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Abstract

Integrated Experimental and Modeling Tools for Probing Microstructural Changes of

Polymers and Wormlike Micelles under Flow

by

Jiamin Zhang

Flow processing of polymers and wormlike micelles usually involves nonlinear deformations,

which can significantly modify both the associated microstructural configuration and

dynamics. Determining the connection between processing, structure, and properties

remains a grand challenge due to limitations in currently available tools. Thus, the

primary focus of this dissertation is to develop combined experimental, theoretical, and

computational approaches to gain a deeper understanding of the processing-structure-

property relationship of polymers and wormlike micelles.

Wormlike micelles (WLMs) are long, semi-flexible chainlike structures formed by the

self-assembly of surfactants and are ubiquitously used in oil and gas industry, as well

as in consumer products. The rheology of wormlike micelles is critical to the successful

formulation and engineering of these products and processes. Although it is widely

accepted that equilibrium micelle scission dynamics greatly influences the rheology of

WLMs, there is still considerable theoretical debate regarding whether scission dynamics

is affected by flow under nonlinear deformations. Direct structural measurements in flow

are needed to directly answer whether and how flow affects scission of WLMs.

In situ small angle neutron scattering (SANS) represents a powerful technique for

measuring material microstructures under flow. However, SANS methodology for studying

wormlike micelles and polymers is currently limited in terms of available nonequilibrium

scattering models and in terms of experimental analysis methods to deconvolute effects
viii



of chain orientation, stretching, inter-chain interactions, and changes in chain length.

With respect to scattering models in flow, this dissertation develops a connected-rod

model for semiflexible chains in flow and achieves excellent agreement with experimental

anisotropic scattering results from wormlike micelles. We also formulate a scattering

model for dilute, flexible polymers in shear flow and use results from Brownian dynamics

simulations for the polymer conformation in flow. To address the question of how and

whether flow affects scission of WLMs, we conducted systematic flow-SANS and rheology

experiments on a series of linear wormlike micelles. A combination of SANS modeling,

steady-state flow-SANS experiments, and time-resolved flow-SANS experiments enables

direct microstructural measurement of wormlike micelles in flow and strongly suggests

the presence of flow-enhanced scission.

Additionally, for relating microstructural information to macroscopic dynamic proper-

ties of the material, a recently advanced rheometry technique, orthogonal superposition

(OSR), is predicted to be very useful. However, relatively little is known about how to

interpret the nonlinear viscoelastic results in the context of entangled polymer dynamics.

Specifically, there is a need for a deeper theoretical and computational study to provide a

fundamental basis for interpreting OSR measurements. We combine numerical calculations

and a perturbation analysis using detailed microstructural models to study orthogonal

superposition for monodisperse and polydisperse entangled linear polymers. We find

that orthogonal superposition gives very useful information about nonlinear material

moduli under flow, which can provide better sensitivity for testing constitutive models for

nonlinear polymer processing. Results in our work have important implications for the

design and interpretation of future OSR experiments.

The tools we develop in this dissertation are important for understanding the rheology,

scattering, and microstructures of not only wormlike micelles and polymers, but also

other complex fluids that share similar underlying physics.
ix
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Chapter 1

Introduction

1.1 Motivation

1.1.1 The need to understand processing-structure-property re-

lationship of polymers and wormlike micelles

Flow processing of soft materials and complex fluids usually involves nonlinear defor-

mations, which can non-trivially modify both the associated microstructural configuration

and dynamics. This is particularly important for entangled polymers and wormlike

micelles, where entanglements produce nonlinear relaxation mechanisms that are signifi-

cantly modified when polymers and micelles stretch and orient in flow, leading to various

flow instabilities and complications in material processing. Thus, it is desirable to use

combined experimental, theoretical, and computational approaches to develop a deeper

understanding of the processing-structure-property relationship of polymers and wormlike

micelles.

Wormlike micelles, long, semi-flexible chainlike structures, are formed by the self-

assembly of surfactants, which are amphiphilic molecules composed of different chemical
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moieties that display both solvophilic and solvophobic properties. Wormlike micelles

(WLMs) are often likened to “living polymers”, since associations between surfactants are

impermanent, leading to dynamic scission and recombination of the micelles due to thermal

fluctuations. Because of their rheological properties, combined with their detergency

and structure, WLMs are used in the oil and gas industry, and more significantly in

consumer products such as shampoo and body wash. In all of these applications, wormlike

micelles are subjected to flow during processing and end-use. The rheology of WLMs is

critical to the successful formulation and engineering of these products and processes.1

Such applications benefit from understanding how the microstructures influence the flow

properties.

WLMs are often likened to "living polymers", since associations between surfactants are

impermanent, leading to dynamic scission and reformation of the micelles due to thermal

fluctuations. Although it is widely accepted that equilibrium micelle scission dynamics

greatly influences the rheology of WLMs, there is still considerable theoretical debate

regarding whether scission dynamics are affected by flow under nonlinear deformations.

This is because there are still few if any experiments that have attempted to directly

test how flow potentially affects the scission and recombination process and the resulting

length distribution of the micelles. Previous experiments relied mostly on rheological

measurements, which are sensitive primarily to the long micelle species in flow. Extensional

rheology measurements have been used to speculate that micellar breakage can happen as

a result of strong flows.2,3 However, the rheological data typically need to be interpreted

in the context of a rheological model. Direct structural measurements in flow are needed

to directly answer whether flow affects scission of WLMs in a model-agnostic way.
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1.1.2 The need for new experimental, theoretical, and modeling

tools

In order to address questions about the processing-structure-property relationship of

polymers and wormlike micelles, we need accurate measurements of the material microstruc-

tures. While several techniques exist for measuring microstructures on the nanometer

scale, small angle neutron scattering (SANS) is particularly advantageous. SANS probes

length scales of 1-200 nm, which covers the range of characteristic length scales in WLMs

and polymers. Many flow-SANS experiments have probed WLM alignment,4–6 but no

studies have assessed how flow potentially affects the scission and recombination pro-

cess and the resulting length distribution of the micelles. This is because (i) previous

flow-SANS and light scattering7 experiments were limited by structural complications

including entanglement and branching, as well as flow instabilities including shear banding

and elastic instability.6,8 Additionally, (ii) procedures for decoupling changes in micellar

length from orientation and inter-chain interactions have not been developed.

More broadly speaking, there is a lack of scattering models for semiflexible chains,

which are often used as models for the scattering of wormlike micelles, in flow. This is

because the interplay of chain stretching, chain orientation, inter-chain interactions, and

chain polydispersity makes it challenging to formulate such a scattering model.

For inferring features of the structures and dynamics of wormlike micelles and polymers

at equilibrium, linear rheological measurements have been used extensively. Specifically,

the material moduli can be related to the average chain length and be used to estimate

different relaxation times. As an extension of the linear viscoelastic measurements to

nonlinear flows, orthogonal superposition rheometry (OSR) is recently advanced and is

predicted to be very useful for understanding how the chain structures and dynamics

change in flow.9,10 Orthogonal superposition measures the shear-dependent material
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moduli and can help elucidate the effects of different relaxation mechanisms on the

material moduli.11 However, relatively little is known about how to interpret the nonlinear

viscoelastic results in the context of entangled polymer dynamics. Specifically, there are

very few theoretical and computational studies that would provide a fundamental basis for

interpreting orthogonal superposition measurements. This calls for a deeper theoretical

and computational study aimed at understanding how stretch and orientation of polymers

influence the interpretation of the orthogonal superposition moduli.

The aim of this dissertation is to develop new experimental, theoretical, and simulation

tools for studying microstructures of polymers and wormlike micelles in flow and to use

these tools to address specific questions about how flow affects the scission of wormlike

micelles and how the stretch and orientation of polymers influence the measured orthogonal

superposition moduli. The remainder of this chapter will include a review of the literature

and theory pertinent to the study of wormlike micelles and polymers, as well as summarize

the objectives and approaches that will be the primary focus of this work.

1.2 Wormlike micelles (WLMs) at equilibrium

1.2.1 Self-assembly of micelles

Surfactants are amphiphilic molecules that have a hydrophilic head group and a

hydrophobic hydrocarbon tail (Fig. 1.1). The head group can be charged or neutral. Due

to the large entropic penalty from exposure of the hydrocarbon chain to a polar solvent

(water), the surfactants will spontaneously aggregate above a concentration referred to

as the critical micelle concentration (CMC). The thermodynamically preferred micellar

morphology will depend on a balance of different interactions, including those of the

head group with itself and the solvent, as well as those of the tail group with itself. This
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delicate balance of forces is successfully captured by the packing parameter, p = V/al,

where V is the molecular volume of the surfactant, a is the projected area of the head

group, and l is the length of the hydrophobic tail.12 For p < 1/3, surfactants tend to

form spherical micelles. When salt is added to a solution of surfactants with charged

hydrophilic groups, the electrostatic repulsion of neighboring charged hydrophilic head

groups is screened. As a result, the head group area decreases and the packing parameter

increases. Wormlike micelles are typically formed when 1/3 < p < 1/2 (Fig. 1.1).

Figure 1.1: Self-assembly of wormlike micelles. The surfactant consists of a hydrophilic
headgroup and a hydrophobic tail.

1.2.2 Growth of ionic micelles

WLMs are often likened to “living polymers”, since associations between surfactants

are impermanent, leading to dynamic scission and recombination of the micelles due to

thermal fluctuations. At equilibrium, the probability of chain scission and recombination

is assumed to be equal at any position along the chain, and this results in an exponential

length distribution:

f (Lc) ∝ exp
(
−Lc
L̄c

)
. (1.1)

A schematic representation of the scission and recombination process and the exponential

length distribution are included in Figure 1.2. The average contour length L̄c is related
5
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to the overall volume fraction of the micelles φ and the scission energy Ec, as

L̄c = φy exp
(

Ec
2kBT

)
(1.2)

where the exponent y = 0.5 for ideal chains and y ∼ 0.6 for chains with excluded volume

interactions, kB is the Boltzmann constant, and T is the temperature. For highly charged

micelles, the scission energy can depend on φ, leading to a stronger dependence of L̄c on

φ than that given in Eqn. 1.2.13,14 This exponential length distribution is derived from a

mean-field approach by minimizing the free energy subject to the constraint of constant

total volume fraction of micelles. It can also be derived from a population balance.13,15,16

Specifically, Cates and coworkers assumed that a chain can break with a fixed probability

per unit time per unit length anywhere along its length, Lc. It is further assumed that

the reverse reaction proceeds at a rate proportional to the product of the concentration of

the two reacting subchains and the rate constant involved is independent of the molecular

weights of these two subchains. Additionally, the authors assume successive breakage

and recombination events for a given chain are uncorrelated. With these assumptions,

the equation governing the time development of the number density f(L)dL of chains of

length L± 1
2dL is written as

df(L)
dt

= −c1Lf(L) + 2c1

∫ ∞
L

f(L′)dL′+ c2

2

∫ L

0
f(L′)f(L−L′)dL′− c2f(L)

∫ ∞
0

f(L′)dL′.

(1.3)

Here, the first term represents the decrease in f(L) by breakage, the second term is the

rate of creation of chains of length L by breakage of longer chains, the third term is the

rate of creation by recombination of two shorter chains to produce one of length L, and

the final term is the decrease in f(L) by reaction of chains of length L with others to

form longer chains. The parameters c1 and c2 are the rate constants of the breakage
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and recombination processes respectively. 15 The exponential distribution of equilibrium

micelle contour lengths predicted by the Cates’ theory is in good agreement with recent

measurements on sufficiently long WLMs in dilute and semi-dilute solutions.17,18

Contour length 𝐿𝑐

Number 

density

𝑓 𝐿𝑐

(a) (b)

Figure 1.2: (a) Scission and recombination of wormlike micelles and (b) resulting
exponential length distribution.

1.2.3 Equilibrium structure of wormlike micelles

WLMs exhibit a hierarchy of length scales: ranging from ∼2 nm for the cross-sectional

radius, rcs, to a broad distribution of micellar contour lengths, Lc, with an average length

on the order of 100-1000 nm for most systems. Figure 1.3 illustrates the important

length scales in a wormlike micelle network. lp, the persistence length, which is inversely

proportional to the micelle flexibility. ξM is the mesh size and le is the entanglement

length.19

7
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Figure 1.3: Schematic of important length scales of a wormlike micelle network.
Reprinted with permission from Liberatore MW, Nettesheim F, Vasquez PA, et al.
Microstructure and shear rheologyof entangled wormlike micelles in solution. Journal
of Rheology. 2009; 53(2): 441–458. Copyright 2009, The Society of Rheology.

1.3 Wormlike micelles in flow

1.3.1 Existing rheological models for WLMs in flow

Although the equilibrium length distribution of wormlike micelles has been well

studied, very little is known about whether and how the distribution is modified by

flow. There is still debate in the field about whether flow significantly contributes to

the scission of wormlike micelles, thereby changing the length distribution. On the one

hand, in 1990, Cates extended his original model to nonlinear flows and assumed that

scission and recombination are not affected by flow. The nonlinear effects of the flow

enter solely through its influence on chain relaxation via reptation.20 On the other hand,

other rheological theories adopted ad hoc approaches for modeling the influence of flow

on scission and recombination. For example, Vasquez and co-workers developed the VCM

model for semi-dilute, shear thinning and shear banding wormlike micelles, in which

scission rate of micelles was predicted increase with increasing applied strain, but the

recombination rate of chains was assumed to be constant and independent of flow.21

8
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By contrast, Graham and coworkers developed a reactive rod model for dilute, shear

thickening wormlike micelles which predicts flow-enhanced recombination: flow aligns the

micelle, which in turn increases the probability of recombination. Enhanced alignment

and recombination create a positive feedback, which causes an increase in the average

length of WLMs.22 So, currently from the theoretical perspective, there is a lack of

agreement about how (or whether) flow affects scission.

1.3.2 Key question: how does flow affect the scission of worm-

like micelles?

In our view, to build an accurate rheological model for wormlike micelles, the key

question we need to address is if and how flow affects the scission of wormlike micelles.

Here I will summarize previous experimental and simulations studies that suggested

flow-enhanced scission, the limitations in these studies, and our approach of using more

direct structural measurements.

Experiments that suggest micellar scission

Previous experiments relied mostly on rheological measurements, which are sensitive

primarily to the long micelle species in flow. Extensional rheology experiments and

complex flow experiments have suggested micellar breakage can happen as a result of

strong flows. Rothstein and Mohammadigoushki recently wrote a comprehensive review

about complex flows of wormlike micelles.3 Here, I will highlight a few studies that

directly suggested flow-enhanced scission.

In the work of Rothstein and co-workers,2,23 a filament stretching rheometer (FiSER)

was used to impose a uniaxial extensional flow on a series of WLM solutions. At low

extension rates, the fluid filament does not rupture, but instead fails under elasto-capillary

9
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thinning. However, above a critical extension rate, the filament abruptly ruptures near

its axial mid-plane. The failure of these wormlike micelle filaments occurs before any

significant necking has appeared. The authors suggested that the observed filament failure

and the dramatic downturn in the extensional viscosity measured through opposed-jet

devices24 are related and both likely stem from the scission of wormlike micelles resulting in

a dramatic breakdown of the micelle network en masse.23 In a follow-up study, Bhardwaj

et al. studied the effect of pre-shear on extensional deformation of WLMs.25 When

no pre-shear is performed, the value of the elastic tensile stress at filament rupture is

independent of the imposed extension rate. However, both the maximum elastic tensile

stress and the extensional viscosity decrease dramatically with increasing pre-shear rate

and duration. The authors hypothesized that the reduction in the strain hardening

suggests that the pre-shear might reduce the size of the WLMs or perhaps change the

interconnectivity of the micelle network prior to stretch. This is in stark contrast to the

experiments on polymers in which no discernible difference in the steady-state value of

the extensional viscosity is observed with and without pre-shear.26

Researchers also examined the flow of WLMs past a falling sphere and observed

instability in sphere sedimentation velocity or fluid instability in the wake of the sphere

(termed wake instability). Chen and Rothstein27 showed that for conditions that give rise

to wake instability, the filament of the WLM undergoes a sudden rupture in the FiSER

experiments. The authors asserted that the wake instability is linked to the flow-induced

micellar chain scission. Furthermore, Mohammadigoushiki and Muller28 were able to

successfully distinguish steady from unsteady sphere sedimentation experiments by using

the maximum local extension rate in the wake of the sphere to generate an extensional

Weissenberg number WiE and plotting the phase diagram using WiE and the Reynolds

number Re. The authors suggest that the wake instability in the wormlike micelles is

linked to the scission of the wormlike micelles in the wake of the falling sphere, where a
10
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strong extensional flow is present.

Although previous extensional flow and complex flow measurements of wormlike

micelles have been used to speculate that micellar breakage can happen as a result

of strong flows, the experiments typically need to be interpreted in the context of a

rheological model. Additionally, no direct microstructural measurements have been

intended to directly probe changes in micelle length in flow so far. Therefore, we propose

using flow-small angle neutron scattering as a direct structural measurement to directly

answer whether flow affects scission of WLMs in a model-agnostic way.

Simulations that suggest micellar scission

Previous simulation studies of wormlike micelles in flow have used molecular dynamics

simulations and mesoscopic simulations to investigate the effect of deformation on the

micelle length in both shear flow and extensional flow. Here I will summarize the key

findings in the most relevant papers.

Kröger and coworkers29,30 performed nonequilibrium molecular dynamics simulations

with a FENE-C potential to study properties of wormlike micelles under equilibrium

and shear flow. Results of the simulations on the equilibrium properties (chain length

distribution and average length) support the relevance of the microscopic FENE-C model

in predicting behavior similar to real micellar systems. Its equilibrium properties are

comparable to those predicted by the mean field model from Cates.13 The average

micellar length decreases at high shear rates and the simulation predicts shear thinning

results from the decrease of average micellar lengths. One interesting prediction from the

simulation that has not been confirmed by experiments is that the length distribution

for wormlike micelles is no longer mono-exponential under flow. Briels and coworkers

performed coarse-grained molecular dynamics simulations of semidilute wormlike micelles

in shear flow. With increasing shear rate, beyond a certain critical shear rate, the contour
11



Introduction Chapter 1

length decreases and the breaking rate per unit contour length decreases. The critical

shear rate decreases with increasing scission and/or activation energy.31

Sambasivam and coworkers did the first study using molecular dynamics simulations

in the presence of an explicit solvent and salt to study the flow-induced configuration

dynamics and scission of rodlike micelles in shear flow.32 The simulation results show that

micelle scission happens through a mechanism in which shear-induced stretching causes

the surfactant head groups and adsorbed counterions to be farther apart relative to their

spacing at equilibrium, resulting in reduced electrostatic screening and an increase in the

overall micelle energy. The overall energy increases linearly with micelle length. Micelle

scission occurs when the overall energy exceeds a threshold value, independent of the

shear rate. The flow-induced micelle scission results in shear thinning. In a follow-up

study by the same group, MD simulations of rodlike and U-shaped micelle in uniaxial

elongational flow are performed.33 Above the critical strain rate, approximately equal

to the inverse of the longest micelle relaxation time, hydrodynamic forces overcome the

conformational entropy of the micelle and a configurational transition from a folded to a

stretched state occurs. As the accumulated strain exceeds a critical value of O(100), the

micelle ruptures through a midplane thinning mechanism facilitated by the advection of

counterions toward the micelle end-caps. The molecular picture of micelle deformation

that has emerged from this study parallels observations of the thinning and scission of

micellar fluid bridges in filament stretching experiments. In a more recent study, Mandal

and Larson used coarse-grained MD simulations to determine the effect of uniaxial strain

on the stress, scission stress, and scission energy of solutions of wormlike micelles. The

breaking stress from the simulations depends on the rate of deformation and roughly

agrees with the experimental value of Rothstein23 from extensional rheology measurements

after extrapolation to the much lower experimental rates.

The observation of flow-enhanced scission in studies by multiple research groups using
12
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different simulation techniques strongly suggest the possibility of flow-enhanced scission.

However, these results are yet to be validated by microstructural experimental measure-

ments. Additionally, different simulation studies seem to suggest different flow-dependence

of scission and the underlying mechanism of flow-enhanced scission. Specifically, some

studies29,30 suggest average length decreases with increasing shear rate, while others32

suggest micelle scission occurs when the overall micellar energy exceeds a threshold value,

independent of the shear rate. Furthermore, most of the existing simulation studies of

wormlike micelles that include the effect of flow focus on either extensional flow or rodlike

micelle and weakly-entangles micelles in shear flow. To our knowledge, no detailed MD

simulation for long, entangled micelle in shear flow has been performed to systematically

investigate the effect of entanglement on flow-enhanced scission. The remaining knowledge

gaps in the simulation studies and the lack of direct comparison with microstructural

measurements further motivate our work on using flow-small angle neutron scattering

(flow-SANS) to investigate whether and how flow affects the scission and recombination

of wormlike micelles.

1.4 Rheology of entangled polymers

In nondilute polymer solutions and melts, the polymer coils interpenetrate each other

enough that the molecular motions of one chain are greatly slowed by the interferences of

other chains. These interfering effects are attributed to intermolecular entanglements.34

The modern history of constitutive modeling for polymers begins with the work of Doi

and Edwards,35 who formalized the ‘reptation’ concept first introduced by de Gennes.36

Doi and Edwards postulated that the motion of an entangled polymer molecule resembles

the motion of a polymer in a tube. This virtual tube is formed by the entangled polymer

chains in the surrounding, as suggested by the sketch in Fig. 1.4(a). The theory gives
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a characteristic timescale for a chain to escape its initial tube and thereby relax its

configuration, which is defined as the disentanglement relaxation time τd.

Over the course of several decades, other researchers build upon this landmark

model, while relaxing some of its more severe approximations and improving the model’s

applicability in strong flow conditions. In particular, in 2003, Graham, Likhtman, Milner,

and McLeish developed the GLaMM model for describing the rheological behavior of

entangled monodisperse linear polymer chains under fast deformation.37 The GLaMM

model accounts for an accumulation of stress via affine deformation and relaxation of stress

by reptation, chain retraction, and convective constraint release (CCR). As described

earlier, reptation describes the curvilinear motion of a polymer chain in a tube formed by

entanglements with surrounding chains. When the deformation rate is larger than the

inverse of the Rouse time (τR), the chain can become stretched, and as a result the length

of the chain and the occupied tube exceed their equilibrium configuration. When the

strain stops, the chain retracts along the deformed tube until it regains its equilibrium

contour (Fig.1.4(b)). Convective constraint release (CCR) is the release of entanglement

constraints due to chain retraction from affine deformation in nonlinear flows (Fig. 1.4(c)).

The effect of CCR diminishes for shear rates larger than the inverse of the Rouse time.

14
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(a) (b)

(c)

Figure 1.4: Relaxation mechanisms in entangled polymers (a) reptation, (b) retraction,
and (c) convective constraint release.

1.5 Orthogonal superposition rheometry

For studying complex fluids, small amplitude oscillatory measurements have been

widely used as mechanical spectroscopy. More recently, there has been an increasing

amount of interest in superposition flows for probing flow-induced changes in the mi-

crostructure of complex fluids. In superposition rheometry, an oscillatory motion can be

imposed either parallel (γ̇‖, parallel superposition, PSR) or perpendicular (γ̇⊥, orthogonal

superposition, OSR) to the direction of motion of a steady shear flow (Fig. 1.5). Both

experiments and model calculations38,39 demonstrated that orthogonal and parallel moduli

are not equivalent, due to the tensorial nature of the rheological response. In parallel

superposition measurements, the main and the superimposed flow fields are coupled

because they are applied in the same direction, which complicates the interpretation of

the results. In contrast, orthogonal superposition has a much weaker coupling of the

two flow fields, and thus the corresponding moduli can be more directly related to the
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microstructural configuration under flow. OSR provides measurement of the frequency-

and shear-rate-dependent nonlinear viscoelastic superposition moduli (storage and loss

moduli, G′⊥ and G′′⊥), which are analogous to their linear viscoelastic (LVE) counterparts

that characterize equilibrium dynamics, although as we will discuss in Chapter 7, the

interpretations of the OSR moduli are different from those for the LVE moduli.

ሶ𝛾

ሶ𝛾||
ሶ𝛾

Figure 1.5: Schematic of orthogonal and parallel superposition rheometry.

1.6 Objectives

The objectives of this thesis are two-fold. The first objective is to develop new

experimental, theoretical, and simulation tools for studying microstructures of polymers

and wormlike micelles in flow. Although small angle neutron scattering can measure

structures at length scales that are typically of interest for wormlike micelles and polymers,

previous experimental studies have mostly relied on parameterization and averaging of

the 2D scattering to interpret the experimental result. For semi-flexible and flexible

chains in flow, the interplay among chain stretching, chain orientation, and inter-chain

interactions makes it challenging to interpret the experimental result. Thus, it is desirable

to develop scattering models for semiflexible chains and flexible polymers in flow to
16
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help the design and interpretation of flow-SANS experiments. Furthermore, although

orthogonal superposition is a promising technique for probing the frequency- and shear-

rate-dependent nonlinear viscoelastic superposition moduli, relatively little is known about

how to interpret the nonlinear viscoelastic results in the context of entangled polymer

dynamics. Specifically, there are very few theoretical and computational studies that

would provide a fundamental basis for interpreting orthogonal superposition measurements.

This provides strong motivation for a deeper theoretical and computational study to

investigate what is fundamentally being measured in the OSR experiments.

The second objective is to understand processing-structure-property relationships

of polymers and wormlike micelles. How flow affects scission of wormlike micelles has

been a long-debated question in the field and previous theories have mostly used ad

hoc approaches for including the effects of scission. Previous experiments haven’t been

able to address this question directly either because the measurements are not sensitive

enough to the microstructures, or the fluid exhibits instabilities (e.g., shear banding).

Furthermore, for entangled polymers, no previous studies have clearly addressed how the

nonlinear relaxation mechanisms affect orthogonal superposition moduli. In summary, we

aim to answer these two questions "how does flow affect scission in wormlike micelles" and

"how do stretch and orientation of polymers influence the interpretation of orthogonal

superposition moduli" in this work.

1.7 Approach

In order to achieve the identified goals of this work, we need to develop experimental,

theoretical, and computational tools. In Chapter 4, we use a connected-rod model to

describe the scattering of semiflexible chains in flow and include a segmental orientation

distribution that is consistent with the overall stretching and orientation of the chain.
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In Chapter 6, we demonstrate the ability to make forward prediction of scattering from

polymer conformations in flow and make inverse calculations to extract distributions of

polymer deformation from scattering in flow. In Chapter 7, we combine a perturbation

analysis and numerical calculations to predict orthogonal superposition moduli for both

monodisperse and polydisperse polymers.

The scattering model developed in Chapter 4 will be used, along with steady and

transient flow-SANS measurements of wormlike micelles, to identify signatures of flow-

enhanced micellar scission in Chapter 5. To enable a clearer interpretation of experimental

data, we used a model wormlike micelle system in the concentration regimes that only

include linear micelles, not branched ones. Furthermore, we verified the wormlike micelle

solutions don’t have flow instabilities for the shear rates investigated. In Chapter 7,

modeling orthogonal superposition moduli of entangled polymers enables identification

of key parameters that determine the shifts of the OSR moduli and identification of

qualitative features in OSR moduli that correlate with the degree of polydispersity. The

model predictions will aid the design and interpretation of future OSR experiments.

The combination of these experimental, theoretical, and computational approaches

will develop a rich understanding of the processing-structure-property relationship of

wormlike micelles and polymers. The evidence of flow-enhanced scission for wormlike

micelles resolves the long-standing debate in the field and is critical for developing more

accurate models for wormlike micelles. The prediction of orthogonal superposition moduli

for entangled polymers demonstrates that orthogonal superposition rheometry provides

better sensitivity for testing rheological models than conventional rheological techniques.

The tools we developed in this dissertation are important for understanding the rheology,

scattering, and microstructures of not only WLMs and polymers, but also other complex

fluids that share similar underlying physics.
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Chapter 2

Materials and Methods

This chapter presents a complete description of all materials and experimental measure-

ments used in this work. Unless otherwise noted, materials were prepared and experiments

were carried out and analyzed according to the procedures outlined here.

2.1 Materials

2.1.1 Preparation of wormlike micelle solutions

The model wormlike micelle forming system studied in this work is that of cetyltrimethy-

lammonium bromide (CTAB, Sigma Aldrich) in aqueous solution with sodium nitrate

(NaNO3, Sigma Aldrich). The molecular structures of CTAB and NaNO3 are given in

Figure 2.1. All materials were used as supplied without further purification. For neutron

scattering measurements, it was necessary to prepare samples using deuterium oxide

(D2O, 99.9%, Cambridge Isotope Laboratories) to reduce incoherent scattering. These

samples were prepared at various concentrations and will be specified in the subsequent

chapters. Dry powders of CTAB and NaNO3 were added to D2O in the appropriate

amounts. After agitation for complete powder dispersion, the solutions were placed in a
22



Materials and Methods Chapter 2

temperature-controlled oven held at 47 °C for at least 1 day to achieve sample equilibration

before measurements.

(a) (b)

Figure 2.1: Molecular structures of (a) cetyltrimethylammonium bromide and (b)
sodium nitrate.

2.2 Rheological characterization

2.2.1 Experimental

Rheological characterization was performed on a TA Instruments AR-G2 stress-

controlled rheometer with a Taylor-Couette geometry with a rotating inner cylinder of

R1 = 13.98 mm and a stationary outer cylinder of R2 = 15.21 mm. This geometry was

chosen to closely resemble the gap size and the radius of curvature in the geometry used in

flow-SANS measurements. The fluid temperature was set with a Peltier-controlled outer

cylinder. A solvent trap was used to prevent evaporation of D2O during the measurements.

The sample was loaded and conditioned at rest for 700 s at the temperature corresponding

to the experiment. A pre-shear of 1s−1 was applied for 60 s and the sample was allowed

to rest for 100 s to erase any loading history and to let the temperature equilibrate. The

storage (G′) and loss (G′′) moduli were measured by performing a frequency sweep at

5% strain (in the linear viscoelastic regime: LVE) from 200 rad/s to 0.1 rad/s and then

another from 0.1 rad/s to 200 rad/s. No hysteresis in the LVE measurements was observed

for any sample. Steady-shear tests were run with logarithmic spacing for shear rates, γ̇,

ranging from 0.01 to 1500 s-1 . For each measurement during the steady-state test, the
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steady state sensing was turned on, with a 1% tolerance within 3 consecutive points, 60 s

maximum equilibration time, and 15 s sample periods, to ensure steady state has been

achieved before results were recorded.

2.2.2 Theory

The linear viscoelasticity of entangled micelles at low and intermediate frequencies

is well described by a Maxwell model (Fig. 2.2). The plateau modulus (G0) and longest

relaxation time (τ) of a WLM solution are obtained by fitting linear viscoelastic moduli

(G′ and G′′) to a single-mode Maxwell model:

G′ (ω) = G0 (τ ω)2

1 + (τ ω)2 , (2.1)

G′′ (ω) = G0 (τ ω)
1 + (τ ω)2 + η∞ω, (2.2)

where ω is the applied frequency and η∞ is the high-frequency viscosity.
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Figure 2.2: Storage (G′) and loss (G′′) moduli of entangled wormlike micelles at low
and intermediate frequencies (ω).

The average number of entanglements per chain is estimated by using Ne = G0/G
′′
min,

where G0 is the plateau value of G′ and G′′min is the minimum of G′′.1 Although Larson and

co-workers recently proposed a mesoscopic simulation method to estimate the structural

parameters of semi-dilute WLMs, their method requires LVE measurements in the high

frequency regime that were inaccessible in this work.2 Alternatively, the length of the

entanglement strands can be estimated using rubber elasticity theory, by assuming that

the micelles form an entanglement network, similar to one made up of cross-linked polymer

chains.3 According to this theory, the mesh size of the entangled network, ξm, can be

estimated from the plateau modulus (G0) as

ξm =
(
kBT

G0

)1/3

, (2.3)

where kB is the Boltzmann constant and T is the temperature.4 The entanglement length,
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le, is then given in terms of ξm by5

le = ξ5/3
m

l
2/3
p

, (2.4)

where lp is the persistence length. The number density of entanglement strands, ν, is

given by

ν = G0/kBT. (2.5)

2.3 Particle tracking velocimetry

Velocimetry measurements were carried out using particle tracking velocimetry (PTV)

on an Anton-Paar Physica MCR300 rheometer using a Taylor-Couette geometry. The

outer stationary quartz cup has a fixed radius R2 = 17.5 mm. We used an inner moving

anodized aluminum cylinder with a radius R1 = 17 mm, which corresponds to a gap size

of 0.5 mm. The temperature of the Couette cell is controlled with a circulating water

bath. Sample preparation for PTV measurements consisted of seeding the fluid with

approximately 300 ppm of neutrally buoyant hollow silica spheres (8-12 µm diameter,

TSI Incorporated). In all cases, addition of tracer particles at such low concentrations

produced no significant changes in the measured sample rheology. An incident sheet

laser on the inner cylinder was introduced from the side at a height of 6 mm from the

bottom of the 15.7 mm tall inner cylinder, and the reflection from the tracer particles was

collected through a sapphire window at the bottom of the geometry and imaged using

a CCD camera. Both shear stress and PTV measurements were made simultaneously

after quickly ramping the applied shear rate of the rheometer from rest to the desired

rate within 0.1 s. Measurements were made for ∼160 s at each shear rate to ensure the

achievement of steady state. The consecutive images taken with the camera were analyzed
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using a standard particle-tracking algorithm6 to obtain spatially resolved fluid velocity

vθ(r) as a function of the position r within the gap, measured from the inner moving

cylinder. The steady-velocity profiles were obtained by averaging the PTV data over ∼30

different pairs of consecutive images after the shear stress achieved steady state.

2.4 Flow visualization

To investigate the possibility of elastic instability in wormlike micelles in the Taylor-

Couette geometry, we modified the Anton-Paar Physica MCR300 setup, which was

originally used for PTV measurements, to allow for visualization of the secondary flow.

Specifically, a lamp was placed next to the rheometer to illuminate the side of the

Taylor-Couette cell. The Taylor-Couette cell consisted of an outer stationary quartz cup

with a radius R2 = 17.5 mm and an inner moving anodized aluminum cylinder with a

radius R1 = 17 mm. The temperature of the Couette cell is controlled with a circulating

water bath. The fluid was seeded with mica flakes (Iriodin 100 Silver Pearl from EMD

Performance Materials, size 10-60 µm, density 2.8-3.0 g/cm3). Because of the anisotropy

in the shape of the mica flakes, if secondary flow (such as roll cell) develops, the fluid will

show repeating bright and dark streaks. To delay the onset of rod climbing, a metal cap

was placed on top of the shear cell with the bottom surface submerging in the fluid.

2.5 Small angle neuton scattering

Since the microstructures of materials studied in this work possess characteristic

length scales much smaller than the wavelength of visible light, neutrons provide a more

robust radiation source for their structural characterization. A typical neutron scattering

experiment is illustrated in Fig. 2.3 An incident neutron beam (given by the vector k0)
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interacts with the scatterers, resulting in scattering at an angle α (determined by the

scattering vector k). The wave vector, q, is defined by q = k− k0, and has magnitude

given by:

q = 4π
λ0
sin

(
α

2

)
. (2.6)

Thus, for neutrons with a typical wavelength of 6Å, the resulting length scales probed by

small angle neutron scattering will be O(1− 200nm), which spans the range of structures

studied in this work, from the micellar radii to the contour length of wormlike micelles

and polymers. Thus, small angle neutron scattering (SANS) presents a powerful method

to study the microstructures of wormlike micelles and polymers.

i

j
rij q

I(q)

𝛼

k

k0

𝜆0

Figure 2.3: Illustration of a typical small angle neutron scattering experiment.

