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ABSTRACT OF THE THESIS 

Dynamic Characterization of Thin Film Magnetic Materials 

By 

Wei Gu 

Master of Science in Electrical Engineering 

University of California, Los Angeles, 2016 

Professor Yuanxun Wang, Chair 

 

A broadband dynamic method for characterizing thin film magnetic material is presented. The 

method is designed to extract the permeability and linewidth of thin magnetic films from 

measuring the reflection coefficient (S11) of a house-made and short-circuited strip line testing 

fixture with or without samples loaded. An adaptive de-embedding method is applied to remove 

the parasitic noise of the housing. The measurements were carried out with frequency up to 

10GHz and biasing magnetic fields up to 600 Gauss. Particular measurement setup and 3-step 

experimental procedures are described in detail. The complex permeability of a 330nm thick 

continuous FeGaB, 435nm thick laminated FeGaB film and a 100nm thick NiFe film will be 

induced dynamically in frequency-biasing magnetic field spectra and compared with a 

theoretical model based on Landau-Lifshitz-Gilbert (LLG) equations and eddy current theories. 

The ferromagnetic resonance (FMR) phenomenon can be observed among these three magnetic 

materials investigated in this thesis.  
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CHAPTER 1 

Introduction 

 

1.1 Motivation 

The conventional conformal antennas suffer from poor radiation efficiency and excessive storage 

of reactive energy due to platform effects and high sensitivity of Ohmic loss. And the size of the 

conventional antenna is also constrained by operating frequency. It is imperative to design 

electrically small and low profile antennas with high performance to overcome those shortages 

which conventional antennas possessed. Strain mediated multi-ferroic antennas, represented by 

surface acoustic wave (SAW) and bulk acoustic wave (BAW) antennas, can be potentially the 

new generation of antennas. One proposed structure of BAW antenna is shown here [7]: 

 

Fig. 1.1 The structure of BAW-resonance-based antenna 



2 
 

BAW antennas use dynamic electric or magnetic flux as radiation source instead of conductive 

current, which promise the extinction of the Ohmic loss. Using magnetic flux as radiation source 

can also benefit improving BAW antennas’ radiation performance by reducing the platform 

effect and rising the radiation efficiency. Because this time the image effect will enhance the 

radiation of the magnetic flux not cancel it. In order for BAW antenna to achieve low 

observability, it should be built with thin film magnetic material with high permeability and high 

permittivity simultaneously. Additionally, magnetic materials with high permeability will also 

help to reduce the radiation quality factor of BAW antenna [7]. The equations below quantify 

exactly how much the high permeability is able to improve the radiation efficiency by lower the 

radiation quality factor of BAW antenna: 

𝑄𝑏𝑜𝑢𝑛𝑑 = 𝜔
𝑊𝑚𝑒

𝑃𝑟𝑎𝑑
=  𝜔

𝑊𝐻
𝑘𝐻

2⁄

𝑃𝑟𝑎𝑑
=  

1

𝑘𝐻
2

1

𝜇𝑟𝑘0ℎ
                                        (1.1) 

, where 𝑄𝑏𝑜𝑢𝑛𝑑 indicates the lower bound of the radiation quality factor. 𝑘0 is the free-space 

wave number and h is the thickness of the layer of magnetostrictive material shown in the Figure 

1.1. 𝑘𝐻
2  is the maximum ratio of  mechanical energy 𝑊𝑚𝑒 transferred to the magnetic energy 𝑊𝐻 

in the form of magnetic flux density B. Mechanical energy carried by the acoustic wave is stored 

in the magnetostriction layer as indicated in the Figure 1.1. 𝑊𝐻 and 𝑃𝑟𝑎𝑑  are calculated by the 

following equations: 

  𝑃𝑟𝑎𝑑 =  
1

2𝜂0
∬|𝐸0|2𝑑𝑠                                                   (1.2) 

𝑊𝐻 =  ∭
|𝐵|2

𝜇𝑇
𝑑𝑣                                                         (1.3) 
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From equation 1.1, 𝜇𝑟 is a term of denominator, which indicates the higher the relative 

permeability the thin film has, the lower radiation quality factor the BAW antenna will possess.  

    So characterizing permeability of the thin film magnetic material becomes high priority to 

design BAW antenna. However, most of the existing approaches for permeability 

characterization of thin film magnetic materials are either not reliable for frequency above 1GHz 

or too complex to process the measurement data[8]. Therefore, an easy and precise approach is 

demanded to be developed for permeability and linewidth extraction.  

 

1.2 Two Existing Permeability Measurement Techniques 

1.2.1 The Coil Technique 

The coil technique are proved to be efficient and appropriate in MHz frequency range and has 

been widely used in the past years. The magnetic biasing field for the coil technique has to be 

generated by an external drive coil. The permeability of the testing sample can be extracted from 

the difference between the impedances of the coil with and without the sample inside.[3][5][6] 

However, the dimensional resonance and conductivity effects due to the relative big size of the 

coil cut down the sensitivity of the technique at higher band frequencies than MHz frequencies.  

1.2.2 The Two Port Coaxial Transmission Line Technique 

Two-port coaxial transmission line method [8] is another typical method developed these days to 

measure permeability especially in GHz frequency range. However, this technique is limited to 
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flexible ferromagnetic materials and very restrictive for sample preparation. It doesn’t conform 

to the specification of an easy operational technique.  

 

1.3 A Better Dynamic Solution: One Port Strip line Measurements 

Compared to the coil technique which is not reliable or accurate in GHz frequency range and 

two-port measurement technique with complex setup procedure, one-port strip line method is a 

perfect fit for high frequency permeability extraction. The traditional one-port transmission line 

technique [1] [2] can only measure the in-plane complex permeability of thin films regarding 

frequency spectra with a static magnetic biasing field added. The linewidth of the thin film 

material cannot be obtained directly from the measurements.  

In this paper, the one-port strip line technique is improved by applying dynamic magnetic 

biasing fields to the measurements. The permeability will be measured in terms of frequency and 

biasing magnetic field simultaneously. The linewidth can be read plainly from the plot where the 

permeability at certain frequency is with respect to the biasing magnetic field. 

The upgraded one-port strip line measurement was performed with a continuous FeGaB thin 

film, a laminated FeGaB thin film and a NiFe thin film inserted into the permeameter. The 

permeameter consists of a one port short-circuited strip line housing and a brass cover on top. 

Theoretical analysis based on LLG equations of these three thin films are given to predict FMR 

phenomenon and verify the correctness of the measurements. 
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CHAPTER 2 

Operating Principle of the Strip Line Technique 

 

2.1 Complex Permeability Extraction from Transmission Line 

      Theory 

According to the transmission line theory [4], the expressions of the incident voltage generated 

from the source at z < 0  on a lossy transmission line and the reflected wave caused by the load 

at the termination (𝑧 = 0) of the transmission line can be defined as: 

𝑉(𝑧)+ =  𝑉0
+𝑒−𝛾𝑧                                                     (2.1a) 

𝑉(𝑧)− =  𝑉0
−𝑒𝛾𝑧                                                       (2.1b) 

, where 𝑉0
+ is the incident voltage amplitude at the loaded end and 𝑉0

− is the reflected voltage 

amplitude at the terminated end. And 𝛾 is the complex propagation constant. The total voltage on 

the line is given by a sum of the incident and reflected waves: 

V(z) =  𝑉0
+𝑒−𝛾𝑧 +  𝑉0

−𝑒𝛾𝑧                                               (2.2) 
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    The voltage reflection coefficient 𝑅0 is introduced by normalizing the amplitude of the 

reflected wave to the amplitude of the incident wave at the terminated end of the transmission 

line: 

𝑅0 =
𝑉0

−

𝑉0
+                                                                  (2.3) 

So the reflection coefficient 𝑅(𝑙) of a short-circuit terminated lossy line at a distance 𝑙 from the 

reference point, which is the terminated end, can be expressed as  

𝑅(𝑙) =
𝑉0

−𝑒𝛾𝑧

𝑉0
+𝑒−𝛾𝑧 = 𝑅0𝑒−2𝛾𝑙                                                 (2.4) 

    In this case, given the short-circuit end, 𝑅0 is set as -1 and 𝑙 denotes the length of the testing 

strip line. 𝑙 can be separate into two parts, 𝑙𝑠𝑎𝑚𝑝𝑙𝑒 and 𝑙𝑒𝑚𝑝𝑡𝑦. 𝑙𝑠𝑎𝑚𝑝𝑙𝑒 stands for the substrate 

length, while  𝑙𝑒𝑚𝑝𝑡𝑦 indicates the length of the empty strip line. 𝑅(𝑙) can be measured as S11 of 

the permeameter.  

