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Abstract

Ellipsoidal Algorithm for Fast Computation of Reachable Tubes

by

Lia M. Gianfortone

We study the problem of computing the forward “reachable tube”, defined as a tem-

poral union of the “reach sets” of a dynamical system, or the sets of states the system

can attain in future instances of time when subject to set-valued uncertainties in

its initial conditions, controls, and exogenous disturbances. Fast computation of the

reachable tubes for uncertain dynamical systems is essential for safety-critical applica-

tions such as autonomous driving and unmanned aerial systems traffic management

where much of the high-level decision making (e.g., lane changing in autonomous

driving or switching between motion primitives during flight of an unmanned aerial

system) critically depends on the reachable tubes. At the same time, computation

of the reachable tubes is difficult in general, due to the high-dimensional, non-convex

nature of the problem. Yet applications mentioned before demand their accurate

computation at a time scale much smaller than that of the physical dynamics.

In this thesis, we propose a framework for computing tight outer approximations

of forward reachable tubes in real-time that leverages parallel computation. Our

algorithm builds on ellipsoidal calculus and convex optimization. We report numerical

results to demonstrate the efficacy of the proposed algorithm.
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Introduction

1.1 Motivation and Overview

Verification of motion under uncertain conditions is necessary for many applica-

tions, e.g., trajectory planning and collision avoidance for unmanned vehicles such as

drones or self-driving cars operating in dynamic environments. Verification is non-

trivial task because all possible states that a system can reach must be accounted

for, and the underlying dynamics may have high-dimensional state space. Thus, sim-

ulating a large but finite number of trajectories (as in Monte Carlo) does not lead to

provable verification.

Reachability analysis provides approaches for provable verification that involves

computing the so-called reach sets for set-valued uncertainties in initial state vector

x0, controls u(t), and exogenous disturbances w(t). At time t, let the dynamical

system of interest have state vector x(t) ∈ Rn, the controls u(t) ∈ U(t) ⊂ Rm, and
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the disturbances w(t) ∈ W(t) ⊂ Rd. We assume that the sets U(t),W(t) are compact

for all t ≥ t0. The reach set at time t, denoted as X [t] := X (t, t0,x0) ⊂ Rn is the set

of all state vectors x := x (t, t0,x0) that can be realized at time t starting from the

initial condition {t0, x0}, where x0 := x(t0). Succinctly,

X (t, t0,x0) =
⋃

u(t)∈U(t),
w(t)∈W(t)

x(t, t0,x0) (1.1)

For a set-valued initial state, X0 ⊂ Rn, the reach set at time t resulting from {t0,X0}

is

X (t, t0,X0) =
⋃

x0∈X0

X (t, t0,x0) (1.2)

The reachable tube X̃ (t, t0,X0) for the interval [t0, t] is the (n + 1)-dimensional set

generated by the time unions of the reach sets within that interval, that is,

X̃ (t, t0,X0) =
⋃

t0≤τ≤t

X (τ, t0,X0). (1.3)

The sets X and X̃ generated by an uncertain dynamical of a system can be checked

against the sets of desirable and undesirable states to verify safety [17]. Discretizing

the sets of initial conditions, controls, and disturbances and then simulating trajec-

tories of the system is insufficient for approximating reach sets because all possible

states of the system are not accounted for in such simulations. For this reason, an-

alytical formulations of over-approximations X̂ to these reach sets X are sought, so

that X̂ ⊇ X is guaranteed via analysis. The objective of this thesis is to develop

an algorithm for fast computation of X̂ for a given dynamical system and set-valued

uncertainty descriptions.
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1.2 State of the Art

Two representations for the over-approximation X̂ are possible: parametric and

non-parametric; these lead to two distinct strands of literature. The predominant

approach for non-parametric approximation for the reach set is the so-called level

set method, capable of yielding exact representations of the reach sets of nonlin-

ear systems by solving the Hamilton-Jacobi-Bellman (HJB) partial differential equa-

tion (PDE). The forward reach set of a system is solved as the set of states x that

yield the sub-zero-level set of a value function V0(x) that solves the HJB equation,

X [t] = {x | V0(x) ≤ 0} [13, p. 54]. This approach is restricted for real-time compu-

tation of the reach sets for high-dimensional systems because it suffers from the curse

of dimensionality [3], its computational cost scales exponentially with the dimension

of the state vector [16]. To address the intractability of this approach for high dimen-

sions, the problem can be decomposed into several computations over small numbers

of dimensions [7][8].

