
s , where ns is the number of initial

samples taken for Np = 1.
An interesting point is raised by Fig. 5.2, which shows that the worst-case error of a

numerically optimized Hadamard gate as a function of Np. If the computational effort is
allowed to grow exponentially with Np (and therefore linearly with the size of the parameter
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Figure 5.2: Worst-case error, (1−ΦH), over the Bloch sphere for a Hadamard gate generated
by GRAPE as a function of the number of pulses in the pulse sequence up to Np = 15 for
fixed computational effort. See text for disucssion.

space), we can expect the gate error to decrease monotonically with Np. With exponential
computational resources, one is able to sample all of the parameter space defining the pulse
sequences. And because the set of Np = n pulse sequences is a strict subset of the set of
Np = n+ 1 pulse sequences, such a search should yield sequences that, at the very worst, do
not decrease in efficacy. However, when the number of initial sample points does not grow
exponentially with Np, the performance of GRAPE will suffer because it becomes exceedingly
unlikely to find good optima of the objective function as Np becomes large. This exponential
scaling in the number of sample points required places an upper limit on the largest values of
Np for which the GRAPE approach will be useful. In the examples studied in this work, we
find that for gates other than the identity, this scaling restricts values of Np to a maximum
of 6-10. Thus in Fig. 5.2 we see that the error begins to rise after Np = 10. For non-trivial
gates this is not a disadvantage since it is in any case advantageous to implement the gate in
as short a time as possible to avoid decoherence. The exception to this is the identity gate,
which one wishes to realize over as long a time as possible when implementing a quantum
memory. In this case we find that good identity gates may be found for Np ∼ 30.

5.3 Results

To demonstrate the power and flexibility of the improved multi-state Markovian fluctuator
approach to coherent control of qubit dephasing, we apply it to studying magnetic interface
noise experienced by a phosphorus dopant atom implanted in the channel of a silicon MOS-
FET. de Sousa has proposed a model of this noise as caused by dangling bonds located at
the interface between the crystalline Si and the amorphous oxide [92]. These defects, known
as Pb centers, are associated with oxygen vacancies in the oxide and have the structure
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Figure 5.3: (Color online) Calculated qubit T2 times as a function of the noise parameter
ε. Results are presented for qubit T2 with the application of a Carr-Purcell sequence with a
1% duty cycle. The intersecting horizontal and vertical lines indicate the value of ε at which
the electron T2 equals 1ms.

·Si ≡ Si3. The lone electron in the dangling bond can provide a thermally switching para-
magnetic contribution to the magnetic environment experienced by the donor that causes
magnetic field noise. This noise then acts to dephase the electron spin qubit defined on the
phosphorus dopant. By modeling the Pb center spin flips as coupled to tunneling two-level
systems in the oxide, de Sousa has shown that the resulting magnetic field noise possesses
an approximate power spectral density S(ω) ∝ 1/ω [92]. Recent work by Paik et al. has
provided evidence in favor of de Sousa’s model [93].

We can empirically estimate the proportionality constant, or equivalently the noise
strength ε (Eq. (5.5)) by comparing the calculated T2 time of an electron spin qubit with
the experimental values extracted for phosphorus donors implanted in Si MOSFET devices.
Donor electron T2 times have been shown to be several milliseconds in isotopically purified
silicon [94, 95].

We can determine an effective T2 time for a pulse sequence in our model as follows. We
initialize a qubit in the +1 eigenstate of σx, and apply a quantum memory pulse sequence
repeated several times. If one measures only at the conclusion of each repetition of the pulse
sequence, the quantity 〈σx〉 will decay approximately exponentially in time, with a time
constant that we define to be T2.

We have set the value of the parameter ε to be that which yields T2 ≈ 1ms under a
Carr-Purcell pulse sequence operated with a 1% duty cycle. As demonstrated in Figure 5.3,
this condition is satisfied with ε = 0.0011, which we have rounded to ε = 10−3.
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In the remainder of this section we explore the power of numerically optimized pulse se-
quences obtained with the improved multistate Markovian fluctuator, for two target unitary
operations subject to this interface-induced 1/ω noise with an additional constant noise offset
that allows for heterogeneous dephasing. The first is quantum memory, i.e., the preservation
of coherence of an arbitrary quantum state, while the second is a single-qubit Hadamard
transformation. We find that excellent performance of GRAPE for both operations can be
attained even in the presence of additional zero-frequency (constant) noise.

Consistent with the application to experimentally accessible phosphorus dopants silicon
devices, we construct here pulse sequences that may be implemented by current signal gen-
erators and that are thus subject to limitations on the on/off ratio. Consequently, we enforce
a 50% duty cycle on the GRAPE sequences, i.e., each pulse is followed by a brief quiescent
period and where the total quiescent time must be at least half of the total pulse length, or,
τ/2.

5.3.1 Quantum memory

We begin this section with a discussion of coherence maintaining operations, known generally
as quantum memory gates. When designing such pulses, one must make pulse design decisions
based on the specifics of the experiment in question. Consider a particular experiment which
requires that coherence be maintained for a certain time, t. Ideally, one would design a pulse
sequence itself having total length t, as well. In principle, such a pulse sequence would
have much more flexibility than a sequence of duration t/n repeated n times. However, the
computational effort scales exponentially in the number of pulses, as discussed above, and
long sequences may be difficult to find which match or exceed the performance of repeated
short sequences. Which choice is made will depend strongly on the computational resources
available to the pulse designer.

Here we present a numerical solution of Eq. (5.8) with G the identity matrix, total
pulse sequence time τ = 30τπ and total number of pulses Np = 30. The particular optimal
solution found under these constraints is shown in Fig. 5.4. Here τπ refers to the time
required to perform a full π rotation of the qubit at maximum control amplitude. This value
of Np was chosen because it was the largest value for which we were able to obtain results
in a reasonable amount of computer time (see discussions above). To compare with these
numerically optimized pulse sequences we construct an equivalent length Carr-Purcell (CP)
decoupling pulse sequence, defined by

w − πx − w − w − πx − w

repeated 7 times, where πx denotes a π-pulse about the x-axis, and w denotes a quiescent
period of τw = 4

7
τπ.

Fig. 5.5 shows the error (defined as 1 - ΦI) as a function of the zero frequency noise
ηos for a numerically generated pulse sequence that is optimized over all values of ηos (red
line), in addition to optimization against the 1/ω noise. The blue and green lines show
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Figure 5.4: (a) x-axis control function and (b) y-axis control function for implementing
quantum memory operations.
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the corresponding fidelities obtained with the Carr–Purcell sequence of equivalent duration
specified above, using finite amplitude (dot-dashed blue line) and infinite amplitude (dotted
green line) pulses.

Infinite amplitude Carr–Purcell pulses are capable of refocusing arbitrarily large zero-
frequency noise, resulting in a constant error as a function of ηos whose value can be taken
as a measure of the uncorrected error due to the 1/ω noise component. Unlike the ideal,
infinite amplitude pulse sequence, a Carr–Purcell sequence with finite amplitude pulses does
not allow complete Bloch sphere rotations, which prevents the exact refocusing of zero-
frequency noise, resulting in a significant rise in error as the zero-frequency noise magnitude
|ηos| increases. Note that the lack of time reversal symmetry possessed by the optimized
pulses (unlike the Carr–Purcell sequence) results in an asymmetry with respect to ηos, as
illustrated in Fig. 5.5.

The numerically optimized sequence shows improved performance relative to these Carr-
Purcell decoupling sequences in two respects. First, it performs better than the Carr–
Purcell pulse sequences for zero and small |ηos|, due to the greater flexibility of the numerical
optimization in developing protection against the 1/ω noise component. Thus, at ηos = 0,
the error obtained with the numerically optimized pulse sequence is 2.88× 10−5, compared
to 3.26 × 10−5 with the finite amplitude Carr–Purcell pulse sequence. However, a far more
dramatic difference is the greater robustness against the magnitude of zero-frequency noise.
The numerically optimized pulse sequence is seen to show very small error over a broad range
of ηos, attesting to the power of the numerical approach to mitigate combined decoherence
effects deriving from very different noise sources.

5.3.2 Hadamard gate

Our second target operation is the Hadamard gate,

H =
1√
2

(
1 1
1 −1

)
, (5.9)

a common single qubit operation in quantum algorithms. The optimization considerations
for implementing such a single qubit rotation with numerically optimized pulse sequences
are similar to those for generating sequences to protect the identity gate. However, in
contrast to the situation for quantum memory, here we are interested in maximizing fidelity
and robustness to a constant noise offset, rather than in the maintenance of coherence over
a long time. Thus the optimal pulse sequences for protection of the Hadamard gate are
considerably shorter than the sequences derived above for protection of quantum memory.

Using the same cost function as Eq. (5.8) and evaluating ΦH for the H operation, we
were able to obtain high-fidelity pulse sequences with τ = 6τπ and Np = 6. Fig. 5.6 shows the
resulting pulse sequence when optimization is made for the case of zero offset noise, ηos = 0.

This pulse sequence results in a worst case error for the Hadamard gate of 8.27× 10−6

at ηos = 0. Thus it is evident that gate operations can readily be corrected at similar or
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Figure 5.5: (Color online) Error (1−ΦI) in quantum memory of a qubit subject to dephasing
noise with spectral density St ∝ 1/ω + η2

osδ(ω) under various control pulse sequences of
duration 30τπ, shown as a function of offset noise values ηos. The solid red line represents
the error for a sequence that is optimized over a range of offset noise. Green dotted line:
error obtained with infinite-amplitude Carr–Purcell sequence. Blue dot-dashed line: error
obtained with finite amplitude Carr-Purcell sequence. Also shown as the black, dashed line
is a pulse sequence obtained without regard to robustness over ηos.
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Figure 5.6: Two-dimensional control function producing a high fidelity H rotation in T = 6π
for ηos = 0. This pulse sequence results in a worst case fidelity of ΦH = 1− 8.27× 10−6 and
exhibits a strong robustness to the value of constant offset noise ηos. Panel (a) shows the
x-axis control function and panel (b) the y-axis control.
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better levels than quantum memory, using shorter pulse sequences. Fig. 5.7 shows the worst
case error for a numerically optimized pulse sequence optimized over a range of ηos values,
as before, as a function of the noise offset ηos. Comparison with the results obtained with a
single pulse sequence that is optimized only for ηos = 0 shows again the enhanced robustness
afforded by the numerical optimization approach.
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Figure 5.7: (Color online) Error (1-ΦH) of a H rotation under numerically optimized pulse
sequences mitigating against noise with spectral density St ∝ 1/ω + η2

osδ(ω) as a function
of ηos. The solid, red line shows the result of optimizing with respect to ηos as well as the
1/ω noise. The dashed, black line shows the considerably less robust result of using a pulse
sequence that is optimized only at a single value of η (ηos = 0).

5.4 Summary

We have expanded the techniques of [14, 83, 85] to develop a general numerical method for
simulating noise sources deriving from a broad variety of Markovian power spectra. The
method employs a new numerical approach to generation of the noise spectrum that can
greatly reduce the number of noise states required to simulate a noise source with a given
spectral density. We illustrated this with the example of a four state simulation of a 1/ω
spectrum over two decades of frequency ω, which is significantly more efficient than the
constructive method employed previously in Ref. [83]. This numerical representation of
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Markovian noise was then used in the context of numerical generation of control pulse se-
quences to mitigate the effects of this noise on a single qubit. Here we have extended the
methods of [83] to allow control pulses to be performed along both x- and y-axes of the
qubit, rather than along a single axis. Using numerical generation of the noise allows spec-
tral densities from different sources of dephasing to be combined, giving rise to considerable
additional flexibility and robustness in the decoherence mitigation. This was illustrated by
generation of pulse sequences designed to minimize decoherence in the presence of both ho-
mogeneous dephasing characterized by 1/ω spectral density and a source of heterogeneous
dephasing, characterized by a zero frequency noise offset ηos. The numerical optimization
approach allows the pulse sequences to be simultaneously optimized with respect to the pa-
rameter ηos and the 1/ω noise. This introduces an unprecedented robustness to decoherence
mitigation with realistic bounded amplitude controls in the presence of resonance frequency
errors and inhomogeneous broadening. In particular, the performance of the numerically
optimized pulse sequences over a range of ηos values was seen to be considerably superior
to the corresponding performance of a standard dynamical decoupling pulse sequence with
bounded amplitudes.

