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Visualizing and Modeling
Scattered Multivariate Data

Working foward a con-
venient visualization
tool, we've developed
mathemalical models
that let us view scat-
tered volumetric or sur-
face-on-surface data.

Gregory M. Nielson, Thomas A. Foley,
Bernd Hamann, and David Lane
Arnzona State University

Irl thiz article we concentrale on vismlizing twao tvpes of seatiered data
vislumetric data sumpled in a 3D volume and surface-on-surface data sam-
pled on & 30 surface. It would be convenkent if seientific data were provided
on & uniform geid, bul that isn’t always the case. Shace mossurements are
often spmpled at discrete scattered locations, we developed mathematicnl
mesdels that are defined over the entire gdiovmain and '||'.-'_'||,'\-\.||.||q_ O i o
mate the piven seotiered data. We can evaluste the I'|":||.':'|l||F 1L CLH L DT
o g, 50 we can use & conventional “oll-the-shel™ visualization tool tha
apphes Lo datw on o uniform grid. We can also compute volumes, gradients,
centrobds, and other guantities from the model

Wilken dealing with volmerrie gdavi, we have a single dependent varinble,
F,oand three independent variables, x, v, und = We can view the three
independent variables a5 representing o point g = (x, ¥, =) in a 303 space. In
minthematical terms, the modeling problem is to find & trivariate function
Flpr) = Fix ¥, £), that approximates the relationship implied by a collection
of data values, (x, v, o, Fh 0= 1., ., ¥ We make no assumptions about the
dispositron of the data sites oy = (1, v g i=1,.._ ./ Y except that they are
LS TeCT

someimes we associale the words “irregolar,” “wsstrectured,” “arhi-
irary,” and “random” with scatiered dote, Examples include tempernture
measiuremeni= ail varnous loecations in a furnace and mincral concentrations
measured at various depths at randomly located well sites
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thvtion, where of 18 required that &1 )
Foi=1,... . N wecompute the coefficients o, by solving the N
w N Hinear svstem of constraimt SRR B lex = [, where A
Idr, | Wil — 2 * 4 R0, 4 BT 5 TR .I."_:l..-\.l.l_lll [ Fi. F

. F ). Figure 1 shows a plot of this interpolunt to 16 points

denoted by boxes connected by ing sepments 1o the sampling

sites in the 1-p plane, The optimal choice of the comstant B is an
e research |'||'-I'\-I.-|'|_ bt Carlsan and Foley”™ recently imde
catad that the optimal choice depends alimost eatirely on the
dependent datn values F and onlv o neghipmble ameant an the
number or disinbution of the independent data sites p, = (x5, v )
In some cases. the dependent data indicate o smoothly varvang
relaticonshipe For they satisihon, a chonee ol this arbiirary oon
stant is & eV owhere ¢ s a constant im the range 0,1 1 1.0 el

Vs the aren ol the bounding rectangle Tor the ndependen

data. For rapidly varving F), the paremeter R shoold be rela
Figure 1. Views of the multiquadde interpolant to sampled data 4,0 y small. for example « 04 or 107*, The parameter R
om a planar domeniin,

shouild akso be small if the number of data points is large, by

cause otherwise, the linear svelem ol equations might be ill-con
delmnecd,
The mn ||i|_|||.-|_|' ¢ method easily peneribizes o mulbivanate

. . data kecpose it depends only on Eudidean distance, which ex-
Suerface-ove-surfnee date is similar to volumeiric data, bul ihe : v . __
tends naturally to higher dimensions, Figune 2 shows am exim

data sites are located on one suriace in A0 space. e domimn

k . ; o phe of the 30 multgesdeic method, We chose the independent
of the retntionship s the surface denoted by 2. In mathematica )

terms the data (g vy Zs Fo)o whesre = (55 ¥, 7)) € B are given. data sites o, = (x;, ¥ £ ot random in a unit cube and took the
The problem is to find a function Flp) = Flx v 2 ) defined on O
that appraximates the relationship implisd by this diata

Examples of surface-on-surface data include rainfall mea- ’ RCTUAL
cirements taken al various locations on the earih or pressure
measurements taken on the wang of an arpdane. 1o the Tirst
case, Lhe domain 8 the eanh's surface and in the second, the
surface of the wing

