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ABSTRACT OF THE DISSERTATION 

 
Elastography mapping and microstructural analysis of heterogeneous materials  

based on wave motion 
 

By 
 

Dongxu Liu 
 

Doctor of Philosophy in Structural Engineering 
 

 University of California, Irvine, 2020 
 

Professor Lizhi Sun, Chair 
 
 
 

Elastography is of great interest in the fields of solid mechanics and biomechanics due to 

its nondestructive capability of mapping elasticity of materials and tissues. The 

elastography framework relies on external excitations which stimulate deformation inside 

an object. The internal response is then acquired and analyzed to map the distribution of 

elastic moduli. The first method developed in this dissertation is that, with no need of 

measuring any internal responses, an elastography method integrated with tomography is 

proposed, only requiring the transmitted responses of applied sound waves. During the 

process, the tomography image (e.g., CT or MRI) and the applied waves are integrated into 

a computational model. Following the principle of factorial design, elastic distribution of all 

phases in the object is reconstructed when the computational transmission of waves 

matches with the measured transmission. As an improved algorithm to the integration 

method, in the dissertation, deep convolutional neural networks (CNNs) are studied for 

mapping elastography with much less computation time. A CNNs architecture is developed, 

considering the contribution of raw features. 



 
 

 
xi 

In the dissertation, another elastography method is developed by untangling the 

complex wave-induced strain field into the one due to pure compressional or shear 

disturbance. The proposed untangling method is realized according to the fact that the 

volumetric strain is caused by compressional waves. By transforming both the volumetric 

strain tensor and the general tangled strain tensor to the shear wave direction, the 

transient vibration velocity and strain generated by compression wave can be separated 

from their initial coupled fields and used to reconstruct elastography. 

Nondestructive ultrasound-based methods have been applied to evaluate the elastic 

properties of composite materials. While the wave modulus of elasticity is frequently 

reported higher than the static counterpart, the microstructural and physical mechanisms 

are not well understood.  In the dissertation, a computational micromechanics is conducted 

to investigate the effects of inclusions on both the effective wave modulus of elasticity and 

static modulus of elasticity. Taking concrete as an example, based on concrete 

microstructures resolved with X-ray micro-tomography. It is demonstrated that the 

existence of void defects plays a significant role on the elastic properties of concrete when 

compared with the particles that are also called aggregate. It is shown that the higher wave 

modulus of elasticity of concrete than the static one is caused by the existence of crack-like 

voids with small aspect ratios. 
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Chapter 1 Introduction 

Who is the most general “Doctor” in hospitals? It is the “Dr. Image”. Most of 

departments rely on the Dr. Image to identify diseases, make treatment plans and 

prescribes. Since the advent of X-ray, people never stopped imaging the internal world of 

the human body. Medical imaging not only presents beauties of the body, but also helps to 

detect pathological changes. Up to date, more imaging modalities have been developed and 

applied in clinical practice. The most popular three types are X-ray based imaging, 

magnetic resonance imaging (MRI) and ultrasound imaging. 

In the category of X-ray based imaging, there are four subcategories, Radiography, 

Fluoroscopy, Mammography and Computed tomography (CT) [1]. Radiography makes use 

of the mass attenuation difference in tissues and acquires the transmitted X-ray using a 

detector that records a superimposed projection of all tissues on the path of incidence. The 

X-ray transmission obeys Beer’s law of exponential attenuation [2]. With advancements in 

technology, this kind of radiography usually is labeled as traditional X-ray imaging. 

However, it is still the main imaging means at many medical facilities. Fluoroscopy plays 

the radiography movie that continuously acquires projections with time. As for 

mammography, it has better contrast using lower energies. Mammography as such is 

termed as the radiography of the breast. CT birth brought a revolution in the field of 

medical imaging that firstly resolved non-invasive cross-sectional images. Original CT 

detecting data are not human-readable until they are translated into 3D image with 

reconstruction algorithms. Currently, the studies on CT never stopped. Many remarkable 

and promising findings have been achieved, such as phase-contrast CT, multidetector CT, 

portable CT, dual-energy CT and so on [3], [4]. 
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Unlike CT using attenuation principle, MRI exploits magnetic properties of atomic 

nuclei to image tissues. Because human tissues are rich in hydrogen atoms, hydrogen is 

usually used to generate MRI image where hydrogen atoms are aligned by a magnetic field, 

and then the alignments are disordered by an applied electromagnetic field. During the 

process, the tissues can be differentiated by monitoring the behavior of hydrogen atoms. 

Currently, as same as CT, all aspects around MRI have received intense investigations. 

Except the conventional MRI imaging, the developments in technologies and algorithms 

introduce more members into the MRI family with better image quality and patient safety, 

such as CEST-MRI (Chemical Exchange Saturation Transfer MRI), DWIBS (Diffusion-

weighted Whole-body Imaging with Background body signal Suppression), compressed 

sensing MRI and MR fingerprinting [5], [6]. 

Ultrasound imaging produces the image of tissues based on the “pulse echo” mode 

in which the ultrasound waves from a pulser go into tissues and the reflected or scattered 

waves are collected by a receiver. “Ultra” means high frequency, typically in the MHz range 

[2]. The image contrast is attributed to the impedance difference of tissues that leads to 

reflection at the interfaces between tissues. In the family, Doppler ultrasound imaging 

using different principle has been established to visualize the blood flow in the light of the 

Doppler effect. Recently, ultrasound imaging has gained a new life and become a hot 

research area because of elastography that is another medical imaging modality. 

Elastography will be introduced in detail later. 

Besides the three branches introduced above, there are still e few of other imaging 

modalities that have demonstrated their clinical utility, including nuclear medicine (NM) 

imaging, nuclear medicine planar imaging, single photon emission computed tomography 
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(SPECT), positron emission tomography (PET) [1]. Although the background introduction 

is very brief and touches upon just peripherally, it is noted that any one of them does not 

have the capacity covering the whole spectrum of imaging demands, i.e. each modality has 

itself features and shortages. For example, from resolution point of view, the spatial 

resolution of those imaging modalities is summarized in Table 1 that illustrates the clinical 

practice variance with different imaging technique. Therefore, one of future tendencies in 

medical imaging is to combine two or more modalities into one device for multipurpose 

identification [7], [8].  

Table 1. The spatial resolution of each imaging modality [1] 

Modality Spatial Resolution 
(mm) Comments 

Screen film radiography 0.08 Limited by focal spot size and detector 
resolution 

Digital radiography 0.17 Limited by size of detector elements and focal 
spot size 

Fluoroscopy    0.125 Limited by detector resolution and focal spot 
size 

Screen film mammography 0.03 
Highest resolution modality in radiology, 
limited by same factors as in screen film 
radiography 

Digital mammography 
  0.05-0.10 Limited by same factors as digital radiography 

Computed tomography   0.3 About 0.5 mm pixels 

Nuclear medicine planar 
imaging 

2.5 (detector face) 
5 (10 mm from 

detector) 

Spatial resolution degrades substantially with 
distance from detector 

Single photon emission 
computed tomography 7 Spatial resolution worst towards the center of 

cross-sectional image slice 
Positron emission 
tomography 5 Better spatial   resolution than the other 

nuclear imaging modalities 

Magnetic resonance imaging 1.0 Resolution can improve at higher magnetic 
fields 

Ultrasound imaging (5 MHz) 0.3 Limited by wavelength of sound 
 

The main aim of medical imaging is to improve diagnostic ability. Elastography as a 

new group has drawn much attention because it shows wide application prospects in 

future clinical practice, being expected to map the mechanical properties of tissues just like 
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palpation on superficial tissues [9]–[11]. It is well known that cancerous or tumorous 

tissues are locally stiffer than their surroundings [12]. In many case, CT, MRI or Ultrasound 

cannot differentiate one tissue from another one, which can be illustrated by Fig. 1 where 

elastography shows the shear moduli of tissues varying by over five orders of magnitude 

compared with other modalities [13]. In term of Fig. 1, elastography dominantly prevails 

over other modalities and has the widest operation band. So those mechanical parameters, 

such as Young’s modulus, shear modulus, strain, wave speed and wavelength, are related to 

mapping elastography.  