In the parametric approach, parametric descriptions of the sets are evolved in

a way to provably over-approximate the reach sets. Possible convex shapes include

polytopes and ellipsoids. The faces of polytopes can be described by matrices and

vectors, but the number of faces cannot be fixed as the shape evolves under the

system dynamics and may grow fast depending on the dynamics [14]. Thus, the main

difficulty with polytopic outer-approximation is that it leads to variable-complexity

computation. In contrast, the ellipsoidal parameterization adopted in this work is
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a fixed-complexity computation. This is because an arbitrary ellipsoid in Rn can

be parameterized by n(n + 3)/2 reals, of which n reals specify its center, and the

rest n(n+ 1)/2 reals specify its shape given by a symmetric positive definite matrix.

Ellipsoidal representation is favorable over Euclidean n-balls because the n principal

semi-axes of the ellipsoid allow a less conservative estimate of the actual reach set,

whereas the radius of a bounding ball would necessarily be the maximum of these

semi-axes.

Guaranteeing that the ellipsoids outwardly-bound the reach sets generated by a

set-valued uncertain system is nontrivial. Even if these sets are bounded by ellipsoids,

their shapes are deformed by the dynamics. Kurzhanski and Varaiya [13] developed

a parametrized ordinary differential equation (ODE) describing the evolution of el-

lipsoids that are guaranteed to over-approximate the reach set of an LTV system. At

any time t, the ODE has infinite solutions that are ellipsoids guaranteed to outwardly-

bound the actual reach set X [t]. One shortcoming of this parameterization is that

the quality of the ellipsoidal approximation with respect to the initial parameter is

unpredictable. Because all ellipsoids generated by “Kurzhanski’s method” for a time

t contain the actual reach set X [t], the intersection of any number of these ellip-

soids must also contain the reach set. Therefore, we can take X̂ [t] as the intersection

of these parameterized ellipsoids at time t. Since the intersection of convex sets is

convex, we thus get a convex over-approximation X̂ [t] ⊇ X [t] at any time t. In

other words, the reach set over-approximation problem is reduced to computing the

intersection of ellipsoids.
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1.3 Novel Contributions

The discussion above motivates computing an over-approximation of the intersec-

tion of a parameterized family of ellipsoids. Since we want such an over-approximation

to be “tight”, we are naturally led to the Löwner-John optimization problem [4], which

enables the calculation of ELJ, a volume-minimizing ellipsoidal bound for a given con-

vex set. Once the minimum-volume outer-ellipsoid (MVOE) of the intersection is

computed, a simple approximation of the reachable set X̃ can be obtained by com-

puting the Löwner-John MVOE of the union of the MVOEs that over-approximate

the reach sets.

The algorithm that results from the implementation of the methods described

above lends itself well to parallelization since computation of ellipsoidal approxi-

mations that solve Kurzhanski’s ODE can be done independently and because the

optimization to determine the MVOE of the reach set at each time is independent of

the same at any other time.
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2

Ellipsoidal Calculus for Linear

Dynamical Systems

2.1 Ellipsoids

An ellipsoid in n dimensions, denoted as E(q,Q), can be described as the sub-

level set of a quadratic function, codified by a unique vector-matrix tuple (q,Q) where

q ∈ Rn and Q ∈ Sn+, the cone of symmetric positive definite matrices of size n × n.

Symbolically, we write

E(q,Q) = {x ∈ Rn | (x− q)>Q−1(x− q) ≤ 1}. (2.1)

Hereafter we refer to q as the “center vector” and Q as the “shape matrix”.

Lengths of the semi-axes of such an ellipsoid are the squares of the eigenvalues of
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Q. The volume of the ellipsoid is

vol (E(q,Q)) =
vol (Bn1 )√
det (Q−1)

=
π

n
2

Γ
(
n
2

+ 1
)√det (Q), (2.2)

where Γ is the gamma function and Bn1 is the Euclidean unit n-ball [9].

Eqn. (2.1) is referred to here as the “Qq” representation. There are several other

parametric representations for ellipsoids, one of which, the “Abc” form, will be useful

for the proposed ellipsoidal algorithm. In the “Abc”, form the ellipsoid is described

as

E(A,b, c) = {x ∈ Rn | x>Ax + 2x>b + c ≤ 0}, (2.3)

where A ∈ Sn and b>A−1b− c > 0. The latter requirement ensures that the ellipsoid

is non-empty. Notice that E remains unchanged when A, b, and c are multiplied by

any positive scalar.

The transformation from the Qq form to the Abc form is

A = Q−1, b = −Q−1q, c = q>Q−1q − 1, (2.4)

and the inverse of this transformation is

Q = A−1, q = −A−1b. (2.5)

The affine transformation of an ellipsoid is another ellipsoid. To verify this, let

y := Cx + d so that x = C−1(y − d), where C ∈ Rn×n is invertible and d ∈ Rn.
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Then the condition in Eqn. (2.1) becomes

1 ≥
(
C−1(y − d)− q

)>
Q−1

(
C−1(y − d)− q

)
=
(
C−1(y − d−Cq)

)>
Q−1

(
C−1(y − d−Cq)

)
= (y − (Cq + d))>

(
CQC>

)−1
(y − (Cq + d)) .