Even though these tao Kmads of data and their p ablems look

very similar in their miathematical descriptions, we solve them

by wery different methodls, We iilse vimilze the vanows sodu-

tioms with methods that ane quite dilferend

Modeling volumetric data

o herin, let's deecuss briefly the ease of bivarate scalttered

M} PYTERFOLANT

data. Here wi have the data (r. v F).d %, wilh

independent data sites arbitranly located in some planar do-  Figgre 2. Shaded contour regions on planar slices of the actual
main. Seientists have siudied the problem of bivariate schllered  fancthon i ¥ Zh dog i||1,-|g||_-l, anid the r'|||.||l:i1||r.:|-r|ri1' inters
data quite extonsiy elv. Franke and Niglson described many of polanis using & = 1 poinis {(lower lelt) and % = 200 |_.|lril|r'h
the methods thal solve ths problem. Une of the most elfective  {lower righi .

(and also one of the s ||||'|-_'-\.I methods o implementd 55 1hi

|'|:|1|||._';||_.|!||. methad Hardy mirodoced.” The modeling fune

tion for the multiguadne method is

dependent volues &, = G, from o given lenction Ge ) whose

Fip) _:'*_ o llp — o "+ R formaala appears in Foley and Lane"s work.” By using an under-
1% i|_: '|_|.|_'|i- i1 1o o l|_||..\,'., ;|'||_' .\_I. B |l||.;||| CRLEL, Wi AN S FTREL,
effectivelv the methosd reproduces certain shapes and behavy-
Ta s BT Lop grapn an | 1SLre _- i-'_l'.l_ |.\,'_I_||:|"\-I function €5 the

wheme K- =0 I; X, v, and |y =n 11 1 [ W=} i left s the mulbguadne IO Il Bised on 100

A IEEE Cotapaidcr Criaphics & Applications



Figure 3. We selected the 27 knois (boxes) fo be chose (o the 128
ilaia sites {pyramids),

chita sampes, and the bottom right shows the approximation
using % = 200,

When the number of daia pomnis is very large or if the depen
dent data are nodsy, then global methods of interpolation might
el Bt i pricticml woy of o odeling the dote, An alternative i o
lind an ppproximation by the method of least squares. For
I'II.||Il\.|III'.i.|1I'."\1I the model ng FLITREL R0 %

f'.'*"l Nl — o .I.'I'll.'

wher T , Dy DT Clensen Lo minimize

N 1]
E l el — =+ A = f

We can compute the unknown cocffickents (g, o o)

by solwvimg thie linear system of equations, 4' Ao = A'F wher
f {F. Fa Fol. A hpy—all"+ R 15 an N = M

matny and A’ is iis transpose, This set of equations & often

ill-conditicemed. so wie"re usudally betier off w use the singuln

vitlug decomposition method spphed directly 1o the rectamgu
lar sy=tem of cquations A = F Tocompletety define Lhe basis
[LINCLHINS., Wi st spECily the kfiaoits i, We cin sirmiply chnnse
rridl,

or voxel grd. This type of grid is the 30 generalization of the 20

thess values ond distribute them uniformlby on a cubwerilie

rectangular grid, Or we can 1y 1o select the knots so 1t iy
L- = -

are distributed sosmeswhat in the same fashion as the date sites.

[ compute this type of distribution, we use 8 3D analogue of
the 2D method Franke and McMahon proposed.” This iterative
algorithm starts with un initial configiration of knois, then
moves these vilues to reduce the distnnee berween the knots
i the dats sies. We show an example from Dierks’ work” in
Fagiire 3

Moy W]

Visualizing volumetric data

Maost of the visualization tools available today for volametric
data assume that the data are given over a cubenille grid, This
mans Uil the data have ||'||_"‘-\.!I|_'.\_'|_'|i o

THE PR S T v =1 Ny k=1, ... Ns

To obtain cubenlle dotn from scattered data, we can simply
evilunle the r|1-'-_1rIu|5- lnetom fo vield these data. That s, we