 

Fig. 1. The contrast comparison of imaging modalities [13] 

The terminology “elastography” was firstly used in 1991, describing the stiffness 

distribution image [14]. Until 1997, the elastography technology was firstly used in clinical 

attempts for the breast lesion [15]. Due to the unique feature of elastography, the research 

publications on it is increasing exponentially, which can be known from the publications 
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statistics as shown in Fig. 2 [16]. As a positive result from those effort, ultrasound 

elastography has been approved for clinical use by Food and Drug Administration (FDA) 

[17]. 

In nature, elastography is to track responses to mechanical stimuli and must be with 

a mature imaging technology as the incubator (Ultrasound, MRI or CT). Since CT image 

processing puts a hurdle in synchronizing with displacement/strain measurement, CT 

elastography has not yet been evolved as a main direction. But, there are still pioneering 

works exploring and fostering the CT elastography [9], [18]. Thus, elastography can be 

currently divided into subfamilies: Ultrasound elastography (USE) and Magnetic Resonance 

Elastography (MRE). Regarding USE, some called strain elastography that depends on the 

displacement measurement and strain calculation according to acquired ultrasound signals 

generated by external compression on tissues [14], [19], [20]. Strain elastography (SE) can 

 

Fig. 2. The statistics of research publications for elastography [16] 



 
 

6 
 

only construct relative stiffness distribution image because the real stress inside tissues are 

not accurately estimated. A couple of algorithms has been put forward on SE. The 

crosscorrelation algorithm is to calculate the displacement based on the original and 

delayed signals [14], [21]–[23]. The decorrelation algorithm is a type of filter correcting 

artifacts and improving the elastogram quality [24], [25]. The envelope processing 

algorithm is that tissues are distinguished by estimating the upper bound of contrast-to–

noise ratio [26]. Others of USE are named shear wave elastography (SWE) in which the 

wave length or wave speed inside tissues is estimated to predict the stiffness distribution 

image [27]–[32]. Why not compression waves? For soft tissues, the speed of compression 

waves is range of 1450~1600 m/s [1]. The stiffer materials have higher speed. It is hard to 

trace and measure their speed or wavelength. However, the shear wave speed is very slow, 

around 10 m/s, in comparison with the compression wave speed [33]. UE has been widely 

and successfully used to investigate and characterize the following soft tissues: breast 

imaging [15], [19], [29], [34]–[38], liver imaging [39]–[44],  prostate imaging [45]–[47], 

thyroid imaging [48]–[50]. In contrast with USE, MRE is considered in the infant stage [51], 

and more costly and time-consuming than ultrasound elastography. However, it is still 

promising because MRE has the capacity of constructing the 3D image with high accuracy. 

Strain MRE aims to measure the internal strain incurred by quasistatically external loading 

[52]–[54]. Dynamic MRE predicts the modulus distribution and is realized by estimating 

the wavelength of the mechanical waves inside tissues [55], [56] or by a direct inversion 

scheme  [57], [58]. Currently, leading investigations have been focused on liver MRE [59]–

[62], breast MRE [63]–[66], muscle MRE [67]–[70], and brain MRE [71]–[74]. Especially, 

brain tissues are enclosed by three layers of cerebral meninges, cerebrospinal fluid (CSF) 
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and the skull which prevent the ultrasound from penetrating into the deep and isolate the 

inside tissues from the external excitation [13], [75]. Although the external actuation 

system was designed to perform MRE [72], that will bring more extra accessories for the 

possible clinical practice. In reality, a live brain will be never still because of the presence of 

arterial pulsation. Researchers are using the intrinsic pulsation as the signal source to map 

the mechanical parameters of the brain tissues [73], [75]–[77]. There are three milestones 

for the intrinsic elastography. The first is that Zhao et al (2009) measured the brain tissue 

velocity triggered by the blood pulsation and then fitted a damped oscillation model to 

predict the elasticity of the brain. Similarly, the second is that Weaver et al (2012) 

measured the tissue velocity at multiple phases of the cardiac cycle and integrated the 

velocity to obtain the displacement and then fitted the wave equation with displacement to 

predict the shear modulus. The third one is a signal processing method in which, taking 

advantage of the time-reversal and the cross-correlation method, the shear modulus was 

extracted from the shear waves caused by cardiac motion, blood pulsation, and any muscle 

activity. Because blood vessels are everywhere, the resultant modeling challenge is to cover 

all possible vessels that contribute to displacement in computational models. The time 

reversal method needs the pure shear signal which raises a new challenge of how to decode 

the shear wave out of shear-compressional interaction.  

Not only can wave motion be applied to image elastography, but to characterize the 

mechanical properties of composite materials. For example, the elastic modulus of concrete 

can be assessed according to the measured velocity of wave propagation [78]–[82]. For 

homogeneous materials, it is expected that the elastic modulus measured by wave be equal 

to be done by the static tensile or compressive test. For composite materials are 
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heterogeneous, the wave motion will be affected by inclusions. So, it has been reported that 

WM of concrete is up to 30% higher than its corresponding static modulus of elasticity 

based on both longitudinal and shear wave excitations [78], [82], [83].   However, the 

reason causing the difference has been not understood well so far. In the study, the volume 

fraction, shape and types of inclusion will be investigated, and thereafter the significant 

reason be clarified. 

In this dissertation, three elastography methods will be proposed, free of frequency 

dependence, independent of waveform and not limited to pure shear deformation.  

Transmission-based elastography will be presented in Chapter 2, deep learning CNNs 

powered elastography in Chapter 3 and compressional-shear deformation untangled 

elastography in Chapter 4. Effect of microstructures on wave propagation will be studied in 

Chapter 5. Summary and future research is in Chapter 6. 
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Chapter 2 Wave Transmission Based Elastography 

2.1 Introduction 

Elastography, as an emerging image modality, has drawn great attention due to its 

application prospect in charactering biomechanical properties, which also is expected to 

strengthen the diagnosis of pathological changes and predict elasticity with the 

nondestructive mode [9], [10], [55], [84]–[86].  It is well known that most cancerous or 

tumorous tissues are locally stiffer than their surroundings [12]. For example, most breast 

tumors confined to the ducts themselves are designated ductal carcinomas in situ (DCIS), 

which are the initial stage of malignant tumors. Pathological changes of these DCIS are 

known to be correlated with changes in tissue stiffness (modulus), resulting in extremely 

hard nodules. Masses form and grow because of inflammation and desmoplasia, a dense 

cellular reaction specific to malignant lesions with highly cross-linked collagenous fibers. In 

fact, the shear moduli of tissues vary over five orders of magnitude whereas other imaging 

modalities, CT, MRI and Ultrasound only detect tissues within two orders of magnitude as 

shown in Fig. 1. From this point of view, elastography is more promising in detecting 

cancerous tissues. Therefore, modulus-directed elastography has become an attractive tool 

to investigate the mechanical properties of tissues. Those mechanical parameters related to 

elasticity, including Young’s modulus, shear modulus, strain, wave speed, and wavelength, 

can be used to reconstruct elastography. To this end, an external excitation on 

tissues/phantoms, most commonly the sound wave including continuous and transient 

waves, is applied to measure these parameters inside tissues. 
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A great deal of research efforts working on elastography with sound waves and the 

commercial exploration for clinical application have been reported [11], [87]–[93]. While a 

few anisotropic modeling works have been explored [9], [10], current efforts in the 

literature are dominantly in the assumption of isotropic elasticity, considering the tedious, 

time-consuming inverse computation and the focus on averaged identification of 

pathological changes. In the frame of linear elasticity some algorithms have been developed 

to map the elastography inversely, which are rooted in the governing equations of wave 

propagation in homogeneous isotropic elastic solid without the body force, 

                                        (λ + 𝜇𝜇)𝑢𝑢𝑗𝑗,𝑗𝑗𝑗𝑗 + 𝜇𝜇𝑢𝑢𝑖𝑖,𝑗𝑗𝑗𝑗 = 𝜌𝜌𝑢̈𝑢𝑖𝑖                                                                 (1) 

where λ and 𝜇𝜇 are Lamé constants (𝜇𝜇 is also called the shear modulus), 𝑖𝑖 and 𝑗𝑗 are the 

coordinate indices (𝑖𝑖, 𝑗𝑗 = 1,2,3) in Cartesian tensor notation, 𝑢𝑢𝑗𝑗  is the displacement vector, 

and 𝜌𝜌 is the density of solid [94], [95]. By considering that the shear wave does not change 

volume, i.e., 𝑢𝑢𝑖𝑖,𝑖𝑖 = 0, the velocity of shear wave 𝑉𝑉𝑠𝑠 can be derived as, 

                                         𝑉𝑉𝑠𝑠 = �𝜇𝜇/𝜌𝜌                                                                                              (2) 

As for continuous waves, after low-frequency shear waves are emitted into tissues 

by external sources, the local wavelengths are measured through either the color Doppler 

image or phase-contrast magnetic resonance image from which velocities are estimated 

and shear moduli are finally predicted based on Eq. (2) [55], [58], [84]. However, direct 

measurement is challenging because of irregular shapes and internal reflections of tissues. 

