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Abstract

Objective: Left ventricular assist devices (LVADs) fail in up to 10% of patients due to the 

development of pump thrombosis. Remote monitoring of patients with LVADs can enable early 

detection and, subsequently, treatment and prevention of pump thrombosis. We assessed whether 

acoustical signals measured on the chest of patients with LVADs, combined with machine learning 

algorithms, can be used for detecting pump thrombosis.

Methods: 13 centrifugal pump (HVAD) recipients were enrolled in the study. When hospitalized 

for suspected pump thrombosis, clinical data and acoustical recordings were obtained at 
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admission, prior to and after administration of thrombolytic therapy, and every 24 hours until 

laboratory and pump parameters normalized. First, we selected the most important features among 

our feature set using LDH-based correlation analysis. Then using these features, we trained a 

logistic regression model and determined our decision threshold to differentiate between 

thrombosis and non-thrombosis episodes.

Results: Accuracy, sensitivity and precision were calculated to be 88.9%, 90.9% and 83.3%, 

respectively. When tested on the post-thrombolysis data, our algorithm suggested possible pump 

abnormalities that were not identified by the reference pump power or biomarker abnormalities.

Significance: We showed that the acoustical signatures of LVADs can be an index of mechanical 

deterioration and, when combined with machine learning algorithms, provide clinical decision 

support regarding the presence of pump thrombosis.

Keywords

Left Ventricular Assist Device; Pump Thrombosis; Heart Failure; Machine Learning

I. Introduction

Pump thrombosis occurs in up to 10–13% of left ventricular assist device (LVAD) recipients 

within the first year post implant [1, 2]. Thromboembolic events may lead to pump failure 

requiring replacement at substantial rates (~5–7%) which has been previously reported in 

large trials [3–5]. LVADs stimulate the coagulation cascade resulting in thrombus formation 

and, when exposed to the shearing force of blood flow, patients are predisposed to 

thromboembolic complications [6]. Pump thrombosis may result in hemodynamic 

derangement, stroke, and death [4, 6–8]. Presence of hemolysis [elevated plasma lactate 

dehydrogenase (LDH) or plasma free hemoglobin (pfHb) levels] and degradation of device 

performance (e.g., increased power) can indicate pump thrombosis, which is further 

investigated using echocardiogram ramp studies [9, 10].

Resultant end-organ dysfunction requires the exchange of the pump through an additional 

surgical procedure, which is expensive, and can contribute to higher allosensitization that is 

correlated with worse heart transplant graft survival outcome if associated with blood 

product use [11]. Moreover, device exchange does not preclude recurrence of thrombosis if 

the origin is biological rather than mechanical [7]. Therefore, device thrombosis should be 

mitigated with earlier diagnosis, before triggering any heart failure (HF) exacerbation and 

additional surgeries. In particular, outpatient monitoring is needed as up to 15% of patients 

are readmitted due to device thrombosis and subsequent complications increase healthcare 

costs and decrease patients’ quality of life [12, 13]. Remote monitoring of pump parameters 

and hemodynamics should be achieved to allow real-time communication between 

caregivers and patients [14]. However, without having the required blood-derived 

biomarkers, it is not feasible to evaluate the normal vs. pathologic processes, or biological 

responses to therapeutic interventions. Nevertheless, such monitoring can be achieved by 

deriving “digital biomarkers” [15], which are measured through home-based sensors, 

wearable devices and implants, to support continuous measurement outside the physical 

confines of the clinic. Unfortunately, there is no technology currently available 
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commercially nor in the research domain that has demonstrated the ability to characterize 

and monitor hemodynamics and pump functionality of VAD recipients at home.

