
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Learning with Richly Structured Data

Permalink
https://escholarship.org/uc/item/67m806vp

Author
Kocayusufoglu, Furkan

Publication Date
2021

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/67m806vp
https://escholarship.org
http://www.cdlib.org/

University of California
Santa Barbara

Learning with Richly Structured Data

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Furkan E. Kocayusufoglu

Committee in charge:

Professor Ambuj Singh, Chair
Professor Xifeng Yan
Professor Francesco Bullo
Professor Yu-Xiang Wang

September 2021

The Dissertation of Furkan E. Kocayusufoglu is approved.

Professor Xifeng Yan

Professor Francesco Bullo

Professor Yu-Xiang Wang

Professor Ambuj Singh, Committee Chair

September 2021

Learning with Richly Structured Data

Copyright © 2021

by

Furkan E. Kocayusufoglu

iii

To my family for their support, inspiration and love.

iv

Acknowledgements

I would like to express my heartfelt gratitude to my research advisor Ambuj K. Singh

for being a great mentor, supporting my research and ideas, and allowing me to learn and

grow so much as part of his group. Thanks to him, I am completing my PhD studies with

many valuable skills and a vision for research, both of which will benefit me greatly during

my career. Thanks to Xifeng Yan, Francesco Bullo, and Yu-Xiang Wang for being part

of my committee, being generous with their expertise and time, and providing valuable

mentorship. Thanks also to Hakan Ferhatosmanoglu and Ozcan Ozturk for inspiring and

motivating me to apply for a PhD during my undergraduate studies.

I feel fortunate to have collaborated with many brilliant researchers: Arlei Silva,

Hongyuan You, Minh Hoang, Saber Jafarpour, Sandeep Tata, Ying Sheng, Tao Wu,

Heng-Tze Cheng. I also would like to thank my labmates—Sourav, Haraldur, Omid,

Alex, Rachel, Sikun, Mert, Zexi, and Saurabh—for contributing to my journey both as

a researcher and as a human. My special thanks go to Arlei Silva and Sourav Medya

for helping me navigate this long and challenging journey. They both have been great

mentors and friends from the start of my PhD studies. I am also grateful to Tim Robinson

from the UCSB CS staff for his help and support.

Being far from my family, I was extremely lucky to have found another Turkish family

in Santa Barbara. I would like to thank Arda, Faruk, Semih, Bugra, Asutay, Berkay,

Metehan, Can, Mert, and Arinc for the great memories and their lifelong friendships.

Finally, I can not thank my family enough for their constant love and unconditional

support in pursuing my goals, even if it meant being away from their beloved son for many

years. Thanks to my father Dr. Ismail Kocayusufoglu for introducing me to Mathematics

at a young age, and my mother Aysun Kocayusufoglu for introducing me to all other

aspects of life that can not (yet) be explained in a mathematical form.

v

The research developed during my PhD studies has been generously supported by the

National Science Foundation and the Defense Threat Reduction Agency.

vi

Curriculum Vitæ
Furkan E. Kocayusufoglu

Education

2016-2021 PhD in Computer Science, University of California, Santa Barbara.

2011-2016 BSc in Computer Science, Bilkent University, Ankara, Turkey.

Experience

09/2018-09/2021 Graduate Student Researcher, UC Santa Barbara, CA.

06/2020-09/2020 Research Intern, Google Brain, Mountain View, CA.

06/2019-09/2019 Software Engineer Intern, Facebook, New York City, NY.

06/2018-09/2018 Research Intern, Google Research, Mountain View, CA.

06/2017-09/2017 Teaching Assistant, UC Santa Barbara, CA.

06/2017-09/2017 Research Intern, Toyon Research Corporation, Santa Barbara, CA.

09/2016-06/2018 IGERT Fellow, UC Santa Barbara, CA.

Publications

Refereed Journals and Conferences:

Arlei Silva, Furkan Kocayusufoglu, Saber Jafarpour, Francesco Bullo, Ananthram
Swami, Ambuj Singh. Combining Physics and Machine Learning for Network Flow
Estimation. International Conference on Learning Representations (ICLR), 2020.

Hongyuan You, Furkan Kocayusufoglu, Ambuj Singh. DANR: Discrepancy-aware
Network Regularization. SIAM International Conference on Data Mining (SDM),
2020.

Furkan Kocayusufoglu, Ying Sheng, Nguyen Vo, James Wendt, Qi Zhao, Sandeep
Tata, Marc Najork. Riser: Learning better representations for richly structured
emails. The Web Conference (WWW), 2019.

Furkan Kocayusufoglu, Minh X Hoang, Ambuj Singh. Summarizing network pro-
cesses with network-constrained Boolean matrix factorization. IEEE International
Conference on Data Mining (ICDM), 2018.

Elif Eser, Furkan Kocayusufoglu, Bahaeddin Eravci, Hakan Ferhatosmanoğlu, Josep
L Larriba-Pey. Generating time-varying road network data using sparse trajectories.
IEEE 16th International Conference on Data Mining Workshops (ICDMW), 2016.

Under Review:

Furkan Kocayusufoglu, Arlei Silva, Ambuj Singh. FlowGEN: A Generative Model
for Flow Graphs, 2021.

vii

Furkan Kocayusufoglu, Tao Wu, Anima Singh, Georgios Roumpos, Heng-Tze Cheng,
Sagar Jain, Ed Chi, Ambuj Singh. Multi-Resolution Attention for Personalized Item
Search, 2021.

Working Papers:

Furkan Kocayusufoglu, Arlei Silva, Francesco Bullo, Ananthram Swami, Ambuj
Singh. Improving Network Flow Estimation via Knowledge Transfer, 2021.

viii

Abstract

Learning with Richly Structured Data

by

Furkan E. Kocayusufoglu

This thesis is dedicated to learning structured representations of data, to be utilized

by a diverse set of downstream tasks emerging in numerous application domains such

as user modeling, document categorization, and graph representation learning. Despite

their notable contextual differences, the common objective behind these studies is our

desire to incorporate the rich structure of data into our learned representations (both

discrete and continuous) and computations, in ways that are unique to each problem. We

provide comprehensive evidence showing that the principled utilization of data structure,

regardless of the problem domain, is a key step towards reaching our learning objectives.

The second half of the thesis specifically targets problems centered around a complex

family of graphs called flow graphs. Besides nodes and edges, flow graphs capture edge

flows of a quantity of interest (e.g., water, power, people) being transported through

the graph. As these flows often possess higher-order graph-level dynamics driven by

sources/destinations, hotspots, and domain-specific physics, the underlying structure of

flow graphs poses unique challenges from a learning viewpoint. In particular, we study

two challenging problems: (i) network flow estimation based on partial flow observations,

and (ii) data-driven generation of realistic flow graphs as an alternative to domain-specific

simulations. During each of these studies, we showcase the complex structural patterns

emerging in many real-world flow graphs and propose novel methodologies that can

account for such richly structured information.

ix

Permissions and Attributions

This dissertation contains material that has been published or is in the process of being

published. The author of this dissertation claims major contributions in the development of the

research works described below:

1. The content of Chapter 2 has been previously published as: Furkan Kocayusufoglu, Minh

X Hoang, Ambuj Singh. Summarizing network processes with network-constrained Boolean

matrix factorization. IEEE International Conference on Data Mining (ICDM), 2018. DOI:

10.1109/ICDM.2018.00039.

2. The content of Chapter 3 has been previously published as: Furkan Kocayusufoglu, Ying

Sheng, Nguyen Vo, James Wendt, Qi Zhao, Sandeep Tata, Marc Najork. Riser: Learning

better representations for richly structured emails. The Web Conference (WWW), 2019.

DOI: 10.1145/3308558.3313720.

3. The content of Chapter 6.1 has been previously published as: Hongyuan You, Furkan

Kocayusufoglu, Ambuj Singh. DANR: Discrepancy-aware Network Regularization. SIAM

International Conference on Data Mining (SDM), 2020. DOI: 10.1137/1.9781611976236.24.

For ACM, authors can include partial or complete papers of their own in a dissertation as

long as citations and DOI pointers to the Versions of Record in the ACM Digital Library are

included. If interested in reprinting or republishing ACM copyrighted material for advertising

or promotional purposes or for creating new collective works for resale or redistribution, please

contact the ACM.

For IEEE, requirements to be followed when using an entire IEEE copyrighted paper in

a thesis: 1) The following IEEE copyright/ credit notice should be placed prominently in the

references: © [year of original publication] IEEE. Reprinted, with permission, from [author

names, paper title, IEEE publication title, and month/year of publication]; 2) Only the accepted

version of an IEEE copyrighted paper can be used when posting the paper or your thesis on-line;

3) In placing the thesis on the author’s university website, please display the following message

x

https://ieeexplore.ieee.org/document/8594848
https://dl.acm.org/doi/10.1145/3308558.3313720
https://epubs.siam.org/doi/10.1137/1.9781611976236.24

in a prominent place on the website: In reference to IEEE copyrighted material which is used

with permission in this thesis, the IEEE does not endorse any of [university/educational entity’s

name goes here]’s products or services. Internal or personal use of this material is permitted. If

interested in reprinting/republishing IEEE copyrighted material for advertising or promotional

purposes or for creating new collective works for resale or redistribution, please go to http://www.

ieee.org/publications_standards/publications/rights/rights_link.html to learn how

to obtain a License from Rights Link.

xi

http://www.ieee.org/publications_standards/publications/rights/rights_link.html
http://www.ieee.org/publications_standards/publications/rights/rights_link.html

Contents

Curriculum Vitae vii

Abstract ix

List of Figures xiv

List of Tables xviii

1 Introduction 1
1.1 Contributions and Organization . 3

2 Network-constrained Boolean Matrix Factorization 8
2.1 Introduction . 8
2.2 The netBMF Problem . 11
2.3 Related Work . 13
2.4 Proposed Solutions . 16
2.5 Experiments . 29
2.6 Conclusion . 38

3 RiSER: Learning Better Representations for Richly Structured Emails 39
3.1 Introduction . 39
3.2 Email Structure and Problem Setting . 42
3.3 Proposed Framework . 46
3.4 Experiments . 51
3.5 Related Work . 62
3.6 Conclusion . 64

4 Multi-Resolution Attention for Personalized Item Search 66
4.1 Introduction . 66
4.2 Related Work . 69
4.3 Temporal Resolution of User Interactions 71
4.4 Proposed Method . 74

xii

4.5 Experiments . 84
4.6 Conclusion . 92

5 FlowGEN: A Generative Model for Flow Graphs 93
5.1 Introduction . 93
5.2 Related Work . 95
5.3 Generative Modeling of Flow Graphs . 97
5.4 Experiments . 105
5.5 Conclusion . 111
5.6 Supplementary Material . 112

6 Problems on Network Regularization 127
6.1 Discrepancy-aware Network Regularization 128
6.2 Combining Physics and Machine Learning for Network Flow Estimation . 150

7 Ongoing and Future Work 168
7.1 Improving Network Flow Estimation via Knowledge Transfer 168
7.2 Conclusions . 186

Bibliography 187

xiii

List of Figures

2.1 Trajectories and frequently used road segments 9
2.2 Overview of four solutions for netBMF. 16
2.3 (a) Grid network G, (b) Basis subgraphs set B and (c) Net-basis (Pattern)

Matrix B . 21
2.4 (a) An example network G and (b) its Edit Graph G. 23
2.5 Synthetic data: (a) Convergence of sampling; (b) Jaccard index between

obtained patterns and the 20 ground-truth patterns; (c) Summarization
error. 31

2.6 netBMFi-MH patterns (red lines) pinpoint the popular attractions and
main highways in San Francisco. 36

2.7 Running time for four variants of netBMF as their parameters are varied.
For all num. states in (g): ||S||2F/m/n = 0.1. 37

3.1 An example purchase email (left) and a simplified DOM tree (right) rep-
resenting a portion of the email. For clarity, we trim long trivial HTML
sequences such as nested div tags. Note that we extend the DOM tree
beyond the email message body to include a branch representing the subject. 40

3.2 Feature sets of three terms ”Shop”, ”ORDER” and ”#XXXX” from the
top of the email in Figure 3.1. 45

3.3 Overview of the RiSER architecture. The XPath Encoder iteratively en-
codes the tags in the XPath to each term in the email’s DOM tree. Later,
each XPath encoding (xi) is combined with the corresponding word em-
bedding (ei) and annotation features (ai) of the term to form a word
representation (wi). The Word Encoder then processes these word repre-
sentations ({w1, w2, · · · , wL}) to learn an enhanced email representation
(v). (best viewed in color) . 46

3.4 Word attention weights on an example donated Hotel email using the
RiSER-W and RiSER-WX variants. Brighter red highlighting indicates a
higher attention weight for the corresponding term relative to the other
terms in the email. 60

xiv

3.5 Term and XPath attention weights. Red highlighting indicates the term
attention weights. Yellow highlighting indicates the XPath’s HTML tag at-
tention weights (row normalized). Brighter colors indicate higher attention
weights. 61

4.1 Histogram of time intervals between consecutive interactions of users. . . 72
4.2 Last thirty interactions of the same set of five users who actively interact

with both categories. Y axis represents the users’ interactions in chrono-
logical order, while the X axis represents the time period (in days) with
respect to their latest interaction. 73

4.3 An illustration of our proposed method architecture. The left side shows
the high-level components of our method, while the right part shows
the proposed multi-resolution attention variants: overlapping (top) and
non-overlapping (bottom). 74

4.4 Learned time boundaries (∆s) with two proposed variants: MultiResAttn-
O (left) and MultiResAttn (right), both with h = 4. Time boundaries are
plotted on log5 scale. 91

4.5 Effect of attention head count on ranking performance. 92

5.1 An illustration of our two-step approach for generating flow graphs. . . . 99
5.2 A high-level illustration of FlowGEN architecture (best viewed in color).

The left part pictures the adversarial training process. The right part shows
a detailed sketch of our discriminator: (1) The flow pooling layer assigns two
initial feature vectors (in and out) to each node in a permutation-invariant
manner. (2) The message-passing layers comprise bi-directional channels
that exchange in and out flow messages (spiral arrows) independently in
opposing directions. (3) The read-out layer fuses in and out states of
each node, and further aggregates them to construct a global flow graph
representation. All components are trained jointly. See Section 5.3.2 for
details. 101

5.3 Visualization of flow graphs (FGs) sampled from train splits and top-2
models for taxi trips. ‘*’ indicates the best performing baseline variant
(e.g., NetGAN-FGCN for 8-9am). Node colors represent flow divergence
with green for source, red for sink and gray for divergence-free node. Node
sizes indicate total in/out flow normalized per graph. See color map on
the right for scale. FGs generated by FlowGEN exhibit similar patterns to
those observed in data regarding the coupling of graph structure and flow
distributions. 110

xv

5.4 Node-level flow divergence distributions of randomly sampled graphs from
training data (1-5), FlowGEN (6-10), NetGAN-FGCN (11-15), and GRAN-
FGCN (16-20) for taxi trips 8-9am (top) and 6-7pm (bottom) variants.
The horizontal axis corresponds to color-coded graph samples (five each),
while the vertical axis represents flow divergence distributions. FlowGEN
successfully replicates the flow divergence distribution observed in data,
outperforming the two-step approaches. 111

5.5 Distributions of degree assortativity coefficients observed in graphs from
training data, NetGAN, GRAN, and FlowGEN for all four datasets used
in our experiments. 125
(a) Taxi 8-9am . 125
(b) Taxi 6-7pm . 125
(c) Power . 125
(d) Water . 125

6.1 Overview of our problem setting in temporal networks. 137
6.2 Examples of complex neighborhood structures captured by the DANR. In

left, the house shown in yellow resides at the border of three different area
codes. In right, the creek side house (colored in blue) differs from all of its
neighbors, possibly due to its appealing location. 144

6.3 Evolution of clustering captured by the ST-DANR over years. 148
(a) Year 2000 . 148
(b) Year 2002 . 148
(c) Year 2004 . 148

6.4 Summary of the proposed approach for predicting missing flows in a graph
based on partial observations and edge features. We learn to combine
features and a flow conservation law, which together define the physics of
the flow graph. A regularization function Q(X ; Θ) modeled as a neural
network with parameters Θ takes as input edge features X [e]. A flow

estimation algorithm applies the regularization, partial observations (f̃),
prior flows (x(0)) and flow conservation to predict missing flows x. Network
parameters Θ are learned based on a K-fold cross validation loss with
respect to validation flows x̂. Our model is trained end-to-end using
reverse-mode differentiation. 153

6.5 Scatter plots with true (x) and predicted (y) flows for two approaches on
each dataset. The results are consistent with Table 6.3 and show that our
methods are more accurate than the baselines. 164
(a) GCN, Traffic . 164
(b) Bil-GCN, Traffic . 164
(c) Div, Power . 164
(d) Bil-GCN, Power . 164

xvi

6.6 Edge regularizer learned by Bil-MLP vs. features values (a-c) and visual-
ization of regularizers on the Traffic topology (d). Our model is able to
learn the effect of the resistance for Power. In Traffic, a higher number of
lanes is correlated to less regularization and lower speed roads (45mph) are
less regularized. The regularization is also correlated with congested areas
in Los Angeles, CA. 165
(a) Resistance, Power . 165
(b) Lanes, Traffic . 165
(c) Speed limit, Traffic . 165
(d) Visualization, Traffic . 165

7.1 An illustration of our proposed method for transfer learning with flow
graphs. The proposed method performs joint clustering and intra-cluser
flow prediction in an end-to-end fashion using a meta-learning framework.
The clustering module fφ captures similar clusters (sub-structures) across
graphs, while the flow predictor fθ is optimized to quickly and accurately
adapt to multiple clusters captured by fφ. See text for more details. . . . 176

7.2 Results with three approaches on synthetically generated community
network with three underlying clusters. The left part represents the
under-parameterized setting, while the right part represents the over-
parameterized setting. Performance is measured on the validation set. The
proposed method (L clusters, shown in purple) is favored in the latter
setting, while it gets closed to the best possible solution (shown in blue)
for the former setting. We also plot the clustering assignments learned at
the end of training for both cases. See text for more details. 180

xvii

List of Tables

2.1 Five different example applications of network-constrained patterns. . . . 10
2.2 Statistics of real-world datasets. 29
2.3 Comparing baselines with three real-world datasets. Top-2 smallest errors

for connected patterns are shown in bold. The connected (*con.) versions
of TMF, PANDA+, and ASSO only contain the top connected subgraphs
with highest coverage extracted from their corresponding patterns (similar
to gSpan-Cover). TMF and PANDA+ may not find enough k patterns.
ASSO failed to finish in 4 days for Youtube. (C.C. is clustering coefficient) 34

2.4 Relative error (%) for different k. Top-2 smallest errors for each k are
shown in bold. 35

3.1 Annotation features. 44
3.2 Selected hyper-parameters for the RiSER variants for the Bill and Hotel

classification tasks. WE stands for Word Encoder and XE stands for XPath
Encoder. 56

3.3 Recall at a fixed level of precision and AUC-PR performance metrics for
four RiSER variants trained for the Bill and Hotel classification tasks. . . 58

4.1 Main notations used in this paper. 75
4.2 Statistics of dataset categories. 85
4.3 The ranking performance of baseline and proposed approaches on all five

categories. The best performance is highlighted in boldface, while the
second best performance is underlined. Results show that our proposed
variants consistently outperform the baselines. 89

xviii

5.1 Flow graph generation results. Metrics from left to right: (1-2) in&out
degree distribution, (3) edge flow distribution, (4) node divergence distribu-
tion, (5-6) average number of directed 3&4-cycles. For MMD scores (1-4),
the smaller the better; for average statistics (5-6), the closer to test data,
the better. Last column (7) shows average rank of models per each dataset
for the reader’s convenience. The symbol ‘–’ means not applicable as MMD
scores are computed with respect to test data. FlowGEN consistently
ranks top across all four datasets by showing superior performance on
flow-related metrics (3-6), while being competitive with other methods on
topological metrics (1-2). 108

5.2 Results with respect to graph topology. Metrics from left: (1) degree and
(2) clustering coefficient distributions; average (3) degree assortativity and
(4-5) number of 3&4-cycles. For MMD scores (1-2), the smaller the better;
for average statistics (3-5), the closer to test data, the better. 119

5.3 Power network generation results with respect to the efficiency score. The
higher the score, the better. 121

5.4 Runtime comparisons of models (in seconds). 121
5.5 Ablation study of various model components on Power dataset. Metrics

from left to right: Distributions of (1-2) in&out degree, (3) edge flow, and
(4) node divergence; (5-6) average number of directed 3&4-cycles. For
MMD scores (1-4), the smaller the better; for average statistics (5-6), the
closer to test data, the better. 124

6.1 MSE for housing rental price prediction on test set. 143
6.2 MSE for water quality estimation over years. 147
6.3 Average flow estimation accuracy for the baselines (Div, MLP and GCN)

and our methods (Bil-MLP, Bil-GCN and Bil-GCN-Prior) using the Traffic
and Power datasets. RMSE, MAE and MAPE are errors (the lower the
better) and CORR is a correlation (the higher the better). Values of
correlation for MLP and GCN using Traffic were undefined. Bil-GCN
(ours) outperforms the best baseline for all the metrics, with up to 18%
lower RMSE than Div using Power. 164

7.1 Geographical regions in California and their hand-picked coordinates. Each
region corresponds to a road network, statistics of which are further sum-
marized in Table 7.2. 181

7.2 Statistics of road networks. 182
7.3 Flow estimation performance of six baselines and proposed approach on five

different target regions, corresponding to different counties in California,
USA. For the RMSE and MAE metrics, the lower the score the better;
while for the Corr metric, the higher the score the better. The best results
for each region are bolded. 184

xix

Chapter 1

Introduction

A common characteristic of the problems investigated in this thesis is that they are driven

by real applications and the availability of real data. Learning problems in the real world

often involve complex and richly structured data, coupled with a diverse set of learning

objectives depending on the application domain. Despite the differences across many

domains, the underlying data structure inevitably shapes how the learning algorithms are

derived for satisfactory results on the downstream task of interest.

For instance, how can we leverage the underlying templatic HTML structure of emails

to help us learn better representations of emails for classification tasks? Or, how can we

utilize the connectivity patterns of roads in order to make more accurate traffic forecasts in

the case of a traffic accident or road closure? The shared challenge behind these problems

(and many others) is, how can we construct principled methods that successfully account

for the underlying data structure? The goal is to design methods with relational inductive

biases [1], based on our understanding of the data and its structure, that can generalize a

finite set of observations into a general model of the domain. An ability to model and

manipulate structured knowledge allows learning structured representations, which in turn

enables an essential ingredient for human-like intelligence, that is, structured behaviors.

1

Introduction Chapter 1

A significant part of this dissertation focuses on graph (or network) structured data,

consequently, on learning problems on graphs. Graphs are a powerful theoretical framework

for modeling complex data, and they naturally appear in numerous domains including

social sciences, physics, biology, chemistry, geography, and computer science, to name a few.

Broadly speaking, we study attributed graphs that couple spatially local structures with

higher-order (global) constraints (e.g. physics) in domain-specific ways. Understanding

the interplay between these two modalities is our main research objective. In particular,

most of the problems discussed in this dissertation focus on kinds of graph structures that

emerge as a result of complex processes within certain geographical regions of different

scales. Example problems include housing price prediction within neighborhoods of the

city, traffic flow estimation within large road networks, and generation of realistic intra-city

human mobility networks of different days and times of the week.

This dissertation also covers studies in which the data emerge in the form of a (1) time-

ordered sequence of entities and (2) HTML markup structure. Notice that it is possible

to see these structures as a special form of a graph where sequential input is analogous

to a line graph, while the HTML markup structure can essentially be represented by a

Document Object Model (DOM) tree. Although these structures are historically studied

under different problem domains (and by different communities) with seemingly different

modeling desiderata, most recent advancements in the literature show traces of evidence

that sharing knowledge across these domains can show remarkable results[].

Subject areas: The chapters of this thesis show footprints of a diverse set of paradigms

from the fields of machine learning, optimization, and statistics. Namely, these paradigms

include geometric learning, user modeling, semi-supervised learning, representation learn-

ing, generative modeling, meta-learning, transfer learning, bi-level optimization, dis-

tributed optimization, and sampling.

2

Introduction Chapter 1

1.1 Contributions and Organization

The contributions of this dissertation can be summarized as follows:

1. Summarizing network processes with network-constrained Boolean matrix factoriza-

tion [2] (Chapter 2): Understanding and modeling complex network processes is an

important task in many real-world applications. The first challenge is to discover

patterns in such complex data. In this work, our goal is to summarize different

processes in a network by a small yet interpretable set of network patterns, each

of which represents a local community of connected nodes frequently participating

in the same network processes. We formulate this problem as a Boolean Matrix

Factorization with a network constraint, which we prove to be NP-hard. We then

propose an efficient algorithm that incrementally adds the best patterns and achieve

scalability with two further improvements. First, to decide which network processes

contain which network patterns, we introduce two mapping algorithms with linear

costs. Second, to systematically mine the exponential subgraph search space for

good patterns, we devise two sampling algorithms based on Monte Carlo Markov

Chain. Experimental results on both synthetic and real-world datasets show that

our solutions are scalable and find network patterns that effectively summarize

network processes.

2. Riser: Learning better representations for richly structured emails [3] (Chapter 3):

Recent studies show that an overwhelming majority of emails are machine-generated

and sent by businesses to consumers. Many large email services are interested in

extracting structured data from such emails to enable intelligent assistants. This

allows experiences like being able to answer questions such as “What is the address

of my hotel in New York?” or “When does my flight leave?”. A high-quality email

classifier is a critical piece in such a system. In this work, we argue that the rich

3

Introduction Chapter 1

formatting used in business-to-consumer emails contains valuable information that

can be used to learn better representations. Most existing methods focus only

on textual content and ignore the rich HTML structure of emails. We introduce

RiSER (Richly Structured Email Representation) – an approach for incorporating

both the structure and content of emails. RiSER projects the email into a vector

representation by jointly encoding the HTML structure and the words in the email.

We then use this representation to train a classifier. To our knowledge, this is

the first description of a neural technique for combining formatting information

along with the content to learn improved representations for richly formatted emails.

Experimenting with a large corpus of emails received by users of Gmail, we show

that RiSER outperforms strong attention-based LSTM baselines. We expect that

these benefits will extend to other corpora with richly formatted documents. We

also demonstrate with examples where leveraging HTML structure leads to better

predictions.

3. Multi-Resolution Attention for Personalized Item Search (Chapter 4): Personalized

item search has become an essential tool for online platforms—where users interact

with a large corpus of items (e.g., click, purchase, like) via a search query—to provide

their users with a more satisfactory search experience. The record (or history) of

users’ past interactions serves as a valuable asset to achieve personalization. While

user history data can span over a long period of time, only a part of the history

is relevant to a user’s current search intent. Moreover, since historical interactions

take place at aperiodic points in time, modeling their relevance to the current search

query entangles complex temporal dependencies. We propose multi-resolution

attention to address these challenges for personalized item search. Our approach

captures higher-order temporal relations between user queries and their history

4

Introduction Chapter 1

across several temporal subspaces (i.e., resolutions), each corresponding to distinct

temporal ranges with adaptive time boundaries that are also learned directly from

data. We achieve this by coupling the conventional multi-head attention module

with a differentiable soft-thresholding mechanism, which essentially operates as a

masking function in the temporal domain. Comparisons with strong baselines on

an open-source benchmark dataset confirm the efficacy of our approach.

4. FlowGEN: A Generative Model for Flow Graphs (Chapter 5): Flow graphs capture

the directed flow of a quantity of interest (e.g., water, power, vehicles) being

transported through an underlying structure. Modeling and generating realistic

flow graphs is key in many applications in infrastructure design, transportation,

planning, biomedical and social sciences. However, they pose a great challenge to

existing generative models due to their complex dynamics that is often governed

by domain-specific physical laws. We introduce FlowGEN, an implicit generative

model for flow graphs. FlowGEN learns how to jointly generate graph topologies

and flows with diverse dynamics directly from data using a novel (flow) graph neural

network. We conduct experiments over a diverse set of real-world and simulated

networks, including transportation, power transmission, and water networks, Our

results show that the proposed approach is able to effectively reproduce relevant

local and global properties of flow graphs, including flow conservation, cyclic trends,

and congestion around hotspots.

5. Problems on Network Regularization (Chapter 6): Here, we grouped problems that

propose regularization techniques for graph-structured data, which can be applied

to a wide variety of real-world semi-supervised regression and classification problems

over graphs. These problems include but not limited to housing price estimation,

water quality estimation of lakes, vehicle (or current) flow estimation of roads (power

5

Introduction Chapter 1

transmission lines). Notice that all of these problems can be defined over graphs that

are constructed from certain geographical regions (or boundaries) of different scales

(e.g., cities, counties, states, countries), coupled with local contextual features.

(a) DANR: Discrepancy-aware Network Regularization [4] (Section 6.1): Network

regularization is an effective tool for incorporating structural prior knowledge

to learn coherent models over networks, and has yielded provably accurate

estimates in applications ranging from spatial economics to neuroimaging

studies. Recently, there has been an increasing interest in extending network

regularization to the spatio-temporal case to accommodate the evolution of

networks. However, in both static and spatio-temporal cases, missing or

corrupted edge weights can compromise the ability of network regularization

to discover desired solutions. To address these gaps, we propose a novel

approach—discrepancy-aware network regularization (DANR)—that is robust

to inadequate regularizations and effectively captures model evolution and

structural changes over spatio-temporal networks. We develop a distributed

and scalable algorithm based on alternating direction method of multipliers

(ADMM) to solve the proposed problem with guaranteed convergence to global

optimum solutions. Experimental results on both synthetic and real-world

networks demonstrate that our approach achieves improved performance on

various tasks, and enables interpretation of model changes in evolving networks.

(b) Combining Physics and Machine Learning for Network Flow Estimation [5]

(Section 6.2): The flow estimation problem consists of predicting missing edge

flows in a network (e.g., traffic, power, and water) based on partial observations.

These missing flows depend both on the underlying physics (edge features and a

flow conservation law) as well as the observed edge flows. This paper introduces

6

Introduction Chapter 1

an optimization framework for computing missing edge flows and solves the

problem using bilevel optimization and deep learning. More specifically, we

learn regularizers that depend on edge features (e.g., number of lanes in a

road, the resistance of a power line) using neural networks. Empirical results

show that our method accurately predicts missing flows, outperforming the

best baseline, and is able to capture relevant physical properties in traffic and

power networks.

Statement of the thesis:

Building models using structured representations of data (i) allows us to better

generalize to the problem domain, and (ii) helps mitigate the effects of data scarcity.

7

Chapter 2

Network-constrained Boolean

Matrix Factorization

2.1 Introduction

Binary datasets appear naturally in many domains. Summarizing, describing, and

analyzing the underlying structure of such datasets is the fundamental objective of

Boolean Matrix Factorization (BMF). In the context of BMF [6], a binary matrix is

composed of observations (rows), each including a set of participants (columns). BMF

aims to decompose a binary matrix S ∈ {0, 1}m×n into a pair of low-rank binary matrices,

M ∈ {0, 1}m×k and B ∈ {0, 1}k×n, where S ≈M�B and � is the Boolean matrix product.

Following this decomposition, the latter matrix B contains “meaningful” patterns and

the matrix M maps these patterns to the observations.

Consider a road network, for instance in Fig. 2.1, where nodes represent road segments

and edges exist between two segments if they are physically connected. Based on these

road networks, GPS route planning applications are collecting millions of car trajectories

every day, projected on thousands of road segments. Each trajectory represents a car ride

8

Network-constrained Boolean Matrix Factorization Chapter 2

of a user by capturing all the road segments passed through during a ride. One simple

way to store these trajectories is to represent them with a binary matrix, where rows

represent trajectories, and columns represent road segments. A useful first step in the

analysis of this data would be to compress the large amount of raw trajectories into a

summarization of the most frequent paths. For example, the set of red road segments in

Fig. 2.1 are frequently travelled across by numerous trajectories. Such a frequent set of

road segments suggests a busy route to which the city planners need to pay attention.

Figure 2.1: Trajectories and frequently used road segments

In the above example, participants (road segments) of a certain observation (car

trajectory) have additional underlying constraints: for them to co-occur in an observation,

they need to be connected through an underlying network structure. Similar network

structures exist in many types of real-world data, guiding various processes generating

the data. Examples of such network processes include information spreads in social

networks, congestion in traffic networks, the spread of failures in computer networks,

and the activation of brain regions in a brain network when a person performs a task.

Therefore, mined patterns from these data are of greater interest if they reflect the network

structure.

Previous BMF methods have tried to minimize the reconstruction error, without

taking into account the aforementioned network constraints. Doing so sometimes yields

undesirable patterns that (a) do not correspond to an underlying network structure,

and hence can not capture the network effect, and (b) are vastly affected by noise and

missing values in data, since classic BMF methods do not leverage the underlying network

9

Network-constrained Boolean Matrix Factorization Chapter 2

Examples Social network Computer net-
work

Traffic network Brain network Software func-
tion call network

Nodes Users Computer servers Road segments Brain regions Functions
Edges Friendship Connections Intersections Correlations Call relationship
Network
process

Spread of informa-
tion among users
through their social
connections.

Spread of failure or
overload.

Spread of traffic
jam

Activity of brain re-
gions during a task.

Function calls.

Network
pattern

A local connected
community that
frequently reacts to
the same content.

A set of connected
servers that often
fail together.

A set of frequently
jammed connected
road segments.

A set of brain
regions active
together during a
task.

A frequent function
call path.

Use of
patterns

Target and con-
trol information
spread.

Redesign network
to avoid the failed
patterns.

Redesign the net-
work to reduce traf-
fic bottlenecks.

Model brain activ-
ity and relate differ-
ent tasks.

Optimize frequent
paths to reduce la-
tency.

Table 2.1: Five different example applications of network-constrained patterns.

structure that generates the given observations in the first place. As a result, these

patterns have less explanatory power, considering they are not capable of summarizing

unseen observations or predicting future behaviours.

In this paper, we propose a novel problem, netBMF: network constrained Boolean

Matrix Factorization. Our goal is to find the top-k network patterns that most effectively

summarize complex network processes. We define a network pattern as a connected

subnetwork to capture the effect of the network structure on the network processes.

A pattern is essentially a local community of nodes with similar dynamic behaviors,

that strongly and repeatedly correlate in their actions and behaviors in various network

processes. Such a pattern looks beyond the set of active nodes and pinpoints the different

impacts of different parts of the network on a network process. Identifying these patterns

is helpful for understanding [7], controlling [8], and predicting [9] the behaviors of network

processes as exemplified in Table 2.1.

Our contributions are as follows:

• We introduce network-constrained Boolean Matrix Factorization (netBMF) as a

novel data mining challenge to find the top-k connected network patterns that

summarize complex network processes. netBMF also reduces the effect of noise by

leveraging the underlying network structure of the data.

10

Network-constrained Boolean Matrix Factorization Chapter 2

• We prove that netBMF is NP-hard and then propose a Metropolis-Hastings based

sampling algorithm that effectively summarizes the network processes. The proposed

solutions are generic, scalable and can be applied to the classic BMF problem when

the dataset is huge and has network constraints. We also introduce four variants of

our algorithm to enable various sampling strategies.

• Extensive experimental results on both synthetic and four real-world datasets indi-

cate that, discovering explanatory patterns from the data, our proposed algorithms

achieve lower reconstruction errors than all other baseline methods, and scale linearly

with its parameters. Code and data are made available online 1.

The rest of this work is organized as follows: Section 2.2 formally defines the problem.

Section 2.3 discusses the related work and possible baseline approaches. Section 2.4

explains the computational challenges and details the proposed solutions. Section 5.4

presents the experimental results. Finally, Section 5.5 concludes the work.

2.2 The netBMF Problem

Before defining the netBMF problem, we first introduce some preliminary notation.

Let G = (V,E) denote an undirected network, where V = {v1, . . . , vn} is the set of nodes

and E is the set of edges, and let P = {p1, . . . , pm} be a set of network processes, where pi

represents some process infecting nodes in G under the guidance of the network structure.

The network state si ⊆ V is then the final set of participating nodes in a network process

pi. Using these fundamental concepts, we now define state matrix in the context of

netBMF, followed by the formal definition of our problem.

Definition 1 (State matrix) The state matrix of a set of network states S = {s1, . . . , sm}
1https://github.com/FurkanKyo/netBMF

11

Network-constrained Boolean Matrix Factorization Chapter 2

is S ∈ {0, 1}m×n, where Si,j = 1 iff vj ∈ si, i.e., node vj is present in the network state si.

Problem 1 (netBMF) Given an undirected network G = (V,E), a state matrix S ∈

{0, 1}m×n, and the number of patterns k, network-constrained Boolean Matrix Factorization

(netBMF) finds a pattern matrix B ∈ {0, 1}k×n, and a mapping matrix M ∈ {0, 1}m×k

s.t.:

1. The summarization error g(S,B,M) is minimized,

where g(S,B,M) = ||S ⊕ (M �B)||2F

2. Each row of B corresponds to an induced undirected subgraph in G, i.e., Gq = (Vq, Eq)

is connected ∀q = 1, . . . , k, where Vq = {vj ∈ V | Bq,j = 1}, Eq = {(vj, vj′) ∈

E | vj, vj′ ∈ Vq}.

Here � represents the Boolean matrix product [6], while ⊕ represents the XOR

operation. Since all matrices and operators are Boolean, the squared Frobenius norm

effectively counts the number of different bits between S and M � B. Condition (1)

encourages accurate summarization of the given binary state matrix. Furthermore,

the patterns are spatially-robust because both negative and positive errors are allowed.

Condition (2) ensures the connected characteristic. The connectedness of each pattern

guarantees the existence of a path between every pair of nodes in the induced subgraph,

which includes all nodes in the pattern, as well as edges with both end nodes in the

pattern.

For the remainder of the paper, we refer to binary matrix B as net-basis and

pattern matrix interchangeably. In the context of netBMF, rows of B then corresponds

to patterns that represent sets of connected nodes (participants) that often co-occur in

same processes (observations).

12

Network-constrained Boolean Matrix Factorization Chapter 2

2.3 Related Work

Here we discuss related works from two main categories: frequent pattern mining and

Boolean matrix factorization.

Frequent Pattern Mining. Frequent pattern mining (FPM) has become a fun-

damental problem in data mining research and has been studied extensively in various

different forms. Here, we examine frequent pattern mining in two main settings: (a)

frequent itemset mining, where pattern refers to an itemset, which is a collection of

items that frequently co-occur in large number of transactions, and (b) frequent subgraph

mining, where pattern refers to a graph pattern, which is a connected (often smaller)

subgraph that frequently appears in a large set of other subgraphs.

Regardless of the categories mentioned above, a well known problem in FPM is that

the number of frequent patterns is often huge. A large frequent pattern will contain an

exponential number of smaller frequent sub-patterns, since each sub-pattern of a frequent

pattern is also frequent. Therefore, it has been argued that some patterns are redundant

because they have identical support as their super-patterns. In order to overcome this

redundancy, different variants of FPM problem are proposed, such as closed frequent

pattern mining [10] and maximal frequent pattern mining [11].

a. Frequent Itemset Mining. In [12], a pattern refers to set of items, and therefore

the objective is to either find or approximate (depending on how strict the support of

an itemset is defined) frequent/closed/maximal itemsets that have frequency more than

a given threshold. Frequent itemset mining approaches are somewhat related to our

problem as they can be employed to summarize large transitional databases [13]. In

[14], the authors show that frequent closed itemsets can be used as good initialization

candidates to the boolean matrix decomposition algorithms. However, when it comes to

summarization aspects, all these methods suffer from redundancy among frequent itemsets

13

Network-constrained Boolean Matrix Factorization Chapter 2

as well as determining the value of support prior to computing the factorization since

frequent closed itemsets tend to lose the ability to summarize with increasing support

values.

b. Frequent Subgraph Mining. Graph related frequent pattern mining approaches

refer to pattern as a connected subgraph, that frequently appears in the large set of

other subgraphs. One of the most popular tool for this problem is gSpan [15], which

uses exact matching (a pattern must lie completely within a network process), and hence

isn’t spatially robust. Besides the classic frequent subgraph mining problems, closed and

maximal frequent subgraph mining problems are also studied excessively. As an extension

to gSpan, the CloseGraph algorithm is proposed to tackle the closed frequent subgraph

mining problem [16]. Other pattern-growth based approaches such as SPIN [17] and

Margin [18] only mine maximal frequent subgraphs in order to reduce redundancy.

Frequent subgraph mining methods are more related to our problem because they

ensure connectivity, condition (2) of the netBMF problem. However, top-k frequent

patterns usually correspond to the most active small groups of nodes in the graph. Despite

various kinds of enhancements, the closed and maximal frequent pattern mining algorithms

still encounter challenges at mining large and diverse patterns [19]. Therefore, these

patterns do not provide significant gains when it comes to Boolean matrix decomposition,

and are not powerful in summarizing network processes. An obvious improvement is to

rank the patterns by their ‘area,’ i.e., the products of their frequencies and sizes, and

use top-k largest area patterns for decomposition. Even with this modification, frequent

subgraph mining methods cannot be applied directly to our netBMF problem, since we

would like the frequent subgraphs to be ‘diverse’ so as to minimize the summarization

error.

Boolean Matrix Factorization. Previous work in this class aims at finding a

product of matrices that summarizes the binary input data with a smallest possible

14

Network-constrained Boolean Matrix Factorization Chapter 2

amount of reconstruction error. The most popular baseline for BMF, ASSO [6], has

quadratic time complexity in m, making it not scalable. gDBMF [20] solves a näıve

version of BMF, where M �B must not contain any extra nonzeros compared to S. To

deal with noise and unknown values, Minimum Description Length principles has been

used, such as MDL4BMF [21], Nassau [22], PANDA [23], and PANDA+ [24]. Ternary

matrix factorization (TMF [25]) considers unknown values and runs in linear time w.r.t.

m. TMF has been shown to outperform both ASSO and PANDA+, and is thus chosen as

a baseline in our paper. FastStep [26] is a scalable BMF, which relaxes M and B to be

real-valued matrices. More recently, [27] performs BMF via message passing to achieve

smaller error than ASSO.

BMF methods are the most related ones to our proposed problem, as they share the

same objective to summarize binary data. However, their drawback is that they do not

consider the network structure present in the data, hence violates condition (2) of netBMF

problem. Though, in order to solve the netBMF problem, one can use BMF methods to

decompose the input data effectively into two binary matrices and further extract the

connected components of each pattern. Modified versions of three state-of-the-art BMF

techniques are employed as baseline methods in our experiments.

Finally, graph motifs [28] are repeated network patterns but at different places in the

same graph instead of in different graphs as in our problem. NetBMF is also related to

finding frequent patterns based on their shapes or the most influential users in information

cascades [29] and modelling information cascades [30]. However, we find patterns on real

data to reduce the summarization errors instead of building a theoretical cascade model.

Despite all the similarities, there are four features that are considered altogether only

by our framework: (a) minimizing the reconstruction error using the pattern set discovered,

(b) finding patterns that correspond to the connected subgraphs of the underlying graph,

(c) allowing overlapping patterns, and (d) allowing approximate patterns and thus fault-

15

Network-constrained Boolean Matrix Factorization Chapter 2

tolerance.

2.4 Proposed Solutions

We solve Problem 1 by solving two sub-problems (see Fig. 2.2): Problem 2 finds the

mapping M when the state matrix S and the pattern matrix B are fixed, while Problem 3

finds the best patterns B given S using some solution to Problem 2.

Problem 2 (Optimal net-basis mapping) Given a state matrix S ∈ {0, 1}m×n and

a net-basis B ∈ {0, 1}k×n, find the optimal mapping matrix πoB,S ∈ {0, 1}m×k to minimize

summarization error:

πoB,S = argmin
M∈{0,1}m×k

g(S,B,M) (2.1)

Problem 3 (Optimal net-basis) Given a state matrix S ∈ {0, 1}m×n, a solution to

Problem 2, find a valid net-basis B to minimize the summarization error as in Problem 1:

B = argmin
B′∈{0,1}k×n

g(S,B′, πoB′,S) (2.2)

Intuitively, given a net-basis B, Problem 2 decides which network states contain which

network patterns to minimize the summarization error. In Problem 3, we simply check all

possible pattern matrices B′ to find the best one B that has the smallest summarization

error for a given S (providing that we can find an optimal solution to Problem 2 for each

B′). Clearly, such a matrix B is also an optimal solution to Problem 1.

MH Sampling

Faster MCMC Sampling

Naïve Mapping

Incremental Mapping

Prob. 3: Find B given S.Prob. 2: Find M given S, B.
Prob. 1 (netBMF): Find B & M given S

Figure 2.2: Overview of four solutions for netBMF.

16

Network-constrained Boolean Matrix Factorization Chapter 2

2.4.1 Properties of netBMF problem

We now prove that netBMF problem is NP-hard and not submodular, which means

that we do not currently have a good theoretical bound for a greedy approximate solution

to this NP-hard problem as shown in [31].

Theorem 1 netBMF is NP-hard.

Proof: BMF (Problem 1 without condition 2) is proved to be NP-hard [6]. Given any

instance of the BMF problem, we can always construct an equivalent netBMF problem

in polynomial time, where G is a full graph with nodes corresponding to columns of S.

