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ABSTRACT OF THE DISSERTATION

Zeta Function of Hypersurfaces with ADE Singularities in P3

By

Matthew Cheung
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Professor Vladimir Baranovsky, Chair

Stetson and Baranovsky provided an algorithm with Mathematica to compute the zeta func-

tion of projective hypersurface over Fp with isolated ordinary double points. In this thesis,

I extend this algorithm to hypersurfaces with ADE singularities over P3. In the process of

doing so, I characterize the Jacobian ideal as a zero set of differential operators.
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Chapter 1

Introduction

1.1 Zeta Function

In the past, the zeta functions for smooth surfaces have been computed using different

methods. One method to computer zeta function of smooth surfaces is the deformation

method given in Lauder [12] and [13]. A second method involves computing the action of

Frobenius operator and reducing the image in cohomology–see Costa, Harvey, and Kedlaya

[4] and Rybakov [16]. A Sage code for computing zeta function of smooth surfaces is given by

Sperber and Voight [20]. Stetson and Baranovsky [19] extended zeta function computation to

hypersurfaces with ordinary double points, and Scott Stetson created a code in Mathematica

computing the zeta functions of hypersurfaces with ordinary double points. I will generalize

the theory from Stetson and Baranovsky [19] and give an algorithm for computing the zeta

functions of hypersurfaces with ADE singularities in the end of Chapter 3. Furthermore, I

will provide a Sage code for computing such zeta functions.

Definition 1.1. . Given a projective hypersurface X defined by equation f(w : x : y : z) = 0

in P3 with coordinates over a PID K, the affine cone over X is zero set of f(w : x : y : z)
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viewed as a function over K4.

Definition 1.2. . Let X be a hypersurface in P3 given by the zero set of f(w : x : y : z).

Let f̃ be f viewed as a function on the affine chart V = {w = 1}. Let s be a Zp valued point

on X ∩ V . Then by linear change of coordinates, s corresponds to the origin given by a map

Zp[x, y, z] → Zp. The formal completion along the kernel of the map which is given by the

power series Zp[[x, y, z]]. Let g be a function given by one of the following equations:

An : x2
0 + x2

1 + xn+1
2 = 0

Dn : x2
0 + x2(x2

1 + xn−2
2 ) = 0

E6 : x2
0 + x3

1 + x4
2 = 0

E7 : x2
0 + x1(x2

1 + x3
2) = 0

E8 : x2
0 + x3

1 + x5
2 = 0

Then s is an equisingular ADE singularity over Zp if there is an isomorphism φ : Zp[[x, y, z]]→

Zp[[x0, x1, x2]] such that φ(f̃) = g̃ and φ is compatible with the surjections onto Zp.

There is a definition for ADE singularities over finite fields is given in Greuel [10]. We will

stick with the 5 given for now. The procedure we will create will cover the other forms given

in Greuel [10].

Let p be a prime. Let Nr = |X(Fpr)|. Let X̃ be the reduction of X in P3 to a variety over

Fp. Then the zeta function of a variety X̃ over Fp is a generating function for Nr given by

Z(X̃, t) = Z(t) = exp
∞∑
r=1

Nrt
r

r
.

Let Ũ = P3 − X̃. Then Ũ is affine and smooth. From formula of Gerkmann [9] applied to
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P3,

Z(X̃, t) =
1

(1− t)(1− pt)(1− p2t)v(t)

where v(t) = det(1− tq3Frob−1
q |H2

rig(Ũ)) and H2
rig(Ũ) is a rigid cohomology group of Ũ . For

information on rigid cohomology, I refer the reader to Stum [21]. For affine schemes such as

Ũ , rigid cohomology is equivalent to Monsky-Washnitzer cohomology which I will discuss in

the beginning of Chapter 2. Furthermore, we simplify even more. Suppose Ũ = P̂−X̂ where

P̂ is smooth over Zp and X̂ is a smooth strict relative divisor with normal crossings. This

will be defined in Chapter 4. If we know P̂ and X̂ exists, then theorem from Baldassarri

and Chiarellotto [2] holds, i.e.

H i
rig(Ũ) ∼= H i

dR(UQp) 0 ≤ i ≤ 2dim(U)

where the right hand side is the de Rham cohomology on UQp and UQp is the complement to

the zero set of f over Qp. We will show the theorem applies with P̂ being appropriate blow

up of P3.

1.1.1 De Rham Cohomology on the Complement of a Hypersur-

face

A differential n-form in Q4
p is a form ω =

∑
I cIdxi1 ∧ ...∧ dxin where I = (i1, ..., in) and cI ∈

Qp[x0, ..., x3]. Let Ωn
m be the space of n-forms of weight m where if ω = xa00 ...x

as
s dxi1∧...∧dxis ,

|ω| = a0 + ...+ as + s.
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A differential form on UQp in P3 pulls back to a differential form on an open subset ŨQp in

Q4
p. From Dimca [5], the pullback n-form ω for n > 0 on ŨQp is written as ω = ∆(γ)

fs
, where

∆ is the contraction of the Euler vector field
∑
xi

∂
∂xi

and γ ∈ Ωv+1
sN where N = deg(f) and

|∆(γ)| = sN . One can calculate that dω = −∆(fdγ−sdf∧γ)
fs+1 .

Definition 1.3. For n ≥ 0, we define our differential operator df : Ωn −→ Ωn+1 to be

df (ω) = fdω − |ω|
N
df ∧ ω

for homogeneous differential form ω.

In other words, the homogeneity condition allows us to forget denominators and work with

polynomials. However, our differential is no longer the usual one since the differential is now

in the form of the Koszul differential plus the de Rham differential.

Definition 1.4. Let (B, d′, d′′) be the double complex given by Bs,t = Ωs+t+1
tN where d′ = d

and d′′(ω) = −|ω|N−1df ∧ ω for a homogeneous differential form ω.

Definition 1.5. Let (Tot(B)∗, Df ) be the total complex given by Tot(B)m =
⊕

s+t=mB
s,t

with filtration F sTot(B)m =
⊕

k≥sB
k,m−k where Df = d′ + d′′.

The goal is to compute the cohomology of the double complex which gives the cohomology

on UQp . For this, we use the theory of spectral sequences. For purposes of results regarding

the spectral sequence, we use Qp and C interchangeably since result holds for both fields

due to the embedding of Qp into C. Let dimQpf
−1(0) is the dimension of the singular lo-

cus. Let Hk(K∗f ) is the cohomology with respect to the d′′ differential. Saito [17] shows if

m = dimQpf
−1(0), then Hk(K∗f ) = 0 for k ≤ 3 − m. In the smooth case, m = 0 so only

the top cohomology group H4(K∗f )tN is nonzero. As only one diagonal remains on the E1

page, the de Rham differential is trivial; hence, in the smooth case, the spectral sequence

degenerates at the E1 page and converges to the cohomology of the total complex.
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In the singular case, m = 1 so H3(K∗f )tN and H4(K∗f )tN are nonzero. Since there are two

diagonals on the E1 page, the de Rham differential need not be trivial. Below is a piece of

the E1 page which displays the top diagonal and subdiagonal below it.

(3, 0)

(2, 0)

(2, 1)

(1, 1)

(1, 2)

(0, 2)

(0, 3)
(−1, 4)

(−1, 3)

(−2, 5)

(−2, 4)

For the purposes of this paper, we define the local Milnor number as the index of the type

An, Dn, En singularities. For example, a type A3 singularity has Milnor number 3. The

global Milnor number, µ(X), is defined to be the sum of all local Milnor numbers of singular

points. By Corollary 1.5 of Dimca and Sticlaru [8], Hn(Kf )m = µ(X) for m ≥ 3(N − 2)

where N = deg(f). (The general formula is n(N − 2) if we are working in Pn instead of P3.)

Hence, the dimensions of the vector spaces of the diagonals eventually stabilize to the global

Milnor number. Furthermore, Theorem 2 of Saito [18] proved that for hypersurfaces with

weighted homogeneous singularities, the spectral sequence degenerates on the E2 page. From

equation 2.10 of Dimca and Sticlaru [7], for weighted homogeneous equations, all nonzero

terms on the E2 page lie inside the first quadrant, not including the x-axis and y-axis. Using

this, I constructed a Sage code computing the basis elements on the E2 page. The code

mainly involves constructing the matrix for the two differentials and using linear algebra to

compute the quotient groups.
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Chapter 2

Frobenius and Cohomology

2.1 Monsky-Washnitzer Cohomology

Let U be a smooth affine variety over Zp that is the complement to a hypesurface X given by

the zero set of a polynomial f . Let f1, ..., fm denote the partial derivatives. Then the rigid

cohomology groups coincide with the Monsky-Washnitzer cohomology groups. We define

the Monsky Washnitzer cohomology groups which is much simpler than the general rigid

cohomology groups. Let

Zp < w, x, y, z >†= {
∑

aαX
α ∈ Zp[[w, x, y, z]] : ∃C > 0, ρ ∈ (0, 1) with|aα|p ≤ Cρ|α|∀α}

where X denotes any monomial in w, x, y, z and α is a multi-index and |α| is the sum of the

exponents of w, x, y, z. Let A† = Zp < w, x, y, z >† /(f1, ..., fm). Let Ω̃A†/Zp
=
⊕n

i A
†xi/ <∑ ∂fk

∂fj
dxj|k ∈ {1...m} >. Now let Ωi =

∧i Ω̃A†/Zp
. Let dx̄ = dxji ∧ ... ∧ dxji . Define

di : Ωi → Ωi+1, fdx̄→

(
4∑
j=1

∂f

∂xj
dxj

)
∧ dx̄
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Then the Monsky-Washnitzer cohomology groups are the cohomology groups of the complex

given by

0→ A†
d0−→ Ω1 d1−→ Ω2 → ...

The theorem from Baldassarri and Chiarellotto [2] given in Chapter 1 allows us to work with

de Rham cohomology groups on U instead of the Monsky-Washnitzer cohomology groups

on U . The Monsky-Washnitzer cohomology groups come with an action of the Frobenius

operator which we define as follows.

2.2 Action of Frobenius Operator

The basis elements on the E2 page of the spectral sequence given before gives a basis on

the de Rham cohomology of U which gives a basis on the Monsky-Washnitzer cohomology

groups.For the remainder of the text, let Ω = dw ∧ dx ∧ dy ∧ dz. A basis element h on the

E2 page corresponds to the basis element hΩ
f`

on the Monsky-Washnitzer cohomology groups.

From equation 4.1 of Gerkmann [9], the action of the lifted Frobenius operator, F̂ , is

F̂

(
hΩ

f `

)
= p3h(wp, xp, yp, zp)

∏3
i=0 x

p−1
i Ω

fp`

(
∞∑
k=0

pk
αkg

k

fpk

)
,

where αk is the k-th coefficient of the power series expansion (1− t)−` = α0 +α1t+α2t
2 + ...

, x0 = w, x1 = x, x2 = y, x3 = z, pg = f(w, x, y, z)p − f(wp, xp, yp, zp), and the element on

the right hand side of the equation is an element on the Monsky-Washnitzer complex. Given

each term in the sum, the goal is to express the image of Frobenius that is cohomologically

equivalent to a linear combination of the basis elements on the E2 page.
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Since the action of the Frobenius operator is an infinite sum, we first truncate the sum into

a finite sum. We compute the truncated action and express the image into something that is

cohomologically equivalent. This turns out to be a linear combination of the basis elements

of the Monsky-Washnitzer cohomology groups. The truncated action of Frobenius, applied

to each basis element, gives a square matrix for the action. Corollary 4.2 of Gerkmann

[9] goes over how far one needs to truncate, but for the purposes of Sage calculation, each

additional term in the sum generally gives us accuracy up to the next power of p. To be more

accurate, the p-adic expansion of the numbers in the truncated Frobenius matrix converge

to the p-adic expansion of the actual value of the Frobenius matrix. If k = 0 gives accuracy

up to p2, then going up to k = 1 gives accuracy up to p3. If one of the entries is −5, then

one might see

k = 0→ 5 + 52 + 2 · 53 + 3 ∗ 54 + ...

k = 0, 1→ 5 + 4 · 52 + 3 · 53 + 2 · 54 + ...

k = 0, 1, 2→ 5 + 4 · 52 + 4 · 53 + ·2 · 54 + ...

Continuing on, one will see the values converge to the 5 + 4 ·52 + 4 ·53 + 4 ·54 + ..., the p-adic

expansion of −5.

While the goal is clear, there are several issues that come into play. The first issue is that

reduction in cohomology is computationally infeasible if we go the direct route which is

explained in the following example. The second issue is that reduction involves using a

Gröbner basis algorithm which may get computationally large. The third issue is that the

image of Frobenius has high powers of f in the denominator. Although my code does not

fix the Gröbner basis issue, my code does fix the other two problems.

Example 2.1. Let f be degree 3 with p = 5 and h1, h2, h3 be our basis elements on the E2

page of degree 2. Then by homogeneity, ` = 2 in the Frobenius equation above. Now to make

8



things simple, let us consider k = 0. The sum goes away and on the denominator we have

fp` = f 10. Since f is cubic, the denominator is degree 30. In order to express the image

as a linear combination of h1, h2, h3, one will need to compute the cokernel of the df∧ map.

Computing the quotient is computationally long, and we only reduce the degree of the image

by 3. Furthermore, this is just the k = 0 term of the summation and only for one of our

basis elements.

We now explain the action of inverse of the Frobenius operator which solves one of the issues

listed above.

2.3 Action of the Inverse of Frobenius Operator

To work with lower powers in general, we decide to use the left inverse of Frobenius. Remke

[15] showed that on the level of varieties, Frobenius has a left inverse. As Frobenius is

invertible after passing to the level of cohomology, we have an action for the left inverse. Let

us denote the left inverse by F̂−1. Let ψ : A† → A† be the Qp linear operator given by

ψ(
∏

xaii ) =


∏
x
ai/p
i if ai ≡ 0(mod p) ∀i

0 otherwise

Note that since the action of Frobenius operator is taking p-th powers, the inverse should

involve taking p-th roots. Taking x0 = w, x1 = x, x2 = y, x3 = z and ∆ = f(w, x, y, z)p −

f(wp, xp, yp, zp), the action of the inverse is given by

F̂−1

(
hΩ

f `

)
=

(∑
k

ψ(fp−`h
∏3

i=0 xi∆
i)

fk+1

)
Ω

p3
∏3

i=0 xi
.

Note this fixes one of the issues given in Example 1. In Example 1, for k = 0, the summation

9



gives a degree 26 image for the coefficient of the 4 form on the numerator. The image

coefficient of the 4 form on the numerator for k = 1 for the inverse is only degree 2. The

image coefficient of the 4-form on the numerator for k = 9 of the inverse is of degree 26

which is the degree in the original Frobenius image for k = 0. Working with low degrees for

high values of k makes computation slightly easier. The issue about computing the matrices

and quotients still remain.

10



Chapter 3

Differential Operators and

Subdiagonal

Recall from Dimca and Sticlaru [7], Hn(Kf )m = µ(X) for m ≥ 3(N − 2). We call the

values of m such that m ≥ 3(N − 2) the stable range. Now, since the top diagonal for a

smooth hypersurface on the E1 page lies only in the first quadrant and the Euler character-

istic is independent of whether the hypersurface is smooth or singular, we can conclude that

Hn+1(Kf )m = µ(X). Moreover, the E2 page is 0 in this stable range.

We now dive into where the assumption of our hypersurface X having ADE singularities is

used aside from showing the theorem from Baldassarri and Chiarellotto [2] holds which is

explained in Chapter 4.

Suppose h1, ..., hm are basis elements of the Monsky-Washnitzer cohomology groups. Let h

be the element corresponding to the deepest pole of the truncated image of the Frobenius

operator applied to one of the hi. Then suppose h ∈ PkΩ4. Then find a basis for Pk+1Ω3.

As we are in the stable range, there are µ(X) basis elements which we name as β1, ..., βµ(x).