In clinical settings, the operating sounds of these artificial blood pumps has been studied for 

assisting in thrombosis detection [16, 17]. Several studies, both in vitro [17–22] and in vivo 

[16, 17, 19, 21, 23–27], have evaluated acoustic analysis as a non-invasive method for 

thrombosis detection in axial and centrifugal pumps. These studies mostly leveraged 

harmonic frequency analysis and focused on detecting changes in the acoustic features 

following pump thrombosis. For example, Kaufmann et al. [16] asserted that the most 

intense harmonic is the fourth harmonic in the centrifugal pump recordings. Based on this 

assertion, they calculated the intensities of the first four harmonics and normalized the 

intensities of the first three to the fourth. They suggested that an increase in first and second 

harmonic intensities and the existence of the third harmonic indicate pump thrombosis. In 

addition, Yost et al. [19] and Castagna et al. [26] performed similar harmonic analysis on 

axial pump recipients. Yost et al. suggested that the normalized harmonic intensities 

decrease as the pump starts to develop thrombosis. On the other hand, Castagna et al. 

proposed that an increase in the normalized power of the first two harmonics and a decrease 

in the third harmonic indicate development of pump thrombosis.

To the best of our knowledge, no validated method has been reported so far. Moreover, the 

reliance on a single feature of pump acoustics - harmonic content - as an indicator of pump 

thrombosis may not be generalizable to all datasets and all pump types. In this work, we had 

two objectives: (1) determining salient acoustic and pump features indicative of pump 

thrombosis; and (2) evaluating the added value of acoustic features in thrombosis detection. 

Ultimately, this approach may enable detection and diagnosis of pump thrombosis with 

improved accuracy in clinical and/or home settings.

II. Methods

A. Study Protocol and Subject Demographics

This study was conducted under a protocol approved by the University of California San 

Francisco (UCSF) and Georgia Institute of Technology Institutional Review Boards and all 

patients provided written informed consent. Thirteen adult centrifugal pump recipients were 

enrolled in the study. At the time of enrollment - the first post-implant clinic visit when the 

patient was deemed clinically optimized - a baseline sound recording was obtained and 

baseline pump parameters and laboratory data were collected. All the LVAD patients 

implanted at UCSF are followed using a remote management system (Abbott Alere Home 

Monitoring, Livermore, CA or Acticare Health, Livermore, CA) that records daily pump 

parameters (speed, power, flow, pulsatility index, peak, trough, alarms), vital signs (blood 

pressure, heart rate, weight) and point of care CoaguCheck INR (Roche Diagnostics, 

Indianapolis, IN). In case of abnormalities in the pump parameters or HF symptoms, patients 

are contacted and hemolysis biomarkers (LDH, pfHb) are promptly obtained to establish the 

diagnosis of suspected pump thrombosis. During the study, new sound recordings were 

obtained in cases where there was a change in pump speed or clinical condition. All subjects 

were recipients of HeartWare HVAD (Medtronic Framingham, MA) device for either bridge-

to-transplantation or destination therapy indications.
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Patients were followed longitudinally for the outcome of suspected pump thrombosis, 

defined as abnormal pump parameters (power elevations above manufacturers baseline or an 

absolute power ≥ 10 Watts), hemolysis (LDH > 500 IU/L, pfHb > 20 mg/dL), development 

of unexplained HF or clinical hemolysis (hemoglobinuria), or poor left ventricular unloading 

during an echocardiographic ramp study. Due to the enhanced surveillance of the patients 

treated at UCSF, suspected pump thrombosis was determined based on abnormal pump 

parameters and hemolysis. In patients hospitalized for suspected pump thrombosis, clinical 

data and sound recordings were obtained at admission, prior to and after administration of 

thrombolytic or anticoagulation therapy, and every 24 hours until laboratory and pump 

parameters normalized. Thrombus resolution was defined as normalization of pump power 

and LDH with no clinical evidence of hemolysis for at least 24 hours.

B. Study Design and Data Acquisition

All sounds during the study period were collected and stored using the Eko Electronic 

Stethoscope System (Eko Devices, Inc. Berkeley, CA). With the patient in the supine 

position in a quiet room, the diaphragm of the stethoscope was placed on the patients 

exposed chest over the mitral valve for 15 seconds (Figure 1). The stethoscope settings were 

as follows: 40x gain, 4kHz sampling rate, 20Hz - 2kHz bandwidth.