2.5.1 Experimental

Steady state flow-SANS

SANS measurements were performed using the NGB 30m SANS instrument at the Na-

tional Institute of Standards and Technology Center for Neutron Research (Gaithersburg,

MD). Anisotropic scattering was characterized using flow-SANS for simple shear flow in

both the flow-gradient (v−∇v) plane and the flow-vorticity (v−ω) planes. Measurements
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in the flow-gradient plane were made using the 1-2 shear cell sample environment7 and

measurements in the flow-vorticity plane employed a Couette cell controlled by an Anton

Parr rheometer. A wavelength of λ0 = 6 Åwith a wavelength spread of ∆λ0/λ0 = 0.14

was used. Scattering from the sample was collected in the q range 0.005− 0.2 Å−1. The

temperature was maintained constant at set temperature through the entire experiment

with a water bath for the shear cell. The 2D scattering intensities were corrected for

empty cell, plexiglass standard, and detector efficiency. Scattering patterns were reduced

using standard protocols with Igor Pro software.8

Time-resolved flow-SANS

Time-resolved flow-small angle neutron scattering is used to capture structures of

wormlike micelles during the startup and cessation of flow. The method requires the

synchronization of the scattering and startup of the flow geometry (1-2 plane shear cell

or the rheometer). The time-resolved experiments bin data into nb = ttot/∆t = 150

bins of ∆t duration for a cycle time of ttot. Here the cycle time ttot is 15 s, with 5 s for

start up of flow and 10 s for flow cessation. The scattering intensity is collected over a

prescribed number of repeated transient experiments nc and summed to achieve sufficient

total scattering intensity. Here we use nc ≈ 330 in the rheometer and nc ≈ 600 in the

shear cell. A prerequisite for choosing a material to be investigated with time-resolved

flow-SANS is that it behaves reproducibly for each subsequent transient event so that a

sufficient number of cycles can be summed to collect statically valid scattering patterns

in each time bin. Here we validate that the sample fully recovers to equilibrium during

the relaxation period as evidenced by the isotropic intensity that no longer changes with

time.
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2.5.2 SANS modeling

The magnitude of the scattering is given by the total coherent scattering cross-section,

which for a material comprised of Np scattering objects in a structureless medium is given

by9
dΣ
dΩ = 1

V

Np∑
i=1
〈|fi(q)|〉 + 1

V

〈Np∑
i=1

Np∑
j=1,i 6=j

fi(q)fj(q)e−iq·(ri−rj)
〉
, (2.7)

where ri and rj are the positions of objects i and j, respectively, and fi(q) is the scattering

amplitude given by

fi(q) =
∫
V

[ρi(r)− ρs] e−iq·r (2.8)

where ρi(r) and ρs are the scattering length densities of the scattering object and the

surrounding medium, respectively. Typically, for scattering objects that are polydisperse

in structure and orientation, a reasonable approximation for the scattering cross-section is

to assume that the scattering amplitude for any scatterer is approximately equal to that

of particles with average size and shape.10 Thus, the scattering cross-section reduces to

dΣ
dΩ = np〈fi (q)〉

1 +
〈Np∑
i=1

Np∑
j=1,i 6=j

fi(q)fj(q)e−iq·(ri−rj)

〉 , (2.9)

where np is the number density of scattering objects, and the overbar represents the average

over all scattering objects. Typically, the bracketed term defines the form factor, P (q),

and the term in parentheses defines the structure factor, S(q). Using this approximation,

and assuming that the coherent scattered intensity measured during SANS experiments

is equal to the scattering cross-section, we obtain the following expression for the total

scattering intensity:11

I (q) = npP (q)S (q) + Ib (2.10)
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where Ib is the incoherenet scattered intensity. If the scattering intensity is isotropic

(e.g., at equilibrium), the intensity only depends on the magnitude of q. For anisotropic

scattering objects, such as wormlike micelles and polymers considered throughout this

work, the form and structure factors, and thus the scattered intensity, will depend not

only on q, but also on the orientation angle of q due to the orientational contribution to

the interparticle interactions.

In general, the form factor P (q) is related to the distribution of mass within a

scattering object and can be defined as the direct Fourier transform of the pair correlation

function, ψ (rij):11

P (q) =
∫

(ψ (rij))2 exp (−iq · rij) drij, (2.11)

where the integral is taken over the volume of the object. The pair correlation function

ψ (rij) gives the probability density of finding a point of mass i within the object from a

reference point j, normalized such that integration over the entire space yields the object

volume Vp.

The structure factor arises from the configuration of an ensemble of scattering objects

within a medium, and is thus related to interactions between individual scattering objects.

Similarly to the form factor, the structure factor can be mathematically described as the

direct Fourier transformation of the pair distribution function g (r12) by:

S(q) = 1 +
∫

[g (r12 − 1)] exp (−iq · r12) d3r12 (2.12)

The pair distribution function is related to the statistical probability of finding the center

of a scattering object separated from the center of a reference object by a distance

r12. Therefore, g (r12) can be related to the potential of intereaction between objects

from statistical mechanics.12 This is typically achieved through the Ornstein-Zernicke
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equation:13

g (r12) = c (r12) + np

∫
c (r13) [g (r23)− 1] dr3 (2.13)

where np is the number density of scatterers and the function c(r) is the direct correlation

function, which requires using an appropriate closure approximation where c(r) is typically

related to the potential of mean force between interacting particles. Formulating the pair

distribution function according to Eqn. 2.13 allows one to relate the structure factor to

the Fourier transform of c(r) by using the convolution theorem:12

S(q) = Ĉ(q)
1− npĈ(q)

, (2.14)

where Ĉ(q) is the direct Fourier transform of c(r).

Subsequent chapters will discuss in more depth the scattering models for wormlike

micelles and polymers at equilibrium and in flow.
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Chapter 3

Theory: Equilibrium Modeling of

the Scattering of Polymers and

Wormlike Micelles

This chapter will focus on an overview of the equilibrium theories for describing the

scattering of polymers and wormlike micelles that will lay a foundation for Chapters 4-6,

which discuss our new development and application of nonequilibrium scattering models

for polymers and wormlike micelles in flow. The discussion will begin with a description

of previous scattering models for both dilute, flexible polymers and dilute and semi-dilute

wormlike micelles. Finally, we discuss in detail a new scattering model for entangled,

concentrated wormlike micelles. This model was originally developed by Peng Cheng, a

former graduate student in our groups. I improved the model and the fit to the data.

Sections 3.2.1 to 3.2.4 are adapted with permission from "Cheng, P. (2017). Rheology,

kinematics, and structure of shear banding wormlike micelles (Order No. 10599970).

Available from Dissertations & Theses @ University of California; ProQuest Dissertations

& Theses A&I. (1938226239)."
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3.1 Previous models

3.1.1 Equilibrium modeling of dilute, flexible polymers

In general, the scattering intensity for monodisperse polymers is described by

I(q) = φ (∆ρ)2 VpP (q)S(q) + Ib, (3.1)

where φ is the volume fraction of the polymers, ∆ρ is the difference in scattering length

density between the polymers and the solvent, Vp is the volume of a chain, and Ib is the

incoherent background intensity. P (q) is the form factor, which describes the contribution

from intra-chain scattering. S(q) is the structure factor, which measures the contribution

from inter-chain scattering (i.e., how individual polymers are positioned in space relative

to each other). If the polymer solution is sufficiently dilute, the effects of the structure

factor can be neglected (S(q) ≈ 1). So, for this section, we will only focus on the form

factor.

Polymer coils in theta solvents or in the melt state follow Gaussian chain statistics

whereby the inter-monomer distance rjk is given by the Gaussian distribution function,

ψ (rjk) =
 3

2π
〈
r2
jk

〉
3/2

exp
− 3r2

jk

2
〈
r2
jk

〉
 . (3.2)

Here
〈
r2
jk

〉
is the variance given in terms of the statistical segment length a as:

〈
r2
jk

〉
= a2 |j − k| . (3.3)

Figure 3.1 illustrates the vector rjk in a polymer chain.
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j

k

𝒓𝑗𝑘

Figure 3.1: Schematic of a polymer chain. rjk represents the vector between monomer
j and monomer k.

For a chain with n statistical segments, the single-chain form factor is given by

P (q) = 1
n2

n∑
j,k

〈
−iq · rjk

〉

= 1
n2

n∑
j,k

∫
drjkψ (rjk) exp

[
−iq · rjk

] (3.4)

For a Gaussian distribution, the integral in the equation above can be evaluated analytically

by completing the square in the integral:

∫
drjkψ (rjk) exp

[
−iq · rjk

]
=
 3

2π
〈
r2
jk

〉
3/2 ∫

exp
− 3r2

jk

2
〈
r2
jk

〉 − iq · rjk
 drjk

=
 3

2π
〈
r2
jk

〉
3/2 ∫

exp

− 3
2
〈
r2
jk

〉
rjk + i

〈
r2
jk

〉
q

3

2 exp
−q2

〈
r2
jk

〉
6

 drjk
(3.5)

The final exponential in the expression (3.5) above does not depend on rjk and can be

taken outside the integral sign. We also use ρ = rjk + i
〈
r2
jk

〉
q/3 as the new variable.
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Thus, we obtain:

∫
drjkψ (rjk) exp

[
−iq · rjk

]
= exp

−q2
〈
r2
jk

〉
6



 3

2π
〈
r2
jk

〉
3/2 ∫

exp
− 3ρ2

2
〈
r2
jk

〉
 dρ


︸ ︷︷ ︸

=1

= exp
−q2

〈
r2
jk

〉
6


(3.6)

Upon substituting the expression for the integral into Eqn. 3.4, we obtain:

P (q) = 1
n2

n∑
j,k

exp
−q2

〈
r2
jk

〉
6

 = 1
n2

n∑
j,k

exp
[
−q

2 |j − k|
6

]
(3.7)

Using the general identity ∑n
j,k F (|j − k|) = n+ 2∑n

m−1 (n−m)F (m) and assuming the

number of chain segments is large (n� 1), we obtain:

P (q) = 1
n2

[
n+ 2

n∑
m=1

(n−m) exp
(
−q

2a2m

6

)]
(3.8)

Finally, upon transforming the sum into an integral and neglecting the 1/n term for large

n, we obtain the Debye function for scattering of Gaussian chains:1

P (q) = 2
q4R4

g

[
exp

(
−q2R2

g

)
+ q2R2

g − 1
]
, (3.9)

where the radius of gyration is given by Rg =
√
a2n/6.

In scattering experiments of polymers, the low-q circularly averaged scattering intensity

is often used to extract the radius of gyration. The theoretical basis for this analysis can

be obtained by performing a small q expansion of the Debye function for qRg � 1:

2
q4R4

g

[
exp

(
−q2R2

g

)
− 1 + q2R2

g

]
≈ 1− q2Rg

3 +O(2). (3.10)
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Thus, in a plot of log I(q) as a function of q2, the initial slope is −R2
g/3. This analysis is

called the Guinier analysis and is only valid in the low-q limit (qRg <
√

3).

3.1.2 Scattering models for dilute and semi-dilute wormlike mi-

celles

Wormlike micelles (WLMs) exhibit a broad distribution of micellar contour lengths,

Lc, ranging from the cross-sectional radius (rcs) to length scales that may considerably

exceed the entanglement length (le). The contour length distribution of WLMs is typically

assumed to follow the theory of Cates and co-workers, which predicts that the equilibrium

probability distribution of contour lengths will adopt an exponential form.2–6 Specifically,

for a solution containing micelles with an overall volume fraction φtotal, the probability

density, f (Lc), and resulting volume fraction, φ (Lc), of micelles having contour length

Lc is given by

f (Lc) =


Lc < 2rcs : 0

Lc ≥ 2rcs : exp(−Lc/L̄c)∫∞
2rcs

exp(−Lc/L̄c) ,
(3.11)

and

φ (Lc) =


Lc < 2rcs : 0

Lc ≥ 2rcs : φtotal ·
Lc exp(−Lc/L̄c)∫∞

2rcs
Lc exp(−Lc/L̄c) ,

(3.12)

where L̄c is the average contour length of the entire micelle population. φ (Lc) exhibits

a maximum at the average length L̄c. Here, we have modified Cates’ original theory by

assuming that all wormlike micelles must be longer than their cross-sectional diameter,

2rcs. This assumption is necessary to describe the length distribution of micelles when

Lc ∼ rcs, which always occurs for a small number of micelles even when the average

micelle length is relatively long compared to rcs.
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The equilibrium distribution of contour lengths in dilute and semi-dilute wormlike

micelle solutions has been well characterized using SANS measurements. In general, the

scattering from WLMs is convoluted by a number of factors including both intra-chain

and inter-chain correlations, as well as a broad contour length polydispersity. In the

dilute and semi-dilute regimes, micelles are well-separated from each other and possess

relatively few entanglements.4–6 Therefore, in this case, the SANS measurement is able to

probe the full hierarchy of length scales of the micelles, ranging from the longest contour

length, Lc,max, to the cross-sectional radius, rcs.

For wormlike micelles at relatively low concentrations, the scattering data shows similar

dependence on the scattering vector q as that of classical polymers and has different

q-dependence in different q ranges. At low enough q (q
〈
R2
g

〉
� 1, where

〈
R2
g

〉
is the

square average radius of gyration), I ∼ 1− q2
〈
R2
g

〉
/3). The scattering curve levels off

at this low-q range (the Guinier region) due to the finite size of the micelles relative to

the length probed. Beyond the Guinier region, the scattering crosses over to a power law

behavior q−5/3 due to the excluded-volume statistics of the micelles. At higher q, the

scattering probes the local cylindrical structure and it crosses over to q−1. However, this

power law is often masked by the polydispersity in micellar length and the cross-section

Guinier region that originates from the finite diameter of the micelles. Beyond this region,

the scattering curve drops significantly and at the highest q it follows the Porod law q−4

which occurs for objects with sharp interfaces.6 The scaling in different q regions is shown

schematically in Fig. 3.2 below.
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Figure 3.2: Schematic of different regions of q-scaling for scattering intensity of wormlike
micelles.

Compared to modeling the scattering of dilute, monodisperse polymers as discussed

in the last section, modeling the equilibrium scattering of wormlike micelles poses more

challenges. This is because the analysis of the form factor is complicated by many

structural features of WLMs, such as chain semi-flexiblity and polydispersity in the length.

This section outlines several of the models typically used for wormlike micelles that were

developed by Pedersen, Schurtenberger, and coworkers.6

For sufficiently dilute chains with polydisperse length and polydisperse radius and an

isotropic orientation distribution, the expression of the scattering intensity for monodis-

perse chains (Eqn. 3.1) is modified to account for polydispersity:

I(q) = φ (∆ρ)2 V pP (q)S(q) + Ib (3.13)

where φ is the volume fraction of the micelles, ∆ρ is the difference in scattering length

40



Theory: Equilibrium Modeling of the Scattering of Polymers and Wormlike Micelles Chapter 3

density between the micelles and the solvent, V p = πr̄2
csL̄c is the average volume of a chain,

and Ib is the incoherent background intensity. L̄c is the number-average contour length

and r̄cs is the average radius of the micelle. If the micelles are sufficiently dilute, such

that the average intermolecular distance (correlation length between neighboring chains)

is larger than the intramolecular distance, this leads to the decoupling approximation

commonly used for wormlike micelles, i.e., the effect of polydispersity in the form factor

P (q) and the structure factor S(q) can be separated.4,5

The form factor

In general, the form factor for a chain-like object arises from both the shape of the

cross-section as well as the possible conformations along the contour of the object. For

wormlike micelles, since the contour length is much greater than the cross-sectional

dimension, the polydisperse chain form factor can be decoupled into two contributions:7,8

P (q) = PL(q)Pcs(q), (3.14)

where PL(q) and Pcs(q) are the polydisperse form factors for the chain length and cross-

section, respectively. For wormlike micelles, a circular cross section of radius rc with a

Gaussian distribution for the polydispersity is typically assumed, such that

Pcs(q) =
(
πr2

cs

)2
(

2J1 (qrcs)
qrcs

)2

. (3.15)

and

f (rcs) = 1√
2πσ2

exp
[
−(r̄cs − rcs)2

2σ2

]
, (3.16)

where f (rcs) is the length distribution of the micellar radius, r̄cs is the average micellar

radius, and σ is the standard deviation.
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As discussed previously, the reversible scission of wormlike micelles produces an equi-

librium distribution of chain lengths. The chain length at equilibrium has a polydispersity

given by an exponential function, according to the Cates model.2 In the Pedersen-

Schurtenberger model, the polydisperse form factor for the chain length is calculated as a

weighted average of the monodisperse form factor over the length distribution:

P̄L(q) =
∫∞

2rcs f(Lc)PL(q, Lc)dLc∫∞
2rcs f(Lc)dLc

, (3.17)

where f
(
Lc, L̄c

)
= exp

(
−Lc/L̄c

)
is the exponential distribution of chain length and L̄c

is the average micellar length.

The Pedersen-Schurtenberger model used an asymptotic matching for the form factor of

the chain length.9,10 Namely, the form factor for a wormlike micelle chain is approximated

by that of a Gaussian chain at low q which crosses over to that of a rod at higher q:

PL (q, Lc) = Pchain(q) · exp
−( qb

5.53

)5.33
+ Prod(q)

1− exp
−( qb

5.53

)5.33
 . (3.18)

Pchain(q) is the form factor of flexible chains, Prod(q) is the Burchard-Kajiwara rod-like

scattering function, and b is the Kuhn length, which is twice the persistence length, lp.

Prod(q) = 1
Lbq2 + π

Lcq
(3.19)

Pchain(q) = PDebye (q, Lc, b)

+ b

Lc

[
4
15 + 7

15q2R2
g (Lc, b)

−
[

11
15 + 7

15q2R2
g (Lc, b)

]
exp

[
−q2R2

g (Lc, b)
]]
(3.20)

PDebye is the Debye function1 for the form factor of polymer coils with Gaussian chain
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statistics that we derived in Section 3.1.1:

PDebye (q, Lc, b) = 2(
q2R2

g (Lc, b)
)2

[
exp

(
−q2R2

g (Lc, b)
)

+ q2R2
g (Lc, b)− 1

]
(3.21)

Pedersen and Schurtenberger used the radius of gyration for a wormlike chain (Eqn. 3.22)
9,11 to account for semiflexiblity and included additional terms in Eqn. 3.20 to describe

excluded volume interactions, both of which are not included in the original Debye

function.

Rg =
[
Lcb

6

[
1− 3b

2Lc
+ 3b2

2L2
c

− 3b3

4L3
c

(
1− exp

(
−2Lc

b

))]]1/2

(3.22)

In Eqn.3.18, the matching term exp
[
−
(
qb

5.53

)5.33
]
is approximately equal to 1 for q < 1/b,

decreases for 1/b < q < 7/b, and is approximately 0 for q > 7/b. So, in the low-q region

(q < 1/b), the overall form factor is dominated by the scattering of the chain, Pchain; in

the high-q region (q > 7/b), the overall form factor is dominated by the scattering of the

rod (persistence length segment), Prod.

The structure factor

In general, the structure factor arises from the configuration of an ensemble of

scattering objects within a medium, and is thus related to interactions between individual

scattering objects. For modeling the structure factor of wormlike micelles, Pedersen

and Schurtenberger used the random phase approximation (RPA) with PRISM-type

interactions,10 which gives

S(q) = 1
1 + βPL (q, L) (3.23)

where PL (q, L) is the chain form factor discussed in the previous section and β =

[1− S(0)] /S(0), where S(0) is the forward contribution to the structure factor, which
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can be related to the osmotic compressibility of the fluid. For the ionic micelles studied

in this work, the appropriate model for S(0) has been empirically derived by fitting

of structure factor data obtained from Monte Carlo simulations of wormlike micelles

interacting through screened Coulombic interactions. The forward contribution to the

structure factor is found to follow:

S(0) =
[
1 + 1

8

(
9X − 2 + 2 ln (1 +X)

X

)
exp

[
0.8

( 1
X

+
(

1− 1
X2

)
ln (1 +X)

)]]−1

(3.24)

where X = 42.1φeff and the effective volume fraction is φeff =
(
rcs+κ−1

rcs

) (
Rg,c
Rg,u

)3
.6,12 In

this expression, κ−1 is the Debye length, rcs is the radius of the micelle, φ is the volume

fraction of the micelle approximated by the volume fraction of the surfactant, and Rg,c

and Rg,u are the theoretical radius of gyration of completely charged and uncharged chain,

respectively.

3.2 New development: two-species scattering model

for entangled wormlike micelles

This model was originally developed by Peng Cheng, a former graduate student in our

groups. I improved the model and the fit to the data. Sections 3.2.1 to 3.2.4 are largely

based on text in Peng Cheng’s thesis. These are included here for completeness. Sections

3.2.5 and 3.2.6 are my new contributions.

3.2.1 Motivate the need for a new scattering model

At higher surfactant concentrations, wormlike micelles become highly entangled; i.e.,

many of the longer micelles with lengths longer than L̄c will have a large number of entan-
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glements. It becomes much more difficult to determine the full contour length distribution

because neither rheology nor SANS itself allows the full contour length distribution to be

determined. Rheological measurements are dominated by the long, entangled portions of

the length distribution, whereas the SANS measurement for a concentrated and entangled

system cannot discern length scales larger than the entanglement length. This is because

for sufficiently concentrated micelles, the micellar chains will be strongly overlapping,

leading to a loss of both intra-chain and inter-chain correlations at length scales longer

than the entanglement length le. This leads to a strong suppression of the scattering

intensity for q < 2π/le, as illustrated in Fig. 3.3. However, the rheological and SANS

measurements are complementary, one being sensitive to the long length scales and the

other to the short length scales of the contour length distribution. Therefore, we seek an

analysis for the length distribution of highly entangled micelles that incorporates both of

these measurements.

 entangled WLMs

 dilute WLMs
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Figure 3.3: Representative schematic of circularly averaged SANS intensity of dilute mi-
celles with contour length distribution given by Eqn. 3.12 (dash line), and concentrated
micelles with entanglement length le.(Figure reproduced with permission.13)
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Due to the strongly suppressed scattering, it is unlikely that the precise shape of the

distributions of micellar contour and sub-chain lengths are distinguishable under these

conditions. Therefore, the overall goal in analyzing the SANS data of concentrated WLMs

is merely to quantify the relative concentrations of unentangled and entangled micelles

(eventually to enable a quantitative comparison of experimental data to predictions from

existing rheological models for WLMs, such as the VCM model14). For this, we must adopt

an interpretation of the length distribution that is relevant to what can be determined

from the SANS data of concentrated WLMs and develop a new scattering model.

We will assume that Eqns. 3.11 and 3.12 are valid at all WLM concentrations, i.e.,

the presence and dynamics of entanglements do not significantly modify the reversible

scission process. However, the highly entangled WLMs consist of two distinct populations

(see color coding in Fig. 3.4). The first is a population of short, unentangled micelles with

l ≤ le (Fig. 3.4, red lines) whose length distribution will follow Eqns. 3.11 and 3.12. The

second is the population of strands between entanglement points that make up the long,

entangled micelles. These entanglement strands will have an average length equal to le.

As already noted, in a concentrated system, SANS cannot distinguish length scales longer

than the length of entanglement strands.
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(a) (b)

Figure 3.4: Equilibrium structure of highly entangled WLMs. (a) Schematic of highly
entangled WLMs composed of (red) unentangled micelles, (blue) entangled micelle
strands, and (orange) dangling ends of long, entangled micelles; (b) equilibrium contour
length distribution of short, unentangled (solid red line) and long, entangled micelles
(solid blue line) given by Eqn. 3.12, the dashed blue line shows the length distribution
of entanglement strands belonging to long, entangled micelles given by Eqn. 3.28;. ξm,
le, lp, φ, rcs, and Lc are the mesh size, entanglement length, persistence length, volume
fraction, cross-sectional radius, and contour length of WLMs, respectively. (Figure
reproduced with permission.13)

3.2.2 Two populations: unentangled and entangled

Our objective in this section is to develop the theoretical framework that will allow

the relative concentrations of unentangled and entangled micelles to be determined from

the SANS scattering intensity, I(q). One critical factor for this purpose is the probability

distribution function, f(l), that a portion of a micelle of some unit length (e.g., a

"monomer") belongs to a micelle of length l in the two populations. One can use Eqns. 3.11

and 3.12 to calculate f (l) for both populations of micelle strands. but in order to do

so one must assume a functional form for the length distributions. For the unentangled

micelles, this is just the exponential distribution from Eqn. 3.11. The entanglement strands

have an average length equal to le. To our knowledge, no experimental or theoretical
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studies exist that would predict a particular distribution of entanglement lengths even

for ordinary polymers, let alone wormlike micelles. However, since the entanglement

length for ordinary polymers is independent of the overall polymer molecular weight, it

is reasonable to assume that, for a large enough number of entanglement strands, the

entanglement lengths will be normally distributed , i.e., a Gaussian distribution with a

modal value equal to the average entanglement length (le). We therefore assume that the

length distribution of entanglement strands follows a Gaussian length distribution (dashed

blue line in Fig. 3.4 (b)). We note that since SANS can’t really distinguish entanglement

strands and dangling ends, dangling ends can just be included as entanglement strands.

In this study, we are not calculating the relaxation of the chains so the different relaxation

modes for dangling ends and entanglement segments don’t matter too much.

For the unentangled micelles, f(l) then follows directly from Eqn. 3.11:

fu (l) =


l < 2rcs : 0

2rcs ≤ l < le : exp(−l/L̄c)∫∞
2rcs

exp(−l/L̄c) ,
(3.25)

where L̄c is the average contour length of the entire micelle population corresponding to

the length distribution described in Eqn.3.11. The probability f(l) for the micelle strands

between entanglements (coming from micelles with length Lc > le) is modeled by:

fe (l) =


l < 2rcs : 0

l ≥ 2rcs : 1
σe
√

2πe
− (l−le)2

2σ2
e .

(3.26)

The expressions 3.25 and 3.26 will be used, as explained shortly, for the analysis of SANS

data.

Given the functions f(l), the resulting volume fraction, φ(l), for unentangled micelles

and entanglement strands can be obtained, in a similiar manner as Eqn. 3.12. Therefore,
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the volume fraction of the above two micelle populations can be written as

φu (l) =


l < 2rcs : 0

2rcs ≤ l < le : φu,tot ·
l exp(−l/L̄c)∫∞

2rcs
l exp(−l/L̄c) ,

(3.27)

φe (l) =


l < 2rcs : 0

l ≥ 2rcs : φe,tot
σe
√

2πe
− (l−le)2

2σ2
e .

(3.28)

The total volume fraction of micellar segments, φtotal, is therefore

φtotal = φu,tot + φe,tot, (3.29)

where φu,tot, φe,tot correspond to the overall volume fraction of surfactant molecules

belonging to the unentangled micelles (with contour length Lc < le) and entanglement

strands (coming from micelles with length Lc > le), respectively.

3.2.3 Materials

A series of 0.3 M hexadecyltrimethylammonium bromide (CTAB, Sigma Aldrich)

solutions were prepared in deuterium oxide (D2O, 99.9%, Cambridge Isotope Laboratories)

with varying concentrations of sodium nitrate (NaNO3, Sigma Aldrich) ranging from 0.2

M to 0.4 M. All materials were used as supplied without further purification. Dry powders

of CTAB and NaNO3 were added to D2O in the appropriate amounts. After agitation for

complete powder dispersion, the solutions were placed in a temperature-controlled oven

held at 40 °C for at least 3 days to achieve sample equilibration before measurements. All

measurements on the samples were performed at 30 °C. The experiments were conducted

by Peng Cheng.13
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3.2.4 Small angle neutron scattering experiment

Equilibrium micelle morphology and length distributions were characterized by static

SANS measurements at the NIST Center for Neutron Research (NCNR) on the NG7

30m SANS instrument. Static SANS patterns were collected at rest in standard titanium

scattering cells with 1 mm path length, and placed in the 10CB temperature-controlled

sample environment held at 30 °C. The wavelengths of the neutron beam are 6Åat

sample-detector distances of 1 m and 4 m and 8.09Åat sample-detector distance of 15

m. Reduction and normlization of the SANS data are done in the NCNR Igor software15

using standard methods.16 These experiments were conducted by Peng Cheng.

3.2.5 Scattering theory

For the analysis of the SANS data, we need to make an assumption about the shape of

the micelle strands. In this work, we will utilize the fact that the micelles are sufficiently

entangled and the mean length of an entanglement strand is short enough to be comparable

to the persistence length, le ∼ lp. Thus, the scattering from all strands can be considered

to be equivalent to that from rigid rods without any significant loss of accuracy. If the

micelles are also sufficiently dilute such that the average inter-chain distance is large

compared to the micelle diameter, we can use the decoupling approximation commonly

used for wormlike micelles,4,5 i.e.,

I(q) = φ (∆ρ)2 V pP (q)S(q) + Ib (3.30)

which is Eqn. 3.13 that was introduced in Section 3.1.2 when discussing the Pedersen-

Schurtenberger model. The polydisperse form factor P (q) is computed as a weighted

average of the form factor for rigid rods of length l, the length of a sub-chain strand,
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which is integrated over the length probability distribution given by Eqns. 3.25 and 3.26,

in a similar manner as in previous work.4,5

For le ∼ lp, we assume that all intra-chain correlations are lost at length scales larger

than le. Therefore, ignoring any intra-chain contributions to the structure factor, the

average structure factor can be modeled by the inter-chain correlations alone. In other

words, we model the average structure factor as though the micellar solution were a

suspension of concentrated interacting rods. We coarse-grained the system of micelles to

having just two characteristic “average” lengths: L̄c (average contour length of the entire

micelle population, which is used here to approximate the length of unentangled micelles

that have an exponential length distribution) and le (average length of entanglement

segments). We calculated an average structure factor for each population using its average

length. For the ionic micelles considered here, we calculate S (q) using the Hayter-Penfold

structure factor model for screened Coulombic repulsions calculated via the average

structure factor approximation under the mean spherical approximation (MSA) closure

to account for the strong electrostatic interactions between micelles.17,18

3.2.6 Fitting of experimental results

It is now clear that SANS measurements on highly entangled WLMs (i.e., where

le ∼ lp) will be dominated by structural information on length scales at or below the

entanglement length. For structural analysis at larger length scales corresponding to the

full contour length of entangled micelles (Lc > le), it has become customary to use linear

viscoelastic measurements. This is because the linear viscoelasticity (LVE) of sufficiently

entangled WLMs at low and intermediate frequencies is dominated by the contribution

from the long micelles, and is similar to the behavior of a Maxwell fluid. By contrast, the

relaxation time of the unentangled micelles (and the dangling ends) is very short, such that
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their contribution to the linear rheology is important only in the high-frequency regime.

Therefore, the length scale and dynamics of the entanglement strands can be estimated

from the LVE measurement using rubber elasticity theory5 (for more information, see

Chapter 2 Section 2.2.2). In the limit le ∼ lp, each entanglement strand is assumed to be

a rod-like cylinder whose volume is given by Ve = πr2
csle, where rcs is the cross-sectional

radius of the micelle and can be estimated from the SANS data. The volume fraction of

the entanglement strands, φe,tot, is therefore given by

φe,tot = νVe = πr2
csleG0

kBT
, (3.31)

where ν is the number density of entanglement strands. φe,tot defined in this way is

the same quantity defined in Eqn. 3.28. The quantities le and φe,tot therefore provide

a critical link to the measures of the micelle length distributon accessible by LVE and

SANS measurements.

Frequently, this analysis is further used to extract a nominal length of the micelles, as

has been done previously for relatively dilute micelles with a small number of entangle-

ments.5 However, it is important to stress that any micelle length obtained in this way

will be strongly weighted toward the portion of the micelle contour length distribution

that is highly entangled, because the low-frequency linear viscoelasticity of WLMs will

be most sensitive to this portion of the length distribution. It is also important to note

that the average contour length of entangled micelles predicted in this manner will be

significantly larger than the average contour length of all micelles. For this reason, we

choose to use LVE measurements solely to estimate le and φe,tot, rather than any other

information about the micelle contour lengths.

From the preceding discussion, we have established that SANS and LVE measurements

on highly entangled WLMs probe very different aspects of the length distribution. The

52



Theory: Equilibrium Modeling of the Scattering of Polymers and Wormlike Micelles Chapter 3

former captures the micellar solution as being comprised of distinct populations of

unentangled micelles, dangling ends, and entanglement strands. The latter captures the

elasticity of the solution contributed exclusively by the part of the micelle population that

is entangled. We therefore use a combination of these two analyses to fully characterize

the length distribution of highly entangled WLMs.

The procedure for doing so is as follows. First, LVE measurements can be used to

determine le and φe,tot. This requires independent knowledge of the persistence length, lp,

which has been measured for a range of surfactant systems by flow-birefringence19 and

neutron spin echo measurements.20 SANS measurements are then fit to Eqn. 3.30 by

using the model described for unentangled micelles and entanglement strands comprised

of electrostatically-interacting, rigid rods with volume fraction probability distributions

given by Eqns. 3.27, 3.28, and 3.29. The SANS modeling fitting then yields best-fit values

for the volume fraction of unentangled micelles φu,tot, the average contour length of all

micelles L̄c, the cross-sectional radius rcs, and the standard deviation of the entanglement

length σe.

Circularly averaged intensities, I(q), of the static SANS patterns are plotted for 0.3 M

CTAB with 0.2, 0.3, and 0.4 M NaNO3 in D2O in Fig. 3.5. Different regimes can be seen

in the one-dimensional SANS intensity profiles, which are consistent with the schematic

in Fig. 3.3 for highly entangled WLMs. The scattering intensities almost plateau in the

low-q regime (< 0.005Å-1), followed by a mild decrease with increasing q (Fig. 3.5). As

discussed previously, for such highly entangled WLMs, the contribution to the SANS

intensity due to intra-chain correlations is strongly suppressed, such that a plateau in

the intensity occurs at q ∼ 2π/le (Fig. 3.5). In this low-q regime, the intensity increases

with increasing NaNO3, which indicates both enhanced electrostatic screening and growth

of the micelles, given that the volume fraction of the surfactant is held constant. A

sharp decrease in the intensity, I(q) ∼ q−4, occurs in the high-q regime (q > 0.06Å-1),
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which corresponds to the sharp interface between surfactant molecules and the solvent

(Fig. 3.5).6 The high-q scattering is insensitive to NaNO3 concentration, which indicates

that the cross-section of the micelles remains unchanged.
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Figure 3.5: Static SANS spectra for 0.3 M CTAB in D2O at 30 °C with various NaNO3
concentrations. Lines are fits to a rod-like cylinder model with length distribution
given by Eqn. 3.27 and Eqn. 3.28.

The fits of the SANS model to the experimental data are shown in Fig. 3.5 and the

fitting parameters are summarized in Table 3.1. The model fits well with the SANS

data across the entire q-range investigated. The volume fraction of the unentangled

micelles decreases and that of the entangled micelles increases (both in absolute and

relative terms) with increasing NaNO3 concentration, which is consistent with the salt-

induced elongation and growth of WLMs. The total volume fraction of micelles, φtotal,

is approximately constant for WLM samples with 0.2, 0.3, and 0.4 M NaNO3, and thus

consistent with the fact that the surfactant concentration is held fixed. Furthermore, the

fitted average contour length for all the micelles increases with increasing NaNO3, which
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agrees with our expectation that on average the micelles become longer with increasing

salt concentration due to the increase in the micellization enthalpy as well as the micellar

scission energy.5 We re-emphasize that the objective of the above analysis was to quantify

the relative volume fractions of unentangled and entangled micelles, rather than the

overall contour length distribution which is not distinguishable by the SANS data of the

concentrated WLMs. The good fitting quality and the correct trends for the dependence

of the structural parameters on the salt concentration indicates that the model with

entanglement strands and unentangled micelles is suitable for providing estimates of

the relative concentrations of unentangled and entangled micelle populations. This is

critical to enable direct, quantitative comparisons with two-species rheological models for

wormlike micelles, such as the VCM model.14

Table 3.1: Structural parameters estimated from the fit of the SANS data to a rod-like
cylinder model

0.2M NaNO3 0.3M NaNO3 0.4M NaNO3
Cross-sectional radius (rcs) 2.21±0.001 nm 2.18±0.001 nm 2.16±0.001 nm

Volume fraction of unentangled
micelles (φu,tot)

0.0828±0.0007 0.0745±0.0006 0.0647±0.0005

Average contour length of all micelles
(L̄c)

10.2±0.1 nm 12.1±0.1 nm 14.5±0.2 nm

Volume fraction of entanglement
strands (φe,tot)

0.0196±0.0004* 0.0228±0.0006* 0.0279±0.0010*

Average length of entanglement
strands (le)

23.1±0.5nm* 27.8±0.8 nm* 33.4±1.2 nm*

Standard deviation of le (σe) 4.8±0.04nm 6.5±0.04 nm 3.3±0.07 nm
Average charge per micelle (Z) 58.8±0.9 e** 78.1±1.4 e** 74.4±0.3 e**

Total volume fraction
(φtot = φu,tot + φe,tot)

0.1020±0.0008 0.0973±0.0009 0.0926±0.0011

*Estimated from the rubber elasticity theory **e = 1.6x10−19C (Coulomb) **± indicates uncertainty
associated with a 95% confidence interval of the fitting
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3.3 Conclusions

In this chapter, we discussed widely used models for the equilibrium scattering of poly-

mers and wormlike micelles, namely, the Debye function and the Pedersen-Schurtenberger

model, respectively. For the case of highly entangled wormlike micelles, previous models

were not sufficient to explain the suppression of the intensity at low-q. We developed

a scattering model for entangled micelles by modeling the entanglement segments and

the unentangled micelles separately. The equilibrium scattering models discussed in this

chapter lay a foundation for the subsequent chapters which discuss the development and

application of nonequilibrium scattering models for polymers and wormlike micelles in

flow.
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Chapter 4

Nonequilibrium modeling of the

scattering of semiflexible chains

4.1 Introduction

Understanding changes in microstructural dynamics under nonlinear deformations is

critical for designing flow processing of semiflexible chains. Semiflexible chains, such as

wormlike micelles, bottlebrush polymers, DNA, and certain types of polyelectrolytes, are

an important class of soft materials. In addition to rheology, flow-small angle neutron

scattering (flow-SANS) is useful for studying how the material deforms in flow. While

scattering models have been developed to understand the scattering from chain-like

objects at equilibrium, they don’t lend themselves to fitting scattering from semiflexible

polymers in flow. Lacking a detailed flow-SANS model of semiflexible chains, researchers

have used parameterizations of 2D scattering to compare experiments and simulation.

Specifically, by calculating the sector average of the scattering intensity, researchers

compared intensity in the directions parallel to and perpendicular to flow. Additionally,

Picken and coworkers1 and Walker and coworkers2 introduced a scalar quantification of
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the degree of anisotropy in the scattering, the alignment factor, which has been used

extensively when analyzing flow-SANS data. However, neither of these methods can

adequately describe the anisotropic scattering (specifically, the shape, magnitude, and

dependence on the scattering wave vector). Therefore, developing 2D models for scattering

in flow is critically important for understanding the microstructural changes encoded in

the anisotropic scattering patterns.