As a demonstration of the power and flexibility of these numerical methods for noise
mitigation, we have explicitly studied the protection of quantum memory and the protection
of the Hadamard gate. To ground the derived pulse sequences to a physical system, we took
estimates of noise strength that are appropriate to the situation of dephasing noise acting on
phosphorus donors in silicon and implemented the numerical optimization subject to realistic
constraints of duty cycle and pulse amplitude limitations. The remarkable robustness of the
optimal pulse sequences with respect to the constant noise offset, showing worst case gate
errors of order 10−6 − 10−5 over a range of noise offsets, is encouraging for application of
these pulse sequences to current experiments with spin qubits in semiconductors [94].
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5.6 Appendix

5.6.1 Optimizing fluctuator dynamics

The multistate markovian fluctuator is a powerful tool for simulating Markovian noise. How-
ever, one must rely on a two-step numerical optimization to construct a fluctuator with a
power spectrum similar to the desired spectrum. As discussed above, the first step is to
determine the values for bi and λi which make the power spectrum, Eq. (5.3), match the
desired spectrum. The second step is to come up with a proper transition rate matrix, Γ,
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with the λi’s as eigenvalues. This step requires the solution to the following optimization
problem,

minimize
Γ

(
eigs(Γ)− ~λopt

)2

subject to Γ = ΓT, Γi 6=j ≥ 0∑
j

Γij = 0.

In order to make the spectrum match the desired spectrum over several decades of frequency
space, the transition rates must span several orders of magnitude. Experience has shown
that this causes problems for the optimization routines. Instead, we developed a method
inspired by the Gershgorin circle theorem [96].

The circle theorem describes the eigenvalues of an N × N complex matrix, A, with
entries, aij. We construct the N Gershgorin disks, Di(aii, Ri), as the disks in the complex
plane centered at aii with radius Ri =

∑
j 6=i |aij|, the sum of the absolute values of the ith

row of A. The theorem says that each eigenvalue of A lies within one of the Gershgorin
disks. If all of the disks are disjoint, then each disk contains a single eigenvalue. If the disks
overlap, however, this may not be the case, an issue that arrises in our application. Because
of the limits placed on the entries of Γ, the radii Ri = |aii|, so all of the Gershgorin disks
will overlap, as shown in Fig. 5.8. Therefore, the theorem cannot be directly applied in the
construction of transition rate matrices.

However, we have discovered a surprisingly good ad hoc method for constructing this
matrix which is inspired by the circle theorem. Essentially, we construct a set of pseudoran-
dom matrices such that the Gershgorin disks are centered on the target eigenvalues. The
procedure follows.

Given the optimized eigenvalues, {λi}, we sort them in ascending order and divide each
by the maximum eigenvalue, so the set becomes:

λ→
(

0, λ̃1, λ̃2, . . . ,−1
)

We then form the difference set,

δ =
(∣∣∣λ̃1 − 0

∣∣∣ , ∣∣∣λ̃2 − λ̃1

∣∣∣ , ∣∣∣λ̃3 − λ̃2

∣∣∣ , . . . , 1)
We now construct a large number ( 10,000) of matrices, Γk, as follows. First construct the
strictly upper triangular matrix,

Γk =


0 δ1R δ2R δ3R δ4R
0 0 δ2R δ3R δ4R
0 0 0 δ3R δ4R
0 0 0 0 δ4R
0 0 0 0 0
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Figure 5.8: Cartoon illustration of the Gershgorin circle theorem as applied to transition
rate matrices. All entries of such matrices must be positive except for those along the
diagonal, the matrices are symmetric, and all rows and columns sum to zero. As a result,
the Gershgorin disks in the complex plane overlap maximally.
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Here, each instance of R is a random number drawn from a uniform distribution on the
interval [0, 1]. We symmetrize this matrix,

Γk → Γk + Γk
T

The diagonal elements are then added so that the rows sum to zero:

Γk → Γk − diag{Γk ·


1
1
...
1

}
Once the matrix is constructed, we calculate the eigenvalues. In general, the circle theorem
says that these eigenvalues will be complex and will therefore generate unitary evolution
in addition to the purely dephasing evolution we desire. To avoid such issues, we discard
matrices whose eigenvalues do not satisfy |arg(λ)− π| < ε. Of those that remain, we choose
the one that minimizes the least-squares distance to the target eigenvalues. The closest fit
is designated, Γopt.

Having found a q-matrix that performs well, we still have to construct find the noise
amplitudes, {ηi}, so that the noise is unbiased, ie., 〈η〉 =

∑
i ηi/N = 0. To do this, we

diagonalize Γopt = STΛS. Then
~η = ST~χ

The first element of ~χ, χ0, is free because it only affects zero-frequency noise. The remaining
elements of ~χ can be chosen to be positive or negative, as only their square enters into the
spectral-density. The ambiguity is resolved by demanding that

∑
i ηi = 0 and choosing the

signs so that χ0 is as small as possible, thereby minimizing the zero-frequency noise.
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Chapter 6

Qubits as spectrometers of dephasing
noise
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6.1 Introduction

A key step in the design of a quantum information processing device is gaining a quantita-
tive understanding of the decoherence-inducing noise processes present in the system under
study. Knowledge of the statistical properties of this noise both informs and constrains the
theoretical models of the system, further aiding in the design process. Some technologies
allow for direct measurement of the noise. In the superconducting flux qubit, for example,
this is as simple as measuring the stray magnetic field with a SQUID. Frequently, however,
the noise acting on a quantum system is inaccessible to such direct measurements and one
is left to describe the noise only indirectly through its effects on measurable quantities, such
as a qubit decoherence rate.

In 2002 Schoelkopf et al. showed that a single qubit is a tremendously valuable resource
for measuring the power spectrum of bit-flip noise [97]. In many implementations, however,
dephasing is the dominant decoherence mechanism [98] and the techniques described in
[97] are not applicable. In this chapter we demonstrate that a controllable single qubit
may be used as a spectrometer of dephasing noise. We present a procedure for estimating
the correlation function of such noise, and we show that this procedure may be enhanced
through the use of dynamical decoupling pulses sequences. These pulse sequences, consisting
of repeated π-pulses, can be used to extend the coherence of a qubit by several orders
of magnitude [99], thus widening the range over which the correlation function may be
estimated. While our technique may be adapted to estimate the noise power spectral density
as in Appendix. 6.7.3, we choose to work in the correlation function picture because our
reconstruction is local in the time-domain.

6.2 Model

To illustrate our procedure, we consider a single qubit subjected to a classical, dephasing
noise source as described by the Hamiltonian,

H(t) =
1

2
~a(t) · ~σ +

1

2
(η0 + η(t))σz. (6.1)

Such a Hamiltonian could arise, for instance, for the spin degree of freedom of an electron in
a fluctuating magnetic field. Here ~σ = (σx, σy, σz) are the Pauli matrices and ~a(t) is a control
field. For later convenience, we have separated the second term into a constant offset field,
η0, and a zero-mean stochastic process, η(t). We assume that this qubit can be initialized
into an arbitrary pure state and measured in any basis. We will additionally assume the
noise process to be wide-sense stationary, allowing us to write the correlation function as a
function of only a single time,

C(t) = 〈(η0 + η(t))(η0 + η(0))〉 = η2
0 + Cη(t).

Here we have separated the full correlation function into its offset contribution, η2
0, and

stochastic contribution, Cη(t) = 〈η(t)η(0)〉.
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T
T2 TXt

tT2 t2 t3

E[C(t)]

t

t

Figure 6.1: (a) Illustration of timescales involved in noise correlation function measurements.
Times runs along the horizontal axis and individual measurements are indicated by the tall,
black rectangles. Each measurement lasts a time approximately equal to T2. Initialization
steps cause a delay between measurements, ∆t. Measurements are repeated until time, T .
Also illustrated is TX , one of the many timescales at which correlations are inaccessible to
measurement. (b) Cartoon reconstruction of correlation function. A continuous estimate
is made by inversion of dynamical decoupling sequences for times shorter than T2. The
correlation is also estimated at times equal to integer multiples of the measurement time,
∆t. Time axis is scaled logarithmically for clarity.

Experimental constraints introduce several timescales which will limit what may be
learned about the statistical properties of the noise. The longest of these timescales is the
total length of time, T , that the experiment is performed. Correlations long compared to
this time cannot affect any measurements performed and therefore cannot be investigated.
Additionally, the state of the qubit must be reinitialized between each measurement, a
process which will lead to a maximum repetition rate of one experiment per time, ∆t. Finally,
through the application of control, the coherence of the qubit may be extended to a maximum
time, T2 � ∆t, beyond which the coherence has decayed to a point where it is no longer
measurably different from zero.

Taken together, these limitations provide a natural separation of the problem into short-
and long- timescales. In the following sections we will construct a method for estimating
the correlation function on times short compared to the maximum coherence time, T2, and a
second method for estimating correlations at times long compared to the measurement sepa-
ration time, ∆t. Correlations on timescales intermediate between T2 and ∆t are inaccessible
to measurement, as illustrated in Fig. 6.1.
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6.3 Long-time correlations

To estimate the correlation function on timescales longer than the inter-measurement time,
∆t, we propose a rapid sequence of free evolution measurements in which the qubit is

1. initialized in the +1 eigenstate of σx,

2. allowed to evolve for a short time δt,

3. measured in the basis of eigenstates of σy.

We will assume that the jth run of this experiment begins at time, tj = j∆t. During step
(2) above, the qubit acquires a relative phase,

φj =

∫ tj+δt

tj

(η0 + η(s)) ds

By measuring in the σy basis, the measurement probabilities are,

P±y (j) =
1

2
(1∓ sinφj) '

1

2
(1∓ φj) , (6.2)

Here we have taken a small angle approximation, which is valid if the total evolution time is
chosen sufficiently small. Notice that if we were to measure in σx, the measurement proba-
bilities would then depend quadratically on the phase, P+

x (j) = cos2φj and P−x (j) = sin2φj.
These probabilities are independent of the sign of the acquired phase and are therefore not
useful for determining the long correlations 1. The probabilities in Eq. (6.2) are approxi-
mately linear in the accumulated phase and may be used to estimate the noise correlation
function as follows.

Taking a large number, N , of repetitions of the above procedure will yield N mea-
surement results. We put these results in a vector, ~r, with rj = ±1 the result of the jth

experiment. As shown in Appendix 6.7.1, this result vector may be used to estimate the full
noise correlation function at times tk = k∆t

E[C(k∆t)] =
1

δ2
t (N − k)

N−k∑
i

riri+k. (6.3)

The expected error of this estimate will scale inversely with number of experiments performed
for each interval,

var (E[C(tk)]) ∝
1

N − k
.

So for a given k, this error can be reduced by increasing N , the total number of experiments.

1Repeated measurements in σx are able to give information about the zero-time correlation, C(0) =
〈
η2
〉
.