    The expression of the complex propagation constant 𝛾 is determined by solving the wave 

equations in a general lossy medium. The wave equations result from Maxwell’s curl equations 

by considering the effect of a lossy medium. If the medium is conductive, with a conductivity 𝜎, 

the wave function for electric field 𝐸̅ can be derived as below: 

∇  × 𝐸̅ =  −𝑗𝜔𝜇𝐻̅                                                        (2.5a) 

∇  × 𝐻̅ = 𝑗𝜔𝜀𝐸̅ +  𝜎𝐸̅                                                  (2.5b) 

Substitute (2.5b) into ∇  × (2.5a), which becomes: 

∇2𝐸̅ + 𝜔2𝜇 (𝜀 −
𝑗𝜎

𝜔
) 𝐸̅ = 0                                                (2.6) 
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Then, 

𝛾 = √−𝜔2𝜇(𝜀 −
𝑗𝜎

𝜔
) =

𝑗𝜔√𝜇𝑒𝑓𝑓𝜀𝑒𝑓𝑓

𝑐0
                                            (2.7) 

, where 𝜔 = 2𝜋𝑓. Since the thin film sample with substrate will be inserted into the strip line, 

which makes the whole system inhomogeneous, the propagation constant can also be defined in 

terms of effective permeability 𝜇𝑒𝑓𝑓 and effective permittivity 𝜀𝑒𝑓𝑓 by assuming the strip line as 

an effective homogeneous system based on quasi-transverse electromagnetic wave 

approximation. For Consistency,  

𝜀0𝜀𝑒𝑓𝑓 = 𝜀 −
𝑗𝜎

𝜔
                                                        (2.8a) 

𝜇0𝜇𝑒𝑓𝑓 = 𝜇                                                             (2.8b) 

And, 

𝑐0 =
1

√𝜇0𝜀0
                                                              (2.8c) 

    As soon as 𝜀𝑒𝑓𝑓 is obtained from the measurements of S11, 𝜇𝑒𝑓𝑓 can be calculated by solving 

the equations above. Applying the relationship between 𝜇𝑟 and 𝜇𝑒𝑓𝑓 along with the distance ℎ 

between the upper metal and ground plane of the strip line testing fixture and the thickness 𝑑 of 

the thin film sample, the relative permeability 𝜇𝑟 can be described as: 

𝜇𝑟 =
𝜇𝑒𝑓𝑓−1

𝐾(
𝑑

ℎ
)

                                                               (2.9) 

, where 𝐾 is the geometry dependent scaling factor, which should be chosen accordingly. 
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2.2 Complex Permeability Calculated Based on Ferromagnetic  

      Component Theory  

2.2.1 Constitution Relation with Magnetic Materials Presented 

In free space, a simple relation hold between the magnetic field intensity 𝐻̅ and flux density 𝐵̅: 

𝐵̅ =  𝜇0𝐻̅                                                                (2.10) 

, where 𝜇0 = 4𝜋 × 10−7 henry/m is the permeability of free space. This relation is commonly 

known as one of the constitution relations. However, if there are media presented other than free 

space, the total constitution relation above will be affected by the electromagnetic fields existing 

in the media. For a magnetic material, applying a magnetic biasing field 𝐻0, a magnetic 

polarization or magnetization 𝑀̅ which augments the total magnetic flux, 𝐵̅, will be produced 

inside. Then we have the constitution relation as:  

𝐵̅ =  𝜇0(𝑀̅ + 𝐻̅)                                                     (2.11) 

    In the preceding discussion, 𝑀̅ is a vector in the same direction as 𝐻̅̅̅, which means it is 

assumed that the material is isotropic. For more general case, which means the anisotropic 

materials have been included, an even more complicated constitution relation has been 

characterized by a rank two permeability tensor, which is given in matrix form as: 

𝐵̅ = [𝜇]𝐻̅                                                                 (2.12) 
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, which is extended as: 

[

𝐵𝑥

𝐵𝑦

𝐵𝑧

] =  [

𝜇𝑥𝑥 𝜇𝑥𝑦 𝜇𝑥𝑧

𝜇𝑦𝑥 𝜇𝑦𝑦 𝜇𝑦𝑧

𝜇𝑧𝑥 𝜇𝑧𝑦 𝜇𝑧𝑧

] [

𝐻𝑥

𝐻𝑦

𝐻𝑧

]                                          (2.13) 

2.2.2 The Single Spin Dynamic of the Electron 

If the intensity of the biasing field increases till all the unbalanced electron spins are aligned, the 

material is considered to be magnetically saturated, while 𝑀𝑠 indicates the saturation 

magnetization. In order to obtain the expression of 𝑀̅ in terms of 𝐻̅ under the condition that the 

material reaches magnetically saturation, the equation of motion for the magnetic dipole 

moments, which is the simplest form of LLG equation, needs to be derived based on the 

definition of torque exerted on the magnetic dipole and solved.  

    To derive the simplest form of the LLG equations, we start from the single spin dynamic of 

the electron inside the magnetic material [4]. The spin of an unbalanced electron creates the 

magnetic dipole moment which contributes to the magnetic properties of the interested material. 

The expression of the magnetic dipole moment 𝑚̅ can be given as: 

𝑚̅ =  
𝑞ℎ̅

2𝑚𝑒
                                                           (2.14) 

, where ℎ̅ is Planck’s constant divided by 2𝜋. 𝑞 is the electron charge and 𝑚𝑒 is the  mass of the 

electron. And the expression of a spin angular momentum 𝑠 ̅can be written as: 

𝑠̅ =  
ℎ̅

2
                                                               (2.15) 

    From quantum mechanical perspective, the magnetic dipole moment of an electron 𝑚̅ and its 

angular momentum 𝑠̅ has a relationship written as follow: 
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𝑚̅ =  −𝑟𝑠̅                                                          (2.16) 

, where 𝑟 is gyromagnetic radio. Negative sign indicates that the magnetic dipole moment has an 

opposite direction to its angular momentum. Comparing (2.14) with (2.16) gives the following 

relation: 

𝛾 =  
𝑞

𝑚𝑒
                                                              (2.17) 

    Provided there are 𝑁 unbalanced magnetic dipoles per unit volume, then the total 

magnetization contributes by these unbalanced electron spins can be calculated as: 

𝑀̅ = 𝑁𝑚̅                                                             (2.18) 

, and the torque 𝑇̅ of a single spin equals to the first order derivative of angular momentum with 

respect to time, we have: 