Each recording was assigned to one of three groups for analysis: ‘normal’ for the baseline 

recording obtained at enrollment, ‘thrombosis’ for recordings obtained when a patient met 

the above criteria for suspected thrombosis, and ‘post-thrombosis’ for recordings obtained 

after initiation of medical treatment until normalization of pump parameters. For the post-

thrombosis analysis, we used the recordings which were taken when the pump parameters 

and biomarkers returned to normal. The procedure by which recordings were processed and 

analyzed was as follows: (1) windowing and feature extraction; (2) feature selection using 

correlation analysis, (3) threshold selection and thrombosis score calculation.

C. Pre-processing and Feature Extraction

In this study, we had 41 recordings from 13 subjects (16 normal (baseline), 11 thrombosis 

and 14 post-thrombolysis). The average number of days post-implantation the recordings 

were obtained was 372, ranging between 11 and 1374. Information about subject 

demographics, pump parameters and blood biomarkers can be found in Tables I and II. 

Detailed information about the recording types is presented in Table III. In this paper, we 

focused on generalization across recordings rather than generalization across subjects as it is 

more important to demonstrate whether the method is consistent regardless of when the 

recording is performed for a particular patient. Thus, the signals were segmented into 500 

ms frames with 90% overlap to increase the number of instances. From each frame, we 

extracted 60 acoustic features. In the recent studies, the best indicators for detecting various 

pump states were shown to be the spectral content of the signals, as these pump states may 

have different frequency characteristics [16, 19, 29]. Contrarily, we hypothesized that having 

a more diverse feature set would enhance the classifier performance, thus we explored 

various different features. Our feature set included the common audio-processing features 

[28, 30] and features used in previous LVAD studies [16, 19, 26]. We categorized our 

features as ‘temporal’, ‘spectral’, ‘MFCC’, ‘bandpower’, ‘wavelet’, ‘non-linearity’ or 
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‘harmonic’ features. Detailed information about these features can be found in Table IV. 

Extracted features were stored in a matrix, where each row represents a single frame and the 

columns represent the 60 features extracted. In addition to our 60 acoustical features, we 

also tested the reference pump parameters (pump power and pump flow) as our features, 

which resulted in 62 features in total (Figure 1).

D. Feature Selection using Spearman Correlation Analysis

In the previous section, we presented the features we extracted; however as in many other 

cases, these features are selected ad hoc with a black box approach. Therefore, we 

eliminated the redundant features while keeping the informative ones; because although 

having more features can give extra power to ML algorithms, focusing on the intrinsic 

dimension is usually more desirable for preventing overfitting and ensuring robustness [31–

33]. In addition, a mapping between blood-derived biomarkers and acoustical features 

should be quantified for evaluating the pathological processes or tracking therapeutic 

interventions accurately outside of the clinic, as the ideal scenario is recording and analyzing 

the pump sounds of the subjects outside the clinic in the absence of blood tests or any 

additional diagnostic tool. Based on this motivation, we hypothesized that finding the 

features which are highly correlated with the blood biomarkers may help us to exclude the 

redundant features and include the most related ones to construct a global feature set, which 

can be used for all subjects in thrombosis detection without any need for blood work [34].

As previously discussed, changes in hemolysis biomarker values (LDH > 500 IU/L, pfHb > 
20 mg/dL) indicate pump thrombosis, therefore we hypothesized that if we could determine 

the acoustical features which have similar trends with the hemolysis biomarkers, our 

classifier might have a higher performance in thrombosis detection. For this study, we 

preferred LDH values over pfHb values as our reference, since it would not be possible to 

use some of the pfHb values (such as pfHb < 8 as in Table II). Also, recent studies proposed 

LDH as the primary [4, 35–37] and the most specific indicator [38, 39] of thrombosis in 

LVADs.