By making a series of σx measurements and recording the results in a vector, ~r, the variance of η is
〈
η2
〉

=
(1− 〈r〉)/(2δ2t )
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6.4 Short-time correlations

Noise correlations on timescales between t = 0 and t = T2 cannot be investigated by the
methods discussed in the previous section, as these timescales are shorter than the minimum
time between measurements. Instead we propose to bootstrap the techniques of dynamical
decoupling (DD) which allow us to measure the overlap integral of the correlation function
with a filter function that is defined simply in terms of the applied control field.

To see this, we begin by transforming the Hamiltonian (6.1) into an interaction picture
which removes the explicit dependence on the control fields,

HT (t) =
1

2
(η0 + η(t))U †a(t)σzUa(t).

Here Ua(t) = ei
R t
0 ~a(s)·~σds/2 the unitary operator due to only to control. Dynamical decoupling

procedures typically limit the control fields to π-pulses polarized along σx. The Hamiltonian
then remains proportional to σz,

HT (t) =
1

2
y(t) (η0 + η(t))σz (6.4)

Eq. 6.4 introduces the pulse function, y(t), defined as

y(t) =

{
1 after even number of π-pulses,
−1 after odd number of π-pulses.

The pulse function describes that, from the point of view of the qubit, each π-pulse acts to
flip the sign of the noise. When averaged over all possible noise trajectories, η(t), evolution
under this Hamiltonian results in dephasing, which may be quantified by the decay of the
expectation value of the coherence, σ+ = (σx + iσy)/2.

〈〈σ+(t)〉〉 =
〈

Tr
(
ei

R t
0 HT (s)ds σ+ e

−i
R t
0 HT (s)ds ρ0

)〉
=

〈
exp

(
i

∫ t

0

(η0 + η(s)) y(s) ds

)〉
Tr (σ+ρ0)

= exp

(
−
∑
l

χ(l)(t)

)
Tr (σ+ρ0) (6.5)

We have indicated averages over random variables with the single expectation value, 〈·〉, while
the double expectation, 〈〈·〉〉, represents both the quantum average as well as a stochastic
average over all consistent trajectories of the noise term. The expression above relies on a
cumulant expansion [100]. For our purposes, we will consider experiments in which the qubit
is initialized into the +1 eigenstate of σx, a pulse sequence is applied, and the coherence is
measured at time, τ . As such, Tr (σ+ρ0) = 1, and we will drop the explicit dependance on t
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from the cumulant expansion, assuming that it is evaluated at t = τ . The first term in this
series, the 0th-order cumulant, is

χ(0) = −iη0

∫ τ

0

y(t1)dt1.

This term, which is purely imaginary, represents the coherent precession of the qubit due
to the offset field. The 0-order cumulant vanishes if we select any of the myriad ırefocusing
pulse sequences for which

∫ τ
0
y(s)ds = 0. The next term in the expansion vanishes,

χ(1) = −i
∫ τ

0

〈η(t1)〉 y(t1)dt1 = 0,

because the stochastic term, η(t), has zero mean by construction. In fact, all odd-order cumu-
lants are purely imaginary and will vanish provided the unconditional probability, P (η(t)),
is symmetric. All even-order cumulants, l = 2 and greater, are purely real, resulting in decay
of the coherence and are responsible for dephasing of the qubit. The l = 2 cumulant is the
dominant decoherence causing term in the expansion (6.5),

χ(2)(t) =

∫ τ

0

dt1

∫ τ

0

dt2 〈η(t1)η(t2)〉 y(t1)y(t2) (6.6)

The assumption of wide-sense stationarity we made earlier allows us to relate the above
expression to the stochastic part of the noise correlation function, Cη(t2− t1) = 〈η(t1)η(t2)〉.
By changing variables from t1, t2 to u = t2 − t1, v = t2 + t1, Eq. (6.6) may be expressed as a
single-variate integral over the stochastic part of the correlation function,

χ(2) =

∫ τ

0

du Cη(u)F(u). (6.7)

Eq. (6.7) is known as the coherence integral and defines the correlation filter function (CFF),

F(u) =

∫ 2τ−u

u

dv y

(
v + u

2

)
y

(
v − u

2

)
.

The CFF specifies the regions of the correlation function contribute to dephasing under
a particular pulse sequence and is only defined for u ∈ [0, τ ]. Example correlation filter
functions are shown in Fig. 6.2.

We note that above discussion is usually given in terms of the spectral density [101],
the Fourier transform of the correlation function [102]. However, formulation in terms of
the time-domain correlation function allows for consistency with our method of elucidating
long-time correlations, as given in the previous section.

By taking the absolute value of Eq. 6.5, we can remove the dependance on the 0-order
cumulant (because it is purely imaginary),

|〈〈σ+(τ)〉〉| '
∣∣exp

(
−χ(0) − χ(2)

)∣∣ = exp
(
−χ(2)

)
(6.8)
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Figure 6.2: (Color online) Example correlation filter functions. i) (black, solid) Free evolu-
tion. ii) (red, dashed) Hahn echo. iii) (blue, dotted) 4 pulse Uhrig [82] sequence, UDD(4)
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The above equation relates the CFF (calculable from the pulse sequence), the coherence
(measurable), and the correlation function (unknown). To reconstruct the correlation func-
tion on short-timescales, one must measure the coherence decay for a number of pulse se-
quences. With each pulse sequence is associated a filter function, Fi(t), and coherence

integral, χ
(2)
i =

∫ τi
0
Cη(t)Fi(t)dt. We see from Eq. 6.5, Here |〈〈σ+〉〉i| is the norm of the co-

herence measured after the pulse sequence associated with filter function Fi(t). Because the
norm of the coherence is an experimentally accessible quantity, Eq. 6.8 allows us to calculate
χ

(2)
i (after repeating the measurement sufficiently many times to gather good statistics). By

repeating this for a large number of pulse sequences, we will be left with a set of measured
coherence integrals and filter functions and can then use the theory of underdetermined
least-squares [103] to regress an estimate, E[Cη(t)], of the short-time correlation function as

E[Cη(t)] =
∑
ij

χ
(2)
i F

+
ijFj(t) (6.9)

Here, Fij =
∫∞

0
Fi(t)Fj(t)dt, is the filter function overlap matrix. Because the set of equa-

tions is under determined (we are trying to reconstruct a continuous function by measuring
a finite set of real numbers), there are in general an infinite number of possible correlation
functions which reproduce the measured coherences. Our estimate uses the Moore-Penrose
pseudoinverse, F+, which yields the solution with minimal Euclidean norm [103]. A deriva-
tion of Eq. 6.9 is given in Appendix. 6.7.5.

Choosing pulse sequences

The particular set of pulse sequences selected will drastically affect the quality of the cor-
relation function estimate, both by dictating the range of time over which the correlation
function may be measured and affecting the accuracy of the estimate within that range. For
instance, limiting oneself to a series of free evolution experiments will only allow for an esti-
mate the correlation function at very short times. Decoupling sequences greatly extend the
average coherence time, facilitating a concomitant extension of the region of the correlation
function one may estimate with this procedure.

To quantify this, suppose we perturb the correlation function of the noise, Cη(t) →
Cη(t) + λτδ(t− τ). This perturbation affects the correlation function estimate by,

E[Cη(t)]→ E[Cη(t)] + λτ
∑
i,j

Fi(t)F+
ijFj(s)

Taking the variation with λ, we have a measure of the effect of the perturbation,

δE[Cη(t)]

δλτ
= Fi(τ)F+

ijFj(t)
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Squaring this quantity and integrating over t provides us with a scalar measure of the sen-
sitivity of our reconstruction to variation of the correlation function at t = τ ,

Q(τ) =
∑
i,j

∫ ∞
0

(
Fi(τ)F+

ijFj(t)
)2
dt (6.10)

This function depends only on the filter functions, Fi(t) and the overlap matrix, F. Exami-
nation of the quality function for various sets of filter functions has allowed us to see that the
estimated correlation function becomes unreliable at times for which Q(t) < max(Q(t))/5.

6.5 Numerical simulations

To demonstrate its efficacy, we apply our procedure to a single qubit dephasing under the
action of two mutually uncorrelated random telegraph (RT) fluctuators, using Monte Carlo
techniques to simulate a a statistically consistent noise trajectory for each measurement.
Each fluctuator is capable of existing in either of two states, ±ηi, and will stochastically
transition from one state to the other at rate, γi. To capture both short- and long-time
correlations, we choose a fast, low amplitude fluctuator and a slow, high amplitude fluctuator,
η1 = 1, γ1 = 10, η2 = 10, γ2 = 0.01, and we have set the offset field, η0 = 0. The resulting
noise correlation function is C(t) = η2

1e
−2γ1|t| + η2

2e
−2γ2|t|, as derived in Appendix. 6.7.2.

We simulated a series of N = 10000 measurements, of which the first Nl = 5000 were
FID experiments to measure long-time correlations, while the last Ns = 5000 were DD
experiments to measure the short-time correlations. We assumed that the jth experiment
began at time tj = j∆t, with ∆t = 4. For each DD measurement, we simulated a noise
trajectory of length tDD = 1. The free induction decay time, tFID = 0.04, was chosen for
consistency with the small angle approximation used in Eq. (6.2). The states of the RT
fluctuators at the beginning of each trace are determined from their values at the end of
the previous trace and the statistics of the noise process: after a time t, the probability of a
single RT fluctuator switching an odd number of times is, (1− e−2γt)/2. The pulse sequences
chosen to investigate the short-time coherences are are given in Table. 6.1. Because of their
demonstrated success [104] in extending coherence, we used the Uhrig decoupling sequence
[82] as the basis for the experiment.

The results are shown in Fig. 6.3. The reconstructed correlation demonstrates remark-
able overlap with the analytically computed spectrum.

6.6 Discussion

By inverting the traditional thinking of dynamical decoupling, we have demonstrated that a
single qubit can be an incredibly valuable resource for studying dephasing noise. This noise,
pervasive in many quantum systems, is still relatively poorly understood. And because our
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Figure 6.3: Combined reconstruction of the correlation function of two mutually uncorrelated
RT fluctuators at both short- and long-times. The dashed line is the analytical correlation
function, the solid line is the short-time reconstruction and the black dots represent the long-
time correlations. Inset is the quality function for the short-time reconstruction. Dashed-
dotted lines demarcate low quality regions. The short-time reconstruction is unreliable at
times for which the quality functions, Q(t) < 0.2, corresponding to log(t) > −1.3. This
unreliable portion is separated by the dot-dashed line in the main figure.
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Pulse Sequence Range Divisions Repetitions
FID(1) 0.1-0.5 10 100
UDD(2) 0.1-0.5 10 100
UDD(3) 0.1-0.6 10 100
UDD(4) 0.1-0.7 10 100
UDD(5) 0.1-0.9 10 100

Table 6.1: Pulse sequences used to measure the short-time correlations of the noise discussed
in Sec. 6.5. For each pulse sequence and each time step, one hundred noise trajectories are
simulated and the coherence decay is calculated. Uhrig DD (UDD) sequences [82] are used
for their ability to extend coherence.

method is general, it may be applied to any system for which dephasing is the dominant
decoherence mechanism.