(2.6)

Comparing the last line with Eqn. (2.1), it is evident that under affine transformation

y = Cx + d the ellipsoid E(q,Q) becomes the ellipsoid E(Cq + d,CQC>).

A non-empty, closed, convex set X ⊂ Rn can be uniquely described by its support

function [13, p. 20],

ρ(`|X ) = max{〈`,x〉 | x ∈ X}, (2.7)

where 〈·, ·〉 denotes the Euclidean inner product. Therefore, the function ρ : X 7→ R.

We clarify here that the maximization in (2.7) is over all vectors x ∈ X . If the non-

empty, closed convex set X is also bounded then the support function returns finite

scalars. The function ρ (`|X ) is convex in the vector variable ` ∈ Rn, and encodes the

distances from the origin to the supporting hyperplanes of X . The support function

of an ellipsoidal set E(q,Q) is given by [13, p. 89]

ρ(`|E(q,Q)) = max{〈`,x〉 | x ∈ E(q,Q)} (2.8)

= 〈`, q〉 + 〈`,Q`〉1/2. (2.9)
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2.2 Linear Time-Varying Dynamical Systems

We consider the linear time-varying (LTV) dynamical system in continuous-time,

given by

ẋ(t) = A(t) x(t) + B(t) u(t) + G(t) w(t) (2.10)

where the state x(t) ∈ Rn, the controls u(t) ∈ Rm, the exogenous disturbances

w(t) ∈ Rd, A(t) ∈ Rn×n, B(t) ∈ Rn×m, and G(t) ∈ Rn×d for all t ∈ [t0,∞). We

consider the control u(x, t) := ufeedback(x, t) +ufeedforward(t). Furthermore, we assume

linear state feedback, i.e., ufeedback(x, t) := K(t)x(t) and let ufeedforward(t) ≡ v(t).

Then we can rewrite Eqn. (2.10) as

ẋ(t) = Acl(t) x(t) + B(t) v(t) + G(t) w(t), (2.11)

with Acl(t) := A(t)+B(t)K(t) where K(t) ∈ Rm×n denotes the feedback gain matrix

at time t. We will consider the evolution of set-valued uncertainties subject to the

LTV dynamics (2.10) or (2.11).

2.3 Evolving Ellipsoids with LTV Dynamics

We model the set-valued uncertainties in initial states, controls, and exogenous

disturbances in (2.10) as non-degenerate ellipsoids given by

x(t0) ∈ E (x0,X0) ,

u(t) ∈ E (uc(t),U(t)) ,

w(t) ∈ E (wc(t),W (t)) ,

(2.12)
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where the center vectors x0 ∈ Rn, uc(t) ∈ Rm, wc(t) ∈ Rd for all t ≥ t0. Furthermore,

the shape matrices X0 ∈ Sn+, U(t) ∈ Sm+ , and W (t) ∈ Sd+ for all t ≥ t0. The set-

valued descriptions given by Eqn. (2.12) model structured, weighted, norm-bounded

uncertainties in the initial condition, controls, and disturbances.

The linear differential inclusion associated with Eqns. (2.10) and (2.12) is

ẋ(t) ∈ A(t)E (xc(t),X(t)) uB(t)E (uc(t),U(t)) uG(t)E (wc(t),W (t)) (2.13)

where u denotes the geometric or Minkowski sum of sets [6], defined for arbitrary

sets A,B ⊂ Rn as

Au B = {a + b : a ∈ A, b ∈ B}. (2.14)

2.3.1 Without Controls or Disturbances

For a system without controls or disturbances (B(t) ≡ G(t) ≡ 0), the state

dynamics becomes

ẋ(t) = A(t)x(t), (2.15)

which results the solution

x(t) = Φ(t, t0)x0, (2.16)

where Φ(t, t0) is the state-transition matrix corresponding to the coefficient matrix

A(t). Then, the reach set from an ellipsoidal initial state E(x0,X0) is itself an ellip-

soid E(xc(t),X(t)) with its center xc(t) = Φ(t, t0)x0, and its shape matrix obtained

from the ODE,

Ẋ(t) = A(t)X(t) + X(t)A>(t). (2.17)
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The linear matrix differential equation (2.17) is well-known as the Lyapunov differ-

ential equation, and admits solution

X(t) = Φ(t, t0)X0Φ
>(t, t0), (2.18)

that is, the shape matrix at any time is the congruence transformation of the initial

shape matrix, and hence guaranteed to be in Sn+. This fact can be checked by directly

substituting (2.18) in (2.17), and using the following properties of the state transition

matrix Φ(t, t0):

Φ̇(t, t0) = A(t)Φ(t, t0),

Φ(t2, t0) = Φ(t2, t1)Φ(t1, t0),

Φ(t, t0) = Φ−1(t0, t).