Instead of scattering in flow, models have been developed to describe the scattering

of semiflexible chains at equilibrium, such as the wormlike chain model by Kratky and

Porod3 and the model by Pedersen and Schurtenberger.4–6 For scattering in flow, models

exist for rod-like particles and flexible chains. Specifically, Hayter and Penfold developed

a model to describe orientation of rodlike particles in shear flow.7 The GLaMM model

includes an expression for the single chain form factor for entangled, flexible polymers in

flow.8 Other authors modified the Debye function to describe scattering of flexible chains

in flow9–11 and stretched semiflexible chains.12 However, the gap between the rod-like

limit and the flexible chain limit hasn’t been bridged by previous models.

Several challenges need to be overcome in order to develop a scattering model for

semiflexible chains in flow. Specifically, (i) we need to develop a form factor for the

semiflexible chain that accounts for both the contribution from individual segments

and the conformation of the entire chain. (ii) We also need an orientation distribution

function of the segments that is consistent with the overall stretch and orientation of the

chain. This work addresses (i) by extending the flow-SANS prediction of single rods by

Hayter and Penfold to model the form factor of connected-cylinders, where each cylinder

represents the Kuhn length on the chain. This work addresses (ii) by incorporating an

orientation distribution for the segments that is self-consistent with the overall stretch

and orientation of the chain. Additionally, we include a structure factor to describe the

interactions between chains in flow. The scattering model we develop here will help
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inform material microstructural deformation obtained from flow-SANS experiments of

semiflexible chains.

4.2 Theory

4.2.1 Previous theory

Form factor of a single rod in flow

For a single cylinder in flow, the scattering intensity has been predicted by Hayter and

Penfold.7 In the original formulation of the model, the scattering plane is the flow-vorticity

(v − ω) plane. We modified the expressions in the model to predict scattering in the

flow-gradient (v −∇v) plane. Figure 1 (a) is a representation of the coordinate system

used. A cylinder with length Lcyl and radius rcyl is oriented at an angle θ from the

vorticity direction (z-axis) and its projection in the flow-gradient plane forms an angle

φ from the flow direction (x-axis). The scattering wavevector q is in the flow-gradient

plane and makes an angle ψ with the x-axis. The normalized form factor amplitude is

calculated as
F (q) = F (q, ζ) = 1

Vp

∫
Vp

exp (−iq · r) d3r

= 2J1 (qrcyl sin ζ)
qrcyl sin ζ

sin
(
q
Lcyl

2 cos ζ
)

q
Lcyl

2 cos ζ

(4.1)

where ζ is the angle between the scattering wavevector q and the cylinder axis and

Vp = πr2
cylLcyl is the volume of the cylinder. The scattering intensity for rods with an

orientation distribution p(θ, φ) is

I (q, ψ) = Φ (∆ρ)2 Vp

∫ 2π

0
dφ
∫ 2π

0
p (θ, φ)F 2 (q, ζ) sin θdθ (4.2)
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where Φ is the volume fraction of the cylinders and ∆ρ is the difference in scattering

length density between the cylinders and the solvent.

In the Hayter-Penfold model, the orientational probability distribution function

(OPDF)7 is

p (θ, φ) = (1− cos 2φ0) (1 + sin2 θ cos 2φ0)3/2

4π [1− sin2 θ cos 2φ cos 2 (φ− φ0)]2
(4.3)

where the average orientation angle φ0 depends on the flow strength.

(c)

(a) (b)

Figure 4.1: Schematic of the connected rod model (a) definition of coordinate system
for a single rod. The scattering wave vector q is in the flow-gradient (v −∇v) plane.
(b) geometric representation of connections between rods and definitions of vectors
used in the model (c) orientation vectors for the rods and end-to-end vector for the
chain as used in the orientation distribution function.
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4.2.2 New theory

Form factor of connected rods to represent semiflexible chain

We extend ideas from the Hayter-Penfold model to describe scattering for semi-flexible

chains in flow for the first time. We use identical cylinders of length Lcyl and radius rcyl).

The cylinders are placed end-to-end and can freely rotate. Cylinder i is oriented at an

angle θi from the vorticity direction (z-axis) and its projection in the flow-gradient plane

forms an angle φi from the flow direction (x-axis). For multiple cylinders, the scattering

amplitude is:

F (q, s1, ..., sn) = F1 (q, s1) + F2 (q, s2) + F3 (q, s3) ... (4.4)

where si is the vector from the origin to the center of cylinder i (See Fig. 4.1(b)). For the

first cylinder, s1 = 0 at the origin and the form factor amplitude for the cylinder #1 is

the same as Eqn. 4.1:

F1(q) = 1
Vp

∫
Vp,1

exp (−iq · r) d3r

= 2J1 (qrcyl sin ζ1)
qrcyl sin ζ1

sin
(
q
Lcyl

2 cos ζ1
)

q
Lcyl

2 cos ζ1

(4.5)

Here r is the vector from the center of the cylinder #1 (also at the origin) to different

positions inside the cylinder. For the second cylinder, r is the vector from the center of

the cylinder to different positions inside the cylinder, but now, the center of the cylinder

is placed at the end of vector s2 away from the origin. So, we can change coordinates

from r′ to r using the relation r′ = r + s2. In general, for the ith cylinder, r′ = r + si
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and the form factor amplitude is:

Fi(q, si) = 1
Vp

∫
Vp,i

exp (−iq · r′) d3r′

= 1
Vp

∫
Vp,i

exp (−iq · (r + si)) d3r

= exp (−iq · si)
2J1 (qrcyl sin ζi)
qrcyl sin ζi

sin
(
q
Lcyl

2 cos ζi
)

q
Lcyl

2 cos ζi

(4.6)

So far, we haven’t discussed how to express the angle between each cylinder and the

scattering vector, ζi, in terms of ψ, θi, and φi. We define a vector di from the center of

cylinder i along its axis to the end of cylinder i. In spherical coordinates, the vector is

written as

di = Lcyl
2


cosφi sin θi

sinφi sin θi

cos θi

 . (4.7)

The scattering vector, which is in the flow-gradient plane (x-y plane), is written in terms

of its magnitude q and angle ψ as:

q = q


cosψ

sinψ

0

 . (4.8)

So, we have

q · di = cos ζi = cosψ cosφi sin θi + sinψ sinφi sin θi. (4.9)

Furthermore, for i > 1, we have

si = di + di−1 + si−1, (4.10)
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which finally enables the computation of q · si for the form factor amplitude of cylinder i.

For a chain with n cylinders, the form factor amplitude F (q, θ1, φ1...θn, φn) is calculated

following Eqns. 4.4-4.10. To calculate the orientationally averaged form factor, we need

to average over the orientation distribution for each cylinder as follows:

P (q) = 1
n2

∫ 2π

0
...
∫ 2π

0
dφ1...dφn

∫ π

0
...
∫ π

0
p (θ1, φ1) ...

p (θn, φn) |F (q, θ1...θn, φ1...φn)|2 sin θ1... sin θndθ1...dθn

(4.11)

Here the form factor is normalized over the volume of the chain. We divide by n2

to ensure the form factor goes to 1 at low-q, as required for the normalized form factor.

We initially used the orientation distribution (Eqn. 4.3) proposed by Hayter-Penfold

for a single cylinder as the orientation distribution for each rod in the connected-rod

model. However, using the Hayter-Penfold orientation distribution for the connected-rod

model has several limitations. First, it is not self-consistent with the overall stretching

and orientation of the entire chain. Specifically, in simple shear flow, the chain rotates

and tumbles as it is being oriented and stretched in flow. Even at large shear rates

accessible experimentally, not all segments in the chain are aligned in the flow direction;

instead, only the average orientation of the end-to-end vector of the chain is in the flow

direction. Second, in the Hayter-Penfold orientation distribution, the average orientation

angle is still larger than 0 even for very sharply peaked orientation distribution, which

contradicts observation from scattering experiments of wormlike micelles that show the

average orientation angle is close to zero even for scattering patterns with relatively low

anisotropy, which is indicative of a broad orientation distribution.
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Improved segmental orientation distribution

Previous work by Pandey and Underhill13 on Brownian dynamics simulation of DNA

gives a suitable approach for deriving an orientation distribution for segments in a

semiflexible chain that is self-consistent with the overall stretch and orientation of the

chain. We briefly describe the approach here. We consider a chain whose extension vector

(end-to-end vector) is denoted as R and whose maximum extension is R0 = nLcyl, where n

is the number of cylinders which also represents the number of Kuhn steps and Lcyl is the

length of each cylinder which also represents the Kuhn length. The chain with extension

R represents an average over all the configurations for which an end-to-end vector is R.

Therefore, the extension is related to the average of a rod R = nLcyl 〈u〉, where the unit

vector u represents the orientation of an individual rod in the chain and 〈u〉 represents

the average orientation of all rods in the chain. To simplify the notation, we use λ ≡ 〈u〉,

so that R
R0

= λ. λ represents both the fractional extension (i.e., stretch) of the chain and

the average of the rod orientation. Thus, the stretch of the chain determines the average

of the rod orientation vector. However, the stretch of the chain does not determine the

orientation distribution. Pandey and Underhill followed a similar approach as Lee and

Larson14 and postulated that the orientation distribution is the one in which the rod is

subject to an external “force” f and the force is determined such that the average over the

distribution is the correct known average. Therefore, the probability distribution of rod

angles is p(u) ∝ exp [f(λ) · u/kBT ]. This choice is only self-consistent if we calculate the

average orientation vector and obtain λ. Because of the form of the distribution, we can

calculate the average analytically. This self-consistency requires that we choose the force

as f(n) = L−1 λ kBT
λ

, where the nonboldface λ denotes the magnitude of the vector and

L−1 is the inverse Langevin function
[
L(x) = coth x− 1

x

]
. The inverse Langevin function
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is approximated as
f

kBT
= L−1(λ) ≈ 3λ− λ3

1− λ2 . (4.12)

Furthermore, we assume that the average orientation of the chain is in the flow-flow

gradient plane (the out-of-plane angle θ0 = π/2). We thus obtain the orientation

distribution:

p(u) ∝ exp
[

3λ− λ3

1− λ2 cos (φ− φ0) sin θ
]
, (4.13)

where θ is the angle formed between a cylinder and the vorticity direction (z-axis), φ is

the angle formed between the projection of a cylinder in the flow-gradient plane and the

flow direction (x-axis), and φ0 is the average orientation angle in the flow-gradient plane

of all cylinders on the chain.

Upon normalization to unity (when integrating over all angles), we obtain:

p(u) =
exp

[
3λ−λ3

1−λ2 cos (φ− φ0) sin θ
]

4π 1−λ2

3λ−λ3 sinh
(

3λ−λ3

1−λ2

) . (4.14)

Using Eqn. 4.14 in the expression for the form factor (Eqn. 4.11), we obtain the following

for the orientationally averaged form factor:

P (q) = 1
n2

∫ 2π

0
...
∫ 2π

0
dφ1...dφn

∫ π

0
...
∫ π

0
p (θ1, φ1, φ0, λ) ...p (θn, φn, φ0, λ)

|F (q, θ1...θn, φ1...φn)|2 sin θ1... sin θndθ1...dθn

(4.15)

Structure Factor

For systems with interchain interactions, a structure factor is needed to fully describe

the scattering intensity. At equilibrium, for semiflexible chains, typically the struc-

ture factor is expressed using a random phase approximation (RPA) with PRISM-type
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interactions,4,5 which gives

S(q) = 1
1 + βP (q) (4.16)

where P (q) (with only the magnitude of q) is the form factor of the chain at equilibrium

and β = [1− S(0)] /S(0), where S(0) is the forward contribution to the structure factor

(i.e., it is the q = 0 value of the structure factor). We generalize the expression for the

structure factor to account for changes in interchain interactions due to chain stretching

and orientation in flow. At equilibrium, the structure factor is a result of excluded volume

interactions and electrostatic repulsions between charged chains. To date, no anisotropic

structure factor model has been developed for semiflexible chains with internal structures,

or more generally for polymeric fluids in flow. A good approximation for the structure

factor in flow is to replace the equilibrium chain form factor in the expression for the

equilibrium structure factor (Eqn.4.16 from the RPA model) with the orientationally

averaged form factor of the connected-rod model (Eqn.4.15):

S(q) = 1
1 + βP (q) . (4.17)

We note that Eqn. 4.17 is identical to Eqn. 4.16 except for the vectorial dependence on

the scattering wave vector q. A similar approach has been used previously to model the

structure factor of rodlike particles in flow and was shown to work quite well.15 The

overall scattering intensity for a monodisperse system is:

I(q) = Φ (∆ρ)2 nπr2
cylLcylP (q)S(q) + bkgd (4.18)

where Φ is the volume fraction of the chains, ∆ρ is the difference in scattering length

density between the chain and the solvent, and bkgd is the background intensity (in an

experiment).
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Include polydispersity of the number of cylinders for equilibrium predictions

For systems with polydispersity, the form factor needs to be averaged over the length

distribution function. One important consideration is that the fractional extension λ

depends on the length of chain, thus, at a given shear rate, chains with different length will

have different values for λ. Here, we will only show the functional form of the polydisperse

model at equilibrium and will leave the discussion of the polydisperse model under flow

for future work. As an example, for chains with an exponential length distribution, the

form factor is:

P (q) =
∫∞

0 exp (−L/Lc)P (q, L)dL∫∞
0 exp (L/Lc) dL

(4.19)

where Lc is the average contour length of the chains. In our connected-rod model, since

the chains are made up of discrete segments with the same length, we use a discretized

version of Eqn.4.19 as follows:

P (q) =
∑n
i=1 exp (−ni/n)P (q, ni)∑n

i=1 exp (−ni/n) , (4.20)

where ni is the number of cylinders in chain i and n is the average number of cylinders

in the chains. The average chain length is then nLcyl. Using the length-averaged form

factor in Eqn. 4.16 for the structure factor, we obtain:

S(q) = 1
1 + βP (q)

. (4.21)

Finally, the equilibrium intensity for a polydisperse system is:

I(q) = Φ (∆ρ)2 πr2
cylLcylP (q)S(q) + bkgd. (4.22)
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Eqn. 4.22 does not have the factor of n in the prefactor because the dependence of the

form facor on the number of segments is included in the length-averaged form factor P (q).

4.3 Methods

4.3.1 Numerical calculations and fitting

We wrote codes in Fortran to enable the model calculations. To compare with

experiments, the experimental values for qx and qy are used to make the 2D predictions of

scattering. To evaluate the multidimensional integral in Eqn. 4.15,we used the integration

method developed by Lepage,16 which is an iterative and adaptive Monte Carlo scheme.

For fitting the model to the equilibrium circular average intensity from experiments, we

used the Levenberg-Marquardt algorithm for the nonlinear least squares curve fitting.17,18

The algorithm combines two numerical minimization algorithms: the gradient descent

method and the Gauss-Newton method. In the gradient descent method, the sum of the

squared errors is reduced by updating the parameters in the steepest-decent direction.

In the Gauss-Newton method, the sum of the squared errors is reduced by assuming the

least squares function is locally quadratic in the parameters, and finding the minimum of

this quadratic. Note: The Fortran code is available to the reader upon request.

4.3.2 Flow-SANS experiment of wormlike micelles

Solutions containing 60 mM cetyltrimethylammonium bromide (CTAB, Sigma Aldrich)

were prepared in deuterium oxide (D2O, 99.9%, Cambridge Isotope Laboratories) with

1:3 molar ratio of CTAB to sodium nitrate (NaNO3, Sigma Aldrich). All materials were

used as supplied without further purification. For neutron scattering measurements, it

was necessary to prepare samples using deuterium oxide to reduce incoherent scattering.
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Dry powders of CTAB and NaNO3 were added to D2O in the appropriate amounts. After

agitation for complete powder dispersion, the solutions were placed in a temperature-

controlled oven held at 47 °C for at least 1 day to achieve sample equilibration before

measurements.

SANS measurements were performed using the NGB 30m SANS instrument at the

National Institute of Standards and Technology Center for Neutron Research (Gaithers-

burg, MD). Anisotropic scattering was characterized using flow-SANS for simple shear

flow in the flow-gradient (v −∇v) plane using the 1-2 shear cell sample environment.19

A wavelength of λ0 = 6 Åwith a wavelength spread of ∆λ0/λ0 = 0.14 was used. The

scattering vector q is defined as q = 4π sin (α/2) /λ0 where α is the angle at which the

neutron is scattered and λ0 is the neutron wavelength. Scattering from the sample was

collected in the q range 0.005 − 0.2 Å−1 to span the entire range of length scales from

the radius up to the contour length of the micelles. The temperature was maintained

constant at 25 °C through the entire experiment with a water bath for the shear cell.

The 2D scattering intensities were corrected for empty cell, plexiglass standard, and

detector efficiency. Scattering patterns were reduced using standard protocols with Igor

Pro software.20

4.4 Results

4.4.1 Equilibrium fitting

To validate the model, we will compare model predictions with flow-small angle

neutron scattering (flow-SANS) experiments of wormlike micelles. We chose wormlike

micelles, instead of monodisperse polymers, as a model system because they are known

to be semiflexible and have significant contribution from the cross section. Furthermore,
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the typical length scale (1 nm-hundreds of nm) for wormlike micelles enable measurement

from the radius up to the contour length in flow-SANS experiments. Wormlike micelles

also show significant anisotropy in flow due to segmental orientations, in contrast to weak

anisotropy in most flexible and semiflexible polymers, which allows better testing of the

orientation distribution in the scattering model.

Wormlike micelles are polydisperse with an exponential length distribution at equi-

librium. First, we used the polydisperse version of the model to fit circular average of

scattering intensity at equilibrium in order to extract average chain length (Fig. 4.2(a)).

As an initial guess, we used the Kuhn length of the wormlike micelles determined from

previous work on the same system as an estimate for the cylinder length. Specifically,

Helgeson et al.21 determined the persistence length lp to be 25 nm for the 60 mM

CTAB/180 mM NaNO3 sample using flow-birefringence measurements. We used 10 chains

with an increasing number of cylinders (ni = 1 to 12). The number density distributions

for the chains with different length follow an exponential distribution. For wormlike

chains, the Kuhn length is twice the persistence length, b = 2 ∗ lp = 50 nm. Previously,

the Pedersen-Schurtenberger model was used to fit the equilibrium intensity and the

average length was found to be 325 nm whereas the average length estimated from

linear viscoelastic rheology is 264 nm.21 Fig. 4.2(b) compares the continuous exponential

distribution with the discretized exponential distribution used in the polydisperse fitting.

In an exponential distribution with an average chain length close to 4 ∗ b, chains with

more than 12 Kuhn segments have a very small volume fraction, thus their contributions

are negligible. We performed multiple fittings and verified that increasing the maximum

number of segments beyond 12 did not change the fitting results significantly.
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(a)

(b)

Figure 4.2: Equilibrium Fitting (a) Comparison of equilibrium scattering intensity
from wormlike micelle experiment, polydisperse connected-rod model fitting, and
monodisperse connected-rod calculation (b) Discretization of exponential distribution.
The red curve is the continuous exponential distribution and the points are values
corresponding to the discretized exponential distribution.

In Fig. 4.2(a), the black symbols represent the experimental results and the red curve

represents the polydisperse model fit of the experiment. The model does an excellent

job fitting the experimental result. The fitting results are reported in Table 4.1. The

cyan curve in Fig. 4.2(a) represents the monodisperse calculation using n from the
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polydisperse fit as the number of cylinders. The monodisperse calculation also gives very

good agreement with the experimental result. Although it is well known wormlike micelles

have an exponential length distribution at equilibrium, whether the length distribution

and average length of wormlike micelles change in flow is still highly debated. Thus, when

comparing flow-SANS experiments of wormlike micelles with the model predictions in the

next section, we will only use the monodisperse version of the model.

Table 4.1: Parameters for model fitting of equilibrium intensity

n rcyl (nm) Lcyl (nm) β Bkgd (1/cm)

4 2.3 43.1 3.11 0.065

Since the Pedersen-Schurtenberger model has been well-established for describing

semiflexible chains at equilibrium, to further validate our model, it is worth examining

the characteristic scaling of the scattering intensity with the scattering wavevector q as

we change the flexibility of the chain and comparing with the Pedersen-Schurtenberger

model. Keeping the total chain length at 172.5 nm, we systematically varied the cylinder

length. In Fig. 4.3(a), the blue curve represents n = 1, Lcyl = 172.5 nm, the red curve

represents n = 4, Lcyl = 43.1 nm, and the black curve represents n = 10,Lcyl = 17.2 nm.

The flexibility of the chain increases as the ratio of chain length to segment length

(Lchain/Lcyl) decreases. For n = 1, we get the rigid-rod limit, with a slope of -1 at low-q,

for n >= 10, we obtain the flexible chain limit with excluded volume interactions, with a

slope of -5/3. For intermediate values of n, we are in the semiflexible limit. Thus, the

connected-rod model can span the full range of flexibility for the chain. In Fig. 4.3(b),

the connected-rod model prediction is compared with the Pedersen-Schurtenberger model

for Lcyl = 43.1 nm and Lchain = 172.5 nm. The Pedersen-Schurtenberger model explicitly

includes excluded volume interactions. In the connected-rod model, excluded volume

interactions are naturally built in because the cylinders are placed end-to-end and we
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explicitly account for the location of adjacent segments relative to each other. Thus, it is

very unlikely for segments to exactly overlap on top of each other.

(a)

(b)

Figure 4.3: Check for characteristic scaling in connected rod model (a) Scattering
intensity (without structure factor) for fixed chain length and varying number of
segments (b) Compare connected rod model with Pedersen-Schurtenberger model for
the same parameters.

4.4.2 Model predictions in flow

Flow-Small Angle Neutron Scattering (flow-SANS) was used to probe the microstruc-

tures of wormlike micelles (60 mM CTAB/180 mM NaNO3 sample) in flow. 2D scattering

patterns in the mid-q configuration of the flow-flow gradient plane are shown in the top
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panel of Fig. 4.4. At equilibrium, the 2D scattering is isotropic because the micelles

are randomly oriented. As shear rate increases, the scattering pattern shows increasing

anisotropy. Also, in the flow-flow gradient plane, the average orientation of WLMs

changes with shear rate. This is expected because in shear flow, the micelles tumble

in the flow-flow gradient plane. At a very low shear rate, the average orientation angle

with respect to the flow direction is 45°. As shear rate increases, the average orientation

shifts towards the flow direction. At high enough shear rate, the average orientation

of the micelles is in the flow direction. The circular region of very low intensity (blue

circle) at the center of the scattering patterns comes from the beam stop of the scattering

instrument.

In order to compare the predictions of the connected-rod model with experiments, we

need to determine the average orientation angle φ0 and the fractional extension λ in the

orientation probability distribution function (Eqn. 4.14). We first calculate the annular

average of the scattering intensity from experiments at q = 0.025Å−1, which is the q value

corresponding to the persistence length of the micelles. Following conventional analysis of

the 2D anisotropic scattering data,1,2 we fit the Maier-Saupe distribution to the annularly

averaged intensity Ic (q, φ) to obtain the average orientation angle, which is used in the

connected-rod calculation to match experimental data. Then, we numerically integrated

the annular-averaged intensity to compute the alignment factor according to:

Af = −
∫ 2π

0 Ic (q, φ) cos [2 (φ− φ0)] dφ∫ 2π
0 Ic (q, φ) dφ

(4.23)

The alignment factor quantifies the degree of segmental alignment of the micelles induced

by flow. We systematically vary the fractional extension λ in the simulation and compare

the resulting alignment factor with that in the experiment. We then choose the values of

the fractional extension λ that give the best match of experimental Af and the simulation.
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Results using these λ values are shown in the bottom panel of Fig. 4.4. The rest of the

model parameters are fixed from the equilibrium fitting. Once the average orientation and

degree of anisotropy are fitted, the connected-rod model does a very good job capturing

the shape of the anisotropy and the gradual change in the anisotropy with increasing shear

(increasing fractional extension). Here, the experimental data and predicted scattering are

shown with the same color bar. The model describes the dumbbell shape of the anisotropy

at mid-q and high-q really well.

ሶ𝛾 = 0 𝑠−1

𝜆 = 0

ሶ𝛾 = 145 𝑠−1ሶ𝛾 = 56 𝑠−1 ሶ𝛾 = 750 𝑠−1Experiment

Simulation

ሶ𝛾 = 20 𝑠−1

𝜆 = 0.3 𝜆 = 0.4 𝜆 = 0.55 𝜆 = 0.75

Figure 4.4: Comparison of 2D scattering intensity in the mid-q range from wormlike
micelle experiments and the connected-rod model prediction using the Underhill OPDF.
The values for the effective stretch, λ, are chosen to give the best match of the alignment
factor calculated from experimental results and the simulation. All of the scattering
patterns are plotted with the same color scale.

Fig. 4.5 presents a comparison of experimental scattering patterns and connected-rod

model predictions for the low-q configuration using the same φ0 and λ as in Fig. 4.4.

Again, we achieve very good agreement between the experiment and simulation. In the

low-q region, the scattering intensity is more sensitive to the polydispersity and potential

net breakage of the micelles in flow. Since we are using the monodisperse calculation with

fixed chain length, any quantitative differences between the experiment and simulation at
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low-q can be a result of polydispersity or chain breakage.

𝜆 = 0

Experiment

Simulation 𝜆 = 0.3 𝜆 = 0.4 𝜆 = 0.55 𝜆 = 0.75

ሶ𝛾 = 0 𝑠−1 ሶ𝛾 = 145 𝑠−1ሶ𝛾 = 56 𝑠−1 ሶ𝛾 = 750 𝑠−1ሶ𝛾 = 20 𝑠−1

Figure 4.5: Comparison of 2D scattering intensity in the low-q range from wormlike
micelle experiments and the connected-rod model prediction using the Underhill OPDF.
The values for the effective stretch, λ, are chosen to give the best match of the alignment
factor calculated from experimental results and the simulation. All of the scattering
patterns are plotted with the same color scale.

To better visualize whether the model can capture the shape of the scattering

anisotropy, we make a comparison of the annular average of the experimental scat-

tering pattern and the at q = 0.025 Å−1 in Fig. 4.6. The scattering intensity is normalized

by the average value of the intensity. For all 4 shear rates, the simulation exactly matches

the shape of the annular average for the same alignment factor. This further validates

the scattering model.
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(a) (b)

(c) (d)

Figure 4.6: Comparison of annular average of intensity from experiment and connect-
ed-rod model prediction using the Underhill OPDF with the same degree of anisotropy
(a)Af = 0.05 (b)Af = 0.09 (c)Af = 0.20 (d)Af = 0.45.

One remaining question we should answer is whether the values for the fractional

extension we obtain from matching the degree of anisotropy between simulation and

experiments are physically reasonable. Thus, we plot the fractional extension as a function

of experimental shear rate in Fig. 4.7. To better compare with literature predictions of

the chain stretching, here, we use the dimensionless shear rate, Wi, defined as Wi = τ γ̇,

where τ = 0.2s is the relaxation time obtained from linear viscoelastic measurement of the

wormlike micelles. The Wi-dependence is qualitatively similar to previous experiments of

stretching DNA and FENE chain predictions.
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Figure 4.7: Plot effective stretch λ as a function of shear rate obtained from matching
degree of anisotropy in connected-rod model prediction with experiment.

In addition to matching the alignment factor between simulation and experiment at

q = 0.025Å-1, which corresponds to the inverse of the persistence length, we are interested

in verifying whether the model can capture the correct q-dependence of the scattering

anisotropy. Thus, we make a comparison at different q values for the simulation and

experiment (Fig. 4.8) corresponding to the shear rate and effective stretch in Fig. 4.6(d)

above. For all q values investigated, the normalized intensity (i.e., annular averaged

intensity divided by average intensity) shows excellent agreement between simulation and

experiments. Furthermore, the computed alignment factor at each q value also shows

good agreement between simulation and experiment. Thus, the connected-rod model

with the Underhill OPDF is able to capture the q-dependent anisotropy in scattering

experiments of semiflexible chains in flow.
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(a) (b)

(d)(c)

Figure 4.8: Compare q-dependent annular average in experiment (γ̇ = 750s−1) and
model prediction (λ = 0.75) for (a) q = 0.006Å-1 (b) q = 0.01Å-1 (c) q = 0.05Å-1

(d) q = 0.1Å-1.

4.5 Discussion

Given the results just presented, we will now provide perspectives on how this work

could provide insights for how material microstructures change in flow.

In the theory section, we talked about the limitations associated with using the

orientation distribution developed by Hayter-Penfold in the connected-rod model. Here,

we will make a comparison of the connected-rod model predictions using the Hayter-

Penfold OPDF and Underhill OPDF and demonstrate the sensitivity of the anisotropic

scattering to the orientation distribution.

We predict the scattering using Eqn. 4.18 with the Hayter-Penfold OPDF given in
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Eqn. 4.3. In the Hayter-Penfold OPDF, the only adjustable parameter is the average

orientation angle φ0. In the original Hayter-Penfold paper, the orientation angle is related

to the applied shear rate and the rotational diffusivity of the rod. Since we are most

interested in determining whether this OPDF can capture the qualitative features in the

scattering anisotropy, regardless of whether it predicts the correct shear-rate dependence,

to simplify the comparison, we directly varied the average orientation angle φ0 instead of

changing the shear rate. Shown in the top panel of Fig. 4.9 are the scattering patterns

from the wormlike micelle experiment. The scattering patterns in the bottom panel are

from the connected-rod model prediction with the Hayter-Penfold OPDF. All of the other

model parameters are the same as those used in the calculations with the Underhill OPDF

(Fig. 4.4). To determine what φ0 to use in the simulation, we matched the degree of

anisotropy between the experiment and the simulation by calculating the annular average

of the intensity and obtaining the alignment factor, as discussed previously. It is important

to note here, since the Hayter-Penfold OPDF only has one adjustable parameter, φ0

determines both the average orientation angle and the sharpness of the OPDF. In all cases

shown here, for the same degree of anisotropy, the orientation angle in the simulation is

larger than that in the experiment. Additionally, the dumbbell shape in the simulation

is more elongated in the simulation than in the experiment. In order words, even if the

difference in the direction of the tilt of the anisotropy can be accounted for, the shape

of the anisotropy in the experiment is not fully captured by the Hayter-Penfold OPDF.

This effect is more directly seen in a comparison of the annular average of the simulation

and experiments corresponding to the same parameters in the 2D scattering, as shown in

Fig. 4.10. For the same degree of anisotropy, there is a significant offset in the average

orientation angle in the simulation compared to the experiment. The simulation also has a

sharper peak for the intensity than in the experiment. This indicates the Hayter-Penfold

OPDF, which only uses one parameter to describe both the average orientation angle
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and the shape of the OPDF, cannot satisfactorily describe the orientation distribution of

segments in semiflexible chains.

ሶ𝛾 = 0 𝑠−1

𝜙0 = 𝜋/4 𝑟𝑎𝑑

ሶ𝛾 = 225 𝑠−1ሶ𝛾 = 56 𝑠−1 ሶ𝛾 = 560 s−1Experiment

Simulation

ሶ𝛾 = 34 𝑠−1

𝜙0 = 0.7 𝑟𝑎𝑑 𝜙0 = 0.68 𝑟𝑎𝑑 𝜙0 = 0.5 𝑟𝑎𝑑 𝜙0 = 0.35 𝑟𝑎𝑑

Figure 4.9: Comparison of 2D scattering intensity in the mid-q range from wormlike
micelle experiments and the connected-rod model prediction using the Hayter-Penfold
OPDF. The values for the average orientation angle, φ0, are chosen to give the best
match of the alignment factor calculated from experimental results and the simulation.
All of the scattering patterns are plotted with the same color scale.
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(a) (b)

(d)(c)

Figure 4.10: Comparison of annular average of intensity from experiment and simulation
using Hayter-Penfold OPDF with the same degree of anisotropy (a) Af = 0.07 (b)
Af = 0.09 (c) Af = 0.27 (d) Af = 0.44.

Furthermore, our approach illustrates the importance of including internal structures

(i.e., connected segments) and contribution from cross sections (i.e., finite radius) when

describing semiflexible chains with thick cores (e.g., wormlike micelles, bottle-brush

polymers). If a modified Debye function is used to predict the scattering of polymer

chains in flow, the scattering function only works in the low-q region and cannot fully

describe the segmental contribution to the scattering.

Finally, when comparing with wormlike micelle experiments, we did not include

polydispersity and breakage in the current scattering model in flow. This is because

including polydispersity would require assuming a length-dependence of the fractional

extension for each chain and we wouldn’t be able to easily adjust the fractional extension
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to match the degree of anisotropy between the experiment and simulation. Furthermore,

there is not clear consensus in the field about if and how the length distribution of

wormlike micelles change in flow.

The near quantitative agreement between the monodisperse version of the connected-

rod model with Underhill OPDF and wormlike micelle experiments suggests that the

scattering of WLMs in flow can be described as semiflexible chains with stretching,

orientation, and interchain interactions. More sensitive measurements are needed to

probe whether the length distribution and average length of wormlike micelles change in

flow. Examples of these measurements, such as transient-SANS measurements, steady

flow-SANS measurements on WLMs of different concentrations at different temperatures

will be analyzed in the framework of the current model in an upcoming publication. In

this regard, the development of the scattering model is a key step to decoupling the

contributions of chain stretch, orientation, and interactions to the scattering intensity

from possible changes in chain length distribution in flow.

4.6 Conclusions

In this work, we develop a scattering model for semiflexible chains in flow. The model

uses connected rods with a segmental orientation distribution that is self-consistent with

the overall stretch of the chain and includes an RPA-type structure factor in flow. By

using a discrete, polydisperse version of the model, we show that the model can be used

to fit experimental data of wormlike micelles (and semiflexible polymers) and obtain

chain length and Kuhn length that are consistent with previous literature results. By

using a monodisperse version of the model in flow, we show that the flow-SANS results

of wormlike micelles can be quantitatively predicted by the connected-rod model using

parameters determined from the equilibrium fit and with the fractional extension and
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average orientation angle determined from flow-SANS experiments.

Furthermore, we illustrate the importance of including an orientation distribution

(Underhill OPDF) that is self-consistent with the overall stretch and orientation of the

chain. Specifically, by comparing the Underhill OPDF with the Hayter-Penfold OPDF,

we show that the former has an excellent agreement with q-dependent anisotropy observed

in experiments while the Hayter-Penfold OPDF cannot accurately capture either the

average angle or the shape of the anisotropy. In the next chapter, the model developed in

this chapter will be compared with more sensitive flow-SANS experiments of wormlike

micelles to identify the signatures of chain scission. Although the focus of the experimental

comparison in this work is on wormlike micelles, the flow-scattering model can be used

to describe other types of semiflexible chains, in particular, systems with significant

segmental orientation and contribution from finite cross sections that cannot be described

by currently existing models. We expect the model will prove useful for extracting

information about material deformation in flow, beyond simple analysis of alignment

factor and sector average that are more frequently used in flow-SANS studies so far.
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Chapter 5

Experimental investigation of

flow-enhanced scission of wormlike

micelles

5.1 Introduction

Understanding structure-property relationships in surfactant-based fluids is critical

for modeling the fluid to achieve the desired flow properties and to avoid flow instabilities.

Wormlike micelles (WLMs) are long, semi-flexible chainlike surfactant aggregates that show

polymer-like viscoelastic properties. Because of their rheological properties, combined

with their detergency and structure, WLMs are used in the oil and gas industry, and

more noticeably in consumer products such as shampoo and body wash. In all of these

applications, wormlike micelles are subjected to flow during processing and end-use. The

rheology of WLMs is critical to the successful formulation and engineering of these products

and processes.1 Such applications benefit from understanding how the microstructures

influence the flow properties.
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WLMs are often likened to “living polymers”, since associations between surfactants

are impermanent, leading to dynamic scission and recombination of the micelles due to

thermal fluctuations. At equilibrium, the probability of chain scission and recombination

is assumed to be equal at any position along the chain, and this results in an exponential

length distribution. Mean field theories and population balances by Cates and coworkers

have predicted an exponential equilibrium length distribution,2,3 which is in good agree-

ment with structural measurements of sufficiently long WLMs in dilute and semi-dilute

solutions.4,5 Although the equilibrium length distribution of wormlike micelles has been

well studied, very little is known about how the distribution is modified by flow. There

is still debate in the field about whether flow significantly contributes to the scission of

wormlike micelles, thereby changing the length distribution. On the one hand, extensions

of the Cates model to nonlinear flows have assumed that scission and recombination are

not affected by flow.6 The nonlinear effects of the flow enter solely through its influence

on chain relaxation via reptation.6 On the other hand, other rheological theories adopted

ad hoc approaches for modeling the influence of flow on scission and recombination.