As shown in [98], donor qubits in silicon near an oxide interface demonstrate a marked
increase in coherence time as the distance from the oxide is increased. Theoretical models of
the noise process causing this decoherence suggest that the presence of fluctuating dangling
bonds at the interface is responsible for decoherence. However, these models require a
dangling bond density which is inconsistent with the measured density. The ability to
measure the statistical properties of this noise could aid greatly in the construction of new
theoretical models to describe the interplay of donor spins and interfaces.
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6.7 Appendices

6.7.1 Estimate of long-time correlation function from free evolu-
tion measurements

The correlation function at long-times is sampled by a series of FID measurements, yielding
a results vector, ~r. We define the correlator of this result vector,

Ck =
1

N − k

N−k∑
i

riri+k. (6.11)

The expected value of this correlator may be calculated from the measurement probabilities
given in Eq. (6.2), as

〈Ck〉 '
1

N − k
∑
i

〈riri+k〉 (6.12)

'
N−k∑
i=1

∑
m,n=±1

〈
((−1)m + φi) ((−1)n + φi+k)

4(N − k)

〉

=
1

N − k

N−k∑
i=1

〈φiφi+k〉 (6.13)

The covariance of the acquired phases may be simplified as,

〈φiφi+k〉 =

∫ ti+δt

ti

dt1

∫ ti+k+δt

ti+k

dt2 〈(η0 + η(t1)) (η0 + η(t2))〉

= δ2
t η

2
0 +

∫ ti+δt

ti

dt1

∫ ti+k+δt

ti+k

dt2 〈η(t1)η(t2)〉

= δ2
t η

2
0 +

∫ k∆+δt

k∆−δt
Cη(u)fk(u)du (6.14)

In the last equality we have changed variables in the integral from t1 and t2 to v = t2 + t1
and u = t2− t1 and then integrated over v. The filter function, f(u), that appears in integral
is defined as,

Fk(u) =


√

2(u− k∆t + δt) u ∈ [k∆t − δt, k∆t]√
2(1− u+ k∆t) u ∈ [k∆t, k∆t + δt]

0 otherwise

However, from small δt, we can assume that Cη(t) is constant over the range t ∈ [k∆t −
δt, k∆t + δt] and so comes out of the integral. We can now rewrite the correlation function
as

〈φiφi+k〉 = δ2
t η

2
0 + δ2

tCη(k∆t)
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Combining this with Eq. 6.13, we see that

〈Ck〉 = δ2
t η

2
0 + δ2

tCη(k∆t)

Because the best estimate of 〈Ck〉 is the sample correlation, Ck, given in Eq. 6.11, we are
left with

δ2
t η

2
0 + δ2

tCη(k∆t) '
1

N − k

N−k∑
i

riri+k

This may be solved for the full correlation function, C(k∆t), as

C(k∆t) '
1

δ2
t (N − k)

N−k∑
i

riri+k

In the very-long-time limit we expect that the stochastic part becomes completely uncorre-
lated,

lim
t→∞

Cη(t) ≡ lim
t→∞
〈η(t)η(0)〉 = 0.

The stochastic part of the correlation function may thus be recovered from the full correlation
function by subtracting

Cη(t) = C(t)− lim
t→∞

C(t)

6.7.2 Calculation of the correlation function of a random tele-
graph fluctuator

The random telegraph fluctuator is defined as a classical stochastic process taking one of two
values, ±η, with a flipping rate, γ. The probability of being in the state ±η at time t is given
by p±(t). Defining the vector ~p(t) = (p+(t), p−(t)), the time evolution of the probabilities
may be written as

d~p(t)

dt
=

(
−γ γ
γ −γ

)
~p(t) ≡ Γ~p(t)

This equation defines the transition rate matrix, Γ. From this, the time evolution of the
probability vector may be solved as,

~p(t) = eΓt~p(0).

The correlation function for the noise may then be calculated to be

C(t) =
∑
i,j

ηiP (ηi, t|ηj, 0)ηjP (ηj, 0)

=
1

2
~η · eΓt · ~η,
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which, for the transition rate matrix given above, simplifies to,

C(t) = η2e−2γ|t|.

Because the covariance vanishes, the correlation function of multiple, uncorrelated RT fluc-
tuators is simply the sum of the correlation function for each fluctuator individually.

Cij(t) = 〈ηi(t)ηj(0)〉 = 〈ηi(t)〉 〈ηj(0)〉 = 0

Alternative calculation of RT correlation function

In an infinitesimal time, δt, the transition probabilities in the ith fluctuator are approximately
linear in the rate,

Pflip = γδt

Pno flip = 1− γδt

Therefore, the probability of n transitions in a time interval, ∆t is given as

Pn(∆t) = lim
N→∞

(
1− γ∆t

N

)N−n(
γ∆t

N

)n
N !

n!(N − n)!

= e−γ∆t
(γ∆t)

n

n!

The last term in the first expression above is a combinatorial factor. From this we see that
the probability of an even number of transitions (which would leave the state unchanged) is

Pe(∆t) =
∑
n even

Pn(∆t) =
1

2

(
1 + e−2γ∆t

)
While the probability of an odd number of transitions is

Po(∆t) =
∑
n odd

Pn(∆t) =
1

2

(
1− e−2γ∆t

)
The correlation function is then

C(t) =
∑
i,j

ηiP (ηi@t|ηj@0)ηjP (ηj@0)

=
η2

2
(2Pe(t)− 2Po(t))

= η2e−2γ|t|
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6.7.3 Frequency domain filter functions

The discussion in the main text for the short-time correlations may be instead expressed in
terms of the spectral density. Recall the l = 2 cumulant is

χ(2) =

〈∫ t

0

η(t1)y(t1)dt1

∫ t

0

η(t2)y(t2)dt2

〉
=

∫ t

0

dt1

∫ t

0

dt2 〈η(t1 − t2)η(0)〉 y(t1)y(t2)

Using the Wiener-Khintchine theorem,

C(t) =

∫
dω

2π
eiωtS(ω),

can rewrite the correlation function in terms of the power spectrum. This gives

χ(2) =

∫
dω

2π
S(ω)

∣∣∣∣∫ t

0

eiωτy(τ)dτ

∣∣∣∣2
≡
∫
dω

2π
S(ω)F (ω; t) (6.15)

The last line above defines the filter function as the square of the Fourier transformed pulse
function,

F (ω; t) =

∣∣∣∣∫ t

0

eiωτy(τ) dτ

∣∣∣∣2
=

∣∣∣∣∣1 + (−1)N+1eiωt + 2
N∑
j=1

(−1)jeiω∆jt

∣∣∣∣∣
2

The filter functions indicate the range of frequencies of the noise power spectrum which
contribute to dephasing. Example filter functions for the Carr-Purcell sequence are shown
in Fig. 6.4. Furthermore, the effects of nonzero pulse widths may be included to first-order
through the modification,

y(t) = (−1)
R t
0 a(t′)dt′/π

=


1 after even number of π-pulses,
0 during application of π-pulses,
−1 after odd number of π-pulses.

Including this modification to the pulse function changes the the filter function expression
to,

F (ω; t) =

∣∣∣∣∣1 + (−1)N+1eiωt + 2
N∑
j=1

(−1)jeiω∆jt cos (ωtπ/2)

∣∣∣∣∣
2
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We now illustrate our procedure in the spectral density formalism. We suppose an
approximately Ohmic power spectrum with a high-frequency cutoff and an additional high
frequency peak, as shown in Fig. 6.5. The filter functions chosen are 59 different Carr-
Purcell (CP(10)) trains with total durations, τ , chosen to such that the their most sensitive
frequencies are uniformly distributed from ω = 1 to ω = 30. The reconstruction in terms

Figure 6.4: Representative filter functions of those used to generate Fig. 6.5. Function
maxima are uniformly distributed over ω = 1 to ω = 30 in increments of 0.5 in calculation,
though for clarity only 4 of the 59 filters are shown.

of these filter functions is also shown in Fig. 6.5, and is in close agreement to the actual
spectrum. We have additionally simulated what would happen in the case of errors in the
measurement. If there is a 5% error in measurement, you see the results as the yellow
dashed line in Fig. 6.5. This corresponds roughly to a 1% error in the measurement of
〈σ+(t)〉. An increase in the number of filters used will increase the tolerance of the estimator
to measurement error.
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Figure 6.5: The trial power spectrum (blue, solid), the estimate of the noise power spectrum
(red, dotted) with perfect measurements, and a sample estimate (yellow, dashed) of the
power spectrum in the case of 5% random error on the measurements ~χ.

6.7.4 Cumulant expansion of echo envelope

The echo envelope decays as,

〈〈σ+(t)〉〉 =

〈
exp

(
i

∫ t

0

(η0 + η(s)) y(s)ds

)〉
= exp

(
iΩ

∫ t

0

y(s)ds

)〈
exp

(
i

∫ t

0

η(s)y(s)ds

)〉
= eχ0

〈∑
n

1

n!

(
i

∫ t

0

η(s)y(s)ds

)n〉
(6.16)

This expectation value is difficult to evaluate, so we seek a cumulant expansion of the form

〈〈σ+(t)〉〉 = eχ0e
P∞
m=1 λ

mχm

Here λ is a parameter that will be used only to keep track of orders in the expansion. The
notation here is, unfortunately, different that that which appears in the main body. This is



96

to avoid cluttered notation.

e
P∞
m=1 λ

mχm = 1 +
∑
m

λmχm +
1

2

∑
mn

λm+nχmχn

+
1

6

∑
mnp

λm+n+pχmχnχp + · · ·

= 1 + λ (χ1) + λ2

(
χ2 +

1

2
χ2

1

)
(6.17)

+ λ3

(
χ3 +

1

2
(χ1χ2 + χ2χ1) +

1

6
χ3

1

)
+ · · ·

We now match terms of order λn in eq.(6.17) to terms of order η(t)n in eq.(6.16). Solving
for the cumulants, we have:

χ0 = iΩ

∫ t

0

y(s)

χ1 =

〈
i

∫ t

0

ds η(s)y(s)

〉
χ2 =

1

2

〈(
i

∫ t

0

ds η(s)y(s)

)2
〉
− 1

2
χ2

1

χ3 =
1

6

〈(
i

∫ t

0

ds η(s)y(s)

)3
〉
− χ1χ2 −

1

6
χ3

1

χ4 =
1

24

〈(
i

∫ t

0

ds η(s)y(s)

)4
〉
− χ1χ3 −

1

2

(
χ2

2 + χ2
1χ2

)
− 1

24
χ4

1

These results simplify greatly in the case of Gaussian noise. According to Wick’s theorem, all
odd-order cumulants will vanish, while the even order terms may be calculated, for example,
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as

χ4 =
1

24

〈(
i

∫ t

0

dsη(s)y(s)

)4
〉
− 1

2
χ2

2

=
1

24

∫∫∫∫ t

0

dt4 〈η(t1)η(t2)η(t3)η(t4)〉 y(t1)y(t2)y(t3)y(t4)− 1

2
χ2

2

=
1

24

(∫∫
dt2 〈η(t1)η(t2)〉 y(t1)y(t2)

∫∫
dt2 〈η(t3)η(t4)〉 y(t3)y(t4)

+

∫∫
dt2 〈η(t1)η(t3)〉 y(t1)y(t3)

∫∫
dt2 〈η(t2)η(t4)〉 y(t2)y(t4)

+

∫∫
dt2 〈η(t1)η(t4)〉 y(t1)y(t4)

∫∫
dt2 〈η(t2)η(t3)〉 y(t2)y(t3)

)
− 1

2
χ2

2

=
3

24

(∫∫
dt2 〈η(t1)η(t4)〉 y(t1)y(t4)

)2

− 1

2
χ2

2

= −χ2
2

Where we have used that χ1 = χ3 = 0. Inclusion of higher order moments is not necessary
until χ2 . 1. This corresponds to an echo decay of approximately 〈σ+(t)〉 = 1/

√
e ≈ 0.6.

6.7.5 Estimation of correlation function by CFFs

Suppose we have chosen a large number of pulse sequences and constructed their associated
filter functions, Fi(t). As described in the main text we have experimental access to the
coherence integrals,

χ
(2)
i =

∫ ∞
0

Cη(t)Fi(t) dt.

