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Dynamic Cassie-Baxter Model  
Tingyi “Leo” Liu*, Zhiyu Chen†, Chang-Jin “CJ” Kim 

Mechanical and Aerospace Engineering Department 
University of California, Los Angeles (UCLA), California 90095, U.S.A . 

ABSTRACT: Contact-angle hysteresis of a liquid suspended on surface microstructures, namely 
in a Cassie–Baxter state, is determined mainly by the receding contact line although not fully 
understood. Existing modified Cassie–Baxter models predict some but not most experimental 
data in the literature. Noting that most models were based on the two-dimensional (2-D) 
principle whereas the experiments were under three-dimensional (3-D) conditions, here we 
develop a 2-D experiment. While 3-D experiments measure the receding contact lines averaged 
over space and time, 2-D experiments eliminate the spatial averaging and can further eliminate 
the temporal averaging by high-speed visualization. The resulting details of the contact line 
motion lead us to propose a 2-D model, which incorporates the contact-line friction. The new 2-
D model matches the 2-D experimental results excellently while all existing models show 
significant deviation. By introducing a line solid fraction term, the 2-D model is further 
generalized to a 3-D model, which successfully predicts a wide range of 3-D data in the literature 
regardless of their distinct microstructures and receding modes. 

GRAPHICAL ABSTRACT 
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1. Introduction 
Liquids suspended on micro- or nano-structured surfaces have attracted strong interests in 

recent years for their unusually large apparent contact angle and small contact angle hysteresis, 
i.e., the super-repellent (superhydrophobic for water) property. The Cassie-Baxter (CB) model1 
has long been used to describe the apparent contact angles of a suspended liquid with the solid 
and gas fraction, i.e., the areal proportion of the liquid-solid and liquid-vapor interfaces. 
Originally derived for the apparent advancing and receding contact angles1, the CB model has 
been widely used for the apparent static contact angles assuming a thermodynamic equilibrium2. 
However, the original CB model was later found to be inaccurate for the apparent receding 
contact angles, leading to the probing studies in recent years3–13. Because contact angle 
hysteresis, i.e., the difference between the advancing and receding contact angles, is the main 
resistance to droplet movement on a surface and thus critical for many applications especially in 
small scales, e.g., droplet-based microfluidics14,15, a model that accurately describes the 
advancing and receding contact angles is highly desired. Most often, the receding contact line 
effectively controls the sliding dynamics of a CB droplet. This is because, unlike the large 
advancing angle (> 150°), which gives little room to vary3–13,16 below 180°, the receding angle 
may vary significantly above 0°12,17. Since the CB equation fails to predict the receding contact 
angles on many of the today’s superhydrophobic surfaces despite the importance, many have 
developed modified CB models3–7,10,12,16.  

Recent studies have shown the receding contact angle is mostly determined by the liquid-
solid interaction close to the solid-liquid-vapor three-phase contact line (TCL)3–6,16,18–20, leading to 
two main approaches of reflecting the contact-angle hysteresis in the CB theory. In one 
approach, the receding contact angles are calculated from local thermodynamic balance at the 
TCL instead of the entire area beneath the CB droplet4,5,16. In the other approach, the hysteresis is 
calculated from the locally (i.e., microscopically) deformed receding TCL, which creates a 
surface energy barrier against the TCL motion6,7. Although these approaches resulted in 
predictions matching their own experimental data and perhaps a few others in the literature, they 
lacked a direct comparison between theory and experiments needed.  

Searching for a direct comparison and the insight it would bring about, we first note an 
inherent difference between existing models and the experiments, as follows. While the models 
were conceived on two-dimensional (2-D) configurations, the experimental data were obtained in 
three-dimensional (3-D) conditions4–7,16. No matter how the advancing and receding contact 
angles were measured, either by adding/subtracting a liquid [Figure 1(a)] or sliding a droplet on 
the surface [Figure 1(b)], there exists an inevitable mismatch between the apparent contact line 
of the usual droplet – which is continuous and circular – and the typical surface patterns that are 
isolated or linear, as illustrated in Figures 1(c) and (d). Such mismatch makes the measured 
contact angles affected by the neighboring contact angles along the TCL that are under different 
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moving conditions. The mismatch could be avoided only if the contact line and the underlying 
pattern are aligned. One example is a spherical droplet on a circular surface pattern, as shown 
Figure 1(e), and another example is a rectangular droplet on a linear surface pattern, as shown in 
Figure 1(f). Although a 3-D model based on finite element method should have allowed a direct 
comparison with the experimental data obtained in 3-D, unfortunately discrepancies persisted 
between the simulated and experimental data19.  