(2.19)

If the system is time-invariant, i.e., A(t) is constant in time, then Φ(t, t0) = eA(t−t0)

and the reach set is

X [t] = E
(
eA(t−t0)x0, e

A(t−t0)X0e
A>(t−t0)

)
. (2.20)

2.3.2 With Controls but No Disturbances

A system with controls but no disturbances (G(t) ≡ 0) has reach sets given by

the Minkowski sum of the transformation matrix operating on the initial set and a

set-valued, Aumann integral [1],

X (t, t0, E(x0,X0)) = Φ(t, t0)X0 u
∫ t

t0

Φ(t, τ)B(τ)U(τ) dτ. (2.21)
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Eqn. (2.21) can be equivalently described as

X (t, t0,X0) = xc(t)uΦ(t, t0)E(0,X0)u
∫ t

t0

Φ(t, τ)E
(
0,B(τ)U(τ)B>(τ)

)
dτ (2.22)

with the center vector guided by the Eqn. (2.10),

xc(t) = Φ(t, t0)x0 +

∫ t

t0

Φ(t, τ)B(τ)uc(τ) dτ. (2.23)

The Minkowski sum of the sets in (2.21) is convex but is non-ellipsoidal in general

and difficult to evaluate numerically. The support function of the Minkowski sum of

two convex sets, however, is simply the sum of their support functions [13],

ρ(`,Au B) = ρ(`,A) + ρ(`,B). (2.24)

Thus, to circumvent evaluation of the Aumann integral and Minkowski sums in Eqn.

(2.21), we consider the support function of X [t],

ρ(`|X [t]) = 〈`,xc〉+ 〈`,Φ(t, t0)X0Φ
>(t, t0)`〉1/2

+

∫ t

t0

〈`,Φ(t, τ)B(τ)U(τ)B>(τ)Φ>(t, τ)`〉1/2 dτ (2.25)

which describes a convex compact set that evolves continuously as a function of t.

We can consider outer ellipsoidal approximations, E+ ⊇ X [t] that are guaranteed to

be “tight” bounds of the actual reach set if there exists an ` ∈ Rn such that

ρ(±`|E+) = ρ(±`|X [t]). (2.26)

This condition does not produce a unique ellipsoid, but rather a class of outer ellip-

soids, parameterized by the support vectors `i, indexed by i, that are tight around
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the reach set [13, p. 91]. Kurzhanski and Varaiya showed that the shape matrices

of ellipsoidal outer-approximations of the reach sets described by Eqn. (2.25) with

condition (2.26) can be recursively determined as the solutions of the ODE [13, p. 89]

Ẋ`i(t)(t) = A(t)X`i(t)(t) + X`i(t)(t)A
>(t) + π`i(t)X`i(t)(t) +

1

π`i(t)
B(t)U(t)B>(t)

(2.27)

where `i(t) is governed by the adjoint ODE

˙̀
i(t) = −A>(t)`i(t), `i0 = `i(t0), 〈`i0, `i0〉 = 1, (2.28)

and can be solved as `i(t) = Φ(t, t0)`i0. The scalar function π`i(t)(t) is given by

π`i(t)(t) :=

(
`>i (t)B(t)U (t)B>(t)`i(t)

`>i (t)X`i(t)(t)`i(t)

)1/2

. (2.29)

2.3.3 With Controls and Disturbances

With both controls and disturbances present, the reach set generated by (2.10)

and (2.12) is

X (t, t0, E(x0,X0)) = Φ(t, t0)X0 u
∫ t

t0

Φ(t, τ)
(
B(τ)U(τ) uG(τ)W(τ)

)
dτ. (2.30)

Kurzhanksi and Varaiya [14, p. 20] showed that the shape matrices for tight el-

lipsoidal outer-approximations of the reach set given by (2.30) are solutions of the

ODE

Ẋ`i(t)(t) = A(t)X`i(t)(t) + X`i(t)(t)A
>(t) + π`i(t)X`i(t)(t)

+
1

π`i(t)
B(t)U(t)B>(t)−

√
X`i(t)(t)S`i(t)(t)

√
G(t)W (t)G>(t)

−
√

G(t)W (t)G>(t)S>`i(t)(t)
√

X`i(t)(t)

(2.31)
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where `i(t) and π`i(t)(t) are defined as in (2.28) and (2.29) and the orthogonal n× n

matrix S`i(t)(t) satisfies the scaling condition

S`i(t)(t)

√
G(t)W (t)G>(t)`i(t)∥∥∥√G(t)WG>(t)`i(t)

∥∥∥
2

=

√
X`i(t)(t)`i(t)∥∥√X`i(t)(t)`i(t)

∥∥
2

. (2.32)