Thus, netBMF is also NP-hard.

Theorem 2 netBMF is not submodular.

Proof: For brevity, denote g(B) as g(S,B, πoB,S). Function g is submodular only

if g(A ∪ {b}) − g(A) ≥ g(B ∪ {b}) − g(B) ∀ basis sets A ⊆ B and ∀ pattern b. Here,

we prove that g is not submodular by a counter example. Consider a full graph with

V = {1, 2, 3, 4, 5, 6}, S = [1, 1, 1, 1, 0, 0], and four patterns G1 . . . G4, whose node sets

are V1 = {1, 2, 5}, V2 = {2, 3}, V3 = {1, 6}, V4 = {2, 4, 6}. Choose A = {G1} ⊆ B =

{G1, G2, G3}. It is easy to show that πoA,S = [1, 0, 0], πoA∪{G4},S = [1, 0, 0, 0], πoB,S = [0, 1, 1]

or [1, 1, 0], and πoB∪{G4},S = [0, 1, 1, 1]. Thus, g(A ∪ {G4}) = g(A) = 3, g(B) = 4, and

g(B ∪ {G4}) = 5. Therefore, g(A ∪ {G4}) − g(A) < g(B ∪ {G4}) − g(B) even though

A ⊆ B. Thus, g is not submodular and therefore netBMF is not submodular.

2.4.2 Computational challenges

Since Problem 1 (netBMF) is NP-hard but not submodular, we cannot bound the

quality of a greedy algorithm as proved in [32]. Instead, given a network G = (V,E), a

state matrix S and a positive integer k, we need to perform the following costly steps:

17

Network-constrained Boolean Matrix Factorization Chapter 2

(1) enumerate all possible sets of connected nodes (patterns) of V , (2) enumerate all

possible sets of k patterns, and (3) solve Problem 2 for each set of k patterns. Intuitively,

enumerating all possible connected subsets of V (step 1) is equivalent to enumerating

all possible connected subgraphs of G. Because the number of subgraphs of a network

grows exponentially with its size, this subgraph space cannot be computed or stored in its

entirety. Consequently, both step 1 and step 2 are computationally intractable for large

graphs. Moreover, given a pattern matrix B ∈ {0, 1}k×n, in order to find the optimal

mapping in step 3, we need to check all 2k possible subsets of B for each network state,

leading to a total cost of O(2knm) time, where n is the number of nodes, and m is the

number of network states. Clearly, this exponential cost is also not scalable for large k.

In our solution, we address the three computational challenges as mentioned above:

subgraph enumeration (challenge 1), size-k-subset enumeration (challenge 2), and fast

pattern mapping (challenge 3). First, Section 2.4.3 targets challenge 2 with a greedy

algorithm. Next, Section 2.4.4 copes with challenge 3 using two linear variants of

Problem 2. Finally, Section 2.4.5 deals with challenge 1 by sampling the exponential

subgraph search space.

2.4.3 Greedy Algorithm

To tackle challenge 2, we avoid checking all possible sets of k patterns by sequentially

adding the pattern with the highest marginal gain to B, as shown in Algorithm 1. The

marginal gain ∆(B, b) is defined as follows.

Definition 2 (Marginal Gain) Given a state matrix S and a pattern matrix B, the

marginal gain ∆(B, b) ≥ 0 of a new pattern b is the decrease in summarization error when

18

Network-constrained Boolean Matrix Factorization Chapter 2

b is added to B, i.e.:

∆(B, b) = g(S,B, πoB,S)− g(S,B ∪ {b}, πoB∪{b},S) (2.3)

Algorithm 1 is still not scalable due to two costly tasks corresponding to challenges 1

and 3 in Line 3.

Algorithm 1 Greedy Algorithm(G,S, k)

0: B := ∅
0: while |B| < k do
0: best := argmaxb{∆(B, b)|, b is a connected pattern of G}
0: B := B ∪ {best}
0: return B =0

2.4.4 Linear net-basis mapping

We cope with challenge 3 by incrementally mapping patterns in B to each network

state in S in the order of additions of patterns in Algorithm 1, without updating earlier

mappings. Specifically, we propose two variants of Problem 2 that can be solved in linear

time w.r.t. k: näıve mapping only allows exact matching, while incremental mapping

allows missing nodes.

1) Näıve net-basis mapping: The first variant maps a pattern b to a network state

s only if s contains all nodes of b, or more formally:

Problem 4 (Näıve net-basis mapping) Given a net-basis B with patterns {b1, . . . , bk}

and a state matrix S with states {s1, . . . , sm}, a näıve mapping matrix is defined as

πnaiveB,S = M ∈ {0, 1}m×k, such that Mi,q = 1 iff bq ⊆ si and Mi,q = 0 otherwise.

Theorem 3 netBMF problem with näıve net-basis mapping, namely netBMFn, is NP-

hard but monotonic and submodular.

19

Network-constrained Boolean Matrix Factorization Chapter 2

Proof: The NP-hard proof is similar to that for netBMF. Monotonicity and submod-

ularity come from the fact that given two net-bases A ⊆ B, if a pattern b ∈ A is mapped

to some network state s, then b ∈ B and will also be mapped to s.

2) Incremental net-basis mapping: The näıve mapping does not allow both

positive and negative errors in mapping, which renders it less robust to noise. We next

introduce the second variant that incrementally maps patterns in B to a network state s

as long as this mapping decrease summarization error.

Problem 5 (Incremental net-basis mapping) Given a net-basis B with patterns {b1, . . . , bk}

and a state matrix S with states {s1, . . . , sm}, an incremental mapping matrix is defined

as πincreB,S = M (k) ∈ {0, 1}m×k, where M (0) is empty and M (q) ∈ {0, 1}m×q is the mapping

matrix for the first q patterns in B ∀q ≤ k. Here, M (q) is computed incrementally by

adding one new column to M (q−1) such that:

M (q) = argmin
M∈{0,1}m×qs.t.Mi,j=M

(q−1)
i,j ,∀i,∀j<q

g(S,B,M) (2.4)

Theorem 4 netBMF with incremental net-basis mapping, namely netBMFi problem, is

NP-hard and not submodular.

Proof: Proof is similar to that for netBMF. Please refer to Section 2.4.1.

Quality Guarantee: Due to Theorems 2 and 4, we do not have any guarantee on the

quality of Algorithm 1 for the optimal netBMF and netBMFi (because g is monotonic but

not submodular). However, from Theorem 3, Algorithm 1 guarantees an approximation

of
(
1− 1

e

)
or better for netBMFn:

g(S,Bgreedy, π
naive
S,Bgreedy

) ≥ (1− 1

e
)g(S,Bopt, π

naive
S,Bopt) (2.5)

where Bopt is the optimal solution of netBMFn, and Bgreedy is the greedy solution by

20

Network-constrained Boolean Matrix Factorization Chapter 2

Algorithm 1 that iteratively adds the pattern with the maximum marginal gain [32].

Moreover, no other polynomial time algorithm can achieve an approximation guarantee

better than 1− 1
e

unless P = NP , as proved in [31].

Running time: Running time of both net-basis mapping variants is O(mnk), where

m, n, k are the number of states, nodes, and patterns respectively. This is because for

each network state, we need to compute its matching against each of the k patterns,

which entails iterating through all nodes in the worst case.

2.4.5 Incremental sampling of net-basis

To deal with challenge 1, by leveraging the given network structure, we explore the

subgraph space of G to sample the subgraphs with high marginal gains. Doing so has

two main advantages; (1) it makes sure the connectivity constraint of netBMF holds by

eliminating disconnected patterns from the search space, and at the same time, (2) it

makes our solution scalable which helps combatting NP-hardness. Later, a sampled set of

subgraphs, denoted by B, are used to construct a pattern matrix B. Figure 2.3 illustrates

the relation between G, B and B. For the remaining of this section, to distinguish one

from another, we use the term basis subgraph for each element in B, and pattern for

a set of non-zero elements in each row of B.

Figure 2.3: (a) Grid network G, (b) Basis subgraphs set B and (c) Net-basis (Pattern) Matrix B

21

Network-constrained Boolean Matrix Factorization Chapter 2

We first introduce the high-level sampling-based netBMF algorithm in Section 2.4.5.1.

After that, we propose how to sample the subgraph space in Section 2.4.5.2 and 2.4.5.3.

Finally, Section 2.4.5.4 describes how to choose a good starting point for sampling.

Algorithm 2 netBMF(G,S, k, numSeeds,maxIter)

1: B ← ∅
2: while |B| < k do
3: best := ∅
4: seeds :=Get Seed Nodes(G,S,B, numSeeds)
5: for seed ∈ seeds do
6: b := Sample Basis(G,S,B, seed,maxIter)
7: b∗ := Improve Basis(G,S,B, Vq)
8: if ∆(B, b∗) > ∆(B, best) then
9: best := b∗

10: end if
11: end for
12: B ← B ∪ {best}
13: end while
14: B ← B
15: return B =0

2.4.5.1 Sampling-based netBMF algorithm

Algorithm 2 is the high-level sampling-based netBMF algorithm which incorporates

sampling into Algorithm 1. We start with an empty set B in Line 1, and then greedily

add the subgraphs with the highest marginal gains to B until we obtain k basis subgraphs

in Lines 2-10. In each iteration, we first get a list of seed nodes for sampling in Line 4

(detailed in Section 2.4.5.4), then perform sampling from these seed nodes in the subgraph

search space to get a good candidate subgraph in Line 6, and further improve this

candidate in Line 7 (Algorithms 3 and 4 in Section 2.4.5.2). The best sampled subgraph

is recorded in Lines 8-9, and later added to B in Line 10.

22

Network-constrained Boolean Matrix Factorization Chapter 2

2.4.5.2 MH-sampling in subgraph space

In Line 6 of Algorithm 2, we need the undirected connected subgraphs of G with the

highest marginal gain (Equation 2.3). We thus utilize the Metropolis-Hastings algorithm

to sample subgraphs with probability proportional to their marginal gains.

Edit graph (EG): To systematically navigate the subgraph space, we formulate it

as an edit graph, which represents all possible edits that can be performed on any basis

subgraph b. We denote b→ u and b← u as the new connected subgraphs obtained by

removing and adding node u to a connected subgraph b respectively.

Definition 3 (Edit Graph) The edit graph (EG) of a network G = (V,E) is a directed

edge-weighted graph G = (V , E ,F), where V = {b|b is an undirected connected subgraph of

G} ∪ {∅}, E = {(b, b′)|b′ = b← u or b′ = b→ u, u ∈ V, b ∈ V , b′ ∈ V}, and F : E → R is

a function that assigns weights to edges in E.

1 4

2 3
1 4
2 3

1
2 3

42 3

1 21

3

2

4

∅ 1 3

2 3

3 4

41 3

(a) A network G (b) The Edit Graph of G

Figure 2.4: (a) An example network G and (b) its Edit Graph G.

Fig. 2.4 shows an example EG. The EG is simply a graph whose vertices are undirected

connected subgraphs of G or the empty subgraph. For clarity, we use the term “node” for

the network G, and “vertex” for the EG. An edge between two vertices in the EG indicates

that we can edit the corresponding subgraphs into each other by adding or deleting one

node. The edge weights reflect the potential impact of the edits on the marginal gain and

are explained in Section 2.4.5.2. Since G is finite, the EG is also a finite space. Its size

23

Network-constrained Boolean Matrix Factorization Chapter 2

is exponential w.r.t. the size of G, making it infeasible to be computed or stored in its

entirety. More importantly, the EG is a connected graph, thanks to the inclusion of the

empty subgraph ∅. As a result, we can start at a random subgraph and, after a finite

series of local edits, reach any other desired subgraph. We next exploit this property to

perform sampling in the EG.

Metropolis-Hastings (MH) sampling in EG: Using the MH algorithm, we can

sample a subgraph b with probability approximately proportional to its marginal gain. In

other words, the target visit probability distribution is τ , where

τi =
wi∑
ai∈Ω wi

(2.6)

wb = ∆(B, b) + 1 (2.7)

Here, the addition of 1 is to avoid division by zero in Eqn. 2.6.

MH algorithm simulates τ by a Markov chain in the EG with an arbitrary proposal

distribution matrix Q. If the current state Xt at time step t is subgraph bi, MH algorithm

finds the next state Xt+1 as follows:

• Draw a random subgraph bj with probability Qij.

• Compute the acceptance probability αij:

αij = min

{
1,
τjQji

τiQij

}
= min

{
1,
wjQji

wiQij

}
(2.8)

• Xt+1 =


bj with probability αij

bi with probability 1− αij

The Markov chain as described above is reversible, ergodic, and satisfies the detailed

24

Network-constrained Boolean Matrix Factorization Chapter 2

balance property. Thus, the stationary distribution of this Markov chain is unique and to

converge to the target distribution τ in Eqn. 2.6.

Proposal distribution matrix: In our solution, Q contains the edge weights in the

EG, which reflect the “quality” of the edits on basis subgraphs. A “good” edit increases

our chance of finding basis subgraphs with high marginal gains. Since it is costly to

compute the exact marginal gains for all neighbors of a basis subgraph b in the EG, we

approximate the quality of edits by a potential vector y. Given the current set of basis

subgraphs B, net-basis matrix B, mapping matrix M , and the current candidate basis

subgraph b to be added to B, we define Ŝ as the part of the state matrix S that has not

been covered by any basis subgraphs in B, i.e.,

Ŝi,j =

 0 if (M �B)i,j = 1

Si,j otherwise
(2.9)

In addition, denote x ∈ {0, 1}m×1 as the mapping of b to S, i.e., x is the last column

of πB∪{b},S: xi = 1 iff state si is mapped to b. Finally, we define the potential vector

y ∈ {0, 1}1×n as follows:

y = xT × Ŝ (2.10)

Intuitively, yj counts how many times a node vj in G is contained in the network states

that b is mapped to, excluding the portion of S that has already been covered by the

current set B. If yj is high, then node vj belongs to the same network states with subgraph

b many times. In this case, adding vj to b potentially increases the marginal gain, while

removing vj from b (if vj ∈ b) potentially decreases the marginal gain. Denote A and D

as the sets of connected basis subgraphs that can be obtained by adding and removing

one node from b respectively:

25

Network-constrained Boolean Matrix Factorization Chapter 2

A = {b′ = b← vj|vj ∈ V } (2.11)

D = {b′ = b→ vj|vj ∈ V } (2.12)

We now define the proposal distribution matrix Q as follows:

Qbb′ =

 β 1
CA

(yj + ε) if b′ = b← vj ∈ A

(1− β) 1
CD

1
yj+ε

if b′ = b→ vj ∈ D
(2.13)

where β ∈ [0, 1] is the probability of addition, 0 < ε � 1 is a small constant to

avoid division by zero, CA and CD are two normalization constants defined as CA =∑
b′=b←vj∈A(yj + ε) and CD =

∑
b′=b→vj∈D

1
yj+ε

. Based on Eqn. 2.13, we perform an

addition with probability proportional to the potential of the added node, while a deletion

with probability inversely proportional to the potential of the removed node. The role of

β is to account for the fact that the number of supergraphs of a basis subgraph b (which

is equal to the number of neighbors in G of the nodes in b) is likely to be significantly

larger than the number of its subgraphs (which is at most its size |b|). Thus, without β,

it is not likely for a deletion to be chosen in the sampling process. Note that the sampler

would also explore some “bad” edits to avoid being stuck in local optima.

Final MH algorithm in the EG: The MH algorithm for sampling the next basis

subgraph with high marginal gain is shown in Algorithm 3. Here, the sampler starts at

a given seed node, performs sampling in this node’s neighborhood for at most maxIter

steps, and returns the visited basis subgraph with the highest marginal gain. Due to the

randomness of sampling and the limitation of maxIter, it is likely that the basis subgraph

returned by Algorithm 3 can still be further improved locally. Hence, we propose to

greedily perform the best possible local edits on this basis set until no more good edits

can be found, as shown in Algorithm 4.

26

Network-constrained Boolean Matrix Factorization Chapter 2

Algorithm 3 Sample Basis(G,S,B, seed,maxIter)
1: t := 0
2: Xt := {seed}
3: Compute πB∪{Xt}(S) and ∆(B, Xt)
4: best := Xt

5: while t < maxIter do
6: A := {Xt ← u|u /∈ Xt,∃u′ ∈ Xt, (u, u

′) ∈ E}
7: D := {Xt → u|u ∈ Xt, u is not a cut-vertex}
8: Compute QXtb, ∀ b ∈ A ∪D based on Eqn. 2.13
9: Choose a neighbor b from proposal distribution QXtb

10: Compute wXt and wb based on Eqn. 2.7 and QbXt based on Eqn. 2.13

11: α :=
wbQbXt

wXtQXtb

12: if uniform(0, 1) ≤ α then
13: t := t+ 1
14: Xt := b
15: if ∆(B, Xt) > ∆(B, best) then
16: best := Xt

17: end if
18: end if
19: end while
20: return best =0

Algorithm 4 Improve Basis(G,S,B, b)
1: Compute A+ and D+ for b
2: while A+ ∪D+ 6= ∅ do
3: b := argmaxb′∈A+∪D+∆(B, b′)
4: Update A+ and D+ for b
5: end while
6: return b =0

2.4.5.3 Faster MCMC algorithm

Since we only care about a single basis subgraph with the highest marginal gain

at a time, we do not necessarily need to sample subgraphs based on the exact target

distribution in Eqn. 2.6. Therefore, to reduce running time, we adopt a new acceptance

probability instead of Eqn. 2.8:

αij = min {1, wj/wi} (2.14)

Here, we always accept a good move that increases marginal gain. Otherwise, the

acceptance probability is equal to the ratio of the marginal gains of two basis subgraphs.

27

Network-constrained Boolean Matrix Factorization Chapter 2

As a result, we avoid computing QbXt in Line 10, saving considerable computational cost,

and replace Line 11 with Eqn. 2.14 in Algorithm 3. More importantly, the modified MCMC

algorithm is still finite, reversible, ergodic, and thus converges to a unique stationary

distribution even though we do not have a closed form of this distribution as in Eqn. 2.6

for MH.

2.4.5.4 Choosing seeds for sampling

In practice, we cannot run the MH or MCMC algorithm for an infinite number of

iterations to converge to the stationary distribution. As a consequence, it is more practical

to start the sampler where we are more likely to find basis sets with high marginal

gains. We sample seed nodes with probability proportional to their frequencies in Ŝ in

Section 2.4.5.2, i.e., the number of nonzeros in the corresponding columns of Ŝ.

2.4.5.5 Running time

A conservative upper bound for Algorithm 3 (for both MH and MCMC) is O(mnkI +

d̂I2), where I is maxIter, and d̂ is the maximum node degree in G. In particular, in each

iteration of the while loop from line 5 to line 16, the number of nodes in pattern Xt can

be increased by up to 1 node. Thus at the end of this while loop, Xt can contains up to I

nodes. The most costly operations in this while loop are line 7 and line 10. In line 7, we

need to find all cut vertices of a subgraph Xt, which can be done in O(nXt + eXt), where

nXt , eXt are the number of nodes and edges in Xt respectively, and are upper-bounded

by I and d̂I respectively. The computation in line 10 is overpowered by Eqn. 2.7, which

costs O(mnk). Thus, after maxIter = I iterations, the upperbound for complexity is

O(I ∗ (mnk + d̂I)).

28

Network-constrained Boolean Matrix Factorization Chapter 2

2.5 Experiments

We compare four variants of netBMF algorithm (Figure 2.2) to other baselines in four

datasets. In summary, NetBMF provides better summarization than BMF (ASSO, TMF,

and PANDA+) and frequent subgraph mining (gSpan), with more interpretable patterns.

2.5.1 Settings

Synthetic data: We generate a network of 1000 nodes (average degree = 10) using

the Barabasi-Albert algorithm [33]. We sample 20 random ground-truth network patterns,

and then delete or add 5 random nodes in each of them to create 100 network states in

total.

Real data: We use three real world datasets: (1) Youtube [34], where each network

state is a community of users who joined the same group, and the graph represents

users’ friendship; (2) DBLP, where we generate network states as lists of all attendees

at scientific conferences, and the graph represents their co-authorship (using raw data

from [35]); (3) Traffic [36], where each node is a road segment, each network state contains

the list of congested road segments (when the speed is in the bottom 5 percentile of speeds

on this segment), and the graph captures the adjacency of road segments. Table 2.2

summarizes the datasets.

Baselines: We compare netBMF with two groups of baselines: (i) top-k frequent

subgraph mining with best frequency (gSpan-Freq) or coverage (gSpan-Cover) among the

Dataset Youtube DBLP Traffic Synthetic

#nodes (n) 1157828 7916 100 1000
#states (m) 5000 219 8640 100
#edges (|E|) 5975248 75067 256 39200
||S||2F 72959 72138 43768 2078

Table 2.2: Statistics of real-world datasets.

29

Network-constrained Boolean Matrix Factorization Chapter 2

top-1000 frequent subgraphs returned by gSpan [15]; (ii) Boolean Matrix Factorization,

including ASSO [6], TMF [25], and PANDA+ [24]. We study four variants of netBMF

based on pattern mapping approach (incremental or näıve) and sampling approach (MH

or MCMC): netBMFi-MH, netBMFi-MC, netBMFn-MH, and netBMFn-MC.

Default parameter settings: For the upcoming experiments, we use β = 0.7,

numSeeds = 10, maxIter = 200 as default parameters. The maximum number of

patterns k for Youtube and DBLP is 100, and for Traffic is 30. Note that TMF and

PANDA+ often fail to find enough k patterns as requested. We experiment the running

times of our methods on the synthetic dataset with parameters n = 1000, m = 100, and

k = 10. During these experiments, we change one parameter at a time, while keeping

the others fixed. The result of each experiment is averaged over 5 runs of netBMF.

Experiments were run on Ubuntu with Intel Core i7-5930K CPU, 3.50GHz. Code is

written in Python.

We use the relative error to evaluate the decomposition:

RelativeErr(S,M,B) =
||S⊕(M�B)||2F

||S||2F
× 100% (2.15)

To check the stability of sampling, we use Jaccard index. Given two net-bases B1 and

B2, denote n11 as the number of node pairs that are in the same basis subgraphs in both

B1 and B2, n10 as the number of node pairs that are in the same basis subgraphs in B1

but not in B2, n01 as the number of node pairs that are in the same basis subgraphs in

B2 but not in B1. Then, the Jaccard similarity coefficient (or Jaccard index) between B1

and B2 is defined as:

J(B1, B2) = n11

n01+n10+n11
(2.16)

Clearly, J(B1, B2) ∈ [0, 1]. J(B1, B2) = 1 means B1 and B2 are identical, while

J(B1, B2) = 0 means they do not overlap.

30

Network-constrained Boolean Matrix Factorization Chapter 2

(a) Convergence
0 10 20

top-k
20

40

60

80

100

Re
la

tiv
e

Er
ro

r (
%

)

netBMFi-MH
netBMFi-MC
netBMFn-MH
netBMFn-MC
ASSO
TMF
gSpan-Freq
gSpan-Cover
PANDA+

0 10 20
top-k

0

0.2

0.4

0.6

0.8

1

Ja
cc

ar
d

In
de

x

netBMFi-MH
netBMFi-MC
netBMFn-MH
netBMFn-MC
ASSO
TMF
gSpan-Freq
gSpan-Cover
PANDA+

0 5000 10000
Num. iterations

0

0.1

0.2

0.3

0.4

JS
-d

iv
er

ge
nc

e

netBMFi-MH
netBMFi-MC
netBMFn-MH
netBMFn-MC

(b) Recovering ground-truth patterns (c) Error

Figure 2.5: Synthetic data: (a) Convergence of sampling; (b) Jaccard index between obtained
patterns and the 20 ground-truth patterns; (c) Summarization error.

2.5.2 Convergence and stability of sampling

Our algorithms produce reasonably stable results on the synthetic dataset despite the

huge exponential search space with many different subgraphs having the same marginal

gains.

Convergence of sampling: All of our sampling algorithms converge to a unique

stationary distribution (Section 2.4.5.2), which is confirmed experimentally in Fig. 2.5a.

Here, the Jensen-Shannon (JS) divergence compares the visit distribution at every 200

iterations with the previously computed one. All variants of netBMF converge quickly

after 2000 iterations.

Recovering ground-truth synthetic patterns: Our algorithms consistently re-

cover the 20 ground-truth patterns in the synthetic dataset at k = 20, with comparable or

smaller errors than other baselines as reported. Fig. 2.5b figure shows the Jaccard index

between the obtained net-basis patterns and the ground-truth patterns in the synthetic

dataset after 10 runs of netBMF, compared with other baselines. We observe similar

results for the relative errors in Fig. 2.5c. Overall, netBMFi-MC is the best at recovering

the ground truth.

31

Network-constrained Boolean Matrix Factorization Chapter 2

Stability of sampled net-bases: It must be noted that the error bars for 5 different

runs of all versions of netBMF are very small (almost invisible) in Fig. 2.5b and 2.5c,

suggesting that netBMF has high stability.

2.5.3 Summarization error

Table. 2.3 shows the relative errors for different baselines when k = 100, where for

all three datasets, the top-2 smallest errors are from netBMF variants. Both versions of

gSpan perform poorly since they retrieve very small subgraphs of high frequencies. For

fair comparison, we also extracted only the connected subgraphs with the highest coverage

from the patterns found by the BMF baselines (the modified connected version of BMFs).

In general, when connected patterns are taken into account, netBMF variants provide

much smaller errors compared to BMF (ASSO, TMF, PANDA+) and frequent subgraph

mining (gSpan) methods. Even if the connectedness constraint is ignored, the errors of

netBMF are still comparable and often smaller than the original version of BMFs. This

reveals that netBMF methods can also be applied to classic BMF problems, if the data is

large and known to have an underlying network structure.

Table. 2.4 further shows the relative errors as k varies. Overall, all methods have

a decreasing trends in errors. gSpan clearly has very high errors regardless of k. TMF

performs well when k is small since it simply picks the whole network states as patterns

when the network states are big, while these network states often have low frequencies

and are disconnected. Thus, as k increases enough to cover the big datasets (Youtube

and DBLP), netBMF variants gradually outperform TMF. PANDA+ returns high errors,

especially in the case of Traffic, where the relative errors are even greater than 100%,

suggesting that PANDA+ focuses more on frequent patterns rather than accurate patterns.

ASSO has low and decreasing errors as k increases. However, this comes at a huge cost in

32

Network-constrained Boolean Matrix Factorization Chapter 2

running time as we explain in Section 2.5.5. Overall, netBMF variants have lower errors

than most baselines as k varies.

Variants of netBMF: Given the relative errors in Table. 2.4, there is no clear winner

among four netBMF variants. On average, MH sampling seems to provide smaller errors

compared to MCMC sampling, at the expense of longer running time as shown later. It

is also surprising that the incremental mapping does not consistently outperform naive

mapping. Thus, we next consider other factors (e.g., pattern quality and running time)

to decide which method to use in practice.

2.5.4 Quality of net-bases

We evaluate the quality of the basis subgraphs (or induced subgraphs for ASSO,

TMF, and PANDA+) with a number of metrics: size (i.e., the average number of nodes);

frequency; connectedness (i.e., clustering coefficients); and the number of found patterns

k. Overall, with the goal of low summarization errors as the highest priority, netBMF

obtains connected, large, frequent, and more patterns than its counterparts.

Table. 2.3 reports the results averaged over 100 basis subgraphs for different baselines.

NetBMF variants outperform all other baselines w.r.t. the above metrics, i.e., the obtained

basis subgraphs are big (high number of nodes), connected, and dense (high clustering

coefficients). On the contrary, the original implementation of TMF, ASSO, and PANDA+

find big but disconnected patterns with extremely low clustering coefficients. Note that

TMF, ASSO, and PANDA+ may fail to find enough k patterns, thus their averages are

only computed on the non-empty patterns. That being said, if these empty patterns (size,

frequency, and clustering coefficient are all zeros) are taken into consideration, the average

results for BMF methods will be much lower. Additionally, the connected versions of

TMF, ASSO, and PANDA+ may find patterns that are big and frequent, but with either

33

Network-constrained Boolean Matrix Factorization Chapter 2

Method
Youtube (max k = 100)

Error (%) Size Freq. C.C. k

netBMFn-MH 79.5 145.9 2.0 0.075 100
netBMFi-MH 87.0 62.2 7.8 0.196 100
netBMFn-MC 86.6 76.0 8.1 0.199 100
netBMFi-MC 83.9 85.6 4.2 0.135 100
gSpan-Cover 99.7 4.8 28.6 0.752 100
gSpan-Freq 98.6 2.8 35.9 0.727 100
TMF (connected) 85.7 522.2 1.8 0.011 19
PANDA+ (connected) 92.2 19.8 8.8 0.283 100
ASSO (connected) - - - - -
TMF 85.7 661.4 1.3 0.013 15
PANDA+ 86.9 38.9 6.2 0.165 100
ASSO - - - - -

Method
DBLP (max k = 100)

Error (%) Size Freq. C.C. k

netBMFn-MH 62.4 271.9 1.0 0.024 100
netBMFi-MH 87.1 38.3 13.4 0.288 100
netBMFn-MC 75.1 183.2 1.0 0.034 100
netBMFi-MC 82.7 77.2 5.8 0.107 100
gSpan-Cover 99.8 75 2.0 0.050 100
gSpan-Freq 95.9 1.4 39.5 0.280 100
TMF (connected) 84.8 97.9 5.7 0.188 100
PANDA+ (connected) 94.7 9.0 21.7 0.414 100
ASSO (connected) 76.0 273.7 2.8 0.024 100
TMF 83.1 748 1.5 0.008 15
PANDA+ 93.4 51.2 17.2 0.103 32
ASSO 72.0 345.6 2.3 0.013 100

Method
Traffic (max k = 30)

Error (%) Size Freq. C.C. k
netBMFn-MH 51.7 2.8 316.8 0.536 30
netBMFi-MH 47.6 5 397.4 0.238 30
netBMFn-MC 51.8 2.9 314.4 0.528 30
netBMFi-MC 47.6 5 397.4 0.238 30
gSpan-Cover 75.8 5.5 232.2 0.395 30
gSpan-Freq 74.1 1.1 421.4 0.100 30
TMF (connected) 61.3 6.3 247.1 0.321 30
PANDA+ (connected) 143.8 2.9 342.2 0.320 30
ASSO (connected) 62.5 1.3 438.8 0.222 30
TMF 56.4 18.3 159.4 0.102 15
PANDA+ 151.5 18.2 241.7 0.067 6
ASSO 56.5 1.5 436.8 0.190 30

Table 2.3: Comparing baselines with three real-world datasets. Top-2 smallest errors for
connected patterns are shown in bold. The connected (*con.) versions of TMF, PANDA+, and
ASSO only contain the top connected subgraphs with highest coverage extracted from their
corresponding patterns (similar to gSpan-Cover). TMF and PANDA+ may not find enough k
patterns. ASSO failed to finish in 4 days for Youtube. (C.C. is clustering coefficient)

34

Network-constrained Boolean Matrix Factorization Chapter 2

Youtube DBLP Traffic
k 10 30 50 80 100 10 30 50 80 100 5 10 15 20 30

netBMFn-MH 96.1 90.3 86.8 81.4 79.5 91.4 84.1 76.7 67.6 62.4 86.7 76.4 68.2 62.2 51.7
netBMFi-MH 97.9 94.0 92.3 88.2 87.0 94.9 92.1 90.5 88.3 87.1 79.6 64.8 58.0 53.0 43.3
netBMFn-MC 98.0 94.1 90.9 87.9 86.6 95.0 89.1 84.5 78.3 75.1 86.3 76.0 68.1 62.2 51.8
netBMFi-MC 96.6 91.7 89.0 85.4 83.9 93.4 90.1 87.5 84.6 82.7 76.4 67.8 62.2 57.1 47.6
gSpan-Cover 99.8 99.8 99.7 99.7 99.7 99.8 99.8 99.8 99.8 99.8 95.0 91.5 87.1 85.4 75.8
gSpan-Freq 99.5 98.8 98.7 98.7 98.6 99.3 98.1 97.2 96.4 95.9 96.0 92.0 87.2 83.4 74.1
TMF(con.) 88.4 85.7 85.7 85.7 85.7 89.1 85.2 85.0 84.9 84.8 85.2 76.0 70.6 67.4 61.3
PANDA+(con.) 96.9 94.5 93.3 92.5 92.2 95.5 95.0 94.8 94.7 94.7 120.0 127.6 132.2 136.6 143.8
ASSO(con.) - - - - - 91.6 84.3 80.3 76.9 76.0 89.6 82.9 77.7 72.6 62.5

Table 2.4: Relative error (%) for different k. Top-2 smallest errors for each k are shown in bold.

high errors or fewer number of patterns than the provided k. gSpan yields connected

but mostly smaller subgraphs. As a result, netBMF outperforms all other baselines in

summarizing network processes.

The choice of MH or MCMC sampling does not affect the quality significantly, whereas

for large k (Youtube and DBLP), netBMFn tends to obtain bigger basis subgraphs

than netBMFi on average, which is at first quite surprising given that netBMFi allows

more error in basis mapping. However, the actual reason behind this behaviour is that,

initially, netBMFi greedly exploits the search space by returning much larger patterns

than netBMFn. This causes the later patterns to be smaller, and as a result, the average

size of the patterns returned by netBMFn can be larger than netBMFi. This behaviour

of netBMFi can be restricted by lowering the parameter β. For the same reason, the

clustering coefficients of netBMFn are also higher than those of netBMFi in Youtube and

DBLP, but smaller in Traffic. We conjecture that the performance of netBMF variants

will depend on the number of patterns k and the specific datasets, i.e., the connectivity

in G, and the network states in S.

Use case: Following the idea illustrated in Fig. 2.1, we now demonstrate the potential

of the discovered patterns by our framework. We employ a large dataset combining mobility

traces of taxi cabs in San Francisco and road network extracted from OpenStreetMap [37,

38]. The first one consists of GPS trajectories from 500 cabs over 30 days in San Francisco,

35

Network-constrained Boolean Matrix Factorization Chapter 2

mapped to the corresponding road segments on the road network. We consider every 30

min period as one ride, with a condition of a cab travelling more than a mile during this

period. As a result, a ride passes through 112 road segments on average. Later, we regard

each cab ride as a unique network state, and construct our binary state matrix S, where

Sq,i = 1 if a ride q passes through road segment i. The resulting S matrix has 362434

rows, and 78847 columns, whereas the road network G has 78847 nodes and 181598 edges.

Fig. 2.6 further shows the top-12 mined patterns from S by our netBMFi-MH variant.

Each pattern is a set of connected road segments that highlights some touristic attractions

or highways with high volume of traffic. Note that these patterns also cover different

parts of the city, suggesting that they efficiently summarize the taxi cab trajectories.

Figure 2.6: netBMFi-MH patterns (red lines) pinpoint the popular attractions and main highways
in San Francisco.

2.5.5 Running time

All four variants of netBMF have linear running time in k, n, m, and numSeeds, as

shown in Fig. 2.7b-e. We further evaluate the speed of three different net-basis mappers

36

Network-constrained Boolean Matrix Factorization Chapter 2

0 50 100
k

0

20

40

60

80

R
un

ni
ng

 T
im

e
(s

ec
.)

netBMFi-MH
netBMFi-MC
netBMFn-MH
netBMFn-MC

0 10 20 30
k

10-4

10-2

100

102
M

ap
pi

ng
 T

im
e

(s
ec

.)
netBMFn
netBMFi
netBMFopt

0 100 200
numSeeds

0

50

100

150

200

250
R

un
ni

ng
 T

im
e

(s
ec

.) netBMFi-MH
netBMFi-MC
netBMFn-MH
netBMFn-MC

0 5 10

Num. nodes n (x104)

0

1000

2000

3000

R
un

ni
ng

 T
im

e
(s

ec
.) netBMFi-MH

netBMFi-MC
netBMFn-MH
netBMFn-MC

0 100 300 500
maxiter

0

200

400

600

800

R
un

ni
ng

 T
im

e
(s

ec
.)

netBMFi-MH
netBMFi-MC
netBMFn-MH
netBMFn-MC

(a) (b) (c)

(d) (e) (f)

0 2000 4000
Num. states (m)

10

20

30

Ru
nn

in
g

Ti
m

e
(s

ec
.)

netBMFi-MH
netBMFi-MC
netBMFn-MH
netBMFn-MC

maxIter

Figure 2.7: Running time for four variants of netBMF as their parameters are varied. For all
num. states in (g): ||S||2F /m/n = 0.1.

on a single process state as the number of patterns k increases in Fig. 2.7a. As discussed

in Section 2.4.2, the running time increases linearly in k for netBMFi and netBMFn, but

exponentially for netBMFopt, making the optimal solution not scalable. Fig. 2.7f confirms

that the running time is quadratic in maxIter (Section 2.4.5.5). A higher number of

iterations likely leads to bigger visited subgraphs, which potentially have more neighbors

in the EG and cause more computational cost for the transition probability Q in Lines

8 and 10 of Algorithm 3. Finally, MH sampling is slower than MCMC sampling due to

the computation of the transition probability QXtb in Line 10 of Algorithm 3. MCMC

sampling discards this computation and uses α = wb/wXt instead in Line 11, reducing

computational cost significantly. To put this into perspective, ASSO on Youtube dataset

did not finish after 4 days, TMF took approximately 51 hours, while our netBMFn-MC

37

Network-constrained Boolean Matrix Factorization Chapter 2

variant took less than 7 hours to complete. PANDA+ is the fastest (less than 1 hour on

Youtube), yet it achieves the worst summarization error among all the other BMFs.

2.6 Conclusion

In this chapter, we proposed a novel problem of summarizing network processes by

mining coherent subsets of network nodes that often engage in similar network processes.

To cope with its NP-hardness, we designed a greedy algorithm and four scalable variants

that effectively sample the exponential subgraph space to find the best network patterns.

Extensive experiments demonstrate our solution to be efficient in mining relevant and

accurate network patterns in both synthetic and real datasets. Promising future directions

include modeling the dynamic behavior of network processes using the discovered patterns,

and using directed subgraphs as network patterns.

38

Chapter 3

RiSER: Learning Better

Representations for Richly

Structured Emails

3.1 Introduction

Classifying documents into two or more target classes is a core problem in many web

applications, and has received attention from several research communities. Identifying

the sentiment in text documents [39], detecting spam in email [40] and the web [41], and

fake news detection [42] are well-known applications. Even enterprise applications like

legal discovery [43] make use of the core abstraction of document classification.

Most existing approaches focus on short plain-text documents like tweets, reviews,

and posts in online discussion forums. However, several interesting applications are on

corpora where the documents are longer, and often have rich HTML markup structure.

Such corpora have not received as much research attention, but are important for many

applications. For instance, web pages have rich HTML structure; classifying them [44] is

39

RiSER: Learning Better Representations for Richly Structured Emails Chapter 3

Order … confirmed

Email

Subject Html

Head

TableTable

Body

Title

tr

td

h1

text

tbody

span

text

The Nexar Shop

text

ORDER #XXX

tr

td

h2

text

tbody

p

text

Thank … purchase! Hi AAAA … today.

. . .

Figure 3.1: An example purchase email (left) and a simplified DOM tree (right) representing
a portion of the email. For clarity, we trim long trivial HTML sequences such as nested div
tags. Note that we extend the DOM tree beyond the email message body to include a branch
representing the subject.

useful for several applications like focused crawling, faceted search, and even as a signal

for web page search ranking.

Email is another area that contains longer documents with rich HTML markup

structure. Recent studies [45] have shown that most email is richly formatted and machine-

generated rather than plain-text sent by humans. Several interesting applications beyond

spam-detection rely on learning good classifiers over email. This includes foldering [46],

automatic prioritization [47], and even information extraction [48, 49, 50]. In particular,

these studies show that learning a high-precision classifier over richly formatted emails

is a key ingredient to extracting structured data from email that is then used to power

several intelligent experiences [49, 48].

In this paper, we tackle the problem of learning a good representation (embedding)

for structured documents like richly formatted emails. We focus on evaluating these

embeddings for the task of classifying an email into one of k target classes. Recent

literature has shown that for relatively short documents, a recurrent neural network with an

attention mechanism [51] is a very strong baseline for learning good representations. With

40

RiSER: Learning Better Representations for Richly Structured Emails Chapter 3

richly formatted documents, most existing techniques ignore the formatting information

except for assuming that documents are hierarchically organized [51] into sentences and

paragraphs. We illustrate in Section 3.2 that the rich structure of HTML-formatted

email can be a valuable signal for the relative importance of various pieces of information

in the document. We introduce a neural architecture called RiSER (Richly Structured

Email Representation) to take advantage of the structure of the email in addition to the

content. RiSER projects the input email into a vector representation by jointly encoding

the HTML structure of the email along with the terms in the email. It consists of a 2-level

LSTM to first construct a structural encoding and combines this with an encoding of the

terms for which there is a second LSTM layer. This provides a simple way to encode the

formatting and layout information as opposed to manually engineering structural and

visual features.

Experiments on real data from Gmail corpus show that the structure does indeed

contain useful information and that RiSER is able to exploit this information to outperform

a strong baseline that only considers textual information. While we focus on emails, the

techniques introduced in RiSER are generic and can be used for any document corpus

containing richly formatted information such as HTML web pages and PDF documents.

We make the following key contributions in this paper:

• We identify that structural information in richly formatted HTML emails is a

valuable signal that is ignored by existing classification approaches focused on

textual content.

• We propose a 2-level neural architecture called RiSER that jointly learns to encode

both the structure and the content of the email by examining the sequence of HTML

tags that each text term is associated with.

• We demonstrate through experiments on two classification tasks on data from Gmail

41

RiSER: Learning Better Representations for Richly Structured Emails Chapter 3

that RiSER learns enhanced email representations.

The rest of this paper is organized as follows: Section 3.2 provides more detailed

background on the information available in the structure and markup, explains how we

represent the input document, and lays out the problem definition for applications like

information extraction. Section 3.3 introduces our two-level neural architecture that

jointly encodes the HTML markup and the textual content of documents to learn a

good representation. Section 4.5 reports on the performance of this architecture on two

real-world classification tasks using data from Gmail. We compare the performance

of this architecture with several baselines including ones that try to leverage manual

feature-engineering to represent aspects of this information. The experimental results

show that the models with the proposed architecture significantly increase recall at high

precision compared to previous baselines by up to 8.6%. Section 3.5 summarizes areas

of related work from the data mining, NLP, and ML research communities. Finally,

Section 5.5 concludes the paper with a summary and potential directions for additional

research.

3.2 Email Structure and Problem Setting

We focus on business-to-consumer (B2C) emails, the vast majority of which are

machine-generated instantiations of predefined templates, accounting for up to 90% of all

email traffic on the internet [52].

Figure 3.1 (left) depicts an example email from the author’s inbox that contains a

purchase confirmation. Unlike personal emails sent by humans, B2C emails like these

often have rich HTML structure. This structure introduces a complex hierarchy which can

be represented by a Document Object Model (DOM) tree [53], such as the one illustrated

in Figure 3.1 (right). Each node in this tree represents an HTML tag in the message

42

RiSER: Learning Better Representations for Richly Structured Emails Chapter 3

body, and its children consist of the HTML tags nested within it. The text of the message

resides at the leaf nodes. Note that we have extended this DOM tree beyond the standard

model to also include the subject of the email as a child node of the email root. A typical

commercial email like the example in Figure 3.1 may contain around 2,000 leaf nodes. In

fact, we have observed some messages, albeit few, that have as many as 10,000 leaf nodes

and a depth of up to 200.

The use of rich HTML structure draws the attention of the human eye to different

parts of the email. We find that the categorically similar emails often share similar

structure. For example, bill reminder emails will format a “pay now” link close to the

middle of the email, while hotel confirmation emails often contain tables of check-in

and check-out information. This manifests as tables, headers, footers, highlighted and

emboldened text in the markup. The key hypothesis we test in this paper is whether

the markup in such richly formatted emails offers additional signal over just the textual

content.

The remainder of this section describes how we convert this tree representation into a

sequence of features that are suitable as input for the classification models described in

the following section. The sequence consists of three types of features: textual features,

annotation features, and structural features.

The textual features consist of a sequence of the first 200 terms (including punctuation)

extracted from the DOM tree (including the subject branch) via in-order traversal.

Limiting ourselves to 200 terms allows us to fully represent most emails without the risk

of allowing very long emails to derail model training.

The annotation features indicate whether a particular text span contains an annotation.

Several examples such as Date, Price, and Time are listed in Table 3.1. A term may

correspond to one or more annotations. These annotations are extracted through a variety

of methods including dictionary lookups and regular expression matching. Libraries of

43

RiSER: Learning Better Representations for Richly Structured Emails Chapter 3

Annotation Types
Address Location
Alphabet-Number Price
Confirmation Number Telephone Number
Date Time
Establishment Tracking Number

Table 3.1: Annotation features.

these annotators were developed over several years to support more traditional rule-based

information extraction tasks. An entity detection library, for example, is also available

as a Google Cloud API [54]. Readers can refer to Sheng et al. [48] for more detailed

discussion on these annotators. In this work, we provide a way to incorporate the signals

from these annotations.