𝑇̅ =  
𝑑𝑠̅

𝑑𝑡
                                                                (2.19) 

    The torque 𝑇̅ that impact on the magnetic dipole can also be described as: 

𝑇̅ = 𝜇0𝑚̅ × 𝐻̅0                                                    (2.20) 

Combine (2.19) and (2.20), we can easily build up the equation of motion for a single magnetic 

dipole moment as: 

𝑑𝑠̅

𝑑𝑡
= 𝜇0𝑚̅ × 𝐻̅0                                                    (2.21) 

Based on the calculation of the total magnetization before, the equation of motion for a single 

magnetic dipole moments can be easily transferred to the equation of the motion for the total 

magnetization of the material, which is:  
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𝑑𝑀̅

𝑑𝑡
= −𝜇0𝑟𝑀̅ × 𝐻̅                                                 (2.22) 

2.2.3 Tensor Permeability Analysis of Lossy Medium 

When a small AC magnetic signal 𝐻̅ interacts with the magnetically saturated material, total 

magnetization 𝑀̅ and total field 𝐻̅ can be decomposed as: 

𝑀̅𝑡 = 𝑀𝑠𝑧̂ + 𝑀̅                                                       (2.23) 

𝐻̅𝑡 = 𝐻0𝑧̂ + 𝐻̅                                                        (2.24) 

    Assumed there is a time harmonic dependence 𝑒𝑗𝑤𝑡  in the small AC signal, substitute (2.23), 

(2.24) into (2.22) then the first order differential equation will be further reduced to two ordinary 

phasor equations. Solving them, give us: 

(𝜔0
2 − 𝜔2)𝑀𝑥 =  𝜔0𝜔𝑚𝐻𝑥 + 𝑗𝜔𝜔𝑚𝐻𝑦                                      (2.25) 

(𝜔0
2 − 𝜔2)𝑀𝑦 =  −𝑗𝜔0𝜔𝑚𝐻𝑥 + 𝜔𝜔𝑚𝐻𝑦                                   (2.26) 

𝑀̅ = [𝜒]𝐻̅ = [

𝜒𝑥𝑥 𝜒𝑥𝑦 0

𝜒𝑦𝑥 𝜒𝑦𝑦 0

0 0 0

] 𝐻̅                                            (2.27) 

, where 𝜔0 =  𝜇0𝑟𝐻0 and 𝜔𝑚 =  𝜇0𝑟𝑀𝑠 are called ℒ𝒶𝓇𝓂ℴ𝓇 or 𝓅𝓇ℯ𝒸ℯ𝓈𝓈𝒾ℴ𝓃 frequency. [𝜒] is 

denoted as the tensor susceptibility. Compared with the constitution relation, tensor permeability 

[𝜇] can be expressed as 

[𝜇] = 𝜇0([𝑈] + [𝜒])                                                     (2.28) 

Then the element of the tensor permeability is  

𝜇 = 𝜇0(1 + 𝜒𝑥𝑥) = 𝜇0𝜇𝑟                                                  (2.29) 
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, where 𝜒𝑥𝑥 =  
𝜔0𝜔𝑚

𝜔0
2−𝜔2

 , which is given by turn the two ordinary phasor equations into its matrix 

form. For resonant system, equations to describe lossless system can be easily transfer to lossy 

ones by introducing a damping factor 𝛼, which makes both the  ℒ𝒶𝓇𝓂ℴ𝓇 frequency and 

element of the tensor susceptibility complex: 

𝜔0 ←  𝜔0 + 𝑗𝛼𝜔                                                       (2.30) 

𝜒𝑥𝑥 ←  𝜒𝑥𝑥 =  𝜒𝑥𝑥
′ − 𝑗𝜒𝑥𝑥

′′                                                (2.31) 

The expressions of the real and imaginary part can be induced by substituting the complex 

ℒ𝒶𝓇𝓂ℴ𝓇 frequency into the original 𝜒𝑥𝑥, then we have:                                                  

𝜒𝑥𝑥
′ =  

𝜔0𝜔𝑚(𝜔0
2−𝜔2)+𝜔0𝜔𝑚𝜔2𝛼2

[𝜔0
2−𝜔2(1+𝛼2)]2+4𝜔0

2𝜔2𝛼2                                                (2.32a) 

𝜒𝑥𝑥
′′ =  

𝛼𝜔𝜔𝑚[𝜔0
2+𝜔2(1+𝛼2)]

[𝜔0
2−𝜔2(1+𝛼2)]2+4𝜔0

2𝜔2𝛼2                                                (2.32b) 

, where we approximate 1 + 𝛼2 ≈ 1. As for most magnetic material, the loss is small. 

And the damping factor 𝛼 can be determined by the linewidth ∆𝐻 of the complex 

susceptibilities: 

𝛼 =  
∆𝐻𝜇0𝑟

2𝜔
                                                             (2.33) 

So the real and imaginary part of the complex relative permeability of the magnetic material can 

be obtained by: 

𝜇𝑟 =  𝜇𝑟
′ +  𝑗𝜇𝑟

′′                                                    (2.34a) 

𝜇𝑟
′ = 1 + 𝜒𝑥𝑥

′                                                        (2.34b) 
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𝜇𝑟
′′ = −𝜒𝑥𝑥

′′                                                             (2.34c) 

2.2.4 Kittel’s Equation 

In the previous derivation of tensor permeability, it is assumed that the DC magnetic bias field 

external to the thin film magnetic material is the same as internal. But practically, the magnetic 

field stimulated inside the sample is always different from the bias magnetic field outside due to 

the boundary conditions at the surface of the sample. In general, the shape of the magnetic 

material and the orientation of the DC bias field will decide the variation between the magnetic 

field inside and out. To quantify this distinction, the demagnetization factor 𝑁 =  𝑁𝑥, 𝑁𝑦 𝑜𝑟 𝑁𝑧 

for certain direction is introduced here. And N is defined to satisfy that 𝑁𝑥 +  𝑁𝑦 +  𝑁𝑧 = 1. So 

the adjusted expression of the magnetic field inside 𝐻̅ can be written as:  

𝐻̅ = 𝐻̅𝑒 − 𝑁𝑀̅                                                          (2.35) 

Expand equation (2.35) in the Cartesian coordinate system: 

𝐻𝑥 =  𝐻𝑥𝑒 − 𝑁𝑥𝑀𝑥                                                 (2.36a)  

𝐻𝑦 =  𝐻𝑦𝑒 − 𝑁𝑦𝑀𝑦                                                 (2.36b) 

𝐻𝑧 =  𝐻𝑧𝑒 − 𝑁𝑧𝑀𝑧                                                  (2.36c) 

Substitute (2.36a-c) into equation (2.27) to eliminate 𝐻𝑥 and 𝐻𝑦 and solve for 𝑀𝑥 and 𝑀𝑦: 

𝑀𝑥 =  
𝜒𝑥𝑥(1+𝜒𝑦𝑦𝑁𝑦)−𝜒𝑥𝑦𝜒𝑦𝑥𝑁𝑦

𝐷
𝐻𝑥𝑒 +  

𝜒𝑥𝑦

𝐷
𝐻𝑦𝑒                                       (2.37a) 

𝑀𝑦 =  
𝜒𝑦𝑦(1+𝜒𝑥𝑥𝑁𝑥)−𝜒𝑥𝑦𝜒𝑦𝑥𝑁𝑥

𝐷
𝐻𝑦𝑒 +  

𝜒𝑦𝑥

𝐷
𝐻𝑥𝑒                                       (2.37b) 

, where  
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𝐷 = (1 + 𝜒𝑥𝑥𝑁𝑥)(1 + 𝜒𝑦𝑦𝑁𝑦) − 𝜒𝑦𝑥𝜒𝑥𝑦𝑁𝑥𝑁𝑦                                (2.38) 

For a finite magnetic material, at the gyromagnetic resonance frequency 𝜔𝑟, D is set as 0. 

