UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
The Role of Computational Temperature in a Computer Model of Concepts and Analogy-
Making

Permalink
@s://escholarship.orq/uc/item/67g;n5nj

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 11(0)

Authors

Mitchell, Melanie
Hodstadter, Douglas R.

Publication Date
1989

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California


https://escholarship.org/uc/item/67q1n5nz
https://escholarship.org
http://www.cdlib.org/

The Role of Computational Temperature
in a Computer Model of Concepts and
Analogy-Making

Melanie Mitchell and Douglas R. Hofstadter
Center for Research on Concepts and Cognition
Indiana University

ABSTRACT
We discuss the role of computational temperature in Copycat, a computer model of the mental
mechanisms underlying human concepts and analogy-making. In Copycat, computational
temperature is used both to measure the amount and quality of perceptual organization created by
the program as processing proceeds, and, reciprocally, to continuously control the degree of
randomness in the system. We discuss these roles in two aspects of perception central to
Copycat’s behavior: (1) the emergence of a parallel terraced scan, in which many possible courses
of action are explored simultaneously, each at a speed and to a depth proportional to
moment-to-moment estimates of its promise, and (2) the ability to restructure initial perceptions —
sometimes radically — in order to arrive at a deeper understanding of a situation. We compare our
notion of temperature to similar notions in other computational frameworks. Finally, we give an
example of how temperature is used in Copycat’s creation of a subtle and insightful analogy.

1. DESCRIPTION OF THE PROJECT

In our research, we are attempting to model the mental mechanisms underlying the fluid
nature of human concepts. Humans are able to perceive and categorize situations very flexibly, to
see beyond superficial details and understand the essence of a situation, and to make analogies
between situations, fluidly translating concepts from one situation into the other. These abilities
are central to every facet of human intelligence, from perception and learning, to recognition of
concrete and abstract objects and situations (faces, letters of the alphabet, artistic and musical
styles), and even to acts of great insight and creativity.

In order to isolate and study the mechanisms underlying these abilities, we have developed
a microworld in which analogies are to be made between idealized situations consisting of strings
of letters. We believe that analogy-making in this microworld requires the essence of abilitics
central to perception and analogy-making in real-world situations. A simple analogy problem is
this: If the string abc changes to abd, what is the analogous change for 1jk? A reasonable
description of the initial change is “Replace the rightmost letter by its successor”, and
straightforward application of this rule to the target string ijk yields the commonsense answer ijl
(other, less satisfying answers, such as ijd, are of course possible). However, given the alternate
target string iijjkk, a straightforward, rigid application of the original rule would yield iijjkl,
which ignores the strong similarity between abc and iijjkk when the latter is seen as consisting of
three letter-groups rather than as six letters. If one perceives the role of lerter in abce as played by
letter-group in iijjKK, then in making a mapping between abc and iijjkk one is forced to let the
concept letter “slip” into the similar concept letter-group. The ability to make appropriate
conceptual slippages — in which concepts in one situation are identified with similar concepts in a
different but analogous situation — is central to analogy-making and to cognition in general
(Hofstadter, 1985), and our rescarch centers on investigating how concepts must be structured and
how perception must interact with concepts to allow the fluidity necessary for insightful slippages.

The letter-string microworld was designed to capture the essence of the issues of concepts
and perception that we are investigating. Although the analogies in this microworld involve only a
small number of concepts, they often require considerable insight. An example of such an analogy
is the following: if abe changes to abd, what does xyz change to? At first glance, this problem is
essentially the same as the one with target string ijk discussed above, but there is a snag: Z has no
successor. (Notational note: in this discussion, lowercase boldface letters designate instances of
letter categories, and uppercase boldface letters designate the categories themselves. For example,

765



MITCHELL, HOFSTADTER

z 1s an instance of the category Z.) Many people answer xya, but in our microworld the alphabet
is not circular; this answer is intentionally excluded since the snag forces the analogy-maker to
restructure their original view, to make conceptual slippages that were not initially considered, and
hopefully to discover a more useful and insightful way of understanding the situation. One such
way is to notice that abce is “wedged” against the beginning of the alphabet, and xyz is similarly
wedged against the far end of the alphabet. Thus the A in abe and the Z in xyz can be seen to
correspond, and then one naturally feels that the C and the X correspond as well. Underlying
these object correspondences is a set of conceptual slippages that are mutually parallel:
alphabetic-first = alphabetic-last, right = left, and successor = predecessor, which together yield
an insightful answer: wyz. (For a detailed discussion of the microworld and a large number of
sample analogy problems, see Mitchell, 1988.)