Acknowledging the difficulty of 3-D, in this paper we propose an alternative approach of 
comparing 2-D models with 2-D experimental data. We first develop a new experimental 
apparatus21 that resembles Figure 1(f) to generate and image the 2-D receding contact line 
motion. The 2-D measurement of apparent receding angles on a microstructured surface over a 
range of solid fractions allows us to directly compare the 2-D experimental data with the existing 
2-D models in the literature. Since no existing model is found to explain the 2-D data, we 
develop a new model based on our observation of the 2-D contact line motion. Addition of a 
frictional term to the original CB equation results in a nice match with the 2-D data. Building on 
the success, we then generalize the new model from 2-D to 3-D and find good agreements with 
the experimental data in the literature (i.e., 3-D data) across a wide range of surface structures 
and sliding conditions. The limitation of our model is also discussed. 

 

Figure 1. A CB droplet moving on a few exemplary structured surfaces, viewed from side (a,b) 
and top (c-f). (a) and (b) show the meniscus advancing and receding by adding and subtracting 
liquid to and from a droplet (a) and by translating a droplet on the surface (b). θA

*  and θR
*   

represent the apparent advancing and receding contact angle, respectively. (c) and (d) show the 
contact line motions commonly employed to study dynamic contact angles in the literature. 
While the surface structures are in a linear pattern, the contact line sliding on them is circular, 
creating dynamic contact angles in 3-D conditions. (e) and (f) show the contact line motions 
allowing dynamic contact angles in 2-D conditions. (e) is a scenario of a spherical droplet on a 
concentric ring pattern. (f) is a scenario of a long cylindrical droplet traversing across parallel 
stripes, adopted for the current study. 
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2. Experiments 
An apparent (or macroscopic, effective) contact angle θ *  is an angle seen far enough from 

the contact line so as not to be affected by the local (or microscopic, real, true, intrinsic, 
Young’s) contact angles θY  and their variations right on the microstructures. When a meniscus 
slides across the microstructures so that the local TCL has to jump between them, the apparent 
contact angle would be a combination of local angles averaged in both space and time. To 
eliminate the average the local angles in space, we assessed the 2-D contact line motion from a 
virtual 2-D motion that resembles Figure 1(f) by traversing an elongated droplet on micro-
gratings21. An elongated droplet is against the natural tendency of a liquid forming a sphere to 
minimize its surface, but we could shape a droplet using a wetting pattern on a solid surface22,23. 
As shown in Figure 2, a (hydrophobic) photoresist was coated and patterned on a glass plate to 
open a long, hydrophilic rectangle on which a droplet was confined as an axially truncated 
cylinder. The detailed fabrication process of each component can be found in the Supplementary 
Information. After careful alignment, the elongated water droplet attached to the top plate was 
put into contact with the superhydrophobic grating surface underneath. Held by the hydrophilic 
window on the top plate, the droplet formed advancing and receding meniscus on the 
superhydrophobic substrate, which slid parallel to the top plate (at a reasonable speed, e.g., ~0.5 
mm/s, not to cause capillary instability or be affected by evaporation). Since the contact line 
traversing across the structures was the closest to a 2-D condition at the middle of the long 
droplet, the camera was focused at the middle plane of the elongated droplet. To resolve the local 
angles in time, on the other hand, the high-speed imaging was utilized at 6000 frames per second 
(fps), which captured the receding contact line motion in temporal details.  