Substitute the expression of the element of tensor susceptibility into equation (2.38), which 

gives:  

(1 + 
𝜔0𝜔𝑚𝑁𝑥

𝜔0
2−𝜔2 ) (1 +  

𝜔0𝜔𝑚𝑁𝑦

𝜔0
2−𝜔2 ) −

𝜔2𝜔𝑚
2

(𝜔0
2−𝜔2)

2 𝑁𝑥𝑁𝑦 = 0                             (2.39) 

Solve for 𝜔, then we get the Kittel’s equation as: 

𝜔𝑟 =  𝜔 =  √(𝜔0 + 𝜔𝑚𝑁𝑥)(𝜔0 + 𝜔𝑚𝑁𝑦)                                  (2.40) 

In the one port strip line measurement, the biasing field 𝐻𝑎 is applied tangentially to the surface 

of the thin film along z direction. The direction perpendicular to the surface of the thin film 

magnetic material is set as y direction. As shown in the Figure 2.1. 𝐻0 is the internal biasing 

field inside the thin film sample. According to the coordination of the thin film, we set 𝑁𝑥 =

𝑁𝑧 = 0 and 𝑁𝑦 = 1, then we have: 

𝜔𝑟 =  𝜔 =  √𝜔0(𝜔0 + 𝜔𝑚)                                                   (2.41) 

 

Figure 2.1 Tangential biased internal and external field for a thin film sample 
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2.2.5 Derivation of the Complete Form of 𝝌𝒙𝒙Tensor Susceptibility Element 

Note that after the demagnetization factor is introduced, it is also necessary to rewrite the 

expression of 𝜒𝑥𝑥. The new 𝜒𝑥𝑥 can be derived from equation (2.37a): 

𝜒𝑥𝑥_𝑑𝑒 =  
𝜒𝑥𝑥(1+𝜒𝑥𝑥)+𝜒𝑥𝑦

2

1+𝜒𝑥𝑥
                                                   (2.42) 

𝜒𝑥𝑥_𝑑𝑒 =  
𝜔𝑚(𝜔0+𝜔𝑚)

𝜔0(𝜔𝑚+𝜔0)−𝜔2
                                                  (2.43) 

Now considering the effect of damping factor, we substitute equation (2.30) into (2.43): 

𝜒𝑥𝑥_𝑑𝑒
′ =  

𝜔𝑚𝜔0(𝜔𝑚+𝜔0)2−𝜔2𝜔𝑚(𝜔𝑚+𝜔0)+𝛼2𝜔2𝜔𝑚𝜔0

[𝜔0
2+𝜔0𝜔𝑚−(1+𝛼2)𝜔2]2+𝛼𝜔2(2𝜔0+𝜔𝑚)2                               (2.44a) 

𝜒𝑥𝑥_𝑑𝑒
′′ =  

𝛼𝜔𝜔𝑚[(𝜔𝑚+𝜔0)2+(1+𝛼2)𝜔2]

[𝜔0
2+𝜔0𝜔𝑚−(1+𝛼2)𝜔2]2+𝛼𝜔2(2𝜔0+𝜔𝑚)2                                  (2.44b) 

(2.44a) and (2.44b) can be further simplified regarding FMR, which means Kittel’s equation 

can be implemented here: 

𝜒𝑥𝑥_𝑑𝑒
′ =  

𝜔𝑚𝜔0𝜔𝑟
2

(𝜔0
2+𝛼2𝜔2)(𝜔𝑟

2−𝜔2)
                                       (2.45a) 

𝜒𝑥𝑥_𝑑𝑒
′′ =  

𝛼𝜔𝜔𝑚𝜔𝑟
2

(𝜔0
2+𝛼2𝜔2)(𝜔𝑟

2−𝜔2)
                                       (2.45b) 

, which consist of the complete form of 𝜒𝑥𝑥 with loss due to damping effect and 

demagnetization under consideration. 
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CHAPTER 3 

Setup and Experimental Procedures of Measurements 

 

3.1 Measurement Setup 

The whole measurement system consists of a system DC power supply, an electromagnet, a 

vector network analyzer (VNA), a relay, a Gauss meter and a house made strip line testbed.  

3.1.1 System DC Power Supply Setup 

The system DC power supply is connected to the electromagnet. The output of the power supply 

is controlled by the computer to adjust the intensity of the magnetic field that the electromagnet 

produce.  The maximum current of the DC power supply is set as 5A, which corresponds to the 

maximum biasing field that the electromagnet can provide, 625 Gauss. Sweep the scale of the 

biasing field with 200 sampling points. 

3.1.2 Vector Network Analyzer Setup 

The sweep frequency range of the VNA is set starting from 50MHz to 10GHz. The sampling 

points of the frequency amounts to 1601 points. The output power of the RF signal delivered by 

the VNA is ought to be low, however, it is highly possible that the high power RF signal induces 

the anisotropy of the material. The frequency of the small AC signal produced by the VNA is 
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1GHz. VNA, system DC power supply and the computer are connected to each other with 

GPIBs. 

3.1.3 The Relay Setup 

The relay is also managed by the computer for reversing the direction of the biasing magnetic 

field during the initialization of the measurements to eliminate the remnants on the 

electromagnet. The relay is also driven by an external DC power Supply. 

3.1.4 The Gauss Meter Setup 

The probe of the Gauss meter is placed at the center of the electromagnet. The data of the meter 

is read by computer through an ADC. The Gauss meter needs to be calibrated before it is located 

nearby the electromagnet. 

3.1.5 The Sample Preparation 

Before the measurements are implemented, a 330nm thick continuous FeGaB thin film, a 435 nm 

thick circular FeGaB thin film of 3mm diameter and a 100nm thick NiFe thin film should be 

deposited on 5mm*6mm*0.5mm silicon substrates. The circular thin film FeGaB sample is 

laminated, which means that one 37nm thick Al2O3 lamination is deposited in every two 18nm 

thick FeGaB laminations. Then 8 Al2O3 laminations and 8 FeGaB laminations are stacked 

together on the substrate. 

3.1.6 The One Port Strip Line Permeameter 

The strip line is designed to match to 50Ω. The total length of the strip line is 9mm. Since 9mm 

is shorter than a quarter wavelength at 10GHz, the strip line is appropriate to measurements at all 
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frequencies under 10GHz without having resonance effects. The distance between the upper line 

and the ground plate is 1mm. The width of the upper line is 4.9mm. In order to locate the thin 

film sample half way between the upper medal and ground, the thin film needs to be deposited 

on a 0.5mm thick Si substrate before inserted into the testbed. The thin film sample is placed 

close to the short-circuit end of the strip line to keep the magnetic field approximately uniform. 

The testbed is equipped with a brass housing to protect the strip line from external electric field 

interference. Figure 3.1 shows the appearance of the house made strip line testing fixture. 

 

Fig. 3.1 One port permeameter based on short-circuited strip line housing 
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3.2 3-Step Experimental and Permeability Extraction Procedures 

Initialize the VNA with the standard open, short and load calibration until the housing noise is 

lower than 0.05 dB. Calibrate the Gauss meter to zero when the output of the system DC power 

supply is zero. 