COMmLpLS

Hesenrchers have widely discussed two methods for visaaliz
10E heritle data- the conlour oF iscovalie =i rlnce methods and
a class of methods bused on ray casting, often referred (o as
“volume rendering” methods.™” Both types are covered in the
tutorial by H--:””n":lll'l. and the |'II:‘I.:l:!l\.'l\.l‘il'l_l'c edited |'|'| ! as0n g
Vislume-rende I'i.’l_l.' lechr [ s Cln reveal a greal liziel af amfaor-
mation aboul o trvariate relationship, Currently, the main
drawhack io this clas of methods is the tremendous aosount of
COMPUTATIn 1:.-:|-.||.-|'-:1 to compuic each Image Becmuse of this:
we ciinnal normally use these methods interactiv ely. However,

recent developmenis in hardware and some new wloorithms

Figure 4. Anisosurface plot of the trivariste multiguadric infer-
polant using & = 2 points,

{developed by | oley, Lane, and Miglson') are changing this
L{UREE [l

lsovalue surface methods are the 1riv anale analogues of the
widely used topographicn] contour maps and ¢ horopleth tem-
perature maps associgted with weather reporis. lsovalue sur
face plots, enhanced with transparency and other features, are
very usciul for anelyrng a trivariate relatiomship, We show an
cxample in r'l:_‘-llll.--:-. [ dlporathm used for this plolis based on



Figure 5 The tiny cubes method,

linenr varntion over letrphedea rather than trilinear variation
gwer vogels as wsed by other methods, We decompose each
vosel into 5 (or possibly &) teteabedrs. Except for certnin de-
pefetale cases, A contour segment w il consest ol & triangle o a
plinnr quadrilateral thist s then split into triangles. This yiclkds
i surface consisting of trinngle focets that we can render with

standard rendering technigues.

Interactive viewing of cuberille data

In addition 1o the volume renderings and iscvalue surface
plosts, we have fownd it useful to have o collectios of interactive
methods forviewing the resulis. Wedesianed and osed a variety
al methods, but here we describe only a lew of the most useful
Ones

Tk faest 18 bBased on |‘|| icing i the domain velume wuhpects
whinse colar s determined by the value of & at the location of

the object. The objects can be almost anything, bul spheres and

Figure i The vanishing cube method.

cubses most rendily come 1o mitnd, We use cubes for this discus-
som, The vser specifies three resolution parnmeters: My, Ny,
nnd &z There wall bs a total of vy - Ny
displayed. In addition, the user specifies n value for the param-
cter M. which controls the amounl of open Space and oonse-

".'_' coslont eodded '\.'IJI"'\.'!'.

ueen thy the size of the cubes displayed, We let the widih, lengih,
and height of cach cube be denoted by (O, Dy, and £22). The
lower lefil front earner of each cube ik piven by the coordinntes
Nz =01 DM+ 1), i=1 L R T PR BT
My, 1Az +1),k=1,..., &r where
{ % Vi 20 18 Thie lower left front corner of the whaole domain and
D% = (Toue = Tean WM M + 10 = M, with Dy and [Pz boeing
simnilar, The function value Fly snd the particular color tabil
used will determine the cobar used ar each vertex. The faces of
the cubes are then Coorand shaded. Each graph of thes tvpe
requires the display of 6{%r - Wy
Wi dhow example images in Figure 5. Figure 5a
illustrates the case where N = Ny = Nz = 5 and M = 1; Figure
My=Nz=HKand M =2; and Figure 5
Sond M =1

Similar to the previows method, the next interactive method

1}.j=1, o+ LK

Wzl rectangles (of which haolf

e visabliz

5h. thie case where My =

the casewhere N =Ny =Nz

In addition to the volume renderings
and isovalue surface plots, we
have found it useful to have a

collection of interactive methods
Sfor viewing the resulis.

associples o collor with each data location (x, v, z5). This color
i based on the valoe of the dependeni varjable Fy and the
particular color table used, Coce we have & color for each ver-
tex, we can entirely color any of the planes pisralle] 1 Ui axes
by using limear {Gourawd ) shading on each of the rectungles
that comprise the plame. Ny - Yy
ular toench nes for a total af 308 - Ay