 

 

Figure 2. Apparatus to create and observe 2-D contact line motion. An elongated water droplet 
was formed via a long hydrophilic rectangle on a hydrophobic top plate and sandwiched on a 
superhydrophobic substrate of microgratings aligned to the rectangle. The cross-sectional views 
show the device configuration with a zoomed-in image captured during the experiment. 
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3. Results and Discussion 
3.1 2-D receding contact line motion 

For the 2-D experiments, grating structures of a fixed pitch of 200 μm with solid fraction φs   
(the ratio of the grating width to pitch) of 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8 were prepared and 
tested. Overall, the receding contact line periodically pinned on, slid on, and jumped across 
microstructures, presenting stick-slip motions consistent with observations from other 
researchers8–11. However, we were able to obtain far more details about the motion of the 
receding meniscus that would not have been possible without the 2-D condition and high-speed 
imaging. First, we were able to capture images of the receding meniscus that clearly showed two 
different contact angles depending on the measurement scale: (1) the local or microscopic 
receding contact angle measured right on the grating surfaces, and (2) the apparent or 
macroscopic receding contact angle measured away from the grating surface – above by more 
than the length scale of the pitch, as shown in Figure 3. Second, we were able to capture the 
evolution of the meniscus on and above the surface as the contact line translated across the 
gratings that revealed the local and apparent contact angles over time and position. Using surface 
with φs  = 0.5 as a specific example, Figure 4(a) shows the selected time-lapsed images of the 
meniscus translating to the right across the grating microstructures during one receding cycle. By 
defining 0.00 ms as the moment when the apparent contact angle equals the local contact angle, 
we can divide each cycle in to 4 stages: (1) TCL pins at the rear edge (i.e., left corner in the 
figure) of the microstructure; (2) TCL slides on the microstructure; (3) TCL jumps across 
microstructures (i.e., slides on air) to pin at the rear edge of the next microstructure; (4) with the 
TCL pinned, the meniscus relaxes while the local contact angle recovers the apparent receding 
angle. To better describe the detailed contact line behavior of each section, we introduce the 
mathematical analysis of the slopes at each point along the receding menisci24. The slope 
represents a spatial intermediate contact angle if one chooses to read the value at that 
intermediate height. By plotting those corresponding angles as a function of the distance (i.e., 
height) from the surface in Figure 4(b) and (c), the relations between the local and apparent 
contact angles are better illustrated. 

 



 6 

    

Figure 3. Apparent and local contact angles seen from a snapshot of the receding contact line 
during the 2-D experiment. The image has been converted into black and white for better 
contrast. Microstructures not in contact with the droplet are less visible due to the strong lighting 
from behind. 

 

   

Figure 4. Evolution of the receding meniscus over one cycle of contact line translation across 
grating structures during 2-D experiment and detailed analysis of the corresponding contact 
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angles. A Teflon®-coated micro-gratings with solid fraction φs  = 0.5 and pitch P = 200 μm was 
used for illustration. (a) Snapshots of the receding contact line overlapping in time sequence 
throughout one receding cycle. The meniscus lines were obtained from the high-speed images by 
edge detection using MATLAB software. The moment 0.00 ms was defined as the moment of 
local angle equaling the apparent angle. (b) Spatially intermediate contact angle versus height (z) 
measured over one receding cycle or 0.00-110.00 ms. (c) Spatially intermediate contact angle 
versus height (z) detailed over the dramatic period of receding contact line sliding and jumping 
from one structure to the next, i.e., stages 2 and 3 of receding or 27.17-28.50 ms. 

 

Stage 1: TCL pins at the rear edge of the microstructure 
As shown in Figure 4(a), the first stage ranged from 0.00 ms to 27.17 ms, starting with the 

local angle (meniscus slope at z = 0) aligned with the apparent receding angle (meniscus slope at 
z = 500 μm). During stage 1, because TCL was pinned, the local angle kept decreasing while the 
apparent angle remained at the receding value, as evidenced from the parallel menisci in Figure 
4(a) and merging contact angles at z > 400 μm in Figure 4(b).  
 
Stage 2 and 3: TCL slides and jumps on microstructure  

At 27.17 ms, the local angle reached the receding contact angle of the smooth surface (i.e., 
110° for Teflon®), prompting TCL to slide on the microstructure and jump across the 
microstructures within ~1 ms (i.e., from 27.17 ms to 28.17 ms). Figure 4(a) shows the meniscus 
staying nearly invariant away from the microstructures but deforming significantly near the 
microstructures in such a short period. Figure 4(c) illustrates the details of this dramatic period in 
terms of contact angles. While the apparent receding angle remained at ~126° away from the 
surface, the local contact angle jumped from ~110° to ~147° within mere 1 ms. 