Therefore, by using Eq. (1), the model-based schemes, direct inversion and iterative 

inversion such as the elasticity tensor based reconstruction, the sub-zone based 

reconstruction, and the dynamic cardiac elastography, have been developed for continuous 

wave elastography [10], [57], [94], [96]. In addition, efforts coming from signal process and 
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correlation analysis such as the reverberant shear-wave fields frame and the time reversal 

based reconstruction have been made to map continuous wave elastography [92], [97], 

[98]. As for transient waves, pulse shear waves are generated by external sources and 

deform tissues locally, which makes wavelengths or wave velocities measurable by 

tracking wave propagation such as shear wave elasticity imaging, supersonic shear imaging 

and shear wave speed imaging [99]–[101]. Overall, current elastography methods heavily 

rely on the internal mechanical responses to the external wave excitation. For example, the 

wavelength or the wave speed of the tissue needs to be detected to predict the elasticity 

distribution, in which critical problems remain to be solved, including overcoming wave 

attenuation in tissues, considering the reflection and refraction of wave at interfaces, 

random noise effect and sophisticated image processing [11], [87], [88], [91], [92], [94]. In 

elastodynamics, these mechanical responses are governed by the partial differential 

equation (1). In most of cases, however, tissues are of multiple phases and irregular shapes, 

which leads to difficulty finding analytical solutions to Eq. (1). Resultantly, computational 

methods as an effective means, most commonly, the finite element method (FEM), have 

been employed to solve (1). [10], [94], [96], [102]–[105].  

In the chapter, an integrated method under the framework of isotropic elasticity, 

referred to as the sound transmission-based elastography, is proposed, using the 

tomography images (e.g., CT and MRI) and transmitted wave signals at surface locations. It 

is remarkable that only transmitted signals through the sample, not the internal responses 

inside the sample, are needed for the elastography reconstruction. The image and the wave 

incidence are integrated into a computational model. Following a procedure of inverse 

analysis, elasticity distribution of all phases in the object is reconstructed when the 
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computational transmission converges to the measured transmission. The numerical 

simulation on brain tissues and the experiment on the silicon rubber phantom are 

conducted to validate the proposed method. Both cases illustrate that the integrated 

method successfully predicts the real elasticity of samples. The verification measurements 

on the phantom show the predicted elastic properties agree well with the experimental 

results of uniaxial compression testing. 

2.2 Method 

Wave motion inside tissue media carries the information of the mechanical 

properties and so does its transmission carry the same information filtered by internal 

structures, which is completely controlled by the governing equations (1). The tomography 

image resolved by CT, MRI or Ultrasound contains the tissue structure information and can 

identify the position and size of suspicious lesions such as cancerous or tumorous tissues. 

They can be integrated and simulated in a computational model with FEM in which the 

wave incidence of sound test serves as the external load and the image is used to generate 

finite-element mesh. As for the elastic modulus of each phase in FEM, it is the goal that 

needs to be analyzed inversely and mapped. Thus, a computational model is built, and the 

elastography image is reconstructed following a procedure of inverse analysis when the 

FEM transmission output matches with the measured transmission signals at surface 

locations of object.  

Specifically, the first step is to obtain the object tomography to characterize the 

internal structure. All tissues are segmented under CT/MRI resolution. The segmented 

tomography serves as the two-dimensional or three-dimensional geometry input of the 
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inverse analysis as shown in Fig. 3. The second step is to conduct the sound-wave test on 

the same object used in the first step. Sound transducers are laid out on the surface of the 

object, some of which serve as the pulsers that fire the incident wave and others as the 

receivers that collect the transmitted signals. Depending on phases of a tissue that need to 

be mapped, the number of transducers should be enough for exciting each phase and 

receiving the transmission and reflection through each phase. The third step is to build a 

computational model based on the tomography image and the incident sound wave acted 

on the object. Image process may be necessary to convert image into a specific format 

acceptable for FEM meshing. The meshed regions are completely identical with segmented 

tissues in the first step. In this step, for the sake of ensuring accurate simulation, it is noted 

that there are at least 10 nodes representing each wavelength for whatever the element 

type (e.g., four-node quadrilateral elements, three-node triangular elements and 4-node 

tetrahedral elements) and the interpolation functions (e.g., second order shape functions) 

are adopted [106]. The displacement boundaries are set in terms of real conditions or 

without disturbing the real wave propagation when applying FEM. The fourth step is to 

conduct FEM simulation and inverse analysis until its output converges to measured 

transmission signals within the preset error as shown in Fig. 3. As for the error, there is no 

general threshold available because the accuracy of inverse analysis is influenced by many 

factors such as signal noise, image noise, algorithms, numerical error, computation time, 

and so on. In practice, it could be determined empirically and be helpful to test the noise 

level in advance. The third and the fourth steps form a calculating loop in which the fourth 

one provides the parameter update for the third step. 
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Inversely mapping elastography is an optimization problem to find a set of variables 

making the objective function maximum or minimum. However, it is difficult to establish an 

explicit relationship between the transmitted signal and the elastic modulus. In physics, 

they are interrelated. In the study, the factorial design including the full factorial design and 

the orthogonal array design are employed to perform the inverse analysis [107], [108]. The 

design assembles all or part of possible combinations of optimization variables into an 

array of which the optimum values will be selected out, especially suitable for problems 

without explicit relationships between the objective value and corresponding optimization 

variables. Factorial design allows evaluating all variables’ effect on the objective value in a 

single experiment (simulation). Currently, the variable and the objective function are 

bridged in the FEM simulations, following the factorial design. Based on the results of all 

simulations, the optimum values can be found. The full factorial design needs at least two 

 

Fig. 3. Elastography based on tomography image and sound wave integration.  
The pulser and receiver are the sound-wave transducers. The cycle starts with 
image acquisition on the sample and ends up with the match between the 
computational output and the objective value collected by the receiver. 
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factors (namely optimization variables), assigns possible values (also called levels) for each 

factor and, thereafter, executes calculations on all possible combinations of all levels across 

all factors. After those calculations are finished, the favorable levels can be optimized out 

by comparing with the objective value. If the number of calculations is so huge that the 

computation time is unacceptable, the orthogonal array design is another choice that 

doesn’t need to exhaust every possibility across all factors and their levels, only 

considering selected possible combinations listed in an orthogonal array. These 

combinations of an orthogonal array are not assigned randomly, but following a strict rule 

so they can represent and cover all ones of every possibility [108]. It is noted that the value 

range (the upper and lower limits) of each factor needs to be preset, and otherwise the 

array cannot be designed for the factorial design. Fortunately, the reasonable elastic 

modulus ranges for most of biomaterials and tissues are predictive throughout the 

published literation and books. 

2.3 Numerical Validation 

In this part, the integrated method is firstly demonstrated on a brain slice. The slice 

is an approximately 1-mm-thick corona and cut off from a cadaver as photographed in Fig. 

4 (a) [109]. The photograph is formatted to TIFF files and imported into Simpleware ScanIP 

(Synopsys, Inc.) for segmentation. With the pixel intensity-based segmentation, the 

interfaces among different functional tissues are identified. It is then transformed into two-

dimensional FEM meshes with four regions. Following the names and positions of tissues 

[109], the four regions are the cortex (C), corona radiata (CR), corpus callosum (CC) and 

basal ganglia (BG) as shown in Fig. 4 (b). Brain ventricles are currently treated as CC. 
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Numerical model creation and simulation are conducted on the commercial FEM 

package, Marc Mentat 2018.0.0 (MSC Software Corporation), with the assist of a Python 

script performing the factorial design, the parameter update and mathematical process. 