11



How we find these basis elements in high degree will be explained later. Applying the de

Rham differential, dβ1, ..., dβµ(X) ∈ PkΩ4. As the E2 page is 0 on the stable range, lifting h

back to E0 gives h = a1dβ1 + ...+aµ(X)dβµ(X) +fwh1 +fxh2 +fyh3 +fzh4. Choose a singular

point s of our hypersurface X. The partials evaluated at s is 0. Stetson and Baranovsky

[19] showed that if all singularities are type A1, we can evaluate at the singular points and

can solve for the variables given.

To see this, suppose there exists one A1 singularity. Then g−a1dβ1 = b1fw+b2fx+b3fy+b4fz.

To find a1, evaluate both sides at the singular point. Then the right hand side is 0 by

definition of a singular point. Note, plugging in any other point will give an equation but

the issue is that b1, b2, b3, b4 are unknown. Similarly, suppose there are k A1 singularities.

Then g − a1dβ1 − ... − akdβk = b1fw + b2fx + b3fy + b4fz. We need to find a1, ..., ak; so

k equations are needed. Evaluation at each of the singular points will give k equations.

The equations will be linearly independent. In fact, I will show linear independence for

the general ADE case later in the paper. Hence, for A1 singularities, finding the de Rham

component of g is simple.

Suppose our hypersurface has one A2 singularity. Then g − a1dβ1 − a2dβ2 = b1fw + b2fx +

b3fy + b4fz. We need to find a1 and a2 but evaluating at the singular point only gives 1

equation. Where will the second equation come from? In this case, the normal form of

an A2 singularity is uv = t3. The partials are given by v, u, 3t2. Along with evaluation

at the origin, the operator given by ∂
∂t
|(0,0,0) annihilates the Jacobian ideal. The idea is

to transfer this operator to the original coordinates to obtain the second operator for the

second equation. In the general case, I establish an equality between the space annihilated by

specific operators depending on our ADE singularities and the Jacobian ideal for polynomials

with degree in the stable range–See Theorem 3.1.

12



3.1 Operators on ADE Singularities

Before we continue, in the case that there are two singularities in the same affine open set,

we need an algebraic way of working locally around the singularity.

Definition 3.1. Let M be a finite dimensional module over a polynomial ring R in several

variables over C. Let R̃ be the power series ring in the variables of R. We define the formal

completion of M as M ⊗R R̃.

Definition 3.2. A module over a polynomial ring in variables (x, y, z) is supported at

(α, β, γ) if ∃N such that ∀ k ≥ N , (x− α)kM = (y − β)kM = (z − γ)kM = 0.

Proposition 3.1. Suppose M is a finite dimensional module over a polynomial ring sup-

ported at the origin. Let M̃ be the formal completion of M . Then M ∼= M̃ as R-modules.

Proposition 3.2. Suppose M is a finite dimensional module over a polynomial ring sup-

ported at (α, β, γ) 6= (0, 0, 0). Let M̃ be the formal completion of M . Then M̃ = 0.

Assuming these two claims, formal completion is a way to study a singularity locally. Propo-

sition 3.1 justifies working with the polynomial ring as opposed to the power series ring.

Proof. I will prove Proposition 3.1 first. Let R = C[x, y, z]. Suppose M is generated by

s1, ..., sj. Then an arbitrary element of M̃ is of the form
∑j

i si ⊗ fi where fi ∈ R̃. As M is

supported at the origin, there exists N such that for k ≥ N , xkM = 0, ykM = 0, zkM = 0.

Now given h ∈ R̃, we can express h as

h = xNh1 + yNh2 + zNh3 + h4

where h4 is a polynomial with powers of x, y, z smaller than N and h1, h2, h3 ∈ R̃. Let

13



h<N = h4. Define φ by

φ : M̃ −→M

φ(

j∑
i=1

si ⊗ fi) =

j∑
i=1

f<Ni si

Then to show linearity,

φ(
∑
i

si ⊗ fi +
∑
i

si ⊗ hi) = φ(
∑
i

si ⊗ (hi + fi))

=
∑
i

(hi + fi)
<Nsi =

∑
i

h<Ni si +
∑
i

f<Ni si

= φ(
∑
i

si ⊗ fi) + φ(
∑
i

si ⊗ hi)

and ∀r ∈ R,

φ(r(
∑
i

si ⊗ fi)) = φ(
∑
i

si ⊗ rfi) =
∑
i

rf<Ni si

=
∑
i

r<Nf<Ni si = r<N
∑
i

f<Ni si

= r
∑
i

f<Ni si = rφ(
∑
i

si ⊗ fi)

where the first and second to last equality on the previous line is because any degree N

piece or higher acts by 0 since M is supported by the origin. Hence, φ is an R−module

homomorphism. The map is surjective as any element of M is given by
∑

i risi for ri ∈ R

and φ maps the element
∑
si ⊗ ri to

∑
risi. Now suppose φ(

∑
i si ⊗ fi) =

∑
f<Ni si = 0.

Then we can write f≥Ni = fi − f<Ni . Then

∑
i

si ⊗ fi =
∑
i

si ⊗ f<Ni +
∑
i

si ⊗ f≥Ni .

14



For the first sum, as we tensor over R,

∑
i

si ⊗ f<Ni =
∑
i

sif
<N
i ⊗ 1 = (

∑
i

sif
<N
i )⊗ 1 = 0⊗ 1 = 0.

For the second sum,

∑
i

si ⊗ f≥Ni =
∑
i

si ⊗ xNfi,1 +
∑
i

si ⊗ yNfi,2 +
∑
i

si ⊗ zNfi,3

=
∑
i

xNsi ⊗ fi,1 +
∑
i

yNsi ⊗ fi,2 +
∑
i

zNsi ⊗ fi,3 = 0.

Hence, the map is injective. So we have an isomorphism.

Proof. For Proposition 3.2, proceed the same way. For (α, β, γ) 6= (0, 0, 0), there exists N

such that for k ≥ N , (x− α)kM = (y− β)kM = (z − γ)kM = 0. Without loss of generality,

let us just assume α 6= 0. Now consider M̃ . First note that (x− α)NM̃ = 0 as its action on

M is zero. But then

1 ·M ⊗ R̃ = M ⊗ 1 · R̃ = M ⊗ (x− α)N(x− α)−N R̃ = (x− α)NM ⊗ (x− α)−N R̃ = 0.

Hence, M̃ is the 0 module. Note, we are using the fact that in the power series ring, a

power series with constant term is invertible; therefore, since α 6= 0, (x−α)N is an invertible

element in R̃.

Before continuing to the main theorem, I will show that the quotient by the Jacobian is

invariant under analytic change of coordinates.

Let f̃ be the defining equation of our hypersurface X over P3 with coordinates w, x, y, z

and suppose X has a type An, Dn, or En singularity. Let g be the standard equation of

the given singularity. Without loss of generality, assume the singularity lies in the affine set

w = 1. Let f = f̃(1, x, y, z). Then there exists g1, g2, g3 ∈ C[[u, v, t]] and an analytic change
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of coordinates map φ : C[[x, y, z]]→ C[[u, v, t]] given by

φ(x) = g1(u, v, t), φ(y) = g2(u, v, t), φ(z) = g3(u, v, t)

that maps f(x, y, z) to g(u, v, t). Furthermore, there exists f1, f2, f3 ∈ C[[x, y, z]] and an

analytic change of coordinates map, ψ : C[[u, v, t]]→ C[[x, y, z]], given by

ψ(u) = f1(x, y, z), ψ(v) = f2(x, y, z), ψ(t) = f3(x, y, z)

such that ψ ◦ φ is the identity map.

Lemma 3.1. The quotient by the Jacobian is invariant under analytic change of coordi-

nates if the maps φ and ψ defined above descend to an isomorphism on quotients rings

C[[x, y, z]]/(f) and C[[u, v, t]]/(g).

Proof. To show isomorphism on the quotient rings, we have to show the map φ is well defined

when passing to the quotient. First consider the ideal (fx, fy, fz)C[[x, y, z]].

φ(
∂f

∂x
) = φ(

∂t

∂x
)(
∂g

∂t
) + φ(

∂u

∂x
)(
∂g

∂u
) + φ(

∂v

∂x
)(
∂g

∂v
) = φ(

∂t

∂x
)gt + φ(

∂u

∂x
)gu + φ(

∂v

∂x
)gv.

Now ∂t
∂x
, ∂u
∂x
, ∂v
∂x
∈ C[[x, y, z]] as these are just the derivative with respect to x of f1, f2, f3. φ

maps these elements to a power series in u, v, t. Hence we have that φ(∂f
∂x

) ∈ C[[u, v, t]]. By

same argument, φ(∂f
∂y

), φ(∂f
∂z

) ∈ C[[u, v, t]] since

φ(
∂f

∂y
) = φ(

∂t

∂y
)(
∂g

∂t
) + φ(

∂u

∂y
)(
∂g

∂u
) + φ(

∂v

∂y
)(
∂g

∂v
) = φ(

∂t

∂y
)gt + φ(

∂u

∂y
)gu + φ(

∂v

∂y
)gv

and

φ(
∂f

∂z
) = φ(

∂t

∂z
)(
∂g

∂t
) + φ(

∂u

∂z
)(
∂g

∂u
) + φ(

∂v

∂z
)(
∂g

∂v
) = φ(

∂t

∂z
)gt + φ(

∂u

∂z
)gu + φ(

∂v

∂z
)gv.

16



Hence, φ((fx, fy, fz)C[[x, y, z]]) ⊂ (gu.gv, gt)C[[u, v, t]]. Hence φ induces a map

φ̃ : C[[x, y, z]]/(fx, fy, fz)→ C[[u, v, t]]/(gu, gv, gt)

φ̃([h]) = [φ(h)]

where h is any lift of [h].

We prove the same holds for ψ.

ψ(
∂g

∂u
) = ψ(

∂x

∂u
)(
∂f

∂x
) + ψ(

∂y

∂u
)(
∂f

∂y
) + ψ(

∂z

∂u
)(
∂f

∂z
)

ψ(
∂g

∂v
) = ψ(

∂x

∂v
)(
∂f

∂x
) + ψ(

∂y

∂v
)(
∂f

∂y
) + ψ(

∂z

∂v
)(
∂f

∂z
)

and

ψ(
∂g

∂t
) = ψ(

∂x

∂t
)(
∂f

∂x
) + ψ(

∂y

∂t
)(
∂f

∂y
) + ψ(

∂z

∂t
)(
∂f

∂z
).

Hence, ψ induces a map

ψ̃ : C[[u, v, t]]/(gu, gv, gt) −→ C[[x, y, z]]/(fx, fy, fz)

ψ̃([h]) = [ψ(h)]

where h is any lift of [h]. Since the composition of ψ and φ is the identity, we have an

isomorphism of quotient rings.

We now prove one of the main theorems and a following Proposition involving operators on

ADE singularities.

Theorem 3.1. Let s be the origin. Let m denote a number in the stable range. Let k ∈ Z

17



and C[u, v, t, r]k be the polynomials of degree k. Let Jk denote the polynomials in the Jacobian

of degree k. For type An singularities, the space of polynomials in C[u, v, t, r]≥m annihilated

by the differential operators

ev|s,
∂

∂t
|s,

∂2

∂2t
|s, ...

∂n−1

∂n−1t
|s

is equal to Jm. For Dn singularities, the space of polynomials in C[u, v, t, r]m annihilated by

the differential operators

∂

∂v
|s,

∂

∂t
|s,

∂2

∂2t
|s, ...,

∂n−3

∂n−3t
|s

is equal to the Jm. For E6 singularities, the operators are

∂

∂v
|s,

∂

∂t
|s,

∂

∂v

∂

∂t
|s,

∂2

∂2t
|s,

∂2

∂2t

∂

∂v
|s.

For E7 singularities, the operators are

∂

∂v
|s,

∂

∂t
|s,

∂

∂v

∂

∂t
|s,

∂2

∂2t
|s,

∂3

∂3t
− ∂2

∂2v
|s,

∂4

∂4t
− 3

∂2

∂2v

∂

∂t
|s.

For E8 singularities, the operators are

∂

∂v
|s,

∂

∂t
|s,

∂

∂v

∂

∂t
|s,

∂2

∂2t
|s,

∂2

∂2t

∂

∂v
|s,

∂3

∂3t
|s,

∂3

∂3t

∂

∂v
|s.

Proposition 3.3. The differential operator ∂k

∂kt
|(0,0,0) is mapped by inverse change of coor-

dinates to a combination of k order and lower differential operators in x, y, z evaluated at

the origin with polynomial coefficients through the analytic change of coordinates. The same

holds true if we replace t with u or v.

Proof. To prove Theorem 3.1, we first consider the An case. Let S be the space of polynomials
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annihilated by corresponding differential operators given in Theorem 3.1. Let J be the

Jacobian ideal. The partials of the standard An equation are given by u, v, tn. Note that

Jm ⊂ Sm since the differential operators given in Theorem 3.1 annihilate the Jacobian ideal.

To prove this, we proceed by induction. First, assume the singular point lies in the affine set

r = 1. It is clear that evaluation at the origin annihilates the partials since this is the singular

point. Let h = h1u+h2v+h3t
n where h1, h2, h3 ∈ C[u, v, t] such that h ∈ C[u, v, t, r]m. Note

r is irrelevant as the operators involve only u, v, t so evaluation at r = 1 annihilates any r

term. For simplicity, let s be the point t = 0, u = 0, v = 0, r = 1. The product rule shows

that

∂

∂t
h|s =

∂

∂t
h1|s · u|s +

∂

∂t
h2|s · v|s +

∂

∂t
h3|s · tn|s + nh3t

n−1|s = 0

Suppose that

∂i

∂it
h1u|s,

∂i

∂it
h2v|s,

∂i

∂it
h3t

n|s = 0

for i = 0, ..., k where i = 0 is the evaluation operator. Then for simplicity of notation, let

D(i, j)f1f2 = ∂i

∂it
f1|s ∂

j

∂jt
f2|s. Then for k + 1 ≤ n− 1

∂k+1

∂k+1t
h1u|s = D(k + 1, 0)h1u+D(k, 1)h1u+ ...+D(1, k)h1u+D(0, k + 1)h1u

D(k+1, 0)h1u = 0 because u evaluates to 0, andD(0, k+1)h1u = 0 since we are differentiating

u with respect to t. The other terms are 0 by the induction hypothesis. For

∂k+1

∂k+1t
h2v|s = D(k + 1, 0)h2v +D(k, 1)h2v + ...+D(1, k)h2v +D(0, k + 1)h2v,

D(k+ 1, 0)h1v = 0 because v evaluates to 0, and D(0, k+ 1)h2v = 0 as we are differentiating
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v with respect to t. The other terms are 0 by induction hypothesis. For

∂k+1

∂k+1t
h3t

n|s = D(k + 1, 0)h3t
n +D(k, 1)h3t

n + ...+D(1, k)h3t
n +D(0, k + 1)h3t

n,

D(k+1, 0)h1t
n = 0 because tn evaluates to 0 and D(0, k+1)h3t

n = 0 as we are differentiating

tn with respect to t k+ 1 times. For k+ 1 ≤ n−1, this leads to C · tj for some j > 0 and C a

constant so evaluation at the origin gives 0 .The other terms are 0 by induction hypothesis.

Therefore, Jm ⊂ Sm.

Define

φ : C[u, v, t, r]m −→ Cn

φ(h) = (ev(h)|s,
∂

∂t
h|s, ...,

∂n−1

∂n−1t
h|s).

The kernel of φ is S. To show surjectivity, let ei be the vector that is 1 on the ith component

and 0 elsewhere. Then 1 is mapped to e1, t is mapped to e2, t2 is mapped to 2e3, and

continuing on, tn is mapped to n!en. Hence, the map is surjective. So we have

C[u, v, t, r]m/Sm ∼= Cn.

However, if the quotient by the standard equation is u, v, tn, the quotient C[u, v, t, r]/Jm ∼= Cn

is the space generated by rm, rm−1t, ..., tn−1rm−n+1. Since from above, Jm ⊂ Sm, we have

that Jm = Sm.

Note the same proof works for type Dn and type En singularities as well. The standard

equation for Dn is given by u2 + tv2 + tn−1 = 0. The Jacobian ideal is J = (u, vt, tn−2 + v2).