We used Spearman correlation analysis [40] to investigate the relationship between the LDH 

values and our acoustical features. We chose Spearman correlation instead of Pearson 

correlation as it does not make any assumptions regarding the frequency distribution of the 

variables or does not require a linear relationship between them. We wanted to treat our 

features as independent agents, because although some features (such as harmonics) are 

based on the same fundamental frequency, their behavior may be different during thrombosis 

development and there is no consensus across different studies [16, 19, 26]. We calculated 

the Spearman correlation coefficient ρ for each LDH - feature pair (e.g.: LDH and ZCR, 

LDH and Energy, etc.) which resulted in 62 correlation coefficients varying between −1 and 

1. We then took the absolute value of these correlation values and ranked them in descending 

order. We determined 0.3 as our cut-off correlation coefficient as any value below 0.3 is 

considered negligible in the literature, especially in medical research [41–43]. Thus, we 

decided to use the features which have absolute correlation coefficient above 0.3 (when 

rounded to two significant digits). Based on this investigation, we included 15 features in our 
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final feature set. Note that the target labels of the normal and thrombosis groups were not 

included in this investigation, so the analysis was not biased.

After ranking the features based on their correlation with LDH values, we plotted the kernel 

density estimate (KDE) plots for the best and worst performing features to visualize the 

differences in their probability density functions [44]. We expected to see distinguishable 

density functions between normal and thrombosis classes if a feature has high correlation 

with LDH biomarker. After determining our top 15 features, we continued with threshold 

selection and thrombosis score calculation.

E. Threshold Selection and Thrombosis Score Calculation

We determined our end goal as deriving a thrombosis score to place the recordings on a 

scale ranging from 0 (normal) to 1 (thrombosis). To calculate the thrombosis score, we 

trained our classifier twice: using top 15 features and all 62 features, to test the effectiveness 

of our correlation-based feature ranking. The classifier was validated using leave-one 

subject-out cross-validation (LOSO-CV). In each cross-validation fold, all recordings from 

one subject were left out and the logistic regression classifier was trained using the 

recordings from the remaining subjects. The model was then tested on the recordings from 

the subject being left out. This procedure was completed for all subjects. Note that the post-

thrombosis data was not used for training, as the ground truth labels for this data were not 

known certainly - in many cases, thrombosis can be recurrent even following treatment.

Logistic regression was our preferred method due to several reasons. First, it is easy to 

implement and interpret - for example it does not require heavy scaling or tuning. This was 

our primary motivation, as an application like thrombosis detection is a collaborative work 

between medical doctors, researchers and patients; therefore, comprehensibility is an 

important consideration. Secondly, it is widely used in biostatistical applications where 

binary responses occur quite frequently, such as patients having heart disease or not, etc. 

[44]. Therefore for a case like thrombosis detection, it is well suited.

In more detail, let R denote our training data. Each instance within our training set 

corresponds to a 500ms-long frame in the form (xi, yi), where xi = (xi,1, xi,2, …, xi,62) are 

our 62 features, and yi is our thrombosis label (0 or 1). The training dataset R is used to 

build our logistic regression classifier ℳ which predicts the class of an incoming frame 

using its features. i.e., ℳ: x . In each fold, R includes data from all subjects, except the 

subject whose recordings are being tested. At prediction time, 302 unlabeled frames from 

each recording are provided to ℳ, and ℳ predicts their labels as 0 or 1 (hard classification). 

This prediction phase was completed for all recordings of the subject which had been left 

out in the training phase. In the following folds, the same pipeline was followed for all 

subjects. We define the thrombosis score of each recording as the mean of the predicted 

classes of all 302 frames within that recording.

Using the thrombosis scores we obtained from LOSOCV and the actual class labels, we 

plotted the receiver operating characteristic (ROC) curve to investigate how our two models 

(with 15 features and with all features) behave for different threshold values. After showing 

the superior performance of our condensed feature set, we determined the best threshold 
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value for our application using the ROC curve we plotted. Since ROC represents the 

probability of detection (true positive rate) vs. probability of false alarm (false positive rate) 

for different threshold values, we selected a threshold which maximizes the probability of 

thrombosis detection while minimizing the probability of false alarm. We therefore selected 

the optimum threshold for our classification problem, which helped us to discard the sub-

optimal models. The generalizability of the classifier was then assessed by calculating the 

accuracy, sensitivity, and precision values based on the threshold we selected. In the final 

part of the scoring procedure, the constructed model using the baseline and thrombosis 

recordings was fit into the post-thrombolysis data to investigate the pump conditions after 

heparin and/or tissue plasminogen activator (tPA) treatments.