For example, Vasquez and co-workers developed the VCM model for semi-dilute, shear

thinning and shear banding wormlike micelles, in which flow-enhanced scission of micelles

was predicted to result from increased tension in the chains with increasing applied strain,

but the recombination rate of chains was assumed to be constant and independent of

flow.7 In contrast, Graham and coworkers developed a reactive rod model for dilute,

shear thickening wormlike micelles which predicts flow-enhanced recombination: flow

aligns the micelle, which in turn increases the probability of recombination. Enhanced

alignment and recombination create a positive feedback, which causes an increase in

the average length of WLMs.8 So, currently from the theoretical perspective, there is a

lack of agreement about how (or whether) flow affects scission, and the resulting length

distribution.
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Despite the predictions discussed above, there is currently no direct microstructural

evidence from experiments for how flow affects the scission and recombination process

in WLMs. Previous experiments relied mostly on rheological measurements, which

are sensitive primarily to the long micelle species, not the entire length distribution.

Extensional rheology experiments have suggested that micellar breakage can happen as a

result of strong flows.9 Rothstein and co-workers10,11 measured the extensional rheology

of wormlike micelles using a filament stretching rheometer and observed the filament

abruptly ruptures near its axial mid-plane above a critical extension rate. The failure of the

wormlike micelle filaments occurs before any significant necking has appeared. The authors

suggested that the observed filament failure likely stems from the scission of wormlike

micelles resulting in a dramatic breakdown of the micelle network en masse.10 Bhardwaj et

al. 12 studied the effect of pre-shear on extensional deformation of WLMs and found the

value of the elastic tensile stress at filament rupture and the extensional viscosity decrease

dramatically with increasing pre-shear rate and duration, which the authors attribute to

possible reduction in the size of WLMs due to pre-shear. Furthermore, researchers13,14

suggest the wake instability found in WLMs past a falling sphere is related to the scission

of wormlike micelles in the wake of the falling sphere, where a strong extensional flow

is present. Although previous extensional and complex flow measurements of wormlike

micelles have suggested flow-induced scission, these measurements can’t directly probe the

microstructures of the wormlike micelles in flow and researchers typically need to interpret

observations at the macroscopic level (e.g., filament fracture and wake instability) and

hypothesize that the effects are caused by micellar scission. Therefore, direct structural

measurements in flow are needed confirm the presence of flow-induced scission of wormlike

micelles and to do so in a model-agnostic way.

Small angle neutron scattering (SANS) is a very useful technique for measuring

microstructures of WLMs because it probes length scales from 1-200 nm, which covers
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the range of characteristic length scales in WLM solutions. WLMs exhibit a hierarchy

of length scales: ranging from a few nm for the cross-sectional radius, rcs, to a broad

distribution of micellar contour lengths, LC , with an average length ranging from 100 nm

to 1 µm, depending on the type of WLM and solution conditions.15 The WLM persistence

length, lp, is a measure of the chain stiffness and is typically 20 nm, at which length scale

the wormlike micelles can be considered locally rigid.1 For wormlike micelles at relatively

low concentrations, the scattering data shows similar dependence on the scattering vector

q as that of classical polymers. At low enough q (q
〈
R2
g

〉
� 1, where

〈
R2
g

〉
is the square

average radius of gyration), I ∼ 1− q2
〈
R2
g

〉
/3). The scattering curve levels off in this

low-q range (the Guinier region) due to the finite size of the micelles relative to the length

probed. Beyond the Guinier region, the scattering crosses over to a power law behavior

q−5/3 due to the excluded-volume statistics of the micelles. At higher q, the scattering

probes the local cylindrical structure and it crosses over to q−1. However, this power law

is often masked by the polydispersity in micellar length and the cross-section Guinier

region that originates from the finite diameter of the micelles. Beyond this region, the

scattering curve drops significantly and at the highest q it follows the Porod law q−4

which occurs for objects with sharp interfaces.16

Static SANS scattering of wormlike micelles has been studied extensively both experi-

mentally 4,17 and theoretically.18 In particular, Pedersen and Schurtenberger extended

models originally developed for polymers and used Monte Carlo simulations to develop

WLM scattering models ,19,20 which have been shown to give very good agreement with

experimental data at equilibrium.4,16 Specifically, the theory captures the q-dependence

across all the characteristic length scales in WLMs, from the cross-sectional radius, to the

persistence length, to the radius of gyration of the chain. Furthermore, the theory takes

into account excluded volume and concentration effects. However, no theories have been

developed for scattering of WLMs in flow due to the combined effect of the micelle length
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polydispersity, changes in length distribution, orientation, and interchain interactions on

the projected flow-induced anisotropic scattering in the detector plane.

Many flow-SANS experiments have probed WLM alignment,21–23 but no studies have

probed how flow potentially affects the scission and recombination process and the

resulting length distribution of the micelles. This is because (i) previous flow-SANS

and light scattering24 experiments were limited by structural complications including

entanglement and branching, as well as flow instabilities including shear banding and elastic

instability.23,25 Additionally, (ii) procedures for decoupling changes in micellar length

from changes in orientation and structure factor effects have not been developed. The

present study addresses (i) by conducting SANS experiments on a carefully designed series

of linear, weakly entangled WLMs, which provides access to stable flows up to relatively

large shear rates, and addresses (ii) by developing new approaches for analyzing both the

steady-state and time-resolved flow-SANS patterns to deconvolute the contributions to

scattering from changes in micelle orientation and stretching, from effects due to changes

in micelle length in flow. Knowledge of how flow affects the average micellar length will

offer key insights for developing new models for wormlike micelles.

5.2 Methods

5.2.1 Selection of model wormlike micelle system and wormlike

micelle preparation

We chose to use cetyltrimethylammonium bromide (CTAB) as the surfactant and

sodium nitrate (NaNO3) as the salt for forming wormlike micelles because (1) in the

presence of CTAB, NO3
- was found to be the most effective at producing elongated micelles

compared to other simple inorganic salts26 and (2) the equilibrium length distribution
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and linear rheology of WLMs made from CTAB and NaNO3 has been extensively studied,

which provides a good basis for studying effects of flow on micellar length distribution.4

For this, we chose a concentration range that produced linear, weakly entangled WLMs

that do not exhibit shear banding.

Solutions containing 60 mM, 80 mM, and 100 mM cetyltrimethylammonium bromide

(CTAB, Sigma Aldrich) were prepared in deuterium oxide (D2O, 99.9%, Cambridge

Isotope Laboratories) with 1:3 molar ratio of CTAB to sodium nitrate (NaNO3, Sigma

Aldrich). All materials were used as supplied without further purification. For neutron

scattering measurements, it was necessary to prepare samples using deuterium oxide to

reduce incoherent scattering. Dry powders of CTAB and NaNO3 were added to D2O in

the appropriate amounts. After agitation for complete powder dispersion, the solutions

were placed in a temperature-controlled oven held at 47 °C for at least 1 day to achieve

sample equilibration before measurements.

5.2.2 Rheological characterization

Rheological characterization was performed on a TA Instruments AR-G2 stress-

controlled rheometer with a Taylor-Couette geometry with a rotating inner cylinder of

R1 = 13.98 mm and a stationary outer cylinder of R2 = 15.21 mm. This geometry

was chosen to closely resemble the curvature and the gap size of the geometry used in

flow-SANS measurements. The fluid temperature was set with a Peltier-controlled outer

cylinder. A solvent trap was used to prevent evaporation of D2O during the measurements.

The sample was loaded and conditioned at rest for 700 s at the temperature corresponding

to the experiment. A pre-shear of 1s−1 was applied for 60 s and the sample was allowed

to rest for 100 s to erase any loading history and to let the temperature equilibrate. The

storage (G′) and loss (G′′) moduli were measured by performing a frequency sweep at
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5% strain (in the linear viscoelastic regime: LVE) from 200 rad/s to 0.1 rad/s and then

another from 0.1 rad/s to 200 rad/s. No hysteresis in the LVE measurements was observed

for any sample. Steady-shear tests were run with logarithmic spacing for shear rates, γ̇,

ranging from 0.01 to 1500 s-1 . For each measurement during the steady-state test, the

steady state sensing was turned on, with a 1% tolerance within 3 consecutive points, 60 s

maximum equilibration time, and 15 s sample periods, to ensure steady state has been

achieved before results were recorded.

5.2.3 Particle tracking velocimetry

Velocimetry measurements were carried out using particle tracking velocimetry (PTV)

on an Anton-Paar Physica MCR300 rheometer using a Taylor-Couette geometry. The

outer stationary quartz cup has a fixed radius R2 = 17.5 mm. We used an inner moving

anodized aluminum cylinder with a radius R1 = 17 mm, which corresponds to a gap size

of 0.5 mm. The temperature of the Couette cell is controlled with a circulating water

bath. Sample preparation for PTV measurements consisted of seeding the fluid with

approximately 300 ppm of neutrally buoyant hollow silica spheres (8-12 µm diameter,

TSI Incorporated). In all cases, addition of tracer particles at such low concentrations

produced no significant changes in the measured sample rheology. An incident sheet

laser on the inner cylinder was introduced from the side at a height of 6 mm from the

bottom of the 15.7 mm tall inner cylinder, and the reflection from the tracer particles was

collected through a sapphire window at the bottom of the geometry and imaged using

a CCD camera. Both shear stress and PTV measurements were made simultaneously

after quickly ramping the applied shear rate of the rheometer from rest to the desired

rate within 0.1 s. Measurements were made for ∼160 s at each shear rate to ensure the

achievement of steady state. The consecutive images taken with the camera were analyzed
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using a standard particle-tracking algorithm27 to obtain spatially resolved fluid velocity

vθ(r) as a function of the position r within the gap, measured from the inner moving

cylinder. The steady-velocity profiles were obtained by averaging the PTV data over ∼30

different pairs of consecutive images after the shear stress achieved steady state.

5.2.4 Small angle neutron scattering

Steady state flow-SANS

SANS measurements were performed using the NGB 30m SANS instrument at the Na-

tional Institute of Standards and Technology Center for Neutron Research (Gaithersburg,

MD). Anisotropic scattering was characterized using flow-SANS for simple shear flow in

both the flow-gradient (v−∇v) plane and the flow-vorticity (v−ω) planes. Measurements

in the flow-gradient plane were made using the 1-2 shear cell sample environment28 and

measurements in the flow-vorticity plane employed a Couette cell controlled by an Anton

Parr rheometer. A wavelength of λ0 = 6 Åwith a wavelength spread of ∆λ0/λ0 = 0.14

was used. The scattering vector q is defined as q = 4π sin (α/2) /λ0 where α is the angle

at which the neutron is scattered and λ0 is the neutron wavelength. Scattering from the

sample was collected in the q range 0.005− 0.2 Å−1. The temperature was maintained

constant at set temperature through the entire experiment with a water bath for the

shear cell. The 2D scattering intensities were corrected for empty cell, plexiglass standard,

and detector efficiency. Scattering patterns were reduced using standard protocols with

Igor Pro software.29

Time-resolved flow-SANS

Time-resolved flow-small angle neutron scattering is used to capture structures of

wormlike micelles during the start up and cessation of flow. The method requires the
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synchronization of the scattering and start up of the flow geometry (1-2 plane shear cell or

the rheometer). The time-resolved experiments bin data into nb = ttot/∆t = 150 bins of

∆t duration for a cycle time of ttot. Here the cycle time ttot is 15 s, with 5 s after the start

up of flow and 10 s after flow cessation. The next cycle starts immediately after the end of

the first cycle. The scattering intensity is collected over a prescribed number of repeated

transient experiments nc and summed to achieve sufficient total scattering intensity. Here

we use nc ≈ 330 in the rheometer and nc ≈ 600 in the shear cell. A prerequisite for

choosing a material to be investigated with time-resolved flow-SANS is that it behaves

reproducibly for each subsequent transient event so that a sufficient number of cycles

can be summed to collect statically valid scattering patterns in each time bin. Here we

validate that the sample fully recovers to equilibrium during the relaxation period as

evidenced by the magnitude of the isotropic intensity that no longer changes with time.

5.3 Results

The results section will be divided into four sections. In the first section, we report

linear viscoelastic and steady shear flow rheological characterization of the wormlike

micelle solutions. We fit the linear viscoelastic measurements to single-mode Maxwell

model to extract parameters describing the equilibrium properties of the solution. In

the second section, we report 2D flow-SANS measurements in two projection planes

and discuss methods of parameterization to extract useful information about changes in

average intensity and the degree of anisotropy in flow. In the third section, we compare the

steady state flow-SANS experimental results with predictions of the connected-rod model

that we introduced in Chapter 4 to investigate the possibility of flow-enhanced scission.

In the final section, we analyze time-resolved flow-SANS measurements to quantify the

timescales associated with different relaxation mechanisms.
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5.3.1 Rheological Characterization

The linear viscoelasticity of the solution containing 60 mM CTAB/180 mM NaNO3,

80 mM CTAB/240 mM NaNO3, and 100 mM CTAB/300 mM NaNO3 prepared in D2O

at 25 °C, are shown in Fig. 5.1(a). Strain sweeps demonstrated that the results are in

the linear viscoelastic regime. The storage modulus G′ is shown in filled symbols and the

loss modulus G′′ is shown in open symbols. The storage modulus scales as ω2 and the

loss modulus scales as ω in the low frequency region. With increasing concentration, the

moduli curves shift upwards and to the left. Two time scales can be defined from the data:

the longest relaxation time, τ , is defined by the frequency at the crossover ωr = 1/τ of

G′ and G′′; the breakage time, τbr, is defined from the higher frequency ωmin = 1/τbr,

where ωmin is the frequency at which a local minimum in G′′ is observed.30 The results

are well described by a single-mode Maxwell model:

G′ (ω) = G0 (τ ω)2

1 + (τ ω)2 , (5.1)

G′′ (ω) = G0 (τ ω)
1 + (τ ω)2 + η∞ω. (5.2)

Here, G0 is the plateau modulus, τ is the longest relaxation time (as defined above), and

η∞ is the high-frequency viscosity. The average number of entanglements per chain is

estimated by using Ne = G0/G
′′
min, where G0 is the plateau value of G′ and G′′min is the

minimum of G′′.31 The estimated numbers of entanglements per chain are 3, 5, and 8

for the three samples respectively. Previous experiments showed that wormlike micelles

made from surfactant and salt in our concentration range remain linear, not branched.4

Results from the Maxwell fitting are included in Table 5.1. Since all three WLM solutions

exhibit single-mode Maxwell behavior, the solutions are in the fast-breaking limit as the
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values of τ are much greater than those for τbr. Therefore, the reptation time τrep can be

calculated from Cates’ theory by τrep = (τ 2/τbr), and are listed in Table 5.1.
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Figure 5.1: Linear and nonlinear rheology of 60 mM CTAB, 80 mM CTAB, and 100
mM CTAB wormlike micelles in D2O at 25 °C.

Table 5.1: Parameters from single-mode Maxwell fits of the linear viscoelastic data of WLMs.

CTAB NANO3 T G0 G′′min τ τbr τrep Ne η∞

(mM) (mM) (°C) (Pa) (Pa) (s) (s) (s) (Pa s)

60 180 25 6.6 2.5 0.19 0.040 0.90 2.6 0.049

80 240 25 14.4 3.1 0.34 0.037 3.31 4.6 0.056

100 300 25 25.1 3.0 0.52 0.031 8.51 8.3 0.047

Steady-state shear stress versus shear rate curves for the WLM solution are shown

in Fig. 5.1(b). The shear stress σ (shown in open symbols) initially increases nearly

linearly with shear rate γ̇, then the slope of the stress-shear rate curve decreases; at even

higher shear rates, the shear stress again starts to increase rapidly with shear rate. The

viscosity (shown in filled symbols) is defined as the ratio of the shear stress and the shear

rate: η = σ/γ̇. At low shear rates, the viscosity is constant, and the fluid behaves as a
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Newtonian fluid; at higher shear rates (corresponding to Wi > 1), the viscosity decreases

and this is called the shear-thinning region. In complex fluids such as suspensions of

non-spherical particles and polymer solutions, shear thinning is usually associated with

flow-induced alignment of particles (or polymer chains) which decreases the particle’s

disturbance to the flow, and thus the viscosity decreases. For wormlike micelles, which

undergo dynamic scission and recombination, the shear thinning could also be caused by

flow-induced scission.
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Figure 5.2: Relaxation times identified from linear viscoelastic measurement as a
function of CTAB concentration.

To compare how the different relaxation times scale with concentration in the exper-

iments and in theory predictions, we plot the longest relaxation time τ , the breakage

time τbr, and the reptation time τrep as a function of CTAB concentration in Fig. 5.2. In

deriving the scaling relationships for the relaxation times, Cates and Candau assumed

that the spontaneous unimolecular scission rate is independent of concentration (which

is a valid assumption for ionic surfactant micelles at high enough salt concentration).2,3
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Since τbr = 1
cbrL̄

, where cbr is the breakage rate, and L̄ = φ1/2 exp (Esciss/2kBT ), τbr scales

as φ−1/2. The reptation time is estimated using a semi-empirical relation τrep ∼ L̄3φ2

found for the case of unbreakable polymers in the mean-field regime, again assuming

the spontaneous unimolecular scission rate is independent of concentration. After sub-

stituting in the φ dependence for L̄, we obtain τrep ∼ φ7/2. Finally, in the fast-breaking

limit, τ = (τrepτbr)1/2, thus Cates-Candau theory predicts τ ∼ φ3/2. Cates and Candau

generalized their original theory to include free volume interactions between micelle seg-

ments, resulting in L̄ = φy exp (Esciss/2kBT ). For ideal chains, y = 1/2, whereas y = 0.6

taking into account excluded volume interactions. Using 0.6 as the scaling exponent for

φ-dependence of the average length, we obtain τ ∼ φ1.6. The data shows similar scaling

exponents for the relaxation times as those predicted in the theory, although the scaling

exponents for τrep and τ are both slightly larger than the theoretical predictions. This

is because electrostatic interactions between chain segments were not included in the

original Cates and Candau model. Although with a salt to surfactant ratio of 3:1 in

our experiments, the electrostatic interactions are largely screened by the added salt,

the electrostatic interactions can still play a non-negligible role in the dependence of

average micelle length on φ. Electrostatic interactions are accounted for in the model

by Mackintosh et al.32,33 for the case of ionic wormlike micelles, which predicts a larger

exponent for the average chain length dependence on φ. Furthermore, in the semi-dilute

regime studied here, the Cates theory3 predicts that the plateau modulus scales as φ9/4

and our experiment shows G0 ∼ φ2.62 (Fig. 5.2).

Compared to samples at higher concentration with shear-banding that were studied

previously, the WLMs in this work have larger slopes for the stress vs shear rate in the

shear-thinning region and the stress plateau usually observed in shear-banding WLMs

is absent, which suggests our samples don’t exhibit shear-banding. To further confirm

the absence of shear-banding, we performed particle tracking velocimetry (PTV) on the
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sample with the highest concentration investigated in this study: 100 mM CTAB/300 mM

NaNO3 at 25 °C (Fig. 5.3), across the nonlinear regime of fluid rheology. Nearly linear

velocity profiles are observed in all cases, demonstrating that the sample mildly shear

thins, but does not shear band. Since 100 mM CTAB at 25 °C is more viscoelastic than

the 60 mM sample and 80 mM sample (higher relaxation time, higher plateau modulus,

and smaller slope of stress vs shear rate in shear thinning region) and it doesn’t show

shear banding, we can be sure that the other samples don’t show shear banding either.
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Figure 5.3: Steady-state velocity profiles measured by PTV for 100 mM CTAB/300
mM NaNO3 in H2O at 25 °C at the shear rates indicated. r/h is the nondimensionalized
position, where r/h = 0 is the inner (rotating) wall and r/h = 1 is the outer (stationary)
wall.

5.3.2 Parameterization of 2D scattering in flow

Flow-small angle neutron scattering (flow-SANS) was used to probe the microstructures

of wormlike micelles in flow. 2D scattering intensity profiles were measured for the 60 mM

CTAB/180 mM NaNO3 sample with increasing shear rate (Fig. 5.4(a)). The dimensionless

shear rates, Wi, in Fig. 5.4(a) are marked in Fig. 5.4(b) on the viscosity vs. Wi curve.

As shear rate increases, the scattering pattern shows increasing anisotropy. The shear

rate at which anisotropy is first apparent corresponds to the point where the viscosity of
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the solution begins to decrease (green dotted line in Fig. 5.4 (a) and (b)). Also, in the

flow-flow gradient plane, the average orientation of WLMs changes with shear rate. This

is expected because in shear flow, the micelles tumble in the flow-flow gradient plane. At

a very low shear rate, the average orientation angle with respect to the flow direction is

45°. As shear rate increases, the alignment shifts towards the flow direction. At high

enough shear rate, the average orientation of the micelles is in the flow direction.
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Figure 5.4: (a) Representative 2D SANS patterns for 60 mM CTAB/180 mM NaNO3
in the flow-gradient (v−∇v) and flow-vorticity (v−ω) planes at various dimensionless
shear rate, Wi. All patterns provide the respective intensity value on a linear scale
indicated by the color bar to the right of the patterns. The patterns are reported in
qx,qy coordinates. (b) The viscosity of 60 mM CTAB WLM solution as a function
of dimensionless shear rate, Wi. The large color dots correspond to the Wi values
included in (a). The green dotted line in (a) represents the onset of anisotropy in
scattering patterns, which corresponds to the onset of shear thinning in (b).

Even without developing a full 2D scattering model for wormlike micelles, we can

extract useful information from the circular average and the annular average of the 2D

scattering patterns. In both the flow-flow gradient (v − ∇v) plane and flow-vorticity

(v − ω) plane, the low-q circularly averaged intensity decreases as shear rate increases,

whereas in the intermediate-q and high-q region, the intensity appears to remain constant

(Fig. 5.5(a)). In the subsequent analyses, only results in the flow-flow gradient plane

(v −∇v) are shown, although similar results were obtained in the flow-vorticity (v − ω)
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plane. To better visualize the changes in the scattering anisotropy, we calculated the

annular average of the intensity at q = 0.005 Å-1 (Fig. 5.5(b)). With increasing Wi, the

annularly averaged intensity changes from nearly constant at all angles to more peaked.

The minimum in the intensity corresponds to the direction of average alignment, which is

φ = 90◦ (in the flow direction) for the highest Wi.
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Figure 5.5: 1D parameterization of 2D scattering for 60 mM CTAB in the v − ∇v
plane (a)circularly averaged intensity as a function of wave vector q. From top (dark
blue) to bottom (dark green) are Wi from 0 to 142. (b) Annularly averaged intensity
as a function of angle for various Wi at q = 0.005 Å-1.

The scattering intensity for wormlike micelles is described by

I(q) = φ (∆ρ)2 V pP (q)S(q) + Ib (5.3)

where φ is the volume fraction of the micelles, ∆ρ is the difference in scattering length

density between the micelles and the solvent, V p = πr̄2
csL̄c is the average volume of a

chain, and Ib is the incoherent background intensity. L̄c is the number-average contour

length and r̄cs is the average radius of the micelle. P (q) is the form factor, which describes

the contribution from intra-chain scattering. S(q) is the structure factor, which measures
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the contribution from inter-chain scattering (i.e., how individual micelles are positioned

in space relative to each other). Since the average volume of the micelle is proportional

to the average micellar length, the scattering intensity is also proportional to the micellar

length. Thus, the monotonic decrease of the circularly averaged intensity with increasing

Wi that we observed in Fig. 5.5 is consistent with the net shortening of the micelles.

However, to determine the existance of flow-enhanced scission, we also need to know how

the form factor and structure factor change in flow, i.e., how chain stretch, orientation,

and interactions in flow affect the scattering intensity. Ultimately, distinguishing these

different contributions to the scattering intensity requires comparing the experimental

result to model simulations, such as the connected-rod model described in Chapter 4,

which we will discuss in Section 5.3.3. First, we will perform additional analyses of

the circular average and annular average results of the scattering intensity (Fig. 5.5) to

quantify the change in intensity and the degree of anisotropy.

To obtain a more quantitative measure of the change in intensity at different q values,

we averaged the intensity at three adjacent q-values for each shear rate, normalized

the intensity in flow by the intensity at the corresponding q-values at no shear, then

subtracted the ratio from 1. The quantity 1− Iflow/Ieqm vs. Wi are shown for different

q-values in Fig. 5.6 (a). (1− Iflow/Ieqm) = 0 corresponds to no change in the intensity

and larger values of 1− Iflow/Ieqm correspond to larger changes in intensity. The data

clearly indicate that the intensity changes most strongly with shear rate at the lowest

q-values. Since L ∼ 2π/q, the length scale corresponding to this q value is 105 nm, which

is on the same order of magnitude as the average micelle length estimated experimentally

for the 60 mM CTAB/180 mM NaNO3 sample.4 At higher q, the change in intensity

becomes less and the trend is monotonic with q.

Using conventional analysis of the 2D anisotropic scattering data,34,35 we fitted the

Maier-Saupe distribution to the annularly averaged intensity Ic(q, φ) to obtain the average
105



Experimental investigation of flow-enhanced scission of wormlike micelles Chapter 5

orientation angle φ0. Then, we numerically integrated the annular-averaged intensity to

compute the alignment factor according to:

Af = −
∫ 2π

0 Ic (q, φ) cos [2 (φ− φ0)] dφ∫ 2π
0 Ic (q, φ) dφ

(5.4)

The alignment factor quantifies the degree of segmental alignment of the micelles induced

by flow. At all q values analyzed, the alignment factor increases monotonically with Wi.

Interestingly, the alignment factor changes non-monotonically with q: from the lowest q

value probed (0.006 Å-1) to the q value corresponding to the persistence length of the

micelle (q = 0.025 Å-1∼ 2π/lp), the alignment factor at a given Wi increases with q; but

for q > 0.025 Å-1, the alignment factor decreases with increasing q. This is consistent with

the fact that the micelles are considered rigid at the length scale of the persistence length

and out of the different length scales present in the wormlike micelle, the persistence

length segments are oriented the most in flow.
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(b)

(c)

(a)

Figure 5.6: Parameterization of 2D SANS pattern for 60 mM CTAB in the v −∇v
plane (a) change in intensity as a function of Wi (b) degree of anisotropy (alignment
factor) as a function of Wi (c) change in intensity vs alignment factor for different q
values indicated in the legend to the right of the three plots.

Both parameterization methods described so far contain direct dependence on Wi.

Physical interpretation of this data would therefore require a rheological model that would

provide predictions for how the structure of the micelles depends on Wi. To circumvent

this dependence and facilitate comparison between simulation and experiments which often

have different (or sometimes unclear) definitions of the deformation rate and relaxation

time, we introduce a new method of parameterization for the 2D scattering pattern. In

Figure 5.6(c), we plot changes in intensity as a function of the degree of anisotropy, i.e.,

1 − Iflow/Ieqm vs. Af . In this representation, we can match the degree of anisotropy

between experiments and simulations and compare the changes in intensity directly. In
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other words, this new representation removes the need to know the particular physics

that causes alignment and enables more directly probing the potential changes in the

micellar length. At the lowest q probed experimentally, the quantity 1− Iflow/Ieqm scales

linearly with the alignment factor and the slope is ∼ 1 . Going from q = 0.006 Å-1 to

q = 0.01 Å-1, the relationship is still approximately linear but the slope decreases. At q

larger than or equal to 0.025 Å-1, which is the q value corresponding to the persistence

length of the micelles, the relationship between 1− Iflow/Ieqm and the alignment factor

no longer shows any q dependence and the scaling becomes nonlinear. As we will see later

when comparing the experimental results with the simulation results, the q-independence

at q ≥ 0.025Å-1 is an important feature. In this q range, we are probing length scales

shorter than the persistence length of the micelles and the wormlike micelles are locally

rigid. The change in the magnitude of the intensity is primarily caused by the alignment

of the persistence length segments in flow, instead of effects of chain stretch and scission.

Thus, the curves of 1− Iflow/Ieqm as a function of the alignment factor don’t show any

q-dependence in this q range.

Before proceeding with comparing model predictions and experimental results, we

first want to confirm if the q-dependent trends in the change in intensity versus alignment

factor are general for the other surfactant concentrations we investigated. Thus, we

performed a similar set of analyses for the 2D scattering data in the flow-flow gradient

plane (v −∇v) for the 100 mM sample. Shown in Figure 5.7 are changes in the intensity

plotted on the y-axis and alignment factor plotted on the x-axis for q-values ranging

from 0.006Å-1 to 0.1Å-1. We observe similar trends as those for the 60 mM sample.

Namely, for q values larger than and equal to the q value (0.025Å-1) corresponding to

the persistence length, all of the data collapse onto one line. For q < 0.025Å-1, the slope

of changes in intensity vs. alignment factor increases as q decreases. As is shown in

Appendix A, wormlike micelles are prone to elastic instabilities at high shear rates due to
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the curved streamline in concentric cylinder geometries. The onset of secondary flow, as

is observed by flow visualization, corresponds to similar shear rates as those observed for

the onset of the decrease of the alignment factor, which is at 65 s-1 for 100 mM CTAB and

1200 s-1 for 60 mM CTAB. As is discussed in Appendix A. although the decrease in the

alignment factor with increasing shear rate can also be caused by flow-enhanced scission,

the possible contribution of secondary flows makes the interpretation of the SANS data

more challenging. Thus, for all of the analyses in this chapter, we only focus on the shear

rate range prior to the alignment factor peak. Since the 60 mM CTAB sample allows

probing of a larger shear rate range for homogeneous flow and the effect of entanglement

and interchain interactions have less effect on the scattering intensity for this more dilute

sample, for the subsequent comparison with connected-rod simulations at steady state,

we will focus on the 60 mM sample.

Figure 5.7: Change in intensity vs alignment factor for 100 mM CTAB wormlike
micelle in the v −∇v plane.
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5.3.3 Predictions of the connected-rod model

In chapter 4, we introduced the connected-rod model for predicting scattering of

semiflexible chains. We fit the polydisperse version of the model at equilibrium to the

circularly averaged intensity of the equilibrium SANS experiment to obtain the average

number of cylinders per chain n̄, the cylinder radius rcyl, the cylinder length Lcyl, β, the

parameter that characterizes the strength of the inter-chain interactions in the structure

factor, and the background intensity. Details of the fitting procedure are described in

Section 4.3.1 in Chapter 4 and the fitting results are summarized in Table 5.2 below.

We then use these parameters in the monodisperse model in flow to make flow-SANS

predictions. We vary the value for the effective stretch from 0 to 0.8 in the predictions.

A polydisperse version of the model was not used for the predictions in flow because

doing so would require using a length-dependent effective stretch for the micelles of

different lengths at a given shear rates, which requires additional model assumptions

and may suffer from issues with robustness (i.e., too many degrees of freedom leading to

unrealistic optima in the fitting routine). The initial, qualitative comparisons with 2D

scattering and annular average (as shown in Chapter 4) demonstrate that the scattering

model is able to capture the shape of the anisotropy in the scattering experiments. Here

we use the new parameterization method we introduced in Sec. 5.3.2 to make a more

quantitative comparison between experiments and the connected-rod model predictions.

In Figure 5.8(a), we plot the changes in intensity on the y-axis and alignment factor

on the x-axis for q values from 0.006Å-1 to 0.12Å-1 for both the experimental data (in

filled symbols) and the simulation results (as curves). The model is able to capture

both the magnitude of the change in intensity at a given degree of anisotropy and the

q-dependent trends in the experimental results, namely, the q-dependent slope at low-q and

the collapse of the data at mid to high-q. To better visualize the agreement between model
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and simulation, in Fig. 5.8(b) and (c) we plot the changes in intensity vs. alignment factor

for low-q and mid to high-q, respectively, after vertically shifting the data for different

q values. For most of the q values, nearly quantitative agreement is obtained between

the model predictions and experiments. Some deviations between model predictions

and experiments occur for 0.0158 ≤ q ≤ 0.025Å-1, which is potentially caused by the

absence of polydispersity in the model prediction in flow. As is seen in Fig.4.2 in the

previous chapter, the equilibrium polydisperse predictions show excellent agreement with

experimental circular average while the monodisperse prediction has small deviations in

the mid-q range.

Table 5.2: Parameters used in connected-rod model predictions.

n rcyl (nm) Lcyl (nm) β Bkgd (1/cm)

4 2.3 43.1 3.11 0.065
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(b) (c)

(a)

Figure 5.8: Compare connected-rod simulations and experiments for 60 mM CTAB
in the v −∇v plane for (a) q = 0.006 − 0.012Å-1 (b) q = 0.006 − 0.017Å-1 shifted
vertically (c) q = 0.0206 − 0.12Å-1 shifted vertically. The experimental results are
plotted as various filled symbols (as listed in the legend). For the same q value, the
simulation results are plotted as curves with the same color as the experimental results.

At a given degree of anisotropy, the changes in the magnitude of the intensity compared

to equilibrium intensity are potentially affected by orientation, chain stretching, interchain

interactions (structure factor), and changes in chain length. The connected-rod model

includes the first three effects, but not changes in chain length. To separate the effects of

structure factor from the other contributions to the changes in intensity, we plot changes
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in intensity versus alignment factor for 0.006 < q < 0.12Å-1 for different β values in Figure

5.9, where β describes the strength of the interaction. Results for different β values are

plotted in different colors, at the same β, the data for different q values are plotted in the

symbols as described by the legend in Fig. 5.8. With increasing β, although the maximum

of changes in intensity and alignment factor decreases due to the suppression of scattering

intensity with stronger interchain-interactions, the spread of the data (i.e., for a given

degree of anisotropy, the difference between the maximum in the change in intensity

and the minimum in the change in intensity) remains unchanged. In the flow-SANS

predictions using the connected-rod model, we assumed β is constant in flow and used the

value for β from equilibrium fitting. Recent work on rod-like particles with electrostatic

interactions in shear flow demonstrated that β stays constant for low and intermediate

shear rates.36 Thus, the decrease of the low-q intensity with increasing shear rate in the

wormlike micelle experiments is unlikely to be due to changes in the structure factor.

113



Experimental investigation of flow-enhanced scission of wormlike micelles Chapter 5

Figure 5.9: Effect of interaction strength on the magnitude of intensity and the
alignment factor (β = 0 − 45.2). The symbols correspond to the same q values as
those listed in the legend in Fig. 5.8.

Although the comparison in Fig. 5.8 enables more quantitative comparison between

experiments and model predictions, this representation of the experimental data alone is

not enough to probe the presence of flow-enhanced scission. This is because as micelles get

shorter in flow, at a given shear rate, the relaxation time for the micelle becomes shorter.

Thus, the local dimensionless shear rate for the micelle becomes smaller, making it more

difficult the align the micelles in flow. In other words, when micelles become shorter,

the relationship between the intensity ratio and the alignment factor will change. Thus,

we decided to more directly probe the kinetics of microstructural changes of wormlike

micelles in flow and be more conclusive about the presence or absence of flow-enhanced

scission by using time-resolved flow-SANS measurements.
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5.3.4 Time-resolved flow-SANS

We conducted time-resolved flow-SANS experiments both in the v −∇v plane using

the shear cell and in the v − ω plane using the rheometer. For these studies, the 100 mM

CTAB sample was used because the larger concentration and longer micelles give better

signal to noise ratio and enables better statistics in the time-resolved SANS measurements.

The sample temperature was kept at 25 °C. For each shear rate measured (5 s−1, 15 s−1,

40 s−1 and 65 s−1), the cycle consisted of 5 seconds of flow start-up and 10 seconds of flow

cessation. In order to achieve enough statistics, the cycle was repeated ∼330 times in

the rheometer and ∼600 times in the shear cell. The scattering intensity is binned into

150 bins for the 15 s cycle. For the 2D scattering intensity in each bin, we calculated the

alignment factor, Af and the ratio of intensity 1− Iflow (q, γ̇) /Ieqm (q) using the methods

described in Sec. 5.3.2. As an example, we plot the alignment factor and the ratio of

intensity as a function of time for γ̇ = 15s−1 and q = 0.008Å-1 in Fig. 5.10 (a). Upon the

start up of flow, both Af and 1− Iflow (q, γ̇) /Ieqm (q) increase with time, which indicate

the scattering becomes more anisotropic and the magnitude of the circularly averaged

intensity decreases. Both quantities exhibit an overshoot, which is occurring in a similar

manner as an overshoot in the stress that is typical of entangled wormlike micelles and

polymers. Between time = 2 s to 5 s, the microstructural changes reach a steady state,

thus both Af and 1− Iflow (q, γ̇) /Ieqm (q) reach a plateau. Upon flow cessation, both Af

and 1− Iflow (q, γ̇) /Ieqm (q) decrease with time, which indicate the scattering intensity

becomes less anisotropic and the circularly averaged intensity increases. After ∼2 s, both

quantities approach 0, the equilibrium value. To compare the timescale of relaxation for

Af and 1− Iflow (q, γ̇) /Ieqm (q), we fitted an exponential function f(t) = a ∗ exp (t/τtr)

to the data during flow-cessation. τtr is the relaxation time. Shown in Fig.5.10(b) and

(c) are comparisons of the fit with experimental data. In order to better visualize the
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quality of the fit, we plotted both Af and 1− Iflow (q, γ̇) /Ieqm (q) on a log scale and time

on a linear scale. A straight line on this semi-log plot is indicative of an exponential

dependence on time. Since the error bars are also plotted on a log-scale, they appear to

be quite large at longer times as both Af and 1− Iflow (q, γ̇) /Ieqm (q) tend towards zero.

However, the magnitude of the error at these longer times is comparable to the error at

shorter times.

(a) (b) (c)

Figure 5.10: (a)Transient-SANS at γ̇ = 15 s−1, q = 0.008 Å-1 for 5 s startup and 10 s
flow cessation (b) exponential fitting of changes in intensity after flow cessation (time
5 s - 8 s) (c) exponential fitting of alignment factor after flow cessation (time 5 s - 8 s).