3.2.1 Effective Permittivity of Empty Housing 

Measure 𝑆11
𝑒𝑚𝑝𝑡𝑦

 of the empty strip line with transverse and longitudinal magnetic biasing field 

applied respectively, 𝑆11
𝑒𝑚𝑝𝑡𝑦_𝑇

 and 𝑆11
𝑒𝑚𝑝𝑡𝑦_𝐿

. Assuming 𝜇𝑒𝑓𝑓 = 1, extract the effective 

permittivity 𝜀𝑒𝑓𝑓
𝑒𝑚𝑝𝑡𝑦

 of the test environment with the frequency dependent conducting loss, 

dielectric loss and other parasitic noise of the housing included according to: 

𝜀𝑒𝑓𝑓
𝑒𝑚𝑝𝑡𝑦

=  (
𝑗𝑐0ln (𝑆11

𝑒𝑚𝑝𝑡𝑦
)

2𝜔𝑙
)

2

                                                   (3.1) 

, where 𝑐0 is the speed of light in free space. 

3.2.2 Effective Permittivity with Substrate Inside 

Insert the thin film sample into the strip line. Measure 𝑆11
𝑠𝑢𝑏 of the loaded strip line with only 

transverse magnetic biasing field added. The effective permeability sustains as 1. Extract the 

effective permittivity 𝜀𝑒𝑓𝑓
𝑠𝑢𝑏 with the influence of the substrate considered based on: 

𝜀𝑒𝑓𝑓
𝑠𝑢𝑏 =  (

𝑗𝑐0ln (−𝑆11
𝑠𝑢𝑏)

2𝜔𝑙𝑠𝑎𝑚𝑝𝑙𝑒
− 

√𝜀
𝑒𝑓𝑓
𝑒𝑚𝑝𝑡𝑦

𝑙𝑒𝑚𝑝𝑡𝑦

𝑙𝑠𝑎𝑚𝑝𝑙𝑒
)

2

                                        (3.2) 

 



20 
 

3.2.3 Effective Permeability with Thin Film Sample Loaded 

Measure 𝑆11
𝑓

 of the loaded strip line with longitudinal magnetic biasing field. Extract the 

effective permeability 𝜇𝑒𝑓𝑓 of the magnetic material de-embedded by 𝜀𝑒𝑓𝑓
𝑒𝑚𝑝𝑡𝑦

 and 𝜀𝑒𝑓𝑓
𝑠𝑢𝑏: 

𝜇𝑒𝑓𝑓 =  (
𝑗𝑐0ln (−𝑆11

𝑓
)

2𝜔𝑙𝑠𝑎𝑚𝑝𝑙𝑒√𝜀𝑒𝑓𝑓
𝑠𝑢𝑏

−  
√𝜀𝑒𝑓𝑓

𝑒𝑚𝑝𝑡𝑦
𝑙𝑒𝑚𝑝𝑡𝑦

√𝜀𝑒𝑓𝑓
𝑠𝑢𝑏𝑙𝑠𝑎𝑚𝑝𝑙𝑒

)

2

                                        (3.3) 

Using the relationship between 𝜇𝑟 and 𝜇𝑒𝑓𝑓 mentioned before in Operating Principle, 𝜇𝑟 can be 

calculated.  

3.2.4 De-embedding to S11 

Note that every time when changing the direction of the biasing field from transverse side to 

longitudinal one, the calibration of the VNA needs to be done again. When calculating the 

effective permeability, further de-embedding method to S11 is performed: 

|𝑆11
𝑒𝑚𝑝𝑡𝑦

|  ←  |𝑆11
𝑒𝑚𝑝𝑡𝑦_𝑇

| − |𝑆11
𝑒𝑚𝑝𝑡𝑦_𝑇

|                                      (3.4a) 

|𝑆11
𝑠𝑢𝑏|  ←  |𝑆11

𝑠𝑢𝑏| −  |𝑆11
𝑒𝑚𝑝𝑡𝑦_𝑇

|                                           (3.4b) 

|𝑆11
𝑓

|  ←  |𝑆11
𝑓

| −  |𝑆11
𝑒𝑚𝑝𝑡𝑦_𝐿

|                                              (3.4c) 
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CHAPTER 4 

Dynamic Characterizations of Three Different Magnetic 

Materials 

 

4.1 Continuous FeGaB 

Figure 4.1 and Figure 4.2 show the real part and imaginary part of the relative permeability in 

frequency-field spectra extracted from the measurements of continuous FeGaB. FMR can be 

observed in both parts of the complex relative permeability. And resonance frequency moves 

from the lower band to the higher band, as the strength of the magnetic biasing field increases. 
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Fig. 4.1  𝜇𝑟
′  of continuous FeGaB in the field-frequency spectra 

 

 

Fig. 4.2 𝜇𝑟
′′ of continuous FeGaB in the field-frequency spectra 
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Fig. 4.3 𝜇𝑟
′  and 𝜇𝑟

′′ of continuous FeGaB in frequency spectra compared with theoretical results 

 

    Figure 4.3 shows the complex permeability in only frequency spectra at certain magnetic 

biasing field which is 120 Gauss. K is set as 1.5. Since the direction of the biasing field is 

parallel to the thin film, the demagnetization factors are set as 𝑁𝑥 = 0, 𝑁𝑦 = 1 𝑎𝑛𝑑 𝑁𝑧 = 0. So 

the resonance frequency is given by Kittel’s equation: 

𝜔𝑟 =  √(𝜔0 + 𝜔𝑚𝑁𝑥)(𝜔0 + 𝜔𝑚𝑁𝑦) =  √𝜔0(𝜔0 + 𝜔𝑚)  ≈ 3.5GHz             (4.1) 

, which is consistent with the measured result. Then the damping factor α is calculated as 0.0129. 

The Linewidth ∆H can be calculated as about 45 Gauss. 
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4.2 Laminated FeGaB  

Figure 4.4 and Figure 4.5 show the real part and imaginary part of the relative permeability in 

frequency-field spectra extracted from the measurements of Laminated FeGaB. FMR can be 

observed in both parts of the complex relative permeability. And resonance frequency moves 

from the lower band to the higher band, as the strength of the magnetic biasing field increases. K 

is set as 0.8 for FeGaB. 

 

 

Fig. 4.4 𝜇𝑟
′  of laminated FeGaB in the field-frequency spectra 
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Fig. 4.5 𝜇𝑟
′′ of laminated FeGaB in the field-frequency spectra 

 

    Figure 4.6 shows the complex permeability in only frequency spectra at certain magnetic 

biasing field which is 103 Gauss. Since the direction of the biasing field is parallel to the thin 

film, the demagnetization factors are set as 𝑁𝑥 = 0, 𝑁𝑦 = 1 𝑎𝑛𝑑 𝑁𝑧 = 0. So the resonance 

frequency is given by Kittel’s equation: 

𝜔𝑟 =  √(𝜔0 + 𝜔𝑚𝑁𝑥)(𝜔0 + 𝜔𝑚𝑁𝑦) =  √𝜔0(𝜔0 + 𝜔𝑚)  ≈ 3GHz            (4.2) 

, which is consistent with the measured result.  
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Fig. 4.6 𝜇𝑟
′  and 𝜇𝑟

′′ of laminated FeGaB in frequency spectra compared with theoretical results 

 

 

Fig. 4.7 𝜇𝑟
′  and 𝜇𝑟

′′ of laminated FeGaB in field spectra compared with theoretical results 
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Figure 4.7 shows the complex permeability in only field spectra at resonance frequency which is 

3GHz. The FMR is observed when the biasing field reaches 103Gauss, which agrees with Figure 

4.6. The Linewidth ∆H can be extracted directly from Figure 4.6, which is approximately 37.5 

Gauss. Then the damping factor α is calculated as 0.0107. 