Finally, we represent the structure of the document using XPaths [55]. An XPath is

the sequence of nodes (HTML tags) extending from the root of the DOM tree to a leaf

node. For example, the XPath of the term “ORDER” in the example email in Figure 3.1

is /html/body/table/tbody/tr/td/span/text. All the terms in a paragraph (in a p node),

for instance, might share the same sequence of HTML tags for their XPath feature.

We considered several alternative approaches to represent document structure. For

example, one can identify the XPath patterns for text in key HTML tags like headers,

tables, lists and then use these to mark each term. This approach is labor-intensive and

more importantly ad-hoc and may not take into account patterns than an engineer has

not visually inspected and considered important. For our problem, we are interested in

an approach that can be applied to all the emails from various domains with different

structural patterns without having to manually engineer structural features. Another

possible representation is to use a visual blocks structure using external parsers [56].

Visual blocks are tree structures based on the visual layout of the page. Such an approach

would depend on an external parser to produce features that can then be represented as

44

RiSER: Learning Better Representations for Richly Structured Emails Chapter 3

Shop ORDER #XXXX Word

{} {}
{Alphabet-Number,

Confirmation
Number}

Annotations

/html/body/table
/tbody/tr/td/h1/

text

/html/body/table
/tbody/tr/td/
span/text

/html/body/table
/tbody/tr/td/
span/text

XPath

Figure 3.2: Feature sets of three terms ”Shop”, ”ORDER” and ”#XXXX” from the top of the
email in Figure 3.1.

part of the input example. We chose to use the XPath since it is simple, and provides a

detailed representation of the markup. This allows us to directly test the hypothesis of

whether the information in the markup is valuable for learning a better representation.

We expect that using visual features from a sub-system that understands document layout

could be interesting future work.

A complete set of features representing a single email document thus consists of

a stream of up to 200 terms, the set of annotations that each term is a part of, and

the XPath that each term resides at. Figure 3.2 denotes the features corresponding to

three terms – ”Shop”, ”ORDER” and ”#XXXX” from the email in Figure 3.1. The

terms ”Shop” and ”ORDER” do not contain any annotation, but ”#XXXX” has two

annotations: Confirmation Number and Alphabet-Number. The bottom row contains the

XPath in the DOM tree at which each of these terms appear.

We describe the architecture that combines these three features in Section 3.3 below,

and explore the utility of different combinations of these features in Section 4.5.

45

RiSER: Learning Better Representations for Richly Structured Emails Chapter 3

LSTMLSTM LSTM LSTM LSTM. . .

. . .XPathi

XPath
Attention

LSTM

Word
Attention

LSTM LSTM LSTM LSTM

Annotation
Features

Word
Embedding

ri,1 ri,2 ri,3 ri,4 ri,T

𝒗

𝑤1 𝑤2 𝑤3 𝑤i 𝑤L

XPath
Encoder

Word
Encoder

HTML Tag
Embedding

. . .

𝑥i

𝑒i

𝑎i

. . .

Figure 3.3: Overview of the RiSER architecture. The XPath Encoder iteratively encodes the
tags in the XPath to each term in the email’s DOM tree. Later, each XPath encoding (xi) is
combined with the corresponding word embedding (ei) and annotation features (ai) of the term
to form a word representation (wi). The Word Encoder then processes these word representations
({w1, w2, · · · , wL}) to learn an enhanced email representation (v). (best viewed in color)

3.3 Proposed Framework

In this section, we present our email representation framework – RiSER. The proposed

model consists of two main components: an XPath encoder and a word encoder. At a high

level, the XPath encoder models an email’s DOM structure by encoding the tags along

the XPath to a leaf node using an LSTM layer [57] while the word encoder combines word

embeddings with the corresponding XPath encodings and additional features to learn an

enhanced representation of the email. The enhanced email representation is then used as

a feature for email classification. Figure 4.3 shows an overview of the model architecture.

We describe the details of the framework and its components in the following sections.

46

RiSER: Learning Better Representations for Richly Structured Emails Chapter 3

3.3.1 XPath Encoder

Recall from Section 3.2 that an XPath is a sequence of HTML tags from root to leaf

of an email’s DOM tree. The proposed XPath encoder in Figure 4.3 summarizes this

sequence with a vector of fixed length. In this work, we use an LSTM encoder with an

additional attention mechanism [51] to represent the sequential elements (HTML tags),

however, one is free to choose any standard sequence encoder to model the sequential

input. More precisely, let the XPath i be a sequence of HTML tags with embeddings

[ri1, · · · , riT]. In practice, we randomly initialize these embeddings and update them

during training. We pass these embeddings through an LSTM layer to produce output

vectors:

hit =
−−−−→
LSTM (rit), t ∈ [1, T] (3.1)

Typical practices for extracting a final output representation from an LSTM layer

include selecting the final output or averaging across all outputs. However, we observe

that XPath sequences can be very long and highly repetitive. Furthermore, not all HTML

tags may contribute equally to the email structure. For instance, HTML tags such as

strong, em or big can be more informative than other much more common tags, such

as div. Hence, we apply an attention mechanism [51] over the outputs of the LSTM

layer in order to (1) extract such informative tags from long sequences and reward their

contributions to the XPath representation, and (2) simultaneously reduce the impact of

highly repetitive tags.

The final XPath encoding vector is computed as follows. First, we feed the LSTM

output hit through a fully connected layer with trainable weight matrix Wr and bias

47

RiSER: Learning Better Representations for Richly Structured Emails Chapter 3

vector br, as well as a tanh activation function to produce the hidden vector uit:

uit = tanh(Wrhit + br) (3.2)

Next we calculate an importance weight αit for each HTML tag rit in the sequence

as a normalized similarity score between the hidden vector uit and a trainable structure

vector ur:

αit =
exp(uTitur)∑
i exp(uTitur)

(3.3)

Finally, we compute the XPath encoding vector xi as a weighted sum of all the LSTM

outputs:

xi =
∑
t

αithit (3.4)

The proposed XPath encoder has the following two desirable properties. First, as

we show in Section 3.4.5, the XPath encoding vectors capture information that is highly

valuable for an email classifier. Second, the XPath encoder captures the relative hierarchy

of an email’s structure, i.e. two XPath sequences will have similar embeddings in the

vector space if they correspond to closer leaf nodes in the DOM tree since they share long

common subsequences. In the next section, we explain how the XPath encoder interacts

with the word encoder.

3.3.2 Word Encoder

The word encoder is responsible for learning a rich representation of the email which

not only summarizes the email’s content but also encodes its HTML structure. In order

to accomplish this goal, we go beyond the word-embeddings-based representations and

48

RiSER: Learning Better Representations for Richly Structured Emails Chapter 3

capture additional features with structural information from the email. We create our

rich word representation vector wi by leveraging the following three components:

• Word embeddings. We construct our vocabulary with the most frequent 20,000

words in our data. Each word in the vocabulary is mapped to a word embedding

vector through an embedding look-up matrix. Out-of-vocabulary (OOV) words

are mapped to an unknown vector. In this work, we randomly initialize the word

embeddings and jointly train them with the model. One can also use pre-trained

word embeddings such as Word2Vec [58], Glove [59], or fastText [60].

• XPath encodings. The corresponding XPath of each word is passed through the

XPath encoder to produce an XPath encoding. These XPath encodings implicitly

capture the position of the word in the DOM tree. Since XPath sequences can be

very long, we only keep the first T tags of the sequence and omit the rest. Note

that T is a hyper-parameter in our framework.

• Annotation vectors. We represent the annotations a word corresponds to as a 10-D

binary vector. Each dimension (0/1) indicates whether a word is annotated by a

particular markup shown in Table 3.1. These features turn out to be very helpful,

as we will show in Section 3.4.4.

To form improved word representations, the word embeddings, XPath encodings, and

annotation vectors are concatenated for each term and fed into a fully connected layer

with tanh non-linearity. Formally, given an email with L words, we represent each word

in the sequence as:

wi = tanh(Ws[ei, xi, ai]), i ∈ [1, L] (3.5)

49

RiSER: Learning Better Representations for Richly Structured Emails Chapter 3

where ei ∈ Rk is the word embedding vector, xi ∈ Rl is the corresponding XPath encoding

calculated in Equation (3.4), and ai is the 10-dimensional binary vector representing the

annotations mentioned in Section 3.2. Ws ∈ Rm∗m is a trainable weight matrix, where

m = k + l + 10.

With [w1, w2, · · · , wL] we can now compute an email representation vector by using

another LSTM layer to encode the sequence and apply an additional attention mecha-

nism [51] over that layer:

hi =
−−−−→
LSTM (wi), i ∈ [1, L] (3.6)

ui = tanh(Wwhi + bw) (3.7)

αi =
exp(uTi uw)∑
i exp(uTi uw)

(3.8)

v =
∑
i

αihi (3.9)

where v is the email representation vector that summarizes both the email structure

and semantics.

3.3.3 Email Classification

We use the email representation computed above as a feature in email classification.

More specifically, we use a linear layer to convert the email representation vector to a

real-valued vector of size |C|, where C is the set of classes to predict. A final softmax

50

RiSER: Learning Better Representations for Richly Structured Emails Chapter 3

layer is applied to obtain the normalized probabilities over the labels:

p = softmax(Wcv + bc) (3.10)

The training objective of our framework is cross-entropy loss:

loss = −
∑
d∈D

∑
c∈C

pgc(d) · log(pc(d)) (3.11)

where D is the set of training emails, C is the collection of email classes, pc(d) is the

probability of predicting email d as class c, and pgc(d) is a binary value indicating whether

c is the correct label. The entire model is trained through back-propagation with respect

to all parameters. Training details are further explained in Section 3.4.3.

3.4 Experiments

This section presents the results from several experiments on data from a large Gmail

corpus to illustrate the effectiveness of the RiSER architecture. We focus on two binary

classification tasks for this purpose. The first task is one of detecting if an email contains a

bill. This model is used by the email service to determine if it wants to proactively remind

the user when a bill is due. The second task is one of detecting if an email contains a

hotel reservation confirmation. This model is also used to support intelligent applications

such as travel planning. We refer to these two as the Bill and Hotel tasks. We pick these

two tasks for illustrative purposes. The overall system that these classifiers are a part

of includes several other classifiers (and extractors) for flights, calendar appointments,

shipping confirmations, etc.

The experiments are designed to compare the performance of different RiSER variants

(introduced in Section 3.4.2) against a strong baseline and to understand the incremental

51

RiSER: Learning Better Representations for Richly Structured Emails Chapter 3

advantage of incorporating the annotations and XPath embeddings. Before describing

the experimental setting, we first describe how the datasets are constructed including the

source for the labels and sampling techniques used to deal with biases.

3.4.1 Dataset

The training and testing datasets are constructed by sampling from the Gmail corpus.

During the course of this work, user privacy was protected through strict data access

controls and data pre-processing to avoid training on sensitive data. Nobody involved

with this project had access to visually inspect any of the data. Only terms matching

the dictionary of top 20,000 terms are used, while the rest are replaced by an unknown

identifier. Any text spans that contain potentially private data (such as addresses, dates,

and phone numbers) are denoted by the corresponding annotation feature, and the

underlying terms are replaced by the unknown identifier.

3.4.1.1 Labels

Ground truth labels for this dataset are derived from three sources: Microdata [61],

manually defined parsers, and rule-based extractors. Microdata is a standard that enables

senders to explicitly label and mark up their outgoing emails with structured information.

For example, when sending a confirmation email to a customer, hotels can include markup

to indicate that their emails are reservation confirmations, and even specify details such

as confirmation numbers, addresses, check-in and check-out out dates and times, etc.

While Microdata markup is precise, it is not widely adopted by all email senders, so the

volume of annotations tends to be low.

Manually defined parsers are designed to extract category-specific fields from emails

in lieu of Microdata. These are created on a per-sender basis and hand-crafted based

52

RiSER: Learning Better Representations for Richly Structured Emails Chapter 3

on several instances of emails donated by users for this very purpose. For the purposes

of email classification, we use the presence of a successful extraction from an email as a

positive label for the category.

Note that we prioritize construction of parsers for high volume senders, since (a) parser

construction is laborious, thus focusing on larger senders yields more labeled samples,

and (b) the donated corpus is relatively small and thus contains a limited number of

samples from low volume senders. Manually defined parsers tend to be highly precise but

brittle, since small changes to the emails can often break the parsers, requiring human

involvement and new donated emails to fix them.

Rule-based extractors consist of a manually engineered set of traditional information

extraction techniques, such as dictionary lookups and regular expressions, that operate

across senders. These are also constructed by leveraging the donated email corpus for

both development and validation. These tend to have higher recall than the approaches

above, but often at the cost of lower precision. Similar to the manually defined parsers,

we use the presence of a successful extraction of an email as a positive label for the email.

3.4.1.2 Sampling

Despite drawing labeled examples from the three sources of ground truth mentioned

above, the vast majority of emails remain unlabeled, and even among those that are

labeled, the distribution is skewed towards higher volume senders. Thus, training classifiers

using a uniformly random sample of data often leads to overfitting and poor generalization

to smaller senders.

Domain-based sampling attenuates this issue by limiting the number of samples

observed from high volume senders and boosting those from smaller senders, however

this method can be too coarse for larger senders that have their own internal skew—e.g.

the majority of amazon.com email might be classified as purchase orders, while a small

53

RiSER: Learning Better Representations for Richly Structured Emails Chapter 3

fraction are account memberships or bill reminders.

We find a balance between these two methods by stratifying emails by the templates

from which they are instantiated. This ensures that an even number of emails are

represented from the purchase order, account membership, and bill reminder templates,

along with emails from much smaller senders.

These templates are inferred through a one-time template generation process that

clusters similarly structured emails into groups that are likely to have been instantiated

from a single template. These techniques range from clustering on the sender and subject

of an email [62] to clustering on the structure of the email body [63, 50]. In this work, we

use structural clustering techniques based on a locality sensitive hash of the email body

similar to the technique described in [48].

We split the data into train and test sets with a ratio of 9:1 while ensuring that

samples belonging to the same sender domain appear in only one of these sets to prevent

the effects of memorization. For the training data, we downsample the negative examples

to yield a positive-to-negative ratio of about 1:100. We keep the original ratio in the test

set. To put this into perspective, the resulting training sets have approximately 150M

total samples for the Bill task and 31M samples for the Hotel task.

3.4.2 Experiment Configuration

We train and evaluate four variants of the RiSER architecture, each incorporating

a different combination of the textual, annotation, and structural features described in

Section 3.3.2.

RiSER-W uses the Word Encoder only and represents words using the word embeddings

component only. That is, in Equation 3.5, the word representation wi is represented

by the word embedding ei only.

54

RiSER: Learning Better Representations for Richly Structured Emails Chapter 3

RiSER-WA uses the Word Encoder and represents words with the word embeddings

and annotation features.

RiSER-WX uses both the Word Encoder and the Xpath Encoder and represents words

with the word embeddings and XPath encodings.

RiSER-WXA uses both the Word Encoder and the XPath Encoder and represents

words with the word embeddings, XPath encodings, and annotation features. This

variant is the one displayed in Figure 4.3.

The RiSER-W variant is simply an LSTM-based recurrent model with an attention

mechanism, as it only includes word embeddings in its input layer. Recent studies in the

literature have shown that attention-based LSTM models [51, 64] are excellent for modeling

text documents and achieve state-of-the-art performance in document classification tasks

by outperforming linear models, SVMs, and feed-forward neural networks. Therefore we

consider RiSER-W as a baseline model to compare against the remaining RiSER variants.

Note that one can employ more complex neural architectures than just the RiSER-W

architecture to improve email classification performance. However the focus of this work

is to demonstrate the advantages of exploiting the rich formatting structure of emails

through our proposed XPath Encoder and overall architecture. Moreover, we aim to

demonstrate that textual content can be better utilized when combined with structural

information for learning email representations.

We compare the performance of the RiSER-WA, RiSER-WX and RiSER-WXA variants

against the baseline RiSER-W model to determine whether structural information and

annotation features can improve the learned representations. We test this hypothesis

by classifying emails into two semantic categories, Bills and Hotels. While we could

have posed this as a multi-class classification problem, practical convenience of improving

one model without affecting any other models motivated us to pose these as separate

55

RiSER: Learning Better Representations for Richly Structured Emails Chapter 3

binary classification tasks. The general idea of leveraging structure to learn a better

representation holds for multi-class, multi-label, or even regression tasks.

BILL

Hyper-parameter RiSER-W RiSER-WA RiSER-WX RiSER-WXA

batch size 200 200 200 200
learning rate 0.001 0.0001 0.0001 0.001

optimizer type Adam Adam Adam Adam
word embedding dim 200 100 100 100

WE LSTM output dim 128 128 128 128
WE dropout rate 0 0.25 0.25 0

tag embedding dim N/A N/A 25 25
max XPath length N/A N/A 20 20

XE LSTM output dim N/A N/A 64 16
XE dropout rate N/A N/A 0.5 0.25

HOTEL

Hyper-parameter RiSER-W RiSER-WA RiSER-WX RiSER-WXA

batch size 200 100 200 200
learning rate 0.001 0.0001 0.0001 0.001

optimizer type Adam Adam Adam Adam
word embedding dim 200 100 100 200

WE LSTM output dim 128 64 64 128
WE dropout rate 0.5 0.25 0.25 0.25

tag embedding dim N/A N/A 50 25
max XPath length N/A N/A 20 30

XE LSTM output dim N/A N/A 16 64
XE dropout rate N/A N/A 0.5 0.25

Table 3.2: Selected hyper-parameters for the RiSER variants for the Bill and Hotel classification
tasks. WE stands for Word Encoder and XE stands for XPath Encoder.

3.4.3 Hyper-parameters and Training

For all four variants, we perform grid search over the word embedding dimension

({50, 100, 200}), the word encoder LSTM output (hidden state) dimension ({64, 128,

256}), the initial learning rate ({0.01, 0.001, 0.0001}), the batch size ({50, 100, 200}),

the word encoder dropout rate ({0, 0.25, 0.5}), and the optimizer type (AdaGrad [65]

and Adam [66]). For the Adam optimizer, we use the default settings suggested by the

56

RiSER: Learning Better Representations for Richly Structured Emails Chapter 3

authors (β1 = 0.9, β2 = 0.999, ε = 10−8).

For the RiSER-WX and RiSER-WXA models we also search over the following

additional hyper-parameters: the HTML tag embedding dimension ({25, 50, 100}), the

XPath encoder LSTM output dimension ({16, 32, 64}), the XPath encoder dropout rate

({0, 0.25, 0.5}), and the maximum XPath length ({20, 30, 40}).

We use the norm clipping trick with a threshold of 5.0 in all four models to avoid the

exploding gradient problem.

For each model, we use the Vizier [67] platform to select the best combination of

hyper-parameters based on AUC-PR after a maximum of 1M training steps. The selected

hyper-parameters for each model are shown in Table 3.2. We later continue training the

selected models until they converge and report their highest numbers on the test data in

the next section.

3.4.4 Results and Discussion

Classifier performance is often measured using area under the receiver operating

characteristic curve (AUC-ROC). However, when dealing in datasets with high class

skew—which is often the case for email—the area under the precision-recall curve (AUC-

PR) provides a much fairer representation of model performance. In practice, even the

AUC-PR metric is inadequate given that applications for email generally require extremely

high precision. For example, misclassifying an important email as spam is an incredibly

bad user experience.

Thus, we evaluate our models based on their recall at a fixed level of high precision.

By requiring that all models reach a prespecified precision threshold, we minimize bad

user experiences. Fixing the precision then allows us to evaluate different models by the

extent of their coverage at that level of precision. That being said, we also report the

57

RiSER: Learning Better Representations for Richly Structured Emails Chapter 3

BILL
Model R@P=0.85 R@P=0.90 R@P=0.95 AUC-PR

RiSER-W 76.4 71.5 57.4 85.4
RiSER-WA 76.8 73.0 63.1 85.9
RiSER-WX 76.6 73.5 64.1 86.2

RiSER-WXA 78.0 73.7 66.0 85.6

HOTEL
Model R@P=0.85 R@P=0.90 R@P=0.95 AUC-PR

RiSER-W 95.9 95.0 92.4 97.1
RiSER-WA 97.3 95.7 93.2 98.0
RiSER-WX 96.3 95.5 93.5 97.2

RiSER-WXA 97.4 96.3 92.9 97.7

Table 3.3: Recall at a fixed level of precision and AUC-PR performance metrics for four RiSER
variants trained for the Bill and Hotel classification tasks.

AUC-PR metric for clarity. The experimental results on both datasets are summarized in

Table 3.3.

3.4.4.1 Recall-at-fixed-precision (R@P)

Results show that our RiSER-WXA variant overall gives the best performance across

both datasets. The improvement in performance depends on the data type. For more

complex dataset, such as Bill, the RiSER-WXA variant outperforms the baseline model

(RiSER-W) by 2.2% on R@P(0.9), and by 8.6% on R@P(0.95) metrics. Note that

recall tends to decrease drastically for the baseline model as the precision threshold

increases, while RiSER-WXA demonstrates more robust performance. This leads to a

larger gap between both models’ recall at higher precision thresholds. On the other hand,

improvements in the Hotel task are smaller compared to the Bill task, leading to 1.3% on

R@P(0.9), and by 0.5% on R@P(0.95) metrics. We also report the experimental results

of RiSER-WA and RiSER-WX variants in order to better evaluate the effects of each

component.

58

RiSER: Learning Better Representations for Richly Structured Emails Chapter 3

Effect of annotation features. Our experiments show that using crafted annotation

features on top of word embeddings provides important performance gains over the baseline.

With respect to the R@P(0.95) metric, the RiSER-WA variant outperforms the RiSER-W

variant by 5.7% on the Bill task, and 0.8% on the Hotel task. Similarly, the gap between

recall is smaller (1.5% and 0.7%) as we decrease the precision threshold.

We believe the reason behind the performance boost that comes with the annotation

features is that they allow us to recover meanings in words that cannot be captured with

the defined vocabulary. To be more specific, emails include dates, numbers, addresses such

that most of these terms are anonymized due to privacy constraints and are embedded

with the unknown vector. Thus, including the annotation features allows our framework

to capture these additional signals, which intuitively improves the model’s ability to

correctly classify an email. As a toy example, an email without a date is most likely not

a hotel reservation.

Effect of email structure. Combining XPath encodings with word embeddings

leads to an improvement of 6.7% in the Bill task, and 1.1% in the Hotel task with

respect to the R@P(0.95) metric. More importantly, by comparing the performance of

RiSER-W and RiSER-WX, we verify that incorporating the HTML structure into the

learning process leads to improved email representations. In Section 3.4.5, we illustrate

this with some example emails in which the inclusion of HTML structure results in better

classification.

While improvements of the order of 5% to 10% may seem small, they represent a

significant reduction in “bad experiences” for users of Gmail. Consider, for example, a

service that extracts structured data from these emails to remind people when their bills

are due or answers questions about their hotel reservations. The improved models directly

translate to improved recall for both these assistive experiences.

59

RiSER: Learning Better Representations for Richly Structured Emails Chapter 3

Figure 3.4: Word attention weights on an example donated Hotel email using the RiSER-W
and RiSER-WX variants. Brighter red highlighting indicates a higher attention weight for the
corresponding term relative to the other terms in the email.

3.4.4.2 AUC-PR

The AUC-PR metric generally improves for RiSER-WA, RiSER-WX and RiSER-

WXA variants compared to the baseline variant on both classification tasks. However, the

improvements are not always in line with the improvements to the recall-at-fixed-precision

metric. Surprisingly, unlike the R@P metric, the RiSER-WXA variant does not have the

highest AUC-PR for either task. For the Bill task, the RiSER-WX variant performs the

best (86.2%), while for the Hotel task, the RiSER-WA variant has the highest AUC-PR

(98.0%).

3.4.5 Qualitative Analysis

In order to get an intuition into how RiSER utilizes the HTML structure of an email,

we visualize and compare the attention weights of two architecture variants: one that

excludes the XPath encodings and one that includes the XPath encodings. Here, we

use the RiSER-W and RiSER-WX variants trained for the Hotel classification task. We

illustrate the resulting attention weights of the two models applied to a single donated

email example in Figure 3.4. Note that we obfuscate key information for privacy reasons.

In comparing the term attention weights of the RiSER-W and RiSER-WX models,

we find that the latter is much better at attending to terms that are semantically relevant

to the hotel reservation class. For example, terms such as ‘stay’, ‘reservation’,

60

RiSER: Learning Better Representations for Richly Structured Emails Chapter 3

Figure 3.5: Term and XPath attention weights. Red highlighting indicates the term attention
weights. Yellow highlighting indicates the XPath’s HTML tag attention weights (row normalized).
Brighter colors indicate higher attention weights.

‘confirmation’, and ‘guest’ are attended to while the RiSER-W model attends to

nearly all words. In fact, it attends more to those that are less semantically relevant in

this example.

To get an intuition as to why structural information helps these models attend

differently to these terms, we inspect the attention weights of the XPath tags in addition

to the term attention weights. We visualize these weights for a donated email example in

Figure 3.5. Red highlighting indicates term attention weights while yellow highlighting

indicates the XPath’s HTML tag attention weights.

Our first observation is that the use of structure helps the model understand the

boundaries of different parts of the email. In this particular example the model attends

to terms that belong to the subject more than the remainder of the text stream. Note

61

RiSER: Learning Better Representations for Richly Structured Emails Chapter 3

that the word attention weights drop suddenly at the boundary of the subject and the

beginning of the message body. We observed this pattern across many donated examples.

Our second observation is that the model also attends more to HTML tags that

are often used to highlight important text. In this example, the model pays particular

attention to meaningful tags such as strong (which indicates if a word is bold-ed),

h1/h2/h3 (which indicate headers), and ul and li (which indicate list items). These

types of markup are generally used to draw the user’s attention to specific text in a

rendered email, often containing important information. Similarly, note that the center

tag, which aligns all inner HTML to the center of the display, is also highly attended to.

In summary, from inspecting the attention weights of the RiSER architecture with

and without XPath encodings, we observe that including structural information improves

attention at the term level by helping the model learn about boundaries in documents

(e.g. subject vs. message body), as well as learn to focus on parts that the original sender

intended to draw the user’s attention to (e.g. strong, center, etc.).

3.5 Related Work

Our work builds on contributions from several research areas including natural language

processing, data mining, web mining, and deep learning. Here we discuss related work in

two main categories: text representation and email representation.

There is a rich history of work in text representation [68, 69] for various tasks like

sentiment classification [70] (e.g. positive or negative reviews) and genre detection (e.g.

sports, news, entertainment, etc.). More recently, the availability of large amounts of text

data has led to unsupervised approaches for learning a good distributed representation

for words. Techniques like Word2Vec [71] and Glove [59] have produced pre-trained

embeddings for words that can be combined with more complex neural approaches.

62

RiSER: Learning Better Representations for Richly Structured Emails Chapter 3

The success of these approaches are later combined with the power of recurrent neural

networks (RNNs) which led others to learn distributed representations of a larger piece of

text like sentences [72], paragraphs [73], and documents [74]. Several variants of RNNs

like convolutional-gated RNN [75], tree-LSTM [76] and Quasi-RNN [77] are proposed

as alternative architectures. Apart from recurrent neural networks, methods employing

convolutional networks [78, 79] have also produced compelling results for text classification

tasks.

Recently, authors in [51] have argued that the hierarchical structure of documents

helps to learn better representations. Acknowledging that the importance of words or

sentences may vary depending on the context, they use an attention mechanism [80] while

hierarchically encoding words into sentences and sentences into documents. In addition

to the hierarchical structure, discourse structure [81] in the text, which represents the

linguistic organization of a text as a tree, has also been studied in recent document

representation work [82, 83, 64].

Each of these lines of research are based solely on the textual content assuming that

the documents are plain-text. In this paper, we focus on machine-generated emails

which have a rich HTML structure. In addition to leveraging the textual context, we

encode the structural markup to learn a better representation. Note that in our work,

the term “structure” corresponds to a formatting structure of an email, rather than the

linguistic structure mentioned above. Combining our framework with the aforementioned

architectures is possible and makes for promising future work.

Learning good email representations has been an area of interest for multiple research

groups [49, 48, 50]. In addition to information extraction, email classifiers are useful for

other applications like automatic foldering [84, 46], spam classification [85], and message

priority ranking [86].

Lastly, systems like Fonduer [87] tackle richly formatted documents for the task of

63

RiSER: Learning Better Representations for Richly Structured Emails Chapter 3

Knowledge Base Construction (KBC). Fonduer shows that augmenting textual features

with structural and visual features produced by a library that parses the HTML markup

and providing it to a strong baseline like a bi-directional LSTM with attention can indeed

provide a significant improvement over just using the text features. Our results agree

with the findings in Fonduer – formatting information does indeed help us learn a better

representation for an email. In contrast to the approach of engineering a set of structural

features (examples from Fonduer include HTML tag of the term, HTML tag of the parent,

tabular features like row number, column number, n-grams from all the cells in the same

row) our approach simply relies on learning an encoding using the sequence of HTML

tags that appear in the path from the root to the node containing the term. Our results

show that this is a powerful approach when combined with well-known building blocks

like LSTMs and an attention mechanism. While we do not implement the nearly 40

structural, tabular, and visual features implemented in Fonduer, an interesting piece of

future work is to study if XPath encodings as learned by our model can be as effective as

the sophisticated features manually engineered in Fonduer.

3.6 Conclusion

In this paper, we study the problem of learning representations for richly structured

emails. Considering the fact that most of today’s emails are machine generated, we argue

the rich formatting used in these emails contains highly valuable information that can be

used to learn better representations. To address this gap in the literature, we proposed a

novel framework called RiSER. Our framework combines three components from the email

in order to learn an enhanced email representation: 1) textual content, 2) HTML structure,

3) manual annotation features. We show the effectiveness of our approach by evaluating

the individual components as well as the full framework on email classification task across

64

RiSER: Learning Better Representations for Richly Structured Emails Chapter 3

two datasets from a large email service. The experimental results and visualizations

further indicate that our framework is learning an improved representation for emails and

is capable of capturing valuable information buried in the email’s HTML structure.

We plan to explore multiple avenues of future research. We expect that leveraging

structure will be valuable for other challenging tasks like information extraction from

emails and web pages. We are considering ways to extend the RiSER framework to other

types of documents with rich structure. For instance, PDFs and scanned images contain

many informative layout and structural signals. However such documents do not contain

XPath-style markup. We are also exploring alternative ways to represent the layout and

formatting information from such documents.

65

Chapter 4

Multi-Resolution Attention for

Personalized Item Search

4.1 Introduction

Recent years have seen rapid growth in popularity and complexity of online e-commerce

and content-sharing platforms (e.g. music streaming [88], video streaming [89], photo

sharing [90]). Consequently, developing a high-quality search engine has become one of

the key objectives of these online platforms with millions of active users. Despite their

contextual differences, all of these platforms bear the common challenge of retrieving

suitable contents from a large searchable database to satisfy their users’ search intents.

Users interact with such platforms in highly personalized ways [91]. The same search

query entered by different users is likely to carry different search intentions, due to

the diverse nature of personal taste and preferences [92, 93]. To that extent, historical

interactions of users serve as a great asset for the problem of personalized item search

to improve users’ search experiences. For example, one can look for relevant signals

within the user history that can inform users’ intent behind their search query. The

66

Multi-Resolution Attention for Personalized Item Search Chapter 4

idea of utilizing users’ history to better understand their search needs has been widely

studied in the literature and proven valuable for various domains including product search

[94, 95, 96], web search [97, 98], microblog search [99], and video search [100, 101].

Researchers have explored various directions to model user history, most of which

are naturally formulated as a sequence modeling problem, since user history data often

originate as a sequence of (ordered) interactions (e.g. purchases, watches, likes). Amongst

the previously proposed mechanisms, self-attention [102] has gradually become a key

component in sequence modeling tasks, leading to state-of-the-art results across many

domains, including natural language processing [103], speech recognition [104], and

recommender systems [105]. The self-attention mechanism has also proven useful in

personalized item search, thanks to its ability to detect attention weights from the input

event sequence with respect to the given context (in this case, search query). Such

attention weight distribution intrinsically carries a notion of relevance between the search

query and user history, leading to contextualized personalization.

Most of the self-attention based and other sequential models by design account for

sequential signals rather than temporal signals. However, the latter aspect has significant

implications for personalized item search. Since the user interactions take place at

aperiodic points in time [106], there can be gaps between the sequential patterns and

temporal patterns of user behaviors (as illustrated in Figure 4.2). This entangles different

explanatory factors unique to personalized item search. Intrinsically, the time spans

between the search query and user history items directly affect their degree of relevance

(e.g., interaction occurred a day ago vs. a month ago). While there are emerging

efforts to incorporate temporal information into neural sequential recommendation models

[107, 108, 109, 110, 111], where the goal is to recommend items that are likely to be

of interest to users solely based on their past interactions (without the existence of a

search query), this research direction has not been adequately studied for the setting of

67

Multi-Resolution Attention for Personalized Item Search Chapter 4

personalized item search.

In this work, we propose multi-resolution attention for personalized item search. Multi-

resolution attention effectively retrieves relevant items for users while accounting for

higher-order temporal dependencies between their search query and item history. The

key innovative idea behind our method is to compute the relevance between the search

query and the history items over various temporal regions (or subspaces), which in turn

can recognize and incorporate users’ interests from various temporal resolutions. We

achieve this by a novel multi-head attention formulation that explicitly enforces different

attention heads to cover parts of the sequence that belong to distinct temporal regions

with adaptive time boundaries, which are also learned jointly with the rest of the model.

Our approach comes in two variants, each designed to accommodate different temporal

densities of real-world data.

We evaluate the proposed approach on a public benchmark dataset and compare

it with strong baseline approaches, including the adaptations of two state-of-the-art

temporal models [109, 111] originally proposed for the sequential recommendation task.

Our experiments showcase that multi-resolution attention consistently achieves superior

performance across five different domains, outperforming the best baseline by up to

4.7%. Moreover, our method is a parameter efficient alternative to existing embedding-

based [109] and kernel-based [111] methods, providing a new perspective on modeling the

complex temporal nature of user history.

By design, our method operates on a space of discrete identifiers of items, circumventing

the assumption that additional contextual information is available. Recent works have

shown that such information may not be available nor feasible to obtain for many settings

such as content-sharing platforms [112], while their usefulness is also in debates [113].

Therefore, we focus on the orthogonal problem (that is, how to build a model on top of

these embeddings to account for temporal dependencies in data), which can potentially

68

Multi-Resolution Attention for Personalized Item Search Chapter 4

extend to multiple domains with different contextual flavors (e.g., textual descriptions,

images, and other metadata features [114, 115]).

4.2 Related Work

Personalized item search is a generic concept aiming to improve users’ search

experience by retrieving personalized items from a large searchable database. It is

important to note that, while a search query might possess different forms (e.g., text,

image, voice), our work particularly focuses on textual queries. Conceivably, the most

popular application domain for personalized item search is online e-commerce, wherein the

term product is generally used as a substitute for the term item. Studies on personalized

product search [94, 95, 96, 116, 117, 118, 119] essentially aim to link search queries with

products (often via their contextual information) while taking into account the users’

previous action logs within the platform.

Being the earliest study to investigate personalization in product search, authors in

[94] proposed a hierarchical embedding model to learn latent semantic representations of

users, products and queries with their associated language data (e.g. review), and retrieve

products according to the similarities directly measured in this latent space. Similarly,

authors in [119] employed a review-based transformer model to encode user, product and

query relations. In another study [95], authors proposed a technique consisting of two

attention networks, each designed to independently capture short and long-term user

interests. However, their method defines the short/long-term interest solely based on the

sequential order of interactions (e.g., short-term means last m interactions), which can not

capture the rich temporal patterns found in data. Considering that the previous studies

often model user history and their search query as separate signals, authors in [96] more

recently argued that the two signals are tightly connected, and investigated the potential

69

Multi-Resolution Attention for Personalized Item Search Chapter 4

of personalization with respect to query characteristics. While their findings highlight the

need for query-aware personalization in product search, their method essentially treats all

previous interactions as a set, ignoring their order, let alone temporal dynamics.

The pursuit of personalization has also become one of the main pillars in the develop-

ment of search engines for content-sharing platforms [120, 112]. The diverse contextual

nature of such platforms imposes unique challenges to learn meaningful representations

of users and items. In the lack of descriptive information, authors in [112] combined

the discrete user history signal with the corresponding provider information to perform

personalized item retrieval. Another work [120] developed a method to jointly learn user

and listing embeddings for personalized home listing search, utilizing multiple in-session

(clicks, host contacts) and meta-data signals.

Despite their great success, the aforementioned studies for personalized item search

do not leverage the rich temporal signals found in data. Being the first to address this

problem, our work aims to recognize and capture higher-order temporal dependencies

between users’ search queries and item history using a novel multi-resolution attention

mechanism.

Sequential recommendation is another line of related work to ours, with a promi-

nent difference that the users can not specify their information needs explicitly. Therefore,

the goal is to recommend items that are likely to be of interest to users solely based on

their history. Amongst the pioneer studies, authors in [105] leveraged the self-attention

mechanism for adaptive summarization of user history. Memory networks are adopted in

[121] to memorize the anchor items that drive future user actions. Another study [122]

proposed a hierarchical gating network to adaptively control which latent features of

items will contribute to the downstream task.

There have been recent studies to model the temporal aspect of user history in the

context of sequential recommendation [107, 108, 109, 110, 111]. Amongst these studies,

70

Multi-Resolution Attention for Personalized Item Search Chapter 4

authors in [109] proposed a time-aware self-attention module, which—in addition to

relative position representations [123]— learns relative time interval representations to

jointly capture both the sequential and the temporal nature of user interactions. The idea

of modeling time intervals between user interactions is also studied in a recent work [111],

wherein the authors instead employed a combination of different time kernels to calibrate

the attention weights between user interactions based on their relative time intervals,

providing a parameter efficient alternative to the embedding based approach proposed

in [109].

These studies fundamentally differ from the setting of personalized item search because

the presence of a search query marks a pivotal point in time, which has distinct indications

in modeling the temporal signals with respect to user history. Needless to say, different

search queries entered by users have varying temporal relations to their interaction history,

the extent of which also depends on the context of the query (e.g. “sports watch” vs

“Fitbit Versa 3”). Nonetheless, our experiments include adaptations of the aforementioned

temporal recommendation models [109, 111] as baselines to (1) better assess the efficacy of

our proposed approach, and (2) bridge the methodological gap between the two problem

settings.

4.3 Temporal Resolution of User Interactions

We first provide insights into the complex temporal dynamics of user interactions

observed in a real-world setting [106] and further draw connections to key motivations

behind our proposed method.

In the context of personalized item search, there exist numerous factors contributing to

the relationship between a search query and the recorded user interactions (i.e., history).

Such relationships are often tightly connected to the temporal aspect of the user histories

71

Multi-Resolution Attention for Personalized Item Search Chapter 4

0 100 200 300 400 500 600 700
Time intervals (days)

0

200000

400000

600000

800000

1000000

Co
un

t

Home and Kitchen

0 100 200 300 400 500 600 700
Time intervals (days)

0

200000

400000

600000

800000

1000000

Co
un

t

Kindle Store

Figure 4.1: Histogram of time intervals between consecutive interactions of users.

[124, 125, 109, 126], as well as the users’ search intents [96] (which, in turn, are reflected

on their query formulations [92, 127]). For instance, while some search queries (e.g.

“action movies”) might exhibit longer-term dependencies on user histories, some others

(e.g. “humidifier”) are triggered by users’ short-term interests, hence might not depend

on their longer-term history. Moreover, such dependencies might display strong periodic

patterns, as in the case of recurrent purchases of grocery products or cleaning supplies.

To study the complex and non-linear nature of these temporal dependencies in data,

one needs to examine the temporal dynamics of user interactions. Figure 4.1 plots the

histogram of time intervals between two consecutive interactions (of the same user) for

two broad product categories, showing that the users’ interaction patterns vary depending

on the context of their search. Furthermore, to observe users’ interaction patterns more

closely for both categories, we also plot the most recent interactions of the same set of

five active users, together with the temporal information of their interactions. Figure

4.2 shows that even the same user might exhibit vastly different temporal patterns when

interacting with different categories (e.g., users 3 and 4), revealing one of the major

challenges in personalized item search. We also observe that user interactions tend to be

concentrated (or grouped) over multiple temporal spans, each corresponding to a relatively

narrow time period (e.g. 2-3 days). On the other hand, the gaps between such grouped

72

Multi-Resolution Attention for Personalized Item Search Chapter 4

0 200 400 600 800 1000 1200
Time period (days)

0

5

10

15

20

25

30

Us
er

 in
te

ra
ct

io
ns

Home and Kitchen

user 1
user 2
user 3
user 4
user 5

0 200 400 600 800 1000 1200
Time period (days)

0

5

10

15

20

25

30

Us
er

 in
te

ra
ct

io
ns

Kindle Store

user 1
user 2
user 3
user 4
user 5

Figure 4.2: Last thirty interactions of the same set of five users who actively interact with both
categories. Y axis represents the users’ interactions in chronological order, while the X axis
represents the time period (in days) with respect to their latest interaction.

interactions can be very large (e.g., over a year). For the remaining of this paper, we refer

to such grouped temporal patterns as the temporal resolutions of user interactions.

We further argue that the potential for personalization differs across these resolutions.

With that being our key intuition, we propose a novel approach (multi-resolution attention)

that can (i) adaptively recognize such temporal resolutions and (ii) accurately model

the diverse dependency patterns between search queries and user histories across these

resolutions. The next section explains the details of our method, which is illustrated in

Figure 4.3.

73

Multi-Resolution Attention for Personalized Item Search Chapter 4

Query-Aware History Encoding Layer (with Multi-Head Attention)

History Encoding Layer

Prediction
Layer

(with Multi-Resolution Attention)

Query-Aware History Encoding Layer (with Multi-Resolution Attention)

Non-overlapping

time

(with Multi-Resolution Attention)

Query-Aware History Encoding Layer (with Multi-Resolution Attention)

Overlapping

time

Input Layer

user history search
query

Figure 4.3: An illustration of our proposed method architecture. The left side shows the
high-level components of our method, while the right part shows the proposed multi-resolution
attention variants: overlapping (top) and non-overlapping (bottom).

4.4 Proposed Method

4.4.1 Problem Setting

We start with formally introducing our problem and the notations used in this paper.

Let I denote the set of items, U denote the set of users. For each user u ∈ U , we

are given the following inputs: (i) a recent search query qu, (ii) a time-ordered list of

previously interacted items Su = (vu1 , · · · , vu|Su|) where vui ∈ I, and (iii) a list of timestamps

T u = (tu1 , · · · , tu|Tu|) corresponding to each interaction, where tu1 ≤ · · · ≤ tu|Su| ≤ tqu , with

tqu being the timestamp of qu, and |Su| (or |T u|) denoting the number of interactions the

user u previously had with the system. Our goal is to predict the (|Su|+ 1)th item that

the user u will interact with.

The main notations used in our paper are summarized in Table 4.1.

74

Multi-Resolution Attention for Personalized Item Search Chapter 4

Notation Description

I,U item and user set
Qu user u’s query sequence (in chronological order)
Su user u’s item sequence (corresp. to Qu)
T u user u’s timestamp sequence (corresp. to Qu, Su)
N maximum sequence length
d, dq latent dimensions
h number of attention heads
q,w query and word embedding vectors, respectively
M,P item and position embedding matrices, respectively
T relative time interval matrix

Ê input embeddings (corresp. to Su)

E(l) input embeddings after (l)th self-attention block
Eq query embeddings (corresp. to Qu)
Eh input history encoding
Eqh query-aware history encoding
H output representation of the model
∆i time boundary for ith attention head

Table 4.1: Main notations used in this paper.

4.4.2 Preliminaries

This section introduces preliminary techniques that serve as the building blocks of

our framework, which are explained in the context of recommender systems to maintain

contextual consistency.

The self-attention mechanism [102] aims to capture the importance (attention)

weights of the sequential inputs (in our case, items) that are identified through the inner

products of item representations. The items with higher attention weights have more

contributions to the final output representation, and consequently, to the final downstream

task. Such mechanism in principle assumes that the output of a given sequential input is

relevant to only part of the sequence, which makes it a natural and desired instrument

for recommendation tasks [105, 121, 96, 128, 109]. It is formally defined as:

Attention(Q,K, V) = Softmax(
QK>√
dattn

)V (4.1)

75

Multi-Resolution Attention for Personalized Item Search Chapter 4

where Q, K, and V respectively denote the queries, keys, and values of items in the

sequence. Here it is important to note that the above term “query” is domain-agnostic,

i.e., it is not tied to the notion of “search query” in the context of our work. This

mechanism relies on the positional embeddings to recognize and capture the sequential

order of items. Hence, in applications, the vector representation for each position is

combined with the corresponding item embeddings.

Causality. Due to the nature of our problem, the model should only take into account

the previous items when predicting the next item. Therefore, we need to prevent leftward

information flow (leak) in self-attention computation. This is achieved by masking the

upper triangular entries of QK>, that is, (QK>)i,j = −∞ ∀i < j.

The self-attention block (SAB) is defined as a combination of self-attention and

point-wise feed-forward network (FFN) layers:

SAB(X) = FFN(Attention(XWQ, XWK , XW V)) (4.2)

where WQ ∈ Rd×dattn ,WK ∈ Rd×dattn ,W V ∈ Rd×d are the (linear) projection weight

matrices. FFN is essentially a two-layer MLP with ReLU activation, applied independently

to each position of the input.