The model is meshed into 11261 four-node quadrilateral elements. The incident wave is 

the 50 Hz sine signal applied at four positions on the outer boundary denoted by arrows in 

Fig. 4 (b). As denoted by the black sold dots in Fig. 4 (b), twelve locations are chosen to 

detect the transmission with the sampling rate of 400/s. The acquisition duration is 0.2 s. 

All tissues in this study are treated as linear elasticity for demonstrating the integrated 

method first on linear materials. The set of shear moduli, [C=1.43, CR=0.66, CC=0.35, 

BG=0.70] kPa, reported by Budday et al. (2017) is used as the objective values and the 

corresponding output at 12 locations as the objective signals. Accordingly, the eleastic 

moduli are [4.26, 1.97, 1.04, 2.09] kPa if Poisson’s ratio of 0.49 is assumed for all tissues. 

The density is assumed 1000 kg/m3. In this case, full factorial design is employed to 

 

Fig. 4. (a) The brain-tissue slice photograph and (b) the four regions meshed for FEM 
simulation, including the cortex (C), corona radiata (CR), corpus callosum (CC) and 
basal ganglia (BG). The four arrows show the incidence positions and the 12 black 
solid dots show the signal detection locations. The ‘Fixation’ boundaries marked by 
red curves mean that displacement is constrained to be zero during FEM simulation. 
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recognize the optimality for all levels of factors. So, there are four factors corresponding to 

elastic moduli of C, CR, CC and BG. In terms of the reasonable ranges of their moduli, 3.0 

kPa ~ 6.0 kPa for region C and 0.1 kPa ~ 3.0 kPa for other three regions, each factor is 

assigned eight levels at first, [3.0, 3.4, 3.8, 4.2, 4.6, 5.0, 5.4, 6.0] kPa for C and [0.1, 0.5, 0.9, 

1.3, 1.7, 2.1, 2.5, 3.0] for others. Totally, it is 84 (4096) trials for possible combinations of all 

levels. Running on a PC with Intel(R) Core (TM) i7-3770 CPU @ 3.40GHz and 16.0 GB RAM, 

each trial takes 21 seconds. From this point of view, the computation of current inverse 

analysis is acceptable and effective. Because cross-correlation can be used to observe the 

similarity of two signals [110], the objective function will be established based on the 

cross-correlation of the objective signals and each trial ones. The maximum of cross-

correlation is at the zero-lag time if two signals are identical, which is so-called auto-

correlation. For this case, the objective function of the optimization problem is defined as  

                                    min𝑓𝑓(𝑬𝑬) = �∑ �1 − 𝐷𝐷𝐶𝐶
𝑖𝑖 |𝑡𝑡=0
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𝑖𝑖 |𝑡𝑡=0
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𝑖𝑖=1                          

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑡𝑡𝑡𝑡: min 𝑓𝑓(𝑬𝑬) ≤ 1.0%                  

                                 (3) 

where 𝑬𝑬 = (𝐸𝐸𝐶𝐶 ,𝐸𝐸𝐶𝐶𝐶𝐶 ,𝐸𝐸𝐶𝐶𝐶𝐶 ,𝐸𝐸𝐵𝐵𝐵𝐵), standing for the elastic moduli attempt in each level, 𝐷𝐷𝐴𝐴𝑖𝑖 |𝑡𝑡=0 

is the auto-correlation of the measured signals of point 𝑖𝑖 at the zero lag time, and 𝐷𝐷𝐶𝐶𝑖𝑖 |𝑡𝑡=0 is 

the cross-correlation of the trial signals and the measured signals of point 𝑖𝑖 at the zero lag 

time. The effect of 𝑬𝑬 on 𝐷𝐷𝐶𝐶𝑖𝑖 |𝑡𝑡=0 is implicit in Eq. (3). But they are bridged in FEM in which 𝑬𝑬 

are the material parameter input and 𝐷𝐷𝐶𝐶𝑖𝑖 |𝑡𝑡=0 is determined according to FEM output. The 

measured signals that are the objective signals come from the FEM simulation with the 

objective elastic moduli of [4.26, 1.97, 1.04, 2.09] kPa. Applying (3) to 4096 trials, 𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓(𝑬𝑬) 

is reached at [4.2, 2.1, 0.9, 2.1] kPa of the 2732nd trial, meaning that the 2732nd one is the 
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closest to real values among all trials. However, the error of the trial is 4.3%, larger than 

1.0%. In practice, 4.3% could be enough for mapping elasticity. As an illustration for three 

surface locations, the objective signals of the displacement amplitude and the 

corresponding simulation signals of the best trial 2732 are plotted in Fig. 5 (a). By contrast, 

there is discrepancy for some locations between two set of signals, which causes the 4.3% 

error. For presenting the more accurate solution, the inverse analysis is continued until 

meeting 𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓(𝑬𝑬) ≤ 1.0%. 

The first-round design helps to compress the value ranges for the further design. As 

a result, based on each value in [4.2, 2.1, 0.9, 2.1] kPa of the first-round, next round factorial 

design, with the smaller step, sets [3.90, 4.05, 4.20, 4.35, 4.50] for C, [1.80, 1.95, 2.10, 2.25, 

2.40] for CR, [0.60, 0.75, 0.90, 1.05, 1.20] for CC and [1.80, 1.95, 2.10, 2.25, 2.40] for BG, 

which introduces 625 trials. This round ends up with [4.20, 2.10, 1.05, 2.10]. Because the 

result is almost same as that of the first-round, the step of levels is needed to be furtherly 

decreased. Levels of the third round are set to [4.10, 4.15, 4.20, 4.25, 4.30] for C, [2.00, 2.05, 

2.10, 2.15, 2.20] for CR, [0.80, 0.85, 0.90, 0.95, 1.00] for CC and [1.85, 1.90, 1.95, 2.00, 2.05] 

for BG. After all trials are completed, the third round gives [4.25, 2.00, 1.00, 2.05] with 

4.1%. Once more, the level range of the fourth round is narrowed down with the much 

smaller step, [4.23, 4.25, 4.27] for C, [1.98, 2.00, 2.02] for CR, [0.98, 1.00, 1.02] for CC and 

[2.03, 2.05, 2.07] for BG. Eventually, [4.27, 1.98, 1.02, 2.07] is finalized as the optimum trial 

with 1.0%. The comparison of the objective signals and the corresponding ones of the best 

trial is plotted in Fig. 5 (b) for the same locations as in Fig. 5 (a). The two set of signals are 

almost overlapping, which illustrates again [4.27, 1.98, 1.02, 2.07] are the optimum values, 

consistent with real elastic moduli of [4.26, 1.97, 1.04, 2.09] with errors 0.2%, 0.5%, 1.9% 
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and 1.0%, respectively. In the whole course, any internal information is not detected and 

processed to map the moduli. All information for the mapping is based on signals on the 12 

surface locations. 

The current study maps stiffness on segmented tomography image. For 

demonstrating the sensitivity to segmentation, 1.3% of CR assumed as the segmentation 

error is artificially merged into C as shown in Fig. 6. After analysis, the merging will 

introduce the 4.1% error by using Eq. (3), showing that this study has the good sensitivity 

to segmentation. In real cases, the brain is enclosed by a skull that may make the wave 

transmission too weak to be caught. However, the skull is not completely closed, having 

 

Fig. 5. (a) The comparison of the target signals and the best trial ones in the first 
round and (b) the comparison of the target signals and the best trial ones in the 
fourth round. ‘Ob’ stands for the target signals and ‘Tr’ for the output ones from the 
best trial. 
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outlets such as nose, mouth, eye, ear, and neck regions. The receivers can be placed around 

these regions to collect transmission. 

It is noticed that the sound incidence is compressional waves. But current study also 

applies to shear waves for it does not need to track and measure any internal signal, but its 

transmission. One of main reasons making shear wave elastography the most popular 

method is that speeds of compressional waves are so high that they are difficult to be 

tracked [33]. For the current study, there are no frequency limits because it does not need 

to adjust frequencies to make the wavelength measurable and trackable. However, specific 

frequency should be selected to make sure that the transmitted signals can be detected. For 

example, if the incident wave is changed to 100 Hz, following the same process of the 50 Hz 

analysis, it still ends at [4.27, 1.98, 1.02, 2.07] with 0.7% error. In order to basically 

understand the effect of signal-to-noise ratio (SNR), the measured signals that are the 

output under the real set of moduli are added artificially with white Gaussian noise. Fig. 7 

shows a typical output of one location without noise and its corresponding signals with 55 

 

Fig. 6. 1.3% of CR, colored by green, is segmented into C and all corresponding 
properties are also set as same as those of C. 
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dB SNR. Different SNR values are tried and analyzed from 50 dB to 110 dB. With the SNR 

increase, the error decreases quickly and approaches 0.7% as shown in Fig. 8. It can be 

seen that the SNR be at least up to 55 dB for having a reasonable estimation. Therefore, in 

practice, frequency needs to be chosen for having an enough SNR. Furthermore, the 1.0% 

error in Eq. (3) could be too strict because of noise in reality. For this case, if the noise level 

is at the SNR of 60 dB, the error is about 5%. 