F. Performance Comparison with Existing State-of-the-Art Methods

To benchmark the performance of our approach - which integrates multiple acoustic features 

using machine learning approaches rather than focusing on one or two individual features - 

we employed the reference parameters (pump features obtained from the controller) and 

state-of-the-art algorithms from the existing literature and compared the results of these 

approaches to our method. First, the classification was performed using the reference 

parameters: only the pump power and only the pump flow values as our features. As these 

parameters are directly associated with abnormal pump functionality, the performance 

metrics of these reference variables and our proposed method were compared.

Second, Kaufmann et al. [16] asserted that the most intense harmonic is the fourth harmonic 

in centrifugal pumps; therefore based on their methods, we calculated the intensities of the 

first four harmonics for each recording. They suggested that an increase in the first and 

second normalized harmonic intensity and the existence of the third harmonic suggest pump 

thrombosis. We investigated the effectiveness of their features both with and without a 

machine learning approach - first we compared the values of the harmonic intensities for 

normal and thrombosis recordings, then we reported the classifier performance which was 

trained using only these normalized intensities as features.

III. Results and Discussion

A. Feature Selection using Spearman Correlation Analysis

As explained in Section II-D, we calculated the Spearman correlation coefficient for each 

LDH-feature pair and used these correlation values as our feature ranking metric. Our 

hypothesis was that the features which have higher correlation with LDH values would 

perform better in thrombosis detection. Also, we wanted to eliminate the redundant features 

for the sake of robustness and simplicity. The 15 features having the highest absolute 

correlation coefficient are reported in Figure 2(a). Each color represents a different feature 

group (e.g.: green: temporal, orange: spectral, etc.) As seen in the bar graph, there is a great 

diversity in the colors, thus each feature group has a relationship with the LDH values. Also 

highly correlated features do not come from a single group, which makes the investigation of 

a diverse feature set rather that relying solely on one feature group (like harmonics) even 

more desirable.
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To test whether the highly correlated features are indeed better in distinguishing between 

normal and thrombosis groups, we plotted the KDE plots and observed the differences in 

distributions (Figure 2(b–d)). We plotted the distributions of the top feature (pump flow, 

ρ=0.84), the top acoustical feature (bandpower 16, ~ 195–230 Hz, ρ=0.48) and the least 

correlated feature (bandpower 21, ~ 440–520 Hz, ρ=0.012). In the graphs, we colored the 

thrombosis recordings with red and normal recordings with green. If a specific feature has 

the ability to distinguish between two groups, we expected to see less overlapping 

distributions. As expected, it is visually clear that the features having higher correlations 

with LDH have less overlapping distributions compared to the ones having lower 

correlation. Thus, we justified that if a feature behaves similar to the actual blood biomarker, 

it will be more significant in thrombosis detection; therefore a mapping between our 

“acoustical biomarkers” and actual “blood biomarkers” is indeed achievable.

B. Threshold Selection and Thrombosis Score Calculation

As explained in Section II-E, we ran our algorithm twice: 1) Using the top 15 features, 2) 

Using all 62 features. We plotted the ROC curves for both experiments to investigate 

whether our correlation-based feature selection algorithm helps to increase classifier 

performance and eliminate the redundant features independent of the threshold we would 

use. When all 62 features were used, the area under the ROC curve was calculated to be 

0.764, whereas for the top 15 features, this value was 0.921. This justified that the Spearman 

correlation coefficients between the features and LDH values can be used to rank and select 

the most prominent features. Also, another important point is that having more features is 

not always beneficial for the model and redundant features should be eliminated. A similar 

approach can be applied to many other biosignals to focus on the most relevant features 

while eliminating the unnecessary and deviating ones for a more robust analysis. Based on 

the ROC curve we plotted using our 15 features in Figure 2(e), we determined our threshold 

as 0.15 as it was the best value which maximizes the TPR (probability of detection) while 

minimizing the FPR (probability of false alarm). Using this threshold, we calculated our 

accuracy, sensitivity and precision to be 88.9%, 90.9% and 83.3%, respectively.