4.4.3 Query-Aware Personalization

This section focuses on building the base of our architecture by leveraging several

neural components introduced in Section 4.4.2. The subsequent section is dedicated to

the novel components of our method, explaining how we leverage the temporal signal.

For training purposes, we transform the input sequence of each user into a fixed-length

sequence of N interactions Su=(vu1 , · · · , vuN). If the input sequence has more than N

items, we only consider the most recent N interactions and omit the remaining items,

76

Multi-Resolution Attention for Personalized Item Search Chapter 4

while if the sequence length is less than N , we left pad the sequence until it reaches the

length N . Same procedure is also applied to the corresponding sequence of timestamps

Tu = (tu1 , · · · , tuN) and the sequence of queries Qu = (qu1 , · · · , quN). Each query qui results

in interaction with item vui . For simplicity, we assume that both qui and vui have the

same timestamp (tui), hence once can define an event eui = (qui , v
u
i , t

u
i). Here we note that

the Qu is formed solely for notational convenience, and our method (1) does not require

each history item to be associated with a particular query, and (2) does not consider the

previous query signals in its next item predictions.

4.4.3.1 Embedding Layer:

Next, we create sets of learnable embeddings for items, positions, and search queries,

which are then processed by a series of self-attention blocks.

Item Embeddings. An item embedding matrix is denoted as M ∈ R|I|×d, where d is the

latent dimension of item embeddings. The row vector Mv ∈ Rd represents the embedding

of an item v ∈ I. A constant zero embedding vector is used for the padding items.

Position Embeddings. A learnable position embedding matrix is denoted as P ∈ RN×d.

The row vector Pk ∈ Rd represents the embedding of a position k ∈ [1, · · · , N].

Query Embeddings. Since queries are unknown in advance, we need to compute query

embeddings on the fly during inference so that we can represent arbitrary and potentially

unseen queries. Therefore, one of the standard ways to form a query embedding is to

compute the average of its word embeddings [129]: q =
∑
w∈q w

|q| , where q ∈ Rdq and

w ∈ Rdq respectively denote the query and word embeddings, and |q| is the length of the

query q.

77

Multi-Resolution Attention for Personalized Item Search Chapter 4

4.4.3.2 Input Layer:

Given an input sequence of interacted items Su = (vu1 , · · · , vuN) and queries Qu =

(qu1 , · · · , quN), we first right shift the item sequence by one index Ŝu = (<pad>, vu1 , · · · , vuN−1)

and then map both sequences to their embedding forms. For Ŝu, we combine the embed-

dings of items and their absolute positions to form input embeddings (Ê):

Ê =



0 + P1

Mvu
1

+ P2

· · ·

Mvu
N−1

+ PN


, Eq =



qu
1

qu
2

· · ·

qu
N


(4.3)

where Ê ∈ RN×d, and 0 is the padding vector. Eq ∈ RN×d represents the query embedding

matrix.

4.4.3.3 History Encoding Layer:

Next, to capture item-item relations, a stack of L self-attention blocks are employed

to transform the input embeddings (Ê) to another latent representation Eh:

E(0) = Ê

E(l+1) = SAB(E(l)), ∀ l ∈ [0, · · · , L− 1]

Eh = E(L) + Ê

(4.4)

where Eh ∈ RN×d is the output of the Lth self-attention block with skip connection to

the input embeddings. Being referred as the item history encoding, it is essentially a

non-linear transformation of input embeddings, where the kth representation (Eh
k ∈ Rd)

can be seen as a compact summary of the first k interactions, and be used to predict the

78

Multi-Resolution Attention for Personalized Item Search Chapter 4

(k + 1)th interacted item [105]. However, such representation alone is not sufficient to

fully capture the user intent, since it is still unaware of the search query.

4.4.3.4 Query-Aware History Encoding Layer:

Our next component summarizes the query-relevant parts of user history by capturing

query-item relations rooted in data. It consists of an additional attention module, in which

the attention weights over the outputs of the history encoding are computed with respect

to the search queries. Specifically, we employ a multi-head attention layer [102], which

learns attention distributions in h different d/h-dimensional representation subspaces,

allowing the model to jointly attend to information from different aspects of the user

history.

Eqh = Concat(head1, ..., headh)

where headi = Attention(EqWQ
i ,E

hWK
i ,E

hW V
i)

(4.5)

where WQ
i ∈ Rdq×(d/h), WK

i ∈ Rd×(d/h), W V
i ∈ Rd×(d/h) are projection matrices for each

head, and h is the number of attention heads. Eqh ∈ RN×d is called query-aware history

encoding, summarizing the parts of the interaction history that are most relevant to

the search query. Note that we further extend this layer in Section 4.4.4 to incorporate

temporal information using a novel multi-resolution attention module.

4.4.3.5 Prediction Layer:

Leveraging all the components introduced so far, we now can predict the next item

based on the previous k−1 items and the kth search query. In more detail, we combine

the representations of the query, the query-aware history encoding and the item history

79

Multi-Resolution Attention for Personalized Item Search Chapter 4

encoding to form a final latent representation:

H = ReLU(Concat(Eq,Eqh,Eh))WH (4.6)

where the weight matrix WH∈R(dq+2d)×d projects the combined representation back into

d dimensions. Finally, we measure the relevance score (rk,vi∈R) of the kth interacted item

being vi∈I by:

rk,vi = HkM>
vi

(4.7)

where Hk ∈ Rd is the kth row vector of H, and Mvi
∈ Rd is the embedding of item vi.

Intuitively, items with higher relevance scores are more likely to be interacted, thus we

can generate recommendations by ranking the items based on their relevance scores.

4.4.3.6 Optimization:

Recall that we convert the input sequence Su into a fixed N -length sequence, shifted to

the right by one index; Ŝu = (<pad>, vu1 , · · · , vuN−1) with the expected output (prediction)

sequence being Ou = Su = (vu1 , · · · , vuN). In order to learn accurate relevance scores of

expected outputs, we use the cross-entropy loss with 100 negative samples at each step:

L = −
∑

{Eu|u∈U}

N∑
k=2

[
log(σ(rk,Ouk)) +

∑
vj /∈Ou

log(1−σ(rk,vj))

]
(4.8)

where σ is the sigmoid function and Eu = (Ŝu, Qu, T u, Ou) includes the model inputs and

expected output for user u. Note that we ignore the first index due to padding. More

details on training and implementation are provided in Section 4.5.3.

80

Multi-Resolution Attention for Personalized Item Search Chapter 4

4.4.4 Multi-Resolution Attention

Modeling input sequences as a combination of item ids and their absolute positions

assumes a homogenous temporal resolution across the entire sequence, i.e., time intervals

between all adjacent items are the same. However, this is rarely the case in real-world

applications [109] as we also demonstrated in Figure 4.2. Motivated by these observations,

we now propose a novel approach to incorporate the rich temporal resolution of user

history in the setting of personalized item search. To emphasize, we are interested in

temporal dependencies between the search query and the past interacted items, unlike

the query-less setting where the temporal dependencies are studied solely within the item

domain [125, 107, 108, 109, 111].

We introduce a new attention layer—MultiResAttn—that is designed to capture

asymmetric query-item relations across multiple time resolutions. The main intuition

behind our approach is to explicitly guide multiple attention heads to focus on parts of

the item sequence that belong to distinct temporal ranges (i.e., resolutions).

We first define an attention function Ã (an adaption of Eq. 4.1) as:

Ã(Q,K, V, C) = Softmax(
QK> + C√

dattn
)V (4.9)

where C ∈ RN×N is an additive input to the softmax function, allowing flexibility for

controlling (or scaling) the attention weights between queries and items. Note that all

upper triangular elements of C are set to −∞ by default to avoid future information

leakage. We now explain how we leverage this adaption in our query-aware history

81

Multi-Resolution Attention for Personalized Item Search Chapter 4

encoding layer by modifying Equation 4.5 to take the form:

Eqh = MultiResAttn(Eq,Eh,Eh,T)

where MultiResAttn(Q,K, V, T) = Concat(head1, ..., headh)

and headi = Ã(QWQ
i , KW

K
i , V W

V
i ,Φi(T))

(4.10)

with Φi : RN×N 7→ RN×N and T ∈ RN×N . T is a lower triangular matrix including

relative time intervals between the search queries and the items; Tk,j = tqk − tvj (when

k ≥ j), with tqk and tvj being the timestamps of kth query and jth item, respectively.

Recall that tqk = tvk+1,∀k ∈ [1, ..., N − 1], due to shifted item sequence (Eq. 4.3).

With the help of Φi(·) function, we can enforce certain constraints on headi’s attention

distribution, based on T. To this end, we consider two different variants: (i) non-

overlapping and (ii) overlapping multi-resolution attention. These variants are also

illustrated in Figure 4.3 (right). As the names suggest, for the former variant, the time

ranges that attention heads cover do not coincide, i.e., head1 covers [∆0, ∆1), head2

covers [∆1,∆2) and so on. For the latter variant, each head instead covers an extended

range, i.e., head1 covers [∆0,∆1), head2 covers [∆0,∆2) and headh covers [∆0,∆h). The

following Φi(T) function achieves this by masking the items that are out of the desired

temporal ranges for headi:

overlapping : Φi(T)k,j =


0 ∆0 ≤ Tk,j < ∆i

−∞ otherwise

(4.11)

non-overlapping : Φi(T)k,j =


0 ∆i−1 ≤ Tk,j < ∆i

−∞ otherwise

(4.12)

82

Multi-Resolution Attention for Personalized Item Search Chapter 4

s.t. ∆i−1 < ∆i, ∀i ∈ [1, ..., h] and ∆0 = 0

where Φi(T)k,j represents the (k, j)th entry of Φi(T). Note that the time boundaries of

attention heads (∆i) can be seen as temporal cut-off points in time, which in turn decides

on how much representational power is allocated to the respective temporal ranges. A

natural choice is to favor most recent interactions with shorter ranges from the search

query since they tend to carry a higher influence on users’ next interactions [109]. This

can be achieved by computing ∆s using some form of an exponential function, such as

∆i = abi, where the hyper-parameters a, b ∈ R+ are of the same time units as T (e.g.

hours, days). While such formulation complies with the exponentially decaying influence

phenomenon commonly observed in the literature [130, 111], by varying {a, b}, one can

adapt ∆s to different domains with varying temporal resolutions.

Finding good ∆s by hyper-parameter tuning can be challenging and may require

excessive computational effort. Next, we take our idea a step further and propose a more

flexible and adaptive approach. Our goal is to learn ∆s jointly with the rest of the model.

However, the hard-thresholding mechanism (Eq. 4.11 & 4.12) is not differentiable and

prevents the model from learning ∆s through back-propagation. To sidestep this issue, we

propose the following softer-thresholding reparameterization, which remains differentiable

with respect to ∆s:

Φi(T)k,j =


log(σ(

∆i−Tk,j
τ

)) overlapping

log(σ(
∆i−Tk,j

τ
)) + log(σ(

Tk,j−∆i−1

τ
)) non-overlapping

(4.13)

where log and σ denote the natural logarithm and the sigmoid function, while τ ∈ R+ is

the temperature scaling parameter.

Taking a closer look into the overlapping variant, the respective item is masked when

83

Multi-Resolution Attention for Personalized Item Search Chapter 4

∆i−Tk,j<<− τ (that is, σ(
∆i−Tk,j

τ
)≈0 and log(σ(

∆i−Tk,j
τ

))≈− inf). Conversely, it is kept

when ∆i −Tk,j>>τ (that is, σ(
∆i−Tk,j

τ
)≈1 and log(σ(

∆i−Tk,j
τ

))≈0). In other words, the

items that are far from ∆i are either kept or masked based on whether they fall inside or

outside of the corresponding boundary. We note that ∂headi/∂∆i≈0 for such items, hence

they do not contribute to the learning of ∆i. On the other hand, the “near boundary”

items (i.e. |∆i −Tkj,|∼τ) may or may not be masked depending on their contribution to

the final loss, which in turn generates either a pull or a push force on ∆i. Furthermore,

it is straightforward to apply the same logic to the non-overlapping variant, where the

second term further masks the items that are already covered by the previous head with

boundary ∆i−1. Lastly, some attention heads may have no coverage for certain users who

have no interactions within (or near) the respective temporal regions (see Figure 4.2).

In such cases, we set headi to zero vector to indicate the lack of interactions for that

particular resolution.

In practice, we initialize ∆s using the aforementioned exponential function for faster

adaptation and further update them during training. That said, the proposed module is

generic and one can choose any increasing function for initializing ∆s. More details on

training and hyper-parameters are given in Section 4.5.3.

4.5 Experiments

This section introduces our experimental setup, and presents an empirical analysis

of our proposed approach. The experiments aim at quantitatively evaluating the con-

tributions of each introduced model component (illustrated in Figure 4.3), as well as

comparing our proposed variants with alternative techniques in the literature.

84

Multi-Resolution Attention for Personalized Item Search Chapter 4

4.5.1 Datasets and Evaluation

Datasets: We evaluate the performance of our method on an open-source benchmark

dataset from Amazon [131]. The 5-core version of the dataset is used, where all users and

items with less than 5 reviews are removed. Following [94, 105], we treat the presence of

a review as an interaction and use the respective timestamps to determine the temporal

order of interactions. All other contextual information of items is disregarded to make the

data consistent with our setting. We follow the common practice (outlined in [132, 94])

to extract realistic queries for each user-item interaction based on the respective items’

hierarchical category information. Although these queries are shown to be similar to

real user query formulations in e-commerce platforms [133], we observe that they lead to

memorization issues in our setting because each item is always associated with the same

query across all users. To alleviate this issue and make the problem more challenging, we

randomly drop 50% of the words from the associated query for each user-item interaction

recorded in data, leading to more diverse query formulations of the same item across

different user sequences.

The following diverse range of categories are employed in our experiments: Home

and Kitchen, Kindle Store, Movies and TV, Pet Supplies, Grocery and Food. Due to

computational constraints, we further remove items with less than 15 interactions for

Home and Kitchen and less than 10 interactions for Grocery and Food category. Dataset

statistics are given in Table 4.2.

Home &
Kitchen

Kindle
Store

Movies
& TV

Pet
Supplies

Grocery
& Food

Number of users 229,210 161,790 250,893 243,690 147,474
Number of items 97,100 153,242 65,860 71,457 44,672
Number of query words 2,946 151 650 1,644 951
Avg. interactions per user 12.94 14.48 10.33 8.62 7.67
Avg. words per query 6.65 4.82 3.39 5.90 4.21

Table 4.2: Statistics of dataset categories.

85

Multi-Resolution Attention for Personalized Item Search Chapter 4

We follow the same prepossessing steps mentioned in [105]. For users who interacted

with at least three items, we use their second last interaction for validation and their last

interaction for testing, while the remaining interactions are used for training.

Evaluation Metrics: We evaluate ranking performance by computing Hit@K and

NDCG@K with K ∈ {3, 10}. Hit@K is a recall-focused metric measuring the percentage

of times that the ground-truth next item is among the top K items, while NDCG@K is a

position-aware metric which assigns larger weights on higher positions. Following [128, 134],

for each user, we sample 100 negative items based on their popularity—excluding the

previously interacted items—and rank them together with the ground-truth item.

4.5.2 Baselines

We experiment with a variety of baseline methods ranging from (i) rather simple

non-personalized methods to (ii) more sophisticated deep learning based methods for

personalized item search, and to (iii) state-of-the-art temporal models adapted from the

sequential recommendation literature. These methods are listed below:

• POPi: A simple statistical model that ranks items according to their popularity in the

training split across all users.

• Query only (Q): A query-only approach that ranks items solely based on their

respective query embeddings (Eq). We refer to this non-personalized approach as Q for

simplicity.

• SasRec (H) [105]: A position-based self-attention model [105] that ranks items solely

based on the item history encodings (Eh). Since it only leverages the user history, it is

referred as H for simplicity.

• SasRec+Q (HQ): A query-aware approach that ranks items based on the combined

86

Multi-Resolution Attention for Personalized Item Search Chapter 4

signals of history encodings and query embeddings, simply referred as HQ (Equation 4.6

without Eqh).

The next set of baseline approaches target the modeling of query-aware history encoding

(Eqh), each extending the HQ variant mentioned above. To that end, we employ two

strong approaches [102, 96] for personalized item search and adapt two recently proposed

temporal models [109, 111] for sequential recommendation:

• HQ w/MultiHeadAttn [102]: A benchmark approach that employs standard multi-

head attention layer [102].

• HQ w/ZeroAttn [96]: An approach that employs zero attention mechanism [96],

which introduces a zero vector while computing the attention weights between the user

query and the user history. This provides the model with the flexibility of paying no

attention to user history, allowing for more adaptive personalization.

• HQ w/TiSasRec [109]: An adaptation of recently proposed TiSasRec [109] model

for sequential recommendation. Specifically, following [109], we combine learnable

relative time interval embeddings with history encodings prior to computing attention

weights between the user query and the user history.

• HQ w/Dejavu [111]: An adaptation of Dejavu [111] model, which is the state-of-

the-art for temporal sequential recommendation. Following [111], we employ a mix of

time kernels to calibrate the influence (attention weights) of historical actions with

respect to the search query, based on the temporal gaps between the two.

As for the proposed model, we experiment with the following two variants introduced in

Section 4.4.4:

• HQ w/MultiResAttn−O: A multi-resolution attention variant where attention heads

cover overlapping temporal ranges (Eq. 4.11).

87

Multi-Resolution Attention for Personalized Item Search Chapter 4

• HQ w/MultiResAttn : A multi-resolution attention variant where attention heads

cover non-overlapping temporal ranges (Eq. 4.12).

4.5.3 Model Configurations

We implement the proposed methods and all the baseline approaches using Tensorflow.

All the code and data used in our experiments will be made public upon acceptance.

The following settings are applied to each method for fair comparisons. The parameters

are learned using mini-batch SGD with Adam optimizer. The {batch size, learning rate,

sequence length (N), latent dimensions (d, dq)} are set to {128, 1e-3, 50, 60}, respectively.

The vocab size of search queries is determined based on statistics shown in Table 4.2.

The unit of time is set to days for all applicable methods. For the proposed variants, we

set the ∆ initialization parameters {a, b} to {1,5} and the temperature scaling parameter

τ to 5, which are observed to work well across all datasets. Furthermore, we apply a

grid search over the following hyper-parameters on all datasets and applicable methods:

number of self-attention blocks (L) in {1,2}, number of attention heads (h) in {1,2,3,4,5},

the vocab size of time embeddings (for TiSasRecAttn) in {256,512}, and the number of

exponential decay time kernels (for Dejavu) in {3,5,10}. The remaining hyper-parameters

for baseline approaches are set based on the suggestions made by the authors in their

respective papers. Lastly, the best models are selected by early stopping based on the

NDCG@10 score on the validation set, with a patience of 20 epochs. All results are

reported on the test set.

4.5.4 Experimental Results

Table 4.3 shows the overall performance of baselines and our proposed method variants

on all five dataset categories. In this section, unless otherwise stated, the relative

88

Multi-Resolution Attention for Personalized Item Search Chapter 4

Baselines Ours

Datasets Metrics POPi
SasRec

(H)

Query
only
(Q)

HQ
HQ w/
MulHead

Attn

HQ w/
Zero
Attn

HQ w/
TiSas
Rec

HQ w/
Dejavu

HQ w/
MulRes
Attn

HQ w/
MulRes
Attn−O

Home
and

Kitchen

Hit@3 0.018 0.117 0.553 0.572 0.578 0.583 0.582 0.594 0.584 0.601

Hit@10 0.067 0.227 0.688 0.715 0.713 0.725 0.720 0.733 0.717 0.730

NDCG@3 0.013 0.096 0.471 0.487 0.497 0.505 0.499 0.508 0.506 0.519

NDCG@10 0.031 0.134 0.521 0.540 0.547 0.557 0.550 0.559 0.555 0.564

Kindle
Store

Hit@3 0.037 0.484 0.225 0.513 0.542 0.574 0.579 0.572 0.585 0.596

Hit@10 0.107 0.668 0.405 0.728 0.742 0.766 0.764 0.773 0.777 0.785

NDCG@3 0.026 0.408 0.175 0.422 0.447 0.482 0.481 0.474 0.490 0.505

NDCG@10 0.051 0.475 0.239 0.501 0.520 0.552 0.550 0.548 0.561 0.573

Movies
and TV

Hit@3 0.035 0.290 0.522 0.583 0.625 0.643 0.639 0.636 0.663 0.655

Hit@10 0.118 0.447 0.778 0.815 0.832 0.842 0.847 0.846 0.852 0.848

NDCG@3 0.025 0.244 0.420 0.478 0.521 0.538 0.536 0.533 0.556 0.553

NDCG@10 0.053 0.301 0.514 0.564 0.597 0.611 0.614 0.610 0.627 0.623

Pet
Supplies

Hit@3 0.022 0.236 0.528 0.566 0.575 0.579 0.591 0.581 0.592 0.602

Hit@10 0.074 0.392 0.714 0.753 0.759 0.776 0.777 0.766 0.771 0.783

NDCG@3 0.015 0.201 0.436 0.471 0.480 0.483 0.496 0.484 0.497 0.506

NDCG@10 0.034 0.256 0.505 0.539 0.548 0.556 0.564 0.553 0.563 0.573

Grocery
and Food

Hit@3 0.019 0.240 0.675 0.695 0.711 0.720 0.713 0.719 0.728 0.734

Hit@10 0.073 0.354 0.842 0.859 0.865 0.875 0.874 0.872 0.880 0.883

NDCG@3 0.014 0.205 0.570 0.591 0.601 0.619 0.610 0.616 0.625 0.631

NDCG@10 0.033 0.245 0.631 0.652 0.657 0.676 0.671 0.673 0.681 0.686

Table 4.3: The ranking performance of baseline and proposed approaches on all five categories.
The best performance is highlighted in boldface, while the second best performance is underlined.
Results show that our proposed variants consistently outperform the baselines.

performance measures between methods are computed with respect to the NDCG@3

metric.

Ablation results. The first set of four baselines—H, Q, HQ, HQ w/MulHeadAttn—

helps to assess the incremental contributions of each model component presented in Section

4.4.3, while providing insights into the characteristics of each dataset category. We observe

that the query signal alone is more valuable to our task than the user history signal for

four of the categories, except Kindle Store. Combining the user history and query signals

(see HQ baseline) leads to major improvements compared to the strongest signal of the

89

Multi-Resolution Attention for Personalized Item Search Chapter 4

two across all categories. The largest gain is 13.8% for Movies and TV, while the average

gain is 6.4%. HQ w/MulHeadAttn baseline leads to further improvements with up to 8.9%

relative gain compared to the HQ variant, while the average gain across all categories is

4.1%. This rather sophisticated approach serves as a strong baseline, granted it does not

take the temporal aspect of user interactions into account. These results demonstrate

the importance of query-aware history summarization for personalized item search and

motivate us to investigate further gains when the temporal aspect is considered. For the

remaining, we drop the term ‘HQ w/’ in our referrals to the corresponding methods for

simplicity.

Temporal component. Our results reveal a clear trend of approaches with temporal

flavor outperforming others that purely rely on sequential patterns. Moreover, our

proposed approach consistently achieves best performance across all categories and

evaluation metrics. To put this in perspective, among the time-aware methods, our

proposed approach outperforms TiSaSRecAttn by up to 4.9% and Dejavu by up to 6.5%.

When compared to MultiHeadAttn, we achieve up to 12.9% improvement on ranking

performance (MultiResAttn-O on Kindle Store). When our best performing variant for each

dataset is considered, they collectively provide 6.9% improvement on average compared

to MultiHeadAttn, which is more than two times the average improvements achieved by

TiSasRecAttn (3.1%) and Dejavu (2.7%) baselines across all datasets. Despite ignoring

the temporal signal, ZeroAttn overall shows comparable performance to TiSasRecAttn

and Dejavu. Furthermore, both proposed variants also outperform ZeroAttn in every

comparison.

Between the two proposed variants, the overlapping variant (MultiResAttn−O) per-

forms the best for four categories. Movies and TV is the only category where the non-

overlapping variant (MultiResAttn) achieves a slightly higher ranking than MultiResAttn−O.

To further investigate the potential motives behind our findings, we take a closer look into

90

Multi-Resolution Attention for Personalized Item Search Chapter 4

Head 1 Head 2 Head 3 Head 4 Head 1 Head 2 Head 3 Head 4
50

51

52

53

54
Ti

m
e

bo
un

da
ry

 (d
ay

s)
Home & Kitchen Kindle Store Movies & TV Pet Supplies Grocery & Food

MultiResAttn-O MultiResAttn

Figure 4.4: Learned time boundaries (∆s) with two proposed variants: MultiResAttn-O (left)
and MultiResAttn (right), both with h = 4. Time boundaries are plotted on log5 scale.

the temporal resolutions captured by our proposed variants. Figure 4.4 plots the time

boundaries learned by both variants (with h=4) across all categories. We observe higher

variations in the learned boundaries for attention heads covering the most recent history

(e.g., Heads 1 and 2). In particular, the first time boundary ranges from less than a day

(for Pet Supplies) to over a month (for Kindle Store). Moreover, the non-overlapping

variant (right) tends to learn slightly longer temporal spans compared to the overlapping

variant (left). We conclude that different categories have varying temporal dynamics and

densities, and our approach can adaptively recognize such temporal differences found in

data.

Sensitivity analysis. Figure 4.5 shows the performance of proposed variants based

on the number of attention heads (h). We also include the MultiHeadAttn baseline in

our analysis for better comparison. For the Movies and TV, the highest score is obtained

by the MultiResAttn variant with h=3, suggesting that the temporal dependencies are

better captured across non-overlapping time spans. On the other hand, the Pet Supplies

category favors the MultiResAttn−O variant with larger h, implying that the temporal

dependencies reach gradually longer time spans that overlap, presumably due to the

recurring user needs for this particular category.

91

Multi-Resolution Attention for Personalized Item Search Chapter 4

2 3 4 5
Number of heads (h)

0.57

0.58

0.59

0.60

0.61

0.62

0.63

ND
CG

@
10

Movies and TV

MultiResAttn
MultiResAttn O
MultiHeadAttn

2 3 4 5
Number of heads (h)

0.52

0.53

0.54

0.55

0.56

0.57

0.58

ND
CG

@
10

Pet Supplies

MultiResAttn
MultiResAttn O
MultiHeadAttn

Figure 4.5: Effect of attention head count on ranking performance.

4.6 Conclusion

We propose a Multi-Resolution Attention model for personalized item search. The

key component of our architecture is the query-aware history encoding layer, which

enables our method to exploit higher-order temporal dependencies between users’ search

queries and item history. This is achieved by a novel attention module consisting of

multiple attention heads, each assigned to recognize and capture users’ interests within

designated temporal resolutions. The proposed method comes in two variants (overlapping

and non-overlapping) to accommodate different temporal densities of real-world data.

Both proposed variants are thoroughly examined by experiments using a large real-world

dataset with five different item category domains. Our findings not only demonstrate

the efficacy of Multi-Resolution Attention but also provide insights into the varying

temporal dynamics captured across different domains. Future work includes applying

Multi-Resolution Attention on other forms of temporal data from various problem domains

such as query-less temporal recommendation and spatio-temporal learning on graphs.

92

Chapter 5

FlowGEN: A Generative Model for

Flow Graphs

5.1 Introduction

Generative models for graph data have a long-standing history in network science

[135, 136]. Major motivations for such models include unavailability of large datasets,

due to privacy concerns, cost of data collection, and business interests. Moreover, these

models are useful for data-driven discovery, anomaly detection, and large-scale simulations

in the natural sciences. While there is an extensive literature on mathematical models for

graph data, more recent approaches based on neural generative models have attracted

great interest [137, 138, 139, 140, 141, 142, 143, 144, 145].

The main advantage of the recent generative approaches is the potential to learn

how to generate a broad class of graphs from a limited number of samples. However,

they are primarily focused on reproducing undirected graph topologies observed in some

simple graph structures (e.g., grid, community). In the many real-world applications,

the ability to mimic (binary) connectivity patterns among nodes alone is oftentimes not

93

FlowGEN: A Generative Model for Flow Graphs Chapter 5

sufficient to capture their key characteristics. To that end, there have been recent studies

in generative models for other families of graphs that go beyond generic structures, such as

molecular graphs [146, 147], directed acyclic graphs (DAGs) [148], city road layouts [149],

and program (source code) graphs [150], to name a few.

This paper focuses on the generative modeling of a complex family of graphs called flow

graphs (FGs). Besides nodes and edges, FGs capture edge flows of a quantity of interest

(e.g., water, power, people) being transported through the graph. As these flows often pos-

sess higher-order graph-level dynamics driven by sources/destinations [151], hotspots [152],

and domain-specific physics [153, 5], generating FGs poses greater challenges than those

only related to the graph topology.

As an example, consider a transportation network where nodes correspond to locations,

edges are routes between them, and flows indicate the number of people (or vehicles)

transported from one location to another. Besides topological properties, such as the

existence of central nodes and clusters, this FG also reveals specific flow patterns. For

instance, hotspots (e.g. recreational areas) might become prominent sources and desti-

nations depending on the time of the day. Moreover, the prevalence of cyclic flows can

unveil diurnal variations in travel patterns. The ability to generate realistic mobility

flows is key for the understanding of urban dynamics [152] and the spread of epidemics

[154]. Similar examples can be constructed for the analysis of load distribution in power

networks [155, 156] and flux balance in biological systems [157].

We first investigate how existing graph generative models can be combined with a

learnable flow generating function to produce FGs based on observed samples. While

this two-step approach is flexible and can be integrated with any existing model, it is

unable to learn the joint relationship between graph structure and flows in an end-to-end

fashion. To address this limitation, we introduce FlowGEN, an implicit generative model

for FGs based on the Generative Adversarial Network (GAN) framework. FlowGEN

94

FlowGEN: A Generative Model for Flow Graphs Chapter 5

learns to generate both the (directed) graph topology and edge flows. The main ingredient

of FlowGEN’s architecture is a discriminator with the following components: (1) a

permutation invariant flow-pooling layer, (2) bi-directional neural message-passing layers,

and (3) an attention-based readout layer. This enables FlowGEN to learn hidden node

representations (or states) capturing complex coupling between the graph topology and

edge flows.

We assess the performance of flow graph generative models both qualitatively and

quantitatively, using novel evaluation metrics designed for flow graphs. Our results show

that FlowGEN can effectively reproduce flow properties of a diverse set of real-world and

simulated networks, including transportation, power transmission, and water networks,

outperforming the alternative approaches.

5.2 Related Work

The generation of realistic graphs that mirror the characteristics of real-world graphs

is a long-standing research problem. The earliest graph generative models [135, 136, 158]

focus on reproducing certain statistical properties (e.g., degree distribution, graph density)

found in real-world graphs using a stochastic generation process. Although simple to use,

these models are limited in that the selected properties may not sufficiently represent

many other characteristics of real-world graphs.

To address this, inspired by recent advancements in graph neural networks [159, 160],

several neural graph generative models have been proposed [137, 138, 139, 140, 141,

142, 143, 144, 161, 145]. Compared to traditional models, neural models are able to

learn rather complex structural properties from data (e.g., spectral coefficients and orbit

counts), and to reproduce graphs with fundamentally different topologies (e.g., grids and

egonets). Amongst the pioneer models, GraphVAE [144] utilizes variational autoencoders

95

FlowGEN: A Generative Model for Flow Graphs Chapter 5

(VAE) [162] to generate a probabilistic fully-connected graph and then applies an expen-

sive graph matching algorithm to calculate the reconstruction loss. As an alternative,

NetGAN [137] converts graphs into random walks and learns an implicit probabilistic

model for generating walks using adversarial training [163], thus eliminating the need

for expensive graph matching. More recently, EDP-GNN [143] leverages score-based

generative modeling framework [164] to achieve permutation invariant graph generation.

Another recent paradigm is to model graphs using an auto-regressive process—as

a sequence of additions of new nodes and edges, conditioned on the current sub-graph

structures [138, 140, 141, 145]. GraphRNN [145] utilizes RNNs for the sequential modeling

of nodes, while GRAN [141] considers the sequential modeling of blocks of nodes, employing

GNNs with attention [160] for conditioning. BiGG [138] further exploits the sparsity of

real-world graphs by combining a recursive edge generation scheme with auto-regressive

conditioning, resulting in a technique that sidesteps the explicit generation of each entry in

an adjacency matrix. Although these approaches are able to generate larger graphs relative

to their counterparts, they rely on pre-defined node orderings of graphs (BFS/DFS) since

computing the full likelihood is intractable due to all possible node-orderings. However,

this limits their capacity to model long-range (i.e. global) dependencies, which is a

key element for generating realistic flow graphs as we show in Section 5.4. Moreover,

determining a suitable node ordering is subject to the task and data of interest.

Flow graphs are a richer model than simple graphs because they capture the dynamics

of a system with node states [165]. The coupling between edge flows and node states is

governed by domain-specific physical models, such as the Kirchhoff’s laws for power and

the LWR model for traffic [166]. Recent work has shown how learning such models from

data can improve the prediction of missing edge flows [5]. Here, we focus on learning how

to generate flow graphs by implicitly capturing the coupling between topology and flows.

Measuring flows (of mobility, water etc.) on graphs requires a lot of effort and resources.

96

FlowGEN: A Generative Model for Flow Graphs Chapter 5

Generative models are especially useful in these settings in order to replicate the behavior

of real data for analysis, simulation, and algorithm development.

5.3 Generative Modeling of Flow Graphs

We start by providing some background, and formal definition of our problem.

A flow matrix X ∈ Rd×d
+ is a non-negative square matrix where the entry xu,v

denotes a directed flow from the source node u to destination node v. A flow graph

G(V,E,X) is a directed graph, where V is the set of vertices (|V | = N), E is the set

of edges, and X ∈ RN×N
+ is the flow matrix denoting the observed edge flows, where

xu,v = 0,∀(u, v) /∈ E.

By convention, a negative edge flow indicates that the flow moves in a direction opposite

to the direction of the edge. We can always change the sign of the flow to positive as long as

we change the edge direction. Therefore, without loss of generality, we assume that all edge

flows are non-negative, i.e., xu,v ≥ 0,∀(u, v) ∈ E. Moreover, in cases like human crowd

flows, some node pairs are likely to have flows in both directions (say, x̃u,v ≥ x̃v,u > 0). In

this work, we are only interested in net-flows, that is xu,v=max(0, x̃u,v−x̃v,u). We refer

to net-flow as flow throughout this paper.

Problem: Given a set of flow graphs {G1, G2, · · · , GL} sampled from a ground-

truth distribution (Pdata), our aim is to implicitly learn to mimic these graphs’ complex

characteristics such that the graphs (Pθ) generated by our model can simulate both the

graph topology and the flow dynamics found in data. The proposed framework should

be generic enough to capture various flow dynamics intrinsic to numerous real-world

networks. (Examples of such structures are given in Section 5.4).

Here it is important to emphasize some of the key differences between flow graphs

and general weighted graphs. In typical weighted graphs, weights represent the strength

97

FlowGEN: A Generative Model for Flow Graphs Chapter 5

of a relationship between two nodes (e.g. homophily in social networks). Conversely, edge

flows depend on higher order structures that induce patterns such as source-destinations,

cycles and congestion [5].

In the remainder of this Section, we first discuss how existing generative models for

undirected (topological) graphs can be adapted to our problem. Next, we introduce an

implicit flow graph generative model (named FlowGEN) that is designed to capture graph

structure as well as complex flow characteristics observed in real data, being the first

end-to-end graph generative model to generate FGs from a domain-agnostic standpoint.

5.3.1 A Two-step Approach for Generating Flow Graphs

Whether one generates the entire graph at once [137] or as a sequential process of

adding new nodes and edges [145], we can think of most (undirected) graph generative

models as a parametric function H : Z 7→ {0, 1}N×N (typically a neural network of some

kind) that given samples drawn from a prior distribution, learns to generate graphs,

ultimately in the form of an adjacency matrix or its counterparts. It is possible to adapt

these models to the generation of flow graphs by a two-step model in which the second

step learns an additional flow function F : {0, 1}N×N 7→RN×N that takes an adjacency

matrix A as input and generates a non-negative flow matrix whose values correspond to

the non-zero elements of A. Within this two-step framework (that can be summarized as

F◦H), one can choose to use any undirected graph generative model as function H that

is learnt on undirected versions of the observed FGs. We focus on the learning of F , as

illustrated in Figure 5.1.

The problem of learning F is closely related to flow estimation, which can be formulated

as a semi-supervised learning problem on graphs [159]. This problem was most recently

studied by [153, 5] for a single FG snapshot, where the goal is to predict missing edge

98

FlowGEN: A Generative Model for Flow Graphs Chapter 5

Figure 5.1: An illustration of our two-step approach for generating flow graphs.

flows based on the graph topology and partial flow observations. [153] achieves this by

solving a constrained optimization problem involving domain-specific physical constraints

(flow conservation law), while [5] further relaxes these constraints and instead enforces

them as a regularizer whose weights are learned based on various node/edge features.

However, these methods cannot be applied to our setting directly because we do not

assume access to other information such as partial flows (or features), and we aim to

learn generative models in a domain-agnostic manner based purely on data.

We now discuss various ways of constructing F . Similar to [161], given a graph in the

form of an adjacency matrix A ∈ {0, 1}|V |×|V |, we first generate node featuresM∈ R|V |×dk

as a standard low-dimensional spectral embedding [167] based on A. Notice that this

transformation allows us to handle variable sized graphs. Next, we learn node states

based on the node features using a standard two-layer MLP:

H = MLP (M) = ReLU(MW0)W1 (5.1)

Alternatively, we can better utilize the graph topology by using a GCN model instead of

MLP:

H = GCN(M, A) = ÃReLU(ÃMW0)W1 (5.2)

where H ∈ R|V |×dl , W0 ∈ Rdk×dl , and W1 ∈ Rdl×dl . Ã = D−
1
2AD−

1
2 is symmetric

99

FlowGEN: A Generative Model for Flow Graphs Chapter 5

normalized adjacency matrix of A, and D is the diagonal degree matrix with Dii =∑|V |
j=1 Aij. Lastly, we adapt a final linear transformation to predict edge flows based on

the topological encoding of source (hs ∈ Rdl) and target (ht ∈ Rdl) nodes:

g(hs, ht) = (hs − ht)W2 (5.3)

where W2 ∈ Rdl×1, and hi = Hi,: for i ∈ V . The bias terms are omitted for convenience.

Notice that g(hs, ht) intrinsically captures the edge direction between nodes s and

t, where g(hs, ht) = −g(ht, hs). This ensures consistency with our problem setting, i.e.,

a negative flow means movement against the orientation of the edge. Therefore, the

respective directions of non-negative flows are assigned for each node pair (s, t) ∈ E, such

that s−→t when g(hs, ht) > g(ht, hs).

Finally, we can define the flow function F as a stack of g functions applied on each

edge of the input graph. All layers of F can be trained jointly using graphs from Pdata,

with MSE loss computed between predicted (g(hs, ht)) and ground-truth (xs,t) flows. We

refer to our supplementary materials for all training details including the formulation of

the loss function, hyper-parameters, and more.

5.3.2 FlowGEN Framework

Though the two-step approach presented above can reuse existing graph generative

models, it does not account for the joint relationship between graph structure and flow

distribution. To this end, we introduce FlowGEN (illustrated in Figure 5.2), an implicit

flow graph generative model that can generate FGs in an end-to-end fashion based on

the GAN framework [163]. As in the standard GAN framework, our model consists of

two components trained jointly: (1) A generator Gθ that takes a sample from a prior

distribution and learns to generate flow graph samples that approximate those drawn

100

FlowGEN: A Generative Model for Flow Graphs Chapter 5

Figure 5.2: A high-level illustration of FlowGEN architecture (best viewed in color). The left
part pictures the adversarial training process. The right part shows a detailed sketch of our
discriminator: (1) The flow pooling layer assigns two initial feature vectors (in and out) to each
node in a permutation-invariant manner. (2) The message-passing layers comprise bi-directional
channels that exchange in and out flow messages (spiral arrows) independently in opposing
directions. (3) The read-out layer fuses in and out states of each node, and further aggregates
them to construct a global flow graph representation. All components are trained jointly. See
Section 5.3.2 for details.

from the dataset, and (2) a discriminator Dφ that learns to distinguish whether an input

graph is sampled from the dataset or the generator.

5.3.2.1 Generator

The generator Gθ (parameterized by θ) takes as input a random vector z ∈ Rd0 sampled

from N (0, Id0) and outputs a flow graph. Precisely, a flow matrix X ∈ RN×N
+ is computed

by passing the sampled vector z through multiple layers of fully connected neural networks

(MLP):

X = ReLU
(
fkθ ◦ · · · ◦ f 1

θ (z)
)

(5.4)

where ◦ represents function composition. We use ReLU activations for all layers including

the final layer to obtain non-negative flow matrix. Note that the mapping θ 7→ Pθ is

continuous (Pθ denotes the model distribution) which differentiates our problem space

from the discrete graph generative models [145, 141].

101

FlowGEN: A Generative Model for Flow Graphs Chapter 5

5.3.2.2 Discriminator

The discriminator Dφ (parameterized by φ) takes a flow graph as input and outputs a

scalar value indicating whether an input graph is likely to be sampled from the dataset

or the generator. Our discriminator is a customized (flow) graph neural network (GNN)

consisting of three main components: (1) permutation invariant flow-pooling layer, (2)

bi-directional neural message-passing layers, and (3) an attention-based readout layer,

each designed to collectively account for domain-agnostic and complex flow dynamics in

directed flow graphs.

More formally, given a flow graph G(V,E,X), we first compute two node-level flow

(feature) vectors—in and out—using a permutation invariant flow-pooling function over

the column and row vectors of the flow matrix, respectively.

inh
1
u = fpool(X:,u) , outh

1
u = fpool(Xu,:) u ∈ V (5.5)

Here, fpool(x) = [MEAN(x); MAX(x); SUM(x)] is a stack of element-wise pooling aggregators—

the symbol ’;’ denotes concatenation and x ∈ Rd. X:,u and Xu,: ∈ R|V | indicate the columns

and rows of X, which, respectively, hold the incoming and outgoing flow information of

node u from and to its neighbors. Node flow vectors inh
1
v and outh

1
v ∈ Rd1 (d1 = 3 in this

case) are then used as initial hidden states to in and out neural message-passing channels,

where respective node updates are computed independently as follows:

inh
t+1
u = f ti (inh

t
u,

∑
v∈Gout(u)

mt
i(inh

t
v, xu,v)) (5.6)

outh
t+1
u = f to(outh

t
u,

∑
v∈Gin(u)

mt
o(outh

t
v, xv,u)) (5.7)

102

FlowGEN: A Generative Model for Flow Graphs Chapter 5

where, for each node u at layer t ∈ {1, · · · , T − 1} , the in and out message functions

(mt
i and mt

o), respectively take as input the concatenation of out and in neighbors’

corresponding to hidden states and edge flow values to compute latent flow message

vectors. The in and out node update functions (f ti and f to) take as input the concatenation

of current in and out-states of u and aggregated flow messages from its neighbors

to update its next hidden states inh
t+1
u and outh

t+1
u ∈ Rdt+1 accordingly. {f ti , mt

i, f
t
o,

mt
o|t = 1, · · · , T − 1} are all modeled independently as MLPs, with no weight sharing.

After T−1 message passing layers, we apply another node update function, which takes

as input the in and out node states, and combines them into final node representations.

hTu = fio(inh
T
u , outh

T
u) u ∈ V (5.8)

where fio is another small MLP. The vector hTu ∈ RdT is a fused latent representation of

node u, which captures its in and out flow dynamics conditioned on its neighbors as well

as its relative location in the graph.

We aggregate these node representations and obtain a latent graph representation

hG ∈ RdG using an attention-based readout layer (a.k.a. gated sum) following [168]:

hG =
∑
u∈G

σ(fa(h̃u)) � fb(h̃u) (5.9)

where h̃u = [hTu ; h1
u] ∈ RdT+2d1 and h1

u = [inh
1
u ; outh

1
u] ∈ R2d1 is the concatenation of

initial in and out flow vectors (Eq. 5.5). This is loosely analogous to skip connections

in residual networks [169] which we empirically find to be effective in capturing global

flow statistics. The first term in the summation (Eq. 5.9) essentially serves as a soft

attention mechanism assigning contextual importance scores to nodes, where σ is the

sigmoid activation and � denotes element-wise multiplication. The context functions fa

103

FlowGEN: A Generative Model for Flow Graphs Chapter 5

and fb are again modeled as small MLPs. Note that such gated sum can model injective

multiset functions, and is invariant to input (node) order. Lastly, hG is processed by a

final MLP layer (fG) which outputs a graph-level scalar ∈ R. Model parameters {θ, φ} are

trained jointly using the Wasserstein GAN objective [170] with gradient penalty [171]. For

all training details (hyper-parameters, activation functions etc.), see the supplementary

materials.

5.3.3 Discussion

We now present a brief rationale behind the design of some of FlowGEN’s components.