  
Stage 4: TCL recovers to receding state 

After the TCL jumping, the suddenly increased local angle (~147° at 28.17 ms) started to 
propagate up along the meniscus as a capillary wave, forcing the apparent angle to increase from 
~126° to ~135° in the next ~2 ms. Because the jumping made the TCL outpace the overall 
receding speed and the local angle became larger than the apparent receding angle, the TCL 
stopped receding while the top plate moved to catch up. Therefore, the TCL remained anchored 
to the rear edge of the microstructure until the local angle and the apparent angle became the 
same. However, this apparently long recovery period (from 28.17 ms to 110 ms) was an 
experimental artifact rather than an inherent phenomenon, as elaborated in Supplementary 
Information (Figure S2 and “Influence of the top plate distance on the recovery of the apparent 
contact angle”). In short, because the receding meniscus was pinned on the top plate, which was 
kept somewhat close to the bottom substrate to accommodate the elongated droplet in our 2-D 
experiment, the meniscus was stretched when the TCL jumped. In the true 2-D condition of 
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Figure 1(f) with no or an infinitely distanced top plate, the apparent receding meniscus would not 
be stretched so that its angle, i.e., the apparent receding angle, would remain constant at all 
times.  

 
3.2 2-D receding contact angles 

For all tested surfaces with solid fraction φs  between 0.2 and 0.8, the local receding contact 
angle on the Teflon®-coated microstructures (i.e., the microscopic angle below which the TCL 
starts to slide on their top surfaces) coincided with the receding contact angle on a smooth 
Teflon® surface (i.e., θR  = 110°) regardless of φs . In contrast, as shown in Figure 5, the apparent 
receding contact angle increased with decreasing solid fraction φs , following the trend generally 
found in the literature. However, the data deviated significantly from the predictions of all 
existing models1,3,4,6,25 no matter which approach the model was based on, e.g., contact area 
based1, contact line based3,4, or deformed meniscus based6. Unlike the recent review26, we do not 
find contact-line-based approach3,4 more accurate than the other approaches. We interpret the 
discrepancy not surprising, since most of the models were derived assuming 2-D and tuned to 
match certain (mostly own) 3-D data in the absence of any 2-D data. While explaining the 
original CB model1 in 2-D as commonly done today, the authors clearly understood the 
limitation of 2-D models in the 3-D world, as they specifically excluded 2-D conditions by 
stating that their model “is inapplicable when the wires (i.e., micro-gratings) are parallel” to the 
water meniscus “due to the water moving discontinuously” between microstructures1, similar to 
Figure 1(f). Their model is valid only if the TCL does not completely align with the wires so that 
some parts of TCL slide on solid while the other parts slide on air. In our 2-D experiment, the 
discontinuous contact line motion, i.e., TCL jumping detailed in Figure 4(c), turned out to be a 
distinctive nature of the 2-D receding, urging us to develop a model adequately describing the 
observed phenomena.    
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Figure 5. The 2-D apparent receding contact angles measured on the grating surfaces (shown as 
red solid squares with error bars) are compared with various models (shown as lines). The 2-D 
model in this paper  (solid lines) was the only one that fit the 2-D experimental data; all other 
models in the literature (broken lines) deviated from the 2-D data significantly. From a same 
model, Eq. 8 and Eq. 9 represent the theoretical upper and lower bound of the apparent receding 
angles. For all the models, θY  = 120° and θR  = 110° (measured from a Teflon®-coated smooth 
surface) were used to calculate θR

* .  

 
4. Theoretical Modeling for 2-D Receding 

To model the apparent receding angle on microstructured surface, we first revisit the 
receding on a smooth surface and then introduce the solid fraction effect of the microstructured 
surface with the information about the contact line motion observed in our experiments. As 
shown in Figure 6(a), the angle of contact at equilibrium on an ideal surface (smooth, 
homogeneous, and rigid) can be given by the Young’s equation27: 