Additionally, the constructed model using the baseline and thrombosis recordings was fit 

into the post-thrombolysis data to investigate the pump conditions after heparin and/or tPA 

treatments. The model was tested on 14 post-thrombolysis recordings taken from 4 HVAD 

subjects; however, although the pump parameters and hemolysis biomarkers returned to 

normal, the scores were varying from 0 to 1, rather than being closer to 0, with 4 of the 14 

recordings being above the thrombosis threshold and 10 being below the threshold (Figure 

3).

The results from the post-thrombolysis recordings from 4 subjects revealed that, while pump 

power and hemolysis biomarkers may indicate that the thrombosis is resolved, there may 

still be other problems such as altered pump mechanics, increased friction, or even residual 

pump thrombosis that cannot be identified by these markers. Indeed, for 3 of the 4 subjects, 

recurrent thrombosis episodes were observed following the treatment of thrombosis, and the 

4 recordings which had scores above the threshold belonged to these 3 subjects (Subjects A, 

B, D in Figure 3). We further investigated the clinical logs of these 3 subjects, and found out 
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that the subjects had indeed been diagnosed with recurrent thrombosis right after the 

recordings having higher scores. The ability to predict recurrent thrombosis by 

supplementing pump power and blood biomarker data with acoustical signatures measured 

from the pump should be evaluated extensively in future studies. Note that no direct 

confirmation of pump thrombosis was available in the study as no devices were exchanged.

Pump thrombosis decision is currently based on the presence of hemolysis and degradation 

of device performance, which is further investigated using echocardiogram ramp studies [9, 

10]. In these studies, left ventricle end-diastolic diameter is monitored in response to 

changing LVAD speed, which may potentially diagnose pump thrombosis or other 

obstructions within the pump [45]. However, there is a need for a convenient remote 

monitoring system for LVAD recipients for early detection of thrombus formation, therefore 

patients should be able to monitor their LVAD status at home continuously. In particular, the 

patients at home could use the microphone function of their smartphones and transmit these 

sounds electronically to the cloud for analysis. Machine learning algorithms could then be 

employed to identify abnormal recordings from baseline, initiating a warning for patients 

and caregivers before thrombosis exacerbation and determining the need for clinical pump or 

blood tests. This way, early diagnosis and optimum treatment recommendations could be 

achieved, and this could help preventing HF aggravation and additional surgeries.

C. Performance Comparison with Existing State-of-the-Art Methods

Using only pump power values, accuracy, sensitivity and precision values were 62.9%, 

27.3% and 60.0%, respectively. Using only pump flow values, the corresponding values 

were 81.4%, 72.7% and 80.0%. This demonstrates that mechanical power or blood flow 

characteristics are not sensitive nor specific enough to detect the suspected pump thrombosis 

episodes by themselves. On the other hand, flow showed higher performance in thrombosis 

detection compared to power probably due to frequently adapted hematocrit settings, which 

affected the flow calculation but not power consumption. Thus, we can say that although one 

of the most prominent clinical signs for thrombosis development is elevated pump power, 

the combination of acoustic features and pump flow values yields higher thrombosis 

detection rate and accuracy as we showed in Table V.

Furthermore, when we applied the approach outlined by Kaufmann et al. [16] on our dataset, 

the fourth harmonic was the most intense harmonic in only 17 of 41 recordings. 

Nevertheless, we normalized the first, second and third harmonic intensities to the fourth 

harmonic intensity as the authors explained. We found the average intensity for the 

normalized first harmonic to be 2.46 ± 3.52 and 3.06 ± 2.43 for the control and thrombosis 

groups, respectively. For the second harmonic, these values were 0.43 ± 0.57 and 2.01 ± 2.70 

for the control and thrombosis groups, respectively. Indeed, these intensities increase as the 

pump starts to develop thrombosis as seen in previous work; however, high inter-recording 

variability resulted in lower than expected performance for classifying thrombosis. As the 

next step, we evaluated our model using the harmonic features and reported all classification 

results in Table V. However, it is important to note that Kaufmann et al. averaged 30 spectra 

in their work, whereas we are computing harmonics from single 500 ms frames, which is 

likely noisier. Thus, this should not be considered as a direct comparison.
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D. Limitations and Future Work