This matrix S := S`i(t)(t) can be generated in O(n2) runtime with the following

procedure [13, p. 193],

S = In + Q1(So − I2)Q
>
1 ,

So =

 c s

−s c

 , c = v̂>1 v̂2, s =
√

1− c2, v̂i =
vi
‖vi‖

,

Q1 = [q1, q2] ∈ Rn×2, q1 = v̂1, q2 =


s−1(v̂2 − cv̂1), s 6= 0,

0, s = 0

,

(2.33)

where Im is the m × m identity matrix and v̂1 and v̂2 are defined to be the corre-

sponding terms in Eqn. (2.32) so that

S`i(t)(t)v̂1 = v̂2. (2.34)

The ellipsoids thus generated with Kurzhanski’s parameterization satisfy the asymp-

totic consistency condition

X (t, t0, E(x0,X0)) =
∞⋂
i=1

E(xc(t),X`i(t)(t)). (2.35)

Thus, the intersection of a finite number (say, N`) of these ellipsoids can serve as an

outer approximant X̂ [t] for the true reach set X [t], maintaining

X (t, t0, E(x0,X0)) ⊆ X̂{`i0}N`
i=1

(t, t0, E(x0,X0)) =

N⋂̀
i=1

E
(
xc(t),X`i(t)(t)

)
. (2.36)
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2.4 Löwner-John Optimization

The Löwner-John ellipsoid ELJ of a compact set is the minimum volume outer

ellipsoid (MVOE) that bounds the set [10][11]. An ellipsoid described as the affine

transformation of the unit ball,

E = {x ∈ Rn | ‖Ax + b‖2 ≤ 1}, (2.37)

with A ∈ GL(n), the general linear group of degree n (the set of invertible n × n

matrices), and b ∈ Rn (not to be confused with A and b of the Abc parameterization),

has volume proportional to det A−1. Computing the MVOE of a compact set S thus

reduces to solving the optimization problem

minimize log detA−1

subject to sup
x∈S
‖Ax + b‖2 ≤ 1

(2.38)

for variables A and b with the constraint A � 0 [5, p. 410]. If the set S is convex,

then the problem (2.38) is convex in decision variables A and b, and its solutions

are guaranteed to exist and be unique. The argmin pair (A0, b0) then defines ELJ via

(2.37). One can think of ELJ as a set-valued operator that maps the given convex set

S to its unique MVOE.

For any given convex set S, solving (2.38), however, is non-trivial since there are

an infinite number of constraints in (2.38). In other words, (2.38) is a semi-infinite

programming problem. For a given convex set S, one needs to consider if an exact

semidefinite (SDP) representation of (2.38) is possible. If not, one may then consider

deriving an SDP relaxation for (2.38) valid for that particular convex set S.
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2.4.1 MVOE of the Intersection of Ellipsoids

Kurzhanski’s parameterization enables the reach set (2.30) to be over-approximated

as the intersection of a finite number of ellipsoids generated by the parametric ODE

(2.31). The intersection of a set of ellipsoids is convex, as depicted in Figure 2.1. Our

objective is to compute the Löwner-John MVOE of this intersection. However, the

semi-infinite programming problem (2.38) for computing ELJ
(⋂N`

i=1 Ei
)

that contains

the intersection of N` ellipsoids, i.e.,

ELJ ⊇
N⋂̀
i=1

Ei (2.39)

has no known exact SDP representation. We instead focus on computing a subop-

timal MVOE E0 that can be solved as an SDP relaxation of (2.38), that is, E0 ⊇

ELJ
(⋂N`

i=1 Ei
)

.

There exist several methods for computing suboptimal MVOEs of the intersection

of some N` ellipsoids [4, p. 44]. We use the S-procedure [18, p. 62] to derive an SDP

relaxation for the same. The resulting SDP is written for ellipsoids in the Abc form,

requiring the transformation given in Eqn. (2.4) to solve and the transformation in

Eqn. (2.5) to obtain E0 in our preferred Qq form.

The S-procedure yields the sufficient inclusion condition that there exist non-

negative scalars τ1 . . . τN`
such thatA0 b0

b>0 b>0 A
−1
0 b0 − 1

− N∑̀
i=1

τi

Ai bi

b>i ci

 ≤ 0 (2.40)
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Figure 2.1: The dark shaded region is the intersection of the three ellipsoidal sets,

depicted.

where A0, b0, c0 are normalized to satisfy

c0 = b>A−10 b0 − 1. (2.41)

for convenience. This normalization is allowed by the homogeneity of the Abc repre-

sentation for the ellipsoid E0.