The n operators that annihilate any element of the Jacobian are evaluation at the origin,

∂

∂v
|s,

∂

∂t
|s,

∂2

∂2t
|s, ...,

∂n−3

∂n−3t
|s.
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Let Sm be the space of degree m polynomials annihilated by all the differential operators.

As in the proof of Theorem 3.1, the space Sm contains Jm. Define

φ : C[u, v, t, r]m −→ Cn

φ(h) = (ev(h)|s,
∂

∂v
h|s,

∂

∂t
h|s, ...,

∂n−3

∂n−3t
h|s).

The kernel is Sm and the map is surjective as the polynomials rm, rm−1v, rm−1t, ..., rm−n+3tn−3

give a constant times vectors e1, ..., en respectively as in the proof of Theorem 3.1. Hence, by

rank nullity, we have C[u, v, t, r]m/S ∼= Cn. In the stable range, we have that the quotient

by Jacobian in degree m is a space of dimension n, hence Sm = Jm.

Now the standard E6 equation is given by u2 + v3 + t4 = 0. The Jacobian ideal is J =

(u, v2, t3). Along with evaluation at the origin, the operators that annihilate any element of

the Jacobian ideal is

∂

∂v
|s,

∂

∂t
|s,

∂

∂v

∂

∂t
|s,

∂2

∂2t
|s,

∂2

∂2t

∂

∂v
|s.

Again, let Sm be the space of polynomials of degree m annihilated by our operators and we

have Jm ⊂ Sm. Define

φ : C[u, v, t, r]m −→ C6

φ(h) = (ev(h)|s,
∂

∂v
h|s,

∂

∂t
h|s,

∂

∂v

∂

∂t
h|s,

∂2

∂2t
h|s,

∂2

∂2t

∂

∂v
h|s).

The kernel is S and the map is surjective as the polynomials rm, rm−1v, rm−1t, rm−2vt, rm−2t2, rm−3vt2

map to a constant times vectors e1, ..., e6 respectively. Hence, Sm = Jm

The standard E7 equation is given by u2 + v3 + vt3 = 0. The Jacobian ideal is given by

J = (u, 3v2 + t3, 3vt2) Along with evaluation at the origin, the operators that annihilate any
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element of the Jacobian are

∂

∂v
|s,

∂

∂t
|s,

∂

∂v

∂

∂t
|s,

∂2

∂2t
|s,

∂3

∂3t
− ∂2

∂2v
|s,

∂4

∂4t
− 3

∂2

∂2v

∂

∂t
|s.

Let Sm be the space of polynomials of degree m annihilated by all the differential operators.

Again, we have Jm ⊂ Sm. Define

φ : C[u, v, t, r]m −→ C7

φ(h) = (ev(h)|s,
∂

∂v
h|s,

∂

∂t
h|s, ...,

∂4

∂4t
h− 3

∂2

∂2v

∂

∂t
h|s).

The kernel is Sm and the map is surjective as the polynomials rm, rm−1v, rm−1t, rm−2vt, rm−2t2, rm−3t3−

rm−2v2, rm−4t4 − rm−3v2t map to a constant times vectors e1, ..., e7 respectively. Hence,

Sm = Jm.

The standard E8 equation is given by u2 + v3 + t5. The Jacobian ideal is given by J =

(u, v2, t4). Along with evaluation at the origin, the operators that annihilate any element of

the Jacobian area

∂

∂v
|s,

∂

∂t
|s,

∂

∂v

∂

∂t
|s,

∂2

∂2t
|s,

∂2

∂2t

∂

∂v
|s,

∂3

∂3t
|s,

∂3

∂3t

∂

∂v
|s.

Let Sm be the space of polynomials of degree m annihilated by all the differential operators.

We have Jm ⊂ Sm. Define

φ : C[u, v, t, r]m −→ C8

φ(h) = (ev(h)|s,
∂

∂v
h|s,

∂

∂t
h|s, ...,

∂3

∂3t

∂

∂v
h|s).

The kernel is S and the map is surjective as the polynomials rm, rm−1v, rm−1t, rm−2vt, rm−2t2, rm−3t2v, rm−3t3, rm−4t3v

map to a constant times vectors e1, ..., e8 respectively. Hence, Sm = Jm.
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As of now, Theorem 3.1 applies to the standard equations of ADE singularities. Our goal

is to apply Theorem 3.1 to operators on the original equation before the analytic change of

coordinates to the standard equations. We prove Proposition 3.3 which will give a set of

differential operators in x, y, z coordinates with which we can apply Theorem 3.1.

Proof. To prove Proposition 3.3, recall the multivariable chain rule.

∂

∂t
h =

∂x

∂t
|s ·

∂

∂x
h|s +

∂y

∂t
|s ·

∂

∂y
h|s +

∂z

∂t
|s ·

∂

∂z
h|s.

Let x = f1(u, v, t), y = f2(u, v, t), z = f3(u, v, t) ∈ C[[u, v, t]] be the analytic change of coor-

dinates. Then ∂x
∂t
|s is the coefficient of t in the power series of x. ∂w

∂t
|s is the coefficient of

t in the power series of y, and ∂z
∂t
|s is the coefficient t in the power series of z. Hence, the

operator ∂
∂t

is a linear combination of first order operators in x, y, z.

What about ( ∂
∂t

)2? This is

∂

∂t

∂

∂t
=

∂

∂t

(
∂x

∂t
· ∂
∂x

+
∂y

∂t
· ∂
∂y

+
∂z

∂t
· ∂
∂z

)
=

∂

∂t
(
∂x

∂t
· ∂
∂x

) +
∂

∂t
(
∂y

∂t
· ∂
∂y

) + (
∂

∂t

∂z

∂t
· ∂
∂z

).

I will compute the first term and the rest follow in the exact same way. In the first half of

the product rule, what I want to do is take the derivative of x with respect to t twice and

evaluate at 0. This is equivalent to 2 times the coefficient of t2 in the power series expansion

of x. In the second half of the product rule, we have

(
∂

∂t

∂

∂x
)
∂x

∂t
|(0,0,0) = C · ∂

∂t

∂

∂x
|(0,0,0),
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where C is the coefficient of t in the power series of x. Now

C
∂

∂t

∂

∂x
|s = C(

∂x

∂t
· ∂
∂x

∂

∂x
+
∂y

∂t
· ∂
∂y

∂

∂x
+
∂z

∂t
· ∂
∂z

∂

∂x
)|s

= C(C
∂

∂x

∂

∂x
+ C1

∂

∂y

∂

∂x
+ C2

∂

∂z

∂

∂x
)|s

where C1, C2 are the coefficients of t in the power series of y and z respectively. Hence, we

have a linear combination of second order partials.

Suppose ∂i

∂it
|s is a linear combination of k order and lower differential operators in x, y, z for

i up to k. So ∂k

∂kt
= C0D0 + C1D1 + C2D2 + ...+ CkDk = D where Ci are constants and Di

are differential operators of order i evaluated at the origin. Then for k ≤ n,

∂k+1

∂k+1t
h|s =

∂

∂t

∂k

∂kt
h|s =

∂

∂t
|sDh

=

(
∂x

∂t
|s ·

∂

∂x
h|s +

∂y

∂t
|s ·

∂

∂y
h|s +

∂z

∂t
|s ·

∂

∂z
h|s
)
Dh.

So (∂x
∂t
|s · ∂∂xh|s) applied to CiDi gives an order i + 1 operator given by ∂

∂x
h|sDi. So as the

highest order operator is Dk, our operator is at most order k + 1. The same applies for

the other terms. Note this actually holds in the u, v variables as we just repeat the proof

replacing u with t or v with t. This proves Proposition 3.3.

We have shown for the polynomial ring, Sm = Jm. Originally, the space in consideration is

the power series ring. From Proposition 3.1, we show C[[x, y, z]]/(fx, fy, fz) is supported at

the origin. The analytic change of coordinates maps the origin to the origin. So the analytic

change of coordinates has no constant term. Since C[[u, v, t]]/(gu, gv, gt) is supported at the
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origin, there exists N such that

uNC[[u, v, t]]/(gu, gv, gt), v
NC[[u, v, t]]/(gu, gv, gt), t

NC[[u, v, t]]/(gu, gv, gt) = 0.

Let x = h1(u, v, t), y = h2(u, v, t), z = h3(u, v, t). Then by the analytic change of coordinates

x3NC[[x, y, z]]/(fx, fy, fz), y
3NC[[x, y, z]]/(fx, fy, fz), z

3NC[[x, y, z]]/(fx, fy, fz)

map to zero since the change of coordinates gives an isomorphism on the level of quotients

as shown in the proof of invariance of the Jacobian ideal. Hence, C[[x, y, z]]/(fx, fy, fz) is

supported at the origin as well so Proposition 3.1 applies. Hence, we can restrict to work

with the polynomial ring instead of the power series ring.

Lemma 3.2. Given a polynomial in the non standard coordinates w, x, y, z with ADE sin-

gularities, there exists homogeneous operators in w, x, y, z such that being in the Jacobian

ideal is equivalent to being annihilated by these operators in the stable range.

Proof. This comes immediately from Theorem 3.1 and Proposition 3.3 The fact the operators

are homogeneous is because the standard equations are in an affine set. Without loss of

generality, the affine set is w = 1. Then we can homogenize the operators by multiplication

by w.

Here, we will go over examples on finding the differential operators given in Lemma 3.2.
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Example 3.1. Let f(w, x, y, z) = zwx+ w2y + x3 − y2x. The partials are given by

fw = zx+ 2wy

fx = zw + 3x2 − y2

fy = w2 − 2yx

fz = wx.

The singular point s = [0 : 0 : 0 : 1] is of type A4. One can check that ∂
∂y
|s annihilates the

partials.

(
∂

∂y
)2(fwh)|s = ((

∂

∂y
)2fw)h|s = 0

(
∂

∂y
)2(fxh)|s = ((

∂

∂y
)2fx)h|s = −2h(s).

To fix this, we add

2
∂

∂w
|s.

This will annihilate fxh. Since this operator annihilates fx, we have that

(
∂

∂y
)2 + 2

∂

∂w
|s

annihilates fwh and fxh for all h. Similarly, this operator annihilates fyh and fzh.

The third order operator is

(
∂

∂y
)3 + 2

∂

∂w

∂

∂y
− 2

∂

∂x
|s.

Instead of showing all calculations, let me summarize what is getting fixed. Applying ( ∂
∂y

)3|s

to fxh does not annihilate fxh. To fix this, we add in 2 ∂
∂w

∂
∂y
|s. This now annihilates fxh but
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does not annihilate fwh. To fix this, we add in −2 ∂
∂x
|s.

Example 3.2. Let f(w, x, y, z) = wzx+ w3 + x3 − y2x. The partials are given by

fw = zx+ 3w2

fx = wz + 3x2 − y2

fy = −2yx

fz = wx.

The singular point is s = [0 : 0 : 0 : 1] is of type A5. Instead of showing all the calculations,

it is more helpful to explain what doesn’t get annihilated and what the fix is. For first order

operator, we have that ∂
∂y
|s annihilates all partials.

For second order, we have

(
∂

∂y
)2 + 2

∂

∂w
|s.

( ∂
∂y

)2|s does not annihilate fxh, so we add in 2 ∂
∂w
|s.

For third order, we have

(
∂

∂y
)3 + 6

∂

∂y

∂

∂w
|s.

( ∂
∂y

)3|s does not annihilate fxh so we add in 6 ∂
∂y

∂
∂w
|s.
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For fourth order, we have

(
∂

∂y
)4 + 2

(
4

2

)
(
∂

∂y
)2 ∂

∂w
+ 4

(
4

2

)
(
∂

∂w
)2 − 24

(
4

2

)
∂

∂x
|s.

So ( ∂
∂y

)4|s applied to fxh is not zero. Let us call this the error term. To fix this, applying

2
(

4
2

)
( ∂
∂y

)2 ∂
∂w
|s gives us negative the error term + another term. So adding these two operators

gets rid of the error term but we are left with another term. Now to get rid of this other

term, we add 4
(

4
2

)
( ∂
∂w

)2|s. This operator now annihilates fxh but in doing so, this operator

does not annihilate fwh. To fix this, we add in −24
(

4
2

)
∂
∂x
|s. Now, this operator annihilates

any linear combination of the partials.

Example 3.3. Let f(w, x, y, z) = zx2 − zwy + w2x − wx2. This has one A1 singularity

at [0 : 0 : 0 : 1] and one A3 singularity at [0 : 0 : 1 : 0]. We work locally around the A3

singularity by letting y = 1. Then let

g(w, x, z) = f(w, x, 1, z) = zx2 − zw + w2x− wx2,

where g has a singularity at the origin. The partials are given by

gx = 2zx− 2wx

gw = −z + 2wx− x2

gz = x2 − w.

Consider the change of coordinates given by

u = −z + wx− x2 + x3

v = w − x2

t = x · 4
√

1− x.
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Let us reinterpret the derivative with respect to t in terms of our original coordinates. We

have

∂

∂t
=
∂x

∂t
· ∂
∂x

+
∂w

∂t
· ∂
∂w

+
∂z

∂t
· ∂
∂z
.

Note that since t4 = x4 − x5, 4t3dt = (4x3 − 5x4)dx. Therefore, we have

∂x

∂t
=

4t3

4x3 − 5x4
=

4x3(1− x)3/4

4x3 − 5x4
=

4(1− x)3/4

4− 5x
.

Thus our expression above is

∂

∂t
=

4(1− x)3/4

4− 5x
· ∂
∂x

+
∂w

∂t
· ∂
∂w

+
∂z

∂t
· ∂
∂z
.

We have

∂w

∂t
= 2x

∂x

∂t
∂z

∂t
= x

∂w

∂t
+ w

∂x

∂t
− 2x

∂x

∂t
+ 3x2∂x

∂t
.

What about ( ∂
∂t

)2? This is

∂

∂t

∂

∂t
=

∂

∂t

(
∂x

∂t
· ∂
∂x

+
∂w

∂t
· ∂
∂w

+
∂z

∂t
· ∂
∂z

)
=

∂

∂t
(
∂x

∂t
· ∂
∂x

) +
∂

∂t
(
∂w

∂t
· ∂
∂w

) + (
∂

∂t

∂z

∂t
· ∂
∂z

).

Let us calculate each of the 3 terms separately.
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1st term In the first half of the product rule, we want to take the derivative of x with respect

to t twice and evaluate at 0. This is equivalent to 2 times the coefficient of t2 in the power

series expansion of x. Let s denote the origin. From ∂x
∂t
|s = 1 and evaluation at the origin

being 0, the expansion of x is given as

x = (0 + t+ a2t
2 + ...).

We have that

t4 = x4 − x5 = (t+ a2t
2 + ...)4 − (t+ a2t

2 + ...)5.

The t5 coefficient in x4 is 4a2 and the t5 coefficient in x5 is 1. Thus a2 = 1
4
, and so evaluation

at 0 gives 1
2
. In the second half of the product rule, we have

(
∂

∂t

∂

∂x

)
∂x

∂t
|s =

∂

∂t

∂

∂x
|s

∂

∂t

∂

∂x
|s = (

∂x

∂t
· ∂
∂x

+
∂w

∂t
· ∂
∂w

+
∂z

∂t
· ∂
∂z

)|s = (
∂

∂x
)2|s.

So first term gives ( ∂
∂x

)2 + 1
2
∂
∂x

.