 

Fig. 7. A typical output of the 100 Hz sine incidence: without noise and with noise. 
 

 

Fig. 8. Errors with different SNR values and the dash line showing the 0.7% position. 
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2.4 Experimental Validation 

The phantom consists of the silicone rubber being the matrix and a piece of vinyl 

polymer being the inclusion. There are five procedures in manufacturing the phantom. 

First, the required amount of silicone base is poured into a plastic beaker. Second, the 

curing agent is added. Third, the components are thoroughly mixed by a CaframoTM 

mechanical stirrer for 20 minutes at a rotation speed of 280 rpm. The viscous media is 

further degassed in a vacuum for 30 minutes in order to eliminate the air bubbles trapped 

in the mixture. Finally, as soon as no air bubbles puff from the top surface, the polymer 

inclusion is dropped in. The sample in shape of the conical frustum is made after curing at 

room temperature for 6 days as shown in Fig. 9. 

The achievement of the integrated method resides in the sample spatial structure, 

sound-wave test, FEM modeling and inverse analysis as stated in Section II. Because of 

irregularity of the inclusion geometry, its 3D image is imaged by an X-ray CT scanner, 

Xradia 410 Versa (Carl Zeiss X-ray Microscopy, Inc.) as shown in Fig. 9. The 0.4X lens with 

the voxel size of 25 micrometers is used to scan the inclusion. With the sample rotation 

step of 0.225o, 1600 projections are acquired to reconstruct the 3D image. After scanning, 

the commercial image process software, Simpleware ScanIP (Synopsys, Inc.), steps into 

 

Fig. 9. Left: the phantom of silicone matrix and polymeric inclusion, Middle: main 
dimensions, and right: 3D inclusion image resolved by X-ray CT. 
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segment based on each pixel intensity and convert X-ray CT image to a compatible format 

that can be imported into Marc Mentat. 

Next is to have the soundwave tested on the sample to acquire the transmitted 

signals. The sound testing system is two R3α transducers and one FieldCal AE Signal 

Generator (MISTRAS Group, Inc.). The operation frequency range of R3α is 25 kHz ~ 70 

kHz. One of transducers functions as the pulser while another one as the receiver. In the 

test, the incident wave is a 30 kHz sine tone burst with the peak value of 4467 Pa and 1 ms 

duration which is emitted by the Generator. A silicon-based lubricant is coated on sample 

areas on which transducers are placed. Two transducers are positioned coaxially, making 

waves passing through both matrix and inclusion, as shown in Fig. 10. During the test, the 

transmitted peak acquired by the receiver is 22.4 Pa that will be used later as the objective 

value of the inverse analysis. The third step is to build the computational model with Marc 

Mentat. The inclusion image scanned by Nano CT is imported into Marc Mentat. Because 

the matrix is regular, it is drawn directly by Marc Mentat. Both matrix and inclusion are 

treated as elastic materials. The loading condition is set on the position in which the 

incident wave is emitted by the R3α transducer. The whole 3D model is meshed into 89585 

four-node tetrahedral elements. During the simulation, a point on the intersection of the 

bigger top surface and the side surface is fixed as the displacement boundary during FEM 

simulation. 

In fact, there should be wave reflection at interface between the sample and the 

lubricant due to impedance mismatch. Wave undergoes two times reflection before it 

passes through the sample. One is on the incident interface and another on the emergent 

interface. The final transmission is affected by the two reflection and has a connection with 
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the signal amplitude and material properties. At this point, FEM simulation needs to take 

reflection into account as following,  

                                              𝑃𝑃𝑡𝑡 = 𝑇𝑇𝑃𝑃0                                                                                              (4) 

                                              𝑇𝑇 = 2𝑍𝑍2
𝑍𝑍1+𝑍𝑍2

                                                                                             (5) 

where  𝑃𝑃0  is the incident pressure emitted directly from the transducer, 𝑃𝑃𝑡𝑡  is the 

transmitted pressure, 𝑇𝑇 is the transmission coefficient defined as the fraction of the 

incident pressure, 𝑍𝑍 is the acoustic impedance that is the product of density and sound 

wave speed, and the subscripts 1 and 2 represent media proximal and distal to the 

interface [111]. 

The last step is to conduct inverse analysis. In the case, six factors are designed: 

moduli, Poisson’s ratio and density of both matrix and inclusion. If five levels are associated 

 

Fig. 10. Sound test on the sample. One transducer serves as the pulser and the other 
serves as the receiver. The incidence of a 30 kHz sine tone burst is generated by the 
signal generator. 
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with each factor, the full factorial design needs totally 56 (15625) trials, which is time-

consuming in computation. In order to reduce the number of trials, an orthogonal array is 

specifically designed to investigate this inverse analysis. As for the six 5-level factors, there 

are 25 trials according to the principle of the orthogonal array design [108]. 

Mathematically, the 25 trials can represent 15625 ones of the full factorial design. It must 

be kept in mind that the transmission coefficient of every trial should be updated with (5). 

The amplitude of incident wave into the sample keeps updating with (4) as well for each 

trial during FEM simulating. In the 3D simulation, each trial takes 4 minutes, meaning 100 

minutes for total 25 trials. From this point of view, the computation of current inverse 

analysis is acceptable and effective. Likewise, the orthogonal design needs the possible 

range of each factor value that will be narrowed down since the initial rough estimation. 

The finalized levels of each factor are listed in Table 2. In the column ‘Factors’, 1, 2 and 3 

denote the modulus, the Poisson’s and the density of matrix, respectively, and 4, 5 and 6 

denote the modulus, the Poisson’s and the density of inclusion, respectively. After the 25 

trials are finished, the difference between the peak pressure of FEM output and the 

experimental peak (22.4 Pa) is calculated for each trial. Then, the difference is classified by 

levels for each factor and averaged over the number of levels as shown in Fig. 11 from 

which the optimum levels corresponding to the minimum average can be read out directly: 

modulus of 2.0 MPa, Poisson’s ratio of 0.30 and density of 1050~1150 kg/m3 for matrix, 

and 2.6 MPa, 0.39 and 1600~1700 kg/m3 for inclusion. The density is given in a range, 

illustrating that the objective value is not sensitive to density variation in contrast with 

other factors. Fig. 12 shows the computational output of the optimum levels which gives 
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the peak of 21.5 Pa, matching well with the measured value of 22.4 Pa with the 4.0% error. 

With numerical errors and measurement noises, 4.0% may be considered good match. 

 Table 2. Levels for six factors 

Factors 
Levels 

    1              2             3            4              5 
1 1.2 1.6 2.0 2.4 2.8 
2 0.30 0.35 0.40 0.45 0.49 
3 1000 1050 1100 1150 1200 
4 2.2 2.6 3.0 3.4 3.8 
5 0.35 0.39 0.43 0.47 0.49 
6 1500 1600 1700 1800 1900 

 

 

Fig. 11. The FEM output average of each level of every factor: x-coordinate is the level 
number for each factor, and y-coordinate is the output average corresponding to 
each level. The level holding the minimum average is optimum. 
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Although the integrated method has completely been applied to the phantom and 

those unknown properties obtained, there still is a doubt whether those optimum values 

are real. For further verifying the method and the optimization, some of properties are 

measured experimentally. The density and moduli of matrix and inclusion are measured 

for the verification. The mass is tested directly by a balance and the volume by a graduated 

cylinder and water. The volume is the difference of the two readouts of water surface 

positions before and after the matrix or inclusion is put in the cylinder. At last, the density 

of matrix is 1050 kg/m3, and the density of inclusion is 1690 kg/m3. Both values are all in 

the optimization range of density, meaning that their optimum values agree with 

measurements. The modulus is measured through the uniaxial compression by the tester, 

BOSE ElectroForce® 3200. The sample for matrix is a cylinder of 9.7 mm × 9.6 mm, and the 

sample for the polymer inclusion is a cuboid of 11 mm × 9.4 mm × 5.7 mm. The 

compression speed is 0.01 mm/s under the displacement control. Five tests are conducted 

for each sample, and then followed by the linear fit on stress-strain curves as shown in Fig. 