Currently, there is no clinical gold standard existing for certain comparisons. Therefore, the 

findings in this work may serve as the preliminary evidence for developing an extensive 

clinical study in the future. This study was limited by a relatively small sample size, and the 

study was conducted at a single clinical site; accordingly, future studies will be needed to 

assess the reproducibility of the methods. Moreover, as the number of subjects in the 

training set is increased, the generalizability and prospective validation of our algorithm will 

be improved as will the determination of key acoustical features associated with pump 

thrombosis. In addition, although our proposed algorithm may eventually help to decrease 

the frequency of hospital visits and blood tests, recording the sound signals and processing 

them requires additional time and computational power, compared to bedside testing.

While our current work leverages hard classification using logistic regression due to their 

high interpretability in the medical domain, we plan to investigate the integration of soft-

classification algorithms and calibration curve implementation into our study in future work. 

Similarly, the effect of recording length on feature sensitivity (e.g. sensitivity to harmonics) 

should be investigated in future studies. In this work, we calculated the bandpower features 

within fixed frequency bands. In future work, we will investigate the possibility of obtaining 

higher accuracy if the frequency bands were adapted based on the pump speed. Lastly, we 

used LDH as the reference blood-biomarker to employ correlation-based feature ranking and 

excluded any other condition that may have increased LDH. In our future studies, we will 

investigate the correlation between the acoustic features and other blood-biomarkers as well.

IV. Conclusion

We demonstrated that the acoustical signatures of LVADs, combined with machine learning 

algorithms, can improve the detection accuracy of suspected thrombosis outcomes. 

Additionally, the scoring of post-thrombolysis recordings suggested residual pump 

thrombosis which is not identified by pump parameters or hemolysis markers. Additionally, 

patients who have normal pump operations but abnormal levels of hemolysis markers could 

benefit from acoustic analysis to detect acoustic signs consistent with thrombosis. As there is 

a need for a convenient remote monitoring system for VAD recipients, patients should be 

able to monitor their VAD status at home. Once our algorithm is evaluated prospectively and 

demonstrates improvement in clinical management of pump thrombosis, the use of 

acoustical patterns can potentially enable detection of suspected pump thrombosis when 

biomarkers and pump parameters are non-diagnostic.
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Fig. 1. 
System Overview. The digital stethoscope was placed on the patients exposed chest over the 

mitral valve and recordings were obtained in cases of changing pump speed or clinical 

condition. The acquired recordings were windowed and 60 acoustic features were extracted 

from each frame. Pump parameters (pump power and flow) were also added to the analysis. 

First, the top 15 most significant features were determined using LDH-based correlation 

analysis. We hypothesized that the features which have higher correlation with LDH values 

would perform better in thrombosis detection. After calculating the correlation coefficients 

for each LDH-feature pair, the selected features were fed to a logistic regression classifier 

which was validated using LOSO-CV. Each window was assigned an estimated class and the 

overall thrombosis score for any given recording was defined as the mean of these estimated 

values.
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Fig. 2. 
Results. (a) The 15 features having the highest absolute correlation with LDH are presented. 

There is a great diversity in the feature types, thus each feature group has a relationship with 

the LDH values. (b) KDE plot for the most correlated feature, pump flow. (c) KDE plot for 

the most correlated acoustic feature, bandpower 16 (190 – 230 Hz band). (d) KDE plot for 

the least correlated feature, bandpower 21 (440 – 520 Hz band). (e) ROC curve when the 

classifier was trained using the top 15 features. The are under the curve (AUC) was 

calculated to be 0.92. The decision threshold was determined to be 0.15 as it is the optimum 

value for maximizing the TPR (~ 0.91) while minimizing the FPR (~ 0.13).
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Fig. 3. 
The constructed model using the baseline and thrombosis recordings was fit into the 14 post-

thrombolysis recordings taken from 4 subjects to investigate the pump conditions after 

treatment. The results revealed that, while pump power and hemolysis biomarkers may 

indicate that the thrombosis is resolved, there may still be other problems such as altered 

pump mechanics, increased friction, or even residual pump thrombosis that cannot be 

identified by these markers. Indeed, recurrent thrombosis episodes were observed in 3 of the 

4 subjects following the treatment of thrombosis, and the 4 recordings which had scores 

above the threshold belonged to these 3 subjects.
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Table I.