This example 1llustrates how problems in the microworld can contain the essence of many
issues central to perception in general: in order to understand a situation, one must choose from a
large number of possible ways in which the objects in the situation can be described and related to
one another, and in which similarity to other situations can be perceived. It must be decided which
concepts are relevant to the situation at hand, what is salient and what can be ignored, at what level
of abstraction to describe objects, relations, and events, which descriptions to take literally and
which to allow to slip, and so on. And if these choices lead to a impasse that seems to block
progress towards understanding, then one may be required to fluidly restructure one’s original
perceptions, to shift one’s view in unexpected ways, and hopefully to arrive at a deeper, more
essential understanding of the situation. We are developing a computer model of the mental
mechanisms we believe underlie these abilities, in which a notion of temperature has a central role.

2. THE ARCHITECTURE OF COPYCAT

Our computer model, called “Copycat”, solves analogy problems in the microworld.
(Earlier versions of the program have been described by Hofstadter, 1984, and Hofstadter &
Mitchell, 1988a and 1988b.) In Copycat, concepts are modeled using what we call a “Slipnet™: a
network in which a node represents the “core’ of a concept (e.g., first) and a link simultaneously
represents a resemblance or relationship between two nodes and a potential slippage from one to
the other. For example, first is the opposite of /ast, and thus in some circumstances they are
similar and one can be slipped to the other. Each link has a label that roughly classifies the
resemblance or relationship the link encodes. Each type of label is itself represented by a node.
Thus, the nodes first and last are connected by a link with label opposite. During a run of the
program, nodes become activated when perceived to be relevant, and decay when no longer
perceived as relevant. Nodes also spread activation to their neighbors. The amount of similarity
encoded by a link also can vary during a run of the program. Since the plausibility of slippage
between two concepts depends on context (e.g., right = left is plausible in “abe = abd, xyz = 7”
but not in “abc = abd, ijk = 77), the degree of similarity encoded by a link depends on the
relevance of the link’s label to the problem at hand, which is measured by the activation of the node
representing the label (e.g., the activation of the node opposire determines the degree of similarity
between concepts linked in the Slipnet by an opposite link).

In our model, a concept is a region in the Slipnet, centered on a particular node (its core),
having blurry rather than sharp boundaries: any other node is included in the concept
probabilistically, to the degree that it resembles (or can be reached by a slippage from) the core
node of the concept (Hofstadter & Mitchell, 1988a). The result is a network in which concepts are
associative and dynamically overlapping (in Copycat, overlap is modeled by links), and in which
the time-varying behavior of concepts (through dynamic activation and degree of similarity) reflects
the essential properties of the situations encountered.

At the beginning of a run, Copycat is given the three strings of letters; it initially knows
only the category membership of each letter (e.g., a is an instance of category A), which letters are
spatially adjacent to one another, and which letters are leftmost and rightmost in each string. In

766



MITCHELL, HOFSTADTER

order to formulate a solution, the program must perceive what is going on in the problem. To
accomplish this, the program builds various kinds of structures that represent its high-level
perception of the problem. (This is similar to the way the Hearsay-II speech-understanding system
built perceptual structures on top of raw representations of sounds; see Erman et al., 1980.) These
structures represent Slipnet concepts of various degrees of generality being brought to bear on the
problem, and accordingly, each of these structures is built of parts copied from the Slipnet. The
flexibility of the program rests on the fact that concepts from the Slipnet can be “borrowed” for use
in perceiving situations, and that the Slipnet itself is not rigid but fluid, adjusting itself (via
dynamic activation and degrees of similarity) to fit the situation at hand. An essential part of our
model is this interaction of top-down and bottom-up processing: while the program’s perception
of a given problem is guided by the properties of concepts in the Slipnet, those properties
themselves are influenced by what the program perceives.