In Figure 4.8 and Figure 4.9, complex permeability with different biasing fields and various 

resonance frequencies are compared. The value of real part of the relative permeability will 

decrease when the resonance frequency moves to the higher band. And the linewidth will enlarge 

dynamically. 

 

 

Fig. 4.8 Lam FeGaB 𝜇 at 2.8GHz-91.04Gauss, 5.7GHz-262.41Gauss and 8.3GHz-459.78Gauss 
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Fig. 4.9 Lam FeGaB 𝜇 at 91.04Gauss-2.8GHz, 262.41Gauss-5.7GHz and 459.78Gauss-8.3GHz 

 

    Figure 4.10 and Figure 4.11 shows the comparison between the results of continuous FeGaB 

and laminated FeGaB. Since the eddy current induced inside the thin film is broken by 

multilayers of lamination. The loss caused by eddy current will decrease, which results in smaller 

linewidth of laminated FeGaB than continuous FeGaB for roughly 8 Gauss in difference. 
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Fig. 4.10 Comparison of 𝜇 between continuous and laminated FeGaB in frequency spectra 

 

Fig. 4.11 Comparison of 𝜇 between continuous and laminated FeGaB in field spectra 
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4.3 NiFe 

Figure 4.12 to 4.15 show the measured and theoretical results of the relative permeability of 

NiFe in frequency-field spectra. All the results for NiFe are induced under the condition that K is 

set as 1.09. FMR can be observed at 3.5GHz when the strength of the biasing field reaches 

93Gauss. Linewidth is read from Figure 4.15 as 40 Gauss, which is close to 30 Gauss obtained in 

Squid Experiment. 

 

 

Fig. 4.12 𝜇𝑟
′  of NiFe in the field-frequency spectra 
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Fig. 4.13 𝜇𝑟
′′ of NiFe in the field-frequency spectra 

 

 

Fig. 4.14 𝜇𝑟
′  and 𝜇𝑟

′′ of NiFe in frequency spectra compared with theoretical results  
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Fig. 4.15 𝜇𝑟
′  and 𝜇𝑟

′′ of NiFe in field spectra compared with theoretical results 
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CHAPTER 5 

Conclusion 

 

5.1 Summary 

 A broadband dynamic characterization technique for thin film magnetic material in the field-

frequency spectra is presented. The design of the strip line testbed with housing is shown. The 

automatic control measurement setup is narrated in detail. An improving adaptive de-embedding 

method is developed. The complex relative permeability and linewidth of continuous FeGaB, 

laminated FeGaB and NiFe are deduced from the measurements. The validity of the approach is 

assessed by comparing to the theoretical model.  
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APPENDIX A 

The Matlab Code for Measured and Theoretical Permeability 

Calculation 

 

clc 

clear all 

close all 

  

% For Sample of Laminated FeGaB  

% The maximum current to drive the magnet is 5A 

  

% Parameter Definition 

i = sqrt(-1); 

c0 = 3*10^8; % the speed of the light 

K=0.8; % Scaling factor *need to be adjusted accordingly* 

thickness_d=350*10^(-9); % 330nm *need to be adjusted accordingly* 

h=1*10^(-3); 

l1=0*10^(-3);  % 10^(-3) unit:mm 

l2=5*10^(-3); % length of sample *need to be adjusted accordingly* 

l3=5*10^(-3); 

l_sample=l2; 

l_empty=l1+l3; 

N=1601; %Frequency sweep points 

M=188; %Field sweep points 

  

% Read datas 

  

filename = 'LAM_FEGAB_L1_L_MID_FWD_MAG.DAT';   

delimiterIn = ','; 

Mag_L = importdata(filename,delimiterIn); 

  

filename = 'LAM_FEGAB_L1_L_MID_FWD_PHA.DAT';   

delimiterIn = ','; 

Pha_L = importdata(filename,delimiterIn); 

  

filename = 'LAM_FEGAB_L1_T_MID_FWD_MAG.DAT';   

delimiterIn = ','; 
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Mag_T = importdata(filename,delimiterIn); 

  

filename = 'LAM_FEGAB_L1_T_MID_FWD_PHA.DAT';   

delimiterIn = ','; 

Pha_T = importdata(filename,delimiterIn); 

  

filename = 'NEW_ALL_EMPTY_HOUSING_L_FWD_MAG.DAT';   

delimiterIn = ','; 

Mag_L_empty = importdata(filename,delimiterIn); 

  

filename = 'NEW_ALL_EMPTY_HOUSING_L_FWD_PHA.DAT';   

delimiterIn = ','; 

Pha_L_empty = importdata(filename,delimiterIn); 

  

filename = 'NEW_ALL_EMPTY_HOUSING_T_FWD_MAG.DAT';   

delimiterIn = ','; 

Mag_T_empty = importdata(filename,delimiterIn); 

  

filename = 'NEW_ALL_EMPTY_HOUSING_T_FWD_PHA.DAT';   

delimiterIn = ','; 

Pha_T_empty = importdata(filename,delimiterIn); 

  

%Frequency and Field index stored into two different arrays for future use 

  

Freq = zeros(N,1); 

Field = zeros(1,M); 

Field 

=(Mag_L(1,2:(M+1))+Mag_L_empty(1,2:(M+1))+Mag_T(1,2:(M+1))+Mag_T_empty(1,2:(M+1

)))/4; 

Freq = Mag_L(2:(N+1),1); 

Omega=2*pi*repmat(Mag_L(2:(N+1),1),1,M); 

Gamma_air=(i*2*pi*repmat(Freq,1,M)/c0); 

  

%Recover the measurements in 3D figure 

  

figure(); 

%Plot the Mag_L 

mesh(Freq,Field,Mag_L(2:N+1,2:M+1).'); 

xlabel('Frequency / Hz','FontSize',20); 

ylabel('Field / Oe','FontSize',20); 

zlabel('Power Ratio / dB','FontSize',20); 

title('S11 with Longitudinal Bias','FontSize',20); 

  

figure(); 

%Plot the Mag_T_empty 

mesh(Freq,Mag_T_empty(1,2:M+1),Mag_T_empty(2:N+1,2:M+1).'); 
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xlabel('Frequency / Hz','FontSize',20); 

ylabel('Field / Oe','FontSize',20); 

zlabel('Power Ratio / dB','FontSize',20); 

title('S11 with Transverse Bias and Empty Housing','FontSize',20); 

  

%Transfer the data from magnitude and phase form to real and imagine form and restore them in 

new matrix  

%Deembedding the S11 

  

S11_T_empty=zeros(N,M); 

Mag_T_empty_de=zeros(N,M); 

Pha_T_empty_de=zeros(N,M); 

  

Mag_T_empty_de=db2mag(Mag_T_empty(2:(N+1),2:(M+1))-

repmat(Mag_T_empty(2:(N+1),(M-3)),1,M)); 

  

Pha_T_empty_de=unwrap(2*pi*Pha_T_empty(2:(N+1),2:(M+1))/360)-

unwrap(2*pi*repmat(Pha_T_empty(2:(N+1),(M-3)),1,M)/360); 

  

S11_T_empty=Mag_T_empty_de.*exp(i*Pha_T_empty_de).*exp(-2*Gamma_air*l_sample); 

  

S11_T=zeros(N,M); 

Mag_T_de=zeros(N,M); 

Pha_T_de=zeros(N,M); 

  

Mag_T_de=db2mag(Mag_T(2:(N+1),2:(M+1))-repmat(Mag_T_empty(2:(N+1),(M-3)),1,M)); 