Since we generate the entire flow graph at once, this limits us to graphs whose sizes do

not exceed a certain threshold. However, generating an entire flow graph at once is more

appropriate for capturing global statistics of flows (e.g. number of nodes with conserved

flows) and graph topology (e.g. number of k-cycles), as well as correlations between

the two (e.g. hotspot nodes and their relative locations in the graph). That said, our

model is capable of generating graphs with varying number of edges and fewer nodes

than the predetermined maximum (by removing disconnected nodes). In addition, since

fpool is invariant to permutations of the flow matrix and can handle flow distributions of

varying sizes, similar to GNNs, our discriminator also remains permutation invariant and

is able to model variable-sized flow graphs. Moreover, our framework is general enough

to incorporate other more sophisticated flow-pooling functions and neighbor aggregation

functions [160]. One potential shortcoming of FlowGEN lies in its generator, which has

a quadratic memory print in the number of nodes, similar to other non-autoregressive

models [137, 142, 143]. Here we emphasize that our primary goal is to generate high-

quality flow graphs. For large flow graphs, one can resort to the proposed two-step

approach by leveraging a more scalable topological graph generative model [138].

104

FlowGEN: A Generative Model for Flow Graphs Chapter 5

5.4 Experiments

In this section we present an experimental analysis of the proposed approaches on

both synthetic and real graph datasets with diverse flow characteristics. Due to space

constraints, additional results are presented in the supplementary materials.

5.4.1 Experimental Setup

Datasets. Here, we briefly describe the datasets used in our experiments. See

supplementary materials for more details.

(1) Power: European power transmission graphs [172] where nodes (|V |=25) repre-

sent power infrastructure (buses, plants etc.) belonging to European countries, edges

(|E|avg=45) represent transmission lines between the countries, and edge flows measure

the total active power being transmitted through these lines. We randomly sample

2000 hourly snapshots from the year 2013.

(2) Water: 1000 directed barbell graphs with 20 nodes and 10-40% of edges inside the

communities removed uniformly at random. Flows are synthetically generated based on a

simple water distribution process with either a source or a sink node assigned to each

community. For each node pair (u, v), the flow is the net amount of water that passed

through either direction during the simulation.

(3) Taxi Trips: Real flow graphs with nodes and edges representing taxi zones in Manhat-

tan, NYC, and routes between zones, respectively. Flows are net volumes of passengers

traveled between zones during 584 different snapshots (weekdays in [2017,2019]). We

create two versions of this dataset, with data from 8-9am (|V |max=32, |E|avg≈133.1) and

6-7pm (|V |max=32, |E|avg≈156.2).

Evaluation Metrics. Evaluating generative models is known to be challenging [173].

In our case, this evaluation requires a comparison between the generated and the ground

105

FlowGEN: A Generative Model for Flow Graphs Chapter 5

truth flow graphs while accounting for both the graph structures and edge flow char-

acteristics. To this end, we identify a comprehensive set of metrics which allow us to

quantitatively evaluate the effectiveness of our model on this novel task. These metrics

include: (1-2) in/out degree distributions, (3) edge flow distributions, (4) node diver-

gence distributions, and (5-6) number of directed k-cycles (k ∈ {3, 4}). We define the

divergence on node u as the difference between total in-flow and total out-flow, normal-

ized by their maximum, in order to compare graphs across different datasets. Formally,

Xdiv
u = (Xout

u −X in
u)/max(Xout

u , X in
u) where Xout

u =
∑
{u→v} xu,v and X in

u =
∑
{v→u} xv,u.

Note that Xdiv
u ∈ [−1, 1] for all u ∈ V and node u is a source (sink) node of the flow

graph if Xdiv
u ≈ 1 (Xdiv

u ≈ −1). There can be multiple source and sink nodes in a graph.

For graph-level metrics such as number of directed k-cycles, we compute the average

statistics of the entire set. For the remaining node-level and edge-level metrics, following

previous work [145, 141], we compute the maximum mean discrepancy (MMD) over the

two sets of distributions using the total variation (TV) distance.

Methods. To the best of our knowledge, no baseline is available for the novel task of

generating FGs that exhibit the characteristics of a given set of (ground-truth) graphs.

Therefore, we experiment with approaches introduced in Section 5.3 including FlowGEN

and a variety of two-step alternatives. Following our discussion on two-step approaches

(Section 5.3.1), we consider two state-of-the-art deep (undirected) graph generative models

—NetGAN [137] and GRAN [141]— as the first step (function H), which are trained on the

undirected versions of the datasets. As for the second step (function F), we implement

three approaches namely FMLP (based on Equation 5.1), FGCN (based on Equation 5.2),

and DFF (short for Divergence-Free Flows proposed by [153]). This results in six variants:

NetGAN-FMLP, NetGAN-FGCN, NetGAN-DFF, GRAN-FMLP, GRAN-FGCN, GRAN-

DFF. More details on these methods are provided in the supplementary materials due to

space limitations.

106

FlowGEN: A Generative Model for Flow Graphs Chapter 5

Experiment settings. Following [141], for each dataset, we randomly split the

graphs into train (80%) and test (20%) sets. We use 20% of the training graphs as the

validation set. For fair comparison, we use the same splits for all the models, and each

model—at testing time—generates the same number of graph samples as the test set. For

all the methods, we fix the size of input and output graphs as the size of the largest graph

in the dataset. All evaluations are performed on the test set.

5.4.2 Experimental Results

Table 5.1 reports the performance of all seven methods on all four datasets. The set

of metrics we use evaluates graphs from varying perspectives and the proposed end-to-end

model consistently displays top results on all of them with very few exceptions. In more

detail, we observe that:

(i) FlowGEN excels at capturing global cyclic trends in all datasets compared to other

methods. This demonstrates that FlowGEN is able to successfully replicate various higher-

order patterns of directed graphs including acylic water flows and real human-crowd flows

at different rush hours of the day.

(ii) FlowGEN fits the underlying edge flow and node divergence distributions in the data

considerably better than the competing methods on nearly all the measures. This suggests

that while FlowGEN is effective in learning the edge flow distributions directly from data,

it also learns the coupling between edge flows and graph topology which is intrinsically

tied to the node-divergence distribution. We attribute this ability to our bi-directional

message-passing layers along with contributions of other components as shown by an

ablation study in the supplementary materials (Section 5.6.8).

(iii) GRAN-based two-step variants are particularly good at recovering degree statistics

and often outperform other methods regarding in/out-degree distributions. This is a

107

FlowGEN: A Generative Model for Flow Graphs Chapter 5

In-deg.
dist.

Out-deg.
dist.

{xu,v} {Xdiv
u }

Avg.
rank

S
im

u
la

te
d

D
a
ta P
o
w

e
r

test data − − − − 2.58 2.33 −
NetGAN-FMLP 1.69e−2 3.73e−2 4.71e−2 7.26e−2 2.21 1.45 5.2

NetGAN-FGCN 1.88e−2 1.21e−2 1.89e−2 5.95e−2 2.01 1.77 3.6

NetGAN-DFF 5.85e−2 2.76e−2 4.22e−2 0.126 3.74 5.01 5.8

GRAN-FMLP 3.16e−3 2.28e−3 3.94e−2 5.62e−2 4.24 3.16 3.6

GRAN-FGCN 1.18e−3 1.79e−3 7.02e−3 4.51e−2 3.98 3.14 2.3

GRAN-DFF 1.56e−2 1.73e−2 3.61e−2 0.164 7.23 6.62 5.6

FlowGEN 1.35e−2 9.36e−3 3.73e−3 2.98e−3 2.66 2.41 1.6

W
a
te

r

test data − − − − 0.0 0.0 −
NetGAN-FMLP 4.92e−2 4.53e−2 0.107 0.497 5.58 6.89 5.3

NetGAN-FGCN 2.65e−2 2.16e−2 8.94e−2 0.419 4.84 6.07 3.2

NetGAN-DFF 7.52e−2 7.64e−2 8.99e−2 0.264 9.16 12.87 5.3

GRAN-FMLP 3.91e−2 4.18e−2 9.98e−2 0.464 9.78 14.96 3.5

GRAN-FGCN 1.81e−2 1.78e−2 8.51e−2 0.408 8.23 12.56 3.0

GRAN-DFF 3.66e−2 4.35e−2 8.16e−2 0.235 13.54 25.32 4.5

FlowGEN 1.99e−2 1.76e−2 2.41e−2 5.53e−2 3.39 5.82 1.2

T
a
x
i

T
ri

p
s 8

-9
a
m

test data − − − − 10.34 17.71 −
NetGAN-FMLP 3.01e−2 4.45e−2 9.81e−2 6.62e−2 2.56 5.68 4.5

NetGAN-FGCN 3.56e−2 2.49e−2 5.32e−2 3.73e−2 6.74 10.85 2.6

NetGAN-DFF 0.128 4.76e−2 8.51e−2 0.322 26.41 67.84 5.8

GRAN-FMLP 1.96e−2 2.33e−2 0.122 5.45e−2 17.53 55.37 3.8

GRAN-FGCN 2.28e−2 9.81e−3 6.77e−2 2.85e−2 34.19 110.51 3.3

GRAN-DFF 8.97e−2 1.11e−2 0.101 0.315 61.24 263.43 5.6

FlowGEN 1.42e−2 3.47e−2 8.32e−2 1.99e−2 11.76 28.02 2.1

6
-7

p
m

test data − − − − 34.10 92.56 −
NetGAN-FMLP 6.44e−2 1.27e−2 3.07e−2 4.32e−2 8.59 20.25 5.2

NetGAN-FGCN 4.09e−2 1.32e−2 2.81e−2 2.96e−2 11.45 27.02 4.2

NetGAN-DFF 5.03e−2 5.67e−2 9.34e−2 0.243 28.36 72.30 4.8

GRAN-FMLP 3.14e−2 5.98e−3 3.04e−2 2.44e−2 22.17 75.58 2.6

GRAN-FGCN 1.39e−2 8.76e−3 2.66e−2 2.21e−2 53.21 205.41 3.0

GRAN-DFF 5.12e−3 4.27e−2 0.140 0.289 95.18 417.35 5.8

FlowGEN 6.77e−3 1.23e−2 7.44e−2 1.93e−2 23.69 81.48 2.3

Table 5.1: Flow graph generation results. Metrics from left to right: (1-2) in&out degree
distribution, (3) edge flow distribution, (4) node divergence distribution, (5-6) average number
of directed 3&4-cycles. For MMD scores (1-4), the smaller the better; for average statistics
(5-6), the closer to test data, the better. Last column (7) shows average rank of models per each
dataset for the reader’s convenience. The symbol ‘–’ means not applicable as MMD scores are
computed with respect to test data. FlowGEN consistently ranks top across all four datasets by
showing superior performance on flow-related metrics (3-6), while being competitive with other
methods on topological metrics (1-2).

108

FlowGEN: A Generative Model for Flow Graphs Chapter 5

natural outcome given that GRAN is considered to be the state-of-the-art (undirected)

graph generative model. FlowGEN, on the other hand, has competitive—if not better,

as for Water—scores than GRAN variants regarding these metrics, while consistently

outperforming them on flow-related metrics.

To perform visual inspection, we also display graph examples generated by FlowGEN

and the best-performing two-step method, together with training samples for the taxi

trips datasets in Figure 5.3. We can observe that, in addition to generating similar graph

structures to those in the training set, FlowGEN remarkably exhibits similar numbers of

source (green) and sink (red) nodes (as opposed to divergence-free nodes) together with

their relative locations in the graph.

For instance, the morning hour exhibits unique flow patterns where the vast majority

of mobility flow is directed towards a few high centrality nodes corresponding to business

centers in Manhattan. Conversely, during the evening hour, such nodes become the source

of mobility flows being directed towards lower centrality (or periphery) nodes, coupled

with more cycles (also see Table 5.1) due to variations in travel patterns.

To further illustrate these findings, Figure 5.4 plots node-level flow divergence distri-

butions of graphs randomly sampled from training data (1-5), FlowGEN (6-10), NetGAN-

FGCN (11-15), and GRAN-FGCN (16-20) for both dataset variants, with the top plot

corresponding to 8-9am and the bottom plot corresponding to 6-7pm. The results show

that FlowGEN consistently matches the ground-truth distribution observed in both set-

tings of the data, while two-step approaches NetGAN-FGCN and GRAN-FGCN struggle

to reproduce such complex characteristics. Thus, we emphasize that the ability to capture

the joint relationship between underlying graph topology and global flow distribution is

one of the key desiderata in generating realistic flow graphs observed in diverse settings.

Through both qualitative and quantitative analyses, we conclude that FlowGEN can

effectively capture the flow dynamics of graphs with vastly differing characteristics—being

109

FlowGEN: A Generative Model for Flow Graphs Chapter 5

Train FlowGEN Baseline*

T
a
x
i

T
ri

p
s

8
-9

a
m

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

6
-7

p
m

Figure 5.3: Visualization of flow graphs (FGs) sampled from train splits and top-2 models
for taxi trips. ‘*’ indicates the best performing baseline variant (e.g., NetGAN-FGCN for
8-9am). Node colors represent flow divergence with green for source, red for sink and gray for
divergence-free node. Node sizes indicate total in/out flow normalized per graph. See color map
on the right for scale. FGs generated by FlowGEN exhibit similar patterns to those observed in
data regarding the coupling of graph structure and flow distributions.

able to learn complex distributions like divergence-free flows as well as more natural

distributions of flows like human crowds and power transmissions. Lastly, we refer to

our supplementary materials for results on other graph statistics (clustering coefficient,

degree assortativity etc.), additional comparisons with traditional graph generation models

(Section 5.6.4), diversity analysis (Section 5.6.9), as well as a detailed ablation study of

our discriminator components, demonstrating their contributions to each of the evaluation

metrics (Section 5.6.8).

110

FlowGEN: A Generative Model for Flow Graphs Chapter 5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Flow graph samples (taxi trips 8-9am)

1.0

0.5

0.0

0.5

1.0

Fl
ow

 d
iv

er
ge

nc
e

Data FlowGEN NetGAN-FGCN GRAN-FGCN

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Flow graph samples (taxi trips 6-7pm)

1.0

0.5

0.0

0.5

1.0

Fl
ow

 d
iv

er
ge

nc
e

Figure 5.4: Node-level flow divergence distributions of randomly sampled graphs from training
data (1-5), FlowGEN (6-10), NetGAN-FGCN (11-15), and GRAN-FGCN (16-20) for taxi trips
8-9am (top) and 6-7pm (bottom) variants. The horizontal axis corresponds to color-coded graph
samples (five each), while the vertical axis represents flow divergence distributions. FlowGEN
successfully replicates the flow divergence distribution observed in data, outperforming the
two-step approaches.

5.5 Conclusion

We have introduced FlowGEN a generative model for flow graphs (FGs). Besides

nodes and edges, FGs also capture edge flows that might represent a quantity of interest

(e.g. water, power, people) being transported through the graph. FlowGEN generates

both the graph topology and edge flows using a graph neural network customized for

flow data. In particular, FlowGEN’s discrimitator has the following components: (1) a

permutation invariant flow-pooling layer, (2) bi-directional neural message-passing layers,

and (3) an attention-based readout layer. We have evaluated our model against alternative

approaches using synthetic and real datasets and based on a diverse set of metrics. Results

have shown that FlowGEN is able to capture complex flow statistics, such as flow cycles

111

FlowGEN: A Generative Model for Flow Graphs Chapter 5

and flow conservation. Moreover, FGs generated by FlowGEN are also match the number

of source and sink nodes (or hotspots) and their relative locations with those found in

the input graphs.

This work spurs promising directions for future inquiry. First, can one generate

flow graphs with potentially larger sizes than the input ones? A possible approach is

to generate flow graphs hierarchically, where the flow dynamics is induced at multiple

(spatial) scales. Second, the ability of our discriminator to capture complex properties

of flow graphs shows that it can also be applied to other downstream tasks, such as

flow graph classification and missing flow prediction. More broadly, our work might also

inspire future research on neural generative models for other types of graphs with relevant

higher order properties (e.g. structurally balanced opinion graphs), for which there is no

evidence that traditional graph generative models can be successfully applied.

5.6 Supplementary Material

Our supplementary material is organized as follows. Section 5.6.1 provides details

on the datasets employed in our experiments. Sections 5.6.2 and 5.6.3 respectively

provide training details for FlowGEN and two-step approaches. More experimental results

including traditional graph generation models and other graph topological statistics are

given in Section 5.6.4. Section 5.6.5 discusses the stopping criterion applied during training.

Section 5.6.6 presents a comprehensive case study demonstrating FlowGEN’s ability to

generate power networks with domain-specific properties. Section 5.6.7 compares runtimes

of all models. Section 5.6.8 presents an ablation study of our discriminator components.

Lastly, Section 5.6.9 provides a diversity analysis of the generated graphs.

112

FlowGEN: A Generative Model for Flow Graphs Chapter 5

5.6.1 Dataset Details

Here we provide more details on the datasets used during our experiments.

Power: The dataset consists of a fixed power network topology and a set of hourly

snapshots with varying edge flows. Nodes (|V |=25) represent power infrastructure (buses,

plants etc.) belonging to European countries, edges (|E|avg=45) represent transmission

lines between the countries, and edge flows measure the total active power (in MW) being

transmitted through these lines. We randomly sample 2000 hourly flow graph snapshots

from the year 2013. The dataset is obtained from PyPSA-Eur [172]—an optimization

model of the European power transmission system—which generates realistic power flows

based on solutions of optimal linear power flow problems with historical production and

consumption data. Default values were applied for the PyPSA-Eur settings.

Water: This dataset consists of 1000 barbell graphs, each consisting of two densely

connected communities (belts) of size 9, connected by a path of size 2, totalling 20 nodes.

To vary graph structure between samples, instead of having two complete graphs as left

and right bells as in [174], we remove a ratio ri ∼ U(0.1, 0.4) of the intra-community edges

from each graph Gi. Removed edges are selected uniformly at random and removals that

disconnect the graph are not allowed. Having generated the graph structures we now

regard them as 2D pipe networks and simulate water flows between a source and

a sink node, each selected uniformly at random from different communities. For each

graph Gi, we inject a wi ∼ U(1, 20) unit of water from its source node and simulate the

water flow until all the injected water leaks from its sink node. Then, edge flows (xu,v)

are assigned as net amounts of water passing through that edge during the simulation.

All edges are assumed to have the same capacity ci � wi and length. Note that other

than the source and sink nodes, remaining nodes have conserved flows. Resulting flow

graphs have |V |max=20, |E|avg≈57.2.

113

FlowGEN: A Generative Model for Flow Graphs Chapter 5

Taxi Trips: From the NYC taxi trips dataset [175], we create two sets of flow graphs

each corresponding to daily passenger flows between taxi zones in Manhattan during

8-9am and 6-7pm intervals, respectively. We select weekdays in 2017, 2018 and 2019,

excluding the summer months. For each weekday, we construct two graphs (one for each

set) where the nodes represent taxi zones, a directed edge exist from node u to node v iff

there is a trip starting at u and ending at v, and flows (xu,v) on edges represent the total

number of passengers travelled at a given time interval. Note that some node pairs are

likely to have flows in both directions (xu,v ≥ xv,u > 0). In such cases we only keep the

direction with larger flow and update its flow value to the net flow (xu,v − xv,u). Lastly,

we remove edges with less than 50 flows and take the largest connected component in each

graph. This process results in 584 flow graphs for each set, namely 8-9am (|V |max=32,

|E|avg≈133) and 6-7pm (|V |max=32, |E|avg≈156). Flows are normalized per snapshot.

5.6.2 FlowGEN Training Details

We start with hyper-parameters that we fixed during our experiments as they are

empirically found to perform well across all datasets. The tuned hyper-parameters are

mentioned at the end of this section.

Our generator (Gθ) comprises a 4-layer MLP with hidden units of {64, 128, 256, N2},

where N is the maximum number of nodes assigned accordingly per each dataset. A ReLU

activation is applied after each layer. The input to the generator is a 16-dimensional

vector drawn from a multivariate standard normal distribution. In the discriminator (Dφ),

we employ four bi-directional message-passing steps. The in and out message functions

({mt
i,m

t
o}4
t=1) are single layer MLPs without activation, where the hidden units are 16 for

all steps. Node update functions ({f ti , f to}4
t=1) are two-layer MLPs with hidden units of

{32, 16}, and ReLU activations. In the read-out layer, fio is a single layer MLP with 16

114

FlowGEN: A Generative Model for Flow Graphs Chapter 5

hidden units and a tanh activation. The context functions fa and fb are both single-layer

MLPs with hidden units of 16, and the former is followed by a sigmoid activation while

the latter has no activation. Lastly, the graph-level representation is processed by fG

which is modeled as a 2-layer linear MLP with hidden units of {8, 1}. Notice that there

is no activation for the final layer, and the output is a scalar score ∈ R rather than a

probability. The model parameters {θ, φ} are trained using mini-batch SGD with the

Adam optimizer [66]. The learning rate is set to 1e-3. L2 regularization is applied for

all weights with a penalty of 1e-6. We set the Wasserstein gradient penalty to 10 as

suggested by [171] (applied to the discriminator). To allow for a warm start during the

training, for the first 10 epochs, we perform four update steps for the parameters of the

discriminator for each single update step of the parameters of the generator (i.e., n critic

ratio = 4:1). The hyper-parameters we tune are the n critic ratio ∈ {4:1, 2:1, 1:1, 1:2, 1:4}

(effective after 10th epoch), the mini-batch size ∈ {32, 64, 128}, and the dropout ratio

∈ {0, 0.5} (applied after all MLP layers).

5.6.3 Training Details of Two-Step Approaches

We first detail the training process of each topological graph generative model employed,

as well as the modifications performed for adapting them to the problem of generating

flow graphs. NetGAN is originally proposed to learn from a single graph. We make the

following modifications to NetGAN to make it suitable for our problem setting, where a

dataset might have varying graph topologies. We first modify the (ground-truth) random

walk sampling process so that the sampled walks take into account the statistics of the

entire training set. For that, we construct a meta-graph G, which is represented by the

weighted adjacency matrix A=1/|T |
∑

i∈T D
−1
i Ai, where Ai and Di are the adjacency

and normalized diagonal node degree matrices of graph Gi, respectively. We then perform

115

FlowGEN: A Generative Model for Flow Graphs Chapter 5

random walks on G such that the transition probability from node u to v is (D−1A)u,v.

Second, NetGAN requires an input parameter that decides the number of edges generated.

In the case of a single snapshot, this parameter is simply set to the number of edges in the

observed graph. However, in order to generate multiple graphs with potentially varying

topologies, we instead sample Mi ∼ N (µT , σT) edges for each generated graph Gi, where

µT and σT are the sample mean and standard deviation of the number of edges observed

in the entire training set T . No modification is needed for the GRAN baseline. For both

models, we set the hyper-parameters based on recommendations made in their respective

papers, except for the mini-batch size which is tuned ∈{32, 64, 128}.

Recall from Section 5.4.1 that we employ three approaches as flow generating function

F , namely FMLP, FGCN and DFF. The first two extensions predict flows on edges

based on topological encoding of participating nodes with the help of neural networks.

The latter extension instead assigns flows on edges by solving a flow-balance equation

(Equation 5.11). We now detail how these flows are derived, including the training details

and hyper-parameter selection whenever applicable.

FMLP and FGCN: As discussed in Section 5.3.1, for both variants, we first generate

16-dim node features M ∈ R|V |×16 using a standard spectral embedding based on the

Laplacian eigenmaps of the input graph’s adjacency matrix A. This step allows our

two-step variants to handle variable sized graphs as the baseline models are likely to

generate graphs with varying number of nodes and edges. Next, we experiment with

two different encoder layers: (1) The FMLP variant consists of two-layer fully connected

neural network, (2) the FGCN variant consists of two graph convolution layers [159].

Both variants apply ReLU activations after each layer. The hidden units are tuned

∈ {8, 16, 32} and mini-batch size is tuned ∈ {32, 64, 128}. The loss objective is formally

116

FlowGEN: A Generative Model for Flow Graphs Chapter 5

defined as follows:

L =
∑

A,X∼Pdata

√
1

|A>0|
∑

(u,v)∈A>0

(F(A)u,v −Xu,v)2 (5.10)

where A and X respectively denote the adjacency and flow matrices. A>0 = {(u, v)|Au,v >

0} represents the non-zero elements of A, while Xu,v ∈ R is the corresponding flow value

directed from node u to v. The parameters of F are jointly learned by minimizing L using

Adam optimizer with a learning rate of 1e-3. We use the same train/validation/test split

as we used for graph generative models for a fair comparison. Early stopping is applied

based on the MSE score computed on the validation set with a patience of 10 epochs.

Once converged, we then use both variants to predict edge flows on generated graphs

by each undirected graph generative model, resulting in four variants: NetGAN-FMLP,

NetGAN-FGCN, GRAN-FMLP and GRAN-FGCN.

Divergence-free flows (DFF): The third variant aims to distribute flow values on

the graph’s edges so that flows on majority of the nodes are nearly conserved, i.e., total

flow that enters a node should be approximately equal to the total flow that leaves. This

is a well-studied phenomenon observed in many real-world settings including (but not

limited to) transportation networks, water supply networks and power grid networks. For

this variant, for each graph G(V,E) generated by undirected graph generative model

(e.g. GRAN), we first randomly pick 20% of the edges (EL) and assign them flow values

sampled from the ground truth distribution (Xu,v ∼ Pdata). Next, ensuring that flows

are almost conserved, we compute flow values for the rest of the edges by solving the

117

FlowGEN: A Generative Model for Flow Graphs Chapter 5

following constrained optimization problem introduced by [153]:1

X∗ = argmin
X
‖(X −XT)1‖2

2 + λ‖X‖2
F

s.t. Xu,v = Xu,v, ∀(u, v) ∈ EL and Xu,v = 0,∀(u, v) /∈ E (5.11)

where 1 is a column vector of size |V | whose entries are all 1’s. λ is a constant that

controls the regularization term —which guarantees a unique optimal solution— and is set

to 0.1. Note that X∗ may have negative flows after solving the above objective. Therefore,

we further apply the following transformation in order to ensure the non-negative flow

matrix: X = max(0, X∗ −X∗T).

5.6.4 More Experimental Results

The previous experimental results given in Table 5.1 primarily assess the generated

graphs from a flow-centric standpoint, mainly because our objective is to generate realistic

flow graphs. That said, an important pillar towards achieving this goal is the ability to

reproduce underlying graph topologies found in data. Thus, we present a comprehensive

analysis on all four datasets with additional graph statistics in Table 5.2. We also include

two more traditional graph generative models as baselines: Erdos-Renyi (E-R) [136] and

Barabasi-Albert (B-A) [135]. Results show that FlowGEN consistently yields competitive

results against neural baselines while outperforming the traditional approaches.

5.6.5 Stopping Criterion

Notice that all the models employed in our experiments have different underlying

objectives. Consequently, an early stopping criterion based on a non-decreasing loss is not

1Notation is modified from the original version to be consistent with our setting.

118

FlowGEN: A Generative Model for Flow Graphs Chapter 5

Simulated Data Taxi Trips

Power (top) / Water (bottom) 8-9am (top) / 6-7pm (bottom)

Deg.
dist.

Clus.
coeff.

Assort-
ativity

Deg.
dist.

Clus.
coeff.

Assort-
ativity

test data − − -0.196 16.0 23.0 − − -0.255 275.3 2031.4

E-R 0.177 0.114 -8.55e−2 7.92 18.63 8.53e−2 1.99e−2 -7.29e−2 113.4 749.5

B-A 0.479 0.998 -0.428 0.0 0.0 6.80e−2 2.02e−2 -0.195 120.2 771.2

NetGAN 5.32e−2 0.172 -0.247 7.95 12.19 3.54e−2 2.03e−2 -0.223 87.3 416.7

GRAN 3.86e−3 4.27e−2 -0.188 16.65 25.60 5.32e−3 1.97e−2 -0.251 231.9 1768.8

FlowGEN 1.91e−2 0.106 -0.221 13.20 21.23 1.48e−2 1.99e−2 -0.234 256.4 2170.2

test data − − -2.63e−2 36.69 108.84 − − -7.86e−2 340.3 2523.0

E-R 2.48e−2 2.51e−2 -0.131 17.5 57.96 9.21e−2 2.01e−2 -6.36e−2 173.1 1277.0

B-A 0.101 4.62e−2 -0.322 13.32 38.78 6.11e−2 2.00e−2 -0.186 197.4 1460.3

NetGAN 2.59e−2 2.23e−2 -0.138 22.2 56.4 6.20e−2 2.02e−2 -7.23e−2 94.5 441.4

GRAN 4.20e−3 2.08e−2 -5.54e−2 38.37 116.39 3.01e−3 2.00e−2 -0.152 358.5 2876.4

FlowGEN 9.27e−3 2.19e−2 -3.49e−2 36.01 102.38 1.57e−2 1.99e−2 -6.89e−2 299.7 2671.3

Table 5.2: Results with respect to graph topology. Metrics from left: (1) degree and (2) clustering
coefficient distributions; average (3) degree assortativity and (4-5) number of 3&4-cycles. For
MMD scores (1-2), the smaller the better; for average statistics (3-5), the closer to test data,
the better.

appropriate and is likely to result in unfair comparisons. In this work, we instead apply an

early stopping criterion that is based on the model performance measured with respect to

evaluation metrics. Since we employ a collection of metrics that measure the performance

from various perspectives (recall from Section 5.4.1), considering only a single metric

(e.g. degree distribution) might not translate to similar performance in other metrics (e.g.

divergence distribution) due to the complex nature of flow graphs. Therefore, we continue

training the models—evaluating after each epoch—until more than half of the metrics

stop improving with a patience of 10 epochs. For the baseline models, we re-sample the

flows before each evaluation step as the generated graphs are likely to change. Once the

training is complete, we rank all the snapshots based on the evaluation metrics and report

the best-ranked snapshot for each model.

119

FlowGEN: A Generative Model for Flow Graphs Chapter 5

5.6.6 Case Study: European Power Network

We perform a case study focused on the generation of a particular type of flow graphs,

namely power networks. They are often applied in the analysis of large power distribution

infrastructure, including their robustness [176] and optimization [177]. Moreover, the

dynamics of power networks is governed by physical laws—in this case, Kirchhoff’s laws—

posing a great challenge to domain-agnostic generative models for flow graphs. In this

case study, we apply a new domain-specific evaluation metric in order to assess whether

the generated graphs are consistent with the expected properties of power networks.

Evaluation: Besides the metrics described in Section 5.4.1, we also apply a more

specific one to evaluate power flow graphs. Our goal is to assess whether the generated

flows are consistent with the dynamics observed in real power networks. For each generated

flow graph G(V,E,X), we compute node divergences Xdiv
u = (Xout

u −X in
u), where X in

u and

Xout
u are total in and out flows for node u, respectively. These values capture the net power

consumed (Xdiv
u < 0) or generated (Xdiv

u > 0) at each node in the flow graph. However,

notice that different assignments of flows can satisfy the same node divergences—flows

can be increased arbitrarily along the cycles in G—and thus one can define a notion

of optimality to compare them. We define the optimal flow assignment X∗ given node

divergences Xdiv and a set of edges E using a formulation similar to Equation 5.11:

X∗ = argmin
X
‖(X −XT)1−Xdiv‖2

2 + λ‖X‖2
F

s.t. ∀Xu,v > 0, (u, v) ∈ E (5.12)

where λ (set to 0.1) is a regularization parameter. X∗ attempts to satisfy the node

divergences as those in Xdiv while also minimizing a regularization term. Besides making

the solution unique, this regularization has a physical interpretation from Kirchhoff’s

120

FlowGEN: A Generative Model for Flow Graphs Chapter 5

Eff. score

test data 0.69

NetGAN-FGCN 0.47

GRAN-FGCN 0.52

FlowGEN 0.58

Table 5.3: Power network generation results with respect to the efficiency score. The higher the
score, the better.

NetGAN GRAN FlowGEN

0.176 1.293 0.154

Table 5.4: Runtime comparisons of models (in seconds).

voltage law [178]. Intuitively, it penalizes cyclic flows, which are not driven by differences

of potentials, while smoothly distributing flow values as if line resistances are uniform.

Therefore, given the same node divergences and graph topology, one would expect an

effective model to produce flows that are close to X∗. We define the efficiency score of a

flow matrix X as 1− ||X −X∗||F , where both flow matrices are normalized.

Experimental Results: Table 5.3 shows the performance of FlowGEN and the best

performing baseline variants on the power dataset. In Section 5.4.2 we showed that while

GRAN variants excel at reproducing topological properties, FlowGEN achieves the best

results regarding flow-related metrics (i.e., edge flows, node divergences and directed

cycles) at both local and global levels. Similarly, regarding the efficiency score, results

show that FlowGEN produces flow graphs that are closer to optimal compared to the

baselines. As expected, the test graphs have the highest efficiency score. Moreover, notice

that neither FlowGEN nor the baselines take into account the objective function from

Equation 5.12 explicitly. These results give substantial evidence that FlowGEN is able to

capture complex domain-specific flow dynamics observed in the data.

121

FlowGEN: A Generative Model for Flow Graphs Chapter 5

5.6.7 Runtimes

Due to our rather complicated early stopping criterion, it is not reasonable to compare

total training times of models. Since baseline models are not designed to generate flow

graphs, they tend to have a fluctuating performance on flow-related metrics, which often

results in longer training times. Instead, we report one full pass (single iteration) time

for each model on Taxi Trips 8-9am in Table 5.4. Runtimes are measured with batch

size of 32 on a GeForce GTX 1070. As we can see, NetGAN and FlowGEN have similar

runtimes, while GRAN is significantly slower due to its sequential generation process.

5.6.8 Ablation Study

In this section, we conduct an ablation study in order to demonstrate the contributions

of each FlowGEN component by disabling these components one by one, and replacing

them with standard approaches from the literature. We name these variants as follows:

• FlowGEN without Flow-Pooling Layer (w/o FPL): This variant disables our flow-

pooling component and instead uses Gaussian random vectors as initial in and out

node features ([inh
1
u;out h

1
u] ∼ N (0, I6)). This is a well-known approach for cases

where external node features are not available [161].

• FlowGEN without Bidirectional Message-Passing Layer (w/o BMPL): This variant

disables our bidirectional message passing scheme where the node state updates

are computed using two independent (in and out) neural message-passing channels

(Equations 5.6 and 5.7). We instead employ a single message-passing channel to

simultaneously update both in and out node representations. More formally, for

122

FlowGEN: A Generative Model for Flow Graphs Chapter 5

each node u at layer t, the respective node update is computed as follows:

ht+1
u = f t(htu,m

t
u), t = 1,· · ·, T−1

where

mt
u =

∑
v∈Gin(u)

mt(htv, xv,u) +
∑

v∈Gout(u)

mt(htv, xu,v)

h1
u = [inh

1
u;out h

1
u]

{f t,mt|t = 1, · · · , T−1} are again modeled as MLPs.

• FlowGEN without Attention-based Readout Layer (w/o ARL): This variant replaces

the attention-based readout layer (also called gated sum [168]) with a standard

SUM aggregator. More formally, we modify Equation 5.9 and compute the latent

graph representation as hG = 1
|V |
∑

u∈V h̃u which simply assigns equal weights to all

nodes in the graph.

We also tune hyper-parameters for all variants in a same way as we do for FlowGEN,

which is described in Section 5.6.2.

Analysis: Table 5.5 demonstrates that each FlowGEN component contributes to final

model performance, where different components have varying effects on different evaluation

metrics. We observe that the proposed bidirectional message-passing layer (BMPL) enables

our discriminator to better capture higher-order directed flow characteristics found in

ground-truth data, which results in significant improvements on related metrics such as

in/out degree distributions, node-divergence distribution and directed k-cycles. With that

observation, we hypothesize that bidirectional message-passing channels can account for

heterogeneous in-flow and out-flow dynamics of nodes. As an example, for certain nodes

like divergence-free nodes, larger total in-flow naturally indicates larger total out-flow,

while this does not hold for some other nodes like sink or source nodes, for which the

123

FlowGEN: A Generative Model for Flow Graphs Chapter 5

In-deg.
dist.

Out-deg.
dist.

{xu,v} {Xdiv
u }

test data − − − − 2.58 2.33

FlowGEN 1.35e−2 9.36e−3 3.73e−3 2.98e−3 2.66 2.41

w/o FPL 2.51e−2 3.17e−2 4.19e−3 9.23e−3 2.60 2.56

w/o BMPL 4.25e−2 8.63e−2 4.39e−3 5.73e−2 0.85 1.48

w/o ARL 1.81e−2 2.38e−2 3.08e−3 7.16e−3 1.83 3.64

Table 5.5: Ablation study of various model components on Power dataset. Metrics from left to
right: Distributions of (1-2) in&out degree, (3) edge flow, and (4) node divergence; (5-6) average
number of directed 3&4-cycles. For MMD scores (1-4), the smaller the better; for average
statistics (5-6), the closer to test data, the better.

relationship between the total incoming and outgoing flow is clearly not linear.

Moreover, while the flow-pooling layer (FPL) does not seem to have a notable impact

on directed cyclic trends, it leads to improvements on in/out degree distributions and

(more prominently) on node-divergence distribution. This suggests that our flow-pooling

operators provide better inductive bias towards discerning node-level flow dynamics. In

other words, we observe that explicitly assigning rather simple flow statistics of nodes as

initial node states—in addition to inducing the key property of permutation invariance—

results in improved performance in capturing global node-level flow characteristics, as

well as directed connectivity patterns found in data. Another interesting observation we

have is that without FPL, our model is often more susceptible to mode collapse and the

stopping criterion is triggered at earlier epochs.

The third component of our discriminator is the attention-based readout layer (ARL).

Such a layer is widely used in the literature to adjust the contributions of each node to

the final (graph-level) task of interest, as intuitively, certain nodes play a more critical

role than others [179]. In this work, we leverage this technique to improve our model’s

ability to replicate critical nodes in flow graphs (such as source and sink nodes), which

124

FlowGEN: A Generative Model for Flow Graphs Chapter 5

directly leads to desirable improvements observed through both qualitative (Figure 5.3)

and quantitative (Table 5.5) evaluations. More specifically, we observe that employing

an attention-based readout layer leads to enhanced performance on the node-divergence

distribution and directed k-cycle count metrics compared to the standard SUM aggregator,

which assigns equal weights to all nodes in the graph.

The results discussed in this section confirm the different choices made in the design

of the FlowGEN architecture. As discussed above, each component contributes to our

model’s ability to reproduce one or more desired properties of real flow graphs, which

results in desired performance when most of the metrics considered (see Table 5.1).

0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 0.1 0.2
Degree assortativity

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

De
ns

ity

Data
NetGAN
GRAN
FlowGEN

(a) Taxi 8-9am

0.5 0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3
Degree assortativity

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

De
ns

ity

Data
NetGAN
GRAN
FlowGEN

(b) Taxi 6-7pm

0.5 0.4 0.3 0.2 0.1 0.0
Degree assortativity

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

De
ns

ity

Data
NetGAN
GRAN
FlowGEN

(c) Power

0.6 0.4 0.2 0.0 0.2 0.4 0.6
Degree assortativity

0.00

0.01

0.02

0.03

0.04

0.05

De
ns

ity

Data
NetGAN
GRAN
FlowGEN

(d) Water

Figure 5.5: Distributions of degree assortativity coefficients observed in graphs from training
data, NetGAN, GRAN, and FlowGEN for all four datasets used in our experiments.

125

FlowGEN: A Generative Model for Flow Graphs Chapter 5

5.6.9 Diversity Analysis

Lastly, we analyze the diversity of our generated graphs, which is an important

aspect in assessing generative models’ capacity as they are known to suffer from mode

collapse [170, 180]. In the context of graph generative models, the notion of diversity

is typically defined for undirected graphs and does not directly apply to our case (e.g.

graphs with the same topology but different flow distributions are considered different).

That said, we have observed that FlowGEN is able to generate diverse sets of flow graphs

with varying topological and flow-related characteristics.

Figure 5.5 demonstrates the distribution of generated graph structures observed in all

four datasets, as well as graphs generated by NetGAN, GRAN, and FlowGEN. To do

that, we choose (undirected) degree assortativity coefficient [181] as our metric, which is

a graph-level scalar value allowing us to conveniently examine and compare structural

diversity across generated graphs. For FlowGEN, we use the undirected versions of the

generated flow graphs for a fair comparison. Our results show that while FlowGEN and

GRAN generate diverse underlying graph structures, NetGAN tends to generate graphs

with similar structures, particularly for Taxi 8-9am (Figure 5.5a) and Power (Figure 5.5c).

126

Chapter 6

Problems on Network Regularization

In this chapter, we introduce our work on two problems that can be grouped under the

umbrella term of network regularization. Network regularization has proven as an effective

tool for learning more robust models that can better generalize to unseen data, at the

same time making more sample efficient use of the available training data. Moreover,

it allows us to take advantage of prior knowledge on network structures and capture

relational inductive bias that is rooted in data.

Section 6.1 of this chapter introduces a generic network regularization framework,

which facilitates more robust learning in the cases of missing and/or corrupt edge weights,

a setting that is commonly encountered in real-world problems. Section 6.2 studies the

challenging problem of missing flow estimation on flow graphs. It introduces a novel

physics-informed network regularization technique that can jointly account for network

structure, node/edge features, and the underlying domain physics. Through extensive

experiments using large-scale road traffic and electric power networks, we show that the

proposed framework not only achieves superior performance compared to the baselines,

but also learns interpretable physical properties, such as the role played by resistance in a

power transmission network and by the number of lanes in a road traffic network.

127

Problems on Network Regularization Chapter 6

6.1 Discrepancy-aware Network Regularization

6.1.1 Introduction

Network regularization is a fundamental approach to encode and incorporate general

relationships among variables, which are represented as nodes and linked together by

weighted edges that describe their local proximity. A significant amount of effort has

been devoted to developing successful regularizations [182, 183] that take advantage of

prior knowledge on network structures to enhance estimation performance for a variety of

application settings, including image denoising [184] and genomic data analysis [185].

We consider the general setting of network regularization, now proposed as a convex

optimization problem defined on an undirected graph G(V , E) with node set V and edge

set E :

min
∑
i∈V

fi(xi) + λ
∑

(j,k)∈E

ωjk · g(xj, xk), (6.1)

where on each node i, we intend to learn a local model xi ∈ Rd, which in addition to

minimizing a predefined convex loss function fi : Rd → R, carries certain relations to its

neighbors, defined by the function g : Rd × Rd → R.

In this work, we focus on the particular setting where g(xi, xj) = ‖xi − xj‖2, also

known as a sum-of-norms (SON) regularizer. It assumes that the network is composed

of multiple clusters, suggesting that all nodes within a cluster share the same consensus

model (xi = · · · = xj). As the observed data on each node may be sparse, the SON

regularizer allows nodes to ”borrow” observations from their neighbors to improve their

own models, as well as to determine the network cluster to which they belong. The SON

objective was first introduced in [186] for convex clustering problems and used off-the-

shelf sequential convex solvers. Chi & Lange [187] adapt SON clustering to incorporate

128

Problems on Network Regularization Chapter 6

similarity weights with an arbitrary norm and solve the problem by both alternating

direction method of multipliers (ADMM) or alternating minimization algorithm (AMA)

in a parallel manner. More recently, Hallac et al. [182] point out that weighted SON

(named as Network Lasso) allows for simultaneous clustering and optimization on graphs,

and is highly suitable for a broad class of large-scale network problems.

In network regularization, a static weight assigned to an edge determines how strictly

the difference between models on the corresponding nodes is being penalized, relative

to the other node pairs in the network. However, unlike few scenarios in which network

information is explicitly given, edge weights are usually unavailable or even infeasible

to obtain in most real-world networks (e.g., gene regulatory networks [188]). Moreover,

due to possible measurement errors and inaccurate prior knowledge, the assigned edge

weights don’t necessarily align with the underlying clustering structure of networks as

shown in [189, 190]. As a result, heavily relying on the edge weights in determining how

much penalty should be applied to neighboring models may contaminate the discovered

solutions.

Similar intuition applies when we extend to the temporal setting. Models on nodes

of temporal networks usually change at the level of groups over time. However, some

groups exhibit different evolution patterns than others [191]. Moreover, the grouping

structures themselves may evolve with time [192]. As static regularization cannot capture

such temporal evolution, a direct solution is to induce a time-varying local consensus by

employing the SON objective on both spatial and temporal directions, but we face an

more drastic problem: how to assign weights between snapshots.

Consequently, a framework that is robust to missing or corrupted edge weights in

network-based regularization and adapts to spatio-temporal settings is desired. Note

that without the assigned network weights, the setting in Eq. (6.1) degrades to simply

applying isotropic regularization for all the edges. In this work, we propose a generic

129

Problems on Network Regularization Chapter 6

formulation, called the discrepancy-aware network regularization (DANR), which deploys a

suitable amount of anisotropic network regularization in both spatial and temporal aspects.

DANR infers models at each node per timestamp and can learn evolution of models and

transitions of network structures over time. We develop an ADMM-based algorithm that

adopts an efficient and distributed iterative scheme to solve problems formulated by the

DANR, and show that the proposed solution obtains guaranteed convergence towards

global optimal solutions. By applying to both synthetic and real-world datasets, we

demonstrate the effectiveness of the proposed approach on various network problems.