The types of perceptual structures built by the program include descriptions of objects
(e.g., the Z in xyz is the “alphabetic-last” letter), relations between objects (e.g., the Z in xyz is
the successor of its left neighbor, the Y), groups of objects (e.g., abc is a group increasing in the
alphabet), and correspondences between objects (e.g., the A in abe corresponds to the Z in xyz).
(See section 4 for examples of these structures in a run of the program.) The actual building (and
sometimes destroying) of perceptual structures is carried out by large numbers of simple agents we
call “codelets”. A codelet is a small piece of code that carries out some small, local task that is part
of the process of building a structure (e.g., one codelet might estimate how important it is to
describe the A in abc as “alphabetic-first”, another codelet might notice that the B in abc is the
alphabetic successor of its left neighbor in the string, and another codelet might build a data
structure corresponding to that fact). Each perceptual structure is built by a series of codelets
running in turn, each deciding on the basis of some local evaluation of the structure being built
whether to continue by allowing the next codelet in the series to proceed, or to give up the effort at
that point. If the decision is made to continue, an “urgency’ value is assigned to the next codelet in
the series. This value helps determine how long the codelet has to wait before it can run and
continue the building-up of that particular structure.

All codelets waiting to run are placed in a single pool, and the system interleaves the
building of many different structures by probabilistically choosing the next codelet to run. The
choice is based on the relative urgencies of all codelets in the pool. Thus many different structures
are built up simultaneously, but at different speeds. The speed of such a process emerges
dynamically from the urgencies of its component codelets. Since those urgencies are determined
by moment-to-moment estimates of the promise of the structure being built, the result is that
structures of greater promise will tend to be built more quickly than less promising ones. There is
no top-level executive directing processing here; all processing is carried out by codelets. Codelets
that take part in the process of building a structure send activation to the areas in the Slipnet that
represent the concepts associated with that structure. These activations in turn affect the makeup of
the codelet population (for details, see Mitchell, 1988). (Note that though Copycat runs on a serial
computer and thus only one codelet runs at a time, the system is roughly equivalent to one in which
many activities are taking place in parallel at different spatial locations, since codelets work locally
and to a large degree independently. Copycat’s distributed asynchronous parallelism was inspired
by the similar sort of self-organizing activity that takes place in a biological cell; see Hofstadter,
1984.) In summary, processes that build up structures are interleaved, and many such processes
— some mutually supporting, some competing — progress in parallel at different rates, the rate of
each being set by the urgencies of its component codelets. Almost all codelets make one or more
probabilistic decisions, and the high-level behavior of the system emerges from the combination of
thousands of these very small choices. The result is a parallel terraced scan (Hofstadter, 1983):
many possible courses of action are explored simultaneously, each at a speed and to a depth
proportional to moment-to-moment estimates of its promise. (Note that since the program uses

767



MITCHELL, HOFSTADTER
nondeterminism to arrive at a solution, different answers are possible on different runs.)

3. THE ROLE OF TEMPERATURE

In addition to the Slipnet and codelets, an essential element of Copycat’s architecture is a
temperature variable, which plays two roles. It measures the amount of disorganization (or
entropy) in the system: its value at a given time is a function of the amount and quality of structure
that has been built so far. Thus temperature starts high, and falls as more structure gets built,
rising again if structure gets destroyed. Temperature’s other role is to control the degree of
randomness used in making decisions (such as which codelet should run next, which structure
should win a competition, etc.). The idea is that when there is little perceptual organization (and
thus high temperature), the information on which decisions are based (such as the urgency of a
codelet or the strength of a particular structure) is not very reliable, and decisions should be more
random than would seem to be indicated by this information. When a large amount of good
structure has been built (and thus temperature is low), the information is considered to be more
reliable, and decisions based on this information should be more deterministic.

The solution to the well-known “two-armed bandit” problem (Given a slot machine with
two arms, each with an unknown payoff rate, what is the optimal strategy for profit-making?) is an
elegant mathematical verification of these intuitions (Holland, 1975). The solution states that the
optimal strategy is to sample both arms but with probabilities that diverge increasingly fast as time
progresses. In particular, as more and more information is gained through sampling, the optimal
strategy is to exponentially increase the probability of sampling the “better”” arm relative to the
probability of sampling the “worse” arm (note that one never knows with certainty which is the
better arm, since all information gained is merely statistical evidence). Copycat’s parallel terraced
scan can be likened to such a strategy extrapolated to a many-armed bandit, where each potential
path of exploration corresponds to an arm. (This is similar to the search through schemata in a
genetic algorithm; see Holland, 1975). There are far too many possible paths to do an exhaustive
search, so in order to guarantee that in principle every path has a non-zero chance of being
explored, paths have to be chosen and explored probabilistically. Each step in exploring a path is
like sampling an arm, in that information is obtained that can be used to decide the rate at which
that path should be sampled in the near future.! The role of temperature is to cause the exponential
increase in speed at which promising paths are explored as contrasted with unpromising ones; as
temperature decreases, the degree of randomness with which decisions are made decreases
exponentially, so the speed at which good paths crowd out bad ones grows exponentially as more
information is obtained. This strategy, in which information is used as it is obtained in order to
bias randomness and thus to speed up convergence toward some resolution, but to never
absolutely rule out any path, is an optimal strategy in any situation in which there is a limited
amount of time in which to explore an intractable number of paths. This appears to be an
ubiquitous principle in adaptive systems of all kinds (Holland, 1975), which supports our belief
that the temperature-controlled parallel terraced scan is a plausible description of how perception
takes place in humans.