For the 100 mM CTAB sample, we conducted time-resolved flow-SANS measurements

at γ̇ = 5 s−1, 15 s−1, 40 s−1, and 65 s−1. The longest relaxation time identified from linear

viscoelastic measurement is 0.52 s. At γ̇ = 5 s−1, the Weissenberg number is only 2.2.

Thus, the scattering pattern only differs slightly from the isotropic scattering pattern at

equilibrium. As a result, both Af and 1− Iflow (q, γ̇) /Ieqm (q) are close to zero (with a

maximum in 0.04 for both Af and 1− Iflow (q, γ̇) /Ieqm (q)). The fitting is very noisy and

the resulting relaxation time has a very large error bar. Thus, we exclude the relaxation

time obtained at 5 s−1 in subsequent analysis.

In Fig. 5.11, we compare the relaxation time τtr from the exponential fitting of both

Af and 1 − Iflow (q, γ̇) /Ieqm (q) at (a) q = 0.008Å-1, q = 0.01Å-1, and q = 0.025Å-1 for

all three shear rates investigated (γ̇ = 15 s−1, 40 s−1, 65 s−1). The 15s−1 data come from
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experiments in the flow-gradient (v −∇v) plane and the 40 s−1 and 65 s−1 data are form

experiments in the flow-vorticity (v − ω) plane. Results for 15 s−1 are similar in the

v − ∇v plane and in the v − ω. Since the results in the v − ∇v have better signal to

noise ratio, we used this measurement for 15s−1. The relaxation times are also listed

in Table. 5.3. The relaxation times determined from time-resolved SANS are plotted as

a function of the dimensionless shear rate, Weissenberg number, on the bottom x-axis.

The Weissenberg number is defined as the product of the longest relaxation time τ from

the linear viscoelastic measurement and the applied shear rate: Wi = τ γ̇. On the top

x-axis, we indicate the corresponding breakage-Weissenberg number, i.e., the product of

the breakage time and the applied shear rate, Wibr = τbrγ̇. For a more direct comparison

between the relaxation time from the linear viscoelastic (LVE) measurement and the

time-resolved SANS experiment, we plot the longest relaxation time from LVE as a black

dashed line in Fig. 5.11(a), (b), and (c).

𝑞 = 0.008 Å−1 𝑞 = 0.01 Å−1 𝑞 = 0.025 Å−1

(b) (c)(a)

Figure 5.11: Relaxation time for intensity ratio and alignment factor after flow cessation
as a function of shear rate for (a) q = 0.008 Å-1, (b) q = 0.01 Å-1, (c) q = 0.025 Å-1.
The bottom x-axis uses the shear rate scaled by the longest relaxation time (Wi = τ γ̇).
The top x-axis uses the shear rate scaled by the breakage time (Wibr = τbrγ̇). The
horizontal dotted line in each figure denotes the longest relaxation time (τ = 0.52 s)
estimated from the linear viscoelastic measurement.
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Table 5.3: Relaxation times from exponential fit of flow cessation in time-resolved
SANS experiment

q (Å-1) Shear rate γ̇ (s−1) τtr,1 for 1− Iflow (q, γ̇) /Ieqm (q) τtr,2 for Af

0.008 15 0.62(±0.04) 0.56(±0.03)

40 0.70(±0.04) 0.57(±0.02)

65 0.74(±0.03) 0.55(±0.03)

0.01 15 0.66(±0.07) 0.60(±0.03)

40 0.64(±0.05) 0.56(±0.02)

65 0.59(±0.04) 0.60(±0.03)

0.025 15 0.67(±0.06) 0.57(±0.02)

40 0.69(±0.04) 0.62(±0.02)

65 0.65(±0.06) 0.60(±0.01)

An important feature in the relaxation times is the larger relaxation time of the

intensity ratio, τtr,1, compared to the relaxation time of the alignment factor,τtr,2, at the

lowest q value investigated (q = 0.008Å-1). The relaxation time of the alignment factor is

associated with the relaxation of the orientation of the micelles upon flow cessation, thus,

the relaxation time of the alignment factor,τtr,2, is similar in magnitude to the longest

relaxation time, τ , from LVE.

The scattering intensity of wormlike micelles in flow can be affected by several factors,

namely, chain orientation, chain stretch, changes in inter-chain interactions (structure

factor), and chain scission. When a chain relaxes its orientation, both the scattering

anisotropy and the magnitude of intensity relax towards the equilibrium values. Thus,

if relaxation of orientation were the only relaxation mechanism, we would expect the

relaxation time for the intensity ratio and the alignment factor to be the same. The larger

relaxation time for the intensity ratio suggests that additional relaxation mechanisms
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affect the magnitude of the intensity, but not the anisotropy. Assuming the Random

Phase Approximation (RPA) is a good model for the anisotropic structure factor (as

was used in Chapter 4 and in the model predictions in this chapter), then the structure

factor should evolve over an identical time scale as the alignment because the anisotropic

form factor appears in the expression for the structure factor. Therefore, changes in

intermicellar interactions during flow cessation do not explain the observed longer time

scale for the magnitude of the intensity and its dependence on shear rate. Furthermore,

micelle stretching only has a small contribution to the changes in the scattering intensity.

This is because at low shear rates, the micelles are not significantly stretched; whereas at

higher shear rates, when micelles stretch, they can be subjected to flow-enhanced scission

and relax the stress locally.37

Given the proceeding discussion, we hypothesize that the longer relaxation time for

the magnitude of the intensity and its dependence on shear rate are due to recombination

of micelles during the flow cessation. Namely, the micelles likely relax their orientation

before the equilibrium length is re-established. Therefore, the recombination process

continues even after the orientation has relaxed to equilibrium. This additional relaxation

mechanism results in the slower relaxation for the intensity ratio. Furthermore, we observe

the difference between the relaxation time for the intensity ratio and Af increases with

increasing shear rate at the lowest-q value investigated. In other words, although the

relaxation time for Af stays relatively constant across shear rates at q = 0.008Å-1, the

relaxation time for 1−Iflow (q, γ̇) /Ieqm (q) continues to increase with increasing shear rate.

This suggests that micellar recombination during flow cessation has a bigger contribution

at larger shear rates.
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5.4 Discussion

Here we will examine the results presented in the last section more closely and discuss

what the results suggest for flow-enhanced scission of wormlike micelles. In previous

temperature-jump studies,38 a perturbation of temperature (a jump up in temperature)

is added to a wormlike micelle solution at equilibrium, which results in a decrease in the

equilibrium average length. Light scattering measurements were used to monitor the

relaxation of the new average length as a function of time. It was found that the relaxation

time equals τbr/2. We observe that the relaxation time of the intensity ratio is much

longer than τbr/2. Therefore, if this result were indicative of relaxation of flow-induced

scission, recombination of micelles after flow cessation would need to take much longer

than micellar breakage at equilibrium. However, this could easily be the case due to the

changes in orientation and stretch of the micelles that is present in flow but absent upon

a temperature jump.

We estimated that the breakage time (as estimated from LVE) is τbr is 0.031 s for

100 mM CTAB at 25 °C. For γ̇ > 1/τbr ≈ 35s−1, the applied shear will induce the

breakdown of micelles at a faster rate than the thermodynamic micelle breakage. Thus,

with increasing shear rate beyond 35 s−1, we expect the average micelle length when the

flow reaches steady state to decrease with increasing shear rate. The remaining question

is how can we relate the observation of the trends in the relaxation times during flow

cessation to microstructural changes of the micelles in flow.

In entangled polymer systems, the free ends of any chain are often approximated

as stress-free (neither aligned nor stretched), in which case it would not be possible for

an imposed flow to affect the kinetics of end recombination. For dilute, unentangled

rodlike micelles, one cannot neglect flow-induced alignment effects at chain ends.8,39,40

In fact, for dilute, rodlike micelles, flow-induced alignment produces shear thickening
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and flow-induced structures.41,42 For the 100 mM CTAB sample investigated here, the

average number of entanglements is 8 per chain and the wormlike micelle solution is in

the semi-dilute regime, thus we can approximate the micellar chain ends as stress-free.

Therefore, we can assume the rate constant for the end recombination is always at its

equilibrium value and is independent of the length for either species involved in the

recombination. This is the approach that was taken in the recently published Living Rolie

Poly (LRP) model by Peterson and Leal.37 After flow cessation, since the effect of flow is

absent, we also expect the breakage rate to be at its equilibrium value. So why would

the relaxation time for the intensity ratio (1− Iflow/Ieqm) increase with increasing shear

rate? The answer lies in the changes in the microstructures during the steady flow (i.e.,

at the end of flow start-up, before flow cessation). Although the rate of recombination

does not depend on the flow rate, if the micelles are much shorter before the start of

flow cessation than the equilibrium micelle length, more recombination events are needed

before the micelle length distribution can relax back to its equilibrium value. The shorter

the micelles are, the longer it will take for the intensity to relax back to equilibrium. Thus,

the increase of the relaxation time of the intensity ratio suggests the micelles are getting

shorter with increasing shear rates in flow.

If the increase in the relaxation time of the intensity ratio with increasing shear rate

for q = 0.008Å-1 is indeed due to flow-enhanced scission in flow prior to flow cessation,

we need to understand why the shear rate-dependence is only observed at q = 0.008Å-1

but not at higher q-values. We again utilize predictions from the connected-rod model.

For the simplest case, if we have monodisperse chains at equilibrium, as the chain length

decreases, equivalently, as the number of Kuhn length (cylinders) decreases, the scattering

intensity decreases the most at low-q, while at q values closer to the inverse of the Kuhn

length and persistence length (q = 0.0125Å-1 and q = 0.025Å-1, respectively), the intensity

stays relatively constant. This effect is shown in Figure 5.12, in which we plot circularly
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average intensity as a function of q for chains with 4 cylinders, 3 cylinders, and 2 cylinders.

Similarly, in a polydisperse system, as the average length decreases, we also expect to see

the most decrease in the intensity at low-q. In summary, the larger relaxation time for

the intensity ratio than the alignment factor and the increase of the relaxation time for

the intensity ratio with increasing shear rate observed in flow-cessation experiments are

consistent with a net-shortening of wormlike micelles in flow.

Figure 5.12: Investigate the q-dependence of scattering intensity upon micelle scis-
sion by comparing equilibrium intensity for different numbers of cylinders using the
connected-rod model.

5.5 Conclusions

In this work, we conducted steady state and time-resolved flow-small angle neutron

scattering experiments on linear, weakly entangled wormlike micelles in homogeneous shear
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flow to identify potential signatures of flow-enhanced micellar scission. The monotonic

decrease of circular average intensity with increasing shear rate is consistent with the net

shortening of wormlike micelles. To distinguish effects of chain scission from effects of chain

stretch, orientation, and interchain interactions in flow, we compared the experimental

results with the connected-rod model that we recently developed. To facilitate the

comparison between simulation and experiments, we developed a novel approach of

parameterizing circular averaged intensity and the degree of anisotropy to fingerprint

how changes in orientation and structure contribute to changes in the scattering intensity.

This new parameterization method will also be useful for analyzing anisotropic scattering

of other types of deformable materials, such as polymers and polyelectrolytes, in flow.

Detailed analysis of time-resolved measurements enables identification of different

relaxation time scales for the changes in the magnitude of the intensity and the relaxation

of the scattering anisotropy during flow cessation. Differences in the magnitude and

shear-rate dependence of the relaxation times of the magnitude of the intensity and the

degree of anisotropy suggest flow-enhanced scission of wormlike micelles. Specifically,

for both shear rate = 40s−1 and 65s−1, the relaxation time of the intensity ratio is

larger than the relaxation time of the alignment factor. Furthermore, the relaxation time

of the intensity ratio at low-q increases with increasing shear rate. Both observations

suggest flow-enhanced scission of wormlike micelles during steady flow prior to the start

of flow-cessation.

To our knowledge, this is the first time such detailed analysis of flow-SANS experiments

has been performed to obtain information about changes in micelle length in flow. The

evidence for flow-enhanced micellar scission will help inform the development of more

accurate rheological models for wormlike micelles and the experimental, modeling, and

analysis methods will find broad applications in other types of deformable materials in

flow.
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Chapter 6

Modeling scattering of dilute,

flexible polymers in flow

This chapter summarizes the work to-date of a new project I helped with in the last

year of my PhD. The current work is in collaboration with first-year graduate student

Anukta Datta in our group and the Brownian Dynamics simulation is done by Professor

Patrick Underhill’s group at RPI. I derived the theoretical predictions in section 6.2 and

developed the codes for predicting the scattering. Anukta ran the scattering simulations

and analyzed the simulation results. Future work on this project in our group will be

carried out by Anukta.

6.1 Goal and approach

This work aims to provide new, molecular-scale understanding for how polymer

topology influences molecular deformation and scission at extreme rates in dilute solutions,

which is a problem with important implications for processes and technologies spanning

lubrication, drag reduction, enhanced oil recovery and inkjet printing. To do so, we
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will utilize a new experimental technique, capillary rheoSANS,1 which enables neutron

scattering measurements at shear rates exceeding 106 s-1. We will integrate the experiments

with molecular simulation approaches to quantify and provide mechanistic insight into

the internal distribution of dynamics in polymer chains.

As a first step, we aim to develop scattering theories and forward and inverse calculation

methods, i.e., to calculate scattering from known molecular configuration distribution

and estimate a distribution of molecular configurations from a scattering pattern. This

will be the focus of the current chapter.

6.2 Theory

6.2.1 Dumbbells in shear flow

First, we model the scattering of dilute linear polymer chains as two infinitesimal

beads of constant scattering length connected by an elastic spring with the same scattering

length density as the solvent (Fig. 6.1). This situation is the scattering equivalent of

the elastic bead-spring dumbbell model used to model polymer stretch and implicitly

assumes that the distribution of scattering density in the polymer is proportional to

the end-to-end vector probability distribution function from an elastic dumbbell model.

We consider this assumption to be approximately valid in the Guinier regime (qRg ∼ 1,

where q is the scattering wave vector and Rg is the radius of gyration of the entire chain),

where scattering contributions from finer-scale chain conformations are negligible. This

approach was first proposed by Patrick Corona in our research group and we extended

the theoretical approach in our work.
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Figure 6.1: Pictorial representation of the combined micromechanical and scattering
model for dilute polymer chains in flow. The black beads at the end of the spring are
point sources of scattering density and hydrodynamic drag, which are enlarged in this
picture to finite size, and are subject to thermal fluctuations. The spring connecting
the two beads (outlined with a black line) has a scattering length density matching
the surrounding solvent and a Hookean spring constant. The vector describing the
separation of the chain ends (r) completely describes the chain’s conformation in this
model.

The scattering from polymer chains is related to correlations between segments of the

chain. In general, the coherent scattering is calculated as

I(q) = I0

n2

n∑
j,k

∫
exp

(
−iq · rjk

)
ψjk (rjk) drjk (6.1)

where I0 is a constant prefactor related to the scattering density contrast in the system,

n is the number of scattering points considered, rjk is the vector describing the separation

between the jth and kth scattering point, and ψjk(rjk) is the conformation distribution

function describing the probability of finding scatterers j and k a separation distance

of r apart.2 This expression does not consider correlations between two polymer chains,

for which one would also need to incorporate an inter-chain structure factor. Since the

system considered in this work is dilute polymers, in which the chains are far apart from
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each other, we do not need to include the structure factor. We can factor out the "self"

contributions to the scattering to get

I(q) = I0

n2

n+
n∑

j,k 6=j

∫
exp

(
−iq · rjk

)
ψjk (rjk) drjk

 . (6.2)

First, we will consider the situation in Figure 6.1 where n = 2 and the conformation

distribution between the two points is described by a Hookean dumbbell model. Simplifying

the expression for n = 2 yields

I(q) = I0

2

(
1 +

∫
exp (−iq · r)ψ(r)dr

)
(6.3)

where r is the vector describing the separation between the beads, and ψ(r) = ψ12 (r12) =

ψ21 (r21) is the conformation distribution function of the probability (PDF) that the chain

ends are located at a separation distance r. Furthermore, ψ(r) is normalized such

that
∫
ψ(r)dr = 1. Again, this expression is only valid in the low-q regime such that

scattering due to intra-chain correlations do not contribute to the scattering intensity.

The determination of conformation distribution functions for dilute polymer solutions has

been explored extensively, as discussed in Chapter 3. Here, we will consider the situation

where analytical progress can be made for polymer solutions in flow.

For the situation of two thermal beads connected with a Hookean spring in a homo-

geneous flow field (see Fig. 6.1), the conformation distribution function can be solved

analytically for arbitrary flow histories as

ψ (r, t) = (H/2πkBT )3/2
√

detα
exp

[
− (H/2kBT )

(
α−1 : rr

)]
, (6.4)

α = δ − 1
τH

∫ t

−∞
e−(t−t′)/τH (δ −B (t′, t)) dt′, (6.5)
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where H is the Hookean spring constant, τH is the Hookean spring’s relaxation time, δ is

the identity tensor, and B is the Finger strain tensor.3

For a Hookean dumbbell, we have the following relationship between the radius of

gyration and the spring constant:

R2
g,eqm = 3kBT

4H . (6.6)

Thus, we can rewrite Eqn. 6.4 as:

ψ (r, t) =

(
3/8πR2

g,eqm

)3/2

√
detα

exp
[
− 3

8R2
g,eqm

α−1 : rr
]
. (6.7)

For steady simple shear flow, the conformation distribution function reduces to

ψ (x, y, z) =

(
3/8πR2

g,eqm

)3/2

√
1 +Wi2

exp
[

3 (x2 − 2Wixy + (1 + 2Wi2) y2 + (1 +Wi2) z2)
8R2

g,eqm (1 +Wi2)

]
(6.8)

where x, y, z are the coordinates of r in the flow, flow-gradient, and vorticity directions

respectively and Wi = τH γ̇ is the Weissenberg number where γ̇ is the shear rate. Using

this conformation distribution function in Eqn. 6.3 for the scattering intensity yields

I(q) = I0

2

1 + exp
−2R2

g,eqm

(
q2
x (1 + 2Wi2) + 2Wiqxqy + q2

y + q2
z

)
3

 , (6.9)

where qx, qy, qz are the scattering vectors in the flow, flow-gradient, and vorticity directions,

respectively. This is the Guinier-Dumbbell model under steady simple shear flow.

As we will discuss in the results section, to connect between simulations and exper-

iments, a more useful formulation of the model is to write the scattering intensity in
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terms of components of the gyration tensor, which are readily available from Brownian

dynamics simulations, rather than the Weissenberg number. To do so, we first evaluate

the components of the gyration tensor by taking the second moment of the configuration

distribution function ψ. For example, for the xx-component of the gyration tensor, we

have

Sxx = 〈RgRg〉xx = 1
4

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

xxψdxdydz = 1
3R

2
g,eqmαxx, (6.10)

where αxx is the xx-component of the α that appears in Eqn. 6.7. After doing similar

calculations for the other non-zero components of the gyration tensor, we find that all of

the gyration tensor components are related to the respective components of the α tensor.

So, we can solve for the components of α in terms of the gyration tensor components. In

general, we obtain:

α = 3
R2
g,eqm

S (6.11)

where S represents the gyration tensor.

Using Eqn. 6.11 in Eqn. 6.7 for α, we obtain the configuration distribution function

written in terms of components of the gyration tensor:

ψ = (1/8π)3/2√
SxxSyySzz − S2

xySzz
exp

−Syyx2 − 2Sxyxy + Sxxy
2 + 1

Szz

(
SxxSyy − S2

xy

)
z2

8
(
SxxSyy − S2

xy

)
 .

(6.12)

Finally, using Eqn. 6.12 in Eqn. 6.3 for the scattering intensity yields

I (qx.qy, qz) = I0

2
(
1 + exp

[
−2

(
Sxxq

2
x + 2Sxyqxqy + Syyq

2
y + Szzq

2
z

)])
. (6.13)

For the Hookean dumbbell model, Syy = Szz = R2
g,eqm

3 . If the spring is non-Hookean, such

as a FENE-spring, the yy and zz-components of the gyration tensor do not necessarily
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equal their equilibrium value. To maintain the generality of our approach, we will use Syy

and Szz in Eqn. 6.13 in the calculations in the results section.

To check for consistency between our approach at equilibrium and previous theoretical

results for dilute polymer chains at equilibrium, we set Wi = 0 in Eqn. 6.13 to yield:

I(q) = I0

2

1 + exp
−2R2

g,eqm

(
q2
x + q2

y + q2
z

)
3

 = I0

2

(
1 + exp

[
−2R2

g,eqmq
2

3

])
.

(6.14)

We can Taylor expand this expression for qRg,eqm � 1 to obtain I(q) ≈ I0

(
1− R2

gq
2

3 + ...
)
.

We recognize the first two terms in the expansion are the same as the Taylor expansion

of e−R2
g,eqmq

2/3, thus we obtain:

I(q) ≈ I0e
−
R2
g,eqmq

2

3 , (6.15)

which is the same as the low-q expansion of the Debye function for dilute polymers that

we discussed in Chapter 3. Eqn. 6.15 is also called the Guinier approximation, which is a

general property of equilibrium scattering for qRg,eqm <
√

3 for a scattering object of any

shape. The Guinier analysis is used to extract the equilibrium radius of gyration from

circularly averaged scattering intensity. Specifically, when we plot log I as a function of

q2, the slope is −R2
g,eqm/3.

The dumbbell model with the Hookean spring law allows us to get analytical results

of the scattering intensity in terms of the components of the gyration tensor, which

enables fast scattering predictions. However, the Hookean dumbbell model ignores finite

extensibility of the chain, hydrodynamic interactions (HI), and excluded volume (EV),

which are present in a physical system. Once finite extensibility, HI, and EV are included,

it becomes difficult, if not impossible, to derive analytical expressions for the scattering

intensity because the conformation distribution starts to deviate from the Gaussian form.
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Thus, we rely on the more general form of the intensity for the dumbbell model (Eqn. 6.3)

and use Brownian dynamics simulations to obtain a discretized conformation distribution

function numerically.

6.2.2 Multiple-bead-spring chains in shear flow

The dumbbell model discussed in the previous section is only expected to be valid

in the low-q regime where intra-chain structures are negligible. If we want to resolve

higher-q structures, we need to use multiple-bead-spring chains to represent the polymer.

Shown in Fig. 6.2 is a representative schematic of a multiple-bead-spring chain. In this

case, 5 beads are used.

Figure 6.2: Schematic of the multiple-bead-spring chain.

If hydrodynamic interactions and excluded volume are excluded and the Hookean

springs are used, the multiple-bead-spring model is the Rouse chain model. Previous work

has attempted to predict the scattering of the Rouse chain in flow using normal mode

analysis. The resulting analytical solution contains complicated sums over the different

modes and typically need to be evaluated numerically.4,5 Furthermore, to better represent

experimental conditions, one needs to include HI, EV, and finite extensibility, which again

makes the analytical solution impossible. Thus, we start from the more general expression

of the scattering intensity for n > 2, Eqn. 6.2, which is included again for convenience
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below:

I(q) = 1
n2

n∑
j,k

∫
exp

(
−iq · rjk

)
ψjk (rjk) drjk

= 1
n2

n+
n∑

j,k 6=j

∫
exp

(
−iq · rjk

)
ψjk (rjk) drjk

 (6.16)

For the case of a chain with five beads, as is shown in Fig. 6.2 and discussed in

more detail in the Results section, because of symmetry in the chain, there are 6 unique

bead-bead pairs: 1-2, 2-3, 1-3, 1-4, 1-5, and 2-4. Within pairs equivalent to 1-2, there

are four possibilities: B1-B2, B2-B1, B4-B5, B5-B4. In other words, the 1-2 pairs involve

one bead at one end of the chain and the bead directly adjacent to that bead. Similarly,

for the other pairs, there are multiple equivalent duplicates. The knowledge of these

equivalent duplicates simplifies the calculation, as shown below:

I(q) = 1
25

(
5 + 4

∫
exp (−iq · r12)ψ12 (r12) dr12 + 4

∫
exp (−iq · r23)ψ23 (r23) dr23

+ 4
∫

exp (−iq · r13)ψ13 (r13) dr13 + 4
∫

exp (−iq · r14)ψ14 (r14) dr14

+ 2
∫

exp (−iq · r15)ψ15 (r15) dr15 + 2
∫

exp (−iq · r24)ψ24 (r24) dr24

)
.

(6.17)

The ψjk in Eqn. 6.16 and Eqn. 6.17 above represents the distribution function of the

vector connecting bead j and bead k and are obtained from Brownian dynamics simulation.

As we will discuss in the Results section below, the combination of Eqn. 6.16 and Brownian

dynamics results with finite extensibility allows realistic prediction of scattering of dilute

polymers up to higher-q values and ultimately enables direct comparison with experiments.
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6.3 Results

For the scattering predictions in this section, we use either the gyration tensor

components or the discretized conformation distribution function as the input in the

calculations. Both the gyration tensor components and the discretized PDF are obtained

in Brownian Dynamics simulations made by our collaborators at RPI. Since this is the

beginning of this new collaborative project, I will only briefly summarize the work to-date.

Future work will be carried out by Anukta Datta in her PhD work. To simplify the

discussion, I will only show results for Hookean dumbbell without HI and 5-bead FENE

chain without HI.

6.3.1 Dumbbells at equilibrium

We first used Eqn. 6.13 and components of the gyration tensor at Wi = 0 to calculate

scattering of Hookean dumbbell at equilibrium. For all of the subsequent calculations,

we are predicting the scattering in the flow-gradient plane. Thus, we set the scattering

vector in the vorticity direction (qz) to be zero. We also set I0 to be 1, since we are

not directly comparing with experiments yet. The 2D scattering pattern is shown in

Fig. 6.3(a). qx and qy are the scattering wave vectors in the flow direction and gradient

direction, respectively. The equilibrium value for the radius of gyration from the BD

simulation is 4.96 nm. This is obtained from Rg,eqm =
√
Sxx + Syy + Szz, where Sxx, Syy,

and Szz are the diagonal components of the gyration tensor.

As expected, the scattering intensity is isotropic for the dumbbell model at equilibrium.

To validate the scattering calculation, we conduct a Guinier analysis on the circularly

averaged equilibrium intensity by plotting log I as a function of q2, where q2 = q2
x + q2

y

(Fig. 6.3(b)). We do a linear fit of the log I result in the region corresponding to qRg <
√

3,

which is the Guinier region. The slope equals −R2
g,qm/3 = 821.52Å2 so the equilibrium
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radius of gyration determined from the Guinier analysis is 4.96 nm, which is comparable

to the radius of gyration from the Brownian dynamics simulation (4.98 nm).

log 𝐼(𝑞)

𝑠𝑙𝑜𝑝𝑒 = −821.52

(a) (b)

Figure 6.3: Scattering predictions for the dumbbell model at equilibrium. (a) 2D
prediction using components of the gyration tensor (b) Guinier analysis for extracting
the radius of gyration.

6.3.2 Dumbbells in flow

We also made comparisons between scattering predictions using the gyration tensor

components in Eqn. 6.13 and the discretized conformation distribution function in Eqn. 6.3.

In Fig. 6.4(a) and (b), we show the scattering patterns for the gyration tensor calculation

with Wi = 0.1 and Wi = 3, respectively. For Wi = 0.1, the scattering pattern is only

weakly anisotropic, whereas for Wi = 3, the scattering pattern has significant anisotropy,

which suggests the dumbbells are significantly aligned in flow. In Fig. 6.4(c) and (d),

we plot the scattering patterns from the discretized PDF calculation for Wi = 0.1 and

Wi = 3, respectively. The predictions using the gyration tensor and the discretized

PDF are qualitatively the same for both Weissenberg numbers. The computational time

for the discretized PDF calculation is >1000 times longer than that for the gyration

tensor calculation because the former requires looping through discretized PDF which

has 200 bins in the x, y, and z directions for our current BD simulation results and is
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very computationally expensive. For the dumbbell model, the analytical scattering results

using the gyration tensor components is advantageous and can be used for doing inverse

calculations, as we will discuss below.

(a) (b)

(c) (d)

log 𝐼(𝑞)

Figure 6.4: Scattering predictions for the dumbbell model using gyration tensor
components for (a) Wi = 0.1 and (b) Wi = 3. Scattering predictions for the
dumbbell model using discretized probability distribution function for (c) Wi = 0.1
and (d) Wi = 3. qx is the scattering wave vector in the flow direction and qy is the
scattering wave vector in the gradient direction. The x and y axes in (b)-(d) are the
same as those in (a). All four figures have the same color scale.

6.3.3 Inverse calculations for dumbbells

One main long-term objective of this project is to develop an integrated experimental

and simulation method to extract distributions of polymer deformation from rheoSANS

experiments. The analysis of experimental results for polymers will be conducted in future
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studies. We want to first develop the inverse calculation method based on simulation

results. Namely, using the 2D scattering patterns in Fig. 6.4, we want to do nonlinear

fitting of the scattering results to extract the components of the gyration tensor and to

compare with our input parameters. To do so, we again utilize Eqn. 6.13 and use the

nlinfit function in Matlab to obtain fitted values for the parameters Sxx, Syy, and Sxy.

We fitted both the gyration tensor scattering results and the discretized PDF scattering

results. The fitted values are compared with the gyration tensor results from the BD

simulation in Table 6.1. For the fitting of the gyration tensor calculation, we get exactly

the same value as the components of the gyration tensor used as input for the scattering

prediction. For the fitting of the discretized PDF calculation, the agreement between the

input gyration tensor components and the fitted values is also quite good, with < 3%

difference.

Table 6.1: Compare input parameters for scattering prediction and results from inverse
fitting for scattering simulation using gyration tensor components and scattering
simulation using discretized probability distribution function for Wi = 3. Units for
the gyration tensor components are Å2.

BD Simulation Fitting of ψ Calc Fitting of Rg Calc % Difference

Sxx 16098 16484 16098 2.40%

Syy 840 829 840 1.31%

Sxy 2539 2544 2539 0.20%

6.3.4 Scattering from multiple-bead chains

As was discussed in the theory section, although the Hookean dumbbell offers the

advantage of obtaining analytical results for the scattering intensity, only including two

beads is not enough to resolve the intra-chain structures and the Hookean spring does

not account for the finite extensibility of the polymer chains. Thus, our collaborators run

140



Modeling scattering of dilute, flexible polymers in flow Chapter 6

BD simulations for multiple-bead-spring FENE chains. In the example shown below, the

chains have 5 beads. We use Eqn. 6.17 and a discretized PDF for each unique bead-bead

pair for the scattering prediction at Wi = 0.1, 1, 10 (Fig. 6.5). With increasing Wi, the

scattering anisotropy increases which indicates the chains are more aligned in flow.

(a) (b) (c) log(𝐼(𝑞))

Figure 6.5: Scattering prediction for 5-bead FENE chain (with HI) using discretized
probability distribution function for (a) Wi = 0.1, (b) Wi = 1, and (c) Wi = 10.

6.4 Future work

Since this is the beginning of a 3-year project for our research group, there are many

directions that are yet to be explored. Based on our current results, I will now make some

recommendations for future work on this project both in the short term and long term.

We have demonstrated the validity of our forward and inverse calculation method for

the dumbbell model. It will be important to also develop an inverse calculation method

for the multiple-bead-spring model to enable extraction of more internal structures of

the chains. To do so, we first need to develop analytical or parameterized expressions of

the scattering of multi-bead chains. Several possible avenues are likely to be fruitful. A

mathematically rigorous method is to use the spherical harmonic decomposition developed

by Yangyang Wang and coworkers to extract components of the gyration tensor.6,7

Alternatively, the low-q expansion of Rouse chains has been worked out and can be used
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as a fitting function.8 Finally, one can attempt to derive approximate expressions of the

scattering after including finite extensibility, hydrodynamic interactions, and excluded

volume effects.

So far, the inverse method has only been tested on noise-free simulation results. When

using the inverse method on experimental scattering patterns, one immediate challenge is

the noise in experimental data. Previously in our group, a maximum a posteriori scattering

inference (MAPSI) method has been developed for extracting the orientation distribution

function of rodlike particles in flow, which accounts for the experimental uncertainty

associated with the scattering intensity.9 We can look into extending the MAPSI method

to extract conformation distribution function of polymers. Alternatively, the singular

value decomposition (SVD) method has been used to extract orientation distribution from

scattering10 and we can check its usefulness for extracting the conformation distribution

of polymers.

Finally, the end goal of this project is to study the influence of polymer topology on

the molecular deformation and scission at extreme rates. To first establish the forward

and inverse calculation methods, we focused on the linear polymers. Future work should

extend the current model to other polymer architectures, such as branched and star

polymers. Equilibrium models for such architectures already exist.11 For predictions

in flow, we propose either using Brownian Dynamics simulations of different polymer

architectures to obtain the discretized conformation distribution and use it directly in

scattering calculations as shown in this chapter or looking into methods to derive analytical

expressions for the scattering intensity based on the gyration tensor components of chains

with different architectures.
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Chapter 7

Modeling orthogonal superposition

rheometry to probe nonequilibrium

dynamics of entangled polymers

This chapter is reproduced from:

Jiamin Zhang, Andres Jurzyk, Matthew E. Helgeson, and L. Gary Leal, “Modeling Orthog-

onal Superposition Rheometry to Probe Nonequilibrium Dynamics of Entangled

Polymers”, Journal of Rheology, 65(5), 983-998, 2021. Featured article. DOI:

10.1122/8.0000272,

with the permission of AIP publishing.

7.1 Introduction

Flow processing of soft materials and complex fluids usually involves nonlinear defor-

mations, which can non-trivially modify both the associated microstructural configuration

and dynamics. This is particularly important for entangled polymeric fluids, where entan-
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glements produce nonlinear relaxation mechanisms that are significantly modified when

polymers stretch and orient in flow, leading to various flow instabilities and complications

in polymer processing. Various recent flow protocols have been proposed to highlight

the nonlinear contributions to the relaxation: one is Large Amplitude Oscillatory Shear

(LAOS),1 and another is superposition rheology, which was originally proposed by Tanner

and Simmons.2,3 Although in LAOS the frequency dependence offers the possibility

to probe different time scales, the method relies on subjecting the sample to a very

complex kinematic history.4 Alternatively, superposition rheology still enables frequency

dependent measurements while retaining simpler kinematics. As a result, superposition of

a small-strain oscillatory motion onto a steady or transient shear flow can provide a clearer

insight into the effects of flow on the mechanisms underlying the nonlinear response of

rheologically complex fluids.5 The oscillatory motion can be imposed either parallel (γ̇‖,

parallel superposition, PSR) or perpendicular (γ̇⊥, orthogonal superposition, OSR) to the

direction of motion for the steady shear flow. Of these, orthogonal superposition offers

the advantage that the two flow fields are not coupled and, as we show in this work, the

corresponding moduli can be more directly related to the microstructural configuration

under flow. OSR provides measurement of the frequency- and shear-rate-dependent

nonlinear viscoelastic superposition moduli (storage and loss moduli, G′⊥ and G′′⊥), which

are analogous to their linear viscoelastic (LVE) counterparts that characterize equilibrium

dynamics. So, in principle, OSR is a very promising experimental method for studying

the coupling of microstructural dynamics and nonlinear rheological response in polymeric

liquids.

In practice, however, it has been difficult to achieve OSR measurements experimentally

due to instrumental challenges and measurement sensitivity. The earlier devices for OSR

by Simmons,3 Mewis and Schoukens,6 and Zeegers et al.7 have a complex and delicate

mechanical design and only cover a rather narrow viscosity range. Vermant et al.8
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described an orthogonal superposition technique based on a simple modification of the

force rebalance transducer in a commercial rheometer and introduced the design of a

double wall Couette cell with open bottom for the inner cylinder to avoid pumping

flow. These new instrument developments finally enabled implementation of sensitive

orthogonal superposition on commercial rheometers. A recent experimental and simulation

study thoroughly investigated the calibration procedures and corrections needed for non-

idealized flow field in the OSR setup on commercial rheometers.9 Orthogonal superposition

rheometry (OSR) has been used to study structural changes during flow in complex fluids,

including polymeric fluids,10,11 starlike and wormlike micelles,5,12 and both in Brownian

dynamics simulations13 and experiments for colloidal suspensions.4,14–17

Because OSR has only recently become experimentally available on commercial rheome-

ters, relatively little is known about how to interpret the nonlinear viscoelastic results in

the context of entangled polymer dynamics. Specifically, there are very few theoretical and

computational studies that would provide a fundamental basis for interpreting orthogonal

superposition measurements. To date, most of the experimental studies have interpreted

the data by analogy to interpretation of linear viscoelastic measurements. However, though

proposed analogies between linear viscoelasticity and orthogonal viscoelasticity have been

used (e.g. using empirical rules to estimate chain length18–20), these analogies have not

been theoretically verified. This provides strong motivation for a deeper theoretical and

computational study to investigate what is fundamentally being measured in the OSR

experiments.