6.1.2 Related Work

Among existing network-based regularization approaches, there are two major types

of edge objectives that are most commonly used: the square-norm objective and the

unsquared-norm objective, encouraging different styles of expected solutions. The squared-

norm edge objective (i.e.,
∑

jk ωjk‖xj−xk‖2
2), well-known as graph Laplacian regularization

[193], assumes underlying models on nodes are smoothly varying as one traverses edges

in the network, and accordingly enforces similar but not identical models on linked

nodes. Due to the merits of simple computations and good performance, graph Laplacian

regularizer has gained popularity in solving problems, such as image deblurring and

denoising [184], genomic data analysis [185], semi-supervised regression [194], non-negative

matrix factorization [195] and semi-definite programming [196]. However, the square-norm

objective usually induces very dense models. The unsquared-norm objective, known as

sum-of-norms regularizer [186, 197], bears some similarity to scale-valued fused lasso

signal approximator [198] that exists in signal processing applications, for example, total-

variation (TV) regularizer for image denoising, and graph trend filtering (GTF) regularizer

for nonparametric regression. TV regularizer [199] is developed to penalize both the

130

Problems on Network Regularization Chapter 6

horizontal and vertical differences between neighboring pixels, which can be thought of as

a special scalar-valued network lasso on a 2D grid network. GTF [183] generalizes the

successful idea of trend filtering to graphs, by directly penalizing higher order differences

across nodes. All regularizers above require correct edge weights so that network structures

can be properly used to improve joint estimation. In contrast, our proposed approach

allows ambiguous input of network edge weights by introducing the discrepancy-buffering

variables. Also, as a variation of SON regularization, our formulation enjoys small model

complexity as local consensus is imposed across large-scale networks.

6.1.3 Problem Setting

Since existing network-based regularizers rely on known weights on edges, the corre-

sponding solutions get misled when the edge weights are erroneous or unknown. Directly

learning the unknown edge weights by using the same regularizer as Eq. (6.1) would lead

to an optimization problem:

min
x,ω

∑
i∈V

fi(xi) + λ
∑

(j,k)∈E

ωjk ‖xj − xk‖2 (6.2)

which yields the trivial all-zero solution of ω and thus becomes unsatisfactory. Instead

of imposing more sophisticated model-based or problem-dependent regularization as

suggested in [200], we consider an alternative formulation that explicitly accounts for

discrepancies between models on adjacent nodes:

min
x,α

∑
i∈V

fi(xi) + λ · RS(x, α)

RS(x, α) = µ
∑

(j,k)∈E

ωjk ‖xj + αjk − xk‖2 + (1− µ)‖α‖1,p (6.3)

131

Problems on Network Regularization Chapter 6

where we denote ‖α‖1,p =
∑

(j,k)∈E ‖αjk‖p as the sum of p-norms of all αjk’s. We set a

penalty parameter λ ≥ 0 to control the overall strength of network regularization, and a

portion parameter 0 < µ < 1 to control the emphasis between the two terms in RS(x, α).

We name this formulation in Eq. (6.3) the discrepancy-aware network regularization

(DANR).

In the first term of RS, we define a discrepancy-buffering (DB) variable αjk ∈ Rd

to denote the preserved discrepancy between local model parameters xi and xj. More

specifically, when an edge weight ωjk is given but potentially imprecise or otherwise

corrupted, αjk would compensate for abnormally large differences between models xj

and xk to reduce the magnitude of ωjk-weighted edge penalty term in RS. The DB

variable provides additional flexibility to its associated models, allowing them to stay

adequately close to their own local solutions w.r.t. minimizing local loss functions, and

avoid over-penalized consensus. When all ωjk’s are not given, αjk’s enable solving Eq. 6.3

under anisotropic regularizations even with homogeneous weights.

The second term of RS is the `1,p-regularizer (with 1 < p < ∞) [201] that ensures

sparsity at the group level. Note that we regard each variable vector αjk as a group (|E|

groups in total). The first key intuition here is that the regularization on α helps to

exclude trivial solutions, that is αjk = xk − xj. Second, it allows us to identify a succinct

set of non-zero vectors αjk’s, compensating for possible intrinsic discrepancies between

two adjacent nodes.

To sum up, discrepancy-buffering variable αjk’s are designed to elaborately adjust

network regularization strength on all edges, and thus reduce negative effects of the

unsquared norm regularizer. We will show in later sections that this modified formulation

remains convex and tractable via parallel optimization algorithms on large-scale networks.

132

Problems on Network Regularization Chapter 6

6.1.4 Distributed ADMM-based Solution

In this section, we propose an ADMM-based algorithm for solving the proposed

problem in Eq. (6.3) and present the convergence and complexity of the proposed algorithm.

Extensions of our solution to the spatio-temporal case is included in the following section.

The ADMM method was originally derived in [202] and has been reformulated in

many contexts including optimal control and image processing [203]. The method

can be considered as combining augmented Lagrangian methods and the method of

multipliers [204]. It aims to solve optimization problems with two-block separable convex

objectives in the following form of

min f(x) + g(z) s.t. Ax+Bz = c (6.4)

Observe that our proposed objective in Eq. (6.3) has a separable convex objective function:

it can be reorganized into two-block separable convex objectives as in Eq. (6.4), for which

ADMM methods guarantee convergence to global optimal solutions [205].

More precisely, to fit our problem into the ADMM framework, we first define x={xj}j∈V

for model parameter vectors on the given undirected network G, and define consensus

variables u = [{ujk, ukj}(j,k)∈E] as copies of x in the spatial penalty term RS(x, α). Then

we rewrite Eq. (6.3) as follows:

min
x,u,α

∑
j∈V

fj(xj) + λ1(1− µ1)‖α‖1,p + λ1µ1

∑
(j,k)∈E

ωjk ‖ujk + αjk − ukj‖2 (6.5)

s.t. [ujk, ukj] = [xj, xk] , (j, k) ∈ E

in which the first term corresponds to the f block in Eq. (6.4), and the remaining terms

correspond to the g block. The equality constraints on Eq. (6.3) are used to force consensus

133

Problems on Network Regularization Chapter 6

between variables x and u. Next, we derive the augmented Lagrangian of Eq. (6.5):

Lρ1(x, u, α, δ) =
∑
j∈V

fj(xj) + λ1(1− µ1)‖α‖1,p +
∑

(j,k)∈E

(
λ1µ1ωj,k‖ujk + αjk − ukj‖2

+
ρ1

2
‖xj − ujk + δujk‖2

2 −
ρ1

2
‖δujk‖2

2 +
ρ1

2
‖xk − ukj + δukj‖2

2 −
ρ1

2
‖δukj‖2

2

)
(6.6)

where δ = [{δujk, δukj}(j,k)∈E] are scaled dual variables for each equality constraint on the

elements of u. The parameters ρ1 > 0 penalize the violation of equality constraints in the

spatial and temporal domain [206] respectively. The iterative scheme of ADMM under

the above setting can be written as follows, with l denoting the iteration index:

x(l+1) = argmin
x
Lρ1(x, (u, α, δ)(l))

(u, α)(l+1) = argmin
u,α

Lρ1(x(l+1), u, α, δ(l))

δ(l+1) = δ(l) + (x̃(l+1) − u(l+1))


(6.7)

where x̃=[{xj , xk}(j,k)∈E] is composed of replicated elements in x, and thus has a one-to-one

correspondence with elements in u.

Because the augmented Lagrangian in Eq. (6.6) has a separable structure as well, we

can further split the optimization above over each univariate element in x and z. Next,

we provide details for each ADMM update step.

x-Update. In the first update step of our ADMM updating scheme, we can decompose

the problem of minimizing x into separately minimizing xj for each node j :

x
(l+1)
j = argmin

xj

(
fj(xj) +

ρ1

2

∑
k∈Nj

‖xj − u(l)
jk + δ

u(l)
jk ‖

2
2

)
(6.8)

As above equation suggests, xj on node j first receives local information from the

134

Problems on Network Regularization Chapter 6

corresponding consensus variables belonging to all of its neighbors k ∈ Nj, then updates

its value to minimize the loss function and remain close to neighbouring consensus

variables. Since all remaining regularizations are quadratic, the x-update problem can

be efficiently solved whenever the loss function fj has certain properties, such as strong

convexity.

(u, α)-Update. We can further decompose the (z, α)-update step in Eq. (6.7) into

subproblems on each edge (and its related variables ujk, ukj, αjk) as follows, which can be

solved in parallel:

(u
(l+1)
jk , u

(l+1)
kj , α

(l+1)
jk) = argmin

(
λ1(1− µ1)‖αjk‖p + λ1µ1ωjk‖ujk + αjk − ukj‖2

+
ρ1

2
‖x(l+1)

j − ujk + δ
u(l)
jk ‖

2
2 +

ρ1

2
‖x(l+1)

k − ukj + δ
u(l)
kj ‖

2
2

)
(6.9)

Notice that the sum of convex functions which are defined on different sets of variables

preserves the convexity. To minimize the objective with ujk, ukj and αjk simultaneously,

the convexity of Eq. (6.9) motivates us to adopt an alternating descent algorithm, which

minimizes each component iteratively with respect to (ujk, ukj) and αjk while holding the

other fixed. In detail, we solve Eq. (6.10) and Eq. (6.11) iteratively until convergence is

achieved:

(u
(l′+1)
jk , u

(l′+1)
kj) = argmin

(
λ1µ1ωjk‖ujk + α

(l′)
jk − ukj‖2 (6.10)

+
ρ1

2
‖x(l+1)

j − ujk + δ
u(l)
jk ‖

2
2 +

ρ1

2
‖x(l+1)

k − ukj + δ
u(l)
kj ‖

2
2

)
α

(l′+1)
jk = argmin

(
(1− µ1)‖αjk‖p + µ1ωjk‖u(l′+1)

jk + αjk − u(l′+1)
kj ‖2

)
(6.11)

where l′ denoting the iteration index of alternating descent. Further, we can utilize the

analytic solution to speed up the calculation of ujk and ukj:

135

Problems on Network Regularization Chapter 6

Lemma 6.1.1 Problem (6.10) has a closed-form solution:

u
(l′+1)
jk = (1− θ)a+ θb− θα(l′)

jk

u
(l′+1)
kj = θa+ (1− θ)b+ θα

(l′)
jk


where we denote a = x

(l′+1)
j + δujk

(l′), b = x
(l′+1)
k + δukj

(l′), c = λ1(1 − µ1)ωjk, and θ =

c/(ρ1‖a− b+ α
(l′)
jk ‖2) for simplification. Details are in [4].

δ-Update. In the last step of our ADMM updating scheme, we have fully independent

update rules for each scaled dual variable δujk as follows:

δujk
(l+1) = δujk

(l) + (x
(l+1)
j − u(l+1)

jk) (6.12)

Stopping Criterion and Global Convergence. For our ADMM iterative scheme

in Eq. (6.7), we use the norm of primal residual r(l) = x̃(l) − u(l) and dual residual

s(l) = ρ1(u
(l) − u(l+1)) as the termination measure. The optimality condition [204] of

ADMM shows that if both residuals are small then the objective suboptimality must be

small, and thus suggests ‖r(l)‖2 ≤ ε1 ∧ ‖s(l)‖2 ≤ ε2 as a reasonable stopping criterion.

Convex subproblems in x-update and (u, α)-update need iterative methods to solve as

well. The stopping criterion for these subproblems is naturally to keep iteration differences

below thresholds, i.e. in (u, α)-update, we require ‖∆u(l′)‖2 ≤ ε′ and ‖∆α(l′)‖2 ≤ ε′.

Lemma 6.1.2 Our ADMM approach to solve the DANR problem is guaranteed to converge

to the global optimum. Proof is in [4].

Computational Complexity. Let Nc denote the number of iterations that ADMM

takes to achieve an approximate solution x̂ with an accuracy of εx. Based on the conver-

gence analysis in [207], the time complexity scales as O(1/εx), which in our problem mostly

136

Problems on Network Regularization Chapter 6

depends on the properties of cost functions fjt’s. Assume that all convex subproblems in

x-update and (u, α)-update are solved by general first-order gradient descent methods

that take Nx and Nα iterations to converge respectively, the overall complexity of the

algorithm is therefore O
(
Nc

(
Nx|V|+Nα|E|+ |E|

))
.

6.1.5 Extension to Spatio-temporal Setting

The aforementioned shortcomings with pre-defined edge weights accentuate when we

consider temporal networks since acquiring explicit temporal edge weights is usually not

feasible. Thus, discrepancy-buffering variables are also crucial for the temporal setting.

Figure 6.1: Overview of our problem setting in temporal networks.

Consider a temporal undirected network G consisting of M sequential network snap-

shots {G1,G2, . . . ,GM}, where each network snapshot Gt contains a node set Vt and an

edge set Et. We denote ωtj,k as the weight of spatial edge (jt, kt) between nodes jt and kt

within snapshot Gt, and ωt,t+1
j for the weight of temporal edge (jt, jt+1) that links node

jt with jt+1 across snapshots Gt and Gt+1 (shown in Fig.6.1). On each node jt, a convex

loss function fj,t : Rd → R is given to measure the fitness of a local model parameterized

137

Problems on Network Regularization Chapter 6

by xj,t ∈ Rd. With sparse observations for all snapshots, a straightforward task is to

find jointly optimal models for every node and every timestamp under the regularization

for both network topology and temporal evolution. We can propose an extension of the

DANR formulation to spatio-temporal networks, referred as ST-DANR:

min
x,α,β

∑
j∈V

M∑
t=1

fj,t(xj,t) + λ1 · RS(x, α) + λ2 · RT (x, β) (6.13)

where we define the discrepancy-aware regularizers as:

RS(x, α) = µ1

M∑
t=1

∑
(jt,kt)∈Et

(
ωtjk ‖xj,t + αjk,t − xk,t‖2

)
+ (1− µ1)‖α‖1,p (spatial penalty term) (6.14)

RT (x, β) = µ2

∑
j∈V

M−1∑
t=1

(
ωt,t+1
j ‖xj,t + βj,t − xj,t+1‖2

)
+ (1− µ2)‖β‖1,p (temporal penalty term) (6.15)

As we are interested in the heterogeneous evolution of nodal models across time, the chosen

unsquared norms in spatial and temporal regularization terms RS(x, α) and RT (x, β)

enforce piecewise consensus in both spatial and temporal aspects, which indicates abrupt

changes of regional models or sudden transitions in network structures at particular

timestamps, and also implies valid persistent models in the remaining segments of time

[208]. Beside the spatial DB variables αjk,t in RS(x, α), we define another set of temporal

DB variables βj,t ∈ Rd in RT (x, β) to compensate for inadequate regularizations caused

by temporal fluctuations. For example, when modeling housing prices in a city, βj,t would

tolerate anomalous short-term fluctuations in prices, while large values of αjk,t might be

found near boundaries of disparate neighborhoods.

Adaptation to Streaming Data. In many applications, observed network snapshots

138

Problems on Network Regularization Chapter 6

arrive in a streaming fashion. Instead of recomputing all models on past snapshots

whenever a new snapshot is observed, incorporating existing models to facilitate the

new incoming snapshot is more efficient. Assume that we have learned models {x̂j,t}j∈V

for the τ -th snapshot, we then read observations of the next m snapshots indexed by

τ + 1, · · · , τ + m and attempt to learn models for them. To this intent, we deploy our

ST-DANR formulation in Eq. (6.13) on a limited time interval t = τ, · · · , τ + m, and

then integrate established model at t = τ by fixing {xj,τ}j∈V = {x̂j,τ}j∈V and solving the

remaining variables {xj,t}t=τ+1,··· ,τ+m
j∈V in the corresponding problem. Note that in our

setting, temporal messages are only transferable through consecutive snapshots, meaning

that fixing the τ -th snapshot is the same as fixing all past snapshots.

Lastly, we point out that distributed ADMM-based solution for DANR (§2.2) can

be adapted to ST-DANR, for either batch formulation (Eq. (6.13)) or streaming-case

formulation, which readers can refer to in Appendix E.

Temporal Evolutionary Patterns. In this work, we consider the unsquared edge

penalty term ‖xj,t+βj,t−xj,t+1‖2 inRT since it enforces temporal reconstruction, indicating

sharp transitions or change points at particular timestamps. Similar to the spatial case,

there could be multiple available alternatives to enforce different types of evolutionary

patterns [208]. For example, replacing the unsquared norm with squared norm form

‖xj,t + βj,t − xj,t+1‖2
2 will yield smoothly varying models along consecutive snapshots, and

has been well studied in [209, 210].

6.1.6 Experiments

In this section, we present an experimental analysis of the proposed method (DANR)

and evaluate its performance on various real-world tasks. We employ two housing price

datasets from Bay Area and Sacrament Area to demonstrate an application that is

139

Problems on Network Regularization Chapter 6

particularly good fit for DANR. In addition to an improvement on the estimation task,

DANR learns fine-grained neighborhood boundaries and reveals interesting insights into

the network’s heterogeneous structure. Lastly, in order to validate the efficacy of ST-

DANR in the temporal setting, we conduct experiments with the geospatial and temporal

database of Northeastern US lakes, from which we aim to estimate the water quality

of lakes over 10 years. With these experiments, we validate the efficacy of the DANR

method in the temporal setting, as well as the spatial setting.

Baseline Algorithms. In spatial network scenarios, we compare DANR against

three baselines: network lasso (NL) [182], robust multi-task feature learning (rMTFL)

[211], factorized multi-task learning (FORMULA) [212]. In spatial-temporal network

scenarios, we compare ST-DANR with two widely-applied temporal regularizers in the

literature, which are detailed later.

Parameters Setting. For both NL and DANR, we tune λ parameters from 10−3

to 102 where λn+1 = 1.3λn. Concerning the DANR, for each value of λ, we further tune

µ parameters from 0.3 to 1, where µn+1 = µn + 0.02. Lastly, we set p = 3. We follow

the same strategy for both spatial (DANR) and spatio-temporal (ST-DANR) variants of

the proposed method. For all penalty parameters in rMTFL and FORMULA, we tune

them in the same way as λ in DANR. In addition, we vary the number of factorized base

models in FORMULA from 1 to 50 to achieve its best performance. For each dataset, we

standardize all features and response variables to zero mean and unit variance.

Spatial: Housing Rental Price Estimation

In this section, our goal is to jointly (i) estimate the rental prices of houses by

leveraging their geological location and the set of features; (ii) discover boundaries between

neighborhoods. The intuition is that the houses in the same neighborhood often tend to

have similar pricing models. However, such neighborhoods can have complex underlying

140

Problems on Network Regularization Chapter 6

structures (as described later in this section), which imposes additional challenges in

learning accurate models.

Dataset. We experiment with two largely populated areas in Northern California:

the Greater Sacramento Area (SAC) and the Bay Area (BAY). The anonymized data is

provided by the property management software company Appfolio Inc, from which we

further sample houses with at least one signed rental agreement during the year 2017.

The resulting dataset covers 3849 houses in SAC and 1498 houses in BAY. Concerning

the houses that have more than one rental agreement signed during 2017, we average the

rental prices listed in all the agreements. Each house holds the information about its

location (latitude/longitude), number of bedrooms, number of bathrooms, square footage,

and the rental price. We regard these areas (SAC and BAY) as two separate datasets for

the remainder of this section. We also randomly split 20 % of the houses in each dataset

for testing.

Network Construction. After excluding test houses from both datasets, we con-

struct two networks (one for each dataset) based on the houses’ locations. An undirected

edge exists between node i and j, if at least one of them is in the set of 10 nearest

neighbors of the other. (Note that node j being one of the 10 nearest neighbors of i

doesn’t necessarily imply that node i is also in the set of nearest neighbors of j.) In the

resulting networks, the average degree of a node is 12.16 for SAC and 12.04 for BAY.

Additionally, we construct two versions of these networks, weighted and unweighted. While

the weighted network has edge weights inversely proportional to the distances between

houses, the unweighted network ignores the proximity between houses, and thus weights

on all the edges are 1.

Optimization Problem. The model at each house estimates its rental price by

solving a linear regression problem. More specifically, at each node i we learn a 4-

dimensional model xi = [ai, bi, ci, di]. x simply represents the coefficients of each feature,

141

Problems on Network Regularization Chapter 6

which later is used to estimate the rental price pi as follows:

pi = ai · (#bedrooms) + bi · (#bathrooms)

+ci · (squarefootage) + di,

where di is the bias term. The training objective is

min
x,α

∑
i∈V

‖pi − pi‖2
2 + c · ‖xi‖2

2 + λ · RS(x, α)

where RS represents the proposed network regularization term (see Eq. 6.3), while c is

the regularization weight to prevent over-fitting.

Test Results. Once training converges, we predict the rental prices on the test set.

To do that, we connect each house in the test set to its 10 nearest neighbors in the

training set. We then infer the new model xj by taking the average of the models on

its neighbors: xj = (1/|N(j)|)
∑

k∈N(j) xk. The model xj is further used to estimate the

rental price of the corresponding house. Alternatively, one can also infer xj by solving

minxj
∑

k∈N(j) ‖xj − x∗k‖2, while keeping the models on neighbors fixed. However, we

empirically find that simply averaging the neighbors’ models performs better for both

methods in this particular setting. We compute Mean Squared Error (MSE) over test

nodes to evaluate the performance.

Table 6.1 displays the test results of eight different settings on both datasets. As

shown, local & global estimations and rMTFL method produce high errors for both

datasets. We further apply FORMULA and Network Lasso (NL) methods to both

weighted and unweighted versions of the networks, while the proposed method is only

applied to the unweighted version. Notice that the network weights are irrelevant for the

local & global estimation settings and the rMTFL method. Intuitively, both FORMULA

142

Problems on Network Regularization Chapter 6

Method BAY SAC

Local estimation (λ = 0) 0.5984 0.6250

Global estimation (λ > λcritical) 0.4951 0.5403

rMTFL 0.4774 0.4115

FORMULA (unweighted) 0.4446 0.3503

FORMULA (weighted) 0.4181 0.3379

Network Lasso (unweighted) 0.4392 0.3273

Network Lasso (weighted) 0.4173 0.3022

DANR (unweighted) 0.4106 0.2978

Table 6.1: MSE for housing rental price prediction on test set.

and NL performs better on the weighted setting compared to the unweighted setting

for both datasets. As shown, the rental price estimation errors achieved by the NL are

0.4173 (weighted) vs. 0.4392 (unweighted) for BAY and 0.3022 (weighted) vs. 0.3273

(unweighted) for SAC. These results suggest that the pre-defined weights on these networks

help to learn more accurate models on houses.

However, we further argue that although such pre-defined weights improve the overall

clustering performance, they don’t account for more complex clustering scenarios, e.g.,

two nearby houses falling into different school districts or some houses having higher

values compared to their neighbors due to geography, e.g., having a view of the city. That

being said, DANR outperforms all the other baselines and achieves the smallest errors for

both datasets; 0.4106 for BAY and 0.2978 for SAC. Especially, the DANR (unweighted)

even outperforms the weighted version of the baseline approaches by a notable margin.

This reveals that the DANR indeed accounts for such heterogeneities in data and provides

enhanced clustering of the network.

Figure 6.2 shows examples of two complex scenarios that are captured by the DANR

from the SAC network. We use a color code to represent the clusters in the network,

where the same colored houses (i, j) are in consensus on their models (xi = xj). In the

left subfigure, the house shown in yellow uses a different model than all of its neighbors.

143

Problems on Network Regularization Chapter 6

Figure 6.2: Examples of complex neighborhood structures captured by the DANR. In left, the
house shown in yellow resides at the border of three different area codes. In right, the creek side
house (colored in blue) differs from all of its neighbors, possibly due to its appealing location.

Interestingly, it resides at the border of three different area codes. The area code for

this house is 95864, while the area code on its west is 95825 and 95826 on its south-east.

Additionally, we observe similar heterogeneous behaviors in some houses that are near

creeks, lakes, and rivers. As an example, Figure 6.2 (right) displays a creek side house

(colored in blue), which again uses a different underlying model from its neighbors.

Spatio-Temporal: Water Quality Estimation of Northeastern US

Lakes

We now evaluate our method in spatio-temporal setting, where the aim is to dynami-

cally estimate the water quality of Northeastern US lakes over years. We follow the same

procedure as before, but have an additional temporal regularization term in our objective

that allows nodes to obtain signals from past snapshots of the network, along with their

neighbors in the current snapshot.

Dataset and Network. We experiment with the geospatial and temporal dataset of

lakes in 17 states in the Northeastern United States, called LAGOS [213]. The dataset holds

144

Problems on Network Regularization Chapter 6

extensive information about the physical characteristics, various nutrient concentration

measurements (water quality), ecological context (surrounding land use/cover, climate

etc.), and location of lakes; from which we select the following available set of features:

{max depth, surface area, elevation, annual mean temperature, % of agricultural land,

% of urban land, % of forest land, % of wetland}. The water quality metric to estimate

is the summerly mean chlorophyll concentration of the lakes. We represent the feature

vector with w ∈ R8 and the water quality score with y ∈ R.

During our experiments, we consider a 10-year period between 2000 and 2010. Due to

sparsity in the data, we allow 2 years range between the two consecutive snapshots of

the network. This results in total of 1039 lakes with all the aforementioned features and

the water quality measurements available for each of the selected years. After randomly

splitting 20% of the lakes for testing, we build our network by using the latitude/longitude

information of lakes, where each lake (node) is connected to 10 nearest lakes.

Optimization Problem. After constructing the network, we now aim to dynamically

estimate the water quality (yi,t) of lakes by using their feature vectors (wi,t). More formally,

for each year t ∈ [2000, 2002, · · · , 2010], we learn a model xi,t ∈ R8 per node by solving

the following spatio-temporal problem in a streaming fashion:

min
x,α,β

∑
i∈V

f(xi,t, wi,t, yi,t) + λ1 · Rt
S(x, α) + λ2 · Rt

T (x, β) (6.16)

where f is the linear regression objective and RS is the DANR term applied on the spatial

edges. RT is the temporal regularization term, for which we consider two formulations as

described next.

Test results. For each year, we first solve the spatial problem (Eq. 6.16 without

the temporal term RT) and report the Mean Squared Errors in Table 6.2. Note that

the test nodes are again inferred by averaging the neighbors’ models in the current

145

Problems on Network Regularization Chapter 6

snapshot. Later, in order to successfully assess the improvements gained by the temporal

discrepancy-buffering variables (β), we solve the above spatio-temporal problem with

three different temporal regularizers:

DANR+T-SON: DANR with temporal sum-of-norms regularizer where

Rt
T (x, ·) =

∑
i∈V ‖xi,t − x̂i,t−1‖2

DANR+T-SOS: DANR with temporal sum-of-squares regularizer where

Rt
T (x, ·) =

∑
i∈V ‖xi,t − x̂i,t−1‖2

2

ST-DANR: Spatio-temporal discrepancy-aware network regularizer where

Rt
T (x, β) = µ2 ·

∑
i∈V ‖xi,t − x̂i,t−1 + βi,t‖2 + (1− µ2) · ‖β‖1,p

DANR+T-SON and DANR+T-SOS approaches simply apply two widely adopted

temporal regularizers on the temporal edges (the sum-of-norms regularizer [197] and sum-

of-squares reqularizer [210, 209] respectively), while ST-DANR includes the discrepancy-

buffering variables on both spatial and temporal edges. Recall that we solve the Eq. 6.16

in a streaming fashion for simplicity, i.e., each snapshot of the network solves the problem

while holding the models learned on the previous snapshot (if available) fixed. Potentially,

the performance can further be improved by allowing updates on the previous snapshots.

As we can see from the Table 6.2, leveraging the temporal connections between the

two consecutive snapshots significantly improves the performance. The DANR+T-SON

outperforms the DANR by 8%-14%, while DANR+TSOS outperforms the DANR by

10%-15%. Moreover, the ST-DANR consistently outperforms both baselines for all the

years. This confirms that the proposed formulation accounts for the heterogeneous nature

of the temporal networks where some group of nodes exhibits different evolution patterns

than the others.

Figure 6.3 further displays the models (color-coded) learned on three consecutive

snapshots, corresponding to years 2000, 2002 and 2004. In 2000, the formed clusters don’t

go much beyond the boundaries of the states, resulting in coarse clustering of the network.

146

Problems on Network Regularization Chapter 6

Method 2000 2002 2004 2006 2008 2010

DANR 0.8479 0.9033 0.6384 0.6722 0.4556 0.4113

+ T-SON N/A 0.8308 0.5744 0.6061 0.4109 0.3517

+ T-SOS N/A 0.8045 0.5618 0.6045 0.3978 0.3476

ST-DANR N/A 0.8037 0.5604 0.5866 0.3844 0.3311

Table 6.2: MSE for water quality estimation over years.

Yet some states such as Missouri and Iowa are grouped into one cluster (shown in green).

This suggests that accurately estimating the chlorophyll concentration of lakes based on

the selected set of features is indeed challenging. Specifically, the estimation problem

depends on several other external factors that potentially affect the volume of plants and

algae in lakes; cultural eutrophication, nutrient inputs from human activities to name

a few [213]. However, as it can be seen from the models learned in 2002 and 2004, the

clustering performance improves once we allow temporal regularization to synchronize

models between two consecutive snapshots, which is analogous with the reduction in

errors over years as reported in Table 6.2. Overall, we observe a split of clusters over

time, e.g., in Wisconsin, Minnesota, Iowa and New England. Additionally, a dark brown

cluster in south Missouri begins to appear in 2002 and further spreads north in 2004. This

indicates that by leveraging the temporal connections, the ST-DANR learns improved

models and clustering while allowing for heterogeneity in group level evolutions of nodes.

147

Problems on Network Regularization Chapter 6

(a) Year 2000

(b) Year 2002

(c) Year 2004

Figure 6.3: Evolution of clustering captured by the ST-DANR over years.

148

Problems on Network Regularization Chapter 6

6.1.7 Conclusion

We propose discrepancy-aware network regularization (DANR) approach for spatio-

temporal networks. By introducing discrepancy-buffering variables, the DANR automati-

cally compensates for inaccurate prior knowledge encoded in edge weights, and enables

modeling heterogeneous temporal patterns of network clusters. We develop a scalable

algorithm based on alternating direction method of multipliers (ADMM) to solve the

proposed problems, which enjoys analytic solutions for decomposed subproblems and

employs a distributed update scheme on nodes and edges. Our experimental results show

that DANR yields enhanced models by providing robustness towards missing or inaccurate

edge weights and successfully interprets structural changes in evolving networks.

149

Problems on Network Regularization Chapter 6

6.2 Combining Physics and Machine Learning for

Network Flow Estimation

6.2.1 Introduction

In many applications, ranging from road traffic to supply chains to power networks,

the dynamics of flows on edges of a graph is governed by physical laws/models [165, 166].

For instance, the LWR model describes equilibrium equations for road traffic [214, 215].

However, it is often difficult to fully observe flows in these applications and, as a result,

they rely on off-the-shelf machine learning models to make predictions about missing

flows [216, 217]. A key limitation of these machine learning models is that they disregard

the physics governing the flows. So, the question arises: can we combine physics and

machine learning to make better flow predictions?

This paper investigates the problem of predicting missing edge flows based on partial

observations and the underlying domain-specific physics defined by flow conservation and

edge features [218]. Edge flows depend on the graph topology due to a flow conservation

law—i.e. the total in-flow at every vertex is approximately its total out-flow. Moreover,

the flow at an edge also depends on its features, which might regularize the space of

possible flow distributions in the graph. Here, we propose a model that learns how to

predict missing flows from data using bilevel optimization [219] and neural networks.

More specifically, features are given as inputs to a neural network that produces edge flow

regularizers. Weights of the network are then optimized via reverse-mode differentiation

based on a flow estimation loss from multiple train-validation pairs.

Our work falls under a broader effort towards incorporating physics knowledge to

machine learning, which is relevant for natural sciences and engineering applications

where data availability is limited [220]. Conservation laws (of energy, mass, charge,

150

Problems on Network Regularization Chapter 6

etc.) are essential to our understanding of the physical world. The classical Noether’s

theorem shows that such laws arise from symmetries in nature [221]. However, flow

estimation, which is an inverse problem [222, 223], is ill-posed under conservation alone.

Regularization enables us to apply domain-knowledge in the solution of inverse problems.

We motivate our problem and evaluate its solutions using two application scenarios.

The first is road traffic networks [224], where vertices represent locations, edges are

road segments, flows are counts of vehicles that traverse a segment and features include

numbers of lanes and speed limits. The second scenario is electric power networks [178],

where vertices represent power buses, edges are power lines, flows are amounts of power

transmitted and edge features include resistances and lengths of lines. Irrigation channels,

gas pipelines, blood circulation, supply chains, air traffic, and telecommunication networks

are other examples of flow graphs.

Our contributions can be summarized as follows: (1) We introduce a missing flow

estimation problem with applications in a broad class of flow graphs; (2) we propose a

model for flow estimation that is able to learn the physics of flows by combining reverse-

mode differentiation and neural networks; (3) we show that our model outperforms the best

baseline by up to 18%; and (4) we provide evidence that our model learns interpretable

physical properties, such as the role played by resistance in a power transmission network

and by the number of lanes in a road traffic network.

6.2.2 Flow Estimation Problem

We introduce the flow estimation problem, which consists of inferring missing flows in

a network based on a flow conservation law and edge features.

Flow Graph. Let G(V , E ,X) be a flow graph with vertices V (n = |V|), edges E

(m= |E|), and edge feature matrix X ∈ Rm×d, where X [e] are the features of edge e. A

151

Problems on Network Regularization Chapter 6

flow vector f ∈ Rm contains the (possibly noisy) flow fe for each edge e ∈ E . In case G is

directed, f ∈ Rm
+ , otherwise, a flow is negative if it goes against the arbitrary orientation

of its edge. We assume that flows are induced by the graph, and thus, the total flow—in

plus out—at each vertex is approximately conserved:

∑
(vi,u)∈E

f(vi,u) ≈
∑

(u,vo)∈E

f(u,vo),∀u ∈ V (6.17)

For a road network, flow conservation implies that vehicles mostly remain on the road.

Flow Estimation Problem. Given a graph G(V , E ,X) with partial flow observations

f̂ ∈ Rm′ for a subset E ′ ⊆ E of edges (f̂e is the flow for e ∈ E ′, m′= |E ′| < m), predict

flows for edges in E \ E ′.

In our road network example, partial vehicle counts f̂ might be measured by sensors

placed at a few segments, and the goal is to estimate counts at the remaining segments.

One would expect flows not to be fully conserved in most applications due to the existence

of inputs and outputs, such as parking lots and a power generators/consumers. In case

these input and output values are known exactly, they can be easily incorporated to our

problem as flow observations. Moreover, if they are known approximately, we can apply

them as priors (as will be detailed in the next section). For the remaining of this paper,

we assume that inputs and outputs are unknown and employ flow conservation as an

approximation of the system. Thus, different from classical flow optimization problems,

such as min-cost flow [225], we assume that flows are conserved approximately.

Notice that our problem is similar to the one studied in [218]. However, while their

definition also assumes flow conservation, it does not take into account edge features. We

claim that these features play important role in capturing the physics of flows. Our main

contribution is a new model that is able to learn how to regularize flows based on edge

features using neural networks.

152

Problems on Network Regularization Chapter 6

Observed Missing Validation Predicted flow

Flow graph

Q1,1

Q2,2

Q3,3

Q4,4

Q5,5

Q6,6

Q7,7

Q8,8

Edge
Regularizer

Qe,e

fold 1

K-fold cross validation

Flow estimation
(conservation+regularization)

f2
~

f3
~

f5
~

f8
~

x1
*

x4
*

x2
*

x3
*

Flow estimation
loss

Edge regularizers
Ed

ge
 fe

at
ur

es
 [

e]

Neural network with
parameters

Sec. 3.3

Sec. 3.1, 3.2

Sec. 3.4

Figure 6.4: Summary of the proposed approach for predicting missing flows in a graph based on
partial observations and edge features. We learn to combine features and a flow conservation
law, which together define the physics of the flow graph. A regularization function Q(X ; Θ)
modeled as a neural network with parameters Θ takes as input edge features X [e]. A flow
estimation algorithm applies the regularization, partial observations (f̃), prior flows (x(0)) and
flow conservation to predict missing flows x. Network parameters Θ are learned based on a
K-fold cross validation loss with respect to validation flows x̂. Our model is trained end-to-end
using reverse-mode differentiation.

6.2.3 Our Approach: Physics+Learning

In this section, we introduce our approach for the flow estimation problem, which

is summarized in Figure 6.4. We formulate flow estimation as an optimization problem

(Section 6.2.3.1), where the interplay between the flow network topology and edge features

is defined by the physics of flow graphs. Flow estimation is shown to be equivalent to

a regularized least-squares problem (Section 6.2.3.2). Moreover, we describe how the

effect of edge features and the graph topology can be learned from data using bilevel

optimization and neural networks in Section 6.2.3.3. Finally, we propose a reverse-mode

differentiation algorithm for flow estimation in Section 6.2.3.4.

153

Problems on Network Regularization Chapter 6

6.2.3.1 Flow Estimation via Optimization

The extent to which flow conservation holds for flows in a graph is known as divergence

and can be measured using the oriented incidence matrix B ∈ Rn×m of G. The matrix

is defined as follows, Bij = 1 if ∃u such that ej = (vi, u) ∈ E , Bij = −1 if ∃u such that

ej = (u, vi) ∈ E , and Bij = 0, otherwise. Given B and f , the divergence at a vertex u can

be computed as:

(Bf)u =
∑

(vi,u)∈E

f(vi,u) −
∑

(u,vo)∈E

f(u,vo) (6.18)

And thus, we can compute the total (squared) divergence in the graph as ||Bf ||22 =

fᵀBᵀBf =
∑

u∈V((Bf)u)2. One could try to solve the flow estimation problem by minimiz-

ing ||Bf ||22 while keeping the observed flows fixed, however, this problem is ill-posed—there

might be multiple solutions to the optimization. The standard approach in such a scenario

is to resort to regularization. In particular, we apply a generic regularization function Φ

with parameters Θ as follows:

f∗ = argmin
f∈Ω

||Bf ||22 + Φ(f ,X ; f (0); Θ) st. fe = f̂e, ∀e ∈ E ′ (6.19)

where Ω is the domain of f , f (0) ∈ Rm is a prior for flows, fe (f̂e) are entries of f (f̂) for

edge e and the constraint guarantees that observed flows are not changed. Priors f (0),

not be confused with observed flows f̂ , should be set according to the application (e.g.,

as zero, based on a black-box model or historical data). Regarding the domain Ω, we

consider Ω = Rm and Ω = Rm
+ . The second case is relevant for directed graphs—when

flows must follow edge orientations (e.g., traffic).

In [218], the authors set Φ(f , X, f (0); Θ) as λ2||f ||22 for a regularization parameter λ,

which implies a uniform zero prior with an L2 penalty over edges. We claim that the

regularization function plays an important role in capturing the physics of flow graphs.

154

Problems on Network Regularization Chapter 6

As an example, for a power network, Φ should account for the resistance of the lines.

Thus, we propose learning the regularization from data. Our approach is based on a

least-squares formulation, which will be described next.

6.2.3.2 Regularized Least-squares Formulation

Flow estimation problem can be viewed as an inverse problem [222]. Let x ∈ Rm−m′

be the vector of missing flows and H ∈ Rm×m−m′ be a matrix such that Hij = 1 if fi maps

to xj (i.e., they are associated to the same edge), and Hi,j = 0, otherwise. Moreover, let

f̃ ∈ Rm be such that f̃e = f̂e if e ∈ E ′ and f̃e = 0, otherwise. Using this notation, we define

flow estimation as BHx = −Bf̃ + ε, where BH is a forward operator, projecting x to a

vector of vertex divergences, and −Bf̃ +ε is the observed data, capturing (negative) vertex

divergences for observed flows. The error ε can be interpreted as noise in observations or

some level of model misspecification.

We can also define a regularized least-squares problem with the goal of recovering

missing flows x:

x∗ = argmin
x∈Ω′

||BHx +Bf̃ ||22 + ||x− x(0)||2Q(X ;Θ) (6.20)

where Ω′ is a projection of the domain of f to the space of x, ||x||2M = xᵀMx is the

matrix-scaled norm of x and x(0) ∈ Rm−m′ are priors for missing flows. The regularization

function Φ(f ,X ; f (0),Θ) has the form ||x − x(0)||2Q(X ;Θ), where the matrix Q(X ; Θ) is a

function of parameters Θ and edge features X . We focus on the case where Q(X ; Θ) is

non-negative and diagonal.

Equation 6.20 has a Bayesian interpretation, with x being a maximum likelihood

estimate under a Gaussian assumption—i.e., x ∼ N(x(0),Q(X ; Θ)−1) and Bf̃ ∼ N(0, I)

[222]. Thus, Q(X ; Θ) captures the variance in flow observations f̂ in prior estimates f (0)

155

Problems on Network Regularization Chapter 6

compared to the one. This allows the regularization function to adapt to different edges

based on their features. For instance, in our road network example, Q(X ; Θ) might place

a lower weight on flow conservation for flows at a road segment with a small number of

lanes, which are possible traffic bottlenecks.

Given the least-squares formulation described in this section, how do we model the

regularization function Q and learn its parameters Θ? We would like Q to be expressive

enough to be able to capture complex physical properties of flows, while Θ to be computed

accurately and efficiently. We will address these challenges in the remaining of this paper.

6.2.3.3 Bilevel Optimization for Meta-learning the Physics of Flows

This section introduces a model for flow estimation that is able to learn the regulariza-

tion function Q(X ; Θ) in Equation 6.20 from data using bilevel optimization and neural

networks.

Bilevel formulation. We learn the parameters Θ that determine the regularization

function Q(X ; Θ) using the following bilevel optimization formulation:

Θ∗ = argmin
Θ

E[||x̂− x∗||22] (6.21)

st. x∗ = argmin
x∈Ω′

||BHx +Bf̃ ||22 + ||x− x0||2Q(X ;Θ) (6.22)

where the inner (lower) problem is the same as Equation 6.20 and the outer (upper)

problem is the expected loss with respect to ground truth flows x̂—which we estimate

using cross-validation.

Notice that optimal values for parameters Θ and missing flows x are both unknown

in the bilevel optimization problem. The expectation in Equation 6.21 is a function of

multiple instances of the inner problem (Equation 6.22). Each inner problem instance has

an optimal solution x∗ that depends on parameters Θ. In general, bilevel optimization is

156

Problems on Network Regularization Chapter 6

not only non-convex but also NP-hard [226]. However, recent gradient-based solutions

for bilevel optimization have been successfully applied to large-scale problems, such as

hyper-parameter optimization and meta-learning [227, 228]. We will first describe how we

model the function Q(X ; Θ) and then discuss how this problem can be solved efficiently

using reverse-mode differentiation.

We propose to model Q(X ; Θ) using a neural network, where X are inputs, Θ are

learnable weights and the outputs are diagonal entries of the regularization matrix. This

is a natural choice due to the expressive power of neural nets [229, 230]. Multi-Layer

Perceptron (MLP). An MLP-based Q(X ; Θ) has the following form:

Q(X ; Θ) = diag(MLP (X ; Θ)) (6.23)

where MLP (X ; Θ) ∈ Rm−m′ . For instance, Q(X ; Θ) can be a 2-layer MLP:

Q(X ; Θ) = diag(a(b(XW (1))W (2))) (6.24)

where Θ = {W (1),W (2)}, W (1) ∈ Rd×h, W (2) ∈ Rh×1, h is the number of nodes in

the hidden layer, both a and b are activation functions, and the bias was omitted for

convenience.

Graph Neural Network (GNN). The MLP-based approach assumes that each

entry [Q(X ; Θ)]e,e associated to an edge e is a function of its features X [e] only. However,

we are also interested in how entries [Q(X ; Θ)]e,e might depend on the features of neigh-

borhood of e in the flow graph topology. Thus, we consider the case where Q(X ; Θ) is

a GNN. For instance, we apply a 2-layer spectral Graph Convolutional Network (GCN)

157

Problems on Network Regularization Chapter 6

with Chebyshev convolutions [231, 159, 232]:

Q(X ; Θ) = diag

(
ReLU

(
Z′∑
z′=1

Tz′(L̃)ReLU

(
Z∑
z=1

Tz(L̃)XW (1)
z

)
W

(2)
z′

))
(6.25)

where L̃ = 2/λmaxL− I, L is the normalized Laplacian of the undirected version of the

line graph G ′ of G, λmax is the largest eigenvalue of L, Tz(L̃) is a Chebyshev polynomial of

L̃ with order z and W
(i)
z is the matrix of learnable weights for the z-th order polynomial

at the layer i. In a line graph, each vertex represents an edge of the undirected version of

G and two vertices are connected if their corresponding edges in G are adjacent. Morever

L = I − D−1/2AD−1/2, where A and D are the adjacency and degree matrices of G ′.

Chebyshev polynomials are defined recursively, with Tz(y) = 2yTz−1(y) − Tz−2(y) and

T1(y) = y.

In our experiments, we have also applied the more popular non-spectral graph convo-

lutional operator [159] but preliminary results have shown that the Chebyshev operator

achieves better performance in flow estimation.