 

Fig. 12. The FEM pressure output with optimum values: modulus of 2.0 MPa, 
Poisson’s ratio of 0.30 and density of 1050 kg/m3 for matrix, and 2.6 MPa, 0.39 and 
1600 kg/m3 for inclusion. 
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13. The slopes are the moduli: 2.1 MPa for matrix and 2.6 MPa for inclusion. By comparison, 

the optimum values of 2.0 MPa and 2.6 MPa are consistent with the measured moduli for 

matrix and inclusion, respectively.  

Overall, as demonstrated on the 2D case and the 3D phantom, the integration 

method can predict the accurate elasticity. Because the objective value is not built as the 

explicit function of variables, factorial design provides a way making the inverse analysis 

effective and controllable. It is also noted that the current investigation is limited under the 

assumption of isotropic elasticity of tissues. Future work is needed to extend the method 

for general anisotropic elastography 

2.5 Conclusion 

A sound transmission-based elastography method is developed, which is validated 

on 2D and 3D cases with different waveform input and frequencies. This method can 

potentially be an effective tool in both fields of charactering elasticity of 

biomaterials/tissues and engineering materials. While the experimental validation of the 

method uses X-ray tomography image, other imaging modalities may work as long as they 

 

Fig. 13. Compression stress-strain curves and their linear fits: the slopes are the 
moduli. All of five tests on each sample show good repeats. 
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can provide the geometric delineation. One of the unique features of the current study is 

that no interior responses within objects, such as displacement, strain, or wave speed, need 

to be measured in advance for mapping elastography. At this standpoint, samples act as a 

“black-box” which also makes the experimental measurement free of considering the 

reflection and the refraction inside the object. Another feature is that the tomography 

image containing the geometric structures and sound wave carrying the material 

properties are integrated into FEM in which sound wave test is simulated and analyzed 

inversely to map the mechanical properties. Fundamentally, the current method is free of 

the frequency effect because it doesn’t need to adjust the frequency to make internal 

responses trackable and measurable. Simulations and phantom experiments have been 

conducted to validate the proposed integrated method. The optimum results of density and 

moduli have been verified with the experimental measurements. 
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Chapter 3 Deep Learning Driven Elastography 

3.1 Introduction 

As discussed in Chapter 2, the factorial design was used in inverse analysis. 

Although the first round had contained enough information for narrowing down to next 

round, the whole factorial design process had to be went through for every single round. If 

the elastography could be mapped only by the first round, that would be more attractive 

and efficient. Machine learning (ML) will be the first choice because it is a powerful tool in 

data process. Some efforts of ML have been put in elastography [112]–[114]. But they 

mainly focus on image enhancement and are not suitable for processing the signals such as 

the transmission data raised in Chapter 2. The advent of machine learning, especially 

convolutional neural networks (CNNs) in deep learning, accelerates and improves the 

process of large data [113]–[117]. It is well known that deep CNNs have gained huge 

achievements in image classification and process. The deep CNN, being a kind of feature-

extraction-based machine learning networks [118], [119], has potentials for regression 

analysis [119]–[122]. CNNs execute regression with less physical process and allow multi-

output, relying on convolutional filters and corresponding trainable weights.  

In this Chapter, a deep CNN architecture is proposed and investigated to map the 

elastography based on transmissions of wave. The architecture, while built up based on the 

traditional sequential structure, considers the passing efficiency of parameter gradients 

and the features of raw data. Its prediction and accuracy are validated with the first round 

of factorial design of the brain slice described in Chapter 2, and then, with a 3D model built 

directly from a brain MRI image. In addition, as an investigation extension of the developed 
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CNN architecture, its capability of structural health monitoring is also demonstrated under 

condition of the coexistence of a bore crack and a delamination in the propellant grain of 

solid rocket motors (SRMs).  

3.2 Deep CNN Architecture 

Considering the passing efficiency of parameter gradients and the contribution of 

raw data, the deep CNN architecture proposed in the study is shown in Fig. 5 on which 

names starting with “conv” stand for convolutional layers, with “relu” for rectified linear 

unit layers and with “mp” for maximum pooling layers. Regarding others, “datainput” 

means the input layer, “add_1” the addition layer which sums the outputs from previous 

layers, “concat_1” the concatenation layer which concatenates the outputs from previous 

layers, “ap_1” the average pooling layer, “fc” the fully connected layer and “regoutput” the 

regression output layer. MATLAB is employed to establish networks and perform training. 

In the architecture, there are four convolutional layers, three of which form the main 

branch and sequentially connect each other. The fourth one forms the sub-branch and 

connects with the input directly and meets with the main branch at the addition layer, 

which makes the parameter gradients passing more efficient. Any defect is expected to 

affect the radial stress field. For having the contribution of raw data to the feature 

extraction, the second sub-branch has no convolutional layers between the input and 

output. If the second sub-branch is directly connected to the addition layer, more 

convolutional layers may be added in for matching down with the input data dimensions. 

As a result, the computation time not only will be increased, but the accuracy be affected 

due to less kernels at the end. In this study, the trade-off is solved by concatenating input 



 
 

32 
 

data with the output of the addition layer as shown in Fig. 14. In other words, the input 

data are simply appended to the convolved data channels at the concatenation layer, which 

makes the current architecture different from the inception module [123]. 

3.3 Validation 

The same padding is used for convolutional layers and pooling layers. The stride is 

set 1 for all corresponding layers. The optimizer is Adam that is a method for stochastic 

optimization [124]. The loss function is mean-squared-error for the regression layer that 

outputs crack lengths and delamination angles. While both conv_1 and conv_2 have 64 

kernels with the size of 1×8, conv_3 and conv_4 each have 32 kernels with 1×8 and 1×1, 

respectively. All pooling layers have the same size, 1×4. If each dataset is organized as the 

12-channel structure accommodating signals of 12 locations, the dimensions are 1×81×12. 

The details of the CNN architecture are listed in Table 3. 

 

Table 3. Details of the CNN architecture 
Layer Name Activations Learnables 

1 datainput 1×81×12 - 
2 conv_1 1×81×64 Weights: 1×8×12×64 and Bias: 1×1×64 
3 relu_1 1×81×64 - 
4 mp_1 1×81×64 - 

 

Fig. 14.  Deep CNN architecture for mapping elastography. 
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5 conv_2 1×81×64 Weights: 1×8×64×64 and Bias: 1×1×64 
6 relu_2 1×81×32 - 
7 mp_2 1×81×32 - 
8 conv_3 1×81×32 Weights: 1×8×64×32 and Bias: 1×1×32 
9 relu_3 1×81×32 - 

10 conv_4 1×81×32 Weights: 1×1×12×32 and Bias: 1×1×32 
11 relu_4 1×81×32 - 
12 add_1 1×81×32 - 
13 concat_1 1×81×36 - 
14 ap_1 1×81×36 - 
15 fc 1×1×4 Weights: 2×2592 and Bias: 4×1 
16 regoutput - - 

 

Known from Chapter 2, the first round of the brain slice contains 4096 datasets 

labelled with corresponding modulus values of four regions as shown in Fig. 4. 400 out of 

4096 datasets are used for validation in the process of training and others for training. 

Therefore, the training input is the 4D matrix of 1 × 81 × 12 × 3696. The training 

parameters, also called hyperparameters, are set 0.001 for the initial learning rate, 64 for 

the minibatch and 50 for the maximum epochs. Finally, the training takes 11 minutes 

running 2850 iterations on a single Intel® Core™ i7-3770 CPU with 64-bit operation 

system and ends at the root-mean-squared-errors (RMSEs) of 0.25 kPa. If the objective 

displacement of the 12 locations are fed into the trained network of Fig. 14, the predicted 

moduli are 4.1695, 1.9724, 1.0523 and 2.1135 for C, CR, CC and BG, respectively. Compared 

with the real values of 4.26, 1.97, 1.04 and 2.09, the errors are -2.1%, 0.1%, 1.2%, 1.1%, 

respectively. It is concluded that CNNs can accurately map elastography. Furthermore, 

deep learning is more powerful to extract the useful information than the multiple factorial 

design. But the factorial design is a good start for providing the training data. 