   γ SV = γ SL + γ cosθY  (1) 

where γ SV  and γ SL  are the surface tension at the solid-vapor and solid-liquid interface, 
respectively. In reality, the contact angle of a sliding meniscus is different from the Young’s 
angle. We quantify such difference by a friction force f acting on the TCL, as was proposed in 
1920s28 and found in  good agreement with experimental data29,30. Therefore, on a receding 
meniscus depicted in Figure 6(b), we have the force balance as, 

   γ SV + fR = γ SL + γ cosθR  (2) 

where θR   θR  is the local receding contact angle and fR  is the receding line friction, which can 

be calculated from Eqs. 1 and 2 as: 

   fR γ = cosθR − cosθY  (3) 
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Figure 6. Force balances at contact lines on smooth and structured surfaces. (a) Young’s relation 
describes the balance in equilibrium for an ideal surface without hysteresis. (b) Forces balance at 
the receding contact line on a smooth surface by introducing line friction fR  to represent the 
contact angle hysteresis. (c) Forces balance at the apparent receding contact line on a structured 
surface of infinitely long ridges. Only macroscopic forces are considered in this picture showing 
apparent contact angle. (d) Microscopic analysis of the contact line resistance when the contact 
line is pinned at he rear edge of the microstructure, showing both local and apparent contact 
angles.  

 
Now, let us examine a meniscus receding on an infinitely long periodic gratings [i.e., true 2-

D of Figure 1(f)] with solid fraction φs  and gas fraction φg , i.e., φs  = (liquid-solid 

interface)/(pitch) and φg  = (liquid-vapor interface)/(pitch). During 2-D receding, as shown in 

Figure 6(c), macroscopically the contributions of solid-vapor and solid-liquid interfacial tensions 
on microstructures can be revised as   ′γ SV = φsγ SV  and   ′γ SL = φsγ SL +φgγ  while liquid surface 

tension remains as γ . The force balance at the apparent receding TCL can be written as 

 
  
φsγ SV + fR = φsγ SL +φgγ + γ cosθR

*
 (4) 

where  fR  is the equivalent resistant force acting on the apparent receding TCL. Using the 

impulse theory,  fR  can be calculated by averaging resistant force in the lateral direction (
   
fR !

) 

over one receding cycle T, i.e., 
   
fR = 1 T( ) fR !

t( )dt
0

T

∫ , where T consists of the time TCL pins on 

(Tp), slides on (Ts), and jumps across (Tj) microstructures, i.e., T = Tp + Ts + Tj. We note again 
that if there were no top plate that would constrain the meniscus movement in our experiment, 
the apparent angle would have remained the same all the time, i.e., stage 4 observed in our 
experiment does not exist in a true 2-D condition as explained in Figure S2. According to our 
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experimental observation on micro-gratings with φs  = 0.5, the time of TCL pinning (i.e., 0-27.17 
ms in 28.17 ms, viz., ~96.5% of time) dominated over the time of TCL sliding (i.e., 27.17-28.00 
ms in 28.17 ms, viz., ~2.9% of time) and TCL jumping (i.e., 28.00-28.17 ms in 28.17 ms, viz., 
~0.6% of time). Therefore,  fR  can be approximated by the resistance during contact line pinning 
and can be calculated from the local force balance shown in Figure 6(d) as 

 
   
fR ≈ 1

Tp

fR !
t( )dt

0

Tp∫ = 1
θR −θR

*
fR cos θ −θR( )dθ

θR
*

θR∫  (5) 

where θ is the local contact angle. We also assumed a constant angular velocity when the 
meniscus curves around the edges of individual microstructures, considering mathematically 
differentiable (i.e., not ideally sharp) corners, so that local receding angle can be formed along 
the edges. Integrating Eq. 5 and expanding it in the Taylor series yields 

 

  

fR ≈ fR ⋅
−1( )k−1

θR
* −θR( )2k−2

2k −1( )!k=1

∞

∑ = fR ⋅ 1−
θR

* −θR( )2

6
+

θR
* −θR( )4

120
− ......