2nd term Using the fact ∂w
∂t

= 2x∂x
∂t

,

∂

∂t

(
∂w

∂t

∂

∂w

)
|s =

(
∂

∂t

∂w

∂t

)
∂

∂w
|s +

∂w

∂t

(
∂

∂t

∂

∂w

)
|s

=

(
2
∂

∂t
x

)
∂x

∂t

∂

∂w
|s + 2x

(
∂

∂t

∂x

∂t

)
∂

∂w
|s +

∂w

∂t

(
∂

∂t

∂

∂w

)
|s

=

(
2
∂

∂t
x

)
∂x

∂t

∂

∂w
|s +

∂w

∂t

(
∂

∂t

∂

∂w

)
|s

= 2
∂

∂w
+
∂w

∂t

(
∂

∂t

∂

∂w

)
|s = 2

∂

∂w
.
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3rd term

∂

∂t

(
∂z

∂t

∂

∂z

)
|s =

(
∂

∂t

∂z

∂t

)
∂

∂z
|s +

∂z

∂t

(
∂

∂t

∂

∂z

)
|s

=

(
∂

∂t

∂z

∂t

)
∂

∂z
|s =

∂

∂t

∂z

∂t
|s =

∂

∂t

(
x
∂w

∂t
+ w

∂x

∂t
− 2x

∂x

∂t
+ 3x2∂x

∂t

)
|s

=
∂

∂t

(
x
∂w

∂t

)
|s +

∂

∂t

(
w
∂x

∂t

)
|s −

∂

∂t

(
2x
∂x

∂t

)
|s +

∂

∂t

(
3x2∂x

∂t

)
|s

= −2

So

(
∂

∂t

∂z

∂t

)
∂

∂z
|s = −2

∂

∂z

Therefore, our second degree operator is ( ∂
∂x

)2 + 1
2
∂
∂x

+ 2 ∂
∂w
− 2 ∂

∂z
. Indeed, applying this

operator and evaluating at the origin annihilates all the partial derivatives of f .

3.2 Algorithm

Before giving algorithm for computing the zeta function of a hypersurface with ADE singu-

larities over P3, we define a method for finding a basis of a vector space of the subdiagonal

given a basis of a vector space of the subdiagonal of lower degree.

Definition 3.3. Let Dk be a differential operator of degree k. Let f and g be two polynomials.

Let D be a differential operator. Then one has

D(fg) =
∑

DifDjg

such that i+ j is the order of the operator D. We define the non-zero order operators of D

to be the Di such that i > 0.
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Theorem 3.2. Suppose we have a basis β1, β2, ..., βM in degree 4N on the subdiagonal.

Suppose there exists a degree (d − 4)N polynomial L satisfying the following properties.

Assume L is not annihilated by evaluation at any of the singular points. Let D1, ..., DM be

the operators as given in Lemma 3.2. Furthermore, assume that non-zero order operators

as defined in Definition 3.3 annihilate L. Define χ to be the multiplication by L map. This

map is well-defined. Furthermore, Lβ1, Lβ2, ...LβM is a basis on the higher degree of our

subdiagonal.

Proof. We will first show χ is well-defined. Since we can extend by linearity, consider the

3-form hdx∧ dy ∧ dz. Let us call the lower degree on subdiagonal BV and the upper degree

on the subdiagonal BU . Let L be our multiplying factor. Then we have a map χ given by

multiplication by the factor L.

χ : BV −→ BU

χ(ω) = Lω

for a 3-form ω. By linearity, suppose hdx∧dy∧dz = (fxh1 + fyh2 + fzh3)dx∧dy∧dz. Then

χ(hdx ∧ dy ∧ dz) = h · Ldx ∧ dy ∧ dz = (fxh1L+ fyh2L+ fzh3L)dx ∧ dy ∧ dz,

which remains in the Jacobian.

For example, if the higher order operator is ( ∂
∂z

)2 + ∂
∂x

∂
∂y

+ ∂
∂w

, then the assumption is that

each term in the sum annihilates L and ∂
∂z
, ∂
∂x
, ∂
∂y
, ∂
∂w

also annihilate L. Then suppose that h

does not lie in the Jacobian ideal. We wish to show that hL also does not lie in the Jacobian

ideal. Suppose that

hL = fxh1 + fyh2 + fzh3

Since h does not lie in the Jacobian, there exists Di that does not annihilate h. Applying Di
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to the right hand side gives 0. Applying Di to the left hand side, by the assumption on L,

we get Di(hL) = (Dih)ev(L) 6= 0. Hence, we have a contradiction. Thus, we can conclude

the image of an element not in the image of Koszul differential will not be in the image of

Koszul differential.

Using the fact that elements not in the Jacobian ideal are mapped to elements not in the

Jacobian ideal, we can now show that the image is a basis. Suppose we have linear indepen-

dence. Then from the result that the dimension of the space is the global Milnor number,

we immediately get that the M elements span the whole space. Suppose there is a nontrivial

linear combination

c1Lβ1 + c2Lβ2 + ...+ cMLβM = 0

where 0 is a representative of an element in the Jacobian ideal as we are on the E1 page.

Then this means the term above lies in the Jacobian ideal so the term is annihilated by the

corresponding differential operators. We evaluate at a singular point s and get a contradiction

because the coefficients c̃1 = c1L|s, ..., ˜cML|s give a nontrivial linear combination on the lower

level of the subdiagonal. Hence, we must have linear independence of the new basis elements

and from the argument above, these M terms form a basis for the subdiagonal of degree dN .

This proves Theorem 3.2.

Example 3.4. In the case we have a single singularity at say [1 : 0 : 0 : 0], the operators are

in the variables x, y, z since we work in the affine open set. For an example of a hypersurface,

one can take the equation f = x2 + y2 + z2 = 0. We can take L to be wk for the appropriate

power of k. Evaluation at [1 : 0 : 0 : 0] does not annihilate L while all the other operators

annihilate L since the other operators are in the variables x, y, z.

Example 3.5. Suppose the singularities are the standard coordinates in the affine open set.

In other words, the singularities are [1 : 0 : 0 : 0], [0 : 1 : 0 : 0], [0 : 0 : 1 : 0], and
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[0 : 0 : 0 : 1]. For an example of an equation, one can take the Cayley cubic given by

f = xyz + wyz + wxz + wxy = 0. In this case, suppose our corresponding operators have

at most degree k. Then L = wj + xj + yj + zj for j > k will be a valid choice for Theorem

5. Since all operators are of degree at most k, applying the operators to L and evaluating at

the origin will annihilate L, and evaluating at the singular points will not annihilate L by

construction. For degrees lower, one will have to construct the matrix.

Before giving an algorithm, we state the following theorem.

Theorem 3.3. The subdiagonal on the E2 page vanishes in the case the hypersurface in P3

has only ADE singularities.

Proof. Following the notation of Theorem 5.3 of Dimca and Saito [6] except for the fact we

replace p with m, let z1, ..., zr be the singularities of f . Let ηj be the 3-forms generated by

the generators of C[x, y, z]/(dhk),where hk is the local equation of f around zk. Let αhk,j be

the weight of ηj. Then from Theorem 5.3 of Dimca and Saito [6],

dim(N2
m) ≤ #

{
(k, j)| αhk,j =

m

d

}
,

where N2 is the subdiagonal on the E2 page. We only care about powers of f , and this

is when m is a multiple of d. In this case, we only care when αhk,j = m
d
∈ Z. Second,

the inequality runs through all singularities. If we can show that on each singularity the

inequality shows that the dimension is 0, we are done since

#
{

(k, j)| αhk,j =
m

d

}
=
∑
i

#
{
j| αhi,j =

m

d

}

Let wt(hΩ) denote the weight of the form hΩ. Let us first assume that our hypersurface has a

type An singularity. Then using notation from Theorem 5.3 of Dimca and Saito [6], in a local

analytic coordinate system around our singularity, the function of the hypersurface can be
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written in the form xy = zn+1. The weights of x, y, z are 1
2
, 1

2
, 1
n+1

respectively. The partials

with respect to x, y, z are y, x, (n+ 1)zn; so the quotient C[x, y, z]/(y, x, zn) is generated by

1, z, z2, ..., zn−1 over C. Hence the monomial basis of the quotient is given by

dx ∧ dy ∧ dz, zdx ∧ dy ∧ dz, ..., zn−1dx ∧ dy ∧ dz.

The weight of dx ∧ dy ∧ dz is

1

2
+

1

2
+

1

n+ 1
=
n+ 2

n+ 1
.

Hence the weight of our forms are

n+ 2

n+ 1
,
n+ 3

n+ 1
, ...,

2n

n+ 1
.

Let us label these values by αi respectively. For example, α1 = n+2
n+1

and α2 = n+3
n+1

. By

Dimca-Saito([6],Theorem 5.3),

dim(N2
p+d) ≤ #

{
k| αk =

p

d

}
,

where N2
j is the dimension of the subdiagonal on the E2 page of degree j. From above,

since the value of αk ranges between 1 and 2 for all k, there is no way that αk = p
d
. Hence,

dim(N2
p+d) = 0, and so the subdiagonal vanishes on the E2 page. This extends to hypersur-

faces with multiple An singularities as it was noted that we can focus on one singularity at

a time.

Now suppose our hypersurface has a type Dn singularity. Then in a local analytic sys-

tem, our function can be written in the form z2 + yx2 + yn−1. The weights of x, y, z are

n−2
2(n−1)

, 1
n−1

, 1
2

respectively. The Jacobian ideal is given by (2z, x2 + xy, yn−1). The quotient

C[x, y, z]/(2z, x2 + xy, yn−1) is generated by 1, xyk, yj, where k and j run from 0 to n − 2.

35



The weight of dx ∧ dy ∧ dz is 2n−1
2n−2

.

Let us consider the basis given by yjdx ∧ dy ∧ dz. This has weight

2j

2(n− 1)
+

2n− 1

2n− 2
= 1 +

2j + 1

2n− 2
,

which is never an integer since the numerator is odd and denominator is even.

Let us now consider the basis given by xyjdx ∧ dy ∧ dz. This has weight

2j

2(n− 1)
+

2n− 1

2n− 2
+

n− 2

2(n− 1)
= 1 +

2j + n− 1

2n− 2
.

Now j runs from 0 to n − 2. At 0, the value is between 1,and 2, and at n − 2, the value

is between 2 and 3. So the only case we need to consider is whether the value can be 2.

However, the value 2 means p = 2d so we are calculating the dimension of N2d
2 which is not

part of the first quadrant. Hence, the subdiagonal vanishes in the case our hypersurface has

type Dn singularity.

Suppose the hypersurface has an E6 singularity. Then there exists a local analytic system

where the function of the hypersurface can be written in the form x2 + y3 + z4. The weights

of x, y, z are 1
2
, 1

3
, 1

4
respectively. The Jacobian ideal is given by J = (2x, 3y2, 4z3). The

quotient C[x, y, z]/(2x, 3y2, 4z3) is generated by 1, y, z, z2.yz, yz2. The weight of dx∧dy∧dz

is given by 13
12

. We have

wt(1dx ∧ dy ∧ dz) =
13

12
,wt(ydx ∧ dy ∧ dz) =

17

12
,wt(zdx ∧ dy ∧ dz) =

16

12
,

wt(z2dx ∧ dy ∧ dz) =
19

12
,wt(yzdx ∧ dy ∧ dz) =

20

12
,wt(yz2dx ∧ dy ∧ dz) =

23

12
.

None are integers, so the subdiagonal vanishes.

Suppose the hypersurface has an E7 singularity. Then there exists a local analytic system

where the function of the hypersurface can be written as x2 + y3 + yz3 = 0. The weights

of x, y, z are 1
2
, 1

3
, 2

9
respectively. The Jacobian ideal is given by J = (2x, 3y2 + z3, 3z2).
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The quotient C[x, y, z]/(2x, 3y2 + z3, 3z2y) is generated by 1, y, z, y2, yz, z2, y2z. We have

wt(dx ∧ dy ∧ dz) = 19
18

. Then

wt(ydx ∧ dy ∧ dz) =
25

18
,wt(zdx ∧ dy ∧ dz) =

23

18
,wt(y2dx ∧ dy ∧ dz) =

31

18
,

wt(yzdx ∧ dy ∧ dz) =
29

18
,wt(z2dx ∧ dy ∧ dz) =

23

18
,wt(y2z) =

35

18
.

Hence, since none are integers, the subdiagonal vanishes. Suppose the hypersurface has an E8

singularity. Then there exists a local analytic system where the function of the hypersurface

can be written as x2 + y3 + z5 = 0. Then the weights of x, y, z are 1
2
, 1

3
, 1

5
respectively.

The Jacobian ideal is given by J = (2x, 3y2, 5z4). The quotient C[x, y, z]/(2x, 3y2, 5z4) is

generated by 1, y, z, yz, z2, z2y, z3, z3y. We have wt(dx ∧ dy ∧ dz) = 31
30

. Then

wt(ydx ∧ dy ∧ dz) =
41

30
,wt(zdx ∧ dy ∧ dz) =

37

30
,wt(yzdx ∧ dy ∧ dz) =

47

30
,

wt(z2dx ∧ dy ∧ dz) =
43

30
,wt(z2ydx ∧ dy ∧ dz) =

53

20
,wt(z3dx ∧ dy ∧ dz) =

49

30
,

wt(z3ydx ∧ dy ∧ dz) =
59

30
.

None are integers so the subdiagonal vanishes. This concludes the proof.

We now go over the algorithm.

1. Calculate the basis on the E2 page. Along with this, calculate the basis on the subdi-

agonal of the E1 page for the smallest degree in the stable range. Using Theorem 3.2,

find an L to obtain a basis on higher levels of the subdiagonal.

2. For each basis element on rigid cohomology, compute the truncated image of the inverse

Frobenius and rewrite the truncated image into an element that is cohomologically

equivalent and expressed as a linear combination of the basis elements.

3. Compute the characteristic polynomial and use the Weil conjectures to obtain the zeta
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function.

Step 1 is done using the Sage code given and finding a multiplying factor L. We explain how

to perform step 2.

Let h be a polynomial of the truncated image of inverse Frobenius operator of degree dN

for some d ≥ 4. By Theorem 3.2, we can apply the de Rham differential on the basis for the

vector space of the subdiagonal of degree dN and call the images α1, ..., αM . Since all terms

on the E2 page are 0 past the first quadrant, there exist constants a1, ..., aM such that

h− a1α1 − ...− aMαM = fwh1 + fxh2 + fyh3 + fzh4.

There are M variables a1, ..., aM that need to be solved for. From Theorem 3.1 and Propo-

sition 3.3, there exist M differential operators that eliminate the Jacobian ideal. Applying

these M differential operators to the equation above gives a system of M equations with

M variables. The system of equations have solution because h − a1α1 − ... − aMαM is in

the Jacobian ideal, and we established above that being in the Jacobian ideal is equivalent

to being annihilated by the M differential operators. From here, we find a preimage of

h− a1α1− ...− aMαM under the Koszul differential using a Gröbner basis. We continue this

process to reach the vector spaces on the top diagonal–which contain the basis elements of

the E2 page.

For step 3, after expressing the truncated image as a linear combination of the basis elements

of E2 page, we represent this action as a matrix and compute the characteristic polynomial.

Because we used truncation, the eigenvalues are approximations of the true eigenvalues. We

use the Weil conjectures to recover the actual eigenvalues.
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Chapter 4

Results on Blow up and Zeta

Functions

Next, given a hypersurface X in P3 with ADE singularities over Zp, we show the theorem by

Theorem 2.4 of Baldassarri and Chiarellotto [2] holds after a sequence of iterated blow ups.

4.1 De Rham vs Rigid Cohomology

Theorem 4.1. Let X be a hypersurface in P3 with equisingular ADE singularities over Zp

given by vanishing of f (See Definition 1.2). Let U be the complement to X, UFp be the

special fiber over U , and UQp be the generic fiber over U . Then

H i
rig(UFp) ∼= H i

dR(UQp) 0 ≤ i ≤ 2dim(U)

Proof. Since our singularities are isolated, by Theorem 2.4 of Baldassarri and Chiarellotto

[2], it suffices to show that iterated blow ups of a single singularity of type ADE give a
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smooth strict relative divisor with normal crossings. We consider this in cases.

Definition 4.1. Let X be a hypersurface in P3 with defining equation f on an affine subset

with coordinates x, y, z over a field or principal ideal domain K. Let Ω be the free rank 3

module over K[x, y, z]/(f) generated by dx, dy, dz. Let df = fxdx+fydy+fzdz. X is smooth

when Ω/df is a projective module over K[x, y, z]/(f) .

For checking smoothness, the module is not projective when df is 0.

To understand future definitions, we define the completion of a ring.

Definition 4.2. Let A be a commutative ring. Let I be an ideal of A and let In be the nth

power of I. We have natural homomorphisms A/Ik+1 → A/Ik which makes A/In into an

inverse system of rings. We say the formal completion of A with respect to I is given by the

following inverse limit, Ã = lim←−A/I
n. A ring is complete if Ã ∼= A.