To better understand superposition experiments, the resulting moduli should be de-

scribed by suitable rheological constitutive models. Lacking a generally valid nonlinear

rheological constitutive equation, previous studies have used various phenomenological

models. Yamamoto proposed a strain rate-dependent relaxation spectrum, which demon-

strates that the parallel moduli reflect the coupling between shear and superimposed
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flow, while orthogonal superposition moduli do not.21 Wong and Isayev predicted the

orthogonal moduli with the Leonov model;22 Kwon and Leonov later corrected the pre-

dictions.11 The corrected predictions agree qualitatively well with early experimental

work by Simmons on polymer solutions.10 Kim et al. used the Giesekus model to predict

parallel and orthogonal superposition moduli and compared with experiments on wormlike

micelles.5

For studying entangled polymers in superposition flows, only two molecularly based

models have been used. The first involved a prediction of parallel superposition moduli

by Unidad and Ianniruberto23 using the differential constitutive equation accounting for

convective constraint release (CCR) proposed by Marrucci and Ianniruberto: the double-

convection-reptation model with chain stretch (DCR-CS model).24 However, interpretation

of parallel superposition results is complicated by the coupling of the steady shear flow

and oscillatory flow. The second study by Mead25 uses the monodisperse and polydisperse

MLD models to predict PSR and OSR moduli.26–28 A potential weakness of the MLD

model is that the stretch and orientation dynamics are treated using separate dynamical

equations, which can lead to problems even in monodisperse rheology predictions.29 As

pointed out by Boudara et al.,30 the decoupling approximation is even more problematic

for polydisperse blends because couplings between constraint release and chain retraction

must be readmitted in an ad hoc fashion and do not arise naturally from the model.

Furthermore, both the studies by Mead as well as by Unidad and Ianniruberto neglected

chain stretch. So far, no studies have systematically studied the effect of polydispersity

on OSR moduli using models that treat stretch and orientation in the same equation and

probed a sufficiently wide range of shear rates and frequencies so that significant shifts in

the moduli can be observed with increasing shear rate.

The current investigation addresses these limitations of previous studies by using

molecularly based models that treat orientation and stretch in the same equation for
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predicting OSR moduli. Specifically, we use the Rolie-Poly model31 for monodisperse

polymers and the Rolie-Double-Poly model30 for polydisperse polymers. These models

account for the detailed nonlinear relaxation processes of entangled polymers including

reptation, chain retraction, and convective constraint release. Furthermore, by combining

a perturbation analysis and numerical calculations, we can obtain OSR moduli across

a wide range of frequencies and shear rates and systematically vary the degree of chain

polydispersity. After the detailed modeling study, we will discuss our results in a broader

context to help design and interpret future OSR experiments. We find the relationships

governing OSR moduli for the Rolie-Poly model also work for a broader class of constitutive

models. We suggest an analogy to Laun’s rule32 to relate OSR moduli to the first normal

stress difference. Additionally, we derive expressions to extract model parameters from

experiments without the need for detailed model fitting. By making an analogy to the

linear relaxation spectrum, we show the utility of OSR experiments to obtain material

structural information that would be difficult to obtain from conventional rheological

measurements. In this way, studying orthogonal superposition computationally not only

provides important comparison to future experiments, but also provides better sensitivity

for testing models for nonlinear polymer processing.

7.2 Theory

7.2.1 Storage and loss moduli in linear viscoelastic measure-

ment

Storage and loss moduli have been used ubiquitously to describe viscoelastic materials,

such as entangled polymers. The storage modulus G′ is proportional to the energy storage

and therefore reflects the elasticity in the system. The loss modulus G′′ is proportional
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to the dissipation or loss of energy, reflecting the viscous nature of the system.33 The

most common approach to obtain information about the deformation-induced structural

rearrangement within a complex fluid is to measure the two moduli using small amplitude

oscillatory shear (SAOS). In this regime, the material response is independent of the

strain amplitude, and this is known as the linear viscoelastic behavior.34

The storage and loss moduli at equilibrium can be used to estimate the average

contour length of entangled polymers and wormlike micelles, as demonstrated in previous

works.18 Specifically, based on the polymer network theory, the number of entanglements

of a chain is given by the ratio of the plateau modulus G0
N and the minimum of the loss

modulus G′′min. The entanglement length, le, is evaluated in the context of a particular

chain model (e.g. a flexible chain or a semiflexible chain).19,20 Thus, one can estimate

the average chain length, Lc, as follows:

Lc = le
G0
N

G′′min
(7.1)

7.2.2 Rolie-Poly model for monodisperse polymers

Before discussing the model for polydisperse polymers, we first take a moment to

review the classic Rolie-Poly model of Likhtman and Graham,31 which has its origin in

the full GLaMM model. The GLaMM model was originally proposed by Graham and

co-workers35 as a full chain molecular theory for entangled monodisperse linear polymer

chains under fast deformation. The GLaMM model accounts for an accumulation of

stress via affine deformation and relaxation of stress by reptation, chain retraction, and

convective constraint release (CCR). Reptation was included in the original tube model

introduced by Doi and Edwards19 and describes the curvilinear motion of a polymer

chain in a tube formed by entanglements with surrounding chains. When the deformation
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becomes much faster than the inverse of the Rouse time, the chain can become stretched,

and as a result the length of the chain and the occupied tube exceed their equilibrium

configuration. When the strain stops, the chain retracts along the deformed tube until

it regains its equilibrium contour. Convective constraint release (CCR) is the release of

entanglement constraints due to chain retraction from affine deformation in nonlinear

flows. The effect of CCR diminishes for shear rates larger than the inverse of the Rouse

time.

Although the GLaMM model is successful in predicting the rheology of fast flows, it is

computationally prohibitive for nonviscometric flow calculations and for OSR calculations

that span several orders of magnitude of frequency and shear rate. Hence, as a simplified

version of the GLaMMmodel, Likhtman and Graham derived a one-mode approximation of

the GLaMM model to produce a differential constitutive model for entangled monodisperse

polymer chains: the Rolie-Poly model (for Rouse linear entangled polymers).31 The time

evolution of the contribution to the stress tensor due to the polymer, σ, is calculated via

the conformation tensor for an entanglement segment, A as

σ = G0
N ·A. (7.2)

and
dA
dt = κ ·A + A · κT︸ ︷︷ ︸

convection

− 1
τd

(A− I)︸ ︷︷ ︸
reptation

− 2 (1− λ−1)
τR

A︸ ︷︷ ︸
retraction

− βCCR
2 (1− λ−1)

τR
λ2ρ (A− I)︸ ︷︷ ︸

convective constraint release

.

(7.3)

Here, G0
N is the plateau modulus, κ is the velocity gradient tensor, and the stretch ratio of

the polymer chains, i.e. the ratio of the current to equilibrium-with-no-flow chain contour
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lengths, is defined as

λ =
√
trA

3 . (7.4)

The reptation term (with τd) is a single time relaxation towards equilibrium. It’s

also possible to include the effect of contour length fluctuation (CLF) with the reptation

term by modifying the reptation time.30,36 However, as shown by Boudara et al.,30 the

inclusion or absence of CLF only affects the quantitative agreement of the model with

experiment without affecting the qualitative trends. To keep the physical picture simple,

we will not include CLF in our calculations. The CCR term is also a relaxation towards

equilibrium, but with the rate dependent on the amount of stretch λ and the Rouse time

τR. Retraction is relaxation to zero stress, also with the rate dependent on λ and τR.

βCCR specifies the CCR contribution and is analogous to cν in the full GLaMM model.

cν determines the number of retraction events necessary to result in one tube hop of a

tube diameter with a value of cν ≤ 1.35 To fit the GLaMM model to experiments, the

authors used cν = 0.1, which approximately corresponds to βCCR = 1. ρ is an additional

fitting parameter. βCCR = 1, ρ = −0.5 are the optimal values to fit the Rolie-Poly model

prediction to the full GLaMM theory, thus these are generally used in the Rolie-Poly

model and also in this work.

The Rolie-Poly model incorporates changes in the conformation due to orientation and

stretch in the same equation. Thus, the model avoids anomalous shear thickening behavior

at shear rates corresponding to chain stretch predicted by models that decouple stretching

and orientation.29 Furthermore, since Rolie-Poly model is a single mode approximation

of the full GLaMM model, it has sound microstructural basis while still making the

calculation of OSR moduli computationally feasible.

151



Modeling orthogonal superposition rheometry to probe nonequilibrium dynamics of entangled
polymers Chapter 7

7.2.3 Rolie-Double-Poly (RDP) model for polydisperse poly-

mers

To develop a constitutive model for polydisperse entangled polymer, Boudara and

co-workers used ideas from both the Rolie-Poly model31 and the double reptation ap-

proximation37 to formulate the RDP model.30 The "RDP model" is used to refer the

"Rolie-Double-Poly" model, where "Double" signifies both "double reptation" and "double

poly" as in "POLYdisperse POLYmers. The RDP model can be formally derived as a

greatly simplified approximation of the detailed molecular theory for bidisperse polymer

melts of Read and co-workers.38

In the RDP model, the total polymer contribution to the stress is the sum of the

contributions coming from each species i, weighted by their volume fraction, φi

σ = G0
N

N∑
i=1

φiAi, (7.5)

with

λi =
√
trAi

3 . (7.6)

The conformation tensor Ai accounts for the stresses that come from the interaction of

the species i with itself and the other n− 1 species:

Ai =
N∑
j=1

φjAij, (7.7)

where Aij is the stress conformation tensor on the i-chains coming from their entanglements
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with the j-chains.

dAij

dt = κ ·Aij + Aij · κT︸ ︷︷ ︸
convection

− 1
2

 1
τd,i

(Aij − I)︸ ︷︷ ︸
reptation

+ βth
τd,j

(Aij − I)︸ ︷︷ ︸
constraint release


−

2
(
1− λ−1

i

)
τR,i

Aij︸ ︷︷ ︸
retraction

− βCCR
2
(
1− λ−1

j

)
τR,j

λ2ρ
i (Aij − I)︸ ︷︷ ︸

convective constraint release

(7.8)

In the original Rolie-Poly model, τd specifies the terminal stress relaxation time of the

polymer. However, in the RDP model, the effects of reptation are explicitly separated out

from thermal constraint release (CR) given by the parameter βth. Due to the interaction

of different chains, reptation of a smaller chain causes the constraint release of a longer

chain. Thus, CR needs to appear in a separate term. To ensure that the RDP model

converges to the Rolie-Poly model in the monodisperse limit, the reptation term and

the CR term are divided by two. This choice is physically sound because the reptation

term in the Rolie-Poly model is the effective reptation term that actually includes both

reptation and CR.

7.3 Methods

7.3.1 Numerical approach

Monodisperse calculation

To evaluate the orthogonal superposition moduli, it is necessary to calculate the

transient stress response under a combination of axial steady shear flow and orthogonal
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oscillation. The velocity gradient tensor is

κ =


0 γ̇ 0

0 0 0

0 γ̇⊥ (t) 0

 (7.9)

where γ̇ is the steady state shear rate and γ̇⊥ (t) = γ0,⊥ ω cosωt is the oscillatory superpo-

sition term. In this work, we kept γ0,⊥ = 0.05 to remain in the linear viscoelastic region,

as determined in the strain sweep (see Appendix B Fig. B.1). The six chain conformation

tensor components of Equation 7.3 need to be calculated numerically by transiently solving

the coupled differential equations. First, the equations are nondimensionlized using the

Rouse time τR and the plateau modulus G0
N . Specifically, the Deborah number De is

defined as the dimensionless frequency (De = ω · τR = ω̃), the Weissenberg number is

the dimensionless shear rate (Wi = γ̇ · τR), the dimensionless time is t′ = t/τR, and

non-dimensionalized stress tensor is σ̃ = σ/G0
N . Furthermore, the ratio of the reptation

time and the Rouse time is τd/τR = θ = 3Z, where Z is the number of entanglement

points per chain. In this work for the monodisperse calculations, we take Z = 20 for a

well entangled polymer system.

The six transient equations for the conformation tensor components of Equation

7.3 were solved using the MATLAB built-in solvers "ode45" and "ode15s". "ode15s" is

applied for the low frequency range to take advantage of the significant acceleration of the

computation using adaptive mesh refinement. However, for the high frequency range, the

adaptive mesh refinement caused large fluctuations in the moduli for adjacent frequency

values. Consequently, for the high frequency range the very robust solver "ode45" is

applied, which allows a user-defined time discretization. For this work, a logarithmic time

spacing enables a sufficient sampling of the oscillations, across the entire frequency range
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simulated (De = 10−4 to 100).

The shear stress in the orthogonal direction (⊥) is used for the determination of G′⊥

and G′′⊥ using

G′⊥
G0
N

= σ̃0,⊥

γ0,⊥

√
1 + (tanδ)2

, (7.10)

G′′⊥
G0
N

= σ̃0,⊥tanδ
γ0,⊥

√
1 + (tanδ)2

+ ηsω̃, (7.11)

where σ̃0,⊥ and γ0,⊥ are the amplitudes of the dimensionless shear stress and the

applied strain, whereas δ defines their phase shift. Furthermore, the term ηsω̃ denotes

the solvent contribution, which is purely viscous and therefore only appears in G′′⊥, with

the scaled solvent viscosity ηs = 0.001 in this work.

To determine the values of δ and σ̃0,⊥ from the simulation, we first need to identify

the start of the steady state in the main shear flow. The shear stress σ̃xy is plotted

as a function of time (Fig.7.1 (a)). Within the plateau, the stress continues oscillating

with a very small amplitude due to the superposed oscillation. We specify the plateau

criterion as the smaller value of 10−3 and 10−2ω̃ to account for the dependence of the

amplitude of the stress oscillation on the frequency. The start of the plateau is defined

as the first point in the transient shear stress with a moving standard deviation that is

smaller than the specified plateau criterion. Once the time for the start of the plateau for

σ̃xy is specified, the same time is used to identify the start of steady state for the stress

in the orthogonal direction (σ̃yz), which is plotted in Fig.7.1 (b) along with the applied

strain rate (γ̇⊥). The grey section of the figure illustrates the transient start-up before

the harmonic oscillation. After neglecting the start-up phase, σ̃yz and γ̇⊥ are fitted by

sine functions. Since the strain rate is a cosine function, it needs to be shifted by π/2 for

the fitting of a sine function. Equations 7.12 and 7.13 define the two functions, including

155



Modeling orthogonal superposition rheometry to probe nonequilibrium dynamics of entangled
polymers Chapter 7

their fitting parameters c1, and c2.

σ̃yz = σ̃0,⊥ · sin(ω̃ · t′ + c1). (7.12)

γ̇⊥ = γ0,⊥ω̃ · sin(ω̃ · t′ + c2 + π

2 ). (7.13)

In the equations, σ̃0,⊥ and γ0,⊥ specify the amplitudes of the orthogonal stress and the

applied strain in the orthogonal direction, respectively. Furthermore, the difference of the

resulting coefficients defines the phase shift between the two wave functions: δ = c1 − c2.

With the phase shift and the amplitude values, the OSR moduli G′⊥ and G′′⊥ are calculated

for each combination of shear flow strength Wi and superposed oscillation frequency De

according to Equations 7.10 and 7.11.

Finally, before using the numerical method above to make predictions of G′⊥ and G′′⊥,

we verified that γ0,⊥ = 0.05 is small enough to be in the linear viscoelastic region by

conducting a strain sweep at a fixed oscillation frequency (see Appendix B Fig. B.1 (a)).

Furthermore, we validated the numerical method by comparing steady state predictions

with predictions reported with the original Rolie-Poly model formulation31 and comparing

orthogonal superposition predictions using a Giesekus model with analytical results from

the work by Kim and co-workers5 (see Appendix B Fig. B.2).
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(a)

(b)

Figure 7.1: Schematic showing the steps for calculating superposition moduli numer-
ically (for Wi = 1 and ω̃ = 1) (a) Identification of steady state from shear stress
response as a function of time (b) Applied strain rate and yz−component of stress
response as a function of time, inset shows the phase shift.
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Polydisperse calculation

The G′⊥ and G′′⊥ calculations for polydisperse polymers follow the same workflow as

the monodisperse calculation. The only difference is that several different conformation

tensors Aij need to be calculated before the summation, given by Equations 7.5 and

7.7, is computed. For the nondimensionalization, the Rouse time (τR) of the weight-

average chain length (Z̄ = 20) is used to define the dimensionless shear rate Wi, the

dimensionless frequency ω̃, and the dimensionless time t′. Furthermore, the continuous

length distribution must be discretized into different species, each with its own chain

length and volume fraction. However, the computational expense significantly increases

with the number of species by a factor of N2. For this study, a maximum N = 32 is used.

To systematically study the effect of polydispersity on the OSR moduli, we assumed

a log-normal distribution for the volume fraction distribution with varying degrees of

polydispersity while keeping the weight-average molecular weight (Mw) the same. The

log-normal distribution is frequently seen in polymers used for rheological studies.39 The

continuous distribution is defined as:

φ(Z) = 1
Zs
√

2π
exp

[
−(ln(Z)− µ)2

2s2

]
, (7.14)

with s2 = ln(Ip) and µ = ln(Z̄/
√
Ip). φ(Z)δZ gives the volume fraction of chains

with entanglement number falling in the range Z ± δZ/2 for asymptotically small δZ.

We also define Z̄ =
∫
φZdZ as the mean number of entanglements per chain and

Ip = Mw/Mn = Z̄
∫
φ(Z)/ZdZ as the polydispersity index. We then partition the

continuous distribution into N sections, where the i = 1, 2, 3, ...N section is bracketed by

chains with entanglement numbers Ẑi−1 and Ẑi. In the approach used in this work and

first developed by Peterson,40,41 the partitions are drawn at lines of equal volume fraction.

In our view, this is the simplest discretization scheme that guarantees convergence to
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the correct cumulative distribution when N → ∞. Written in terms of the cumulative

distribution function Φ0(Z), the distribution scheme is formally given by:

Φ0(Z) =
∫ Z

0
φ(Z ′)dZ ′ = 1

2

[
1 + erf

[
ln(Z)− µ)

s
√

2

]]
, (7.15)

Φ0(Ẑi) = i/N. (7.16)

For the log-normal distribution, Φ0(Z) can be inverted to obtain the set of Ẑi:

Ẑi = exp
[
µ+ s

√
2erf−1

[
2 i

N
− 1

]]
. (7.17)

Now defining Zi as the weight average molecular weight of chains in the range between

Ẑi−1 and Ẑi, we approximate the continuous distribution by a discrete distribution of

N components with entanglement numbers Z1, Z2, Z3, ..., ZN and equal volume fractions

φ1 = φ2 = φ3 = ... = 1/N . This strategy ensures that the mean entanglement number

Z̄ = ∑
i φiZi is not changed by discretization. The end result for the discretization

scheme is:
Zi = 1

2N exp
[
µ+ 1

2s
2
] [

erf
(
erf−1

(2i
N
− 1

)
− s√

2

)

−erf
(
erf−1

(
2(i− 1)
N

− 1
)
− s√

2

)]
.

(7.18)

7.3.2 Perturbation analysis

For orthogonal superposition, the oscillatory flow is assumed to be in the linear

viscoelastic regime. Thus, the strain amplitude γ0,⊥ � 1 and γ0,⊥ω̃ � Wi. Wi is the

shear rate of the mean flow nondimensionalized by the Rouse time τR. In this case, we can

use a perturbation analysis with a small parameter ε being the ratio of the magnitudes

of the strain amplitudes of the orthogonal and main flow: ε = γ0,⊥
|γ̇| . We shall assume
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a regular asymptotic solution structure and retain only the first order perturbation to

the steady state solution. The superscript ”(0)” denotes the constant, order-one steady

state solution and the superscript ”(1)” denotes the order-ε perturbation to the steady

state value. With these notations, the stress tensor components and the chain stretch can

be expressed as an expansion about the steady state levels: σij(t) = σ
(0)
ij + εσ

(1)
ij (t) and

λ(t) = λ(0) + ελ(1)(t). Furthermore, as in the numerical calculation, we nondimensionalize

the stress by the plateau modulus G0
N : σ̃ij = σij/G

0
N , which also equals the conformation

tensor components Aij according to Eqn. 7.2. Thus, we have Aij(t) = A
(0)
ij + εA

(1)
ij (t).

We will first write the mathematical framework for the perturbation analysis using the

monodisperse Rolie-Poly model. A similar procedure is used for the RDP model. For all

six equations of the stress components in Equation 7.3, we collect the O(1) terms (0) and

the O (ε) terms (1). For the purpose of calculating the OSR moduli, we only need to solve

the O (ε) equation for A(1)
yz :

dA(1)
yz

dt = A(0)
yy γ0ω̃ cos (ω̃t)

−

1
θ

+ 2
(

1− 1
λ(0)

)
+

2
(
1− 1

λ(0)

)
λ(0)

A(1)
yz .

(7.19)

We can write this equation completely in terms of λ(0) by obtaining the steady state

solution for A(0)
yy :

A(0)
yy =

λ(0) + 2
(
1− 1

λ(0)

)
θ

λ(0) + 2
(
1− 1

λ(0)

)
θ + 2 (λ(0) − 1) θ

(7.20)

The equation for A(1)
yz can then be rewritten as:

dA(1)
yz

dt +BA(1)
yz = A(0)

yy γ0ω̃ cos (ω̃t) (7.21)
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with

B = 1
θ

+ 2
(

1− 1
λ(0)

)
+

2
(
1− 1

λ(0)

)
λ(0) . (7.22)

Equation 7.21 can be solved analytically for the OSR storage and loss moduli:

G′⊥
G0
N

=
A(0)
yy ω̃

2

B2 + ω̃2 , (7.23)

G′′⊥
G0
N

=
A(0)
yy B ω̃

B2 + ω̃2 . (7.24)

Here, only the polymeric contribution is included. To include the solvent contribution, we

can add ηsω̃ as in Eqn. 7.11. In Equation 7.23 and 7.24, A(0)
yy (γ̇) and B (γ̇) are evaluated

numerically from steady state Rolie-Poly equations without superposition. The values are

then used in the equations to calculate G′⊥ and G′′⊥ analytically. The perturbation analysis

gives a speed-up of more than 100 times while offering the same accuracy compared to

the numerical calculation of OSR moduli (see Appendix B Fig. B.3 for a comparison of

the two results).

A similar procedure is used for the perturbation analysis using the RDP model for

polydisperse polymers. In this case, Ayy(0)
ij (γ̇) and Bij (γ̇) of each entanglement pair need

to be determined from the steady state calculation. The OSR moduli are then sums of

contributions from all entanglement pairs:

G′⊥
G0
N

=
n∑
i=1

n∑
j=1

φiφj
A
yy(0)
ij ω̃2

B2
ij + ω̃2 , (7.25)

G′′⊥
G0
N

=
n∑
i=1

n∑
j=1

φiφj
A
yy(0)
ij Bij ω̃

B2
ij + ω̃2 . (7.26)

At this point, we reflect on the way in which we derived these relationships and their
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potential generality. Results for the orthogonal moduli in terms of the yy−component of

the polymer conformation tensor come about from the convection of the normal stress

through the upper-convected time derivative to the yz−component of the stress, which is

the direction of the oscillation. Regardless of the constitutive model that is used, this is

the procedure and the mathematical propagation that gives us a relationship similar to

Eqn. 7.25 and 7.26. In fact, the linear proportionality between the plateau value of G′⊥

and Ayy(0)
ij (γ̇) not only holds for Rolie-Poly and RDP models, but also for any model with

the upper-convected time derivative of the conformation tensor A and stress relaxation

terms that are linear in the conformation tensor and any linear superposition of these

models. The results are valid regardless of how the chain conformation is quantified: i.e.,

whether the end-to-end vector or the orientation tensor is used. A similar analysis on the

DCR-CS model by Marrucci and Ianniruberto24 (see Appendix B Section B.2.2) and the

MLD model by Mead25 produces the same relationship.

7.4 Results

7.4.1 Monodisperse case

We first present numerical calculations to obtain the orthogonal superposition moduli

using the Rolie-Poly model. Figure 7.2 shows the computational results of a frequency De

sweep for the oscillatory shear at different shear rates of the steady flow, i.e., Weissenberg

numbers, Wi = γ̇ · τR, ranging from 1 to 100. Initial studies of OSR on entangled

polymers were limited to relatively low Wi, but recent advances in instrumentation have

extended the accessible range to cover the range of Wi we study. These results are for a

monodisperse polymer with an entanglement number of Z = 20, which is the same as

what accompanied the original Rolie-Poly model formulation.31 Consequently the ratio
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of the two relaxation timescales θ = τd/τR = 60. We find two distinctive trends in the

moduli behavior with increasing Wi. First of all, a horizontal shift is observed, which

can be seen best in the rightwards shifting of the G′⊥ -G′′⊥ crossover point. Secondly, G′⊥

decreases monotonically with increasing main flow shear rates Wi. This effect can be seen

best by the plateau values of the G′⊥ curves. Comparing G′⊥ and G′′⊥ at Wi = 0.001 to

the linear viscoelastic moduli G′ and G′′ in the absence of flow (Fig. B.1 (b) in Appendix

B) verifies that results at low flow rates approximate the result at equilibrium.

Figure 7.2: Orthogonal superposition moduli for monodisperse polymers at six different
shear rates (Wi).

Furthermore, evaluating the contribution of each stress relaxation mechanism (rep-

tation, retraction and CCR) in the yz−component of the stress, σ̃yz, provides a better
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understanding of the causes of the shifts in the OSR moduli. Figure 7.3 shows the frac-

tional contribution of relaxed orthogonal stress terms separated by relaxation mechanism,

at a frequency of De = 0.001. The shape of the plots is independent of the choice of the

frequency. As Wi increases, contributions of the stretch-based phenomena (retraction

and CCR) increase, with CCR developing a maximum and then decreasing. In contrast,

reptation starts at 100% for very low shear rates and decreases with Wi to a value close

to 0%. This is because the stress relaxed by reptation approaches a constant when the

inverse of the disentanglement time τd is reached. Consequently, the reptation contribution

in the Rolie-Poly model remains constant, while retraction and CCR start dominating

relaxation for increasing Wi. In the first part of their increase, the same slope is observed.

However, as Wi continues to increase the chains can retract only partially from affine

stretch, and convective constraint release is less effective and the relative magnitude of

the CCR contribution decreases. At the same frequencies, the retraction term develops a

shoulder. Finally, at sufficiently large Wi, retraction dominates the relaxed stress with a

value close to 100%.
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Figure 7.3: Fractional stress contribution of different relaxation mechanisms in
yz−component of polymer stress.

By examining the numerical results alone, it is difficult to pinpoint what physical

phenomena directly cause the horizontal and vertical shifts. If these were purely linear

viscoelastic measurements under different temperatures and concentrations, researchers

would typically perform a time-temperature superposition or time-concentration superpo-

sition and force all of these curves to collapse. Here, we show that we can achieve such a

collapse with shift factors. Furthermore, these shift factors can be predicted based on

the perturbation analysis results in Eqns. 7.23 and 7.24. By assuming the superposed

oscillation is a small perturbation to the main shear flow (γ0,⊥ << 1 and γ0,⊥De << Wi),

we obtained analytical expressions for G′⊥ and G′′⊥ in Equations 7.23 and 7.24. Using the
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two parameters A(0)
yy (γ̇) and B (γ̇) identified in the analytical expressions, we scaled the

numerical results from Figure 7.2 after subtracting out the solvent contribution (ηsω̃).

This procedure completely collapses all the Wi-dependent moduli onto a single set of

curves. Specifically, we divided the OSR moduli by A(0)
yy (γ̇) and divided the dimensionless

frequency by B (γ̇) (Fig. 7.4(a)). The collapse of the curves suggests that the steady shear

flow only speeds up the relaxation and decreases the effective oscillatory driving force,

without changing the relaxation mechanism.
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(b) (c)

(a)

Figure 7.4: (a) Rescaling superposition moduli by A(0)
yy and frequency by B collapses

superposition moduli at different shear rates onto one set of curves. (b) Changes in
plateau modulus (A(0)

yy ) as a function of Wi. (c) Changes in crossover frequency as a
function of Wi.

We can further quantify the magnitude of the vertical shift by plotting the plateau

value of dimensionless G′⊥ as a function of Wi (Fig. 7.4(b)). In fact, in the plateau,

we have: limω̃>>1
G′⊥
G0
N

= A(0)
yy (γ̇). With increasing Wi, the G′⊥ monotonically decreases.

Around Wi = 1, a shoulder shape appears in the plateau (also in A(0)
yy (γ̇)), similar to the

shoulder shape in the retraction contribution in Fig. 7.3. This shoulder again arises due

167



Modeling orthogonal superposition rheometry to probe nonequilibrium dynamics of entangled
polymers Chapter 7

to the competition of retraction and convective constraint release. Since Wi is defined

in terms of the Rouse time τR, Wi = 1 represents the start of significant chain stretch,

which results in increased contribution of the stress relaxation by chain retraction. We

can also quantify the horizontal shift by plotting the frequency at the crossover of G′⊥

and G′′⊥ as a function of Wi (Fig. 7.4(c)). With increasing Wi, the crossover frequency

monotonically increases. In linear viscoelastic measurements, the inverse of the crossover

frequency gives a characteristic relaxation time of the system: τ = 1/ωc. So, Fig. 7.4(c)

indicates the effective relaxation time of the polymers is decreasing with increasing Wi.

By examining Eqn. 7.23 and 7.24, we find the crossover frequency equals B. To get a

better understanding of what A(0)
yy (γ̇) and B (γ̇) represent physically, we can return the

G′⊥ and G′′⊥ results in Eqns. 7.23 and 7.24 to dimensional form:

G′⊥ =
σ(0)
yy (τeffω)2

1 + (τeffω)2 and G′′⊥ =
σ(0)
yy τeffω

1 + (τeffω)2 , (7.27)

with

τeff = τd

1 + τd
τR

(
2− 2

λ2

) . (7.28)

The effective relaxation time τeff represents the speedup of the stress relaxation in flow.

Its asymptotic value changes from τeff = τd at low Wi before the onset of chain stretch

to τeff = τR/2 for very large chain stretch. So, A(0)
yy (γ̇) represents the nonlinear shear-

dependent chain conformation in the yy−direction, which is orthogonal to the main flow

direction, and B (γ̇) represents the nonlinear shear-dependent relaxation rate.

As discussed in Section 7.2.1, for conventional linear viscoelastic measurements, the

plateau modulus G0
N is used to estimate the entanglement length while the ratio of the

plateau modulus and G′′min is used to estimate the number of entanglements. Thus, LVE

G′ and G′′ moduli are used to estimate average chain length, and previous investigators
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have assumed that the corresponding orthogonal superposition (OSR) moduli can be

interpreted in the same way, thus providing a way to explore the effect of a steady shear

flow on chain scission for wormlike micelles and other "living" polymers.5,42 However, we

see that the decrease in G′⊥ with increasing Wi in Fig. 7.4(b) and the decrease in the

ratio of the plateau and G′′min in Fig. 7.2 occur without any modification to the properties

of the chain; for example, those that might be extracted from a scaling analysis of the

linear viscoelasticity (i.e. the number of entanglements is fixed at 20 per chain). The

plateau value and the crossover frequency change due to chain stretch and orientation,

as illustrated in the contribution of stress relaxation in Fig. 7.3. Therefore, changes in

the plateau modulus and relaxation time cannot be interpreted simply as due to changes

in the scaling variables (e.g. entanglement length, entanglement density, etc.). This is

consistent with a recent Brownian dynamics simulation for star polymers,43 in which

Metri and Briels showed that the shear relaxation modulus from orthogonal superposition

is not the same as the stress relaxation modulus from step strain (as is the case for linear

viscoelastic experiment at equilibrium), even for weak shear flow in the OSR experiment.

Although the data interpretation from the OSR measurement is complicated even for

a monodisperse polymer, the perturbation analysis nevertheless offers physical insights to

pinpoint the material properties that cause the change in the OSR moduli. Before moving

to the polydisperse calculations, we first demonstrate the generality of the perturbation

analysis by applying it to a different model, the DCR-CS (double-convection-reptation

model with chain stretch) by Marrucci and Ianniruberto.24 As shown in Appendix B

Section B.2.2, the resulting expressions for the OSR moduli are the same as those from

the Rolie-Poly model (Eqns. 7.23 and 7.24). The differences are in the expressions for

A(0)
yy (γ̇) and B (γ̇). Even though these expressions are different, the similarity in the

functional dependence of G′⊥ and G′′⊥ on A(0)
yy (γ̇) and B (γ̇) indicates that the dependence

of the plateau shift on the yy−component of the chain conformation and the horizontal
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shift on the effective relaxation time are model-independent and represent the physical

phenomena that determine the OSR moduli for linear polymers of fixed chain length.

7.4.2 Polydisperse case: log-normal distribution

To systematically study the effect of polydispersity on the OSR moduli, we used

a discretized log-normal molecular weight distribution, as discussed in Section 7.3.1.

Specifically, we used 32 bins to represent the continuous MW distribution with equal

volume fraction in each bin. The polydispersity index was varied from 1.01, which is

nearly monodisperse, to 5, which has a long tail. The weight-average molecular weight

(weight-average number of entanglements per chain, Z̄) is fixed at 20. Figure 7.5(a)

plots all of the molecular weight distributions used in this work. First, we compare

the numerical calculations at two representative cases of the degree of polydispersity:

PDI = 1.01 and PDI = 2 in Figure 7.5(b) and (c), respectively. For PDI = 1.01,

the results are nearly identical to the monodisperse results in Fig. 7.2. For PDI = 2,

the effects of polydispersity are more evident. Specifically, the shoulder in the storage

modulus becomes broader at all Wi and the plateau value decreases less. The gradual

evolution of the polydisperse moduli reflects the broad relaxation spectrum in the highly

polydisperse system (i.e. many relaxation times). As we will show below, the weakened

softening of the plateau for the polydisperse case compared to the monodisperse case

arises from the nonlinear dependence of Ayy(0)
ij on the chain length Zi. The presence of

the short chains causes the plateau to decrease less than the monodisperse case.

170



Modeling orthogonal superposition rheometry to probe nonequilibrium dynamics of entangled
polymers Chapter 7

(b)

(c)

(a)

𝑃𝐷𝐼 = 1.01

𝑃𝐷𝐼 = 2

Figure 7.5: Polydisperse calculations: (a) Log-normal molecular weight distributions
used in this work. (b) OSR moduli for PDI = 1.01 (c) OSR moduli for PDI = 2.
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To better quantify the horizontal and vertical shifts in the OSR moduli, we can plot

the plateau value and the location of the apparent crossover frequency as a function of

Wi for different PDI. However, having to account for N2 number of chain pairs for

all combinations of De and Wi significantly increases the computational time for the

polydisperse case compared to the monodisperse case. Thus, once again, we turn to a

perturbation analysis to obtain analytical expressions for the OSR moduli, which makes

prediction of OSR moduli at finely resolved Wi and De possible. The procedure for the

perturbation analysis and the main results are described in Section 7.3.2. We verified that

the perturbation analysis produced identical results as the full numerical calculations. So,

subsequently, we only report results from the perturbation analysis.

Figure 7.6 quantifies changes in the OSR moduli and crossover frequency as a function

of Wi for varying degrees of polydispersity: PDI = 1.01, 1.05, 1.2, 2, 5 and for the

monodisperse result (shown as the solid black curve). The crossover frequency G′⊥ and G′′⊥

increases monotonically with increasing Wi for all cases except for PDI = 5 (Fig. 7.6(a)).

For PDI = 5 and Wi > 10, the decrease of the crossover frequency at large Wi is a

result of significant stretching of the longest chains in the system. Such extreme stretching

is unphysical for finitely extensible chains, and can be removed with the inclusion of a

Warner spring44 (see Appendix B Fig. B.7(a)). Figure B.7 compares the linear spring

calculation with the Warner spring calculation. The sub-figures (a)-(d) are organized

similarly to those in Figure 7.6 here. Predictions using the Warner spring only start to

differ significantly from predictions for the linear spring for Wi > 10 and PDI ≥ 2. On

the one hand, across most of the parameter space (spanning different shear rates and PDI)

that is accessible experimentally, the predictions for the linear and Warner spring are very

similar. On the other hand, the Warner spring adds extra complications associated with

an additional parameter λmax, the maximum chain stretch. Thus, we will only discuss

results for the linear spring in the main paper. At low dispersity, the moduli value at
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the crossover decreases monotonically with Wi (Fig. 7.6(b)). However, for PDI = 2

and 5, the moduli at the crossover first increase then decrease with Wi. The G′⊥ plateau

decreases monotonically with increasing Wi for all cases (Fig. 7.6(c)). With increasing

PDI, the curves deviate more and more from the monodisperse curve. Additionally,

the shoulder shape in the monodisperse result that arises from the competition between

retraction and CCR becomes smoothed out with increasing polydispersity. Interestingly,

the monodisperse result for the moduli at the crossover has the same shape as the

monodisperse plateau value, with the former being half of the magnitude. This effect is

better illustrated in Fig. 7.6(d), in which the ratio of the crossover moduli and the plateau

moduli is plotted as a function of Wi for the monodisperse case and all polydisperse cases.

The monodisperse case is a flat line at 0.5 for allWi which indicates that for a monodisperse

polymer, the moduli value at the crossover is exactly half of the plateau value for all

Wi. Examining the perturbation result for the monodisperse case (Eqns. 7.23 and 7.24)

illustrates this point more clearly. At the crossover, G′⊥ = G′′⊥ and B (γ̇) = ω̃. Thus, the

moduli value at the crossover equals A(0)
yy (γ̇) /2. However, the Wi-independent, constant

moduli ratio is not preserved in the polydisperse cases. With increasing polydispersity,

the ratio decreases and becomes more non-monotonic (Fig. 7.6(d)).
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(a) (b)

(c) (d)

Figure 7.6: Quantify changes in OSR moduli as a function of Wi for varying degree of
polydispersity: (a) crossover frequency, (b) moduli at crossover, (c) plateau modulus,
(d) ratio of moduli at crossover and plateau.