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

 (6) 

Since the above Taylor series converges, the first two terms define the upper and lower limit of 

 fR . Higher order terms will be neglected from the discussion below. Utilizing the CB model2 for 

the apparent static contact angle θ *  as 

  
  
cosθ * = φs cosθY −φg  (7) 

and combining Eq. 7 with Eqs. 1-4 and 6 to eliminate  γ SV , γ SL , and fR , we obtain a modified 

CB equation for a 2-D receding meniscus: 

 
  
cosθR

* = cosθ * + cosθR − cosθY( ) 1− θR
* −θR( )2

6⎡
⎣⎢

⎤
⎦⎥  (8) 

Equation 8 is a transcendental equation that is difficult to use because it can only be solved 
numerically. However, if the second term in the bracket turns out much smaller than the first 

term, i.e., 
   
θR

* −θR( )2
6≪1, Eq. 8 can be approximated as 

   cosθR
* = cosθ * + cosθR − cosθY( )  (9) 

The use of Eq. 9 over Eq. 8 is reasonable as long as the difference between apparent and 
local angle is small (e.g., ~45° for 10% error) as for our case. This is confirmed in Figure 5 that 
both Eq. 8 and Eq. 9 fit the 2-D data very well and they branch only at very small φs  when 

difference between θR
*  and θR  becomes large. All the 2-D data matched our model except for φs  

= 0.8. We speculate that the slight mismatch at φs  = 0.8 was caused by a poor alignment of the 
rectangular hydrophilic window on the top plate with the micro-gratings on the substrate, 
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because the visual alignment was exceedingly difficult when φs  was large and the field was dark. 
As a result, the experiment of φs  = 0.8 likely have resembled a 3-D sliding case considered by 
Cassie and Baxter1 and thus matched the original CB model (black dashed line in Figure 5). This 
kind of 3-D sliding can be easily included in our model generalized for 3-D, as shown in the next 
section. Although the derivation in this section is based on force analysis, in principle one should 
be able to obtain the same result from thermodynamic energy balance if the energy stored in a 
curved meniscus (i.e., local contact angle) and its dissipation (through viscous loss during 
capillary wave created when the meniscus jumps) is properly accounted for. 

 
5. Model Generalization for 3-D Receding 

The 2-D model established above matched our 2-D data, which could not be predicted by any 
existing models in the literature developed to fit 3-D data. The question now is whether our 
model (Eq. 9), developed to fit 2-D data, can be generalized to predict 3-D data. To do so, we 
examine the two terms that contributed to θR

*  in Eq. 9. The first term θ * , which is the static 
apparent contact angle term calculated from the CB equation, considers only the solid fraction 

and is therefore applicable to 3-D conditions. However, the second term   cosθR − cosθY( ) , which 

is the hysteresis effect originated from the line friction fR , should be modified to account for the 
receding conditions in 3-D. For example, for isolated structures (e.g., gratings and posts) the 
resistance against meniscus sliding comes from discrete solid structures but little from the air in 
between. In this case, the receding meniscus experiences only a fraction of the resistance 
compared to the 2-D condition, where the entire TCL is on solid structures. Because fR  exerts 
solely on the TCL in the direction opposite to the movement, the net resistance should be 
calculated as the sum (i.e., line integral) of fR  along the entire length of the real TCL. Therefore, 
we modify our model (Eq. 9) to accommodate receding TCL in 3-D conditions: 

   cosθR
* = cosθ * + cosθR − cosθY( )λs  (10) 

where λs  is defined as the line solid fraction, or the length ratio of real TCL to the apparent TCL 
for a receding TCL, as elaborated in Figure S3 in a manner analogous to the areal solid fraction 
φs  defined in Reference 1. Particularly, Eq. 10 reduces to Eq. 9, if the surface structures are 
micro-gratings (i.e., stripes) and slides under 2-D condition, i.e., λs  = 1, as our 2-D experiment. 
In contrast, when the TCL was sliding on micro-gratings but at certain angle (i.e., 3-D condition 
investigated by Cassie and Baxter1), we find a simple geometrical similarity leads to  λs = φs  and 

Eq. 10 reduces to the original CB model for receding1. We note that, although  λs  in Eq. 10 may 

appear similar to the semi-empirical parameters commonly proposed in the literature3,11,31,  λs  is 

fully analytical. Instead,  λs  depends not only on the structure geometries but also on the 
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receding conditions (e.g., direction), as illustrated in Figure S4. For example, for microstructures 
of an asymmetric geometry (e.g., triangular posts),  λs  may depend on the direction of receding32. 