An example is the formal completion at the ideal of the origin of a polynomial ring is the

power series ring.

We plan to blow up P3 at centers that are smooth over Spec(Zp) but closed subsets of

X. After a sequence of iterated blow ups, the strict transform of X is given by E0 and

the exceptional divisor is given by a union of irreducible components E1 ∪ ... ∪ Ei. Take a

point in the union E0 ∪ ... ∪ Ei. Then in a neighborhood of this point called V , we will be

doing the blow up such that there will always be at most 3 components that intersect the

neighborhood. Let φ : V → A3 such that φ(s) = (f1(s), f2(s), f3(s)) If the intersection is 3

components, the 3 components are the vanishing of f0, f1, f2. If intersection is 2 components,

the 2 components are the vanishing of f0, f1 and f2 may be chosen to be transversal to f0, f1.

If we are considering 1 component, the component is given by vanishing of f0 and f1, f2 are

chosen to be transversal to f0.

Definition 4.3. Let Y be locally Noetherian and φ : X → Y is locally of finite type. Let
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x ∈ X and y = φ(x). Then let ψ : ÕY,y → ÕX,x be the induced map on completed local rings.

The map φ is etale at x if the following holds:

1. ÕX,x/mY ÕX,x is a finite separable field extension of residue field k(y). Note mY is the

maximal ideal of ÕY,y.

2. OX,x is a free OY,y module.

Definition 4.4. The divisor given by the 2 dimension stratification above is a strict relative

normal crossings divisor if the map φ : V → A3 is etale.

We now show we obtain a smooth strict normal crossings divisor on the standard equations

through iterated blow ups. We first consider the case X is an affine hypersurface with

standard ADE equations.

4.1.1 Standard An case

Let X be an affine hypersurface with the An standard equation given by xy = zn+1. The

blow up at the origin is a subset of A3×P2 given by vanishes of all 2x2 minors of the matrix

with entries given by coordinates of A3 and P2. Let x, y, z be the coordinates of A3 and

x1, y1, z1 be the coordinates of P2. Then the matrix with coordinates of A3 and P2 is given

by

 x y z

x1 y1 z1



Consider the affine patch on P2 where x1 = 1. Then the vanishing of all 2 by 2 minors of
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the matrix x y z

1 y1 z1


is given by y = xy1 and z = xz1. Then our equation xy = zn+1 becomes x2(y1−xn−1zn+1

1 ) =

0. The surface x = 0 is our exceptional divisor of the blow up of A3. The second component

is the strict transform of our surface given by equation y1 − xn−1zn+1
1 which is smooth. Let

c be any value in Zp. The intersection of the strict transform with the exceptional divisor

is given by x = 0, y1 = 0. Take a point s in the intersection given by x = 0, y1 = 0, z1 = c

for some c ∈ Zp. This corresponds to ideals (x, y1, z1 − c) and (x, y1, z1 − c, p). The blow up

defines a map

φ : V (x, y1, z1)→ A3(u, v, w)

φ(x, y1, z1) = (x, y1 − xn−1(z1 + c)n+1, z) = (u, v, w)

where V is a neighborhood of the point. The image of x = 0, y1 = 0, z1 = c is u = 0, v =

0, w = c which corresponds to ideals (u, v, w− c) and (u, v, w− c, p). For ideal (x, y1, z1− c),

we have ÕX,s = Qp[[x, y1, z1−c]] and ÕY,φ(s) = Qp[[u, v, w−c]] = Qp[[x, y1−xn−1zn+1
1 , z1−c]].

For ideal (x, y1, z1 − c, p), we have ÕX,s = Fp[[x, y1, z1 − c]] and ÕY,f(s) = Fp[[u, v, w − c]] =

Fp[[x, y1−xn−1zn+1
1 , z1−c]]. In either case, condition 2 of 4.1 is satisfied because the quotient

field is either Fp or Qp which is a finite separable extension of itself. For Condition 1,

there is a natural action of u, v, w given by the action of x, y1 − xn−1zn+1
1 , z1 which makes

ÕX,s into an ÕY,φ(s) module. This module is free of rank 1 is because Qp[[x, y1, z1 − c]] ∼=

Qp[[x, y1 − xn−1zn+1
1 , z − c]] and Fp[[x, y1, z1 − c]] ∼= Fp[[x, y1 − xn−1zn+1

1 , z1 − c]].

Consider the affine patch of P2 where y1 = 1. The vanishing of all 2 by 2 minors of the
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matrix x y z

x1 1 z1


is given by x = yx1 and z = yz1. Then our equation xy = zn+1 becomes y2(x1−yn−1zn+1

1 ) =

0. The surface y = 0 is our exceptional divisor of the blow up of A3. The second component

is the strict transform of our surface given by equation x1− yn−1zn+1
1 , which is smooth. The

reason we have a strict normal crossing divisor here is the same reason as the first patch by

symmetry.

Consider the affine patch on P2 where z1 = 1. Then the vanishing of all 2 by 2 minors of the

matrix x y z

x1 y1 1


is given by y = zby1 and x = zx1. Then our equation xy = zn+1 becomes z2(x1y1−zn−1) = 0.

This is a type An−2 singularity. Hence, it suffices to show that the result holds for type A1

and type A2 singularity and the rest follows by induction.

For type A1, n+1 = 2 so the equation on the third patch of the blow up is given by z2(x1y1−

1) = 0. Let a 6= 0 ∈ Zp. Consider a point in the intersection of z = 0 and x1y1− 1 = 0 given

by x = a, y = 1
a
, z = 0. We shift to the origin to get equation z2((x1 − a)(y1 − 1

a
)− 1) = 0.

Let s denote the origin. The blow up defines a map

φ : V (x1, y1, z)→ A3(u, v, w)

φ(x1, y1, z) = (x, (x1 − a)(y1 −
1

a
)− 1, z) = (u, v, w)

where V is a neighborhood of the origin. The image of (0, 0, 0) under φ is (0, 0, 0) which cor-

43



responds to ideals (u, v, z) and (u, v, z, p). For ideal (x1, y1, z), we have ÕX,s = Qp[[x1, y1, z]]

and ÕY,φ(s) = Qp[[u, v, w]] = Qp[[x, (x1 − a)(y1 − 1
a
) − 1, z]]. For ideal (x1, y1, z, p), we have

ÕX,s = Fp[[x, (x1−a)(y1− 1
a
)−1, z]] and ÕY,φ(s) = Fp[[u, v, w]] = Fp[[x, (x1−a)(y1− 1

a
)−1, z]].

In either case, Condition 2 of Definition 4.1 is satisfied because the quotient field is either

Fp or Qp which is a finite separable extension of itself. For Condition 1, we check the de-

terminant of the 3x3 matrix formed from the coefficients of the linear terms of the map φ is

nonzero. The matrix is given by


1 0 0

− 1
a
−a 0

0 0 1

 .

The determinant is nonzero so ÕX,s is free over ÕY,φ(s).

For type A2, n + 1 = 3 so the equation on the third patch of the blow up is given by

z2(x1y1 − z) = 0. We blow up the y1-axis given by the ideal (x, z). Let us label the

coordinates of P1 as [x2 : z2].

On the first patch, we have z = x1z2. The equation from the first blow up z2(x1y1−z) = 0 is

then given by x3
1z

2
2(y1−z2) = 0. There are three surfaces given by x1 = 0, z2 = 0, y1−z2 = 0.

Let a ∈ Zp. Let a ∈ Zp. This covers the case for a point in the double and triple intersections

because for triple intersections, we take a = 0, b = 0. Take a point s in the double or triple

intersection given by at x1 = 0, z2 = a, and y1 = a. We do the case where a = 0 as the rest

is the same.

φ : V (x, y, z)→ A3(u, v, w)

φ(x, y, z) = (x, y − z, z) = (u, v, w)

The map φ is an isomorphism so it is etale.

44



On the second patch, we have x = z1x2. The equation from the first blow up z2(x1y1−z) = 0

is then given by z3
1(x2y1 − 1) = 0. The two surfaces are given by z1 = 0 and x2y1 − 1 = 0.

This is a normal crossing divisor as this is the exact same case as the A1 case.

4.1.2 Standard Dn case

Now let X be an affine hypersurface with standard Dn equation given by x2 +yz2 +yn−1 = 0.

Similar to before, the blowup is a subset of A3 × P2 with coordinates x, y, z, x1, y1, z1.

Consider the affine patch on P2 where x1 = 1. Then the vanishing of all 2 by 2 minors of

the matrix x y z

1 y1 z1


is given by y = xy1 and z = xz1. Then our equation x2 + yz2 + yn−1 = 0 becomes x2(1 +

xy1z
2
1 + xn−3yn−1

1 ) = 0. This surface is reducible into two components. The first component

given by x = 0 is our exceptional divisor of the blow up of A3. The second component is

the strict transform of our surface given by equation 1 + xy1z
2
1 + xn−3yn−1

1 = 0. These two

surfaces do not intersect since n ≥ 4.

Consider the affine patch of P2 where y1 = 1. The vanishing of all 2 by 2 minors of the

matrix x y z

x1 1 z1


is given by x = yx1 and z = yz1. Then our equation x2 + yz2 + yn−1 = 0 becomes y2(x2

1 +

yz2
1 + yn−3) = 0. This surface is reducible into two components. The first component given
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by y2 = 0 is our exceptional divisor of the blow up of A3. The second component is the

strict transform of our surface given by equation x2
1 + yz2

1 + yn−3 = 0. Note for n ≥ 6, the

equation is exactly the standard Dn−2 equation. Therefore, we just need to show the case

for n = 4 and n = 5 and induction proves the rest.

For the D4 case, after relabeling, the equation is given by y2(x2
1 +yz2

1 +y) = 0. This equation

is singular at z1 = ±
√
−1. We can assume that ±

√
−1 lies in Zp. If not, the same argument

given below will work over a quadratic extension of Zp. Hence, we let i =
√
−1. We shift

the equation to y2(x2
1 + y(z1 − i)2 + y) = 0. We blow up at the origin.

On the patch x1 = yx2, z1 = yz2, the equation becomes y4(yz2
2 − 2z2i) = 0. There is no

intersection between the exceptional divisor and the strict transform.

On the patch z1 = x1z2, y = x1y2, the equation becomes x3
1y

2
2(x1 + y2(x1z2 − i)2 + y2) = 0.

One more blow up on the same patch gives x4
1y

2
3(1 + y3(xz3 − i)2 + y3) = 0. There is no

intersection between the exceptional divisor and strict transform.

On the patch y = z1y2, x1 = z1x2, the equation becomes z4
1y

2
2(x2

2 + y2z1− 2iy2) = 0. We shift

to the origin so the equation becomes z4
1y

2
2(x2

2 + y2z1) = 0. This is an A1 singularity which

has been covered.

In the D5 case, we have y2(x2
1 + yz2

1 + y2) = 0. We blow up the origin again.

On the patch x1 = yx2, z1 = yz2, the equation becomes y4(x2
2 + z2

2y + 1) = 0. Let a ∈ Zp.

Consider a point in the double intersection given by y = 0, x2 = i, z2 = a. We shift to the

origin given by y4((x2 − i)2 + (z2 − a)2y + 1) = 0. Let s be the origin. This corresponds to

ideals (x2, y, z2) and (x2, y, z2, p). The blow up defines a map

φ : V (x2, y, z2)→ A3(u, v, w)

φ(x2, y, z2) = ((x2 − i)2 + (z2 − a)2y + 1, y, z) = (u, v, w)
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where V is the neighborhood of the origin. The image of the origin under φ is the origin. For

ideal (x2, y, z2), we have ÕX,s = Qp[[x2, y, z2]] and ÕY,φ(s) = Qp[[u, v, w]] = Qp[[(x2 − i)2 +

(z2−a)2y+1, y, z2]]. For ideal (x2, y, z2, p), ÕX,s = Fp[[x2, y, z2]] and ÕY,yφ(s) = Fp[[u, v, w]] =

Fp[[(x2− i)2 + (z2− a)2y+ 1, y, z2]]. In either case, Condition 2 of 4.1 is satisfied because the

quotient field is either Fp or Qp which is a finite separable extension of itself. For Condition

1, there is a natural action of u, v, w given by the action of (x2 − i)2 + (z2 − a)2y + 1, y, z2

which makes ÕX,s into an ÕY,φ(s) module. We check the 3x3 matrix of the coefficients linear

terms of φ. The matrix is given by


−2i 0 0

0 1 0

0 0 1

 .

The determinant is nonzero so ÕX,x is free over ÕY,y.

On the patch y = x1y2, z1 = x1z2, the equation is given x4
1y

4
2(1 + x1z

2
2y2 + y2

2) = 0. The

nontrivial intersection is given by x = 0 and the strict transform. Let a ∈ Zp. Consider a

point in the nontrivial intersection given by x1 = 0, y2 = i, z2 = a. We shift to the origin so

the strict transform becomes 1 + x1(z2− a)2(y2− i) + (y2− i)2 = 0. Let s be the origin.This

corresponds to ideals (x1, y2, z2) and (x1, y2, z2, p). The blow up defines a map

φ : V (x1, y2, z2)→ A3(u, v, w)

φ(x1, y2, z2) = (x1, 1 + x1(z2 − a)2(y2 − i) + (y2 − i)2, z2) = (u, v, w)

where V is a neighborhood of the origin. The image of the origin under φ is the origin.

For ideal (x1, y2, z2), we have ÕX,s = Qp[[x1, y2, z2]] and ÕY,φ(s) = Qp[[u, v, w]] = Qp[[x1, 1 +

x1(z2−a)2(y2− i)+(y2− i)2, z2]]. For ideal (x1, y2, z2, p), ÕX,s = Fp[[x1, y2, z2]] and ÕY,φ(s) =

Fp[[u, v, w]] = Fp[[x1, 1 + x1(z2 − a)2(y2 − i) + (y2 − i)2, z2]]. In either case, Condition 2

of 4.1 is satisfied because the quotient field is either Fp or Qp which is a finite separable
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extension of itself. For Condition 1, there is a natural action of u, v, w given by the action of

x1, 1 + x1(z2− a)2(y2− i) + (y2− i)2, z2 which makes ÕX,s into an ÕY,φ(s) module. We check

the 3x3 matrix of the coefficients of the linear terms of φ. The matrix is given by


1 0 0

0 −2i 0

0 0 1

 .

The determinant is nonzero so ÕX,s is free over ÕY,φ(s).

On the patch y = z1y2, x1 = z1x2, the equation is given by z4
1y

2
2(x2

2 + z1y2 + y2
2) = 0. We

do the change of coordinates where we replace z1 with z1 − y2. The equation then becomes

z4
1y

2
2(x2

2 + z1y2) = 0 which is a type A1 equation, and this case has been covered.

Finally, we head back to the beginning where we blow up the origin of the type Dn singularity

on the patch where z1 = 1. The equation is given by z2(x2
1 + zy1 + zn−3yn−1

1 ) = 0. One can

check in all cases of n, the Hessian is non degenerate so this is a type A1 singularity which

we proved the result holds already.

4.1.3 Standard En case

Now let X be an affine hypersurface with standard E6 equation given by x2 + y3 + z4 = 0.

Similar to before, the blowup is a subset of A3 × P2 with coordinates x, y, z, x1, y1, z1.

Consider the affine patch on P2 where x1 = 1. Then the vanishing of all 2 by 2 minors of

the matrix x y z

1 y1 z1



48



is given by y = xy1 and z = xz1. Then our equation x2 + y3 + z4 = 0 becomes x2(1 + xy3
1 +

x2z2
1) = 0. There is no intersection between the exceptional divisor and strict transform.

Consider the affine patch of P2 where y1 = 1. The vanishing of all 2 by 2 minors of the

matrix x y z

x1 1 z1


is given by x = yx1 and z = yz1. Then our equation x2 + y3 + z4 = 0 becomes y2(x2

1 + y +

y2z4
1) = 0. We now blow up at the z1-axis given by the ideal (x1, y).