Because the filter functions are known in terms of the applied pulse sequences, we can
use this integral to describe correlation function, Cη(t). If our set of filter functions were
orthonormal, it would be a trivial task to expand the correlation function as a weighted sum
of correlation filter functions, much like a Fourier series expansion. However, this is not the
case, so we instead construct a new set of orthonormal functions. This can be done via the
Gram-Schmidt orthogonalization procedure to yield the set,

fi(t) =
∑
j

cijFj(t). (6.18)

Properly normalized, these functions, fi(t), are orthogonal under the inner product,

〈fi, fj〉 =

∫ ∞
0

fi(t)fj(t) dt = δij
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We can now expand the stochastic part of correlation function, Cη(t), as

Cη(t) '
∑
i

〈fi(t), Cη(t)〉 fi(t)

=
∑
i,j

cij 〈Fj(t), Cη(t)〉 fi(t)

=
∑
i,j

cijχ
(2)
j

∑
k

cikFk(t)

= ~χT · cTc · ~F(t) (6.19)

Here, ~χ and ~F are the vectors of measurement outcomes and filter functions, respectively,
and c is the matrix of expansion coefficients from (6.18). We can determine the matrix cTc
by examining the orthogonalized filter functions,

〈fi(t), fj(t)〉 =
∑
m,n

〈cimFm(t), cjnFn(t)〉

=
∑
m,n

cimcjn 〈Fm(t),Fn(t)〉

= δij.

These last two lines may be cast as a matrix equation, 1 = cFcT. Here Fij = 〈Fi,Fj〉 is the
filter overlap matrix and 1 is the identity matrix. This implies, cTc = F

−1, and we can now
rewrite (6.19) as,

Cη(t) ' ~χT · F−1 · ~F(t) (6.20)

In reality one will only be able to perform a finite number of experiments, so this expansion
is only approximate (much as a finite Fourier-expansion is only an approximation of the
expanded function). We point out that we are able to express our estimate power spectrum
entirely in terms of the filter functions, their overlap integrals, and experimentally accessible
parameters. It is not necessary to explicitly construct the orthogonalized filter functions
defined in (6.18), and we avoid the numerical errors commonly associated [105] with the
Gram-Schmidt procedure.
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Part IV

Quantum simulation
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Chapter 7

Quantum simulation in neutral-atom
optical lattices
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7.1 Introduction

Among the most exciting aspects of quantum simulation is the possibility of generating
and studying exotic quantum phases. This includes systems whose ground states posses
topological order which can be used to robustly store and process quantum information.
The Hamiltonians governing these phases frequently require more-than-2-body interactions
that are hard or even impossible to realize naturally. This difficulty has spurred much
theoretical and experimental effort in the artificial engineering of Hamiltonians, particularly
for trapped ions [106] and trapped neutral atoms [107]. Many proposals have been made for
the generation of 2-body Hamiltonians using static emulation schemes and some experimental
realizations have appeared [108, 109, 110]. A small number of specific proposals have
appeared for generating n-body interactions [111], but systematic efforts to generate n-
body interactions have focused on static emulation.

We present here an alternative, dynamic emulation approach to systematic generation of
n-body interactions that is based on sequences of control pulses which individually realize 1-
and 2-body operations on internal atomic levels. We show that this stroboscopic realization
of the Hamiltonian can be implemented simultaneously with a dissipative thermalization or
cooling protocol to stabilize the system from the effects of imperfect quantum operations
and environmental noise. In the zero temperature limit, the thermalization protocol can be
viewed as replacing algorithmic quantum error correcting schemes in an equivalent quantum
circuit model with a driven dissipative procedure to remove excitations and return the system
to the ground state. We note that the resource requirements for this thermalization protocol
are different, and scale differently with system size, than algorithmic error correction, and
may be more accessible to experiment in the foreseeable future.

We illustrate the approach here with stroboscopic generation of the 4-body toric code
Hamiltonian, which constitutes one of the simplest exactly solvable models with a ground
state topological phase [112]:

HTC
0 = −Je

∑
v

∏
j∈v

σzj − Jm
∑
p

∏
j∈p

σxj , (7.1)

where σj denotes a Pauli operator on the links of a square lattice and v/p denote the ver-
tex/plaquette of the lattice. The ground state of this model possesses topological order,
and therefore has anyonic quasiparticle excitations and, on a lattice with periodic bound-
ary conditions, an emergent topological degeneracy. Quantum information can be encoded
in this ground state degeneracy and manipulated with controlled creation and braiding of
anyons [112, 113]. In a finite sized system [114, 115], the topological order of the ground state
and gap to excited states protects against decoherence and loss of quantum information due
to noise provided the system is coupled to a low temperature bath. Our analysis below will
provide a scheme for generating both HTC

0 and an effective low temperature bath, realizing
the topological protection characteristic of the toric code.

The physical context for our analysis is a set of ∼ 250 individual 133Cs atoms trapped at
the sites of an addressable simple cubic optical lattice [116]. The orbital degrees of freedom
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Figure 7.1: (Color online) One of several possible embeddings of the toric code geometry onto
a three dimensional array of atoms. Twisted-periodic boundary conditions can be imposed
by SWAP-gate shuttling along auxilliary sites, indicated by blue lines. Bold lines connect
logical nearest-neighbors. [121]

are frozen on the time scales relevant to our analysis and we need consider only internal
atomic degrees of freedom. Two hyperfine levels (e.g., |F,mF 〉 = |4, 4〉 , |3, 3〉) define a 2-
level pseudospin system. We realize HTC

0 in the interaction representation defined by the
pseudospin energies. Auxiliary internal levels are used to realize 1-spin and 2-spin quantum
operations, using optical frequency Raman pulses to generate arbitrary single-spin operations
and excitation of one atom to a Rydberg state, e.g., the n ≈ 80 state, to generate controlled-
phase gates, CPHASE [117, 118]. To achieve thermalization or cooling, the Hamiltonian
HTC

0 is supplemented by coupling the primary system spins to an ancillary set of pseudospins
that will be dissipatively controlled to simulate a thermal reservoir. Since the pseudospins
are localized at the sites of a cubic lattice, one can choose to either realize HTC

0 on a single
plane using a surface code [119, 120] or in a three-dimensional cubic array with toroidal
boundary conditions realized by SWAP operations.
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7.2 Effective Hamiltonian evolution

In what follows, we assume the ability to perform both Rydberg-induced CPHASE gates be-
tween atoms in neighboring sites and arbitrary 1-body rotations, exp (−iθσj), on individual
atoms, where θ is a variable phase angle. Sequences of these one and 2-body unitary opera-
tions can be chosen to generate effective n-body interactions through high-order terms in the
Magnus expansion [122], allowing stroboscopic simulation of a broad class of Hamiltonians.

Consider the operator sequence, UnUn−1 · · ·U2U1, where the gates Uj impose either the
1- or 2-body gates described above. Effective interactions are found through:

Heff(t) ≡ i~
t

ln(UnUn−1 · · ·U2U1)

=
∑
j

i~
t

lnUj −
∑
j<k

~
2t

[ lnUj, lnUk] +O
(
||lnU ||3

)
.

Consider now simulation of the 4-body interactions in HTC
0 . We use the notation Uj(φ) ≡

e−iφΣj and define Σ1 = σzσyσ0σ0, Σ2 = σ0σxσyσ0, and Σ3 = σ0σ0σxσz, where σ0 is the
identity operator. For simplicity, it is assumed that each Uj(α) takes a time τ to execute.
We construct the operator sequence,

U123(α, β, γ) = U12(α, β)U3(γ)U †12(α, β)U †3(γ), (7.2)

where U12(α, β) = U2(β)U1(α)U †2(β)U †1(α). This sequence acts over a time 10τ to generate
the following effective Hamiltonian at a single vertex, v:

Hzzzz
eff =Je [σzσzσzσz]v +

χ

αγ

(
α
[
σ0σxσzσz

]
v

+ γ
[
σzσzσyσ0

]
v

)
+ χ

([
σ0σxσyσ0

]
v
− 2β/γ

[
σ0σ0σxσz

]
v

)
+O

(
φ6
)

where [O]v/p denotes the application of the (up to) four-body operator O to the spins meeting
at a vertex v or surrounding a plaquette p,

Je =
χ

αγ

(
1− 2

3

(
α2 + β2 + γ2

))
+O(φ6)

and

χ ≡ 2~
5τ
α2βγ2.

We have additionally used the notation |α| = |β| = |γ| ≡ φ. By repeating the operator
sequence a second time with sign reversals α→ −α and γ → −γ, we cancel the fourth order
terms in φ giving U123(−α, β,−γ)U123(α, β, γ), acting for a time 20τ to generate the effective
Hamiltonian

Hzzzz
eff = Je [σzσzσzσz]v + χ

[
σ0σxσyσ0

]
v

+O
(
φ6
)
. (7.3)



104

The sequence U123(−α, β,−γ)U123(α, β, γ) is specifically designed to cancel the lowest-order
(φ4) perturbation terms without affecting the gap. The remaining φ5 term is a 2-body
perturbation to HTC

0 . Repeating this sequence with appropriate sign reversals will cancel
these higher order terms. However, the ground state subspace of HTC

0 is robust to these
remaining perturbations (see below). A shorter operator sequence may then be preferable
as it is less likely to cause gate errors. The effective plaquette operator, Hxxxx

eff , can be
generated by cyclic permutation of the Pauli operators in the above expressions for Σ1,Σ2

and Σ3. More details on the Magnus expansion approach are considered in Appendix. 7.7.1.
Simulation of HTC

0 then requires application of the pulse sequence to all vertices and
plaquettes conforming to a two dimensional square lattice with periodic boundary conditions.
Vertex and plaquette terms may be applied serially as:

exp (−iHxxxx
eff t/~) exp (−iHzzzz

eff t/~) ≈ exp−i (Hxxxx
eff +Hzzzz

eff ) t/~.

Because only the perturbation terms fail to commute, the truncation error in the above
expression occurs at orders larger than φ7. For 18 pseudospins, representing a 3× 3 system
with toroidal boundary conditions, a completely serial implementation yields a stroboscopic
cycle time of 720µs using the estimate τ ∼ 500ns [123] and the minimal count of one CPHASE
and four 1-spin gates to realize all Uj(α) [124]. This serial stroboscopic cycle time scales
approximately linearly with the number of pseudospins in the lattice. This may be reduced
in larger lattices by implementing some vertex and plaquette operators in parallel.

7.3 Simulated thermalization

The pseudospin subspace of the system defined by the internal states of the trapped atoms
is an open quantum system that will interact with the external environment through the
controlled quantum operations in the above pulse sequences and uncontrolled noisy inter-
actions. Unlike a solid state system, for which system-environment interactions generally
lead to thermal equilibration, noise in the optical lattice system will not drive the simulation
subspace to a state that is thermal under the simulated Hamiltonian [125]. Additionally,
noise in the above sequence of control gates will add entropy and effectively heat the system.
Using the linear entropy to estimate the entropy production ∆S resulting from imperfect gate
operation yields an estimate ∆S ∼ EPG, where EPG is the error per gate [121]. Quantum
circuit models are usually supplemented by error correction schemes to effectively remove
entropy from the system. We take a different approach here, stroboscopically constructing
an effective system-reservoir interaction to control system entropy and relax the system to
the ground state or a thermal state.