The reason for all the changes in the polydisperse results compared to the monodisperse

result, as illustrated in Fig. 7.6(a)-(d), arises from the fact that the OSR moduli for the

polydisperse case are summations of the contributions from all entanglement pairs and the

OSR moduli are affected by the interactions between chains of different length (Eqns. 7.25

and 7.26). In particular, instead of being solely determined by the A(0)
yy (γ̇) component

of a single chain length as in the monodisperse case, the polydisperse plateau modulus

is determined by ∑n
i=1

∑n
j=1 φiφj A

yy(0)
ij (γ̇) = A(0)

yy (γ̇), which represents the dimensionless

weight-average chain conformation in the yy−direction of the entire population of chains.
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However, a weight-average of Bij (γ̇) for all entanglement pairs does not yield the overall

effective relaxation rate (i.e., the crossover frequency) for the polydisperse case. This is

becauseBij (γ̇) appears in the denominator of the individual moduli terms that are summed

together. Thus, for polydisperse systems, although there is a qualitative correlation of

the data with the degree of polydispersity, as shown in Fig. 7.6 especially in (d) for the

ratio of the moduli, no simple scaling exists to explain the shifts in the moduli, as in the

monodisperse case.

(a) (b)

(c) (d)

Figure 7.7: Comparison of results for RDP model with a simple linear superposition
(LSP) of monodisperse results for PDI = 2; (a) crossover frequency, (b) modulus at
crossover, (c) plateau modulus, (d) ratio of moduli at crossover and plateau.

One may wonder to what extent the changes in the OSR moduli in the polydisperse
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case can be understood by simple superposition of results for the discrete chains as opposed

to needing the full double reptation physics included in the RDP model. Here, we make a

comparison of the RDP results for PDI = 2 shown in Fig. 7.6 and the results of the simple

superposition of the monodisperse results for each discrete species in the polydisperse

calculation. Thus, for the linear superposition case, we have, G′⊥
G0
N

= ∑n
i=1 φi

A
yy(0)
i ω̃2

B2
i + ω̃2 and

G′′⊥
G0
N

= ∑n
i=1 φi

A
yy(0)
i Bi ω̃

B2
i + ω̃2 , where Ayy(0)

i (γ̇) and Bi (γ̇) are calculated from the perturbation

analysis for the monodisperse case for chains of length Zi and the values for Zi are

obtained from the discretization of the log-normal distribution. The sub-figures (a)-(d) in

Fig. 7.7 are organized similarly to the sub-figures in Fig. 7.6. Although the two sets of

predictions share similar qualitative trends, the simple superposition cannot quantitatively

capture the changes in the crossover frequency and crossover moduli at low Wi. Thus,

the full double reptation physics is needed to quantitatively describe the OSR moduli. We

also note that the amount of discrepancy between the simple superposition results and

the RDP results increases with increasing PDI. Nevertheless, since the plateau value at

large Wi (Wi = 100) is nearly identical for the simple superposition and the RDP model,

the simple superposition results can be used to explain the weakened softening of the

plateau value for the polydisperse case compared to the monodisperse case, as observed

in Fig. 7.5(c) and Fig. 7.6(c). As shown in Appendix B Fig. B.7, the yy−component of

the conformation tensor Ayy(0)
i depends nonlinearly on the chain length Zi. Thus, for a

discretized distribution of the log-normal distribution with a weight-average the same as

the chain length in the monodisperse case, the weight-average of Ayy(0)
i is not the same as

A(0)
yy for the monodisperse case.

In conclusion, the presence of chains of different length results in the smoother

transition to the plateau. The presence of short chains and the nonlinear dependence

of Ayy(0)
ij on the chain length results in the weakened softening of the plateau compared

to the monodisperse case. Although a simple superposition of the monodisperse results
176



Modeling orthogonal superposition rheometry to probe nonequilibrium dynamics of entangled
polymers Chapter 7

can capture the qualitative trends observed in the polydisperse OSR moduli, to obtain

quantitative predictions, the double reptation physics is needed.

7.5 Discussion

Given the results just presented, we will now provide perspective on how this work

could potentially help aid the design and interpretation of orthogonal superposition

experiments.

7.5.1 An analogy to Laun’s rule

By using a combination of numerical calculations and perturbation analysis, we showed

for both the monodisperse case and the polydisperse case, the plateau of the orthogonal

modulus is completely determined by the yy−component of the polymer conformation in

the steady imposed shear, namely:

lim
ω̃>>1

G′⊥ (γ̇)
G0
N

= A(0)
yy (γ̇) , (7.29)

where A(0)
yy (γ̇) = ∑n

i=1
∑n
j=1 φiφjA

yy(0)
ij (γ̇) is the weight-averaged result for the polydis-

perse case. As we discussed in the theory section 7.3.2, Eqn. 7.29 is generally valid

for any model with the upper-convected derivative of the conformation tensor A and

relaxation terms that are linear in the conformation tensor or any linear superposition

of these models. Given this result and its generality, we can use orthogonal superposi-

tion measurements to obtain estimates of A(0)
yy (γ̇). Experimentally, this is accomplished

by shifting G′⊥ and G′′⊥ at different shear rates to achieve a complete overlap, in the

same manner performed routinely for linear viscoelastic measurements for the purpose

of time-temperature or time-concentration superposition, one can obtain shift factors
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α (γ̇) = G′⊥(ω,γ̇)
G′⊥(ω,γ̇=0) = G′′⊥(ω,γ̇)

G′′⊥(ω,γ̇=0) . We can use the vertical shift factors to obtain A(0)
yy (γ̇):

A(0)
yy (γ̇) = α (γ̇) A(0)

yy (γ̇ = 0) = α (γ̇) . (7.30)

It’s worth noting here that in time-temperature superposition, the conventional nomencla-

ture for the vertical shift factor is b. Since we already used B to represent the dimensionless

crossover frequency, which is related to the horizontal shift, we are using α to represent

the vertical shift factor.

Since a rheological constitutive equation for an incompressible fluid only specifies

the stress to within an arbitrary isotropic component, we cannot use A(0)
yy (γ̇) to directly

determine the normal stress component in the yy−direction, σyy. However, we can

attempt to make predictions of the first normal stress difference, N1. In particular, for

the Rolie-Poly model, we can solve for the steady state value of A(0)
xx (γ̇) using the O(1)

equation in the perturbation analysis (see section B.2.5 in Appendix B for the detailed

derivation). Then, using results for A(0)
yy (γ̇) and B (γ̇), we obtain:

N1 (γ̇) = G0
N

(
A(0)
xx − A(0)

yy

)
= 2G0

NA
(0)
yy

[
Wi

B

]2
. (7.31)

If we recall that Wi = γ̇ · τR and B (γ̇) represents the dimensionless crossover frequency,

B (γ̇) = ω̃c,γ̇ = ωc,γ̇ · τR, we get:

N1 (γ̇) = 2G0
NA

(0)
yy

[
γ̇

ωc,γ̇

]2

. (7.32)

Experimentally, this means we can use the plateau value of G′⊥ (γ̇), i.e., G0
NA

(0)
yy (γ̇),

the applied shear rate, γ̇, and the shear-rate dependent crossover frequency, ωc,γ̇, to

completely determine the first normal stress difference N1 (γ̇). In the limit where a

single-mode model accurately describes the experimental data, one can use this relation
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to determine N1 (γ̇). We can further rearrange Eqn. 7.32 to get:

lim
ω→∞

[
G′⊥ (ω, γ̇)
ω2
c,γ̇

]
= N1 (γ̇)

2γ̇2 . (7.33)

Previously, several relations have been proposed to connect the first normal stress differ-

ence or the yy-component of the stress to more easily measurable quantities in shear flow.

Specifically, Holroyd et al.45 derived analytical solutions of the Rolie-Poly model and

found an expression to relate the recoverable strain to the yy-component of the stress,

γrec = σ0
xy

σ0
yy
. This theoretical result has been verified in molecular dynamics simulations

of entangled polymers.46 In LAOS measurements, Lee et al. found N1(t) = 2G(t)γ2
rec(t),

where G(t) is the recoverable strain-dependent elastic modulus and γrec is the recover-

able strain.47 Tanner and Williams48 used the phenomenological K-BKZ model49,50 to

derive a relationship between the OSR moduli and the first normal stress difference:

limω→0
[
G′⊥(ω,γ̇)

ω2

]
= N1(γ̇)

2γ̇2 . This relation only works in the low-frequency limit and is

specific to the K-BKZ model. The well-known Laun’s rule32 relates the first normal

stress difference to the linear viscoelastic moduli and is predicted to work for any general

viscoelastic model: N1 (γ̇) = 2G′ (ω)
[
1 +

(
G′(ω)
G′′(ω)

)2
]0.7

∣∣∣∣∣
ω=γ̇

. Our result is an alternative

set of relations that may prove more useful depending on where the sensitivity of the

measurement lies. Previous rules provide relationships that are generally valid at asymp-

totically small frequencies and shear rates. We can now make a similar comparison at

asymptotically large frequencies, which is usually the region with better instrumental

sensitivity. Notably, the normal stress component is obtained as a byproduct of measuring

the plateau of the orthogonal modulus without having to build extra instrumentation to

measure the normal stress.
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7.5.2 Determination of constitutive parameters

From the perturbation analysis, we found the horizontal shift of the OSR moduli is

determined by the effective relaxation rate B (γ̇). In the context of the Rolie-Poly model

(i.e. for monodisperse polymers), since both A(0)
yy (γ̇) and B (γ̇) only depend on the ratio

of relaxation time θ, the CCR parameter βCCR, and chain stretch due to the steady shear

flow λ(0), OSR experiments can be used to estimate chain stretch and the CCR parameter

βCCR. Specifically, one can first use linear viscoelastic measurements to estimate the

Rouse time τR and the reptation time τd. Then, one can subtract the solvent contribution

from the orthogonal superposition measurement (in the values for G′′⊥). Next, G′⊥ and

G′′⊥ at different shear rates are shifted numerically to achieve a complete overlap with

associated shift factors α (γ̇) and B (γ̇). Finally, we can use the crossover frequencies to

obtain the relaxation rate B (γ̇). For the simplest case of βCCR = 1 as we assumed in the

previous calculations, we can obtain chain stretch λ (γ̇) from the crossover frequency:

λ (γ̇) =
√

2
2− (ωc,γ̇ τR − ωc,eqm τR) . (7.34)

In order to obtain both λ (γ̇) and βCCR, we need to use expressions for A(0)
yy (γ̇) and

B (γ̇) that include βCCR:

A(0)
yy =

λ(0) + 2βCCR
(
1− 1

λ(0)

)
θ

λ(0) + 2βCCR
(
1− 1

λ(0)

)
θ + 2 (λ(0) − 1) θ

(7.35)

B = 1
θ

+ 2
(

1− 1
λ(0)

)
+

2βCCR
(
1− 1

λ(0)

)
λ(0) . (7.36)

By fitting the shear rate dependent experimental values of A(0)
yy (γ̇) and B (γ̇) to

Eqns. 7.35 and 7.36, we can obtain λ (γ̇) and βCCR. Furthermore, using Eqn. 7.30 and
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converting B (γ̇) to dimensional form (B (γ̇) = ωc,γ̇ τR), we obtain expressions for λ (γ̇)

and βCCR in terms of the vertical shifting factor α (γ̇) and crossover frequency measured

in experiments:

λ (γ̇) = 2
2− ωc,γ̇ τR (1− α (γ̇)) , (7.37)

and

βCCR =
α (γ̇) ωc,γ̇ τR − τR

τd

ωc,γ̇ τR (1− α (γ̇))− ω2
c,γ̇ τ

2
R (1−α(γ̇))2

2

. (7.38)

Typically, the CCR parameter is assumed to be a constant and independent of shear

rate. In the case that model predictions are used to generate the OSR moduli, as in

the present analysis, Eqn. 7.38 can be used to test the self-consistency of βCCR. More

interestingly, in the case of experimental data where the apparent value(s) of the nonlinear

constitutive model parameter(s) is unknown and in the limit where a single mode model

accurately describes the experimental data, one can use this shifting procedure in order

to extract and fit model parameters of the desired constitutive equation. In order to

successfully estimate model parameters from OSR experiments, we therefore give the

following recommendations: 1) The shear rates need to span a large enough range to

cover both the case of no chain stretch and the case of significant chain stretch (γ̇τR > 1).

2) The frequency range needs to span from values below the crossover frequency at

equilibrium to frequency values corresponding to the plateau of G′⊥ in flow.

7.5.3 Physical interpretation of OSR moduli

We now discuss the implications of our analysis on the more general issue of the

physical interpretation of OSR moduli measured in experiments in the absence of a

particular constitutive model. In light of Figure 7.6, the plateau modulus for both the

monodisperse and polydisperse cases decreases with increasing Wi and the moduli shifts

181



Modeling orthogonal superposition rheometry to probe nonequilibrium dynamics of entangled
polymers Chapter 7

horizontally without any modification to the properties of the chain; e.g., those that might

be extracted from a scaling analysis of the linear viscoelasticity. For example, in previous

orthogonal superposition experiments on wormlike micelles by Vermant and coworkers5

and Rothstein and coworkers,42 the authors assumed by analogy with linear viscoelasticity

ξm (γ̇) =
(

kBT
G′⊥(γ̇)|ω→∞

)1/3
to estimate the apparent, shear-rate dependent mesh size, ξm,

from the plateau modulus of orthogonal superposition moduli, G′⊥ (γ̇) |ω→∞. Vermant and

coworkers linked the systematic decrease of the plateau modulus to shear-induced changes

in the mesh size of the micellar network. Rothstein and coworkers went further to suggest

the change in the mesh size is related to the breakage of micelles in flow. However, our

analysis of OSR for the Rolie-Poly model clearly shows, even in the context of regular

polymers, the plateau modulus decreases with increasing shear flow due to stretch-based

relaxation mechanisms (CCR and retraction), in the absence of any chain breakage. A

comparison between the experiments on WLMs by Rothstein and coworkers and our RDP

model calculation with a log-normal distribution of PDI = 2 shows a similar change in the

plateau modulus (∼ 20%) over the comparable range of Wi, suggesting that changes in

entanglement dynamics are important and must be considered in this range. Additionally,

the effect of polydispersity adds another complication for any analysis that tries to extract

chain length in flow from the plateau of OSR moduli. As such, one cannot simply use

empirical relationships for estimating length that are developed for equilibrium linear

viscoelastic measurements, such as those described in Section 7.2.1, to interpret OSR

results. This knowledge from simulations is very useful for interpreting OSR experiments.

In addition to the applicability of linear viscoelastic scaling analysis, one may wonder

about the potential for using OSR moduli to infer or understand polydispersity effects

given the present analysis. We identified new parameterization of the OSR moduli to

qualitatively relate to the degree of polydispersity. Specifically, the ratio of the moduli

at the crossover to the plateau modulus as a function of shear rate becomes increasingly
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nonmonotonic and deviates from the constant value of 0.5 with increasing degree of

polydispersity (Fig. 7.6(d)). Although Fig. 7.6 focuses on the result for the log-normal

distribution, the qualitative trend also holds for other continuous, broad distributions,

except for a bi-modal distribution with sharp peaks. In particular, for PDI = 1.01, the

shape of the molecular weight distribution is nearly identical for log-normal and Gaussian;

similarly, for PDI = 2, the shape of the molecular weight distribution is very similar for

the log-normal and exponential. Although in our analysis we primarily focused on the

log-normal distribution, by changing the degree of polydispersity, we are also changing

the shape of the molecular weight distribution.

Conventionally, viscoelastic measurements of polydisperse systems have been used to

extract information about the distribution of relaxation times, i.e., the discrete linear

response relaxation spectrum. In Fig.7.7 and Fig. B.9 in Appendix B, we show that

the nonlinear decomposition of the orthogonal modulus into its relative contributions

Ayyij (γ̇) is sensitive to the spectrum of the nonlinear relaxation times. In this way, these

measurements could be used as a nonlinear analog to linear viscoelastic measurements

in terms of obtaining the spectra of nonlinear relaxation rates. The idea of extracting

a shear rate-dependent relaxation spectrum from OSR measurement was proposed by

Yamamoto.21 However, this approach has a drawback because one has to assume a

functional form of the relaxation spectrum beforehand. For the Rolie-Poly and RDP

models, we can analytically derive the results for the superposition moduli that naturally

contain a sum of the individual chain pairs in the system (Eqn. 7.25 and 7.26). In

this case, the relaxation rate of individual modes is proportional to Ayyij (γ̇). Thus, if

the experimental system can be accurately described by these relationships, then one

can fit experimental data to these two equations and just leave Ayyij (γ̇) and Bij (γ̇) as

adjustable parameters for some number of modes. Then, what one measures is the discrete

nonlinear relaxation spectrum and the resulting Ayyij (γ̇) and Bij (γ̇) in the nonlinear case
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are equivalent to G and τ for the multi-mode Maxwell model in the linear viscoelastic

limit. The advantage of this approach is that we don’t need to presuppose anything

about what Ayyij (γ̇) and Bij (γ̇) are, as long as a general multi-mode model with the

upper-convected time derivative of the conformation tensor and relaxation terms linear in

the conformation tensor describes the material of interest. For the specific case of the

RDP model, we actually know what Ayyij (γ̇) and Bij (γ̇) are, whereas if we presuppose a

form for the relaxation spectrum, we wouldn’t necessarily know what Ayyij (γ̇) and Bij (γ̇)

are. In other words, our results reaffirm the approach by Yamamoto that one can define

some effective nonlinear relaxation spectrum, but beyond this, it gives proof to the idea

that the relaxation spectrum should be related to the underlying constitutive behavior of

the fluid. Going a step further, for the case of the Rolie-Poly and the RDP models, we

can obtain analytical expressions for the discrete nonlinear relaxation spectrum from the

expressions for the OSR moduli (Eqn. 7.25 and 7.26).

To summarize the previous discussions, our study emphasizes the critical importance of

comparing OSR experiments with this type of detailed OSR predictions using rheological

models to understand the physical meaning of changes in orthogonal superposition moduli

as is now routinely done for other types of nonlinear rheological measurement protocols.

7.6 Conclusions

In this work, we combine numerical calculations and a perturbation analysis using

detailed microstructural models (Rolie-Poly and Rolie-Double-Poly models) to study

orthogonal superposition for monodisperse and polydisperse entangled linear polymers.

A perturbation analysis allows identification of key parameters (A(0)
yy (γ̇) and B (γ̇)) that

determine the shifts of the OSR moduli. By quantifying the shifts in an OSR experiment

and using the expressions for A(0)
yy (γ̇) and B (γ̇), we can estimate the average chain stretch
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λ (γ̇), the CCR parameter βCCR, and the first normal stress difference N1.

By systematically varying the degrees of polydispersity while keeping the weight-

average molecular weight constant in a log-normal distribution of the molecular weight,

we find qualitative signatures in the OSR moduli that correlate with the degree of

polydispersity. Furthermore, the presence of short chains and the nonlinear dependence

of Ayy(0)
ij on the chain length results in the weakened softening of the plateau compared

to the monodisperse case. Although a simple superposition of the monodisperse results

can capture the qualitative trends observed in the polydisperse OSR moduli, to obtain

quantitative predictions, the double reptation physics is needed. By making an analogy

with the discrete relaxation spectrum obtained from LVE moduli, we showed that OSR

moduli can be used to extract a nonlinear relaxation spectrum, which reveals a potential

significant advantage of OSR measurement over conventional rheological measurements.

We also found that the contributions of different relaxation mechanisms and polydis-

persity to the shifts of OSR moduli complicate the analysis of estimating changes in chain

length in flow. Thus, we cannot simply use conventional scaling analyses developed for

LVE measurements to interpret OSR results.

The perturbation analysis and simulation scheme developed in this work are quite

general and can be applied for other rheological models and material systems. In fact, we

found the result for yy-component of the chain conformation determining the plateau value

of the orthogonal moduli to be a general result for any model with the upper-convected

time derivative of the conformation tensor and relaxation terms that are linear in the

conformation tensor. Our result can be used as an analogy to Laun’s rule for relating

OSR moduli to the first normal stress difference.

In summary, we found that orthogonal superposition gives very useful information

about nonlinear material moduli under flow, which can provide better sensitivity for

testing constitutive models for nonlinear polymer processing. Results in our work have
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important implications for the design and interpretation of future orthogonal superposition

experiments.
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Chapter 8

Conclusions and future directions

8.1 Conclusions

The main conclusions of the dissertation will now be summarized. The outcomes

from this dissertation can be divided into three categories: (1) the development of new

tools for the measurement and analysis of flow-SANS experiments (2) the modeling of

orthogonal superposition rheometry (3) new physical insights into the nonlinear flow-

induced deformations of wormlike micelles and polymers. Additionally, future directions

for studies of wormlike micelles and polymers will be proposed.

8.1.1 Outcomes: Flow-SANS measurement and modeling tools

In this dissertation, several advancements were demonstrated toward analysis and

modeling of small angle neutron scattering of wormlike micelles and polymers. In Chapter

3 Section 3, a new equilibrium scattering model for entangled wormlike micelles was

discussed. The model successfully captured the plateau of the intensity in the low-q

regime, which was attributed to the inability of SANS to probe length scales beyond the

mesh size for highly concentrated WLMs and the effect of electrostatic repulsion. The
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model was used to estimate the relative amount of unentangled and entangled wormlike

micelles, which allows direct comparison with two-species rheological models for WLMs.

In Chapter 5, a new parameterization method for 2D anisotropic scattering data was

developed, in which the ratio of circular average intensity in flow to that at equilibrium

was plotted as a function of the alignment factor. This representation of the measurement

enables summarizing all the key features for the q-dependent changes in the anisotropy

and in the magnitude of intensity at different shear rates in one plot. Furthermore, by

parameterizing out the direct shear rate dependence, the new representation allowed direct

comparison with simulation results. The 2D parameterization enabled fingerprinting

microstructural signatures in the anisotropic scattering.

In Chapter 4, we extended the Hayter-Penfold model for rodlike micelles to develop

a connected-rod model for semiflexible chains in flow. By incorporating a segmental

orientation distribution that is consistent with the overall stretching and orientation of

the chain, we successfully captured the q-dependence of the anisotropy in the flow-SANS

experiments of wormlike micelles. The study also demonstrated the sensitivity of the

resulting scattering to the shape of the segmental orientation distribution. The model

can be used not only for wormlike micelles, but also for other semiflexible chains, such as

bottlebrush polymers, DNA, and electrolytes with semi-flexibility.

In Chapter 6, we formulated a scattering model for dilute, flexible polymers in shear

flow and used results from Brownian Dynamics simulations for the polymer conformation

in flow. We demonstrated the ability to both make a forward prediction of the scattering

from polymer deformation and perform the inverse calculation to extract components of

the gyration tensor from anisotropic scattering.
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8.1.2 Outcomes: Modeling of orthogonal superposition rheom-

etry

In Chapter 7, we combined numerical calculations and a perturbation analysis using

detailed microstructural models (Rolie-Poly and Rolie-Double-Poly models) to study

orthogonal superposition (OSR) for monodisperse and polydisperse entangled linear

polymers. A perturbation analysis allowed identification of key parameters that determine

the shifts of the OSR moduli. By quantifying the shifts in an OSR experiment, we can

estimate the average chain stretch λ (γ̇), the CCR parameter βCCR, and the first normal

stress difference N1. By systematically varying the degrees of polydispersity while keeping

the weight-average molecular weight constant in a log-normal distribution of the molecular

weight, we found qualitative signatures in the OSR moduli that correlate with the degree

of polydispersity. The perturbation analysis and simulation scheme developed in this work

are quite general and can be applied for other rheological models and material systems. In

fact, we found the result for yy-component of the chain conformation, which determines

the plateau value of the orthogonal moduli, to be a general result for any model with the

upper-convected time derivative of the conformation tensor and relaxation terms that are

linear in the conformation tensor. Our result can be used as an analogy to Laun’s rule for

relating OSR moduli to the first normal stress difference. In summary, we found that

orthogonal superposition gives very useful information about nonlinear material moduli

under flow that can provide better sensitivity for testing constitutive models for nonlinear

polymer processing. Results in our work have important implications for the design and

interpretation of future orthogonal superposition experiments.
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8.1.3 Outcomes: Physical understanding of processing-structure-

property relationship of polymeric fluids

Flow-enhanced scission of wormlike micelles

We conducted flow-SANS and rheology experiments on a series of linear wormlike

micelles at various surfactant concentrations and temperatures, which were discussed in

Chapter 5. From the analysis of time-resolved flow-SANS measurements at different shear

rates, we observed the relaxation time for the magnitude of the intensity is always larger

than the relaxation time for the alignment factor; this is especially so at the lowest-q

value investigated. Furthermore, the relaxation time for the magnitude of the intensity

increases with increasing shear rate at the lowest-q. Since the alignment factor quantifies

the degree of anisotropy, which is related to the micellar orientation, the relaxation of the

alignment factor describes the relaxation of the micelle orientation after flow cessation. If

orientation were the only factor that changes the scattering anisotropy and the magnitude

of the circularly averaged intensity, we would expect the relaxation time of the magnitude

of the intensity to be the same as the relaxation time of the alignment factor. The larger

relaxation time for the magnitude of the intensity, especially at the largest shear rate

and lowest-q value investigated suggests that additional relaxation mechanism, namely,

relaxation of flow-enhanced scission, is responsible for changes in the magnitude of the

intensity. Therefore, the time-resolved flow-SANS measurements suggest flow-enhanced

scission of the micelles. By comparing with simulations of the connected-rod model

with different numbers of cylinders, we further confirmed that when the micelles get

shorter (fewer number of Kuhn segments), the magnitude of the intensity is affected

the most at the low-q. This is consistent with the increase of the relaxation time of

the magnitude of the intensity at the low-q with increasing shear rate and the relatively

constant relaxation time with shear rate at higher-q. In summary, a combination of SANS
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modeling, steady-state flow-SANS experiments, and time-resolved flow-SANS experiments

enables direct microstructural measurement of wormlike micelles in flow and suggests the

presence of flow-enhanced scission.

Entangled polymers

In Chapter 7, we demonstrated the shifts of the orthogonal superposition moduli were

determined by the yy component of the polymer conformation and the effective relaxation

rate. By making an analogy with the discrete relaxation spectrum obtained from LVE

moduli, we showed that OSR moduli can be used to extract a nonlinear relaxation

spectrum, which reveals a potential significant advantage of OSR measurement over

conventional rheological measurements. We also found that the contributions of different

relaxation mechanisms and polydispersity to the shifts of OSR moduli complicates the

analysis of estimating changes in chain length in flow. Thus, we cannot simply use

conventional scaling analyses developed for LVE measurements to interpret OSR results.

8.2 Recommendations for future work

8.2.1 Experimental validation of model predictions

At the time of developing the orthogonal superposition modeling, there was limited

experimental data for OSR experiments of monodisperse polymers and polydisperse poly-

mers with well characterized degree of polydispersity and relaxation time. Furthermore,

previous experimental studies were limited in the range of shear rates and frequencies that

could be achieved. With new improvements of the orthogonal superposition instrumen-

tation and especially recent incorporation in a commercial rheometer, probing rheology

of entangled polymers at higher shear rates and frequency ranges to access the region
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with significant chain stretch becomes a possibility. Future studies on OSR experiments

of monodisperse and polydisperse entangled polymers will allow validation of our model

predictions. Specifically, it is desirable to validate the relationship between the first

normal stress difference and OSR moduli that we derived in Chapter 7:

lim
ω→∞

[
G′⊥ (ω, γ̇)
ω2
c,γ̇

]
= N1 (γ̇)

2γ̇2 . (8.1)

It will also be interesting to extract the chain stretch from OSR moduli using the relations

we derived in Chapter 7.

When developing the connected rod model for semiflexible chains, we compared the

model prediction with flow-SANS experiments of wormlike micelles instead of other

semiflexible chain systems. This is because currently there is a lack of flow-SANS

measurements on semiflexible polymers in flow, which is partially due to the smaller

relaxation time and weaker segmental orientation compared to wormlike micelles. Thus,

much higher shear rates are needed to observe significant scattering anisotropy and

the shear rates required are near the highest shear rates achievable in rheometers and

shear-cells (∼ 2000s−1). Recently, scientists at NIST developed a capillary rheoSANS

device that enables measurements up to shear rates of 107s−1.1 It will be useful to use

this device to measure scattering of semiflexible chain systems in addition to wormlike

micelles to further validate the connected-rod model predictions.

8.2.2 Development of new theoretical and computational tools

For the scattering model of semiflexible chains in flow, so far, we have only included

polydispersity in chain length for the equilibrium prediction; the predictions in flow use

the monodisperse version of the model. At a given shear rate, we used the effective

stretch parameter in the orientation distribution as a fitting parameter to match the

196



Conclusions and future directions Chapter 8

degree of anisotropy between simulation and experiments. It would be desirable to

include polydispersity in chain length for the predictions in flow to better resemble

the microstructures of wormlike micelles and other semiflexible systems with length

polydispersity. However, with chain polydispersity included, one can no longer use

the effective stretch as a fitting parameter to match the degree of anisotropy between

simulation and experiments because for a given shear rate, chains of different lengths have

different effective stretch. To our knowledge, current experimental studies on wormlike

micelles have not investigated the dependence of chain stretch on chain length. Thus,

one may need to rely on molecular dynamics simulations2,3 or rheological models4 to

obtain effective chain stretch as a function of shear rate and chain length. Once the chain

polydispersity is included in the scattering model in flow, the model can be used to fit

2D flow-SANS experimental data to extract the average chain length (or chain length

distribution) as a function of shear rate. This will enable more directly probing the effect

of flow on the scission of wormlike micelles.

From the modeling of orthogonal superposition rheometry for entangled polymers,

we demonstrated the plateau of the orthogonal storage moduli decreases with increasing

shear, without any chain breakage. A comparison with previous experiments on wormlike

micelles in the literature yields a similar percentage of reduction in the plateau value after

matching the number of entanglements in the wormlike micelle experiment and that in

the simulation of monodisperse chains. It would be desirable to compare polydisperse

predictions with wormlike micelle experiments since wormlike micelles have a broad

length distribution. However, since the current polydisperse OSR prediction uses the

Rolie-Double-Poly model for polymers, it exhibits a broad relaxation spectrum (i.e., many

relaxation times), which is different from the single-mode Maxwell behavior in wormlike

micelles in the fast-breaking regime. Thus, to compare with OSR experiments of wormlike

micelles, we need to use a rheological model for wormlike micelles that incorporates stress
197



Conclusions and future directions Chapter 8

relaxation due to chain breakage and recombination and includes the full exponential

length distribution. Such a model has been published recently Peterson and Leal.5

Comparison of OSR predictions using rheological models for wormlike micelles and WLM

experiments will allow one to more directly distinguish effects of chain scission to the

OSR moduli from other relaxation mechanisms that are present in regular polymers (e.g.,

reptation, retraction, convective constraint release).

For modeling the scattering of dilute polymers in flow, so far, we have only focused on

linear polymers. To elucidate the effect of polymer architecture on the chain deformation

and resistance to chain scission in flow, it is useful to extend the current model to

other polymer architectures, such as branched and star polymers. Equilibrium models

for such architectures already exist.6 For predictions in flow, we propose either using

Brownian Dynamics simulations of different polymer architectures to obtain the discretized

probability distribution function of the polymer configuration that can be used directly in

scattering calculations as shown in Chapter 6, or looking into methods to derive analytical

expressions for the scattering intensity based on the gyration tensor components of chains

with different architectures.

8.2.3 New experiments on wormlike micelles

In Chapter 5, we presented initial evidence for flow-enhanced scission of wormlike

micelles based on steady state and time-resolved flow-SANS experiments. To further

confirm the presence of flow-enhanced scission and explore other related phenomena, we

propose the following set of experiments. With the scattering model that incorporates

polydispersity that we described in the previous section, we can obtain the average chain

length as a function of shear rate. By making measurements at the same Weissenberg

number at different temperatures for the WLM sample, we can estimate the effective
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scission energy in flow. Specifically, according to the Cates model,7 the average chain

length has the following dependence on the scission energy at equilibrium:

L̄ ∼ φ1/2 exp
(
Escis
kBT

)
. (8.2)

The effect of flow on the scission of wormlike micelles can be included as an additional

term on the exponential, i.e., flow reduces the energy needed for scission. Thus, we have:

L̄flow(Wi) ∼ φ1/2 exp
(
Escis − Eflow(Wi)

kBT

)
∼ L̄eqm exp

(
−Eflow(Wi)

kBT

)
. (8.3)

By plotting the ratio of the average chain length in flow and the average chain length

at equilibrium, L̄flow(Wi)/L̄eqm, as a function of 1/T , we can obtain Eflow(Wi), the

Weissenberg number dependent change in scission energy due to flow.

During the processing and end-use of wormlike micelles, wormlike micelles experience

not only simple shear flow, but also extensional flow and complex flow. As discussed

by Rothstein and Mohammadigoushki in their review article,8 wormlike micelles in

complex flow typically exhibit very interesting flow instabilities. Although many flow

visualization experiments, rheology measurements, and simulation studies have been

conducted for wormlike micelles in extensional flow and complex flow, there is a lack of

direct microstructural measurements, such as small angle neutron scattering (SANS) and

small angle x-ray scattering (SAXS). In particular, due to the often time-varying nature

of the flow and the resulting instability, it is desirable to perform time-resolved SANS

or SAXS measurements to elucidate the microscale response of micelles in complex flow.

These new experiments can be analyzed using the framework we developed in this study,

namely the parameterization of 2D scattering intensity and the connected-rod model.

Such studies will be critical for answering whether it is possible to lump all microstructural
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factors into one critical threshold for the onset of instability for wormlike micelles in

complex flows.8

In addition to the SANS technique discussed in this work, transmitted electron

microscopy (TEM) is also a useful technique for measuring microstructures and is often

complementary to SANS measurements. Traditionally, cryo-TEM was used for probing

microstructures of wormlike micelles at equilibrium.9,10 However, the sample needs to be

frozen before the imaging in the microscope. More recently, liquid cell-TEM11,12 has been

developed and enables direct visualization of microstructures in a liquid sample as it is

flowing through the field of view. Unlike SANS, liquid cell-TEM only allows viewing a

few micelles at a time; therefore, it lacks the statistically averaged information that SANS

offers. However, the direct visualization without the need to do inverse Fourier transform

(like in SANS) makes liquid cell-TEM a potentially useful technique for studying the

kinetics of WLM scission in flow.
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Appendix A

Temperature and concentration

dependence of wormlike micelle

properties and elastic instability

A.1 Summary

In this Appendix chapter, we report rheology, flow-small angle neutron scattering,

and flow visualization experiments that are supplemental to Chapter 5. In particular,

we investigate the temperature dependence of wormlike micelle rheology, the scaling of

alignment factor from SANS for samples at different concentrations and temperatures,

and the possibility of elastic instability.

A.2 Methods

The preparation of wormlike micelles, procedures for rheological characterization,

flow-small angle neutron scattering experiments, and the calculation of alignment factor
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from scattering are the same as those described in Chapter 5.

A.2.1 Flow Visualization

To investigate the possibility of elastic instability in wormlike micelles in the Taylor-

Couette geometry, we modified the Anton-Paar Physica MCR300 setup, which was

originally used for PTV measurements, to allow for visualization of the secondary flow.

Specifically, a lamp was placed next to the rheometer to illuminate the side of the Taylor-

Couette cell (Fig. A.1). The Taylor-Couette cell consisted of an outer stationary quartz

cup with a radius R2 = 17.5 mm and an inner moving anodized aluminum cylinder with

a radius R1 = 17 mm. In subsequent text, this geometry is referred to as ME34. The

temperature of the Couette cell is controlled with a circulating water bath. The fluid was

seeded with mica flakes (Iriodin 100 Silver Pearl from EMD Performance Materials, size

10-60 µm, density 2.8-3.0 g/cm3). Because of the anisotropy in the shape of the mica

flakes, if secondary flow (such as roll cell) develops, the fluid will show repeating bright

and dark streaks. To delay rod climbing, a metal cap was placed on top of the shear cell

with the bottom surface submerged in the fluid.
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Figure A.1: Experimental setup for flow visualization.

We used a slow ramp of the shear rate. For example, for the 80 mM CTAB sample in

Fig. A.2, the shear rate was ramped up from 0s−1 to 1500s−1 at a rate of 1s−1 per second.

Images were taken at one image per second. Fig. A.2 outlines the procedures for image

analysis in the ImageJ software. First, we crop a rectangle with a width of 10 pixels in

each image at the same location (Fig. A.2(a) and (b)). Then we scale the cropped slice by

0.1 in the horizontal direction to make it 1 pixel-wide (Fig. A.2(c)). The intensity is the

averaged value of the 10 pixels in the original slice. Next, we use the Montage function in

the ImageJ software to stack up slices from each image as a function of time (Fig. A.2(d)).

In the resulting image, the x-axis is time (or equivalently, the shear rate, since the shear

rate is slowly ramped up in the experiment). Finally, if needed, we adjust the brightness

and contrast of the montage image (Fig. A.2(e)).
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(a) (b) (c)
(d)

(e)

Figure A.2: Procedures for data analysis of flow visualization experiments. The images
shown here are for the 80 mM CTAB sample.