On one patch, we have x = yx2. The equation becomes y3(yx2
2 + 1 + yz4

1) = 0. There is no

intersection between the exceptional divisor and strict transform.

On another patch, we have y = x1y2. The equation becomes x3
1y

2
2(x1 + y2 +x1y

2
2z

4
1) = 0. We

blow up the z1-axis again.

On one patch, x1 = y2x3. So we get y6
2x

3
3(x3 + 1 + y2

2x3z
4
1) = 0. The nontrivial intersection

is between y2 = 0 and the strict transform. Let a ∈ Zp. Consider a point in the nontrivial

intersection given by y2 = 0, x3 = −1, z1 = a. We shift to the origin so the strict transform is

given by x3 + y2
2(x3− 1)(z1 + a)2 = 0. Let s be the origin. This is given by ideals (x3, y2, z1)

and (x3, y2, z1, p). The blow up defines a map

φ : V (x3, y2, z1)→ A3(u, v, w)

φ(x3, y2, z1) = (z1, y2, x3 + y2
2(x3 − 1)(z1 + a)2) = (u, v, w)

where V is a neighborhood of the origin. The image of the origin is the origin which corre-

sponds to ideals (u, v, w) and (u, v, w, p). For ideal (x3, y2, z1), we have ÕX,s = Qp[[x3, y2, z1]]

and ÕY,φ(s) = Qp[[u, v, w]] = Qp[[z1, y2, x3 + y2
2(x3 − 1)(z1 + a)2]]. For ideal (x3, y2, z1, p), we
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have ÕX,s = Fp[[x3, y2, z1]] and ÕY,φ(s) = Fp[[u, v, w]] = Fp[[z1, y2, x3 + y2
2(x3 − 1)(z1 + a)2]].

In either case, Condition 2 of Definition 4.1 is satisfied because the quotient field is either

Fp or Qp which is a finite separable extension of itself. For Condition 1, there is a natural

action of u, v, w given by the action of z1, y2, x3 + y2
2(x3− 1)(z1 + a)2 which makes ÕX,s into

an ÕY,φ(s) module. We look at the 3x3 matrix of the coefficient linear terms of the map φ.

It is given by


0 0 1

0 1 0

1 0 0

 .

The determinant is nonzero so ÕX,s is free over ÕY,φ(s).

On other patch, y2 = x1y3. So we get x6
1y

2
3(1+y3 +x2

1y
2
3z

4
1) = 0. The nontrivial intersection is

between x1 = 0 and the strict transform. Let a ∈ Zp. Then consider a point in the nontrivial

intersection given by x1 = 0, y3 = −1, z1 = a. We shift to the origin so the equation of strict

transform becomes y3 + x2
1(y3 − 1)2(z1 + a)4 = 0. Let s be the origin. The origin is given by

ideals (x1, y3, z1) and (x1, y3, z1, p).The blow up defines a map

φ : V (x, y, z)→ A3(u, v, w)

φ(x, y, z) = (x, z, y + x2(y − 1)2(z + a)4) = (u, v, w)

where V is neighborhood of the origin. For ideal (x1, y3, z1), we have ÕX,s = Qp[[x1, y3, z1]]

and ÕY,φ(s) = Qp[[u, v, w]] = Qp[[x1, z1, x3 + y2
2(x3 − 1)(z1 + a)2]]. For ideal (x1, y3, z1, p), we

have ÕX,s = Fp[[x1, y3, z1]] and ÕY,φ(s) = Fp[[u, v, w]] = Fp[[x1, z1, x3 + y2
2(x3 − 1)(z1 + a)2]].

In either case, Condition 2 of Definition 4.1 is satisfied because the quotient field is either

Fp or Qp which is a finite separable extension of itself. For Condition 1, there is a natural

action of u, v, w given by the action of x1, z1, x3 + y2
2(x3− 1)(z1 + a)2 which makes ÕX,s into

an ÕY,φ(s) module. We consider the 3x3 matrix given by the coefficients of the linear terms
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of φ. It is given by


1 0 0

0 0 1

0 1 0

 .

The determinant is nonzero so ÕX,s is free over ÕY,φ(s).

We go back to the third patch of the blow up at the origin. Consider the affine patch on P2

where z1 = 1. Then the vanishing of all 2 by 2 minors of the matrix

 x y z

x1 y1 1


is given by y = zy1 and x = zx1. Then our equation x2 + y3 + z4 = 0 becomes z2(x2

1 + zy3
2 +

z2) = 0. This equation is an A5 singularity which was proven earlier.

Now let X be an affine hypersurface standard E7 equation given by x2 + y3 + yz3 = 0. The

blowup of the origin is a subset of A3 × P2 with coordinates x, y, z, x1, y1, z1.

Consider the affine patch on P2 where x1 = 1. Then the vanishing of all 2 by 2 minors of

the matrix x y z

1 y1 z1


is given by y = xy1 and z = xz1. Then our equation x2 + y3 + yz3 = 0 becomes x2(1 + xy3

1 +

x2y1z
3
1) = 0. There is no intersection of x = 0 and the strict transform.

Consider the affine patch of P2 where y1 = 1. The vanishing of all 2 by 2 minors of the
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matrix x y z

x1 1 z1


is given by x = yx1 and z = yz1. Then our equation x2 + y3 + yz3 = 0 becomes y2(x2

1 + y +

y2z2
1) = 0. We blow up the equation at the z1-axis given by ideal (x1, y).

On one patch, x1 = yx2. The equation becomes y3(yx2
2 + 1 + yz2

1). There is no intersection

between y = 0 and the strict transform.

On the other patch, y = x1y2. The equation becomes x3
1y

2
2(x1 + y2 + x1y

2
2z

2
1) = 0. We blow

up at the z1-axis again.

On the patch x1 = y2x3, we have y6
2x

3
3(x3 + 1 + y2

2x3z
2
1) = 0. The interesting intersection is

when y2 = 0. Let a ∈ Zp take a point in the intersection given by x3 = −1, y2 = 0, z1 = a.

We shift to the origin so the equation becomes x3 + y2
2(x3 − 1)(z1 + a)2 = 0. Let s be the

origin and s corresponds to ideals (x3, y2, z1) and (x3, y2, z1, p). The blow up defines a map

φ : V (x3, y2, z1)→ A3(u, v, w)

φ(x3, y2, z1) = (z1, y2, x3 + y2
2(x3 − 1)(z1 + a)2) = (u, v, w)

where V is a neighborhood of the origin. For ideal (x3, y2, z1), we have ÕX,s = Qp[[x3, y2, z1]]

and ÕY,φ(s) = Qp[[u, v, w]] = Qp[[z1, y2, x3 + y2
2(x3 − 1)(z1 + a)2]]. For ideal (x3, y2, z1, p), we

have ÕX,s = Fp[[x3, y2, z1]] and ÕY,φ(s) = Fp[[u, v, w]] = Fp[[z1, y2, x3 + y2
2(x3 − 1)(z1 + a)2]].

In either case, Condition 2 of 4.1 is satisfied because the quotient field is either Fp or Qp

which is a finite separable extension of itself. For Condition 1, there is a natural action of

u, v, w given by the action of z, y, x + y2(x − 1)(z + a)2 which makes ÕX,s into an ÕY,φ(s)

module. We look at the 3x3 matrix given by the coefficients of the linear terms of φ. The

52



matrix is given by


0 0 1

0 1 0

1 0 0

 .

The determinant is nonzero so ÕX,s is free over ÕY,φ(s).

On patch y2 = x1y3, we have x6
1y

2
3(1 + y3 + x2

1y
2
3z

2
1) = 0. The interesting intersection

is when x1 = 0. Let a ∈ Zp. Consider a point in the interesting intersection given by

x1 = 0, y3 = −1, z1 = a. We shift to the origin given by y3 + x2
1(y3 − 1)2(z1 − a)2. Let s be

the origin and s corresponds to ideals (x1, y3, z1) and (x1, y3, z1, p). The blow up defines a

map

φ : V (x1, y3, z1)→ A3(u, v, w)

φ(x1, y3, z1) = (x1, y3 + x2
1(y3 − 1)2(z1 − a)2, z1) = (u, v, w)

where V is a neighborhood of the origin. For ideal (x1, y3, z1), we have ÕX,s = Qp[[x1, y3, z1]]

and ÕY,φ(s) = Qp[[u, v, w]] = Qp[[x1, y3 + x2
1(y3 − 1)2(z1 − a)2, z1]].For ideal (x1, y3, z1, p), we

have ÕX,s = Fp[[x1, y3 + x2
1(y3 − 1)2(z1 − a)2, z1]] and ÕY,φ(s) = Fp[[u, v, w]] = Fp[[x1, y3 +

x2
1(y3 − 1)2(z1 − a)2, z1]]. In either case, Condition 2 of 4.1 is satisfied because the quotient

field is either Fp or Qp which is a finite separable extension of itself. For Condition 1, there

is a natural action of u, v, w given by the action of x1, y3 + x2
1(y3 − 1)2(z1 − a)2, z1 which

makes ÕX,s into an ÕY,φ(s) module. We look at the 3x3 matrix given by the coefficients of

the linear terms of φ.


1 0 0

0 1 0

0 0 1

 .
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Consider the affine patch on P2 where z1 = 1. Then the vanishing of all 2 by 2 minors of the

matrix x y z

x1 y1 1


is given by y = zy1 and x = zx1. Then our equation x2 +y3 +yz3 = 0 becomes z2(x2

1 +zy3
1 +

z2y1) = 0. The strict transform is a singularity of type D6. The result has been proven for

type D6 singularities so we are done with the E7 case.

Now let X be an affine hypersurface with a E8 standard equation given by x2 + y3 + z5 = 0.

Similar to before, the blowup is a subset of A3 × P2 with coordinates x, y, z, x1, y1, z1.

Consider the affine patch on P2 where a = 1. Then the vanishing of all 2 by 2 minors of the

matrix x y z

1 y1 z1


is given by y = xy1 and z = xz1. Then our equation x2 + y3 + z5 = 0 becomes x2(1 + xy3

1 +

x3z5
1) = 0. There is no intersection of x = 0 with the strict transform.

Consider the affine patch of P2 where y1 = 1. The vanishing of all 2 by 2 minors of the

matrix x y z

x1 1 z1


is given by x = yx1 and z = yz1. Then our equation x2 + y3 + z5 = 0 becomes y2(x2

1 + y +

y3z5
1) = 0. We now blow up at the z1-axis given by the ideal (x1, y).
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On one patch, we have x1 = yx2. The equation becomes y3(yx2
2 + 1 + y2z5

1) = 0. There is no

intersection of the exceptional divisor with the strict transform.

On another patch, we have y = x1y2. The equation becomes x3
1y

2
2(x1 + y2 +x2

1y
3
2z

5
1) = 0. We

blow up the z1-axis given by (x1, y2).

On one patch, x1 = y2x3. So we get y6
2x

3
3(x3 + 1 + y4

2x
2
3z

5
1) = 0. The interesting intersection

is given in the double intersection of y2 = 0 and x3 + 1 + y4
2x

2
3z

5
1 = 0. Let a ∈ Zp. Consider a

point in the interesting intersection given by x3 = −1, y2 = 0, z1 = a. We shift to the origin

denoted by s. The strict transform equation then becomes x3 + y4
2(x3 − 1)2(z1 − a)5. The

origin corresponds to ideals (x3, y2, z1) and (x3, y2, z1, p). The blow up defines a map

φ : V (x3, y2, z1)→ A3(u, v, w)

φ(x3, y2, z1) = (x3 + y4
2(x3 − 1)2(z1 − a)5, y2, z1) = (u, v, w)

where V is a neighborhood of the origin. For ideal (x3, y2, z1), we have ÕX,s = Qp[[x3, y2, z1]]

and ÕY,φ(s) = Qp[[u, v, w]] = Qp[[x3 + y4
2(x3− 1)2(z1− a)5, y2, z1]]. For ideal (x3, y2, z1, p), we

have ÕX,s = Fp[[x3, y2, z1]] and ÕY,φ(s) = Fp[[u, v, w]] = Fp[[x3 +y4
2(x3−1)2(z1−a)5, y2, z1]].In

either case, Condition 2 of Definition 4.1 is satisfied because the quotient field is either Fp or

Qp which is a finite separable extension of itself. For Condition 1, there is a natural action

of u, v, w given by the action of x3 + y4
2(x3 − 1)2(z1 − a)5, y2, z1 which makes ÕX,s into an

ÕY,φ(s) module. We look at the 3x3 matrix given by the linear terms of φ. The matrix is

given by


1 0 0

0 1 0

0 0 1

 .

The determinant is nonzero so ÕX,s is free over ÕY,φ(s).
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On the other patch, y2 = x1y3. So we get x6
1y

2
3(1 + y3 + x4

1y
3
3z

5
1) = 0. The nontrivial

intersection is when x1 = 0. Let a ∈ Zp. Take a point in the intersection given by x1 = 0, y3 =

−1, z1 = a. We shift to the origin so the strict transform becomes y3+x4
1(y3−1)3(z1−a)5 = 0.

Let s be the origin given by ideals (x1, y3, z1) and (x1, y3, z1, p). The blow up defines a map

φ : V (x1, y3, z1)→ A3(u, v, w)

φ(x1, y3, z1) = (x1, y3 + x4
1(y3 − 1)3(z1 − a)5, z1) = (u, v, w)

where V is a neighborhood of the origin. For ideal (x1, y3, z1), we have ÕX,s = Qp[[x1, y3, z1]]

and ÕY,φ(s) = Qp[[u, v, w]] = Qp[[x1, y3 + x4
1(y3− 1)3(z1− a)5, z1]]. For ideal (x1, y3, z1, p), we

have ÕX,s = Fp[[x1, y3, z1]] and ÕY,φ(s) = Fp[[u, v, w]] = Fp[[x1, y3 +x4
1(y3−1)3(z1−a)5, z1]].In

either case, Condition 2 of Definition 4.1 is satisfied because the quotient field is either Fp or

Qp which is a finite separable extension of itself. For Condition 1, there is a natural action

of u, v, w given by the action of x1, y3 + x4
1(y3 − 1)3(z1 − a)5, z1 which makes ÕX,s into an

ÕY,φ(s) module. We look at the 3x3 matrix given by the linear terms of φ. The matrix is

given by


1 0 0

0 1 0

0 0 1

 .

The determinant is nonzero so ÕX,s is free over ÕY,φ(s).

Consider the affine patch on P2 where z1 = 1. Then the vanishing of all 2 by 2 minors of the

matrix x y z

x1 y1 1


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is given by y = zy1 and x = zx1. Then our equation x2 + y3 + z5 = 0 becomes z2(x2
1 + zy3

1 +

z3) = 0. The strict transform is the standard E7 equation which we showed the result held

earlier. So we have shown the result for ADE singularities in standard form.

4.1.4 Transition to General Equation

We have shown that there is a sequence of blow ups on the standard equations that lead to

a divisor with simple normal crossings. We now show the same can be done before analytic

change of coordinates. On any stage of the blow up, we have a union of 2-dimensional

surfaces given by E0 ∪ E1 ∪ ... ∪ Ek, where E0 is the strict transform of the divisor given

before the blow up and Ei for i > 1 are the irreducible components of the exceptional divisor.

Suppose we have a standard equation, and there are k total blow-ups to obtain a divisor

with simple normal crossings. Let Xk denote the strict transforms on the kth blow up with

X0 being the original surface. Let Zk denote the union of the irreducible components of

exceptional divisors on the kth blow up (in notation above, this is the union of Ei for i > 1).

Z0 will be the singular point. Let X̃0 denote the surface before the change to standard form.