Eqn. (2.40) can be rewritten as the linear matrix inequality (LMI)
A0 b0 0

b>0 −1 b>0

0 b0 −A0

−
N∑̀
i=1

τi


Ai bi 0

b>i ci 0

0 0 0

 ≤ 0. (2.42)

The LMI (2.42) is a sufficient condition for E0 ⊇ ELJ
(⋂N`

i=1 Ei
)

, hence the sub-

optimality of its solutions. The ellipsoid that satisfies (2.42) with least volume is

17



Figure 2.2: The MVOE that bounds the intersection of the three ellipses, shown in

Figure 2.1, is filled in red with a dashed boundary.

determined by solving the SDP

minimize log detA−10

subject to A0 � 0, τ1 ≥ 0, . . . , τN`
≥ 0.

(2.43)

In Figure 2.2 the MVOE is the red-filled ellipse with dashed boundary that solves

the problem (2.43) to outer-approximate the intersection of the blue ellipses. We

summarize: the solution of the SDP (2.43) can be used to find a suboptimal Löwner-

John MVOE for the intersection of the N` ellipsoids generated with the Kurzhanski

parameterization that is guaranteed to be a better outer-approximation than any one

of the N` ellipsoids alone.
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2.4.2 MVOE of the Union of Ellipsoids

Unlike the problem of computing the MVOE for the intersection of ellipsoids, that

for the union of ellipsoids is an exact SDP [5, p. 411]. Using the Abc parameterization

of ellipsoids, the MVOE ELJ of the union of some N` ellipsoids is computed by solving

minimize log detA−10

subject to A0 � 0, τ1 ≥ 0, . . . , τN`
≥ 0

A2 − τiAi b̃− τibi 0

(b̃− τibi)> −1− τici b̃>

0 b̃ −A2

 ≺ 0, i = 1, . . . , N`,

(2.44)

where b̃ := Ab. This problem is convex in the variables A2 ∈ Sn+, b̃, and τ1, . . . , τN`
.

Figure 2.3: The pink ellipse with dashed boundary is the MVOE of the union of the

three darker ellipses.

This procedure can be used to obtain a low-complexity parameterization of the
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reachable set X̃ of a system given a set of K ellipsoids that approximate the reach sets

for a sequence of K discrete times. The reachable set X̃ is then outer-approximated

as an ellipsoidal cylinder over the time interval [t0, tK ] with uniform cross-section,

ELJ

(
K⋃
k=1

E
(
xc(tk),X`i(t)(tk)

))
. (2.45)

Figure 2.3 shows the MVOE, dashed, of the union of three depicted ellipses.

2.5 Projection of Solution

Oftentimes reachable tube solutions for a subset of states are sought. For example,

in vehicular collision avoidance applications, reachable tubes are typically desired for

only the three spatial dimensions. In our setting, the projection of the cross section

of the uniform outer-ellipsoidal approximation for the reachable tube is

proj

(
ELJ

(
K⋃
k=1

ELJ

(
N⋂̀
i=1

E
(
xc(tk),X`i(tk)(tk)

))))
. (2.46)

Conveniently, we are able to commute the projection operator, dramatically re-

ducing the computational runtime of the algorithm. On the other hand, the set union

commutes with any (even nonlinear) transformation. This can be shown for a general

nonlinear function f ,

f ◦ (A ∪ B) = f ◦ {c : c ∈ A or c ∈ B}

= {f ◦ c : c ∈ A or c ∈ B}

= (f ◦ A) ∪ (f ◦ B)

(2.47)
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The Löwner-John optimization also commutes with linear operators such as the

projection [5, p. 415]. The intersection of sets commutes with operators only if they

are injective. Since the projection operator is guaranteed to be non-injective, the

projection of the intersection of the sets is a subset of the intersection of the projection

of the sets [15]. With these observations in place, we can compute

ELJ

(
K⋃
k=1

ELJ

(
N⋂̀
i=1

proj
(
E
(
xc(tk),X`i(tk)(tk)

))))
(2.48)

which is a superset of the set given by Eqn. (2.46).
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3

Algorithm

The proposed algorithm approximates the projected reachable tube of a given

dynamical system for a specified discrete sequence of times T with a single outer-

bounding ellipsoid that is constant along the time-axis of the tube approximation.

The algorithm is outlined as follows,

Integrate Eqn. (2.10) to get xc(tk) for all tk ∈ T

Generate N` random unit vectors

for i = 1 to N` do

Integrate Kurzhanski’s ODE (Eqn. (2.31)) to get X`i(tk) for all tk ∈ T

Project xc(T ) and X`i(T ) onto desired subset of space dimensions

end for

for each tk ∈ T do

Solve CP (Eqn. (2.43)) to get ELJ of intersection of N` ellipsoids at time tk

end for
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Solve SDP (Eqn. (2.44)) to get ELJ of the union of the MVOEs of the intersections

Return ELJ

The processes within the for-loops are independent of each other. As a result, the

loops are well-suited for parallelization. Figure 3.1 depicts algorithm’s stages and its

inherent parallel structure.