A.3 Results

A.3.1 Temperature and concentration dependent rheology

In Chapter 5, we discussed the rheology of wormlike micelles at different concentrations

at the same temperature (25 °C). Here, we are also interested in the temperature-

dependence of the rheology for the sample with the highest concentration, 100 mM

CTAB/300 mM NaNO3. Shown in Fig. A.3(a) are linear viscoelastic measurements from 25

°C to 45 °C. Similar to the concentration-series data, the moduli have characteristic scaling

in the low-frequency region: G′ ∼ ω2 and G′′ ∼ ω. With increasing temperature, the

moduli crossover shifts to higher frequencies, which indicates the relaxation time becomes

shorter. Qualitatively speaking, increasing temperature has similar effect on the moduli

at low frequency as decreasing concentration. Since the average length at equilibrium

depends on both temperature and concentration: L̄ ∼ φ1/2 exp (Ea/2kBT ), increasing

temperature and decreasing concentration both decrease the average length, which in

turn affects the longest relaxation time. Different from the concentration series data,

the storage moduli at different temperatures have nearly identical values for the plateau

modulus (except for the highest temperature 45 °C). The temperature-independence of
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the plateau modulus has been observed in other WLM systems in the literature.1 The

authors suggested that the concentration-dependence and the temperature-independence

of G0 suggest that the structure of the samples is preserved throughout the concentration

range studied under these conditions of shear and that only the density of effective elastic

chains is varying. The moduli are also fitted to the single-mode Maxwell model and the

fitting parameters are reported in Table A.1.

We also measured the nonlinear rheology of the 100 mM CTAB sample at different

temperatures. Shown in Fig. A.3(b) is the viscosity (in filled symbols) and shear stress

(in open symbols) as a function of shear rate. Similar to the concentration series, with

increasing temperature (and decreasing concentration), the zero shear viscosity decreases,

which is again a result of shorter micelles. However, a unique feature of the temperature-

series result is the overlap of viscosity at intermediate to high shear rates for all the

temperatures. In this shear rate range, the shear stresses at different temperatures are

also almost overlapping and the slope of the stress increases with increasing temperature.
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Figure A.3: Linear and nonlinear rheology of 100 mM CTAB wormlike micelles in
D2O at 25 °C-45 °C.
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Table A.1: Parameters from single-mode Maxwell fits of the linear viscoelastic data of
100 mM CTAB wormlike micelles at 25 °C-45 °C.

CTAB NANO3 T G0 G′′min τr τbr τrep Ne η∞

(mM) (mM) (°C) (Pa) (Pa) (s) (s) (s) (Pa s)

100 300 25 25.5 3.3 0.44 0.029 6.68 7.7 0.048

30 25.0 4.6 0.24 0.022 2.55 5.5 0.050

35 25.0 6.8 0.098 0.014 0.69 3.7 0.046

40 24.1 10.5 0.041 0.010 0.17 2.3 0.045

45 21.4 14.8 0.018 0.008 0.04 1.4 0.047

For the temperature series, the longest relaxation time follows an Arrhenius dependence

on the temperature, as predicted by theory: τ ∼ exp (Ea/RT ). The reptation time and

breakage time also follow an Arrhenius dependence on the temperature.(Fig. A.4).
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Figure A.4: Relaxation times identified from linear viscoelastic measurement as a
function of inverse temperature.
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We are also interested in finding out how the shape of the stress and viscosity curves

change with concentration and temperature. Thus, we calculated the dimensionless stress

by dividing the stress by the plateau modulus G0. The longest relaxation time τ is used

to obtain the Weissenberg number, a dimensionless shear rate Wi = τ γ̇, where γ̇ is the

applied shear rate. The dimensionless viscosity is calculated by dividing the dimensionless

stress by Wi. The dimensionless stress and dimensionless viscosity are plotted as a

function of Wi for the concentration series in Fig. A.5(a). The curves completely overlap

on top of each other. The only small deviation occurs at the highest Wi for 60 mM

CTAB due to inertial effects in the rheometer. The complete overlap of the dimensionless

stress and viscosity suggests that the nonlinear dynamics of the WLM samples that are

at the same temperature and with the same salt to surfactant ratio only depends on the

equilibrium structure of the micelles (i.e., the average contour length and mesh size at

equilibrium).

The same complete overlap of the dimensionless stress and dimensionless viscosity is

not achieved for the temperature series. As shown in Fig. A.5(b), the overlap is only seen

in the Newtonian region (Wi < 1). For Wi > 1, the slope of the shear stress increases

with increasing temperature.

208



Temperature and concentration dependence of wormlike micelle properties and elastic
instability Appendix A

10
-3
10

-2
10

-1
10

0
10

1
10

2
10

3

10
-3

10
-2

10
-1

10
0

10
1

, 25 C

, 30 C

, 35 C

, 40 C

, 45 CD
im

e
n
s
io

n
le

s
s
 V

is
c
o
s
it
y
 (

fi
lle

d
)

D
im

e
n
s
io

n
le

s
s
 S

tr
e
s
s
 (

o
p
e

n
)

Wi = 

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
-3

10
-2

10
-1

10
0

10
1

, 60 mM   CTAB

, 80 mM   CTAB

, 100 mM CTAB

 

 Wi = 

D
im

e
n

s
io

n
le

s
s
 v

is
c
o

s
it
y
 (

fi
lle

d
)

D
im

e
n

s
io

n
le

s
s
 s

tr
e
s
s
 (

o
p

e
n

)

(a) (b)

Figure A.5: Dimensionless shear stress and dimensionless viscosity as a function of
dimensionless shear rate, Wi, for (a)60 mM CTAB, 80 mM CTAB, 100 mM CTAB in
D2O at 25 °C and (b) 100 mM CTAB at 25 °C-45 °C.

A.3.2 Scaling of the alignment factor

The alignment factor is used to quantify the degree of anisotropy from flow-SANS

measurements. In Chapter 5, we presented the analysis of alignment factor for the 60

mM CTAB sample at 25 °C and examined its dependence on the shear rate and the

scattering wave vector. Here we report a more in-depth analysis of the alignment factor as

a function of shear rate for the concentration series and temperature series. In Fig. A.6(a),

we plot alignment factor evaluated at q = 0.025Å-1, which approximately corresponds

to the inverse of the persistence length lp. At a given shear rate, the 100 mM CTAB

sample has the highest alignment factor and the 60 mM CTAB sample has the lowest

alignment factor. With increasing shear rate, the alignment factor for all three samples

first increases, then beyond a critical shear rate, the alignment factor decreases. For the

80 mM sample and the 100 mM sample, the alignment factor eventually reaches a plateau.

The 60 mM sample is limited by the shear rate range available experimentally and the

plateau is not observed.
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Multiple causes can result in the decrease of the alignment factor with increasing

shear rate. In Chapter 5, we discussed the possibility of flow-enhanced micellar scission.

If micelles become shorter in flow, at a given shear rate, it becomes harder to align the

micelles, thus the alignment factor can decrease. Additionally, previous flow visualization

experiments on wormlike micelles have discussed the presence of elastic instability in

wormlike micelles due to curved streamlines in the Taylor-Couette geometry.2,3 In these

experiments, the fluid is seeded with mica flakes. The elastic instability is signified by the

appearance of roll cells that are stacked along the vorticity direction. We will examine

the possibility of elastic instability in our wormlike micelle samples in the next section.

When secondary flow starts to develop in the fluid, the orientation of the micelles become

more randomized. As a result, the alignment factor decreases. Although the decrease in

the alignment factor can also be caused by micellar scission, the coupling of the effects of

the elastic instability and potential micellar scission makes it challenging to distinguish

the contribution to the alignment factor from the two effects. Thus, for the subsequent

analysis in this section, although we are plotting the Af across the entire shear rate range

investigated, we will only focus the analysis on the shear rate range before the alignment

factor peak.

Based on the complete overlap of the dimensionless stress and dimensionless viscosity

as a function Wi for the concentration series in Fig. A.5(a), we hypothesized plotting the

alignment factor as a function of Wi may also completely overlap the results. However, as

shown in Fig.A.6(b), although the alignment factor curves become more tightly grouped,

there is still significant difference on the Wi-dependence. If we use the reptation time,

instead of the longest relaxation time to nondimensionalize the shear rate, we achieve

a complete overlap of the alignment factor results before the alignment factor peak for

the concentration series. The alignment factor (as evaluated at q = 0.025Å-1) describes

the orientation on the segmental level. The shear stress is related to the deformation
210



Temperature and concentration dependence of wormlike micelle properties and elastic
instability Appendix A

of the end-to-end vector, which is affected by stretch, orientation, and scission. The

collapse of the dimensionless stress with the longest relaxation time τ = (τrepτbr)1/2 and

the collapse of the alignment factor with the reptation time τrep suggests that on the

segmental level, orientation is only affected by reptation (not scission), whereas on the

level of the end-to-end of the chain, orientation and stretch are affected by both reptation

and scission.
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Figure A.6: Alignment factor at q = 0.025 Å-1 for 60 mM CTAB, 80 mM CTAB, and
100 mM CTAB as a function of (a) shear rate (b) dimensionless shear rate Wi = τ γ̇
(c) shear rate nondimensionalized by the reptation time Wirep = τrep γ̇

We also investigated the scaling of the alignment factor with different relaxation times

for the temperature series (100 mM CTAB at 25 °C-45 °C). Plotted in Fig. A.7(a) are

the alignment factors (at q = 0.025Å-1) as a function of shear rate. For a given shear

rate, the alignment factor decreases with increasing temperature. The leveling-off of the

alignment factor at high shear rates is again possibly caused by secondary flows. The

shape of the alignment factor at 45 °C is qualitatively different from the curves at lower

temperatures. In particular, the slope for the 45 °C result is smaller. This is expected

because at 45 °C, the micelles are so short that they are no longer entangled and no

longer in the semi-dilute regime. The estimated number of entanglements is only 1.4 (See

Table A.1). As was discussed earlier, in the semi-dilute region, the plateau modulus is

expected to have very weak dependence on temperature and appear to be constant on the
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log-log plot. At temperatures below 45 °C, the plateau modulus is nearly temperature

independent. However, at 45 °C, the plateau modulus decreases, which again suggests

that the solution is no longer in the semi-dilute regime.

In Fig. A.7 (b), we plot the alignment factor as a function of Wi (Wi = τ γ̇).

Interestingly, the alignment factor curves completely overlap both before and after the

alignment factor peak (with the exception of 45 °C, because of the much shorter micelles).

However, if we nondimensionalize the shear rate by the reptation time, we don’t achieve

an overlap (Fig. A.5 (c)). As was shown in Fig. A.5 (b), for the temperature series,

without scaling by the relaxation time, the dimensional shear stress and viscosity have

an overlap at high shear rates. The dimensionless shear stress and viscosity in the high

shear rate region as a function of Wi have moderate temperature-dependence for the

slope. The collapse of the alignment factor as a function of Wi = τ γ̇ suggests that the

temperature-dependence of the micellar alignment at different shear rates is the same as

the temperature-dependence of the longest relaxation time, which includes contributions

from both reptation and scission.
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Figure A.7: Alignment factor at q = 0.025 Å-1 for 100 mM CTAB at temperatures
25 °C-45 °C as a function of (a) shear rate (b) dimensionless shear rate Wi = τ γ̇ (c)
shear rate nondimensionalized by the reptation time Wirep = τrep γ̇
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A.3.3 Characterizing the onset of elastic instability

Flow visualization experiments were conducted for 60 mM CTAB, 80 mM CTAB, and

100 mM CTAB at 25 °C. Additional experiments were also done at higher temperatures

for 100 mM CTAB. In Fig. A.8, Fig. A.9, and Fig. A.10, panel (a) shows the montage

image which consists of a slice of one pixel for each shear rate during the shear rate ramp.

The arrows point to the start of important features in the secondary flow. For all three

samples, at low shear rates, the flow is homogeneous and no roll cells are observed. At

intermediate shear rates, bright streaks start to appear near the middle of the rotating

cylinder, which eventually turn into secondary flows across the entire height of the cylinder.

The shear rate at which full instability develops is indicated by the boldface label on top

of the arrow. The panels below (a) in each figure are the images at each corresponding

shear rate (except for 0s−1) before the images were cropped for making the montage.

211 s-1 536 s-110 s-1 1187 s-1

(a)

(b) (c) (d) (e)

Figure A.8: Flow visualization of 60 mM CTAB wormlike micelles.
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151 s-185 s-1 950 s-1

Too many bubbles 

in the sample

(a)

(b) (c) (d)

Figure A.9: Flow visualization of 80 mM CTAB wormlike micelles.

333 s-139 s-1 48 s-10 s-1 160 s-1

(a)

(b) (c) (d) (e)

Figure A.10: Flow visualization of 100 mM CTAB wormlike micelles.

In Table. A.2, we summarize the shear rate and Wi corresponding to the peak in the

alignment factor observed in the last section in the top half of the table. The bottom half
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of the table summarizes the shear rate corresponding to the observation of secondary flow

across the entire Couette geometry in the flow visualization experiment in geometry ME34

and the scaled shear rate for the 1-2 shear cell in SANS experiment after accounting for

differences in the curvature of the two flow geometries. The bottom row in the table

indicates the expected Wi corresponding to the onset of elastic instability in the 1-2 shear

cell. For all three samples, the Wi corresponding to elastic instability is smaller than the

Wi at the peak of the alignment factor. In Table. A.3, we summarize the results for the

100 mM CTAB sample at different temperatures. The three rows each represent shear

rate for alignment factor peak from SANS, Wi for alignment factor peak, and Wi for

instability in the 1-2 shear cell, respectively. Again, the Wi corresponding to the elastic

instability is smaller than the Wi at the peak of the alignment factor.

Table A.2: Summary of flow visualization results for concentration series (60 mM
CTAB, 80 mM CTAB, 100 mM CTAB at 25 °C).

60 mM CTAB 80 mM CTAB 100 mM CTAB

Shear rate for Af peak (s−1) 1200 214 65

Relaxation time (s) 0.19 0.34 0.44

Wi for Af peak 228 73 29

Shear rate for full instability in ME34 536 151 48

Scaled shear rate for 1-2 shear cell 464 130 41

Wi from ME34 102 51 21

Wi from 1-2 shear cell 88 44 18
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Table A.3: Summary of flow visualization results for temperature series (100 mM
CTAB at 25 °C-45 °C).

25 °C 30 °C 35 °C

Shear rate for Af peak (s−1) 65 125 360

Wi for Af peak 29 30 35

Wi for instability in 1-2 shear cell 21 21 25

In Figure. A.11, we plot the alignment factor as a function of Wi (shear rate scaled

by the longest relaxation time) for both the concentration series (a) and temperature

series (b). The arrows represent the expected Wi for the onset of elastic instability based

on flow visualization experiments. For all samples investigated, the elastic instability

occurred at shear rates below than the peak of the alignment factor. Thus, the decrease

in the alignment factor can be caused by the randomized orientation of the micelles due

to the secondar flow.
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Figure A.11: Compare Wi for peak in alignment factor and the onset of elastic
instability for (a) concentration series (b) temperature series. The shear rate is
nondimensionalized by the longest relaxation time identified from linear viscoelastic
measurements.
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A.4 Conclusions and future directions

In this chapter, we discussed additional experiments that are supplementary to the

experiments in Chapter 5. By conducting flow visualization experiments, we confirmed

the presence of elastic instability in the wormlike micelle samples at high shear rates.

For all samples investigated, the elastic instability occurs at shear rates just below the

shear rates corresponding to the peak in the alignment factor from SANS. Although the

decrease in the alignment factor can also be caused by a net shortening of micelles in

flow, the coupling of the effects between the randomization of micelle orientation due to

secondary flows and flow-enhanced scission makes the interpretation of the experimental

results more challenging. To distinguish effects of micellar scission from secondary flows

on the alignment factor, future studies should focus on quantifying the magnitude of

the secondary flow relative to the main flow. This can be accomplished, for example,

by seeding microbeads in the fluid along with mica flakes to image the trajectory of the

beads in the roll cells in order to quantify the velocity in the secondary flow.

We also examined the temperature and concentration dependence of the wormlike

rheology and alignment factor measured in SANS. Interestingly, although scaling the

shear rate by the longest relaxation time completely overlaps the shear stress and viscosity

for samples with different concentrations, the alignment factor results cannot be collapsed

with the same scaling. Instead, scaling the shear rate by the reptation time completely

collapses the alignment factor results. For the temperature series, the alignment factor

at different temperatures (except for 45 °C) can be completely collapsed on the same

curve when the shear rate is scaled by the longest relaxation time. The difference in

the scaling of the temperature series and concentration series is potentially caused by

the difference in the temperature-dependence and the concentration-dependence of the

flow-enhanced scission. To test our hypotheses, future studies should use other surfactant
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and salt combinations for the wormlike micelles and study the rheology and flow-SANS for

both the temperature series and concentration series to examine if the trends we observed

in this study are general across different wormlike micelle systems.
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Appendix B

Supplementary materials for

modeling orthogonal superposition

rheometry

This chapter is reproduced from:

Jiamin Zhang, Andres Jurzyk, Matthew E. Helgeson, and L. Gary Leal, “Modeling Orthog-

onal Superposition Rheometry to Probe Nonequilibrium Dynamics of Entangled

Polymers”, Journal of Rheology, 65(5), 983-998, 2021. Featured article. DOI:

10.1122/8.0000272,

with the permission of AIP publishing.

In this Appendix chapter, we include supplementary materials for Chapter 7 on

modeling orthogonal superposition rheometry (OSR) to probe nonequilibrium dynamics

of entangled polymers.
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B.1 Method validation

B.1.1 Identification of the linear viscoelastic region

When conducting a linear viscoelastic measurement to obtain the storage and loss

moduli of a material at equilibrium, one would usually do an amplitude sweep first to

identify the range of strain amplitude in the linear viscoelastic region. Similarly, to choose

a strain amplitude in the OSR simulation, we first calculated the storage and loss moduli

at ω̃ = 0.01 with varying strain amplitudes γ0 using the Rolie-Poly model (Fig. B.1 (a)).

For γ0 ≤ 0.1, the storage and loss moduli are constant. At larger strain amplitudes, both

the storage and loss moduli start decreasing with increasing strain amplitude. The region

of constant moduli is the linear viscoelastic region. Since γ0 = 0.05 is well inside this

region, we chose 0.05 as the amplitude in the subsequent numerical calculations of the

frequency-dependent moduli. Figure B.1 (b) shows the linear viscoelastic moduli and

tan δ as a function of the dimensionless frequency. The contribution of the Newtonian

solvent is included in the calculation.

(b)(a)

Figure B.1: (a) Amplitude sweep at frequency ω̃ = 0.01 to find the linear viscoelastic
region. Dashed line corresponds to γ0 = 0.05. (b) Simulation of linear viscoelastic
measurement using the Rolie-Poly model at shear rate amplitude γ0 = 0.05. Ellipse
points to frequency ω̃ = 0.01.
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B.1.2 Validation of numerical method

To verify that the numerical calculations are implemented correctly, we made two

sets of comparisons. First, we compared the solution of the Rolie-Poly model in steady

shear flow with Fig. 1 in the Rolie-Poly paper1 to verify the equations of the model are

implemented correctly (Figure B.2 (a)). Specifically, we compared the dimensionless shear

stress σxy/G0
N and the dimensionless first normal stress difference N1

G0
N

= (σxx − σyy) /G0
N

and found excellent agreement between our numerical results and the results in the

Rolie-Poly paper. Second, we needed to check if the transient solver and calculations of

the orthogonal superposition moduli are implemented correctly. To date, there has not

been a study of orthogonal superposition using the Rolie-Poly model so we cannot make a

direct comparison. However, the calculation methods do not depend on the specific model

we use. So, we first did a test case of the numerical calculation using the Giesekus model

and compared the numerical results to analytical results of the orthogonal superposition

moduli from Kim et al.2 The comparison of the storage moduli is shown in Figure B.2 (b)

and the comparison of the loss moduli is shown in Figure B.2 (c). Again, we have excellent

agreement between our numerical results and previous analytical results. By verifying

the implementation of the Rolie-Poly model equations and the calculation method of the

orthogonal superposition moduli separately, we confirmed that the numerical methods

are accurate and can now proceed with the discussion of the numerical results as shown

in the Results section of Chapter 7.
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(a)

(b)

(c)

Figure B.2: (a) Comparison of steady shear results in this work and in the Rolie-Poly
paper (b) and (c) Comparison of our numerical results for OSR moduli using the
Giesekus model and the analytical results from Kim et al.2

B.1.3 Comparison of perturbation analysis and numerical cal-

culation for monodisperse Rolie-Poly

We compared the numerical results of the monodisperse Rolie-Poly calculation and

the analytical result from the perturbation analysis. As shown in Figure B.3 below, the

two sets of results are indistinguishable. In fact, the maximum percent deviation of the

perturbation result from the numerical result (% deviation = perturbation−numerical
numerical ∗ 100%)

for the storage moduli is only less than 0.2%. Thus, the assumption that the superposition

is a small perturbation of the steady shear flow is valid. Similar agreement is found

between numerical results and analytical results from the perturbation analysis for the

loss moduli of the monodisperse case and for both the storage and loss moduli for the

polydisperse case.
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෥𝜔 = De = 𝜔 ∙ 𝜏𝑅

Figure B.3: Comparison of storage moduli prediction of numerical calculation (solid
curves) and perturbation analysis (open circles) as a function of dimensionless frequency
for dimensionless shear rate from 0.001 to 100. Predictions used the monodisperse
Rolie-Poly model.

B.2 Additional predictions

B.2.1 Comparison of SRDP and RDP model predictions for

bidisperse polymers

In the original work by Boudara et al.,3 two versions of the model were presented

for polydisperse entangled polymers, namely, the Rolie-Double-Poly (RDP) model and

the Symmetric-Rolie-Double-Poly (SRDP) model. The two models primarily differ with

regards to the symmetry (or asymmetry) of stress relaxation across entanglements between

different types of chains. The RDP model is discussed in the Theory section of Chapter

7. Here we will briefly discuss the SRDP model. The SRDP model is developed by

assuming that the microscopic picture of double reptation applies to all relevant nonlinear
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stress relaxation mechanisms. Specifically, the configuration of chain i at its point of

entanglement with chain j, Aij, always matches the configuration of chain j at its point

of entanglement with chain i, Aji. After doing a detailed comparison of SRDP and RDP

models for a bimodal system (long chain and short chain), Boudara et al. concluded that

the two models are in quantitative agreement to within ~10% for |κ| τs,L < 1, where κ

is the velocity gradient tensor and τs,L is the stretch relaxation time of the long chain.

Quantitative disagreement between the two models is most evident when short chains are

stretching but not near full extension, |κ| τs,S < 1. However, even under these conditions,

qualitative agreement is still quite good. In Chapter 7, we used the RDP model for all of

the polydisperse calculations. We will now compare the SRDP and RDP models in the

context of orthogonal superposition for bidisperse blends.

Shown in Figure B.4 are two representative sets of results for bidisperse blends: blend

1 (ZS = 3, ZL = 60, φS = 0.7, φL = 0.3) and blend 2 (ZS ∼ 15.5, ZL = 60, φS =

0.9, φL = 0.1). Both blends have the same weight-average number of entanglements:

Z = 20. The shear rate and frequency are nondimensionalized by the Rouse time τR of

the average chain. The two models only start to differ for γ̇ · τR > 10, when the long

chain becomes significantly stretched. Since the qualitative trends for how OSR moduli

shift with shear rate are the same for both models and the RDP model is more accurate,

we will only discuss results for the RDP model in Chapter 7.
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(a)

(c) (d)

(b)

Figure B.4: Comparison of SRDP and RDP model predictions for two bimodal
distributions with the same weight-average chain length: Z = 20. Solid curves
represent the SRDP model whereas dashed curves represent the RDP model. (a) G′⊥
and (b) G′′⊥ for short chain length ZS = 3, long chain length ZL = 60, and volume
fraction of short chain φS = 0.7. The system is in region 4 of the Viovy diagram. (c)
G
′
⊥ and (d) G′′⊥ for short chain length ZS = 15.5, long chain length ZL = 60, volume

fraction of short chain φS = 0.9. The system is in region 3a of the Viovy diagram.

It is worth discussing to what extent the bimodal distribution changes the OSR moduli

compared to the monodisperse case and determine to what extent the observations we

made about OSR moduli of polymers with a lognormal distribution in Chapter 7 apply

for a bimodal distribution. One distinctive feature of sharply peaked bimodal distribution

is the presence of multiple crossovers and multiple plateaus in the equilibrium and low-Wi

moduli for chains that differ significantly in length. In this case, the relaxation timescales

for the two chains are well separated. The first plateau at low-frequency corresponds

to the chain with longer length and the second plateau at higher-frequency corresponds

to the chain with shorter length. In Figure B.5, (a) and (b) corresponds to Wi = 0.001

and Wi = 100 for the blend 1 shown in Figure B.4 (ZS = 3, ZL = 60). The moduli at
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Wi = 0.001 has three crossovers whereas the moduli at Wi = 100 only has one crossover.

(c) and (d) in Figure B.5 represents blend 2 shown in Figure B.4 (ZS = 15.55, ZL = 60).

For both the highest and lowest Wi simulated, this bimodal distribution only has one

crossover point because the chain lengths are closer together and the long chain has a

smaller volume fraction.

(a)

(c)

(b)

(d)

Figure B.5: Compare two different bimodal distributions (blend 1 and blend 2) at
Wi = 0.001 and Wi = 100.

The derivation of the relationship between the high-frequency plateau value of G′⊥

and the first normal stress difference N1 also works for the bimodal distribution. If

multiple plateaus exist at equilibrium, the derived relation is for the plateau at the highest
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frequencies since plateaus at lower frequencies will disappear with increasing Wi. For

bimodal distribution with well-separated peaks (i.e., the long chain and short chain differ

greatly in length), the G′⊥ and G′′⊥ can have multiple crossovers instead of having a smooth

transition to the plateau as in the log-normal distribution. Therefore, it is more difficult to

develop a generalized representation for how the crossover moduli and crossover frequency

depend on the polydispersity in the bi-modal distribution. For bimodal distributions

with only one crossover in the moduli at equilibrium, the shifts in the location of the

crossover follow similar trends as the lognormal distribution. The details of how the shape

of the OSR moduli is modified for bimodal distribution relative to the monodisperse case

depend on which region in the Viovy diagram the bimodal polymer belongs to. Shown in

Figure B.6 are the quantitative comparisons between monodisperse results and blend 2

(ZS = 15.55, ZL = 60, PDI = 1.2).
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(a)

(c)

(b)

(d)

Figure B.6: Compare bimodal distribution with monodisperse results (Bimodal distri-
bution: ZS = 15.55, ZL = 60, φS = 0.9, φL = 0.1, Z = 20, PDI = 1.2).

B.2.2 Perturbation analysis on the DCR-CS model by Marrucci

and Ianniruberto

To test the generality of our perturbation result (Eqn. 7.23 and Eqn. 7.24 in Chapter

7), we applied the same procedure to double-convection-reptation model with chain

stretch (coupled DCR-CS model) by Marrucci and Ianniruberto.4 This model was used by

Unidad and Ianniruberto5 to derive analytical expressions for the parallel superposition

moduli. Because of the coupling between the main flow and the superposed flow in parallel
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superposition, the expressions for the superposition moduli are very complicated. In the

previous work, the authors did not derive results for orthogonal superposition. Here, we

will briefly introduce the main equations of the coupled DCR-CS model then present the

results for orthogonal superposition from our perturbation analysis.

In the coupled DCR-CS model, time evolution of the polymer conformation tensor A

is described as:

dA
dt

= κ ·A + A · κT − 1
τ

(
A− 1

3I trA
)
− 1

3τR
(trA− 3) I (B.1)

where κ is the velocity gradient tensor, trA is the trace of A, and I is the identity

tensor. τR is the Rouse time and is taken to be a constant. The orientational time τ is

believed to vary in fast flows, because of convective constraint release (CCR), and this is

accounted for as follows:

1
τ

= 2
τd

+
( 1
τR
− 2
τd

)
βCCR (trA− 3)

3 + βCCR (trA− 3) (B.2)

βCCR is a numerical parameter of order unity, measuring CCR effectiveness.

We can first plug expression for 1
τ
into Eqn. B.1 and take βCCR = 1, define λ2 = trA

3

then simplify to obtain:

dA
dt = κ ·A + A · κT − 1

τR
A−

( 2
τd
− 1
τR

) 1
λ2 A + 2

τd
I (B.3)

We can conduct a perturbation analysis using the same procedure as outlined in the

Theory section of Chapter 7 to obtain:

G′⊥
G0
N

=
A(0)

yy ω̃
2

B2 + ω̃2 (B.4)
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G′′⊥
G0
N

=
A(0)

yyBω̃

B2 + ω̃2 (B.5)

Here we find that the expressions for G′⊥ and G′′⊥ from the coupled DCR-CS model are

identical to the expressions from the Rolie-Poly model (see Eqn. 7.23 and Eqn. 7.24 in

Chapter 7). However, the expressions for A(0)
yy and B are different between the two models.

For the DCR-CS model, these are:

A0
yy = 2/θ(

2
θ
− 1

)
1

λ(0)2 + 1
, (B.6)

and

B = 1 +
(2
θ
− 1

) 1
λ(0)2 . (B.7)

Here, θ is the ratio of relaxation times, θ = τ/τR and λ(0) is the chain stretch caused by

the steady shear flow.

B.2.3 Comparison of linear spring and Warner spring for the

log-normal distribution

In Chapter 7, we used a linear spring law in both the Rolie-Poly calculations and the

RDP calculations. Here, we will briefly comment on the effect of including a nonlinear

spring law. We chose the Warner spring law: fE (λi) = (1− λ−2
max) / (1− λ2

iλ
−2
max), with

λmax the maximum stretch ratio. In an experimental system, the maximum stretching

of the chain usually depends on the chemistry and on dilution, but it does not really

affect the qualitative trends in the model predictions presented below. After including
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the nonlinear spring constant, the equations for the RDP model become:

σ = G0
N

N∑
i=1

φifE (λi) Ai (B.8)

dAij

dt = κ ·Aij + Aij · κT︸ ︷︷ ︸
convection

− 1
2

 1
τd,i

(Aij − I)︸ ︷︷ ︸
reptation

+ βth
τd,j

(Aij − I)︸ ︷︷ ︸
constraint release


−

2
(
1− λ−1

i

)
τR,i

fE (λi) Aij︸ ︷︷ ︸
retraction

− βCCR
2
(
1− λ−1

j

)
τR,j

fE (λj)λ2ρ
i (Aij − I)︸ ︷︷ ︸

convective constraint release

(B.9)

In Figure B.7 and Figure B.8 below, we make a comparison of the linear spring

results and Warner spring results for lognormal distributions with varying degrees of

polydispersity. We vary the maximum chain stretch for the two predictions: Figure B.7

is for λmax = 10 and Figure B.8 is for λmax = 5. Predictions using the Warner spring

only start to differ significantly from predictions for the linear spring for Wi > 10 and

PDI ≥ 2. Here, the shear rate is nondimensionalized using the Rouse time for the average

chain length. For PDI = 5, the longest chain in the discretized length distribution

has ZL = 126. Since the Rouse time scales as Z2, for Wi = γ̇ · τR,Z = 10, we have

γ̇ · τR,ZL =
(

126
20

)2
· 10 = 400. Therefore, the longest chains in the system become

significantly stretched, i.e., λi for the longest chains approach λmax, making the spring

constant fE (λi) become significantly larger than 1. Since the nonlinear spring constant

appears in the expression for the polymeric stress (Eqn. B.8), at large Wi and high

polydispersity, the stress can become much larger than the linear spring case. Thus, the

plateau value of G′⊥ shows the sharp increase for PDI = 5 and Wi > 10 (Fig. B.7 (c)).

Changing the value of λmax from 10 to 5 doesn’t significantly change the Wi at which

the Warner spring results start deviating from the linear spring result. The main effect

of changing λmax is to change the magnitude of the deviation. Since across most of the
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parameter space (spanning different shear rates and PDI) that is accessible experimentally,

the predictions for linear and Warner spring are very similar and the Warner spring adds

extra complication associated with an additional parameter λmax, we will only discuss

results for the linear spring in Chapter 7.

(a)

(c)

(b)

(d)

𝜆𝑚𝑎𝑥 = 10

Figure B.7: Comparison of results from the perturbation analysis of the linear spring
and numerical calculations of the Warner spring for log-normal distributions of varying
degrees of polydispersity using the RDP model. Closed symbols represent the Warner
spring with λmax = 10 and open symbols represent the linear spring; (a) crossover
frequency, (b) moduli at crossover, (c) plateau modulus, (d) ratio of moduli at crossover
and plateau.
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(a)

(c)

(b)

(d)

𝜆𝑚𝑎𝑥 = 5

Figure B.8: Compare results from numerical calculations of the linear spring and the
Warner spring for log-normal distributions of varying degrees of polydispersity using
the RDP model. Closed symbols represent the Warner spring with λmax = 5 and open
symbols represent the linear spring. (a) crossover frequency, (b) moduli at crossover,
(c) plateau modulus, (d) ratio of moduli at crossover and plateau.

B.2.4 Dependence of Ayy(0)
i on chain length Zi

To help explain the weakened softening of the plateau in the polydisperse case compared

to the monodisperse case, as observed in Fig. 7.5 (c) and Fig. 7.6 (c) in Chapter 7, we plot

in Fig. B.9 the yy-component of the configuration tensor Ayy(0)
i using the monodisperse

perturbation analysis for chains with lengths corresponding to the discretized log-normal

distribution with PDI = 2. In the polydisperse calculation, the weight-averaged chain

length is kept the same as the monodisperse case: i.e., Z = ∑N
i φiZi = 20. The Ayy(0)

i has

a nonlinear dependence on the chain length Zi. Thus, a weight-average of Ayy(0)
i does not

yield the same value as A(0)
yy for the monodisperse case of Z = 20.
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Figure B.9: Dependence of the yy-component of the configuration tensor Ayy(0)
i on

the chain length Zi in the discretized distribution for a log-normal distribution with
PDI = 2.

B.2.5 Derivation of the relationship between N1 and OSR mod-

uli

Here, we show the detailed derivation that led to Eqn. 7.31 in Chapter 7 for describing

the relationship between the first normal stress difference and the OSR moduli. First, we

can rearrange the equation for the xy-component of the conformation tensor, A(0)
xy , in the

Rolie-Poly model to obtain an analytical expression for A(0)
xy in steady shear:

dA(0)
xy

dt
= 0 = A(0)

yyWi+
−1

θ
− 2

(
1− 1

λ(0)

)
−

2
(
1− 1

λ(0)

)
λ(0)

A(0)
xy (B.10)
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A(0)
xy =

A(0)
yyWi

1
θ

+ 2
(
1− 1

λ(0)

)
+

2
(

1− 1
λ(0)

)
λ(0)

(B.11)

Similarly, we can rearrange the equation for A(0)
xx to get an analytical expression for

A(0)
xx in steady shear:

dA(0)
xx

dt = 0 = 2A(0)
xyWi+

−1
θ
−

2
(
1− 1

λ(0)

)
λ(0)

(A(0)
xx − 1

)
− 2

(
1− 1

λ(0)

)
A(0)

xx (B.12)

A(0)
xx =

2A(0)
xyWi+ 1

θ
+

2
(

1− 1
λ(0)

)
λ(0)

1
θ

+ 2
(
1− 1

λ(0)

)
+

2
(

1− 1
λ(0)

)
λ(0)

(B.13)

From the Theory section of the Chapter 7, we have:

A(0)
yy =

1
θ

+
2
(

1− 1
λ(0)

)
λ(0)

1
θ

+ 2
(
1− 1

λ(0)

)
+

2
(

1− 1
λ(0)

)
λ(0)

(B.14)

Thus, we can calculate the first normal stress difference N1:

N1 = G0
N

(
A(0)

xx − A(0)
yy

)

= G0
N

 2A(0)
xyWi+ 1

θ
+

2
(

1− 1
λ(0)

)
λ(0)

1
θ

+ 2
(
1− 1

λ(0)

)
+

2
(

1− 1
λ(0)

)
λ(0)

−
1
θ

+
2
(

1− 1
λ(0)

)
λ(0)

1
θ

+ 2
(
1− 1

λ(0)

)
+

2
(

1− 1
λ(0)

)
λ(0)



= G0
N

 2A(0)
xyWi

1
θ

+ 2
(
1− 1

λ(0)

)
+

2
(

1− 1
λ(0)

)
λ(0)



(B.15)
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We can substitute Eqn. B.11 into A(0)
xy to obtain:

N1 = 2G0
NA

(0)
yy

 Wi

1
θ

+ 2
(
1− 1

λ(0)

)
+

2
(

1− 1
λ(0)

)
λ(0)


2

(B.16)

From Chapter 7, we have

B =
1
θ

+ 2
(

1− 1
λ(0)

)
+

2
(
1− 1

λ(0)

)
λ(0)

 . (B.17)

So, we can simplify Eqn. B.16 to get:

N1 = 2G0
NA

(0)
yy

(
Wi
B

)2

, (B.18)

which is Eqn. 7.31 in Chapter 7.
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