Subject demographics, pump parameters and blood biomarkers

SUBJECT DEMOGRAPHICS

Age, y 57.4 ± 11.3

Male, % 84.6

Weight, kg 86.7 ± 20.1

Height, cm 179.1 ± 10.5

Number of Recordings per Subject 3.2 ± 4.2

BASELINE BLOOD AND PUMP MARKERS

Speed, rpm 2738.8 ± 169.1

Flow, L/min 4.4 ± 1.0

Power, watts 4.6 ± 0.9

Pulsatility, L 3.5 ± 1.1

Systolic Blood Pressure, mmHg 98.4 ± 9.7

Diastolic Blood Pressure, mmHg 69.9 ± 7.6

Mean Arterial Pressure, mmHg 79.3 ± 7.4

Heart rate, bpm 79.2 ± 13.3

Hemoglobin, g/dL 12.1 ± 2.4

Hematocrit, % 36.0 ± 6.7

Partial Thromboplastin Time, sec 38.6 ± 15.0

INR 2.3 ± 0.7
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Table II.

Pump parameters and blood biomarkers for baseline and thrombosis recordings

Baseline (16 Recordings) Thrombosis (11 Recordings)

Lactate Dehydrogenase (LDH), IU/L 291.4 ± 80.4 866.7 ± 382.9

Plasma Free Hemoglobin (pfHb), mg/dL 80%, <8 20%, 12.0 ± 5.6 50%, <8 50%, 133.4 ± 64.8

INR 2.2 ± 0.6 2.3 ± 0.8

Abnormal power by device manufacturer standards, % N/A 81.8

Treatment with both tissue plasminogen activator and IV heparin, % N/A 27.0

Treatment with IV heparin exclusively, % N/A 54.5
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Table III.

Number of recordings for each subject

Sub. 1 1 baseline

Sub. 2 1 baseline, 3 thrombosis, 2 post-thrombolysis

Sub. 3 1 baseline

Sub. 4 3 baseline

Sub. 5 4 baseline, 3 thrombosis, 8 post-thrombolysis

Sub. 6 4 thrombosis, 3 post-thrombolysis

Sub. 7 1 baseline

Sub. 8 1 baseline

Sub. 9 1 thrombosis, 1 post-thrombolysis

Sub. 10 1 baseline

Sub. 11 1 baseline

Sub. 12 1 baseline

Sub. 13 1 baseline

TOTAL 41 recordings (16 baseline, 11 thrombosis, 14 post-thrombolysis)
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Table IV.

Feature descriptions of different feature groups

Feature Group Features

Temporal Zero Crossing Rate (ZCR), Energy, Energy Entropy

Spectral Spectral Centroid, Spectral Spread, Spectral Flux, Spectral Entropy and Spectral Roll-off

MFCC 13 Mel-frequency Cepstrum Coefficients

Bandpower Signal power in 29 distinct frequency bands, between 30 logarithmically spaced frequencies in the range of 20Hz - 2kHz.

Wavelet 3-level Daubechies8 wavelet transform was computed and the bandpower of the 3rd level approximation and detail 
coefficients and 2nd level detail coefficients were calculated. [28]

Non-linearity Fundamental frequency, total harmonic distortion (odd harmonics), total harmonic distortion (even harmonics)

Harmonic First, second, third and fourth harmonic amplitudes
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Table V.

Performance comparison with state-of-the-art methods

Accuracy Sensitivity Precision

Pump power 62.9 % 27.3 % 60.0 %

Pump flow 81.4 % 72.7 % 80.0 %

Harmonic analysis (Kaufman et al.)[16] 74.1 % 63.6 % 70.0 %

Our method 88.9 % 90.9% 83.3 %
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