For a given 3-D condition,  λs  needs to be calculated to obtain a spatial average along the 

apparent TCL over the segment of interest (see “Definition and calculation of line solid fraction” 
in the Supplementary Information). With the above recognition, we examined Eq. 10 against the 
experimental (3-D, needless to say) data of receding contact angles in the literature1,7,12,13,19,31 by 
calculating  λs  for each corresponding case (Table S1), and found consistently good agreements, 

as summarized in Figure 7. Similarly to Figure 5, each set of data is compared with existing 
modified CB models in Figure S5.   

For connected structures such as holes, unlike the cases of isolated structures discussed so 
far, TCL cannot be fully destabilized and remains pinned because the surface continues around 
the holes. Such TCL pinning across the holes3,12 produces additional resistance against meniscus 
sliding. To account for all resistances, we further generalize Eq. 10 into a summation form: 

 
  
cosθR

* = cosθ * + cosθRi
− cosθYi

( )λsi
i
∑  (11) 

where i denotes a specific kind of resistance. Figure 7 also includes the two sets of experimental 
data on hole structures reported by Priest et al.12 and the predictions made by Eq. 11 with λs  
calculated for each case (Table S1). The fewer and more scattered data from hole structures 
compared with those from posts are probably caused by the difficulties in measurement (e.g., 
more sensitive to fabrication defects due to connected structures). Since Eq. 11 includes all the 
resistances in the summation without specifying or limiting the types of material, we further note 
the equation should be valid for chemically heterogeneous surfaces as well.  
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Figure 7. The measured data on the various surfaces in the literature (colored hollow symbols) 
are compared with the predictions by the generalized CB model (Eq. 10) using an appropriate  λs  
for each case (correspondingly colored lines). The 2-D experimental data (red solid squares) are 
also compared with the prediction Eq. 10 using  λs  = 1 (red line), which is equivalent to Eq. 9. 
The conditions of receding on the structures are summarized in Table S1. Despite the wide range 
of variations in surface structures and receding conditions, Eq. 10 successfully describes all the 
experimental data. 

 
Unlike the well-organized microstructures used for the scientific studies1,7,12,13,19,31, the 

roughness found in nature and industrial applications are normally of random pattern and two-
tier in micro- and nanoscale. Noting the summation nature of Eq. 11, we suggest the possibility 
of the model further generalized for random roughness by, for example, first 3-D mapping and 
decomposing the roughness into multiple simple patterns (such as gratings and posts) and then 
calculating and superposing their respective resistance contributions. 

Lastly, we would like to discuss the limitation of our model. As shown through our 
derivation, the use of Eq. 9 (instead of Eq. 8) required that the apparent receding angle θR

*  be not 
too much larger than the local receding angle θR  or solid fraction be not too small; otherwise the 
second order term in Eq. 8 would deviate from being negligible. For example, Eq. 10, which is 
based on Eq. 9, is not likely to give an accurate estimation for wetting liquids (i.e., organic 
solvents) suspended on structured surfaces (i.e., superoleophobic surfaces), where the local 
receding angle is much smaller than 90° while the apparent receding may be much larger than 
90°4,33. This shortcoming of Eqs. 9 and 10 originates from the fact that our model is built on 
experimental observation where water meniscus cleanly detached from hydrophobic 
microstructures before jumping to the next. On super-repellent surfaces made of hydrophilic 
materials, in contrast, the meniscus is known to be pinched off before jumping34,35 – a 
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phenomenon not accounted for in our current model. To investigate such an unusual case, one 
would need a repellent surface made of hydrophilic microstructures with unambiguous liquid-
solid fraction33 and the ability to measure the local angle at pinching-off on the microstructures. 

 
6. Conclusions 

We have performed a novel experiment to capture and reveal the 2-D receding contact line 
motion instead of the universally observed 3-D condition. Based on the new insight into the 
contact-line dynamics over microstructures through the 2-D experiment, we have developed a 
modified CB model including the frictional effect at the contact line and found good agreement 
with our measured 2-D apparent receding contact angles whereas all existing models deviated 
significantly. By introducing a line solid fraction in analogy to the areal solid fraction of the CB 
model, we have further developed a generalized CB model that satisfies 3-D conditions and 
showed consistently good agreements with the wide range of data in the literature.  
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