I It should be made clear that in Copycat, “paths of exploration” are defined as any of the possible
ways in which the program could structure its perceptions of the situation in order to construct an
analogy. Thus possible paths are not laid out in advance for the program to search, but rather are
constructed by the program as its processing proceeds, just as in a game of chess, where paths
through the tree of possible moves are constructed as the game is played. The evaluation of a
given move in a game of chess blurs together the evaluation of many possible look-ahead paths that
include that move. Similarly, any given action in building a structure by a codelet in Copycat is a
step included in a large number of possible paths toward a solution, and an evaluation obtained by
a codelet of a proposed structure blurs together the estimated promise of all these paths.

768



MITCHELL, HOFSTADTER

Temperature allows Copycat to close in on a good solution quickly, once parts of it have
been discovered. In addition, since high temperature means more randomness, raising the
temperature gives Copycal a way to get out of ruts or to deal with snags; it can allow old structures
to break and restructuring to occur so that a better solution can be found. This idea is similar to the
use of temperature in simulated annealing, a technique used in some connectionist networks for
finding optimal solutions (Kirkpatrick et al., 1983; Hinton & Sejnowski, 1986; Smolensky,

1986). Note, however, that the role of temperature in Copycat differs from that in simulated
annealing; in the latter, temperature is used exclusively as a top-down randomness-controlling
factor, its value being set by a rigid “annealing schedule”, not by the state of the network, whereas
in Copycat, the value of temperature reflects the current quality of the system’s understanding, and
is used as a feedback mechanism to determine the degree of randomness used by the system. Ideas
about such a role for temperature were originally presented in Hofstadter (1983, 1984).

4. A RUN OF THE PROGRAM

The following set of screen dumps shows the role of temperature in a run of Copycat on the
problem “abc = abd, xyz = ?7”, initially helping the system to quickly arrive at a seemingly good
solution that unfortunately has a snag, and then helping it to get out of that “local minimum” to
create a deeper understanding of the situation and allow a more insightful answer (wyz) to emerge
from that understanding. Note that since the program is nondeterministic, different answers are
possible on different runs. At present the program produces this answer rarely; it more commonly
produces xyd (using the rule “Replace the rightmost letter by D”), xyz ("Replace all C’s by
D’s”), and yyz (“Replace the leftmost letter by its successor”). These answers, along with
several other possibilities, are discussed in Hofstadter (1985).

AR e
“oa b e --==> & b d " T TR~ b d
>
x y " 'y 5

1. The program is presented with the three strings. The
temperature, initially at its maximum of 100, is represented by a
“thermometer” at the left.

2. Codelets begin to build up perceptual structures. Dashed
lines and arcs represent structures in the process of being built,
and solid lines and arcs represent fully built structures. Once
fully built, a structure is able to influence the building of other
sructures and the temperature. A fully built structure is not
necessarily permanent; it may be knocked down by competing
structures. Here the two solid arcs across the top line represent
correspondences from the A and B in abc to their counterparts in
abd. The shorter dashed arcs inside each string represent
potential successor and predecessor relations in the process of
being built, and the vertical dashed line represents a potential
correspondence between the A and the X.

769



MITCHELL, HOFSTADTER

N

reasl-ireost

———-

1

3. Some relations between letiers within each string have been
built and others continue to be considered. Copycat, unlike people,
has no left-to-right or alphabetic-firsi-io-last biases, and in general
is equally likely to perceive relations in either direction, although
here, successor tends to be activated early when the C-to-D change
is noticed, causing the sysiem o lend to perceive the letters as
having left-to-right successor relations rather than right-to-left
predecessor relations. A correspondence between the C in abe and
the Z in xyz (jagged vertical line) has been built. Both letters are
rightmost in their respective strings: this underlying concept
mapping is displayed beneath the comrespondence. In response to

these structures, the temperature has dropped to 76.