6.2.3.4 Flow Estimation Algorithm

We now focus on how to solve our bilevel optimization problem (Equations 6.21 and

6.22). Our solution applies gradient-based approaches (e.g., SGD [233], Adam [66]) and,

for simplicity, our description will be based on the particular case of Gradient Descent

and assume a zero prior (x(0) = 0). A key challenge in our problem is to efficiently

approximate the gradient of the outer objective with respect to the parameters Θ, which,

by the chain rule, depends on the gradient of the inner objective with respect to Θ.

We first introduce extra notation to describe the outer problem (Equation 6.21). Let

(f̂k, ĝk) be one of K train-validation folds, both containing ground-truth flow values, such

that f̂k ∈ Rp and ĝk ∈ Rq. For each fold k, we apply the inner problem (Equation 6.22)

158

Problems on Network Regularization Chapter 6

to estimate missing flows xk. Estimates for all folds are concatenated into a single vector

x = [x1; x2; . . . ; xK] and the same for validation sets ĝ = [ĝ1; ĝ2; . . . ĝK]. We define a

matrix R ∈ Rq×(m−m′) such that Rij = 1 if prediction xj corresponds to validation flow ĝi

and Rij = 0, otherwise. Using this representation, we can approximate the expectation in

the outer objective as Ψ(x,Θ) = (1/K)||Rx− ĝ||22, where x depends implicitly on Θ. We

also introduce ΥΘ(x) as the inner problem objective. Moreover, let Γj(xk,j−1,Θi−1) be

one step of gradient descent for the value of xk at iteration j with learning rate β:

Γj(xk,j−1,Θi−1) = xk,j−1 − β∇xΥΘ(xk,j)

= xk,j−1 − 2β[Hᵀ
kB

ᵀ(BHkxk,j−1 +Bf̃k) + 2Qkxk,j−1]

where Hk, Qk and f̃k are the matrix H, a sub-matrix of Q(X ; Θi−1) and the observed flows

vector f̃ (see Section 6.2.3.2) for the specific fold k. We have assumed the domain (Ω′) of

flows xk,j to be the set of real vectors. For non-negative flows, we add the appropriate

proximal operator to Γj.

Our algorithm applies Reverse-Mode Differentiation (RMD) [234, 219] to estimate

∇ΘΨ and optimizes Θ also using an iterative algorithm. The main idea of RMD is to

first unroll and store a finite number of iterations for the inner problem x1,x2, . . .xJ and

then reverse over those iterations to estimate ∇ΘΨ, which is computed as follows:

∇xJ ,ΘΨ(xJ ,Θi) = ∇xΨ(xJ ,Θi)
J∑
j=1

(
J∏

s=j+1

∂Γs(xs−1,Θi)

∂xs−1

)
∂Γj(xj−1,Θi)

∂Θ

159

Problems on Network Regularization Chapter 6

In particular, our reverse iteration is based on the following equations:

∇xΨ(xJ ,Θi) = (2/K)Rᵀ(RxJ − ĝ)

∂Γs(xs−1,Θi)

∂xs−1

= I − 2β(HᵀBᵀBH + 2Q(X ; Θi))

∂Γj(xj−1,Θi)

∂Θ
= −4β(∂Q(X ; Θi)/∂Θ)xj−1

where ∂Q(X ; Θi)/∂Θ is the gradient of the regularization function Q(X ; Θ) evaluated at

Θi. In our case, this gradient is the same as the neural network gradients and is omitted

here for convenience.

Algorithm 5 RMD Algorithm for Flow Estimation

Require: Flow network G(V , E ,X), train-validation folds {(f̂k, ĝk)}Kk=1, number of outer
iterations T and inner iterations J , learning rates α and β

Ensure: Regularization parameters Θ
1: Initialize parameters Θ0

2: ĝ← [ĝ1; . . . ĝK]
3: B ← incidence matrix of G
4: for outer iterations i = 1, . . . T do
5: Initialize missing flows xk,0 for all k
6: for inner iterations j = 1, . . . J do
7: for folds k = 1, . . . K do
8: xk,j ← xk,j−1 − 2β[Hᵀ

kB
ᵀ(BHkxk,j−1 +Bf̃k) + 2Qkxk,j−1]

9: end for
10: xj ← [x1,j; . . .xK,j]
11: end for
12: zJ ← (2/K)RT (RxJ − ĝ)
13: for reverse inner iterations j = J − 1, . . . 1 do

14:
←−
Θ ←

←−
Θ − 4βzj+1(∂Q(X ; Θi−1)/∂Θ)xj+1

15: zj ← zj+1[I − 2β(HᵀBᵀBH +Q(X ; Θi−1))]
16: end for
17: Update Θi ← Θi−1 − α

←−
Θ

18: end for
19: return parameters ΘI =0

Algorithm 5 describes our RMD approach for flow estimation. It receives as inputs the

160

Problems on Network Regularization Chapter 6

flow network G(V , E ,X), K train-validation folds {(f̂k, ĝk)}Kk=1, and also hyperparameters

T , J , α, and β, corresponding to the number of outer and inner iterations, and learning

rates for the outer and inner problem, respectively. Its output is a vector of optimal

parameters Θ for the regularization function Q(X ; Θ) according to the bilevel objective

in Equations 6.21 and 6.22. We use
←−
Θ to indicate our estimate of ∇ΘΨ(Θi). Iterations of

the inner problem are stored for each train-validation fold in lines 4-12. Reverse steps,

which produce an estimate
←−
Θ, are performed in lines 13-17. We then use

←−
Θ to update our

estimate of Θ in line 17. The time and space complexities of the algorithm are O(TJKm)

and O(Jm), respectively, due to the cost of computing and storing the inner problem

iterations.

As discussed in the previous section, bilevel optimization is non-convex and thus we

cannot guarantee that Algorithm 5 will return a global optima. In particular, the learning

objective of our regularization function Q(X ; Θ) is non-convex—it is a neural network.

However, the inner problem (Equation 6.22) in our formulation has a convex objective

(least-squares). In [227], the authors have shown that this property implies convergence.

We also find that our algorithm often converges to a good estimate of the parameters in

our experiments.

6.2.4 Experiments

We evaluate our approaches for the flow estimation problem using two real datasets

and a representative set of baselines and metrics.

6.2.4.1 Datasets

This section summarizes the datasets used in our evaluation. We normalize flow values

to [0, 1] and map discrete features to real vector dimensions using one-hot encoding.

161

Problems on Network Regularization Chapter 6

Traffic: Vertices represent locations and directed edges represent road segments

between two locations in Los Angeles County, CA.1 Flows are daily average vehicle counts

measured by sensors placed along highways in the year 2018. We assign each sensor to

an edge in the graph based on proximity and other sensor attributes. Our road network

covers the Los Angeles County area, with 5, 749 vertices, 7, 498 edges, of which 2, 879 edges

(38%) have sensors. The following features were mapped to an 18-dimensional vector:

lat-long coordinates, number of lanes, max-speed, and highway type (motorway, motorway

link, trunk, etc.), in-degree, out-degree, and centrality (PageRank). The in-degree and

centrality of an edge are computed based on its source vertex. Similarly, the out-degree

of an edge is the out-degree of its target vertex.

Power: Vertices represent buses in Europe, undirected edges are power transmission

lines and edge flows measure the total active power (in MW) being transmitted through

the lines. The dataset is obtained from PyPSA-Eur [172, 235]—an optimization model of

the European power transmission system—which generates realistic power flows based on

solutions of optimal linear power flow problems with historical production and consumption

data. Default values were applied for the PyPSA-Eur settings. The resulting graph has

2,048 vertices, 2,729 edges, and 14-dimensional feature vectors capturing resistance,

reactance, length, and number of parallel lines, nominal power, edge degree etc.

6.2.4.2 Experimental Settings

Evaluation metrics: We apply Pearson’s correlation (CORR), Mean Absolute

Percentage Error (MAPE), Mean Absolute Error (MAE), and Root Mean Squared Error

(RMSE) to compare ground-truth and predicted flows.

Baselines: Divergence minimization (Div) [218] maximizes flow conservation using a

single regularization parameter λ, which we optimize using line search in a validation set

1Source: https://www.openstreetmap.org

162

https://www.openstreetmap.org

Problems on Network Regularization Chapter 6

of flows. Multi-Layer Perceptron (MLP) is a 2-layer neural network with ReLU activations

for all layers that learns to predict flows based on edge features. Graph Convolutional

Network (GCN) is a 2-layer graph neural network, also with ReLU activations and

Chebyshev convolutions of degree 2, that learns to predict the flows using both edge

features and the topology but disregarding flow conservation [159, 231]. We also consider

two hybrid baselines. MLP-Div applies the predictions from MLP as priors to Div.

Similarly, predictions from GCN are used as priors for GCN-Div. For both hybrid models,

we also optimize the parameter λ.

Our approaches: We consider three variations of Algorithm 5. However, one

important modification is that we perform the reverse iterations for each fold—i.e.,

folds are treated as batches in SGD. Bil-MLP and Bil-GCN apply our reverse-mode

differentiation approach using an MLP and a GCN as a regularizer. Moreover, both

approaches use zero as the prior x(0). Bil-GCN-Prior applies the GCN predictions as flow

priors. Architectures of the neural nets are the same as the baselines.

6.2.4.3 Flow Estimation Accuracy

Table 6.3 compares our methods and the baselines using several metrics over the

Traffic and Power datasets. Values of CORR achieved by MLP and GCN for Traffic are

missing because they were undefined—they generated predictions with zero variance for

at least one of the train-test folds. All methods suffer from high MAPE errors for Power,

which is due to an over-estimation of small flows. Bil-GCN achieves the best results

in both datasets in terms of all metrics, with 6% and 18% lower RMSE than the best

baseline for Traffic and Power, respectively. However, notice that Bil-MLP and Bil-GCN

achieve very similar performance for Power and Bil-GCN-Prior does not outperform our

other methods. We also show scatter plots with the true vs. predicted flows for the best

approaches in Figure 6.5. Traffic has shown to be the more challenging dataset, which

163

Problems on Network Regularization Chapter 6

Traffic Power
Method RMSE MAE MAPE CORR RMSE MAE MAPE CORR

Div 0.071 0.041 1.23 0.76 0.034 0.015 1419.2 0.93
MLP 0.083 0.055 1.13 - 0.069 0.043 8334.5 0.61
GCN 0.066 0.040 0.94 - 0.064 0.043 5622.3 0.64

MLP-Div 0.066 0.041 1.51 0.81 0.033 0.015 1593.5 0.93
GCN-Div 0.071 0.048 1.69 0.81 0.033 0.015 1795.2 0.93
Bil-MLP 0.069 0.038 1.05 0.79 0.027 0.011 758.0 0.95
Bil-GCN 0.062 0.034 0.86 0.82 0.027 0.011 788.5 0.95

Bil-GCN-Prior 0.062 0.035 0.91 0.82 0.027 0.011 691.5 0.95

Table 6.3: Average flow estimation accuracy for the baselines (Div, MLP and GCN) and our
methods (Bil-MLP, Bil-GCN and Bil-GCN-Prior) using the Traffic and Power datasets. RMSE,
MAE and MAPE are errors (the lower the better) and CORR is a correlation (the higher the
better). Values of correlation for MLP and GCN using Traffic were undefined. Bil-GCN (ours)
outperforms the best baseline for all the metrics, with up to 18% lower RMSE than Div using
Power.

can be explained in part by training data sparsity—only 38% of edges are labeled.

0.0 0.2 0.4 0.6 0.8 1.0
True flow

0.0
0.2
0.4
0.6
0.8
1.0

Pr
ed

ict
ed

 fl
ow

(a) GCN, Traffic

0.0 0.2 0.4 0.6 0.8 1.0
True flow

0.0
0.2
0.4
0.6
0.8
1.0

Pr
ed

ict
ed

 fl
ow

(b) Bil-GCN, Traffic

0.0 0.2 0.4 0.6 0.8 1.0
True flow

0.2
0.0
0.2
0.4
0.6
0.8
1.0

Pr
ed

ict
ed

 fl
ow

(c) Div, Power

0.0 0.2 0.4 0.6 0.8 1.0
True flow

0.0
0.2
0.4
0.6
0.8
1.0

Pr
ed

ict
ed

 fl
ow

(d) Bil-GCN, Power

Figure 6.5: Scatter plots with true (x) and predicted (y) flows for two approaches on each
dataset. The results are consistent with Table 6.3 and show that our methods are more accurate
than the baselines.

6.2.4.4 Analysis of Regularizers

Figure 6.6 illustrates the regularization function learned by Bil-MLP. We focus on

Bil-MLP because it can be analyzed independently of the topology. Figures 6.6a-6.6c

show scatter plots where the x and y axes represent the value of the regularizer and

features, respectively. For Power, Bil-MLP captures the effect of resistance over flows (Fig.

6.6a). However, only high values of resistance are mostly affected—that is the reason

164

Problems on Network Regularization Chapter 6

few points can be seen and also explains the good results for Div. We did not find a

significant correlation for other features, with the exception of reactance, which is related

to resistance. For Traffic, the model learns how the number of lanes constrains the flow

at a road segment (Fig. 6.6b). Results for speed limit are more surprising, 45mph roads

are less regularized (Fig. 6.6c). This is evidence that regularization is affecting mostly

traffic bottlenecks in highways—with few lanes but a 65mph speed limit. To further

investigate this result, we also show the regularizers over the Traffic topology in Figure

6.6d. High regularization overlaps with well-known congested areas in Los Angeles, CA

(e.g., Highway 5, Southeast). These results are strong evidence that our methods are able

to learn the physics of flows in road traffic and power networks.

0.0 0.1 0.2 0.3 0.4
Regularizer

0

1

2

3

4

Re
sis

ta
nc

e
(

 x
 1

06)

Most points are here

(a) Resistance, Power

0.0 0.5 1.0 1.5 2.0
Regularizer

1
2
3
4
5
6
7
8
9

of

 la
ne

s

(b) Lanes, Traffic

0.0 0.5 1.0 1.5 2.0
Regularizer

45

50

55

60

65

sp
ee

d
lim

it
(m

ph
)

Outliers

(c) Speed limit, Traffic

SE of LA 0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75

(d) Visualization, Traffic

Figure 6.6: Edge regularizer learned by Bil-MLP vs. features values (a-c) and visualization of
regularizers on the Traffic topology (d). Our model is able to learn the effect of the resistance
for Power. In Traffic, a higher number of lanes is correlated to less regularization and lower
speed roads (45mph) are less regularized. The regularization is also correlated with congested
areas in Los Angeles, CA.

6.2.5 Related Work

Flow graphs are quite ubiquitous in engineering, biomedical and social sciences. Two

important properties of flow graphs are that their state space is defined by a graph

topology and their dynamics are governed by the physics (or logic) of the problem of

interest. We refer to [165] for a unified characterization of the mathematical treatment of

flow graphs. Notice that these studies do not address the flow inference problem and their

165

Problems on Network Regularization Chapter 6

applications to real data is limited [236, 237]. Moreover, we focus on long term flows (e.g.

daily vehicle traffic flows) and not on the dynamics. This simplifies the equations of our

model to the conservation law.

Flow inference via divergence minimization was originally proposed in [218]. However,

their work has not considered edge features and instead applied a single regularization

parameter to the norm of the flow vector f in Equation 6.19. Our work leverages relevant

edge features to learn the interplay between flow conservation and local predictions (priors).

Thus, we generalize the formulation from [218] to the case of a learnable regularization

function Q(Θ, X). Our experiments show that the proposed approach achieves superior

results in two datasets.

Flow optimization problems, such as min-cost flow, max-flow and multi-commodity

flow, have a long history in computer science [225, 238]. These problems impose flow

conservation as a hard constraint, requiring full knowledge of source and sink vertices

and noiseless flow observations. Our approach relaxes these requirements by minimizing

the flow divergence (see Equation 6.19). Moreover, our problem does not assume edge

capacities and costs.

The relationship between flow estimation and inverse problems is of particular interest

due to the role played by regularization [239] in the solution of ill-posed problems. Recent

work on inverse problems has also focused on learning to regularize based on data and even

learning the forward operator as well—see [223] for a review. The use of the expression

“learning the physics” is also popular in the context of the universal differential equation

framework, which enables the incorporation of domain-knowledge from scientific models

to machine learning [240, 241, 220].

Bilevel optimization in machine learning has been popularized due its applications

in hyperparameter optimization [242, 243]. In the last decade, deep learning has moti-

vated novel approaches able to optimize millions of hyperparameters using gradient-based

166

Problems on Network Regularization Chapter 6

schemes [244, 228, 245]. Our flow estimation algorithm is based on reverse-mode differ-

entiation, which is a scalable approach for bilevel optimization [219, 234, 244]. Another

application of bilevel optimization quite related to ours is meta-learning [227, 246].

Our problem is also related to semi-supervised learning on graphs [247, 193, 248],

which is the inference of vertex labels given partial observations. These approaches can be

applied for flow estimation via the line graph transformation [218]. The duality between

a recent approach for predicting vertex labels [182] and min-cost flows was shown in [249].

However, the same relation does not hold for flow estimation.

Graph neural network models, which generalize deep learning to graph data, have

been shown to outperform traditional semi-supervised learning methods in many tasks

[159, 250, 251]. These models have also been applied for traffic forecasting [216, 217, 252].

Different from our approach, traditional GNNs do not conserve flows. We show that

our models outperform GNNs at flow prediction. Moreover, we also apply GNNs as a

regularization function in our model.

6.2.6 Conclusion

We have introduced an approach for flow estimation on graphs by combining a

conservation law and edge features. Our model learns the physics of flows from data by

combining bilevel optimization and deep learning. Experiments using traffic and power

networks have shown that the proposed model outperforms a set of baselines and learns

interpretable physical properties of flow graphs. While we have focused on learning a

diagonal regularization matrix, we want to apply our framework to the case of a full

matrix. We are also interested in combining different edge measurements in order to learn

more complex physical laws, such as described by the fundamental diagram in the LWR

model [214, 253, 254, 166].

167

Chapter 7

Ongoing and Future Work

In this closing section, we first summarize our ongoing project that is motivated by the

research developed as part of this thesis, and list promising directions for future research.

7.1 Improving Network Flow Estimation via Knowl-

edge Transfer

One of the main objectives of studying flow graphs is to make accurate flow predictions

on edges of a given graph, based on a scarce set of observed edge flows. This problem poses

multiple challenges including the limited availability of training data (due to the high

cost of flow measurements), as well as the distributional differences between the observed

(training) and unobserved (testing) edge flows. Transfer learning is an effective paradigm

that can potentially remedy these challenges. One conventional way is to pre-train a

model on related tasks where there is more available data, and then fine-tune it on a

downstream task of interest, a strategy that showed great success in natural language

understanding and computer vision domains.

In this work, we aim to improve flow estimation performance of a model on a given

168

Ongoing and Future Work Chapter 7

target graph, by leveraging additional data from other flow graphs with similar data

distributions [255]. In other words, our goal is to conduct transfer learning across similar

flow graphs to collectively make better predictions on each of these flow graphs. Consider

the task of predicting traffic flow in LA county traffic network [Silva et al., 2021], where

the availability of edges with sensor reading is less than 40% of all the edges. This data

scarcity inevitably leads to performance degradation compared to other settings where we

have complete data as discussed in [Silva et al., 2021]. To address this challenge, our key

idea is to leverage other observations (e.g. sensor readings) from different geographical

regions (such as San Francisco, San Diego, Sacramento etc.) to learn a meta-model that

can be quickly fine-tuned on a region of interest, i.e., target region. A similar example

can be constructed for power transmission networks, where one can leverage available

data from various regions/countries and transfer knowledge to a target region based on

contextual features (e.g. regional population, line resistances) and network connectivity

patterns.

Before we get into more details, we first summarize our progress and contributions.

So far:

• We extended our datasets for road traffic networks to include more geographical

regions. Specifically, we added the following eight regions in California: San

Francisco, Ventura, Riverside, Irvine, Bay Area, Sacramento, San Diego, and Orange

County. We further enhanced our feature set by contextual features regarding key

regional properties (e.g. residential vs commercial, population).

• We experimented with numerous baseline approaches and identified their potential

weaknesses when applied to our problem setting.

• We further proposed a methodology that aims to jointly (i) learn to cluster flow

graphs into sub-regions and (ii) meta-learn cluster-specific flow predictors that

169

Ongoing and Future Work Chapter 7

make predictions within these regions, with both components being learned from a

collection of graphs.

7.1.0.1 Problem Setting and Background

Objective: How can we leverage the knowledge extracted from auxiliary graphs

to improve semi-supervised flow estimation in the target graph of interest. Before we

dive into potential approaches, let us first formally introduce the problem setting and

preliminary notations.

Let G = {G1, G2, . . . , GN} denote a set of N graphs sampled from a task distribution

D. For each graph G(A,X,Y), we have A ∈ {0, 1}N×N as adjacency matrix, X ∈ R|N |×d

as node features, and Y ∈ RN as node labels. Note that one can also have discrete labels

on the nodes such as Y = {y1, y2, . . . , ym}, however, due to the nature of graphs we study

in this work, we will primarily focus on the continuous case. We aim to learn a GNN

model fθ : Rd 7→ R that maps nodes features to observed labels leveraging the graph

connections. Typically, the success of the learned model fθ depends on the availability

of node labels. Most real-world graphs have highly sparse observed node labels, which

makes the learning of fθ particularly challenging.

We focus on the learning of fθ from a collection of graphs G, each with sparse

observations. The end goal is to quickly and accurately adapt the learned model to make

predictions on never-before-seen graphs, again with limited training data.

This problem is referred as “graph few-shot learning” in the literature, although other

referrals also exist such as “learning graphs for knowledge transfer with limited labels”

and “transfer learning on graph neural networks”. While the few-shot setting explicitly

dictates the little amount of available labels, studies on transfer learning also study a

similar setting since the knowledge transfer is particularly useful when the available data

to learn from is limited. Therefore, these two terms are used almost interchangeably. The

170

Ongoing and Future Work Chapter 7

methods employed for these two settings also have significant similarities.

We identify two high-level methodologies as potential solutions to this problem.

(i) Conventional pre-training: The goal of pre-training is to (1) learn a good

initialization for model parameters (say, θ0) using the readily available graphs, and (2) later

fine-tune the learned model on the target graph of interest with only a few updates. The

intuition is that θ0 captures transferable information across multiple graphs, which makes it

easier to adapt to new/unseen graphs. More formally, let Gpre denote the set of pre-training

graphs and Gtarget denote the target graph (or graphs), with Gpre ∩ Gtarget = ∅. Target

data is split into train/valid/test sets, s.t., Gtarget = {Gtargettrain ,G
target
valid ,G

target
test }. Formally,

the pre-training step computes:

θ0 = argminθLpre(fθ,Gpre) (7.1)

where Lpre is the pre-training loss function, which may or may not be same as fine-tuning

loss Lfine. Typically, for classification tasks, it is set to standard cross-entropy loss, while

for regression tasks, MSE loss is used. Once pre-training is complete, we next initialize

f with θ0, and further update the model with a few gradient descent steps over Gtargettrain .

That is, for one step we have:

θ1 = θ0 − η∇θ0Lfine(fθ0 ,G
target
train) (7.2)

where η is the learning rate. The above update is performed until no improvement is

observed on Gtargetvalid , while the final performance is measured on held-out test set Gtargettest .

(ii) Meta-learning: In the above two-step paradigm, the pre-training step is decou-

pled from the fine-tuning step. The learned θ0 may or may not provide useful knowledge

transfer when adapted on a new graph. Negative transfer may occur when the new graph

171

Ongoing and Future Work Chapter 7

distribution significantly differs from those observed in the pre-training set. Therefore,

as an alternative to the pre-training approach, one can employ an initialization-based

meta-learning approach (such as MAML [Finn et al. (2017)]). The latter approach

directly optimizes the models ability to quickly adapt to unseen graphs, rather than

optimizing their performance solely on any particular set of graphs as done by the former

approach. This paradigm more realistically simulates the fine-tuning (adaptation) process

on the target graph. The objective is that one can learn the meta-knowledge across

multiple graph instances (also called episodes), which will provide improved adaptability

to a target graph.

We now detail how the MAML approach can be employed in our problem by connecting

the terminologies used in these two settings. We can treat each graph Gi ∈ Gpre as a

task, which consists of source and query sets that are denoted as GSi and GQi , respectively.

Note that these are analogous to train and test sets defined in the fine-tuning stage

(Equation 7.2). Then, during meta-training inner loop, we perform the regular stochastic

gradient descent steps on the support loss for each graph (task) Gi. For one step, it is

computed as:

θi = θ − α∇θLsupport(fθ, GSi) (7.3)

where α is the inner step learning rate. Next, the updated parameters of each task are

evaluated using the query set during the outer (also called meta-update) step, that is:

θ = θ − β∇θ

∑
i

Lquery(fθi , GQi) (7.4)

where β is the outer step learning rate (typically smaller than α). We can also re-write

the above two-step formulation in a more compact form (for single inner update step) as

172

Ongoing and Future Work Chapter 7

follows:

θ∗ = argminθ
∑

Gi∈Gpre
Lquery(fθ−α∇θLsupport(fθ,GSi), G

Q
i) (7.5)

where θ∗ is learned from meta-knowledge across pre-training graphs and is optimal in the

sense of adapting to unseen graphs quickly. The meta-testing stage is then analogous to

the fine-tuning stage in Equation 7.2, where fθ∗ is further updated (adapted) using the

training split of target graph (Gtargettrain).

Distance metric learning based methods: This family of meta-learning methods

approach the problem from a “learning to compare” perspective. This paradigm is

successfully applied to multiple machine learning domains. Take image domain as an

example, where intuition is that if a model can determine the similarity of two images, it

can classify an unseen input image with the labeled instances. Famous distance metric

learning based methods include MatchingNet [Vinyals et al. (2016)], ProtoNet [Snell et al.

(2017)], and RelationNet [Sung et al. (2018)]. Since originally designed for classification

tasks, both MatchingNet and ProtoNet predicts the examples in a query set by comparing

the distance between the query feature and the support feature from each class. The

MatchingNet computes the average cosine distance to examples from each class, while the

ProtoNet instead computes Euclidean distance to class mean (also referred as centroids)

of support examples. RelationNet instead replaces the distance measure with a learnable

relation module.

The idea of computing label prototypes and further using them to classify query exam-

ples are most recently applied in the graph context by [Yao et al. (2020)] and [Huang et al.

(2020)]. Both methods aim to capture structural similarity among graphs (or subgraphs),

which enables them to form the critical inductive bias for a metric-learning algorithm

(such as ProtoNet). Off-the-shelf GNNs are used to encode structural information, which

enables direct structural similarity comparison thanks to their expressiveness. The later

173

Ongoing and Future Work Chapter 7

work further combines the ideas from ProtoNet and MAML to achieve successful results,

where each support and query examples correspond to a labeled node and its h-hop

immediate neighborhood rather than the entire graph. Both papers show that capturing

the “meta-relation” between node representations and labels helps circumvent the issue

of limited label information in few-shot settings. Note that this also enables inductive

learning, which is crucial for graph few-shot learning since the model is expected to adapt

to unseen graphs.

Distance metric learning based methods are also promising candidates for our problem

setting. Although these methods originally designed for classification tasks, we can adapt

them to our regression-based problem with some modifications. For instance, given

examples from query set, instead of comparing them to mean-class centroids computed

on the support set (as in ProtoNet), we can directly compare them to support examples

in the latent space, and compute the distance-weighted average flow value to use as our

flow predictions. Here, the choice (or design) of distance function plays a key role in the

success of the model. Our hypothesis is that a suitable choice of distance function may

depend on the types of graphs we aim to learn from. Since real-world graphs entail a mix

of local and global properties, a distance function that can adaptively account for both

aspects is desired.

Consider the problem of learning with traffic networks across different geographical

regions, each with sparse flow observations. A central road in Los Angeles might exhibit

more similar flow patterns to a central road in San Francisco than a central road in New

York City. As an another example, same proteins might take different structural roles in

different tissue formations. These nuances can not be captured with a distance function

solely defined over local node embeddings that are simply computed through a few layers

of graph convolutions. Instead, we need a distance function that can account for such

inter-graph variations rooted in data.

174

Ongoing and Future Work Chapter 7

7.1.0.2 Proposed Framework

After formally defining our problem and introducing several approaches from the

literature as potential solutions, we now propose an alternative approach that is designed

to address the aforementioned challenges of transfer learning with flow graphs. We note

that although the proposed framework is primarily aimed for flow graphs, investigating

its potential on other types of graphs remain a promising future work.

A major motivation behind meta-leaning a graph neural network model across different

graphs is that the captured shared meta-knowledge can be used to adapt to any given

(and previously unseen) graph. However, this problem is particularly challenging due

to the complex nature of graphs with multiple modalities. It is not clear whether such

meta-knowledge can be adapted to a new graph in its entirety, as each observed graph

may have parts that are unique in nature and are significantly different from the majority

of previously observed graphs. It is well-known that flow graphs have heterogeneous

structure [5], consisting of multiple sub-regions with potentially varying underlying flow

dynamics. We believe aiming to learn a single model to make accurate predictions over

the entire graph leads to sub-optimal solutions.

Here, we propose to learn a meta-knowledge in the level of subgraphs (i.e. sub-regions),

which gives us more control and flexibility in transferring potentially varying knowledge

to parts of the target graph. In particular, instead of learning graph-level meta-knowledge

that can be adapted to multiple graphs, we propose to jointly break down each graph into

clusters and learn cluster-level meta-knowledge that can not only be adapted to different

graphs but at the same time, to different parts of the same graph. By doing so, we can

learn slightly different adaptations of the shared model across different regions of the

graph. With that being our key intuition, we next propose a method that can achieve this

end-to-end with all components—including the clustering component—being differentiable,

175

Ongoing and Future Work Chapter 7

Batch 1 Batch 2 Batch L

update update

Query
Support

Figure 7.1: An illustration of our proposed method for transfer learning with flow graphs. The
proposed method performs joint clustering and intra-cluser flow prediction in an end-to-end
fashion using a meta-learning framework. The clustering module fφ captures similar clusters
(sub-structures) across graphs, while the flow predictor fθ is optimized to quickly and accurately
adapt to multiple clusters captured by fφ. See text for more details.

hence can be trained with standard neural networks optimization techniques. Figure 7.1

illustrates our proposed approach.

The graph clustering task is naturally unsupervised. The key challenge is to obtain

feedback—during training—as to whether the learned clusters are well-fit to our problem

setting. To address this challenge, we define a learnable clustering function fφ : Rd 7→

RK , which takes graph G as input and outputs C ∈ RN×K , i.e., learns cluster assignments

for its nodes. Following [256, 257], the design of fφ includes two neural network layers,

with the first layer being a GNN layer, and second layer being an MLP, which are followed

by a Softmax activation to reach soft-clustering assignments. More formally:

fφ(G) = Softmax(MLP (GNN(A,X))) = C (7.6)

176

Ongoing and Future Work Chapter 7

We can now re-define Equation 7.3 to take the form:

θi = θ − α∇θLi(fθ, fφ, GS) (7.7)

where L is the weighted MSE error, where the weights are determined based on the

clustering assignments learned by fφ. For cluster i, it is defined as:

Li(fθ, fφ, G) =
1

‖
√

C:,i‖
‖(Y − fθ(G))�

√
C:,i‖2

2 (7.8)

where � represents element-wise vector multiplication, and C:,i ∈ RN denotes the ith

column vector of C = fφ(G). θi represents the adapted prediction model parameters based

on the assigned clusters of node. Intuitively, nodes with higher clustering assignment

scores have more substantial contributions to θi. Therefore, we refer θi as the cluster-

adapted parameters. Equation 7.7 serves as our inner adaptation step, which is repeated

in parallel for each cluster i ∈ [1, 2, · · · , K]. Notice that this step still does not include

learning of fφ. The clustering function is instead learned during the outer step, which is

formally defined as follows:

(θ, φ) = (θ, φ)− β∇(θ,φ)Louter (7.9)

where Louter(fθi , fφ, GQ) =

(
K∑
i=1

Li(fθi , fφ, GQ)

)
+ λLrec

In the above formulation, Lrec is the graph reconstruction loss enforcing the cluster

assignments to respect the underlying graph structure, similar to [256]. That is, nodes in

the same cluster are expected to be strongly connected. λ is a trade-off hyper-parameter,

which controls the relative contribution of the two loss terms to our outer objective.

We show the formulation for a single graph, while extension to batch computation is

177

Ongoing and Future Work Chapter 7

straightforward.

Notice that the inner step (7.7) and the outer step (7.9) processes different inputs.

While the former step learns cluster-adapted parameters over a support set GS , the latter

step jointly evaluates the generalization capability of the learned cluster assignments

(parameterized by φ) and the predictive model (parameterized by θ) on a query set GQ.

The key innovation is that we can jointly learn clustering function during the outer

objective, such that the learned function generates clusters that can be better generalized

to a collection of graphs. During training, we iterate over a mini-batch of graphs with

a certain number of episodes (or epochs), while randomly selecting (non-overlapping)

support and query sets from each graph. The number of episodes to train is determined

based on the validation performance.

Meta-Testing: During adaptation to a new unseen graph (also called meta-testing),

we simply make K many identical copies of θ—denoted as {θ̂i, i ∈ [1, 2, · · · , K]}—and run

inner steps on each copy independently. We may periodically update φ, or not update it at

all during this stage. The flow prediction (inference) for each node than can be computed

as either the corresponding prediction of the model fθ̂i with the highest assignment score,

that is, for node n, we choose fθ̂i such that i = argmaxi Cn,i. Other alternative is to

again compute a weighted combination of each model’s prediction. The latter approach

can be more desirable in case some θ̂s are not well-learned. This case can potentially

happen when the available labels for the respective models are either non-existent or

highly limited in the new graph.

Discussion: The proposed formulation leads to many critical aspects that one needs

to carefully study. First, the clustering problem is known to be hard, and adding the

clustering component significantly increases our search space within the optimization

landscape. Second, poor cluster assignments (especially early during the training) might

lead to undesired performance, while the non-smooth changes in assigned clusters might

178

Ongoing and Future Work Chapter 7

obstruct convergence. To that end, we identify two orthogonal strategies that we believe

can help with more stable learning: (i) pre-training θ without the clustering component,

and (ii) updating φ less frequently compared to θ, such as once in every 5 epochs. Another

potential improvement we can employ is partial weight-tying between fφ and fθ (such as

the first GNN layer), which can reduce the size of our parameter space.

7.1.0.3 Experiments

Synthetic Data

We now create a synthetic experimental setup in order to evaluate our intuitions

behind the proposed methodology, as well as to get a quick understanding of its behavior.

Our synthetic data includes a graph with 30 nodes, and 3 ground-truth clusters, each

with equal sizes of 10 nodes. Our goal is to solve a linear regression task at the node

level, which resembles the flow estimation. We assume each cluster has its own underlying

model θi ∼ N (θ0, σ
2), i ∈ [1, 2, 3] for prediction, while these cluster-specific models are

originated from an underlying global graph model (θ0). Here, d represents the size of

the model, while σ is the standard deviation and is set to 0.5 during our experiments.

Moreover, each node is assigned random features xk ∼ N (0, Id), k ∈ [1, 2, · · · , 30] and

the ground-truth flow values yk = xTk θi∗ s.t. i∗ = argmaxiCk,:. Less formally, each

ground-truth flow value is assigned based on its features and the corresponding model of

the cluster it belongs.

We split nodes in each cluster by 6/2/2 respectively for training (ntr), validation

(nva), and testing (nte) sets. We consider two settings: under-parameterized (where d=4)

and over-parameterized (where d=12). As the names suggest, the first setting allows to

learn accurate models for each cluster (d<ntr), while these cluster-specific models do not

encounter enough data points to learn accurate models (d>ntr). We consider two other

baselines to compare: Global that learns a single global model for the entire graph and

179

Ongoing and Future Work Chapter 7

Under-parameterized (d=4) Over-parameterized (d=12)

Figure 7.2: Results with three approaches on synthetically generated community network with
three underlying clusters. The left part represents the under-parameterized setting, while the
right part represents the over-parameterized setting. Performance is measured on the validation
set. The proposed method (L clusters, shown in purple) is favored in the latter setting, while it
gets closed to the best possible solution (shown in blue) for the former setting. We also plot the
clustering assignments learned at the end of training for both cases. See text for more details.

GT Clusters (stands for ground-truth clusters) that learns three independent models, one

for each cluster. Note that the latter variant does not share data points (nodes) across

clusters. The proposed variant is denoted by L Clusters and stands for “learned clusters”.

Our goal is to quantitatively assess the proposed methods joint ability to (i) capture

underlying ground-truth clusters and (ii) learn accurate cluster-specific predictors.

Figure 7.2 shows the learning curves of all three models on both settings. The

performance is measured by the RMSE metric, and is computed on the testing set. The

proposed approach shows desired performance for the over-parameterized case—the setting

we are particularly interested in this work—by finding a fair balance between meta-model

learning and cluster-specific adaptation. Moreover, the proposed method is also able

to learn accurate clustering assignments for the under-parameterized setting, and nears

towards the best possible solution where the clustering assignments are known apriori.

180

Ongoing and Future Work Chapter 7

Region Coordinates

San Diego (SD) [32.5569, 32.8902, -117.2823, -116.9066]

Los Angeles (LA) [33.8671, 34.2374, -118.5200, -117.8870]

Bay Area (BAY) [37.2227, 37.5744, -122.3245, -121.7812]

San Francisco (SF) [37.5647, 37.9557, -122.5727, -122.0477]

Sacramento (SAC) [38.3599, 38.7406, -121.7456, -121.2287]

Ventura (VEN) [34.1283, 34.3672, -119.3353, -118.6688]

Irvine (IRV) [33.4709, 33.7227, -117.9174, -117.5772]

Orange County (ORA) [33.7262, 33.9048, -118.0879, -117.7463]

Riverside (RIV) [33.7707, 34.1810, -117.7208, -117.1285]

Table 7.1: Geographical regions in California and their hand-picked coordinates. Each region
corresponds to a road network, statistics of which are further summarized in Table 7.2.

Road-Network Flow Estimation

We now shift our focus to a real-world problem that we also used as motivation in

the beginning. To re-emphasize, our problem involves estimating flows on a target road

network with sparse observations, by applying knowledge transfer from road networks

that correspond to other geographical regions. Next, we introduce our dataset curated for

this task.

Extended regions and contextual features: We create nine road networks cor-

responding to the large geographical regions in California, USA. These regions include

Los Angeles, San Francisco, Ventura, Riverside, Irvine, Bay Area, Sacramento, San

Diego, and Orange County. Geographical boundaries chosen to represent these regions

are summarized in Table 7.1. Corresponding road networks are captured from publicly

available OpenStreetMap API, while the flows are daily average vehicle counts measured

by sensors placed along highways in the year 2018 1. We follow the setting in [5] and

convert each road network into its corresponding line graph to operate on the node-level,

which is more natural to standard GNN architectures. Table 7.2 further summarizes

graph statistics for each region, along with the availability of sensor readings within each

1Source: http://pems.dot.ca.gov/

181

http://pems.dot.ca.gov/

Ongoing and Future Work Chapter 7

Nodes Edges Sensors Sensors/Nodes
Ratio

San Diego (SD) 1,704 2,217 623 0.28
Los Angeles (LA) 3,245 4,126 1,578 0.38
Bay Area (BAY) 1,805 2,259 746 0.33
San Francisco (SF) 1,816 2,277 567 0.25
Sacramento (SAC) 994 1,293 515 0.39
Ventura (VEN) 589 756 240 0.31
Irvine (IRV) 689 889 436 0.49
Orange County (OC) 865 1,092 562 0.51
Riverside (RIV) 931 1,247 515 0.41

Table 7.2: Statistics of road networks.

graph. As shown, while graph sizes vary across regions (largest being Los Angeles with

3245 nodes and smallest being Ventura with 589 nodes), the availability of sensors also

differ significantly, ranging from 25% (San Francisco) to 51% (Orange County). These

statistics demonstrate the complexity of this real-world problem.

In addition to the features used in [5] which include the number of lanes, road type,

road length, in and out degree, and centrality of adjacent nodes, we also couple our

data with the following extensive list of regional edge features which are also mined from

OpenStreetMap API. These additional features include the number of all amenities, food

and drink amenities, education amenities, health care amenities, public service amenities,

entertainment amenities, all buildings, residential buildings, commercial buildings, all

leisure facilities, sports leisure facilities, and nature leisure facilities. These features are

collected within a radius mile of each node for all the regions mentioned above. In total,

we have 31 features for each node.

Baseline Approaches: We group our baseline approaches into two categories:

(1) Conventional methods. These include:

T : Model is trained on target region only, while ignoring other regions.

Joint-T: Model is trained jointly across all the regions. This can be seen as training with

182

Ongoing and Future Work Chapter 7

one large (global) graph consisting of all the regions.

Pre-T: Model is first pre-trained on source graphs, and then fine-tuned on target graph.

(2) Meta-Learning approaches. These consider each graph as a task during an episodic

training. These approaches include:

MAML: Model-Agnostic Meta-Learning approach [258]. All GNN layers are adapted in

the inner step.

ANIL: Almost No Inner Loop approach [259]. Only the last GNN layer is adapted in the

inner step.

MI-GNN: Meta-inductive learning across graphs [260]. Learns a graph-specific transfor-

mation of graph features computed as a result of the first GNN layer.

Settings: For each region (seen as the target graph), we conduct experiments with all

six baseline approaches. Our choice of GNN architecture is GraphSAGE [250], consisting

of two layers with ReLU non-linearity. We split labels of each source graph by 50/50

as support and query sets for meta-training and meta-validation. For adaptation stage

(meta-testing), we only use 5% of all available labels on each target graph for training,

while the remaining 95% is split evenly for validation and testing. For each target graph,

we repeat the experiments 10 times and report the mean and std. Best models are picked

based on the validation split of the target graph. Results are reported on the test split

of the target graph. For meta-learning approaches, each episode consists of 3 (randomly

picked) graphs with 10 inner update steps. For optimization of all methods, we use Adam

optimizer with initial learning rate of 0.01.

Metrics: We employ three evaluation metrics that collectively assess the flow estima-

tion performance: Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and

Pearson correlation coefficient (Corr).

Results: Table 7.3 summarizes the flow estimation results on five different regions from

183

Ongoing and Future Work Chapter 7

Table 7.3: Flow estimation performance of six baselines and proposed approach on five different
target regions, corresponding to different counties in California, USA. For the RMSE and MAE
metrics, the lower the score the better; while for the Corr metric, the higher the score the better.
The best results for each region are bolded.

T Joint-T Pre-T MI-GNN MAML ANIL Ours

Los Angeles

RMSE 0.0083 0.0085 0.0075 0.0096 0.0073 0.0074 0.0071

MAE 0.0054 0.0057 0.0046 0.0063 0.0045 0.0046 0.0042

Corr 0.7605 0.8136 0.8014 0.6795 0.8279 0.8157 0.8292

San Francisco

RMSE 0.0201 0.0107 0.0127 0.0125 0.0112 0.0104 0.0099

MAE 0.0141 0.0072 0.0090 0.0089 0.0074 0.0067 0.0062

Corr 0.4697 0.7665 0.7181 0.6347 0.7420 0.7775 0.7942

San Diego

RMSE 0.0156 0.0093 0.0109 0.0135 0.0083 0.0086 0.0084

MAE 0.0108 0.0061 0.0081 0.0106 0.0058 0.0059 0.0058

Corr 0.5890 0.8235 0.7506 0.5426 0.8524 0.8422 0.8471

Ventura

RMSE 0.0287 0.0187 0.0210 0.0267 0.0163 0.0165 0.0148

MAE 0.0220 0.0119 0.0153 0.0209 0.0108 0.0111 0.0094

Corr 0.6686 0.8271 0.8032 0.5620 0.8476 0.8672 0.8850

Riverside

RMSE 0.0198 0.0133 0.0158 0.0163 0.0136 0.0146 0.0125

MAE 0.0145 0.0086 0.0113 0.0122 0.0091 0.0097 0.0080

Corr 0.5206 0.7590 0.6844 0.5973 0.7507 0.7229 0.7882

different sizes and rate of available labels (see Table 7.2 for statistics). Our results show

that the proposed approach shows significant gains compared to the baseline approaches

for four regions: up to 6.6% for Los Angeles, 7.4% for San Francisco, 12.9% for Ventura,

and 12.0% for Riverside. Considering the very little amount of training data we have

for each of these regions, these improvements demonstrate that the flow estimation task

can be solved more effectively by joint clustering and cluster-specific model adaptation.

San Diego is the only region where the proposed approach shows similar performance to

MAML and ANIL approaches. We note that MAML is a special case of our proposed

approach with only one cluster per graph. This suggests that the meta-learned clustering

184

Ongoing and Future Work Chapter 7

module can not generalize well for the San Diego region. A more detailed investigation is

needed to understand the underlying reasons for this outcome.

Our work opens several avenues for future research, which we summarize as follows:

Joint model learning and clustering for other graph families: As part of this

thesis, while developing learning methods over graphs, we have primarily focused on

flow graphs both from a predictive modeling and a generative modeling perspective.

Extending this line of work to other families of graphs (e.g., co-authorship networks,

chemical networks) remains a promising future direction to explore.

Designing differentiable clustering modules for graphs: Learning clustering

formations directly from data has been an important problem not only for network science

but also for many other domains. Although clustering is naturally a self-supervised task,

recent advancements in the literature provided solid evidence for the potential of coupling

the clustering with a downstream task of interest, such as graph classification [256, 257].