For furtherly validating the proposed deep learning architecture, a 3D model is 

meshed based a brain MRI image as shown in Fig. 15. The model consists of 5 materials, 

skull, scalp, white matter (wm), grey matter (gm) and meninges, and contains 54833 
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hexahedral elements of eight-node. The element size is 4 mm. The stimulus of 500 Hz sine 

is applied to the region inside mouth as denoted by arrows in Fig. 15. The time step is 0.25 

ms in 0.03 s duration. Because the skull is much stiffer than other materials and well 

known with modulus, its modulus is not treated as a variable, but a constant during the 

forward simulation. Therefore, there will be four unknown materials, i.e., scalp, wm, gm 

and meninges.  

The real values of all moduli are set with 6500 MPa, 16.7 MPa, 0.12 MPa, 0.075 MPa 

and 31.5 MPa, respectively. Again, the full factorial design is used to generate training data. 

Seven levels, [10, 15, 20, 25, 30, 35, 40] MPa, are assigned to scalp and meninges, [0.02, 

0.04, 0.06, 0.08, 0.1, 0.12, 0.14] MPa to wm and gm, which will give 2401 datasets. Signals 

at 14 locations in regions of eyes and ears (3 locations at each eye and 4 at each ear) are 

acquired which are expected without going through the skull, which can be illustrated by 

Fig. 16. Obviously, the signals out of regions of eyes and ears are stronger than those 

through skull. 200 datasets out of 2401 randomly picked out for validation in the training 

 

Fig. 15.  Mesh of 3D head model 
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process. In the training of the 3D model compared with the 2D one in Table 3, the input is 

1×121×14, the learning is 0.0001 and all kernel sizes are doubled. Because the moduli of wm 

and gm are too small to excel numerical errors and converge to an accurate prediction, 

their corresponding labels are multiplied by 300. Finally, the deep CNNs deliver the 

predictions of scalp, wm, gm and meninges with errors of 3.1%, 3.0%, 5.0% and 8.8%, 

respectively. If the labels of wm and gm were not amplified, the errors were 3.0%, 16.7%,     

6.7% and -22.2%. 

3.4 Extended Investigation 

3.4.1 Introduction 

Since solid rocket motors (SRMs) are used in applications such as commercial 

launch vehicles and defense missiles, their durability and reliability draws much attention 

[125]–[129]. One of the major concerns is the structural integrity of propellant that is 

directly associated with functioning of SRMs. The two major defects, inner bore cracking 

and propellant delamination with the insulation layer, are critical to the structural integrity 

 

Fig. 16.  Comparison of signals out of eye, ear and skull 
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[126], [130], [131]. Bore cracking can cause burn-surface abnormalities and delaminations 

may cause case burn-through [128], [129], [132]. The temperature changes that the motor 

experiences during its lifetime have been acknowledged as the main reason leading to 

cracks and/or delaminations. These temperature changes cause stress concentrations at 

the inner bore and at the interface between the propellant and the insulation [130]–[132]. 

In manufacturing, the propellant cures at temperatures slightly above the room 

temperature (RT) and cools down to RT. In the process, crack and delamination may occur 

or be initiated. Thereafter, especially for tactical rockets, more extreme temperature 

variations are expected in storage or service, which may further initiate new defects 

and/or propagate existing ones. For the sake of detecting the mechanical responses inside 

propellant during thermal cycling, sensor technologies have emerged to monitor stress or 

strain evolution [130], [132]–[138]. One of the important efforts is to estimate the defect 

inversely based on the measured signals, so that the structural integrity can be judged 

[126], [129], [132]. Current methods are still on tracking and analyzing mechanical 

response for finding explicit relationships, only focusing on a single defect that is either 

crack or delamination [126], [129]. On the other hand, the prediction accuracy depends on 

the number of sensors and the sensor positions [129], [131]. Although more sensors help 

to more accurately detect and estimate defects, they are also possible failure sources and 

make the manufacturing process more complicated. Furthermore, from the physical point 

of view, since the relationships between measured signals and the defect sizes are hard to 

establish explicitly, direct curve fitting methods by regression become cumbersome. 

Although machine learning has been related to rockets [139], [140], much more research 
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needs to take place. With the development of sensor technologies, it is deemed that 

machine learning will power data fusion [141]. 

In the extended investigation, with a focus on the coexistence of a bore crack and a 

delamination in propellant of SRMs, the training data are derived from numerical 

simulation of FEM and fed into the network of Fig. 14 for predicting defect sizes. The input 

data structures with one channel and multi-channels are discussed and compared in 

context. 

 

3.4.2 FEM Simulation 

For being triggered to predict defect scales, CNNs need to be trained with labeled 

data first. Then, unlabeled data can be fed in and identified. FEM has been implemented to 

investigate structural responses with defects in SRMs [126], [129], [142], [143]. In this 

study, considering the propellant based SRMs as a 2D structure, FEM simulation is used to 

generate input data tagged with labels. As shown in Fig. 17, the propellant structure is 

axisymmetric with the insulation and the case attached outside. The inner and outer 

diameters of the propellant are 203.2 and 406.4 mm, respectively. The thicknesses of the 

insulation and the case are 2.54 mm and 3.175 mm, respectively [126]. All materials are 

treated as elastic, with the propellant (grain) and insulation dependent on temperature as 

shown in Fig. 18. Young’s modulus of the case is 55900 MPa. Poisson’s ratios are 0.499, 

0.499 and 0.3 for propellant, insulation and case, respectively. The corresponding 

expansion coefficients are 9.56×10-5, 8.75×10-5 and 2.16×10-6 [126]. 



 
 

38 
 

All simulations are modeled and conducted by the commercial FEM package, 

ABAQUS (2018). In total, the structure is meshed into more than 6500 four-node 

quadrilateral elements of plane-strain in which crack tip regions, the thin case and 

insulation are meshed much more finely [126]. The temperature loading history is from 60 

°C to - 40 °C [126]. The bottom point is fixed for all directions and the top one is fixed in the 

horizontal direction. The load step is -1 °C, staring from 60 °C during the simulation. 

Because the accuracy of the stress sensor is ~10 kPa [126], [129], small defects may not be 

sensed as shown in Fig. 19. Here the vertical axis is the stress difference between the defect 

and no-defect simulations, and the horizontal axis is the circumferential angle along the 

 

Fig. 17. Structure of propellant, insulation and case 
 

 

Fig. 18. Dependence of Young’s modulus on temperature 
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interface of propellant and insulation. The delamination is denoted by debonding angles. It 

can be illustrated that 4-sensor deployment may not detect the changes of stress less than 

10 kPa when the crack is less than 11 mm or the delamination less than 16°. It also can be 

seen that there is an apparent stress concentration around defect tips. Accordingly, the 

training data will be simulated and collected among combinations of eight crack lengths in 

[11.0, 16.1, 21.5, 26.0, 31.0, 35.9, 40.9, 45.8] (mm) and eight delamination angles in [16°, 

20°, 24°, 28°, 32°, 36°, 40°, 44°]. It is known that the superposition principle applies to 

stress fields because of linear elasticity, which allows that a combination case of crack and 

delamination can be obtained through superposition of a single crack stress field and a 

single delamination one. For example, the combination of one 11.0 mm bore crack and one 

20° delamination is simulated directly and compared with the superposition of their 

individual fields as shown in Fig. 20. It is noticed that the direct simulation and the 

superposition are overlapped, proving the superposition principle and helping to reduce 

the computation time for analyzing possible combinations. In other words, the simulation 

is only run on each of eight crack and eight delamination cases individually instead of on 

their combinations. 