To maintain the simulated system at a thermal steady state we add a “thermalization”
interaction Hsr of the system pseudospins with a set of ancillary pseudospins. In the optical
lattice system, these ancillary pseudospins, which may be a 2nd species of atom, are trapped
in an offset, intercalated optical lattice, such that each ancillary atom is adjacent to a system
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atom. Consider a Hamiltonian with local n-body interactions of the form:

H0 = −
∑
ν

Jν
∑
N

hνN . (7.4)

In Eq. (7.4), hνN is an n-body operator involving a neighborhood of pseudospins, N , including
pseudospin i, with eigenvalues ±1, ν labels the type of interaction, and Jν is a constant.
Additionally we define the pseudospin flip operator Σν

i such that Σν
i |hνN = ±1〉 = |hνN = ∓1〉

when i ∈ N . When all [hνN , h
µ
N ′ ] = 0, as is the case for Eq. (7.1), we can define:

E†i,ν =
1

4
Σν
i (1 + hνN ) (1 + hνN ′)

Ti,ν =
1

4
Σν
i (1− hνN ) (1 + hνN ′) . (7.5)

with i ∈ N and i ∈ N ′, and where E†i,ν and Ti,ν are (2n− 1)-body interactions; E†i,ν creates
a pair of excitations about i and Ti,ν translates an excitation about i. The energy gap for
creation of a pair of excitations of type ν is ∆ν = 4Jν .

A route to guaranteeing the thermal equilibration of this system is for it to evolve under
the Lindblad master equation ρ̇ = −i/~ [H0, ρ] + L [ρ], where ρ is the density matrix and
L [ρ] is the superoperator L [ρ] =

∑
ω

(
2cωρc

†
ω − c†ωcωρ− ρc†ωcω

)
, with {cω, c†ω} the Lindblad

operators. With the choice

{ci,ν} =

{√
1− p

2
λ∗Ei,ν ,

√
p

2
λ∗E†i,ν ,

√
γ∗

4
Ti,ν ,

√
γ∗

4
T †i,ν

}
, (7.6)

the Lindblad master equation describes equilibration with a bath of temperature T =
−∆/ ln (p). The unique stationary state of the system is then the thermal state under
H0 with temperature T . λ∗ and γ∗ are relaxation rates, and their values dictate the ther-
malization time. For simplicity we have set ∆ν = ∆.

To generate evolution under such a master equation, we introduce a set of non-interacting
ancillary pseudospins that independently undergo strong dissipation. Each local neighbor-
hood of the system interacts locally with a single thermal ancillary pseudospin Ti,ν and a
single maximally mixed ancillary pseudospin Mi,ν for each type of local excitation via:

Hsr = g
∑
ν,i

(
E†i,νσ

−
Ti,ν

+ Ti,νσ
−
Mi,ν

+ h.c.
)

(7.7)

The master equation of the system and ancilla pseudospins combined is of the above Lindblad
form with Lindblad operators:

{ci,ν} =
{√1− p

2
λσ−Ti,ν ,

√
p

2
λσ+

Ti,ν
,

√
γ

4
σ+

Mi,ν
,

√
γ

4
σ−Mi,ν

}
,
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where λ and γ define the relaxation rates of the individual ancillary pseudospins. With this
choice of Hsys-res it can be shown [121] that for g � λ the system pseudospins evolve under a
renormalized Lindblad master equation with cω given by Eq. (7.6) and λ∗ = 4 (g/~)2 λ, thus
leaving the thermal state of H0 as the unique stationary state of the coupled system.

For p = 0, the effective system-reservoir interaction cools the system towards the
ground state, and the Lindblad operators can be reduced to the n-body terms {

√
λ∗(Ei,ν +

Ti,ν),
√
λ∗(Ei,ν +T †i,ν)} [126, 127]. In this limit the ancillary pseudospins become an effective

low temperature bath with a cooling rate Γc ∼ λ∗ and heating rate determined by gate errors
and any environmental noise. Competition between these rates leads to a minimum reach-
able temperature for the system, which can be estimated as Tmin ∼ ∆/ ln (Γc/Γe), where
Γe ∼ EPG × Ω, with EPG and Ω the error rate and frequency of application of Uj(α),
respectively.

The Lindblad master equation, with operators given by Eq. (7.6), generates a unitary
system-reservior interaction but nonunitary reservoir relaxation. Stroboscopic simulation
of the system-reservoir interaction, Eq. (7.7), is performed in a manner analogous to the
HTC

0 simulation described above. Phase angles are chosen in the 1- and 2-body gates to
generate an effective static interaction strength g over the time tsr between applications of
Hsr, such that gtsr/~ < π/2. Nonunitary evolution of the reservoir is generated by encoding
the reservoir as two levels of a Λ-system. The pseudospin states are the ground state |0〉 and
the meta-stable state |1〉. State |2〉 is chosen to have fast spontaneous emission to |0〉, with
rate Γ20. This spontaneous emission is the decoherence mechanism required to generate the
nonunitary Lindblad evolution. The ancillary pseudospin levels can be placed in a thermal
state via the following procedure: i) π-pulse on the |1〉 → |2〉 transition. ii) Wait for decay to
ground state, |0〉. iii) π-pulse on |0〉 → |1〉 transition. iv) θ-pulse on the |1〉 → |2〉 transition.
v) Wait for decay, which now yields the final pseudospin state, ρ = diag

{
sin2(θ), cos2(θ)

}
,

corresponding to an effective temperature Teff = ∆/ (2 ln (cot θ)). The above stroboscopic
procedure generates λ∗ ≈ g2tsr/~2 in Eq. (7.6). The procedure can be simplified in the limit
of cooling towards zero temperature by eliminating steps iii-v, when it becomes similar to the
optical pumping scheme employed in measurement of qubit states for trapped ions [128]. This
thermalization or cooling procedure is then repeated and interleaved with the stroboscopic
application of H0.

7.4 Thermalization of the toric code

HTC
0 is of the form of Eq. (7.4), with two types of excitations, electric charges and magnetic

vortices, (ν = e,m) that reside on vertices and plaquettes, respectively, of the square lattice.
The excitation operators are defined from (7.5) with hev =

∏
j∈v σ

z
j , h

m
p =

∏
j∈p σ

x
j , and

Σe,m
i = σx,zi . Each link must interact with four ancillary pseudospins in the limit T � χ or

χ� g to allow thermalization to the ground state or the thermal state of HTC
0 , respectively.

The stroboscopic generation of HTC
0 outlined above introduces truncation perturbations

in the perturbative expansion, e.g, the second term in Eq. (7.3), which are distinct from
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Figure 7.2: (a) Energy spectrum (in units of Je = Jm) and (b) ground state fidelity vs.
perturbation strength computed with exact diagonalization for the 18 site toric code with
hz = 0.05.

extrinsic errors due to experimental noise and gate inaccuracies. If sufficiently large, such
truncation perturbations could drive the system away from the desired ground state phase
. We now show, by direct calculation on a finite sized system accessible to current experi-
ments [116], that the intrinsic perturbations can be kept sufficiently small.

Fig. 7.2(a) plots the gap of HTC
χ,hz

= HTC
0 − hz

∑
i σ

z
i + χ

∑
〈i,j〉 σ

x
i σ

y
i as a function of

the strength of the perturbation for a 3×3 planar lattice with toroidal boundary conditions,
realized by 18 spins (Fig. 7.1) . The Zeeman field is added here to fully split the ground
state degeneracy and ensure robust characterization of the eigenstates of H even in the
presence of small additional perturbations. We define the ground state fidelity as FGS

n =
|〈Ψ0

n|Ψn (χ, hz)〉|, where the |Ψ0
n〉 are the degenerate ground states of HTC

0 and |Ψn (χ, hz)〉
are the nearly degenerate ground states of HTC

χ,hz
. Fig. 7.2(b) shows the ground state fidelity

as a function of χ. This fidelity determines the robustness of topological operations that will
be performed via string operators to measure or perform gates on the system (for a definition
of these operators, see [112]). We see that for |χ| . 0.4 the features of the topological phase
persist, including the approximate four-fold degeneracy of the ground state and a finite gap
to excitations. This corresponds to a maximum value of φ ∼ 0.4, which constrains the gate
operations in the pulse sequences, Eq. (7.2). This robustness should increase with increasing
lattice size, and is consistent with known stability of HTC

0 to other perturbations [129].
Increasing φ increases J and therefore the gap of the HTC

0 ; however it also increases
χ/J , which reduce the gap of HTC

χ,hz
and topological protection for large χ. We also note that

J ∼ 1/NG where NG is the number of sequential gates used to simulate H. For larger lattices,
some degree of parallelization, e.g., executing Hxxxx

eff for disjoint plaquettes simultaneously,
is thus desirable to ensure that the gap does not decrease with the lattice size. Choosing
χ = 0.2, the gap achieved by a completely serial implementation is ∆ ≈ 0.6 µK/Nsys, where
Nsys is the number of system atoms used. With the cooling sequence serially interleaved,
∆ ≈ 0.1 µK/Nsys and λ∗ ∼ 104 s−1/Nsys are achievable [121]. For a minimal system of 18
system atoms, this allows for an effective temperature Teff < ∆ to be reached with an error
rate of EPG ∼ 10−4 or less [121].
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7.5 Sources of errors

This scheme is designed to be robust against errors within the pseudospin subspace. The
dominant source of residual error in the implementation discussed here is leakage from the
Rydberg levels due to spontaneous emission and black body radiation. The latter may
be effectively suppressed by working at low temperatures [130], and spontaneous emission
is minimized by utilizing states with larger n (though sufficiently low that that effective
atomic radius is significantly smaller than the interatomic spacing). With n . 180, we
estimate that spointaneous emission errors can be reduced to ∼10−6 per gate, allowing for
up to 103 stroboscopic cycles. Leakage errors are discussed in more detail in Appendix. 7.7.5.

7.6 Discussion

We have developed a formalism for the stroboscopic generation of n-body Hamiltonians using
1- and 2-body quantum operations together with a dissipative thermalization scheme. We
have applied this here to the toric code Hamiltonian in the context of addressable optical
lattice experiments [116]. Our implementation method also applies to a larger class of spin
models, e.g, 2-body Ising models [121] and other experimental setups [131]. The dynamic
generation both of a Hamiltonian possessing a topologically ordered ground state and of an
effective thermalization mechanism offers the possibility of robust simulation of the ground
state and of the creation and braiding of anyonic excitations 1 These are essential components
required for the topologically protected storage and manipulation of quantum information.

We thank D. Weiss for useful discussions. This material is based upon work supported
by DARPA under Award No. 3854-UCB-AFOSR-0041. During the preparation of this
manuscript related results discussing ground state preparation were reported [132].

7.7 Appendices

7.7.1 Magnus expansion: Effective Hamiltonian formalism

After a time, t, a (possibly time-dependent) Hamiltonian, H, will generate the unitary
operation,

U(t) = T
←

exp

(
−i
∫ T

0

H(t′)dt′/~
)
.

Here, T
←

, is the time ordering operator. Because this operator is difficult to work with, we

would like to rewrite the propagator as

U(t) = exp (−iHefft/~) .

1This differs from the proposal by Y. Han et al., in Phys. Rev. Lett. 98 (2007) to braid anyons in the
absence of an applied Hamiltonian.
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The effective Hamiltonian, Heff , is expanded as a power-series in ~,

Heff =
1

t

∞∑
n=1

(
−i
~

)n−1

Ωn(t)

Following the method of Klarsfeld and Oteo [122], the Ωn can be calculated throught a
recursion relation,

Ωn = Pn −
n∑
k=2

1

k!
Q(k)
n (n ≥ 2) ,

where we define

Pn(t) =

∫ t

0

dt1

∫ t1

0

dt2 · · ·
∫ tn−1

0

dtnH(t1)H(t2) · · ·H(tn),

and,

Q(k)
n =

∑
Ωi1 · · ·Ωik (i1 + i2 + · · ·+ ik = n) .