Figure 3.1: A schematic that illustrates the parallel nature of the algorithm. The ver-

tical broken arrows denote the parallel propagation of ellipsoidal reach set estimates

with Kurzhanski’s ODE (2.31) for five parameterizing `i0 vectors. The horizontal bro-

ken arrows labeled “Inner SDP” are the parallelizable computations of the MVOEs

for the intersections of the ellipsoids at each of the four time steps.
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4

Numerical Results

4.1 Reach Sets for the Double Integrator System

with Bounded Control

The double integrator, having known reach set solutions, is an ideal system to

demonstrate and analyze the performance of the proposed algorithm. The two-

dimensional double integrator system is the planar system ẍ = u with symmetrically

bounded control, |u| ≤ µ, can be written in the state-space form,

ẋ1 = x2, ẋ2 = u,

x1(0) = x01, x2(0) = x02; |u| ≤ µ, µ > 0.

(4.1)

The exact reach set for this system is known to be a compact set with two distinct

boundaries: upper and lower. These two boundaries meet at two corner points (see
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Figure 4.1: Left: The analytical reach set of the double integrator system at t = 1

with control |u| ≤ 2 and initial state (x01, x
0
2) = (0, 0). Right: A discretization of the

analytical reachable tube of the double integrator with control |u| ≤ .3 and initial

state (x01, x
0
2) = (0, 0). The tube describes the reachable states over 60s, evaluated at

single-second intervals.

Fig. 4.1(Left)). The parametric equation for the upper

x+1 (t) = x01 + x02t− µ(t2/2− σ2) x+2 (t) = x02 − 2µσ − µt (4.2)

and the same for the lower boundary is given by

x−1 (t) = x01 + x02t+ µ(t2/2− σ2), x−2 (t) = x02 + 2µσ + µt, (4.3)

with the parameter σ constrained to the interval [−t, 0] [13, p. 111]. A reach set

defined by these curves is shown on the left in Figure 4.1. The union of these reach

sets over an interval of time is the reachable set X̃ for the system. A wireframe plot

for the three-dimensional set X̃ is shown on the right in Figure 4.1.

Slight reformulation of the system is necessary to approximate the reachable tube

of the system with the proposed ellipsoidal algorithm. The scalar interval |u| ≤ µ
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Figure 4.2: The analytical reach set (heavy dash) at t = 1.6 of the 2D double integra-

tor with |u| ≤ 2 and x0 = (0, 0). Also pictured are outer-approximating ellipses (blue

without outline) generated with Kurzhanski’s parameterization, and the MVOE of

the intersection of these ellipses (red-filled, thin dashed outline).

can be represented as the inclusion u ∈ E(0, µ2) for a one-dimensional ellipsoid in the

Qq form that is centered at the origin with shape given by µ2. To approximate a

point-valued initial condition (x01, x
0
2) we use a near-degenerate ellipse E(x0,X0) with

x0 = (x01, x
0
2) and X0 = εI where ε is a small scalar, 10−4 for this simulation, and I

is the 2× 2 identity matrix.

Figure 4.2 overlays ellipsoidal outer-approximations (blue with no boundary line)

of the reach set of the double integrator under initial condition (x01, x
0
2) = (0, 0) and

control constraint |u| ≤ 2 with the known analytical solution and the MVOE that

the algorithm yields (red with dashed boundary).

Figure 4.3 depicts the analytical and approximated reach sets for the double inte-
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Figure 4.3: Overlaid analytical (outlined, no fill) and approximated (filled, no outline)

solutions for reach sets of the double integrator (4.1).

grator at different times t ∈ [0, 10]. As designed, solutions generated by the ellipsoidal

algorithm always outwardly bound the actual reach set.

For a quantitative measure of the performance of the ellipsoidal algorithm, we

compare the areas of the analytical reach sets,

area(X [t]) = 2/3 µ2t3, (4.4)

calculated in Appendix A, with the areas of the ellipsoidal over-approximations, cal-

culated with Eqn. (2.2) as

area(E(q,Q)) = π
√

det (Q). (4.5)

On the left of Figure 4.4 is a plot of the ratios between the areas of the actual

and simulated reach sets for several reachable tube approximations, each computed
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Figure 4.4: Left: A plot showing the ratio between the areas of analytical and nu-

merical reach sets for the double integrator system. The 12 numerical solutions are

obtained from the algorithm for N` = 3 in order to demonstrate the variance between

simulations that results from random generation of the parameterizing unit vectors,

`i0. Right: A plot of the same where the numerical solutions are obtained from op-

timizations over the intersection of varying numbers (N` = 2, . . . , 8) of parameterized

ellipsoids.