Let Z̃0 denote the singular point. Let

X0|Z0 = lim←−X0/Z
k
0
∼= lim←− X̃0/Z̃

k
0

where the limit runs as k →∞. Since Z0 and Z̃0 denote the origin which is the ideal (x, y, z),

the two spaces above are isomorphic by Definition 1.2. These are isomorphic by assumption

of equisingular lift. For simplicity, given a scheme X and ideal I, we will denote this inverse

limit as the formal completion of X along I given by X|I . We let

φ|(X,I) : X|I → X
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denote the natural map into the formal completion. We let the blow up maps from Xi to

Xi+1 be denoted as

ψi : Xi+1 → Xi

Base Case: We show that the blow up of the original of the standard equation and applying

formal completion gives a blow up procedure on the side with the original equation and

taking formal completion such that the formal completions are isomorphic. We have shown

the sequence of blow ups work on the side of the standard equation side so we have the first

blow up map

ψ0 : X1 → X0

Let S0 be the formal scheme that is isomorphic to the formal completion of both the original

equation and the standard equation. We then consider the formal completion along Z1 with

map given by

φ|(X1,Z1) : X1|Z1 → X1

But by Proposition 6 of Bosch [3], this is equivalent to taking the formal completion

φ|(X0,Z0) : S → X0

and then blowing up along Z0 to get a map

η0 : S1 → X0|Z0

where S1 is the blow up of S along Z0. Then we have that S1
∼= X1|Z1 .
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X1 X1|Z1
∼= S1

X0 S X̃0

ψ0

φ|(X1,Z1)

η0

φ(X0,Z0)

ψ|(X̃0,Z̃0)

But then by Proposition 6 of Bosch [3], formal completion and blow up commute so there

exists Z̃1 , blow up map ψ̃0, and formal completion map φ|(X̃1,Z̃1) such that the following

diagram commutes.

X1 X1|Z1
∼= S1

∼= X̃1|Z̃1
X̃1

X0 S X̃0

ψ0

φ|(X1,Z1
)

η0

φ|(X̃1,Z̃1)

ψ̃0

φ(X0,Z0)

ψ|(X̃0,Z̃0)

Therefore, we have given a blow up after analytic change of coordinates , there exist a blow

up procedure on the original equation such that the formal completions of the corresponding

strict transforms are isomorphic, i.e. X1|Z1
∼= S1X̃1|Z̃1

.

Suppose there exists a blow up procedure on before analytic change of coordinates and

after analytic change of coordinates such that the formal completions along the irreducible

components of the exceptional divisor are isomorphic up the the jth blow up. So Xj|Zj
∼=

SjX̃j|Z̃j
. We show the result holds for the (j + 1) blow up. By same process, we have the

blow up procedure on the side of the standard equation so we denote the blow up map as

ψj : Xj+1 → Xj
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We then have the formal completion along the exceptional locus Zj+1 given by the map

φ|(Xj+1,Zj+1) : Xj+1|Zj
→ Xj+1

Note in the blow up procedure of the standard equation, we are always blowing up a point

or a curve within Zj so Proposition 6 of Bosch [3] applies. By Proposition 6 of Bosch [3],

formal completion and blow up commute so the same result holds if we do formal completion

along Zj first and then blow up. We will denote the formal completions and blow up as

φ|(Xj ,Zj) : Xj|Zj
→ Xj

But the formal completion of Xj along Zj and blowing up a point or curve along Sj is the

same as blowing up and completing. Denote Sj+1 the blow up of Sj along the corresponding

point or curve. By induction hypothesis, we have the following commuting diagram.

Xj+1 Xj+1|Zj+1
∼= Sj+1

Xj Sj X̃j

ψj

φ|(Xj+1,Zj+1)

ηj

φ(Xj,Zj)

ψ|(X̃j ,Z̃j)

But by Proposition 6 of Bosch [3], formal completion commutes with blow up so we have

the following commuting diagram:

Xj+1 Xj+1|Zj+1
∼= Sj+1

∼= X̃j+1|Z̃j+1

˜Xj+1

Xj Sj X̃j

ψj

φ|(Xj+1,Zj+1
)

ηj

φ|( ˜Xj+1,
˜Zj+1)

ψ̃j

φ(Xj,Zj)

ψ|(X̃j ,Z̃j)

So we have that there is a sequence of blow up on the coordinates of the original equation
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such that Xj+1|Zj+1
∼= Sj+1

∼= X̃j+1|Z̃j+1
.

Lemma 4.1. Smoothness and strict relative normally crossing divisor holds on the formal

completion given above.

At the end of the final blow up of the standard equation side, we have union of two dimen-

sional pieces E0∪E1∪ ...∪Ej where E0 denotes the strict transform and Ei for i > 1 denote

the irreducible components of exceptional divisor. Points not in any Ej do not need to be

checked to satisfy the theorem by Baldassarri and Chiarellotto [2]. Points in only one Ei

are smooth and normal crossings so they do not need to be checked. The interesting case is

when points are in double intersections or triple intersections of Ei which we have checked

normal crossings have worked on the standard equation side. For the strict normal crossings

divisor, we needed to show the morphism given from the functions of the irreducible com-

ponents of the blow up on the 2 dimensional strata is etale at each point s in the irreducible

component. The etale condition is given in terms of maps of complete local rings. Since

we complete along the union of the irreducible components, we have two ideals in place.

We have ideal I given by the union of the irreducible components and ideal J given by the

point s. Note I ⊂ J . Let R is our local ring at s. Then let (RI)J be the completion of R

along I and then along J . Let RI+J be the completion of R along I + J . From Atiyah and

MacDonald [1], (RI)J ∼= RI+J . But since I ⊂ J , I + J = J so we have (RI)J ∼= RJ . Hence,

this says completing along the irreducible components and then completing along the point

is the same as directly completing along the point. Hence, we have our result since we are

completing the completion along the ideal correspond the point.

For smoothness, we show both directions. We work on an affine set.

Suppose all irreducible components on the 2 dimensional strata of the blow up are smooth.

Since smoothness is a local property, we restrict to the localization at a smooth point, s. Let

R,Rs be the ring corresponding to the surface the smooth point is in and the localization of
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that ring at a smooth point s respectively. Then Rs is regular since R is a smooth scheme.

Let M denote the completion along the maximal ideal of the smooth point given by ideal I.

Then since Rs is regular, M is a regular scheme since completion does not alter the Krull

and essential dimension. Since the fraction field of our maximal ideal is either Qp or Fp, our

field is perfect and regular schemes over perfect fields are smooth.

Now suppose we have a smooth point in the formal completion. Then s belongs to one of

the irreducible components of the two dimensional strata of the blow up with ideal I. Let

F denote the field of fractions of s which is either Qp or Fp. Denote the equation of the

irreducible component as f . Let R,Rs,M be as before. ΩM/F be the module of Kahler

differentials over M , ΩRs/F be the module of Kahler differentials over Rs. Then

ΩM/F =< Mdx,Mdy,Mdz > /Mdf

ΩRs/F =< Rsdx,Rsdy,Rsdz > /Rsdf

But ΩM/F is projective by assumption so Mdf is nonzero at s. But then this means that

Rsdf is nonzero since there is an injection from Rs to M . The kernel of the map is given

by the intersection of powers of I which is 0 by Krull’s intersection theorem since we have a

Noetherian local ring. So this means Rs is smooth as s.

4.2 Zeta Function and Run Time Complexity

Below is the link to the Sage code. There is a code for computing the basis on the E2

page. This is fully automated. The user has to input the degrees of the Koszul map and

function f . The second code is the image of Frobenius and reduction. I attached videos in

the README file of my code on GitHub and Zenodo. The link is : https://zenodo.org/

record/5810714#.YhhcVorMJyw
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Note my Frobenius reduction code is not fully automated. A human will need to compute

the differential operators given in Theorem 3.1 and polynomial multiplier L used to find the

basis on higher level of the vector spaces.

Below, we give the examples of zeta function for cubic and quartics equations. The cubic

examples are for prime p = 5, and these can be computed without the differential operator

approach. For the quartic examples, consider the case when p = 11. For a zeta function is

of degree 6, we will need point counts up to F116 . For the point count of F116 , since there

are 4 variables, we will need to brute force point count 1124 points. Assuming Sage takes

10−3 second to input the values, this would take Sage around 1.140015356 · 1018 days to run.

Using the method given in this paper, all the zeta functions given below have been done

within a scope of a day to 3 weeks. I used the Sage cloud computing from CoCalc using a

31GB Virtual Machine.

Function Singularity E2 Basis Zeta Function

zx2 − zwy + x3 1 A1, 2 A2 wy 1
(1−T )(1−5T )2(1−25T )

zx2 − zwy + w2x− wx2 1 A1, 1 A3 w2, wx 1
(1−T )(1−5T )3(1−25T )

zx2 − zwy + wx2 1 A1, 2 A2 wx 1
(1−T )(1−5T )2(1−25T )

zx2 − zwy + wx2 − x3 2 A1, 1 A2 w2, wy 1
(1−T )(1−5T )3(1−25T )

zwx− yw2 − y3 − wy2 2 A2 w2, wy 1
(1−T )(1−5T )2(1+5T )(1−25T )

zwx− y3 3 A2 no basis 1
(1−T )(1−5T )(1−25T )

In all the following examples for quartics, the identification of the singularity type has been
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done using Sage as well. The code from Sage borrows from Singular with implementation

based off of Pfister, Marais, and Boehm [14].

Example 4.1. A more interesting hypersurface is the degree 4 quartic given by

f = w3x+ (x+ y + z)(x− y − z)(x+ y + 2z)(x− 2y + z).

This quartic has an A5 singularity at [0 : 0 : 1 : −1] and A2 singularities at [0 : 1 : 0 : −1], [0 :

1 : 3 : −2], [0 : 5 : 1 : −3], [0 : 3 : 2 : 1], and [0 : 1 : −1 : 0]. Along with evaluation at the

singular points, here are the operators that annihilate the Jacobian ideal. For simplicity of

notation, I will only write the differential operators. Keep in mind one has to evaluate at the

corresponding singular point after applying the differential operators. For the A5 singularity,

D1 =
∂

∂w
+

∂

∂y
− ∂

∂z

D2 =
∂2

∂2w

D3 =
∂3

∂3w
− ∂

∂x

D4 =
∂4

∂4w
− 4

∂

∂w

∂

∂x
+

∂

∂w

∂

∂y
− ∂

∂w

∂

∂z
.

For [0 : 1 : 0 : −1], the operator is

D5 =
∂

∂w
+

∂

∂x
− ∂

∂z
.

For [0 : 1 : 3 : −2], the operator is

D6 =
∂

∂w
+

∂

∂x
+ 3

∂

∂y
− 2

∂

∂z
.
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For [0 : 5 : 1 : −3], the operator is

D7 =
∂

∂w
+ 5

∂

∂x
+

∂

∂y
− 3

∂

∂z
.

For [0 : 3 : 2 : 1]. the operator is

D8 =
∂

∂w
+ 3

∂

∂x
+ 2

∂

∂y
+

∂

∂z
.

For [0 : 1 : −1 : 0], the operator is

D9 =
∂

∂w
+

∂

∂x
− ∂

∂y
.

In this example, one does not need to find L since computation of inverse Frobenius operator

involves only low degree terms. We first show Theorem 4.1 holds. We do this either by

showing the change of coordinates to the standard equation in which case Theorem 4.1 applies

or by blowing up the equation and show the blow up is a smooth strict relative normal crossing

divisor.

We use the following property: Suppose we have

w3 = L1(x1, x2, x3)L2(x1, x2, x3)L3(x1, x2, x3)L4(x1, x2, x3)

where Li are general linear forms. Then we have 6 possible A2 singularities. The singularities

are given by solutions to equation w3 = Li = Lj = 0. This is because the other Lk are

invertible in the neighborhood of the solution. So our Li and Lj become our new variables u

and v giving equation w3 = uv which is an A2 singularity. Since w3 = L1 = L2 = 0 has no

solution, we end up with 5 A2 singularities.

For the A5 singularity, we use the same concept. The equation w3x+(x+z+1)(x−z−1)(x+
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2z+1)(x+z−2) = 0 has singularity at w = 0, x = 0, z = −1. We replace z with z−1 to make

singularity at the origin. The equation becomes w3x+(x+z)(x−z)(x−2z+3)(x−z−1) = 0.

The linear forms x − 2z + 3 and x − z − 1 are invertible in the neighborhood of origin. So

we make substitutions u = x+ z, v = x− z to get equation w3(u+v
2

) + uv = 0 after adjusting

w3 by a cube root of (x − 2z + 3)(x − z − 1).We make a change of variables and replace u

with 2u and v with 2v. The equation becomes w3u+w3u+ 4uv = 0. We relabel the equation

as w3x+ w3z + 4xz = 0. We blow up at the origin.

Since we know the leading differential operator corresponds to the w variable, we focus on the

interesting patch where x = wx1, z = wz1. The equation becomes w2(w2x1+w2z1+4x1z1) = 0.

We notice the equation is the same as before except the power of w was reduced by 1 in the

first two terms of the strict transform. We blow up the origin two more times to obtain

w6(x3 + z3 + 4x3z3) = 0. This is a strict relative normal crossing divisor due to the fact that

the map φ as in Theorem 4.1 constructed by the divisors gives a 3x3 matrix of the coefficients

of the linear terms with nonzero determinant.

Using the code, one can compute that the zeta function is given by

Z(x) = (1− 11x)4(1 + 11x)2.

The case when p = 13 is more interesting with complex roots. The interesting part of the

zeta function, Z(x), is given by

Z(x) = 4826809x6 − 171366x5 − 26364x4 + 1690x3 − 156x2 − 6x+ 1.

Example 4.2. A similar example is a hypersurface defined by equation

f = w2y2 − xy3 + xwz2 + w2x2.
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This quartic has an A7 singularity at [0 : 0 : 0 : 1], A3 singularity at [1 : 0 : 0 : 0], and E6

singularity at [0 : 1 : 0 : 0]. The interesting part of the zeta function, Z(x) is of degree 5.

Along with evaluation at the singular points, here are the differential operators that annihilate

the Jacobian ideal.

For the A7 singularity, the operators are

D1 =
∂

∂y

D2 =
∂2

∂2y

D3 =
∂3

∂3y
+ 6

∂

∂w

D4 =
∂4

∂4y
+ 24

∂

∂y

∂

∂w

D5 =
∂5

∂5y
+ 60

∂2

∂2y

∂

∂w
− 240

∂

∂x

D6 =
∂6

∂6y
+ 120

∂3

∂3y

∂

∂w
− 1440

∂

∂y

∂

∂x
+ 360

∂

∂w

∂

∂w
.

For the A3 singularity, the operators are

D7 =
∂

∂z

D8 =
∂2

∂2z
− ∂

∂x
.

67



For the E6 singularity, the operators are

D9 =
∂

∂y

D10 =
∂

∂z

D11 =
∂

∂y

∂

∂z

D12 =
∂2

∂2z
− ∂

∂w

D13 =
∂2

∂2z

∂

∂y
− ∂

∂w

∂

∂y
.

The operator L in Theorem 3.2 is given by wj+xj+zj. We first show de Rham cohomology is

rigid cohomology. We first show Theorem 4.1 holds. We do this either by showing the change

of coordinates to the standard equation in which case Theorem 4.1 applies or by blowing up

the equation and show the blow up is a smooth strict relative normal crossing divisor.

For the A7 singularity, the equation becomes w2y2−xy3 +xw+w2x2 = 0. We blow up at the

origin and focus on the interesting patch given by x = yx1, w = yw1. The equation becomes

y2(y2w2
1 − y2x1 + x1w1 + y2x2

1w
2
1) = 0.

The equation is still singular so we blow up at the origin again. We focus on the interesting

patch where x1 = yx2, w1 = yw2. The equation becomes y4(y2w2
2−yx2 +x2w2 +y4x2

2w
2
2) = 0.

We blow up at the origin again and focus on the patch where x2 = yx3, w2 = yw3. The

equation is given by y6(y2w2
3 − x3 + x3w3 + y8x2

3w
2
3) = 0.

We blow up the w3-axis given by the ideal (x3, y).

On the patch where y = x3y4, the equation becomes x7
3y

6
4(xy2

4w
2
3−1+w3 +x9y8

4w
2
3) = 0. This

is a strict relative normal crossing divisor due to the fact that the map φ constructed as in

proof of Theorem 4.1 by the divisors gives a 3x3 matrix of the coefficients of the linear terms
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with nonzero determinant.

On the patch where x3 = yx4, the equation becomes y7(yw2
3 − x4 + x4w3 + y9x2

4w
2
3) = 0. We

blow up the w-axis again.