  

Pha_T_de=unwrap(2*pi*Pha_T(2:(N+1),2:(M+1))/360)-

unwrap(2*pi*repmat(Pha_T_empty(2:(N+1),(M-3)),1,M)/360); 

  

S11_T=Mag_T_de.*exp(i*Pha_T_de).*exp(-2*Gamma_air*l_sample); 

  

S11_L=zeros(N,M); 

Mag_L_de=zeros(N,M); 

Pha_L_de=zeros(N,M); 

  

Mag_L_de=db2mag(Mag_L(2:(N+1),2:(M+1))-repmat(Mag_L_empty(2:(N+1),(M-3)),1,M)); 

  

Pha_L_de=unwrap(2*pi*Pha_L(2:(N+1),2:(M+1))/360)-

unwrap(2*pi*repmat(Pha_L_empty(2:(N+1),(M-3)),1,M)/360); 

  

S11_L=Mag_L_de.*exp(i*Pha_L_de).*exp(-2*Gamma_air*l_sample); 

  

% Calculate the permittivity and permeability 

  

S11_empty_log=log(S11_T_empty); 
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S11_substrate_log=log(S11_T); 

  

S11_film_log=log(S11_L);% ln(S11_film) 

  

epsilon_empty=((i*c0*S11_empty_log)./(2*Omega*(l_sample+l_empty))).^2; 

  

epsilon_substrate=((i*c0*S11_substrate_log./(2*Omega*l_sample))-

((epsilon_empty.^0.5)*l_empty/l_sample)).^2; 

  

mu_eff=(i*c0*S11_film_log./(2*Omega.*l_sample.*(epsilon_substrate.^0.5))-

(epsilon_empty.^0.5)*l_empty./((epsilon_substrate.^0.5)*l_sample)).^2; 

  

mu_relative=(mu_eff-1)/(K*(thickness_d/h)); 

  

mu_relative_real= repmat(zeros(N,1),1,M); 

mu_relative_imag= repmat(zeros(N,1),1,M); 

  

for k = 1: M 

  

    mu_relative_real(1:N,k)=real(mu_relative(1:N,k)); 

    mu_relative_imag(1:N,k)=-imag(mu_relative(1:N,k)); 

  

end     

  

figure(); 

mesh(Freq,Field,mu_relative_real.'); 

xlabel('Frequency / Hz','FontSize',20); 

ylabel('Field / Gauss','FontSize',20); 

zlabel('Relative Permeability','FontSize',20); 

title('FeGaB: Real Part of Relative Permeability in 2D','FontSize',20); 

axis([1*10^9 8*10^9 0 600 -1000 4000]); 

hold on; 

grid on; 

  

figure(); 

mesh(Freq,Field,mu_relative_imag.'); 

xlabel('Frequency / Hz','FontSize',20); 

ylabel('Field / Gauss','FontSize',20); 

zlabel('Relative Permeability','FontSize',20); 

title('FeGaB: Imagine Part of Relative permeability in 2D','FontSize',20); 

axis([1*10^9 8*10^9 0 600 -1000 4000]); 

hold on; 

grid on; 

  

% Theoretical Permeability Calculation based on Kittel's Equations in 2D 
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EP0=8.84e-12; % Epsilon, free space permittivity  

MU0=4.0*pi*1.0E-7; %Mu, free space permeability 

CC=3.0*1.e8; %Speed of light in free space 

f_s=1e9; %Frequency of the wave, if sinusoidal excitation is used 

gamma=-1.759*10^11; % Unit is C/kg 

Hi=[3.4200:(624.8000-3.4200)/(M-1):624.8000]/(4*pi*10^-3); % unit is A/m    

Ms=(800*4*pi)/(4*pi*10^-3); % unit is tesla, NiFe=800 emu/cc       

delta_H=30; %line width in the unit of Oesterd 

freq=[50*10^6:(10*10^9-50*10^6)/(N-1):10*10^9]; 

freq=freq.'; 

  

% Calculation of the theoretical permeability  

  

Wm=2*pi*2.8e6*Ms*4*pi*1.e-3;  %Saturation magnetization 

W0_0=repmat(2*pi*2.8e6*Hi*4*pi*1.e-3,N,1);  

W=repmat(2*pi*freq,1,M);   %Angular Frequency 

Wr=sqrt(W0_0.*(Wm+W0_0)); 

alpha=-delta_H*2.8e6/9.8e9/2; %damping constant 

W0=W0_0+i*alpha*W; %Complex FMR of bulk due to damping 

su_complex=Wm.*(Wm+W0)./(W0.*(Wm+W0)-W.^2); %complex susceptability of the film 

  

mu_p= repmat(zeros(N,1),1,M); 

mu_d= repmat(zeros(N,1),1,M); 

for g = 1: M 

mu_p(1:N,g)=1+real(su_complex(1:N,g)); %real part of the permeability 

mu_d(1:N,g)=imag(su_complex(1:N,g)); %imaginary part of the permeability 

end     

  

  

figure(); 

mesh(freq,Hi*(4*pi*10^-3),mu_p.'); 

hold on; 

% axis([1*10^9 8*10^9 0 600 -3500 6000]); 

xlabel('Frequency / Hz','FontSize',20); 

ylabel('Field / Gauss','FontSize',20); 

zlabel('Relative Permeability','FontSize',20); 

title('FeGaB: Real Part of Relative Permeability in 2D','FontSize',20); 

grid on; 

  

figure(); 

mesh(freq,Hi*(4*pi*10^-3),mu_d.'); 

hold on; 

% axis([1*10^9 8*10^9 0 600 -500 6000]); 

xlabel('Frequency / Hz','FontSize',20); 

ylabel('Field / Gauss','FontSize',20); 
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zlabel('Relative Permeability','FontSize',20); 

title('FeGaB: Imagine Part of Relative Permeability in 2D','FontSize',20); 

grid on; 

  

% Check the real part and imagine part of permeability for certain bias field over whole scale of 

frequency 

  

% Plot both the real and imagine part of the permeability 

  

figure(); 

plot(Freq,smooth(mu_relative_real(1:N,17),50),'r','LineWidth',4); 

hold on; 

plot(Freq,smooth(mu_relative_imag(1:N,17),50),'b','LineWidth',4); 

xlabel('Frequency / Hz','FontSize',20); 

ylabel('Relative Permeability','FontSize',20); 

title('FeGaB: Relative Permeability vs Frequency','FontSize',20); 

axis([1*10^9 8*10^9 -1000 2500]); 

grid on; 

  

% Theoretical permeability calculation based on Kittel's equation in 1D (Permeability vs 

Frequency) 

  

% Parameter Definition (ought to be changed) 

  

EP0=8.84e-12; % Epsilon, free space permittivity  

MU0=4.0*pi*1.0E-7; %Mu, free space permeability 

CC=3.0*1.e8; %Speed of light in free space 

f_s=1e9; %Frequency of the wave, if sinusoidal excitation is used 

gamma=-1.759*10^11; % Unit is C/kg 

Hi=83.55/(4*pi*10^-3); % unit is A/m   

Ms=(1050*4*pi)/(4*pi*10^-3); % unit is A/m, NiFe=800 emu/cc       

delta_H=75; %line width in the unit of Oesterd 

f=[50*10^6:(10*10^9-50*10^6)/(N-1):10*10^9]; 

  

% Calculation of the theoretical permeability  

  

Wm=2*pi*2.8e6*Ms*4*pi*1.e-3;  %Saturation magnetization 

W0_0=2*pi*2.8e6*Hi*4*pi*1.e-3;  