!—ltﬂxc rmostl letier by ssccessor of rwost lllllLJ

——

wid reid rwost dreost

5. abc has been identified as a successor-group, increasing
alphabetically to the right (the relations between the letters still
exist, but are not displayed). A B-Y correspondence has been
built, and a rule (top of screen) has been constructed to describe the
abc-abd change. Note there is no internal structuring of abd.
Copycat currently expects the change from the initial string (here
abc) to the modified string (here abd) to consist of exactly one
letter being replaced. Thus no structures are built in the modified
string except to identify what has changed and what has stayed the
same. The program constructs the rule by filling in the template
“Replace ___ by ____". As was mentioned at the beginning of
section 4, there are several possible rules for describing this
change. Note that a right-to-left predecessor relation between the B
and the C in abc is being considered (dashed arc), and will have to
compete against the already built left-to-right successor group. The
latter, being much stronger than the former, will survive,
especially since the temperature is now fairly low, reflecting thata
high-quality mutually consistent set of structures is taking over.

770

4. More relations have been buil. Note that the potential
predecessor relation between the Z and the Y shown in the
previous screen has fizzled, and a potental successor relation has
taken its place. This demonstrates the top-down pressure on the
system to perceive the situation in terms of concepts it has
already identified as relevant: since successor relations have been
built elsewhere, the node successor in the Slipnet has become
active, causing the system to more easily notice new successor
relations. The program is also considering a left-to-right
grouping of the letters in abc (represented by a dashed rectangle
with a right arrow at the top), and other correspondences between
the letters in abc and in xyz. The temperature has dropped to
71.

lﬁpluu reost letlier by seccessor of recel letler

lmont-ylmont wid duid recst-)rewost

6. xyz has now been described, like abc, as a left-to-right
successor group. (The direction of a group is indicated by an
arrow at the top or bottom of the rectangle representing the
group.) A strong sel of correspondences has been made between
the letters in abe and xyz, and a correspondence between the two
groups (dashed vertical line) is being considered. The
temperature has fallen very low, reflecting the high degree of
perceptual organization, and virtually ensuring that this point of
view will win out.



MITCHELL, HOFSTADTER

Beplace rmost letter by successor of reost letier |
= 3 — T
a b gl -—--> a b d
| f
v z ——3
|mont-3lsost sad-dmid recst-Ireost

Bqrp-ragrp

right->right

FULC = Y I
-: Replace rwost letier by successor of rwost I.tl.rJ

7. All the correspondences have been made. The correspondence
between the two groups is supported by concept mappings
expressing the facts that both are successor groups (displayed as
“sgrp -> sgrp™) based on successor relations (“*succ -> succ™) and
both are increasing alphabetically toward the right. The concept
mappings listed below the correspondences can be interpreted as
instructions on how to translate the rule describing the initial
change so it can be used on the target string. Here the concept
mappings are identities, so the translated rule (appearing at the
bottom of the screen) is the same as the original rule: “Replace
rightmost letter by its successor”. The temperature is almost at
zero, indicating the program’s satisfaction in its understanding of
the situation. But then it hits a snag: it is unable to construct
an answer according to the translated rule, since Z has no
Successor.

Jlepl-c- rwost letler by successor of rwost lcllcrl

—— a b d

Ix r ‘;l ——
wid-duld recst-yrmosl
£qrp-ragrp

right->right

BuCC-dauce

8. Being unable to take the successor of Z, the program has hit
an impasse, which causes the temperature to go up to 100. This
causes compelitions between structures to be decided more
randomly, and allows structures to be destroyed more easily (as
can be seen, the A X correspondence has been broken). In
addition, since the Z was identified as the cause of the impasse,
the node Z in the Slipnet becomes highly activated, which
spreads activation to alphabetic-last, making this concept
relevant to the problem. In tum, alphabetic-last spreads
activation to alphabetic-first.

2]

wid-rmid

9. After breaking more structures and making other ineffectual
attempts at restructuring (not shown), the program has noticed
the relationship between the letters A and Z, and is trying to
build a correspondence between them. Underlying it are two
slippages: “leftmost -> rightmost” and “first -> last”. Before
the impasse was reached, the descriptions first and last were
neither seen as relevant nor considered conceptually close enough
to be the basis for a correspondence. But the combination of
high temperature and the focus on the Z make this mapping
possible, though still not easy, to make. In fact, on most runs
of program on this problem, this mapping is either never made,
or quickly destroyed once made. But in this run, this
correspondence, once made, is perceived to be strong.