We plan to explore other principled approaches to learning clusters directly from data in

more adaptive ways. Some alternatives include (i) employing mean-shift operators over

the intermediate latent representations of nodes learned by GNNs, and (ii) dynamically

adapting the number of clusters, rather than pre-defining it as a hyper-parameter as done

by the previous works.

185

7.2 Conclusions

Learning problems in the real world often involve complex and richly structured

data, coupled with a diverse set of learning objectives depending on the application

domain. In this thesis, we have investigated the role of the structure (in which the

data forms) towards reaching our learning objectives. Our investigation spans a diverse

set of learning problems. These include summarization of (discrete) network processes

(Chapter 2), document classification (Chapter 3), personalized item search retrieval

(Chapter 4), node/edge-level predictions for complex and attributed graphs (Chapters 6,

7), and data-driven generation of realistic graphs (Chapter 5). For each of these problems,

the underlying data of interest resembles different forms of structures including spatial,

sequential, and temporal.

Considering the breadth and depth of the problems studied, variety of techniques

and computational tools proposed and applied, together with their rigorous analysis and

extensive experimental evaluation, our studies in this thesis have led us to the following

closing statement:

Building models using structured representations of data (i) allows us to better generalize

to the problem domain, and (ii) helps mitigate the effects of data scarcity.

186

Bibliography

[1] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zambaldi,
M. Malinowski, A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner, et. al.,
Relational inductive biases, deep learning, and graph networks, arXiv preprint
arXiv:1806.01261 (2018).

[2] F. Kocayusufoglu, M. X. Hoang, and A. K. Singh, Summarizing network processes
with network-constrained boolean matrix factorization, in 2018 IEEE International
Conference on Data Mining (ICDM), pp. 237–246, IEEE, 2018.

[3] F. Kocayusufoglu, Y. Sheng, N. Vo, J. Wendt, Q. Zhao, S. Tata, and M. Najork,
Riser: Learning better representations for richly structured emails, in The World
Wide Web Conference, pp. 886–895, 2019.

[4] H. You, F. Kocayusufoglu, and A. K. Singh, Danr: Discrepancy-aware network
regularization, in Proceedings of the 2020 SIAM International Conference on Data
Mining, pp. 208–216, SIAM, 2020.

[5] A. Silva, F. Kocayusufoglu, S. Jafarpour, F. Bullo, A. Swami, and A. Singh,
Combining physics and machine learning for network flow estimation, .

[6] P. Miettinen et. al., The discrete basis problem, TKDE (2008).

[7] M. Kitsak et. al., Identification of influential spreaders in complex networks, Nature
physics 6 (2010), no. 11 888.

[8] S. Liu et. al., Controlling contagion processes in activity driven networks, Physical
review letters 112 (2014), no. 11 118702.

[9] A. Meneely et. al., Predicting failures with developer networks and social network
analysis, in Proc.16th ACM SIGSOFT, 2008.

[10] J. Pei et. al., Closet: An efficient algorithm for mining frequent closed itemsets., in
Proc. of ACM SIGMOD DMKD Workshop, 2000.

[11] R. J. Bayardo Jr, Efficiently mining long patterns from databases, ACM Sigmod
Record 27 (1998), no. 2 85–93.

187

[12] R. Agrawal et. al., Mining association rules between sets of items in large databases,
in Acm sigmod record, pp. 207–216, ACM, 1993.

[13] J. Vreeken et. al., Krimp: mining itemsets that compress, Data Mining and
Knowledge Discovery 23 (2011), no. 1 169–214.

[14] P. Krajca et. al., Using frequent closed itemsets for data dimensionality reduction,
in ICDM, pp. 1128–1133, IEEE, 2011.

[15] X. Yan and J. Han, gspan: Graph-based substructure pattern mining, in ICDM,
2002.

[16] X. Yan and J. Han, Closegraph: mining closed frequent graph patterns, in KDD,
2003.

[17] J. Huan et. al., Spin: mining maximal frequent subgraphs from graph databases, in
KDD, 2004.

[18] L. T. Thomas et. al., Margin: Maximal frequent subgraph mining, TKDD (2010).

[19] F. Zhu et. al., Mining colossal frequent patterns by core pattern fusion, in ICDE,
pp. 706–715, IEEE, 2007.

[20] P. Miettinen, Sparse boolean matrix factorizations, in ICDM, 2010.

[21] P. Miettinen and J. Vreeken, mdl4bmf: Minimum description length for boolean
matrix factorization, TKDD (2014).

[22] S. Karaev et. al., Getting to know the unknown unknowns: Destructive-noise
resistant boolean matrix factorization, in SIAM, 2015.

[23] C. Lucchese, S. Orlando, and R. Perego, Mining top-k patterns from binary datasets
in presence of noise, in SIAM, 2010.

[24] C. Lucchese, S. Orlando, and R. Perego, A unifying framework for mining
approximate top-k binary patterns, TKDE (2014).

[25] S. Maurus and C. Plant, Ternary matrix factorization, in ICDM, 2014.

[26] M. Araujo, P. Ribeiro, and C. Faloutsos, Faststep: Scalable boolean matrix
decomposition, in PAKDD, 2016.

[27] S. Ravanbakhsh, B. Poczos, and R. Greiner, Boolean matrix factorization and noisy
completion via message passing, ICML (2016).

[28] A. R. Benson, D. F. Gleich, and J. Leskovec, Higher-order organization of complex
networks, Science 353 (2016), no. 6295 163–166.

188

[29] J. Leskovec et. al., Patterns of cascading behavior in large blog graphs, in SIAM,
2007.

[30] N. Barbieri, F. Bonchi, and G. Manco, Cascade-based community detection, in
WSDM, 2013.

[31] U. Feige, A threshold of ln n for approximating set cover, Journal of the ACM
(JACM) 45 (1998), no. 4 634–652.

[32] G. L. Nemhauser et. al., An analysis of approximations for maximizing submodular
set functions, Mathematical Programming (1978).

[33] A.-L. Barabási and R. Albert, Emergence of scaling in random networks, science
286 (1999), no. 5439 509–512.

[34] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network dataset
collection.” http://snap.stanford.edu/data, June, 2014.

[35] J. Tang et. al., Arnetminer: Extraction and mining of academic social networks, in
KDD’08, pp. 990–998, 2008.

[36] “Highway traffic network of Los Angeles, CA.” (http://pems.dot.ca.gov).

[37] M. Piorkowski et. al., A parsimonious model of mobile partitioned networks with
clustering, in COMSNETS, 2009.

[38] A. Silva et. al., Prediction-based online trajectory compression, arXiv preprint
arXiv:1601.06316 (2016).

[39] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Ng, and C. Potts,
Recursive deep models for semantic compositionality over a sentiment treebank, in
Proceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing, EMNLP, pp. 1631–1642, 2013.

[40] G. Caruana and M. Li, A survey of emerging approaches to spam filtering, ACM
Computing Surveys (CSUR) 44 (2012), no. 2 9.

[41] M. Najork, Web spam detection, in Encyclopedia of Database Systems,
pp. 3520–3523. Springer, 2009.

[42] K. Shu, A. Sliva, S. Wang, J. Tang, and H. Liu, Fake news detection on social
media: A data mining perspective, ACM SIGKDD Explorations Newsletter 19
(2017), no. 1 22–36.

[43] H. L. Roitblat, A. Kershaw, and P. Oot, Document categorization in legal electronic
discovery: computer classification vs. manual review, Journal of the American
Society for Information Science and Technology (JASIST) 61 (2010), no. 1 70–80.

189

http://snap.stanford.edu/data
(http://pems.dot.ca.gov)

[44] X. Qi and B. D. Davison, Web page classification: Features and algorithms, ACM
Computing Surveys (CSUR) 41 (2009), no. 2 12.

[45] Y. Maarek, Web mail is not dead!: It’s just not human anymore, in Proceedings of
the 26th International Conference on World Wide Web, WWW, pp. 5–5, 2017.

[46] M. Grbovic, G. Halawi, Z. Karnin, and Y. Maarek, How many folders do you really
need?: Classifying email into a handful of categories, in Proceedings of the 23rd
ACM International Conference on Conference on Information and Knowledge
Management, CIKM, pp. 869–878, 2014.

[47] D. Di Castro, Z. Karnin, L. Lewin-Eytan, and Y. Maarek, You’ve got mail, and
here is what you could do with it!: Analyzing and predicting actions on email
messages, in Proceedings of the 9th ACM International Conference on Web Search
and Data Mining, WSDM, pp. 307–316, 2016.

[48] Y. Sheng, S. Tata, J. B. Wendt, J. Xie, Q. Zhao, and M. Najork, Anatomy of a
privacy-safe large-scale information extraction system over email, in Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, KDD, pp. 734–743, 2018.

[49] D. Di Castro, I. Gamzu, I. Grabovitch-Zuyev, L. Lewin-Eytan, A. Pundir, N. R.
Sahoo, and M. Viderman, Automated extractions for machine generated mail, in
Companion Proceedings of the The Web Conference 2018, WWW, pp. 655–662,
2018.

[50] M. K. Agarwal and J. Singh, Template trees: Extracting actionable information
from machine generated emails, in Proceedings of the 30th International Conference
on Database and Expert Systems Applications, DEXA, pp. 3–18, 2018.

[51] Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, and E. Hovy, Hierarchical attention
networks for document classification, in Proceedings of the 2016 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, NAACL-HLT, pp. 1480–1489, 2016.

[52] Y. Maarek, Is mail the next frontier in search and data mining?, in Proceedings of
the 9th ACM International Conference on Web Search and Data Mining, WSDM,
pp. 203–203, 2016.

[53] P. Le Hégaret, R. Whitmer, and L. Wood, “Document object model (dom).”
http://www.w3.org/DOM, 2005.

[54] Google, “Analyzing entities.”
https://cloud.google.com/natural-language/docs/analyzing-entities,
2019.

190

http://www.w3.org/DOM
https://cloud.google.com/natural-language/docs/analyzing-entities

[55] A. Berglund, S. Boag, D. Chamberlin, M. F. Fernández, M. Kay, J. Robie, and
J. Siméon, XML path language (xpath), World Wide Web Consortium (W3C)
(2007).

[56] D. Cai, S. Yu, J.-R. Wen, and W.-Y. Ma, Extracting content structure for web
pages based on visual representation, in Asia-Pacific Web Conference, pp. 406–417,
Springer, 2003.

[57] S. Hochreiter and J. Schmidhuber, Long short-term memory, Neural computation 9
(1997), no. 8 1735–1780.

[58] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, Distributed
representations of words and phrases and their compositionality, in Proceedings of
the 26th International Conference on Neural Information Processing Systems,
NIPS, pp. 3111–3119, 2013.

[59] J. Pennington, R. Socher, and C. Manning, Glove: Global vectors for word
representation, in Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing, EMNLP, pp. 1532–1543, 2014.

[60] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, Enriching word vectors with
subword information, arXiv preprint arXiv:1607.04606 (2016).

[61] R. V. Guha, D. Brickley, and S. Macbeth, Schema. org: evolution of structured
data on the web, Communications of the ACM 59 (2016), no. 2 44–51.

[62] N. Ailon, Z. S. Karnin, E. Liberty, and Y. Maarek, Threading machine generated
email, in Proceedings of the 6th ACM International Conference on Web Search and
Data Mining, WSDM, pp. 405–414, 2013.

[63] N. Avigdor-Elgrabli, M. Cwalinski, D. Di Castro, I. Gamzu, I. Grabovitch-Zuyev,
L. Lewin-Eytan, and Y. Maarek, Structural clustering of machine-generated mail,
in Proceedings of the 25th ACM International on Conference on Information and
Knowledge Management, CIKM, pp. 217–226, 2016.

[64] Y. Liu and M. Lapata, Learning structured text representations, Transactions of the
Association of Computational Linguistics 6 (2018) 63–75.

[65] J. Duchi, E. Hazan, and Y. Singer, Adaptive subgradient methods for online
learning and stochastic optimization, Journal of Machine Learning Research
(JMLR) 12 (2011), no. Jul 2121–2159.

[66] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, arXiv
preprint arXiv:1412.6980 (2014).

191

[67] D. Golovin, B. Solnik, S. Moitra, G. Kochanski, J. Karro, and D. Sculley, Google
Vizier: A service for black-box optimization, in Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD, pp. 1487–1495, 2017.

[68] A. McCallum, K. Nigam, et. al., A comparison of event models for naive bayes text
classification, in AAAI-98 Workshop on Learning for Text Categorization, vol. 752,
pp. 41–48, 1998.

[69] Y. Yang and X. Liu, A re-examination of text categorization methods, in
Proceedings of the 22nd Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR, pp. 42–49, 1999.

[70] B. Pang, L. Lee, and S. Vaithyanathan, Thumbs up?: sentiment classification using
machine learning techniques, in Proceedings of the 2002 Conference on Empirical
Methods in Natural Language Processing, EMNLP, pp. 79–86, 2002.

[71] T. Mikolov, K. Chen, G. Corrado, and J. Dean, Efficient estimation of word
representations in vector space, arXiv preprint arXiv:1301.3781 (2013).

[72] Q. Le and T. Mikolov, Distributed representations of sentences and documents, in
Proceedings of the 31st International Conference on Machine Learning, ICML,
pp. 1188–1196, 2014.

[73] J. Li, M.-T. Luong, and D. Jurafsky, A hierarchical neural autoencoder for
paragraphs and documents, arXiv preprint arXiv:1506.01057 (2015).

[74] S. Lai, L. Xu, K. Liu, and J. Zhao, Recurrent convolutional neural networks for text
classification, in Proceedings of the 29th AAAI Conference on Artificial Intelligence,
AAAI, pp. 2267–2273, 2015.

[75] D. Tang, B. Qin, and T. Liu, Document modeling with gated recurrent neural
network for sentiment classification, in Proceedings of the 2015 conference on
empirical methods in natural language processing, pp. 1422–1432, 2015.

[76] K. S. Tai, R. Socher, and C. D. Manning, Improved semantic representations from
tree-structured long short-term memory networks, arXiv preprint arXiv:1503.00075
(2015).

[77] J. Bradbury, S. Merity, C. Xiong, and R. Socher, Quasi-recurrent neural networks,
arXiv preprint arXiv:1611.01576 (2016).

[78] X. Zhang, J. Zhao, and Y. LeCun, Character-level convolutional networks for text
classification, in Proceedings of the 28th International Conference on Neural
Information Processing Systems, NIPS, pp. 649–657, 2015.

192

[79] Y. Kim, Convolutional neural networks for sentence classification, arXiv preprint
arXiv:1408.5882 (2014).

[80] D. Bahdanau, K. Cho, and Y. Bengio, Neural machine translation by jointly
learning to align and translate, arXiv preprint arXiv:1409.0473 (2014).

[81] W. C. Mann and S. A. Thompson, Rhetorical structure theory: Toward a
functional theory of text organization, Text-Interdisciplinary Journal for the Study
of Discourse 8 (1988), no. 3 243–281.

[82] P. Bhatia, Y. Ji, and J. Eisenstein, Better document-level sentiment analysis from
rst discourse parsing, in Proceedings of the 2015 Conference on Empirical Methods
in Natural Language Processing, pp. 2212–2218, 2015.

[83] Y. Ji and N. Smith, Neural discourse structure for text categorization, arXiv
preprint arXiv:1702.01829 (2017).

[84] R. Bekkerman, A. McCallum, and G. Huang, Automatic categorization of email
into folders: Benchmark experiments on Enron and SRI corpora, Center for
Intelligent Information Retrieval report IR-418, University of Massachusetts, 2005.

[85] G. V. Cormack, Email spam filtering: A systematic review, Foundations and
Trends® in Information Retrieval 1 (2008), no. 4 335–455.

[86] D. Aberdeen, O. Pacovsky, and A. Slater, The learning behind Gmail priority inbox,
in LCCC: NIPS 2010 Workshop on Learning on Cores, Clusters and Clouds, 2010.

[87] S. Wu, L. Hsiao, X. Cheng, B. Hancock, T. Rekatsinas, P. Levis, and C. Ré,
Fonduer: Knowledge base construction from richly formatted data, in Proceedings of
the 2018 International Conference on Management of Data, SIGMOD,
pp. 1301–1316, 2018.

[88] A. Anderson et. al., Algorithmic effects on the diversity of consumption on spotify,
in Proceedings of TheWebConf’20, pp. 2155–2165, 2020.

[89] J. Burgess and J. Green, YouTube: Online video and participatory culture. John
Wiley & Sons, 2018.

[90] C. Eksombatchai et. al., Pixie: A system for recommending 3+ billion items to
200+ million users in real-time, in Proceedings of TheWebConf’18, 2018.

[91] W. W. Moe, Buying, searching, or browsing: Differentiating between online
shoppers using in-store navigational clickstream, Journal of consumer psychology 13
(2003), no. 1-2 29–39.

[92] P. Sondhi et. al., A taxonomy of queries for e-commerce search, in Proceedings of
ACM SIGIR’18, pp. 1245–1248, 2018.

193

[93] N. Su, J. He, Y. Liu, M. Zhang, and S. Ma, User intent, behaviour, and perceived
satisfaction in product search, in Proceedings of ACM WSDM’18, pp. 547–555, 2018.

[94] Q. Ai, Y. Zhang, K. Bi, X. Chen, and W. B. Croft, Learning a hierarchical
embedding model for personalized product search, in Proceedings of ACM SIGIR’17,
pp. 645–654, 2017.

[95] Y. Guo et. al., Attentive long short-term preference modeling for personalized
product search, ACM TOIS’19 37 (2019), no. 2 1–27.

[96] Q. Ai, D. N. Hill, S. Vishwanathan, and W. B. Croft, A zero attention model for
personalized product search, in Proceedings of ACM CIKM’19, pp. 379–388, 2019.

[97] N. Matthijs and F. Radlinski, Personalizing web search using long term browsing
history, in Proceedings of ACM WSDM’11, pp. 25–34, 2011.

[98] D. Sontag, K. Collins-Thompson, P. N. Bennett, R. W. White, S. Dumais, and
B. Billerbeck, Probabilistic models for personalizing web search, in Proceedings of
ACM WSDM’12, pp. 433–442, 2012.

[99] J. Vosecky, K. W.-T. Leung, and W. Ng, Collaborative personalized twitter search
with topic-language models, in Proceedings of ACM SIGIR’14, pp. 53–62, 2014.

[100] P. Covington, J. Adams, and E. Sargin, Deep neural networks for youtube
recommendations, in Proceedings of ACM RecSys’16, pp. 191–198, 2016.

[101] S. Lamkhede and S. Das, Challenges in search on streaming services: netflix case
study, in Proceedings of ACM SIGIR’19, pp. 1371–1374, 2019.

[102] A. Vaswani et. al., Attention is all you need, in NeurIPS’17, 2017.

[103] J. Devlin et. al., Bert: Pre-training of deep bidirectional transformers for language
understanding, arXiv preprint arXiv:1810.04805 (2018).

[104] C.-C. Chiu et. al., State-of-the-art speech recognition with sequence-to-sequence
models, in ICASSP’18, pp. 4774–4778, IEEE, 2018.

[105] W.-C. Kang and J. McAuley, Self-attentive sequential recommendation, in
ICDM’18, pp. 197–206, IEEE, 2018.

[106] P. G. Campos, F. Dı́ez, and I. Cantador, Time-aware recommender systems: a
comprehensive survey and analysis of existing evaluation protocols, User Modeling
and User-Adapted Interaction 24 (2014), no. 1 67–119.

[107] Y. Zhu et. al., What to do next: Modeling user behaviors by time-lstm., in
IJCAI’17, vol. 17, pp. 3602–3608, 2017.

194

[108] D. Xu, C. Ruan, E. Korpeoglu, S. Kumar, and K. Achan, Self-attention with
functional time representation learning, in NeurIPS’19, 2019.

[109] J. Li, Y. Wang, and J. McAuley, Time interval aware self-attention for sequential
recommendation, in Proceedings of WSDM’20, pp. 322–330, 2020.

[110] W. Ji et. al., Sequential recommender via time-aware attentive memory network, in
Proceedings of ACM CIKM’20, pp. 565–574, 2020.

[111] J. Wu, R. Cai, and H. Wang, Déjà vu: A contextualized temporal attention
mechanism for sequential recommendation, in Proceedings of The Web Conference
2020, pp. 2199–2209, 2020.

[112] J.-Y. Jiang, T. Wu, G. Roumpos, H.-T. Cheng, X. Yi, E. Chi, H. Ganapathy,
N. Jindal, P. Cao, and W. Wang, End-to-end deep attentive personalized item
retrieval for online content-sharing platforms, in Proceedings of TheWebConf’20,
pp. 2870–2877, 2020.

[113] N. Sachdeva and J. McAuley, How useful are reviews for recommendation? a
critical review and potential improvements, in Proceedings of ACM SIGIR’20,
pp. 1845–1848, 2020.

[114] R. Datta, D. Joshi, J. Li, and J. Z. Wang, Image retrieval: Ideas, influences, and
trends of the new age, ACM Computing Surveys (Csur) 40 (2008), no. 2 1–60.

[115] A. Goswami, N. Chittar, and C. H. Sung, A study on the impact of product images
on user clicks for online shopping, in Proceedings of TheWebConf’11, pp. 45–46,
2011.

[116] T. Xiao, J. Ren, Z. Meng, H. Sun, and S. Liang, Dynamic bayesian metric learning
for personalized product search, in Proceedings of the 28th ACM International
Conference on Information and Knowledge Management, pp. 1693–1702, 2019.

[117] X. Bu, J. Zhu, X. Qian, and M. IEEE, Personalized product search based on user
transaction history and hypergraph learning, Multimedia Tools and Applications 79
(2020) 22157–22175.

[118] S. Liu, W. Gu, G. Cong, and F. Zhang, Structural relationship representation
learning with graph embedding for personalized product search, in Proceedings of the
29th ACM International Conference on Information & Knowledge Management,
pp. 915–924, 2020.

[119] K. Bi, Q. Ai, and W. B. Croft, Learning a fine-grained review-based transformer
model for personalized product search, in Proceedings of ACM SIGIR’21,
pp. 123–132, 2021.

195

[120] M. Grbovic and H. Cheng, Real-time personalization using embeddings for search
ranking at airbnb, in Proceedings of ACM SIGKDD’18, pp. 311–320, 2018.

[121] X. Chen et. al., Sequential recommendation with user memory networks, in
Proceedings of ACM WSDM’18, pp. 108–116, 2018.

[122] C. Ma, P. Kang, and X. Liu, Hierarchical gating networks for sequential
recommendation, in Proceedings of ACM SIGKDD’19, pp. 825–833, 2019.

[123] P. Shaw, J. Uszkoreit, and A. Vaswani, Self-attention with relative position
representations, in Proceedings of NAACL’18, pp. 464–468, 2018.

[124] Y. Koren, Collaborative filtering with temporal dynamics, in Proceedings ACM
SIGKDD’09, pp. 447–456, 2009.

[125] Y. Li, N. Du, and S. Bengio, Time-dependent representation for neural event
sequence prediction, arXiv preprint arXiv:1708.00065 (2017).

[126] G. Lai, W.-C. Chang, Y. Yang, and H. Liu, Modeling long-and short-term temporal
patterns with deep neural networks, in Proceedings of ACM SIGIR’18, pp. 95–104,
2018.

[127] S. Hirsch, I. Guy, A. Nus, A. Dagan, and O. Kurland, Query reformulation in
e-commerce search, in Proceedings of ACM SIGIR’20, 2020.

[128] F. Sun et. al., Bert4rec: Sequential recommendation with bidirectional encoder
representations from transformer, in Proceedings of ACM CIKM’19, pp. 1441–1450,
2019.

[129] I. Vulić and M.-F. Moens, Monolingual and cross-lingual information retrieval
models based on (bilingual) word embeddings, in Proceedings of ACM SIGIR’15,
pp. 363–372, 2015.

[130] H. Mei and J. M. Eisner, The neural hawkes process: A neurally self-modulating
multivariate point process, Advances in Neural Information Processing Systems 30
(2017).

[131] J. Ni, J. Li, and J. McAuley, Justifying recommendations using distantly-labeled
reviews and fine-grained aspects, in Proceedings of EMNLP-IJCNLP’19,
pp. 188–197, 2019.

[132] C. Van Gysel, M. de Rijke, and E. Kanoulas, Learning latent vector spaces for
product search, in CIKM’16, pp. 165–174, 2016.

[133] J. Rowley, Product search in e-shopping: a review and research propositions,
Journal of consumer marketing (2000).

196

[134] J. Huang et. al., Improving sequential recommendation with knowledge-enhanced
memory networks, in Proceedings of ACM SIGIR’18, pp. 505–514, 2018.

[135] R. Albert and A.-L. Barabási, Statistical mechanics of complex networks, Reviews
of modern physics 74 (2002), no. 1 47.

[136] P. Erdös and A. Rényi, On random graphs, Publicationes mathematicae 6 (1959),
no. 26 290–297.

[137] A. Bojchevski, O. Shchur, D. Zügner, and S. Günnemann, Netgan: Generating
graphs via random walks, in ICML, 2018.

[138] H. Dai, A. Nazi, Y. Li, B. Dai, and D. Schuurmans, Scalable deep generative
modeling for sparse graphs, in International Conference on Machine Learning,
pp. 2302–2312, PMLR, 2020.

[139] A. Grover, A. Zweig, and S. Ermon, Graphite: Iterative generative modeling of
graphs, in ICML, 2019.

[140] S. Li, S. Xiao, S. Zhu, N. Du, Y. Xie, and L. Song, Learning temporal point
processes via reinforcement learning, in NeurIPS’18, 2018.

[141] R. Liao, Y. Li, Y. Song, S. Wang, W. Hamilton, D. K. Duvenaud, R. Urtasun, and
R. Zemel, Efficient graph generation with graph recurrent attention networks, in
NeurIPS, 2019.

[142] J. Liu, A. Kumar, J. Ba, J. Kiros, and K. Swersky, Graph normalizing flows, in
NeurIPS, 2019.

[143] C. Niu, Y. Song, J. Song, S. Zhao, A. Grover, and S. Ermon, Permutation
invariant graph generation via score-based generative modeling, in International
Conference on Artificial Intelligence and Statistics, pp. 4474–4484, PMLR, 2020.

[144] M. Simonovsky and N. Komodakis, Graphvae: Towards generation of small graphs
using variational autoencoders, in ICANN, 2018.

[145] J. You, R. Ying, X. Ren, W. Hamilton, and J. Leskovec, Graphrnn: Generating
realistic graphs with deep auto-regressive models, in ICML, 2018.

[146] W. Jin, R. Barzilay, and T. Jaakkola, Junction tree variational autoencoder for
molecular graph generation, in ICML, 2018.

[147] C. Shi, M. Xu, Z. Zhu, W. Zhang, M. Zhang, and J. Tang, Graphaf: a flow-based
autoregressive model for molecular graph generation, in ICLR, 2020.

[148] X. Zheng, B. Aragam, et. al., Dags with no tears: Continuous optimization for
structure learning, in NeurIPS, 2018.

197

[149] H. Chu, D. Li, et. al., Neural turtle graphics for modeling city road layouts, in
ICCV, 2019.

[150] M. Brockschmidt, M. Allamanis, A. L. Gaunt, and O. Polozov, Generative code
modeling with graphs, in ICLR, 2019.

[151] F. Calabrese, G. Di Lorenzo, et. al., Estimating origin-destination flows using
mobile phone location data, IEEE Pervasive Computing (2011), no. 4 36–44.

[152] A. Bassolas, H. Barbosa-Filho, B. Dickinson, X. Dotiwalla, P. Eastham, R. Gallotti,
G. Ghoshal, B. Gipson, S. A. Hazarie, H. Kautz, et. al., Hierarchical organization
of urban mobility and its connection with city livability, Nature communications 10
(2019), no. 1 1–10.

[153] J. Jia, M. T. Schaub, S. Segarra, and A. R. Benson, Graph-based semi-supervised &
active learning for edge flows, in KDD, 2019.

[154] M. Chinazzi, J. T. Davis, et. al., The effect of travel restrictions on the spread of the
2019 novel coronavirus (covid-19) outbreak, Science 368 (2020), no. 6489 395–400.

[155] F. Dörfler and F. Bullo, Synchronization in complex networks of phase oscillators:
A survey, Automatica 50 (2014), no. 6 1539–1564.

[156] D. Hill and G. Chen, Power systems as dynamic networks, in 2006 IEEE
International Symposium on Circuits and Systems, 2006.

[157] J. D. Orth, I. Thiele, and B. Palsson, What is flux balance analysis?, Nat
Biotechnol 28 (Mar, 2010) 245–248.

[158] D. J. Watts and S. H. Strogatz, Collective dynamics of âsmall-worldânetworks,
Nature 393 (1998), no. 6684 440–442.

[159] T. N. Kipf and M. Welling, Semi-supervised classification with graph convolutional
networks, in ICLR, 2017.

[160] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio, Graph
attention networks, in ICLR, 2017.

[161] C. Yang, P. Zhuang, W. Shi, A. Luu, and P. Li, Conditional structure generation
through graph variational generative adversarial nets, in NeurIPS, 2019.

[162] D. P. Kingma and M. Welling, Auto-encoding variational bayes, arXiv preprint
arXiv:1312.6114 (2013).

[163] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, Generative adversarial nets, in NeurIPS, 2014.

198

[164] Y. Song and S. Ermon, Generative modeling by estimating gradients of the data
distribution, in Proceedings of the 33rd Annual Conference on Neural Information
Processing Systems, 2019.

[165] A. Bressan, S. Čanić, M. Garavello, M. Herty, and B. Piccoli, Flows on networks:
recent results and perspectives, EMS Surveys in Mathematical Sciences 1 (2014),
no. 1 47–111.

[166] M. Garavello and B. Piccoli, Traffic Flow on Networks: Conservation Laws Model.
AIMS series on applied mathematics. AIMS, 2006.

[167] M. Belkin and P. Niyogi, Laplacian eigenmaps for dimensionality reduction and
data representation, Neural computation 15 (2003), no. 6 1373–1396.

[168] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, Gated graph sequence neural
networks, in ICLR, 2016.

[169] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition,
in CVPR, 2016.

[170] M. Arjovsky, S. Chintala, and L. Bottou, Wasserstein generative adversarial
networks, in ICML, 2017.

[171] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville, Improved
training of wasserstein gans, in NeurIPS, 2017.

[172] J. Hörsch, F. Hofmann, D. Schlachtberger, and T. Brown, Pypsa-eur: An open
optimisation model of the european transmission system, Energy strategy reviews 22
(2018) 207–215.

[173] L. Theis, A. v. d. Oord, and M. Bethge, A note on the evaluation of generative
models, arXiv preprint arXiv:1511.01844 (2015).

[174] D. J. Aldous, Lower bounds for covering times for reversible markov chains and
random walks on graphs, Journal of Theoretical Probability 2 (1989), no. 1 91–100.

[175] N. Taxi and L. commission, TLC Trip Record Data, 2019. Available at
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page.
Accessed: December 2019.

[176] R. Kinney, P. Crucitti, R. Albert, and V. Latora, Modeling cascading failures in the
north american power grid, The European Physical Journal B-Condensed Matter
and Complex Systems 46 (2005), no. 1 101–107.

[177] H. W. Dommel and W. F. Tinney, Optimal power flow solutions, IEEE
Transactions on power apparatus and systems (1968), no. 10 1866–1876.

199

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

[178] F. Dörfler, J. W. Simpson-Porco, and F. Bullo, Electrical networks and algebraic
graph theory: Models, properties, and applications, Proceedings of the IEEE 106
(2018), no. 5 977–1005.

[179] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, Neural
message passing for quantum chemistry, in ICML, 2017.

[180] A. Srivastava, L. Valkov, C. Russell, M. U. Gutmann, and C. Sutton, Veegan:
Reducing mode collapse in gans using implicit variational learning, in Advances in
neural information processing systems, pp. 3308–3318, 2017.

[181] M. E. Newman, Mixing patterns in networks, Physical review E 67 (2003), no. 2
026126.

[182] D. Hallac et. al., Network lasso: Clustering and optimization in large graphs, in
ACM SIGKDD, 2015.

[183] Y.-X. Wang, J. Sharpnack, A. J. Smola, and R. J. Tibshirani, Trend filtering on
graphs, in AISTATS, 2015.

[184] J. Pang et. al., Graph laplacian regularization for image denoising, IEEE
Transactions on Image Processing (2017).

[185] C. Li and H. Li, Network-constrained regularization and variable selection for
analysis of genomic data, Bioinformatics 24 (2008), no. 9 1175–1182.

[186] T. D. Hocking et. al., Clusterpath an algorithm for clustering using convex fusion
penalties, in ICML, 2011.

[187] E. C. Chi et. al., Splitting methods for convex clustering, Journal of Computational
and Graphical Statistics 24 (2015), no. 4.

[188] Y.-Y. Liu, J.-J. Slotine, and A.-L. Barabási, Controllability of complex networks,
Nature 473 (2011), no. 7346 167.

[189] L. Anselin, Issues in the specification and interpretation of spatial regression
models, Agricultural economics 27 (2002), no. 3.

[190] R. Harris, J. Moffat, and V. Kravtsova, In search of ’w’, Spatial Economic Analysis
6 (2011), no. 3 249–270.

[191] M. Kim and J. Leskovec, Nonparametric multi-group membership model for
dynamic networks, in NIPS, 2013.

[192] Q. Ho et. al., Evolving cluster mixed-membership blockmodel for time-evolving
networks, in AISTATS, 2011.

200

[193] M. Belkin, P. Niyogi, and V. Sindhwani, Manifold regularization: A geometric
framework for learning from labeled and unlabeled examples, Journal of machine
learning research 7 (2006), no. Nov 2399–2434.

[194] M. Belkin et. al., Regularization and semi-supervised learning on large graphs, in
COLT, 2004.

[195] N. Guan, D. Tao, Z. Luo, and B. Yuan, Manifold regularized discriminative
nonnegative matrix factorization with fast gradient descent, IEEE Transactions on
Image Processing 20 (2011), no. 7 2030–2048.

[196] K. Q. Weinberger, F. Sha, Q. Zhu, and L. K. Saul, Graph laplacian regularization
for large-scale semidefinite programming, in NIPS, 2007.

[197] F. Lindsten et. al., Clustering using sum-of-norms regularization, in Statistical
Signal Processing Workshop, 2011.

[198] R. Tibshirani et. al., Sparsity and smoothness via the fused lasso, Journal of the
Royal Statistical Society (2005), no. 1.

[199] L. I. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal
algorithms, Physica D: nonlinear phenomena 60 (1992), no. 1-4.

[200] H.-F. Yu et. al., Temporal regularized matrix factorization for high-dimensional
time series prediction, in NIPS, 2016.

[201] J. E. Vogt and V. Roth, A complete analysis of the `1,p group-lasso, in ICML, 2012.

[202] D. Gabay and B. Mercier, A dual algorithm for the solution of nonlinear
variational problems via finite element approximation, Computers & Mathematics
with Applications no. 1.

[203] Y. Peng et. al., Robust alignment by sparse and low-rank decomposition for linearly
correlated images, PAMI (2012).

[204] S. Boyd et. al., Distributed optimization and statistical learning via the alternating
direction method of multipliers, Foundations and Trends® in Machine Learning 3
(2011), no. 1.

[205] J. Eckstein et. al., On the douglas—rachford splitting method and the proximal
point algorithm for maximal monotone operators, Mathematical Programming 55
(1992), no. 1.

[206] R. Nishihara et. al., A general analysis of the convergence of admm, in ICML,
pp. 343–352, 2015.

201

[207] B. He and X. Yuan, On non-ergodic convergence rate of douglas–rachford
alternating direction method of multipliers, Numerische Mathematik 130 (2015),
no. 3 567–577.

[208] D. Hallac, Y. Park, S. Boyd, and J. Leskovec, Network inference via the
time-varying graphical lasso, 2017.

[209] H. Wang, F. Nie, and H. Huang, Low-rank tensor completion with spatio-temporal
consistency, in AAAI, 2014.

[210] X.-H. Dang et. al., Subnetwork mining with spatial and temporal smoothness, in
SDM, 2017.

[211] P. Gong, J. Ye, and C. Zhang, Robust multi-task feature learning, in ACM
SIGKDD, 2012.

[212] J. Xu et. al., Factorized multi-task learning for task discovery in personalized
medical models, in SDM, 2015.

[213] P. A. Soranno et. al., Lagos-ne, GigaScience 6 (2017), no. 12.

[214] M. J. Lighthill and G. B. Whitham, On kinematic waves ii. a theory of traffic flow
on long crowded roads, Proceedings of the Royal Society of London. Series A.
Mathematical and Physical Sciences 229 (1955), no. 1178 317–345.

[215] P. I. Richards, Shock waves on the highway, Operations research 4 (1956), no. 1
42–51.

[216] Y. Li, R. Yu, C. Shahabi, and Y. Liu, Diffusion convolutional recurrent neural
network: Data-driven traffic forecasting, arXiv preprint arXiv:1707.01926 (2017).

[217] B. Yu, H. Yin, and Z. Zhu, Spatio-temporal graph convolutional networks: a deep
learning framework for traffic forecasting, in Proceedings of the 27th International
Joint Conference on Artificial Intelligence, pp. 3634–3640, 2018.

[218] J. Jia, M. T. Schaub, S. Segarra, and A. R. Benson, Graph-based semi-supervised
and active learning for edge flows, in Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, p. 761–771,
2019.

[219] L. Franceschi, M. Donini, P. Frasconi, and M. Pontil, Forward and reverse
gradient-based hyperparameter optimization, in ICML, vol. 70, pp. 1165–1173,
JMLR, 2017.

[220] C. Rackauckas, Y. Ma, J. Martensen, C. Warner, K. Zubov, R. Supekar,
D. Skinner, and A. Ramadhan, Universal differential equations for scientific
machine learning, arXiv preprint arXiv:2001.04385 (2020).

202

[221] J. Hanc, S. Tuleja, and M. Hancova, Symmetries and conservation laws:
Consequences of noether’s theorem, American Journal of Physics 72 (2004), no. 4
428–435.

[222] A. Tarantola, Inverse problem theory and methods for model parameter estimation,
vol. 89. SIAM, 2005.

[223] S. Arridge, P. Maass, O. Öktem, and C.-B. Schönlieb, Solving inverse problems
using data-driven models, Acta Numerica 28 (2019) 1–174.

[224] G. M. Coclite, M. Garavello, and B. Piccoli, Traffic flow on a road network, SIAM
Journal on Mathematical Analysis 36 (2005), no. 6 1862–1886.

[225] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network flows, .

[226] B. Colson, P. Marcotte, and G. Savard, An overview of bilevel optimization, Annals
of operations research 153 (2007), no. 1 235–256.

[227] L. Franceschi, P. Frasconi, S. Salzo, R. Grazzi, and M. Pontil, Bilevel programming
for hyperparameter optimization and meta-learning, in ICML, vol. 80,
pp. 1563–1572, PMLR (Proceedings of Machine Learning Research), 2018.

[228] J. Lorraine, P. Vicol, and D. Duvenaud, Optimizing millions of hyperparameters by
implicit differentiation, in International Conference on Artificial Intelligence and
Statistics, pp. 1540–1552, PMLR, 2020.

[229] G. Cybenko, Approximation by superpositions of a sigmoidal function, Mathematics
of control, signals and systems 2 (1989), no. 4 303–314.

[230] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, How powerful are graph neural
networks?, in ICLR, 2018.

[231] M. Defferrard, X. Bresson, and P. Vandergheynst, Convolutional neural networks
on graphs with fast localized spectral filtering, in NeurIPS, 2016.

[232] D. K. Hammond, P. Vandergheynst, and R. Gribonval, Wavelets on graphs via
spectral graph theory, Applied and Computational Harmonic Analysis 30 (2011),
no. 2 129–150.

[233] L. Bottou and O. Bousquet, The tradeoffs of large scale learning, in Advances in
neural information processing systems, pp. 161–168, 2008.

[234] J. Domke, Generic methods for optimization-based modeling, in Artificial
Intelligence and Statistics, pp. 318–326, 2012.

[235] T. Brown, J. Hörsch, and D. Schlachtberger, Pypsa: Python for power system
analysis, arXiv preprint arXiv:1707.09913 (2017).

203

[236] J. C. Herrera, D. B. Work, R. Herring, X. J. Ban, Q. Jacobson, and A. M. Bayen,
Evaluation of traffic data obtained via GPS-enabled mobile phones: The mobile
century field experiment, Transportation Research Part C: Emerging Technologies
18 (2010), no. 4 568–583.

[237] D. B. Work, S. Blandin, O.-P. Tossavainen, B. Piccoli, and A. M. Bayen, A traffic
model for velocity data assimilation, Applied Mathematics Research eXpress 2010
(2010), no. 1 1–35.

[238] L. R. Ford Jr and D. R. Fulkerson, Flows in networks. Princeton university press,
2015.

[239] H. W. Engl, M. Hanke, and A. Neubauer, Regularization of inverse problems,
vol. 375. Springer Science & Business Media, 1996.

[240] M. Raissi, P. Perdikaris, and G. E. Karniadakis, Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving
nonlinear partial differential equations, Journal of Computational Physics 378
(2019) 686–707.

[241] Z. Long, Y. Lu, X. Ma, and B. Dong, Pde-net: Learning pdes from data, in 35th
International Conference on Machine Learning, ICML 2018, pp. 5067–5078,
International Machine Learning Society (IMLS), 2018.

[242] Y. Bengio, Gradient-based optimization of hyperparameters, Neural computation 12
(2000), no. 8 1889–1900.

[243] J. Larsen, L. K. Hansen, C. Svarer, and M. Ohlsson, Design and regularization of
neural networks: the optimal use of a validation set, in Neural Networks for Signal
Processing VI. Proceedings of the 1996 IEEE Signal Processing Society Workshop,
pp. 62–71, IEEE, 1996.

[244] D. Maclaurin, D. Duvenaud, and R. Adams, Gradient-based hyperparameter
optimization through reversible learning, in International Conference on Machine
Learning, pp. 2113–2122, 2015.

[245] F. Pedregosa, Hyperparameter optimization with approximate gradient, in
Proceedings of the 33rd International Conference on International Conference on
Machine Learning-Volume 48, pp. 737–746, 2016.

[246] E. Grefenstette, B. Amos, D. Yarats, P. M. Htut, A. Molchanov, F. Meier, D. Kiela,
K. Cho, and S. Chintala, Generalized inner loop meta-learning, arXiv preprint
arXiv:1910.01727 (2019).

[247] X. Zhu, Z. Ghahramani, and J. D. Lafferty, Semi-supervised learning using
gaussian fields and harmonic functions, in Proceedings of the 20th International
Conference on Machine learning (ICML-03), pp. 912–919, 2003.

204

[248] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf, Learning with local
and global consistency, in Advances in Neural Information Processing Systems,
pp. 321–328, 2004.

[249] A. Jung, On the duality between network flows and network lasso, IEEE Signal
Processing Letters (2020).

[250] W. Hamilton, Z. Ying, and J. Leskovec, Inductive representation learning on large
graphs, in Advances in Neural Information Processing Systems, pp. 1024–1034,
2017.

[251] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio, Graph
attention networks, in International Conference on Learning Representations, 2018.

[252] H. Yao, X. Tang, H. Wei, G. Zheng, and Z. Li, Revisiting spatial-temporal
similarity: A deep learning framework for traffic prediction, in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 33, pp. 5668–5675, 2019.

[253] C. F. Daganzo, The cell transmission model: A dynamic representation of highway
traffic consistent with the hydrodynamic theory, Transportation Research Part B:
Methodological 28 (1994), no. 4 269–287.

[254] C. F. Daganzo, The cell transmission model, part ii: network traffic, Transportation
Research Part B: Methodological 29 (1995), no. 2 79–93.

[255] T. Mallick, P. Balaprakash, E. Rask, and J. Macfarlane, Transfer learning with
graph neural networks for short-term highway traffic forecasting, in 2020 25th
International Conference on Pattern Recognition (ICPR), pp. 10367–10374, IEEE,
2021.

[256] R. Ying, J. You, C. Morris, X. Ren, W. L. Hamilton, and J. Leskovec, Hierarchical
graph representation learning with differentiable pooling, in Proceedings of the 32nd
International Conference on Neural Information Processing Systems,
pp. 4805–4815, 2018.

[257] F. M. Bianchi, D. Grattarola, and C. Alippi, Spectral clustering with graph neural
networks for graph pooling, in International Conference on Machine Learning,
pp. 874–883, PMLR, 2020.

[258] C. Finn, P. Abbeel, and S. Levine, Model-agnostic meta-learning for fast adaptation
of deep networks, in International Conference on Machine Learning, pp. 1126–1135,
PMLR, 2017.

[259] A. Raghu, M. Raghu, S. Bengio, and O. Vinyals, Rapid learning or feature reuse?
towards understanding the effectiveness of maml, in International Conference on
Learning Representations, 2019.

205

[260] Z. Wen, Y. Fang, and Z. Liu, Meta-inductive node classification across graphs, in
Proceedings of the 44th International ACM SIGIR Conference on Research and
Development in Information Retrieval, 2021.

206