W=2*pi*f;   %Angular Frequency 

Wr=sqrt(W0_0*(Wm+W0_0)); 

alpha=-delta_H*2.8e6/9.8e9/2; %damping constant 

W0=W0_0+i*alpha*W; %Complex FMR of bulk due to damping 

su_complex=Wm*(Wm+W0)./(W0.*(Wm+W0)-W.^2); %complex susceptability of the film 

mu_p=1+real(su_complex); %real part of the permeability 

mu_d=imag(su_complex); %imaginary part of the permeability 
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figure(); 

plot(Freq,smooth(mu_relative_real(1:N,17),50),'r','LineWidth',4); 

hold on; 

plot(Freq,smooth(mu_relative_imag(1:N,17),50),'b','LineWidth',4); 

hold on; 

plot(f,mu_p,'y','LineWidth',2); 

hold on; 

plot(f,mu_d,'g','LineWidth',2); 

hold on; 

xlabel('Frequency / Hz','FontSize',20); 

ylabel('Relative Permeability','FontSize',20); 

title('FeGaB: Relative Permeability vs Frequency','FontSize',20); 

axis([1*10^9 9*10^9 -1500 2500]); 

grid on; 

  

figure(); 

plot(Freq,smooth(mu_relative_real(1:N,17),50),'r','LineWidth',4); 

hold on; 

plot(Freq,smooth(mu_relative_imag(1:N,17),50),'b','LineWidth',4); 

hold on; 

plot(Freq,smooth(mu_relative_real(1:N,80),50),'-.r','LineWidth',4); 

hold on; 

plot(Freq,smooth(mu_relative_imag(1:N,80),50),'-.b','LineWidth',4); 

hold on; 

plot(Freq,smooth(mu_relative_real(1:N,160),50),':r','LineWidth',4); 

hold on; 

plot(Freq,smooth(mu_relative_imag(1:N,160),50),':b','LineWidth',4); 

hold on; 

% plot(f,mu_p,'y','LineWidth',2); 

% hold on; 

% plot(f,mu_d,'g','LineWidth',2); 

% hold on; 

xlabel('Frequency / Hz','FontSize',20); 

ylabel('Relative Permeability','FontSize',20); 

title('FeGaB: Relative Permeability vs Frequency','FontSize',20); 

axis([1*10^9 9*10^9 -1500 2500]); 

grid on; 

  

% Check the real part and imagine part of permeability for certain frequency over whole scale of 

bias filed 

  

figure(); 

plot(Field,-smooth(mu_relative_real(550,1:M),5),'r','LineWidth',4); 

hold on; 

plot(Field,smooth(mu_relative_imag(550,1:M),5),'b','LineWidth',4); 

hold on; 
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plot(Field,-smooth(mu_relative_real(912,1:M),5),'-.r','LineWidth',4); 

hold on; 

plot(Field,smooth(mu_relative_imag(912,1:M),5),'-.b','LineWidth',4); 

hold on; 

plot(Field,-smooth(mu_relative_real(1200,1:M),5),':r','LineWidth',4); 

hold on; 

plot(Field,smooth(mu_relative_imag(1200,1:M),5),':b','LineWidth',4); 

hold on; 

xlabel('Field / Gauss','FontSize',20); 

ylabel('Relative Permeability','FontSize',20); 

title('FeGaB: Relative Permeability vs Field','FontSize',20); 

axis([0 600 -1000 1500]); 

grid on; 

  

% Theoretical permeability calculation based on Kittel's equation in 1D (Permeability vs Field) 

% Parameter Definition (ought to be changed) 

  

EP0=8.84e-12; % Epsilon, free space permittivity  

MU0=4.0*pi*1.0E-7; %Mu, free space permeability 

CC=3.0*1.e8; %Speed of light in free space 

f_s=1e9; %Frequency of the wave, if sinusoidal excitation is used 

gamma=-1.759*10^11; % Unit is C/kg 

Hi=[3.4200:(624.8000-3.4200)/(M-1):624.8000]/(4*pi*10^-3); % unit is A/m   

Ms=(1050*4*pi)/(4*pi*10^-3); % unit is A/m, NiFe=800 emu/cc       

delta_H=75; %line width in the unit of Oesterd 

f=3.2*10^9;%unit is Hz  

  

% Calculation of the theoretical permeability  

  

Wm=2*pi*2.8e6*Ms*4*pi*1.e-3; %Saturation magnetization 

W0_0=2*pi*2.8e6*Hi*4*pi*1.e-3;  

W=2*pi*f; %Angular Frequency 

Wr=sqrt(W0_0.*(Wm+W0_0)); 

alpha=-delta_H*2.8e6/9.8e9/2; %damping constant 

W0=W0_0+i*alpha*W; %Complex FMR of bulk due to damping 

su_complex=Wm*(Wm+W0)./(W0.*(Wm+W0)-W.^2); %complex susceptability of the film 

mu_p=1+real(su_complex); %real part of the permeability 

mu_d=imag(su_complex); %imaginary part of the permeability 

  

figure(); 

plot(Field,-smooth(mu_relative_real(600,1:M),5),'r','LineWidth',4); 

hold on; 

plot(Field,smooth(mu_relative_imag(600,1:M),5),'b','LineWidth',4); 

hold on; 

plot(Hi*(4*pi*10^-3),-mu_p,'-.r','LineWidth',2); 

hold on; 



42 
 

plot(Hi*(4*pi*10^-3),mu_d,'-.b','LineWidth',2); 

hold on; 

xlabel('Field / Gauss','FontSize',20); 

ylabel('Relative Permeability','FontSize',20); 

title('FeGaB: Relative Permeability vs Field','FontSize',20); 

axis([0 600 -1000 2000]); 

grid on; 

 

 

 

 

 

 

 

 

 

 

 

 



43 
 

REFERENCES 

 

[1] V. Bekker, K. Seemann, H. Leiste, "A new strip line broad-band measurement evaluation for 

determining the complex permeability of thin ferromagnetic films." Journal of Magnetism and 

Magnetic Materials, vol. 270, issue 3, pp. 327-332, April 2004. 

[2] Y. Liu "Broadband complex permeability characterization of magnetic thin films using 

shorted microstrip transmission-line perturbation, " Rev. Sci. Instrum., 76, 063911, 2005. 

[3] Lepetit, T., Neige, J., Adenot-Engelvin, A.L. Ledieu, M., "Accurate Characterization of both 

Thin and Thick Magnetic Films Using a Shorted Microstrip." , Magnetics, IEEE Transactions on, 

vol. PP, issue 99, pp: 1-1, 2014. 

[4] David M. Pozar “Microwae Engineering, 4th edition”, John Wiley & Sons, Inc, Copyright 

2012, ISBN: 978-0-470-63155-3 

[5] C.A. Grimes, J.V. Prodan, J. Appl. Phys. 73 (1993) 6989. 

[6] M. Yamaguchi, S. Yabukami, K.I. Arai, IEEE Trans. Magn. 33(5) (1997) 4044 

[7] Z. Yao, Y. Wang, S. Kellor and G. Carman, “Bulk Acoustic Wave Mediated Multiferroic 

Antennas Architecture and Performance Bound”, IEEE Trans. Antenna and Propagation, Vol 63 

[8] D. Pain, et al., J.Appl. Phys. 85(1999) 5151. 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Lepetit,%20T..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Neige,%20J..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Adenot-Engelvin,%20A.L..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Ledieu,%20M..QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=20

	Thesis Title and Copy Right Page
	Thesis Abstract Table and List
	Dynamic Characterization of Thin Film Magnetic Materials (Body Text)