The patch y = x4y5 gives a normal crossing divisor as argued before. On the patch x4 = yx5,

the equation becomes y8(w2
3 − x5 + x5w3 + y10x2

5w
2
3) = 0. This is a strict relative normal

crossing divisor due to the fact that the map φ as in proof of Theorem 4.1 constructed by the

divisors gives a 3x3 matrix of the coefficients of the linear terms with nonzero determinant.

For the E6 singularity, the equation is w2y2 − y3 +wz2 +w2 = 0. We blow up at the origin.

On the patch where y = wy1, z = wz1, the equation becomes w2(w2y2
1 − wy3

1 + wz2
1 + 1) = 0.

There is no intersection and the surface is smooth.

On the patch where z = yz1, w = yw1, the equation becomes y2(y2w2
1 − y + yz2

1w1 −w2
1) = 0.

We blow up the z1-axis given by the ideal (y, w1). On the patch w1 = yw2, the equation

becomes y3(y3w2
2 − 1− yz2

1w2 − yw2
2) = 0. There is no intersection. On the patch y = w1y2,

we have y2
2w

3
1(y2

2w
3
1−y2−y2w1z

2
1−w1). We see on this patch, the w1 term as the end reduced

in power. We blow this up again at the z1-axis to turn the −w1 to a −1. So the surfaces in

question are given by y2 = 0, w1 = 0, and (y2
2w

3
1 − y2 − y2w1z

2
1 − 1) = 0. The interesting

intersection is w1 = 0 and the strict transform. We can map y2 to z1 for the map φ as in

proof of Theorem 4.1 so we have a normal crossing divisor.

We work on the third patch given by y = zy1, w = zw1. The equation becomes z2(z2y2
1w

2
1 −

zy3
1 + zw1 + w2

1) = 0. We blow up at the origin again and focus on the interesting patch

where w1 = zw2 and y1 = zy2. Then we have z4(z4w2
2y

2
2 − z2y3

2 +w2 +w2
2) = 0. We blow up

at the y2-axis given by ideal (z, w2).

On the patch z = w2z3, the equation becomes w5
2z

4
3(w5

2z
4
3y

2
2 − w2z

2
3y

3
2 + 1 + w2) = 0. The

interesting intersection is when z3 = 0 and the strict transform. We can map w2 to y2. Then
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this is a strict relative normal crossing divisor due to the fact that the map φ as in Theorem

4.1 constructed by the divisors gives a 3x3 matrix of the coefficients of the linear terms with

nonzero determinant.

On the patch w2 = zw3, the equation becomes z5(z5w2
3y

2
1 − zy3

1 +w3 + zw2
3) = 0. We blow up

at the y1-axis again and focus on the interesting patch where w3 = zw4. Then the equation

becomes z6(z6w2
4y

2
1 − y3

1 + w4 + z2w2
4) = 0. This is a strict relative normal crossing divisor

due to the fact that the map φ as given in Theorem 4.1 constructed by the divisors gives a

3x3 matrix of the coefficients of the linear terms with nonzero determinant.

For the A3 singularity, the equation is y2 − xy3 + xz2 + x2 = 0. We blow up the equation at

the origin.

On the patch where y = xy1, z = xz1, the equation becomes x2(y2
1 − x2y3

1 + xz2
1 + 1) = 0. We

shift a to a + i so the intersection with the strict transform is at the origin. Then (a + i)2

gives a linear term 2ai so this is a strict relative normal crossing divisor due to the fact that

the map φ as in Theorem 4.1 constructed by the divisors gives a 3x3 matrix of its linear

terms with nonzero determinant.

On the patch where x = yx1, z = yz1, the equation becomes y2(1−y2x1+yx1z
2
1 +x2

1) = 0. The

same argument as the example in paragraph before shows we have a strict relative normal

crossing divisor.

On the patch where x = zx1, y = zy1, the equation becomes z2(y2
1 − z2y3

1x1 + zx1 + x2
1) = 0.

We blow up at the origin again.

On the patch where y = x1y2, z = x1z2, the equation becomes x4
1z

2
2(y2

2 − x4
1z

2
2y

3
2 + z2 + 1) = 0.

The same argument as before where we shift the intersection to the origin gives a strict

relative normal crossing divisor.

On the patch where x1 = y1x2, z = y1z2, the equation becomes y4
1z

2
2(1−y4

1z
2
2x2+x2z2+x2

2) = 0.
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The same argument where we shift the intersection to the origin gives a strict relative normal

crossing divisor.

On the patch where x1 = zx2, y1 = zy2, the equation becomes z4(y2
2 − z4y3

2x2 + x2 + x2
2) = 0.

This is a strict relative normal crossing divisor due to the fact that the map φ as in Theorem

4.1 constructed by the divisors gives a 3x3 matrix of the coefficients of the linear terms with

nonzero determinant.

For p = 7, the zeta function is given by

Z(x) = −16807x5 + 2401x4 + 686x3 − 98x2 − 7x+ 1.

For p = 11, the zeta function is given by

Z(x) = −161051x5 + 14641x4 + 1694x3 − 154x2 − 11x+ 1.

The p = 11 case is more interesting as there are 4 complex eigenvalues and 1 real eigenvalue.

Example 4.3. In this example, we give a degree 9 zeta function, Z(x). Consider the hyper-

surface defined by equation

f = −xy3 + w2x2 + x2z2 + w2z2.

This hypersurface has 2 A5 singularities at [1 : 0 : 0 : 0] and [0 : 0 : 0 : 1] and an A2

singularity at [0 : 1 : 0 : 0]. Along with evaluation at the singular points, here are the

differential operators that annihilate the Jacobian ideal. Again, as a reminder, for simplicity

of notation, I will only provide the differential operators without the evaluation symbol. Keep

in mind one has to evaluate at the singular points after applying the differential operators.
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By symmetry, aside from evaluating at the singular points after, the operators for both A5

singularities are the same. the operators are

D1 =
∂

∂y

D2 =
∂2

∂2y

D3 =
∂3

∂3y
+ 3

∂

∂x

D4 =
∂4

∂4y
+ 12

∂

∂x

∂

∂y
.

For the A2 singularity, the operator is given by

D5 =
∂

∂y
.

The operator L in Theorem 3.2 is given by wj +xj + zj. We first show de Rham cohomology

is rigid cohomology, i.e. Theorem 4.1 holds. We do this either by showing the change of

coordinates to the standard equation in which case Theorem 4.1 applies or by blowing up the

equation and show the blow up is a smooth strict relative normal crossing divisor.

For the A5 singularity, by symmetry, it suffices to show the result holds for one of the A5

singularities. We make use of the fact that the leading term is y. We first do the change

of coordinates z = u√
x2+1

to get equation −xy3 + x2 + u2 = 0. We relabel the equation

as −xy3 + x2 + z2 = 0. So we blow up at the origin. On the interesting patch where

x = yx1, z = yz1, the equation becomes y2(−y2x1 + x2
1 + z2

1) = 0. We now blow up at the

origin again to obtain on the patch x1 = yx2, z1 = yz2 the equation y4(−yx2 + x2
2 + z2

2) = 0.

We blow up at the origin one more time to get equation y6(−x3 + x2
3 + z2

3) = 0. This is

a strict relative normal crossing divisor due to the fact that the map φ as in Theorem 4.1

constructed by the divisors gives a 3x3 matrix of the coefficients of the linear terms with
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nonzero determinant.

For the A2 singularity, the equation is −y3 +w2 + z2 +w2z2. We again do the same change

of coordinates for the A5 case to obtain the equation −y3 + w2 + z2 = 0. We blow up at the

origin again to get on the interesting patch the equation y2(−y+w2
1 +z2

1). We blow up at the

origin again to obtain y3(−1 + yw2
2 + yz2

2) = 0. There is no intersection so we have normal

crossings.

For p = 7, the zeta function is given by

Z(x) = −40353607x9 − 7411887x8 + 1411788x7 + 336140x6 + 14406x5 − 2058x4

− 980x3 − 84x2 + 9x+ 1.

For p = 11, the zeta function is given by

Z(x) = −2357947691x9 + 214358881x8 + 77948684x7 − 7086244x6 − 966306x5

+ 87846x4 + 5324x3 − 484x2 − 11x+ 1.

For p = 13, the zeta function is given by

Z(x) = −10604499373x9 + 4329647673x8 − 637138788x7 + 31188612x6 + 1199562x5

− 92274x4 − 14196x3 + 1716x2 − 69x+ 1.

For p = 17, the zeta function is given by

Z(x) = −118587876497x9 + 6975757441x8 + 1641354692x7 − 96550276x6

− 8519142x5 + 501126x4 + 19652x3 − 1156x2 − 17x+ 1.
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The examples for p = 7 and p = 13 has 2 complex roots and 7 real roots, and examples for

p = 11 and p = 17 has all real roots.

Example 4.4. In this example, we give a degree 10 zeta function, Z(x), over 2 different

primes. Consider the hypersurface defined by equation

f = y4 + x2yw + w2z2 + yxz2.

This hypersurface has an A5 singularity at [0 : 1 : 0 : 0], a D5 singularity at [1 : 0 : 0 : 0],

and A1 singularity at [0 : 0 : 0 : 1]. Here are the operators that annihilate the Jacobian

ideal aside from evaluation at the singular points. Since the operator for the A1 singularity

is simply evaluation, I just need to provide the operators for the A5 and D5 singularity.

For the A5 singularity, the operators are

D1 =
∂

∂z

D2 =
∂2

∂2z
− 2

∂

∂w

D3 =
∂3

∂3z
− 6

∂

∂w

∂

∂z

D4 =
∂4

∂4z
− 12

∂2

∂2z

∂

∂w
+ 12

∂2

∂2w
+ 48

∂

∂y
.

For the D5 singularity, the operators are

D5 =
∂

∂y

D6 =
∂

∂x

D7 =
∂2

∂2y

D8 =
∂3

∂3y
− 12

∂2

∂2x
.
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The operator L in Theorem 3.2 is given by wj+xj+zj. We first show de Rham cohomology is

rigid cohomology. We first show Theorem 4.1 holds. We do this either by showing the change

of coordinates to the standard equation in which case Theorem 4.1 applies or by blowing up

the equation and show the blow up is a smooth strict relative normal crossing divisor.

For the A5 singularity at x = 1, the equation is given by y4 + yw + w2z2 + yz2 = 0. We

show directly instead of change of coordinate this holds by doing the sequence of blow ups.

We make use of the fact that we know the leading term is z from the operators given above.

We focus on the patch that require multiple blow ups. On the interesting patch where w =

zw1, y = zy1, our equation becomes z2(z2y4
1 + w1y1 + z2w2

1 + zy1) = 0. We now blow up

at the w1-axis given by ideal (y1, z). On the patch where y1 = zy2, the equation becomes

z3(z5y4
2 + w1y2 + zy2

2 + zy2) = 0.

We blow up at the origin and focus on the affine patch where w1 = zw3, y2 = zy3. The

equation becomes z5(z7y4
3 +w3y3+zw2

3+y3) = 0. We now blow up at the w3-axis given by ideal

(z, y3). On the patch where y3 = zy4, the equation becomes z6(z10y4
4+w3y4+w2

3+y4) = 0. This

is a normal crossings divisor due to the fact that the map φ as in Theorem 4.1 constructed by

the divisors gives a 3x3 matrix of the coefficient of the linear terms with nonzero determinant.

For the D5 singularity at w = 1, the equation is given by y4 + x2y+ z2 + yxz2 = 0. We start

with equation given by u2 + v2t+ t4 = 0.

We do the change of coordinates given by v = y, t = z, and u = z
√

1 + yx to obtain the

equation we want.

For the A1 singularity at z = 1, the equation is given by y4 + x2yw+w2 + yx = 0. We start

off with t2 − uv = 0.

We let u = −u0 to get equation t2 + u0v = 0.
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Then, we let u0 = u1 + v3 to get t2 + u1v + v4 = 0.

Next, we let u1 = u2
2t+ u2 to get t2 + u2

2tv + u2v + v4 = 0.

Finally, we let u2 = x, v = y, and t = w to get the equation we had.

For p = 7, the zeta function is given by

Z(x) = −282475249x10 + 5764801x8 + 235298x6 − 4802x4 − 49x2 + 1.

This zeta function is interesting as there are no odd powers. Furthermore, all roots are of

the form a+ bi where a = 0 or b = 0.

For p = 11, the zeta function is given by

Z(x) = −25937424601x10 + 12861532860x9 − 2825639795x8 + 354312200x7

− 24157650x6 + 199650x4 − 24200x3 + 1595x2 − 60x+ 1.

This zeta function is also interesting as there is no x5 term. There are 6 real roots and 4

complex roots.
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Chapter 5

Conclusion and Future Research

5.1 Conclusion

To conclude, aside from the brute force point counting approach,from Remke [15], even

Lauder’s deformation method with Picard Fuchs equation may not apply in the singular case.

Along with building on the algorithm from Stetson and Baranovsky [19], I have identified the

Jacobian ideal as the zero set of differential operators as in Theorem 3.1. Furthermore, I have

shown that given an equisingular lift, the theorem from Baldassarri and Chiarellottto [2]. In

addition, I have shown for hypersurfaces with ADE singularities in P3, the subdiagonal on

the E2 page vanishes.

5.1.1 Future Work

While determining whether a polynomial in the stable range is in the Jacobian ideal does not

require the use of a Gröbner basis, undoing the Koszul differential does. Therefore, the only

remaining issue is the lifting of the Koszul differential using the Gröbner basis which takes
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up most of the run time for the code. From Theorem 3.1, one hypothesis is that instead of

using a Gröbner basis, a lift may be linked to these differential operators in the ADE case.

To clarify, given a polynomial h in the stable range that belongs to the Jacobian ideal, the

lifts q1, q2, q3, q4 such that

h = q1fw + q2fx + q3fy + q4fz

can be found by applying some differential operators similar to Theorem 3.1.

Aside from run time improvements for the code, another option is to consider higher dimen-

sions such as P4. The subdiagonal need not vanish now. To see this, part of the E1 page is

now given by the diagram below.

(4, 0)

(3, 0)

(3, 1)

(2, 1)

(2, 2)

(1, 2)

(1, 3)
(0, 4)

(0, 3)

(−1, 5)

(−1, 4)

(−2, 6)

(−2, 5)

To remind the reader the meaning of the coordinates, in Definition 1.3, the double complex

is given by Bs,t = Ωs+t
tN . The t coordinate gives the power of f while s+ t+ 1 gives the type

of differential form. For example, the coordinate (2, 1) represents s = 2 and t = 1. This

denotes the that the power of f is 1 and the form on the numerator is a 2 + 1 + 1 = 4 form.

Hence, given a form hΩ
f

, where Ω = dx0 ∧ dx1 ∧ dx2 ∧ dx3, by homogeneity, if deg(f) = N ,

then deg(h) = N − 4. Hence, one important thing to note is that in P3, when t = 2 which

means the degree on denominator is of degree 2N , the term on the subdiagonal lies on the

78



coordinate axis which Dimca proves is 0. In P4, when t = 2, the point (1, 2) lies in the first

quadrant. This is the only place where the subdiagonal is nonzero. Hence, when we reprove

the possible dimensions of the subdiagonal, we need to keep in mind that degree 2N is a

possibility.

Saito [18] shows that for hypersurfaces with weighted homogeneous singularities, the spectral

sequence degenerates on the E2 page. While the space of all such hypersurfaces is too large,

we can restrict to a subset. Aside from ADE singularities, a second path is to extend to

the other singularities in Arnold’s list given in Hikami [11]. In Arnold’s classification of

hypersurface singularities, along with ADE singularities, there are unimodal singularities.

As the unimodal singularities still have normal forms, the theory of operators still holds.

However, one needs to study the blow up of unimodal singularities and see if the isomorphism

between de Rham cohomology and rigid cohomology still hold. Similar to the P4 case, the

subdiagonal need not vanish. A harder path would be to consider singularities not in Arnold’s

list. The definition of a Milnor number is still well-defined in that case, but since there is no

normal form to relate to, one has to consider a different approach as the theory of operators

is no longer relevant.
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