771

I_lcpllct rwost letter by successor of rwost lsl.t:r]

Isoat-rrwost
first->last

10. Many possible ways of restructuring the situation are being
considered simultaneously, but the program is beginning to
develop an understanding of the situation based on the A-Z
correspondence. Under pressure from this correspondence, the
program is now beginning to perceive xyz as a right-to-lefi
predecessor group (yz has already been perceived as such, and the
direction of the relation between the X and the Y has reversed).
This new way of structuring the problem seems promising; the
new structures have caused the temperature to fall to 60.



MITCHELL, HOFSTADTER

thpl.ce imost letler by IUC(‘!!;GF of r‘ﬁ!_r-fcilc_;-]

Iwest yrmoat
farat-+last

11. The “first -> last™ slippage has engendered a complete
restructuring of the program's perception of xyz (which is now
understood as a right-to-left predecessor group, opposite in
direction from the group abc) and the program is closing in on a
solution. Alternative ways of structuring the situation are still
being considered, but the low temperature reflects the program s
satisfaction with its current understanding, and will make it hard
for any alternatives to compele at this point.

E‘p‘ll" n-o-l-ll.Tl.l_u by succeamor of rwosi lc'll_u.]

rwost-yleast sid owid Jwoatl yrwost

agrp-rpgry’ rat-1leat
| right sheft
| succ dpred

3]
. l_."Pl“' I-anl_l:t-r by predacessor of Imost Inllcr]

12. The mapping is complete and all attempts at building rival
structures have ceased. The concept mappings listed underncath
the correspondences give the slippages needed to translate the
rule. The translated rule (“Replace lefimost letter by predecessor
of leftmost letter™) appears at the bottom of the screen, and the
answer wyz appears al the right.

ACKNOWLEDGEMENTS
We thank David Chalmers, Robert French, Liane Gabora, Kevin Kinnell, David Moser, and Peter Suber for their
ongoing contributions to this project and for many helpful comments on this paper. This research has been supported by
grants from Indiana University, the University of Michigan, and Apple Computer, Inc., as well as a grant from Mitchell
Kapor, Ellen Poss, and the Lots Development Corporation, and grant DCR 8410409 from the National Science

Foundation.

REFERENCES
[1] Erman. L.D., F. Hayes-Roth, V. R. Lesser, and D. Raj Reddy (1980). The Hearsay-II speech-understanding system:
Integrating knowledge to resolve uncenainty. Computing Surveys, 12 (2), 213-253.
[2] Kirkpatrick, S., C.D. Gelatt Jr., and M. P. Vecchi (1983). Opumization by simulated annealing. Science, 220 (4598),

671-680.

[3] Hinton, G.E. and T.J. Sejnowski (1986). Learning and relearning in Boltzmann machines. In McClelland, J. and D.
Rumelhart (1986) (Eds.). Parallel distributed processing (pp. 282-317). Cambridge, MA: Bradford/MIT Press.
[4] Hofstadter, Douglas R. (1983). The architecture of Jumbo. Proceedings of the International Machine Learning

Workshop. Monticello, Il.

[5] Hofstadter, Douglas R. (1984). The Copycat project: An experiment in nondeterminism and creative analogies (Al

Memo #755). Cambridge, MA: MIT Al Laboratory.

[6] Hofstadter, Douglas R. (1985). Analogies and roles in human and machine thinking. In Metamagical Themas (pp.

547-603). New York: Basic Books.

[7] Hofstadter, Douglas R. and Melanie Mitchell (1988a). Concepts, analogies, and creativity. In Proceedings of the
Canadian Society for Compuwtational Studies of Intelligence. Edmonton, Alberta: Univ, of Alberta.

[8] Hofstadter, Douglas R. and Melanie Mitchell (1988b). Conceptual slippage and analogy-making: A report on the
Copycat project. Proceedings of the Tenth Annual Conference of the Cognitive Science Society. Hillsdale, NJ: Lawrence

Erlbaum Associates.

[9] Holland, John (1975). Adaptation in natural and artificial systems. Ann Arbor, MI: Univ. of Michigan Press.
[10] Mitchell, Meclanie (1988). A computer model of analogical thought. Unpublished thesis proposal. University of

Michigan, Ann Arbor, MI.

[11] Smolensky, P. (1986). Information processing in dynamical systems: Foundations of harmony theory. In
McClelland, J. and D. Rumelhart (1986) (Eds.). Parallel distributed processing (pp. 194-281). Cambridge, MA:

Bradford/MIT Press.

772



	cogsci_1989_765-772