as optimizations over the intersection of N` = 3 ellipsoids parameterized by randomly

generated `i0 vectors. Because there is no ellipsoid that describes the analytical reach

set we never expect that this ratio will be unity and instead look to see that the ratio

is sufficiently close to one. This figure shows that there is some inconsistency in the

quality of the reach set computation. The right of Figure 4.4 is a plot of the same

ratios for solutions generated for varying N`. This plot confirms the hypothesis that

higher N` implies better approximations.
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4.2 Comparing Sequential vs. Parallel Implemen-

tation

To understand the computational benefit of parallelizing the algorithm, we com-

pare the runtimes of the sequential and parallelized code to solve randomly generated

systems over a fixed time interval. Figure 4.5 portrays the runtimes of series and

parallel solutions for 15 randomly generated systems using various N`. On 2013 Mac-

Book Pro with 2.7 GHz Intel Core i7 Processor (two cores), we see from Figure 4.5

that the the algorithm executing with parfor performs about twice as fast as the se-

ries algorithm. This confirms the hypothesis that the computation is inversely scaled

with the number of threads used in the parallel computation.
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Figure 4.5: The runtimes of the parallel and sequential computations for generating

the reachable tube for a 5s time span with reach sets computed at .5s intervals. The

runtimes of computations with N` = 1, . . . , 12 for 15 randomly simulated systems

with dimensions (n,m, d) = (12, 4, 3) are shown.
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5

Conclusion

5.1 Summary

The ellipsoidal algorithm proposed here enables the real-time computation of

reachable tubes for applications such as the safety verification of autonomous agents.

The algorithm is enabled by existing ellipsoidal schemes and parallel computation

and its efficacy is demonstrated by comparison with a known case: the double in-

tegrator with bounded control, and by comparison of the computation times of the

reachable tubes for various systems for a variety of N` with parallel and sequential

computations. These results show that the algorithm is a competitive scheme for the

real-time computation of reachable sets.
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5.2 Open Questions and Future Directions

To further examine the performance of the algorithm, a comparison between the

runtimes of parallel computations on a processor with more than two cores would

further verify the use of parallel computing and the algorithm’s applicability to real-

time scenarios. Additionally, the volume-minimizing algorithm proposed here may

a competitive option for reach set computation that seeks to minimize some other

attribute such as the trace of the ellipsoid’s shape matrix. The performance of the

algorithm for such objectives has yet to be investigated.

For differentially flat systems there exists an injective transformation of the system

to the Brunovsky form, a generalized system of integrators in n dimensions, and an

inverse transformation to do the reverse. Analytically obtained reach sets of the

system of integrators can yield the reach sets of differentially flat systems by the

inverse transformation that makes the flat system into that of integrators. Given

that quadrotor and car dynamics are known to be differentially flat, this approach

may have widespread applications.
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Appendix A

Area of the Reach Set for the

Double Integrator

We analytically compute the area of the reach set for the double integrator by

integrating the difference between the curves (4.2) and (4.3) that bound the set. We

first rewrite the equations that define the lower and upper curves, respectively, as

x−2 (t) = x02 + µt+
√
µ
(
x01 + x02t− x1(t)− µt2/2

)1/2
(A.1)

and

x+2 (t) = x02 − µt−
√
µ
(
x1(t)− x01 − x02t− µt2/2

)1/2
(A.2)

for x1 ∈ [x`, xr] := [x01 + x02t− µt2/2, x01 + x02t + µt2/2]. In words, the left and right

endpoints of the set X [t] are x` := x01 + x02t− µt2/2 and xr := x01 + x02t+ µt2/2. The
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area can then be expressed as

area(X [t]) =

∫ xr

x`

x+2 (t)− x−2 (t) dx1

= −2
√
µt

∫ xr

x`

√
µ+

[(
x1(t)− x01 − x02t−

µt2

2

)1/2

−
(
x01 + x02t+ x1(t)−

µt2

2

)1/2
]

dx1.

(A.3)

Integrating the first term above is straightforward and for the remaining terms, we

make the substitution y := x1(t)−x01−x02t, which transforms (xl, xr) 7→ (yl, yr) where

y` := −µt2/2 and yr := µt2/2. The area is then computed as

area(X [t]) = −2µtx1

∣∣∣xr
x`
− 2
√
µ

∫ yr

y`

(
y − µt2/2

)1/2 − (y + µt2/2
)1/2

dy

= −2µt(µt2)− 2
√
µ · 2

3

[
(y − µt2/2)3/2 − (y + µt2/2)3/2

] ∣∣∣yr
y`

= −2µ2t3 −
4
√
µ

3

[(
0−

(
µt2
)3/2)− ((µt2)3/2 − 0

)]
= −2µ2t3 −

4
√
µ

3

(
−2µ3/2t3

)
= −2µ2t3 +

8

3
µ2t3 =

2

3
µ2t3.

(A.4)
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