W rectaniles are perpemndic-
Mezrectangles (o be
dasplayecl. OF course. if we directly display these reclarmghes, we
will see those an the outer fees, To “see in" we compule &n
imnge based a6 a :-.i|||'|1|-\_' miade] of ransparcncy for the rectan
gles. We sort the rectangles by distance Trorm T viewpaint,
then display them from back vo broni using a transparency
bulfer, Marshall Long provided the data for the example in
Figure 6. [t represents gis concentrations from an scoustically
Aand
A =8 and ¢ = 5. An aspect of this methad not exhibited by

these images w thal users can vary the transparency factor dy

driven loreed flow. In Figure da. M (L5, In Fagure ob,

namically so that they can sce different levels of the volume of
datm

In amother method of viewing cubenlle data, the user can
simulianeousky display three rectangular grid data sets, each

obrlained by taking a slice through the domian by halding one of

IEEE Compier Giraphics & Applications



Figure 7. The surfece projection meihad,

d. Inf
some Lype ol §
Flw wooh Bl z)

Ihe wseris allowed todnteractively vary the

the INACPengEnt arnzbles [1xi umetion oAb [erins, we

sermvaltnnecusly disnlay

rinprt of the three bivari-
atc relananships, Flv, o)
Filx vl=Flx v rel

Fla, v 23, amd

fixed {but arbitracy ) poant {x, v, 2,0 Anexample of this type of
graph appears in Figure 2. In Figure 7 we show another version,
one where we used asmooth shaded surface to display the three

recltangulier grid daia sets. These three sets of surfaces could be

legated anvwheore in the imape, bat we hove foond it coavendeat

the, We

prescois U

Lo have each of these

Ta s located on the face of o«

scple the values =0 thatl a poand on ihe the re

e valie: the maximum value isone undl in the direction
niowrmal o this plane. Als
it eolors for esch of §

wee have Towmd ouselol 1o use diffe

hese graphs and w display information
ncdicating the salue of (&, v, 2% lor the d srilay '_I_||"|'|'H._ Wi ac
tnree

planes with colors associated in the proper manne

complish thes by displaving nutuslly perpendicular

Figure 8. Sequence of corves from convex (o noneonyves.

Muaw 1981

Volume interrogation techniques
Sometimes a relationship is smooth or varics slowls
I dilFsculn b

s
miikes detect certmm gusiliganve changes wsing

standard !!l-l!'l.". AL a CONSECBENCE, W have dex L|Il|‘-\.:-\.! SiMTIE

valume inlerropation technigues. To explain these technigues,
Wit descriisd sonme methods thot have been suceessiiil on lower

Emensicy

- »* | =
al pro ilems. [ LERERE & Corblipins & s ||.|.'|'._|_-|-| Curvies
where the bottom eélirve 18 clearly conves and 1l TP curve s
clearly nomconvex

-l'l"‘-_""-l can easily see, it s difficolt to determime which of 1he

intermediote curves & conves or not based solely on their

graphs, In the nght mape of Figure 8. the curvature has been

From this v

praphed au can easily determine when this sc
QUETRCEe Of Curves poes (Tom conveX (0 nonconvex, We can x5

tend this idea 1o surfaces. We can use Gaussinn curvature as i

tegiare e, e O

aussian curvature of a paramaelic saracs

Fipure 4, Gossinn curvaiure wsed a8 @ textone,

WEIETE

M v1=0A 0w v Kl v) Zle vl ate point. p, sk =&k
& and K are the |,'-I.ill.i_.'.ll.l.l!'\lilll.lll.'-.'.I this point, The pr I--\.ii il

curvatlures are the maxmmom pnd miinimum curvalures of

curves lving in planes passing through p and containing the
normal ol g An example appenrs in Figure 9 Mot only does The
magniiucke of the Gaossian curyatune

el QUANNLanve gec-

melr

s intormatcn aboul the surface, but the sien of this value
reveals some interestine gqualitative informaton about the sur

e Positive. negative, and zero curvature correspond to éllmp

te, hyperhahe, and parabolic shapes. Thig implies thot in alocal
||"_'|'\-||||'!|'l\.|'\-i:l'\l-|. curviture, we can rearicnt the surface so a5 bo

hiodd witer, butin o region of negative curvalure this ks 1T phrssi-

hile

How do we extend this idea to volumetrie data ! In the case ol
1 surface given us (x, v, Flx v)), we con compute the pringipa
wnd ks

curvalures, k

a5 Lhe cigenvalues of 1he I matrix:



Flgure 10, Yolime internogation (osl with graph of original
function on the left and Goapss-Kronecker cuorvidure on ihe
rlphit.