In terms of the operators Pi, the first several operators, Ωj, are:

Ω1 = P1

Ω2 = P2 −
1

2
Ω2

1

= P2 −
1

2
P 2

1

Ω3 = P3 −
1

2
(Ω1Ω2 + Ω2Ω1)− 1

6
Ω3

1

= P3 −
1

2
(P1P2 + P2P2) +

1

3
P 3

1

Simulating a σzσzσz interaction

Consider the Hamiltonian, H(t) = {−H1,−H2, H1, H2}τ , where

H1 = J1σ
zσzσ0 H2 = J2σ

0σyσz.

Calculating the Pi’s, we have:

P1 =

∫ 4τ

0

H(t)dt

= 0

P2 =

∫ 4τ

0

dt1

∫ t1

0

dt2H(t1)H(t2)

= −2iτ 2J1J2 σ
zσzσz



110

This gives Ω1 = 0 and Ω2 = −2iτ 2J1J2 σ
zσzσz. So the effective Hamiltonian is, to second

order,

Heff = − τ

2~
J1J2 σ

zσzσz +O
(
τ 2

~2

)
The higher-oder terms can be found by the same method, yielding error terms which must
also be accounted for. Carrying the expansion out further, we have:

Heff =− τ

2~
J1J2 σ

zσzσz +
τ 2

2~2
J1J2

(
J1 σ

0σyσz − J2 σ
zσxσ0

)
+

τ 3

3~3
J1J2

(
J2

1 + J2
2

)
σzσzσz+

τ 4

6~4
J1J2

((
2J2

1J2 + J3
2

)
σzσxσ0 +

(
2J2

2J1 + J3
1

)
σ0σyσz

)
+O

(
τ 5

~5

)
But notice the symmetry of the error terms here. By making the replacement Ji → −Ji, the
error terms (those not proportional to σzσzσz) switch sign. This implies that the Hamiltonian

H(t) = {−H1,−H2, H1, H2, H1, H2,−H1,−H2, }τ

may do better. Performing the expansion, we see that

Heff =

(
− τ

2~
J1J2 +

τ 3

3~3
J1J2

(
J2

1 + J2
2

))
σzσzσz +

τ 4

~4
J2

1J
2
2

(
J1 σ

zσxσ0 + J2 σ
0σyσz

)
+O

(
τ 5

~5

)
The error in this effective Hamiltonian now appears to 5th order in τ/~. This process can
be repeated until the error is suppressed as far into the expansion as needed.

7.7.2 Simulating the toric code

Consider the Hamiltonian,

H(t) = {−H1,−H2, H1, H2, H3,−H2,−H1, H2, H1,−H3}τ

Where
H1 = J1 σ

zσyσ0σ0

H2 = J2 σ
0σxσyσ0

H3 = J3 σ
0σ0σxσz

By the method used above, this generates the effective Hamiltonian:

Heff =
2J1J2J3τ

2

5~2
σzσzσzσz +

2J1J2J3τ
3

5~3

(
J1 σ

0σxσzσz + J3 σ
zσzσyσ0

)
−

2J1J2J3τ
4

5~4

(
2J1J2 σ

0σ0σxσz − J1J3 σ
0σxσyσ0 +

2

3

(
J2

1 + J2
2 + J2

3

)
σzσzσzσz

)
+O

(τ
~

)5
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which acts for a time, 10τ . Using the same error-canceling technique applied for the σzσzσz

interaction above, we can repeat this sequence with J1 → −J1 and J3 → −J3, leading to a
Hamiltonian,

H(t) = { −H1,−H2, H1, H2, H3,−H2,−H1, H2, H1,−H3,

H1,−H2,−H1, H2,−H3,−H2, H1, H2,−H1, H3}τ

The effective Hamiltonian generated by this is:

Heff =
2J1J2J3τ

2

5~2
σzσzσzσz+

2J1J2J3τ
4

5~4

(
J1J3 σ

0σxσyσ0 − 2

3

(
J2

1 + J2
2 + J2

3

)
σzσzσzσz

)
+O

(τ
~

)5

which acts for a time, 20τ . To cancel the σxσyσ0 term, we can repeat the sequence again,
this time with H1 → −H1 and H2 → −H2. This new sequence would generate an effective
Hamiltonian which acts for a time 40τ .

The plaquette operator, σxσxσxσx, can be generated by cyclic permutation of the Pauli
operators in the above expressions for H1, H2, H3 and Heff . Simulation of the Toric Code,
however requires not only the simulation of σxσxσxσx and σzσzσzσz, but of the total Hamil-
tonian,

∑
p σ

xσxσxσx +
∑

v σ
zσzσzσz. Because the Hamiltonian is a sum of commuting

terms, we can simulate the total Hamiltonian by applying the pulse sequences in serial.
Schematically

e−iσ
xσxσxσxt/~e−iσ

zσzσzσzt/~ = e−i(σ
xσxσxσx+σzσzσzσz)t/~

Because only the error terms fail to commute, the error in the above expression occurs
at higher orders than the error in the simulation.

7.7.3 Physical implementation of necessary gates

The Weiss apparatus has the ability to perform controlled phase gates, CPHASEφ, and arbi-
trary single qubit unitary operations. In a two-qubit Hilbert space with basis, {|↓↓〉 , |↓↑〉 , |↑↓〉 , |↑↑〉},
the CPHASEφ gate takes the form:

CPHASEφ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiφ


Note that the same gate is performed regardless of which qubit is acting the control.

The above simulation requires the ability to implement the two-qubit gate, U(t) =
exp

(−iJt
~ (σ1 ⊗ σ2)

)
. Here σi is a Pauli operator acting on the ith qubit. To illustrate how

this gate may be implemented with single qubit gates and CPHASEφ gates, we choose
(σ1, σ2) = (σx, σy). Consider the gates:

U = (σx ⊗ σx) ·CPHASEφ · (σx ⊗ σx) ·CPHASEφ
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Writing this out as a matrix,

U =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 ·


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiφ

 ·


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 ·


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiφ



=


eiφ 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiφ


Which, by a global phase change,

U ≡ e−iφ/2U =


eiφ/2 0 0 0

0 e−iφ/2 0 0
0 0 e−iφ/2 0
0 0 0 eiφ/2

 = eiφ/2(σz⊗σz)

Expanding the RHS of the above expression,

U = eiφ/2(σz⊗σz) = (I ⊗ I) cos
φ

2
+ i(σz ⊗ σz) sin

φ

2

But this can be rotated into a different basis using the Pauli identities:

e−i
π
4
σyσzei

π
4
σy = σx

ei
π
4
σxσze−i

π
4
σx = σy

So, for instance,

ei
π
4

(σx⊗σ0−σ0⊗σy) U e−i
π
4

(σx⊗σ0−σ0⊗σy) = (I ⊗ I) cos
φ

2
+ i
((
ei
π
4
σxσze−i

π
4
σx
)
⊗
(
e−i

π
4
σyσzei

π
4
σy
))

sin
φ

2

= (I ⊗ I) cos
φ

2
+ i (σy ⊗ σx) sin

φ

2
= eiφ/2(σy⊗σx)

We then have the decomposition of the gate:

eiφ(σy⊗σx) = ei
π
4

(σx⊗σ0)·e−i
π
4

(σ0⊗σy)·(σx⊗σx)·CPHASE2φ·(σx⊗σx)·CPHASE2φ·e−i
π
4

(σx⊗σ0)·ei
π
4

(σ0⊗σy)

To implement this one physical gate, eiφ(σy⊗σx), we must execute 10 physical gates. It may
be possible to reduce this by one or two gates, recognizing that:

σx ⊗ σx =
(
σx ⊗ σ0

)
·
(
σ0 ⊗ σx

)
,

so that these gates can be combined with the single qubit rotations done later. We point
out that this expansion in terms of primitive gates may be improved through use of Weyl
chamber techniques as developed in [133].
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7.7.4 Stroboscopic thermalization

To demonstrate the feasibility of simulating the thermalization of a quantum system, we
consider the following model. We describe a system qubit by a generic density matrix,

ρs =

(
a b
c d

)
= a |↑〉〈↑|+ b |↑〉〈↓|+ c |↓〉〈↑|+ d |↓〉〈↓|

We also assume the existence of a reservoir qubit which can be periodically initialized to the
state,

ρr =

(
α 0
0 β

)
= α |+〉〈+|+ β |−〉〈−|

This state corresponds to a (possibly negative) temperature:

T =
∆

kb ln β
α

, (7.8)

where ∆ is the qubit splitting for both the reservoir and system qubits. These two systems
are coupled by the interaction-picture Hamiltonian:

Hsr = g
(
σ+s− + σ−s+

)
=
g

2
(σxsx + σysy)

Here g is assumed to be a real-valued coupling constant. The operators σ± are the rais-
ing/lowering operators on the system qubit,

σ+ |↑〉 = 0 σ− |↑〉 = |↓〉
σ+ |↓〉 = |↑〉 σ− |↓〉 = 0,

while the s± is the raising/lowering operator on the reservoir qubit,

s+ |+〉 = 0 s− |+〉 = |−〉
s+ |−〉 = |+〉 s− |−〉 = 0.

Expressed in terms of σx, σy, sx, sy, the Hamiltonian is a sum of two commuting terms, so
the techniques described in the above sections allow for easy simulation of the corresponding
time evolution. The eigenstates of Hsr are

|ψ1〉 = 1√
2

(|↑ −〉+ |↓ +〉) |ψ3〉 = |↑ +〉
|ψ2〉 = 1√

2
(|↑ −〉 − |↓ +〉) |ψ4〉 = |↓ −〉
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With associated eigenvalues, E1 = g, E2 = −g, E3 = 0, E4 = 0. Given an initial state,
ρsr(0) = ρs ⊗ ρr, The combined state of the system/reservior at a later time, t, is

ρsr(t) = e(−iHsrt/~)ρsr(0)e(iHsrt/~)

=
1

2
(αd+ βa) |ψ1〉〈ψ1|+

1

2
(αd+ βa) |ψ2〉〈ψ2|+ αa |ψ3〉〈ψ3|+ βd |ψ4〉〈ψ4|+

1

2
(βa− αd) |ψ1〉〈ψ2| e−2ig/~ +

1

2
(βa− αd) |ψ2〉〈ψ1| e2ig/~+

1√
2
αc |ψ1〉〈ψ3| e−ig/~ +

1√
2
αb |ψ3〉〈ψ1| eig/~ −

1√
2
αc |ψ2〉〈ψ3| eig/~−

1√
2
αb |ψ3〉〈ψ2| e−ig/~ +

1√
2
βd |ψ1〉〈ψ4| e−ig/~ +

1√
2
βc |ψ4〉〈ψ1| eig/~+

1√
2
βd |ψ2〉〈ψ4| eig/~ +

1√
2
βc |ψ4〉〈ψ2| e−ig/~

Tracing out the reservoir qubit, we see

ρs(t) = Trrρ(t)

=
(
α + αd sin(gt/~)2 + βa cos(gt/~)2

)
|↑〉〈↑|+ b cos(gt) |↑〉〈↓|+

c cos(gt) |↓〉〈↑|+
(
βd+ βa sin(gt/~)2 + αd cos(gt/~)2

)
|↓〉〈↓|

=

(
α + αd sin(gt/~)2 + βa cos(gt/~)2 b cos(gt/~)

c cos(gt/~) βd+ βa sin(gt/~)2 + αd cos(gt/~)2

)
We can then write this evolution as an operator on the vectorized system density matrix,

ρs =

(
a b
c d

)
−→ ρ̃s =


a
b
c
d

 .