. 1 [Fs Fglll+«Ff Ff
i
WIFy  Fu || EEF | & F
where N=941+ Fi4 F mad the noabalo &, and F ICPTESEnLS

artial derivatives, Thisapproach o Gaessian corvature allows

|
i rmmecdiaie exlerisicsi O IrTYarinLe funcioms i'l1|.| L .I:II.‘III\.".I!'\..'
data, We cun compute the three princpal curvatures, &, . &z, and

k. o5 Lhe enpenvidlues Gl the 5 = 3 MBLTix

. . II'. ¥ + F FF I
G=rp|Fa Fp | F iy b Ff
Fey o I F.F, F.f I +F

Curvalure fovr s irwariale relationship is now defined as K

&by, Frgure T illustrates the possibilities af thas new interne

oation tool, The left image is a graph of the function My, v )

10, We koow pogueahiative change takes

X ||'~|.:|_' - §
alace for 1his 1est function at the surface of the unit sphene, Wi

il Tund

cannol eastly discern this from the graph of the o

ticvi, bt the :_".Il"l‘l of e s e nsion o Lriussian Curviiure ne-

veals this guaalitative change quite nicely

Modeling 3D surface domains
Lets consider the case where the domain is a surface, L3, and
i Lhne o
the most wseful and interesting instances of the surface-on-sur
[he
multiquadric methaod has a natwral extension for this. You can

wi have the datn O, v 26 B)owhere = (5 ¥ ) 4

1 SpETe

face problem msccars when the domain sarface 15

simply take the standard Eoclidean distance and replace i Iy
geodesic distance on the sphere. Unfomunately, this “natura
extenziom’™ does nol work well becopse the first dermvatives ol

the basis lunctions have discombiiinhes 1 points ant i sfal 1o

Figure 1L The left image displays dots sampled on a sphere and
ihe righi imgte is the irensparent surface gruph of the modified
muliiguesdric interpolami fo this dod

uscd basis functions

rounded off.

the knots. To remedy thes situation, Faley
where the comers hove been Thiz leads to a

rather effective technigue called the modificd multiguadns

T
method, Pottmann and Eck descnbed another approsch, a
spherical multiguadric methosd based on Hardy and Goepferi's

work.” Pottmann and Eck used o modeling lunctron of the foam

Fiph E Y] + M _'H.In il

where (p.p, ) represents the sealar or dot product of the poonis o
i oy Ut are points on a unit sphere. These two methods vield

simiblar resulis on o miamy es) dath sels, with the spherical mulh

guadrc having aslight edge in accuracy and sphony of imple-
mentaion, We compuie the vialwes o by selving a linear svstem

FilorisTl, ...,
Fioure |1 s 2 viswalizanon of the given data g and £ on &

of equations so that Fip [he left image of
spherbcal domain. The lengths of the radhal line segments are
proport onal w f, and 1he segmenis orngmnie at the samplie
pats g on the sphere. The transparent propected surlace n the
terpulant

right image of Figure 11 represents the graph of the ir
Foley deseribed.” using the visualization techmigues discussed
below. Since we can visuahize the geaph of the function Fip) as
asurfaee over the domain surface, we often refer o the problem
ais the surface-on-surface problem

esearchers have developed very low techmigques for the

iware peneril situation, when the domueon 0P 5 an arsiirary

closed surface, Foley et al. recently developed a domain map
prig method. [n o nutshell, their method invodvies muappang tic
surfnce domain [ 1o o sphere, solving a cormesponding inferpo-
latiom problem on the sphere, then mapping back Lo LF lor o
solution. The surface domain £ dioes not seed (o be convex, b

they assamed that i1 i LORT A losgically efuvalent o a splhere.

IEEE Computer Graphics & Applications



Figure 12 We applicd comiour curves and shaded contour re-
gions on ihe apgle-core domoin of the dompin-mappiag inter-
pedmnd bo the dotn denoted by the small boxes.

With the exception of implicitly defined surlaces, a closed sur-
face [ is gencrally defined by & mapping Bip) from & simpler
dexmadn A osite £3, Foley et al . gave special atlention to the
situation where A i3 a planir rectangle and Bip) is a peniodic
parameine mapping, and the case where A is asphere and B p)
15 4 radial projection. They also considered what happens when
only diserete podmts on 12 are miven and 2 & not known explic
itly, I ths case, users can form interpolants to data sampled on
implicitly defined susfaces, Users can also casily apply the do
mam mapping technigue to any domain £ that is o trivoriate
deformation of the previoes cpses, assuming that the deforma
i s poone-to-one and onto transformation,

In Figures 12 ond 13 we show different visualization tech-
tiggues (described in the next section) of the domain mapping
technigue with the modified recprocal multiguadncmethod on
i spherical domnin.  The apple core-shaped surface in Figure
I 1 the domain 1. The two plots contaln contour curves and
color-blended contour regions. A color-blended oraph depicis
additional information in that the color varies Hnearly with the
value of the funetion from one contoor to the next. We shivw 4
graph of the inferpolating function £ i3] F-:. priyjecting the
iransparent surface radially in the rght image of Figure 13. We
projected it in a direction normal to the domain 1 in the lefl
imiage of Frgure [ 3, The line segments comnecting the domain 0
with the transpurent surfaee indicais the sample locatioms g oa

the domain and the relative magnitudes of the values I

Visualizing 3d surface domains

We can visualize the praph of o function defined over an
arbitrary surface demain by druwing eontowr o isovalue curves
on the surface (see the example i Figure 121, We based oun

approach o computing these contours on & triangulation of the

Mlay 149G

Figure 13, Tronsparent surfece graphs of the inferpolant coi-
tonired in Figure 12, The left imoae mses & normmal projeciiem amnd
the right image wses o radial projection,

domain surface 13, In the case of the domain mapping method,
thi= trinngulation is inherited from o trangulation of the unit
sphicre. We evalunte the modeling function ateach vertex of the
|I'illlt'.ll|il-llll"l amd assume linear varalion over each r-:'i_'|r:!1||:_
wiich implies that the eontours for each iriangle will be Hne
sepgments, The collection of all of these Bme seprmenis :‘-'i'.'|lJ*-:
picce-wise lincar approximations (o the contour curves. By in
creasing the resolution of the miangulation of the surface do-
min, we can schicve & smoother and closer approximation, bt
this also Increases computation and display costs. We can use
ancd her graphical approach and render the regions bounded by
contowrs with & distine eolo

Contour plods, although often effective, are not always the
best way 1o analyee a function because they do not clearly
indicate s peomelric shape. Standard methods for graphing
univirigte and bivariate (usctions use distance 1o indieate the
value ol the dependent variable, We can use the same deas for
asurfnce-on-surface griph. We can it rpret the surface graphs
in Figure | i projecting 8 distance Fla, v) perpendicelarly from
the paint {x, ¥] in the plane. Likewise, the trinsparent surface
graph in the left image of Figure 13 results from projecting a
distance proportional to # p) in a direction perpendicular o
normal to g in the surfece domain. L fortunately, fof non
cotveX dommains this type of surface graph can have self-inter-
sections, which makes it difficult to obiain very much
peametncal information aboot this function, In the right image
al Figare 13, we umed a radial projection from the center of the
domain, In general, however, for convex surface domains we
prefer the normal projection. We computed the transparear
surface graphs tn Fignres 11 and 13 85 the 30 ey

ll'lu. |

ARGy

i mi= 4+ el i il | 1 24,



Althoueh the mia trpumndric method penerally produces excel-
efil resulis on smooth test data, we suggest that vou apply oiher
nethods to the dats and compare the results, {Franke and
sielson deecussed many other methods." ) We are carrently
comparing and evaluating o number of methods for interpolad
g vilwmelne, scattered data. We'll report om this lnler. We are

a2 developing new methods that take advar

£ i samme
structure in the data, such os data sampled at varving depihs in
arbritarily located wells 1
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