Then the evolution ρ̃s(t) = L̃(t)ρ̃s(0) is described by the matrix,

L̃(t) =


α + β cos2(gt/~) 0 0 α sin2(gt/~)

0 cos(gt/~) 0 0
0 0 cos(gt/~) 0

β sin2(gt/~) 0 0 β + α cos2(gt/~)

 . (7.9)

Note that this evolution preserves Tr ρ(t) = 1. This operator has a (non-normalized) eigen-
system,

λ1 = 1 ρ̃1 = (α, 0, 0, β)
λ2 = cos(gt/~) ρ̃2 = (0, 1, 0, 0)
λ3 = cos(gt/~) ρ̃3 = (0, 0, 1, 0)
λ4 = cos2(gt/~) ρ̃4 = (1, 0, 0,−1)
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At almost all times, t, eigenvalues λ2, λ3 and λ4 are less than 1. So if this procedure is
repeated multiple times, the only eigenstate that survives is ρ1. So, upon repeated application
of this operation, any initial system state converges to

ρthermal =

(
α 0
0 β

)
.

Explicitly,

ρ̃s(0) =


a
b
c
d

 = ρ̃1 + bρ̃2 + cρ̃3 + (aβ − dα) ρ̃4.

Evolving this state in time,

ρ̃s(t) = L̃(t)ρ̃s(0) = ρ̃1 + (b cos(gt/~)) ρ̃2 + (c cos(gt/~)) ρ̃3 +
(
(aβ − dα) cos2(gt/~)

)
ρ̃4.

If this operation is applied N times,

ρ̃s(Nt) = L̃N(t)ρs(0) = ρ̃1+
(
b cosN(gt/~)

)
ρ̃2+

(
c cosN(gt/~)

)
ρ̃3+

(
(aβ − dα) cos2N(gt/~)

)
ρ̃4.

Choosing (gt/~) < 1 we see that,

lim
N→∞

ρ̃s(Nt) = ρ̃1 = ρ̃thermal

Therefore, the asymptotic state of the system evolving under Eq. (7.9) is the thermal state
at the temperature defined by Eq. (7.8).

7.7.5 Experimental details and error sources

The experiment run by Dave Weiss is a 133Cs neutral-atom optical trap. The qubit ba-
sis states are most likely |F,mF 〉 = {|4, 4〉 , |3, 3〉}, though it is possible that |F,mF 〉 =
{|4, 1〉 , |3,−1〉} could be used as well. Gates will require the use of a Rydberg state, most
likely the n ≈ 80 state due to the availablily of lasers operating on the relevant transition.

The optical lattice will be formed with 3 pairs of lasers at 5 nm detuning with intrapair
angle of 10 degrees. This makes for a lattice constant of approximately 5 microns. There are
two Raman lasers near 852nm and 510nm. Plenty of power is available on the 852 nm laser.
The 510 nm laser is at least 10mW, but up to 1W may be available. A microwave gate is
available, which drives a π-pulse on the |3, 3〉 ↔ |4, 4〉 transition in 30µs at a frequency of
9.2 GHz.

Trap loss due to collisions with background gas are roughly (1/100) s−1. The following
errors for single-qubit operations, as described in [134], have been calculated:

• Raman Scattering (blue-detuned lattice) rate across all atoms in trap

T1
Na

na

πcε0
aωL

√
kbUL
2M

σ

α
= 4.3× 10−11s−1
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• Raman scattering (red-detuned lattice) rate across all atoms in trap

T1
Na

na

2cε0
~ωL

kbUL
σ

α
= 4.5× 10−8s−1

• Neighbor atom errors (Raman gate) error per gate

2π2

3

(
1 +

a2λR
2

π2w0
4

)
−2 exp

[
−4a2

w0
2

]
= 1.16× 10−30

• Spontaneous emission (Raman gate) error per gate

π

2 |∆1| τ
= 1.43× 10−6

• AC Stark shift (Raman gate) error per gate

4

3π2

~2a2

Mw0
4kbUL

(
61010s−1

∆1

)2

= 1.07× 10−10

• Atomic-motion-reduced pulse area (Raman gate) error per gate

1

12

~2a2

Mw0
4kbUL

= 1.82× 10−5

• Detuning Doppler shift (Raman gate) error per gate

0.98

(
2π

λRΩR

)2 ~
M3/2a

(kbUL) 1/2 = 4.63× 10−10

• Polarization effects (Raman gate) error per gate

~λR2a

πw0
4

1√
2MkbUL

= 1.85× 10−3

• Laser intensity noise (Raman gate) error per gate(
2.6× 10−6m2s−1

) 1

|∆1|w0
2

= 5.75× 10−8

As already noted above, leakage from excited Rydberg states incurred during two-qubit
operations is the dominant source of error in our implementation. Rydberg state lifetimes are
determined by both spontaneous emission and black body radiation and are sensitive to the
choice of principal and angular momentum quantum numbers, n and l, respectively. Rates
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of spontaneous emission decrease as n increases and as l increases. Losses due to interaction
with black body radiation increase with n. However, this factor may be suppressed by
working a low temperatures: for Cs, explicit calculations in Ref. [130] show that a decrease
to 4K can very effectively remove black body radiation induced losses. Although imposing
an additional experimental requirement, decreasing the temperature of the chamber to 4K
is well within current day capabilities. Thus we neglect the losses induced by black body
radiation.

The spontaneous emission losses can themselves be minimized by choosing the largest
achievable quantum numbers, n, l. Since in the Rydberg blockade gate for addressable atoms
(protocol B of [117]) only a single atom is excited to a Rydberg state, with the second, off-
resonant atom having at most a small amount of Rydberg state amplitude (see Fig. 2 in
[117] and Fig. 2 in [135], a bound on these parameters may be attained by demanding that
the excited state Rydberg atom is small compared to the interatomic distance, R ≈ 5µm.
The effective size, r(n, l), of a large-n Rydberg atom may be computed from the hydrogenic
wavefunction of the outer electron (neglecting the quantum defect for large n values),

r(n, l) =
1

2

[
3n2 − l(l + 1)

]
a0, (7.10)

where a0 is the Bohr radius. Evaluating this for R/r = 2 and for a more conservative
requirement R/r = 10 with l = 0 leads to the maximum n values 177 and 80 respectively
(column 2 of Table 7.7.5). Using non-zero l values will allow somewhat larger n (e.g., n = 90
for l = 89 and n = 217 for l = 176) but for the current purpose of estimating the order of
magnitude of the leakage error we shall take the more conservative, lower estimates of n,
regardless of the angular momentum excitation.

Phenomenological fits to spontaneous emission rates for Rydberg atoms at low n and l
values (n ≤ 26, l ≤ 3) are given in Gallagher’s book on Rydberg atoms (Eq. (4.17) and Table
4.1 in [136]). For high n values where the effect of the quantum defect becomes small relative
to n, we can estimate the spontaneous emission rates for non-zero l values using the high
accuracy hydrogenic lifetime expressions developed recently by Horbatsch et al. [137]. We
have computed lifetimes τ for several l states for each of the maximum n values, using [136]
for l = 0 and [137] for l > 0 (column 4 in Table 7.7.5). These lifetimes were then used
to calculate the initial state-averaged leakage error for the Rydberg gate in an addressable
lattice (i.e., with the second protocol (B) of Jaksch et al [117]), using a modified form of
Eqs. (26) and (28) in Saffman and Walker’s recent review [135] in which we include only
the errors due to leakage (first term in Eq. (26) of [135]) and not the blockade error (second
term in Eq. (26) of [135]). We omit the blockade error since this gives rise to a phase
shift which may be compensated for by the methods described in our manuscript. In this
situation, the optimal Rabi frequency is then Ωopt =

√
7B where B is the blockade energy

shift (Eq. (24) of [135] with N = 2) and the resulting minimal leakage error per gate is

Eleak =
√

7π
2Bτ

. Evaluation of Eleak now requires an estimate for the blockade energy shift,
which in turn depends on the strength of the Rydberg interaction. Saffman and Walker
have measured a value of B ∼ 10 MHz for n = 90, l = 2 Rydberg states of Rb separated
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by more than 10 µm in a direct experimental measurement of the Rydberg blockade [138].
Noting that theoretical calculations for Rb in [139] show that the strength of the Rydberg
interaction may be increased by several orders of magnitude in larger n states and at smaller
distances (see Fig. 7 in [139]), we therefore use estimates of B = 10 − 100MHz to evaluate
the leakage error. The resulting Rydberg gate leakage errors are listed in column 6 of Table
7.7.5. The gate errors obtained for the n = 177, l = 5, 6 states allow for 105 − 106 CPHASE
gates, corresponding to 350-3500 stroboscopic cycles using the estimates of cycle time given
in our manuscript, while the n = 80, l = 5, 6 states allow for 104 − 105 CPHASE gates, or
35-350 stroboscopic cycles. Operating at this level of robustness is sufficient to validate the
approach.

Creation of the high principle quantum numbers n given in Table 7.7.5 requires stability
and homogeneity of the electric fields, since Rydberg states are susceptible to ionization (see
e.g., [135] for a discussion of this). However we note that Saffman and Walker have recently
performed experiments with dipole trapped Rb atoms in Rydberg states with n = 97 [140],
so n ∼ 100 and the more conservative estimates of n = 80 are clearly feasible. We also note
that additional gains in spontaneous emission lifetime and consequent leakage suppression
are potentially possible by further increasing the angular momentum l of the Rydberg states.
Chang has established an analytic bound on spontaneous emission lifetimes that is accurate
to within 10% of experimental values and of the values of Horbatsch et al. [137] at large
n [141] and which scales as (l+1/2)2. This implies that significantly increased lifetimes will be
obtained if it is experimentally possible to access states with l > 10. The direct, multiphoton
excitation that would be required for this (rather than indirect stepwise excitation employed
in [142]) has been demonstrated for higher l Rydberg states [143]. However the usefulness
of higher l states for the Rydberg gate is complicated by the fact that the dipole moment is
expected to be smaller so that B will then decrease. Detailed studies would be necessary to
make any specific predictions beyond l = 10. Therefore our estimates here confined to low l
values that can be achieved with current experimental technology and for which the dipole
interactions are expected to be similar or larger than what has already been demonstrated.
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Table 7.1: Values of n and l for 133Cs atoms of spatial extent r in an optical lattice of intersite
spacing R = 5µm, their spontaneous emission lifetimes τ and resulting leakage induced error
per gate for the CPHASE Rydberg gate of Jaksch et al. [117] with their second protocol
(protocol B) which is specific to addressable atoms. The error per gate Eleak was calculated
with Eq. (26) of Ref. [135] using the values of τ given here, together with realistic estimates
of the blockade parameter B.

R/r n l τ B Eleak
2 177 0 7.9 msec 10 MHz 5.3 x 10−5

2 177 1 1.0 msec 10 MHz 4.2 x 10−4

2 177 2 2.9 msec 10 MHz 1.4 x 10−4

2 177 5 14 msec 10 MHz 2.3 x 10−5

2 177 6 20 msec 10 MHz 2.1 x 10−5

2 177 0 7.9 msec 100 MHz 5.3 x 10−6

2 177 1 1.0 msec 100 MHz 4.2 x 10−5

2 177 2 2.9 msec 100 MHz 1.4 x 10−5

2 177 5 14 msec 100 MHz 2.3 x 10−6

2 177 6 20 msec 100 MHz 2.1 x 10−6

10 80 0 0.73 msec 10 MHz 5.7 x 10−4

10 80 1 0.094 msec 10 MHz 4.4 x 10−3

10 80 2 0.27 msec 10 MHz 1.5 x 10−3

10 80 5 1.3 msec 10 MHz 3.2 x 10−4

10 80 6 1.8 msec 10 MHz 2.3 x 10−4

10 80 0 0.73 msec 100 MHz 5.7 x 10−5

10 80 1 0.094 msec 10 MHz 4.4 x 10−4

10 80 2 0.27 msec 10 MHz 1.5 x 10−4

10 80 5 1.3 msec 10 MHz 3.2 x 10−5

10 80 6 1.8 msec 10 MHz 2.3 x 10−5
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