 

 

Fig. 19. Stress difference between defect and no-defect: (a) Crack and (b) 
delamination 
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In this study, it is assumed that there are four sensors deployed evenly along the 

circumferential interface between insulation and propellant. If there are not any defects, 

the four sensors’ readings are all the same with each other. For strengthening the stress 

change caused by defects, the no-defect data are treated as the origin and deducted from 

data with defects. In terms of axisymmetry, the relative location of the sensor array and a 

defect can be controlled by rotating the array along the interface. As aforementioned 

analysis, the stress fields experienced with a coexisting crack and delamination can be 

realized using superposition. Eight crack lengths and eight delamination angles are 

considered, giving 64 possible combinations. In each of these combinations, there are 20 

sub-combinations if the angular distance between the crack and the delamination is varied 

in 18° increments from 0° to 360°. Furthermore, each of these sub-combinations contains 

 

 

Fig. 20.  Superposition of stress fields 
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18 combinations if the angular distance of the sensor array is varied in 20° increments 

from 0° to 360°. The total of all these possibilities (64×20×18) gives 23040 datasets, which 

are collected for training CNNs. These datasets are expected to be good enough for training 

because CNNs are a feature aimed training process, these relative distances are not 

expected to have apparent effects on the extraction of features. It can be understood from 

another point of view that, for example, a specific object can always be identified wherever 

it is on a picture. 

 

3.4.3 Prediction of defect sizes 

Eighty percent of the 23040 training datasets were actually used for training, with 

ten percent held back for validation in the process of training and the remaining ten 

percent being used for post-testing of the trained network. Therefore, the training input is 

the 4D matrix of 1 ×101 ×4 ×18432. To ensure that all values are positive, the minimum 

value is subtracted from its corresponding signal set. The training parameters, also called 

hyperparameters, are set 0.001 for the initial learning rate, 128 for the minibatch and 100 

for the maximum epochs. Finally, the training takes 88 minutes when running 14400 

iterations on a single Intel® Core™ i7-3770 CPU with 64-bit operation system. Out of the 

test data pool, 200 datasets are randomly chosen for post-test as plotted in Fig. 21, showing 

the trained network performance at the root-mean-squared-errors (RMSEs) of 3.2 mm for 

crack and 2.0° for delamination. It can be seen that the deep CNN can accurately predict 

crack lengths and delamination angles. If the second sub-branch is removed, the training 

takes 100 minutes and ends at RMSEs of 3.6 mm for crack and 2.2° for delamination. It is 
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proven that considering the original input further accelerates the efficiency of the useful 

information extraction. 

There is another input data structure available by arranging the signals of four 

sensors as one-channel dataset, i.e. 4 ×101 ×1 instead of 1×101×4. Although it seems like a 

small change and that delivers similar accuracy, the training time increases dramatically to 

491 minutes due to nearly fourfold activations and learnable weights. Therefore, the 4-

channel data input is recommended and used for following discussion.  

For having the comparison with the architectures without any sub-branches, two 

sequential CNNs are established and trained with two convolutional layers and five 

convolutional layers, respectively, as shown in Fig. 22.  While the first convolutional layers 

in Fig. 22 (a) and the first three convolutional layers in Fig. 22 (b) have 64 kernels, the 

remaining convolutional layers are assigned with 32 kernels. The settings of other layers 

and all strides in Fig. 22 are same as those used in the 2D brain slice, including the 

hyperparameters. The performance of the two sequential CNNs is plotted in Fig. 23. The 

accuracy comparison of different architectures is graphed in Fig. 24. It can be illustrated 

 

Fig. 21.  Perditions of crack and delamination with the trained network 
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that the sequential architecture with at least five convolutional layers can approach the 

proposed architecture in accuracy, taking a longer time of 162 minutes. 

 

 

Fig. 22. Sequential CNN architectures: (a) with two convolutional layers and (b) with 
five convolutional layers 

 

Fig. 23.   Sequential CNN predictions (a) with two convolutional layers and (b) with five 
convolutional layers 
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Learned from these results, the bore crack quantification is the major factor 

affecting the convolutional layers amount, rather than the delamination magnitude. Even in 

the deep CNN with two convolutional layers, the delamination prediction is acceptable. 

Because the magnitude of crack-induced stress variations is much smaller than of 

delamination-induced variations as shown in Fig. 19, to extract the crack description out of 

the delamination dominant information requires more layers. Likewise, the number of 

kernels of the convolutional layer is controlled by crack signals. For example, if the first 

convolutional layer of the network in Fig. 22 (a) is replaced with a 32-kernel layer instead 

of a 64-kernel one, the crack RMSE is 7.4 mm while the delamination RMSE is 3.1°. 

However, it is not telling that the accuracy can be improved by more and more kernels. 

When the kernels are beyond 64, the improvement is very limited. 

 

Fig. 24. Prediction accuracy of different architectures: (a) Crack and (b) delamination 
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3.5 Conclusion 

A deep CNN architecture is proposed for mapping elastography and quantifying the 

defect sizes for structural health monitoring. The architecture not only considers the 

passing efficiency of parameter gradients, but also takes the original information of input 

data into account. For validating the CNN, the first-round data of the factorial design of the 

brain slice is employed to generate the labeled training data.  With the greater efficiency, 

the accuracy of the proposed the deep CNN architecture is almost equal to of the analysis of 

the multiple factorial design. In addition, the proposed network can be used to predict 

defect size in structural health monitoring and be validated through the coexistence of bore 

crack and delamination in the propellant structure of SRMs. 
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Chapter 4 Wave Deformation Untangled Elastography 

4.1 Introduction 

It has been recognized that pathological changes of many biological tissues correlate 

with their mechanical properties, commonly, the Young’s modulus or shear modulus, which 

motivates a new modality of medical imaging, i.e. elastography mapping with stiffness 

distribution [9], [10], [12], [14], [18], [55], [84], [144], [145]. The stiffness variation 

through all tissues is over five orders of magnitude while other commonly used modalities 

(CT, MRI and Ultrasound) can detect variation in two orders [13]. At this standpoint, 

elastography is more promising in identifying abnormal tissues. To this end, the dynamic 

elastography prevails, reconstructed through analyzing the motion responses to external 

excitations generating harmonic or transient waves. The governing equations are Eq. (1). 

Accordingly, one more relationship can be obtained except Eq. (2), 

Since the shear wave (SW) cannot change volume and the curl of displacement field of 

compressional wave (CW) is zero, the velocities of compressional and shear waves are 

deduced, respectively, through Eq. (1) as  

                                                                 𝑉𝑉𝑐𝑐 = � 𝐸𝐸(1−ν)
𝜌𝜌(1+ν)(1−2ν)

                                                                     (6) 

where 𝑉𝑉𝑐𝑐 is the speed of CW, 𝑉𝑉𝑠𝑠 is the speed of SW, ν  is Poisson’s ratio and 𝐸𝐸 is Young’s 

modulus equal to 2𝜇𝜇(1 + ν) [94], [95]. Most of elastography reconstruction models focus 

on SW-induced responses because its speed is more trackable than that of CW in tissues 

[33], [94], [144]. Direct measurement is to track SW motions to measure the wavelengths 

or wave speeds, followed by elastographic image based on Eq. (2) [55], [58], [84], [90], 

[99]–[101]. Such shear-wave elastography (SWE) is realized by ultrasound and magnetic 
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resonance techniques, which has great potential as a clinical imaging tool for health care in 

recent years [146]–[154]. However, complex geometries, boundary reflection and 

refraction at tissue interfaces, and mode conversion may cause the direct measurement 

elusive, leading inaccurate detection [11,17,26–28]. To correct these influencing factors 

and accommodate the more common deformation scenarios of combined SW and CW, in 

this Chapter, a new elastography method is developed. The method is specifically proposed 

for elastography mapping scenarios in which whole displacement field can be measured. 

MRI can provide such measurement [58], [157]. Another popular stimulus for SWE is 

acoustic radiation force impulse (AFRI) [43], [146], [158]. Although AFRI elastography is 

mapped by tracking peak displacement with ultrasound modality, the current method still 

works if the AFRI-stimulated deformation can be measured. 

For a single wave (either CW or SW) in the propagation direction, the following 

relationship can be obtained through Eq. (1), 

                                                    𝑢̇𝑢𝑖𝑖 = 𝑉𝑉𝑢𝑢𝑖𝑖,𝑗𝑗                                                                                                 (7) 

where 𝑢̇𝑢𝑖𝑖  is the derivative of 𝑢𝑢𝑖𝑖  with respect to time (i.e., transient vibration velocity), 𝑢𝑢𝑖𝑖,𝑗𝑗 is 

the transient strain and 𝑉𝑉 is the wave speed. If the wave is compressional and propagates 

along 𝑖𝑖-direction, 𝑉𝑉 = 𝑉𝑉𝑐𝑐 and 𝑢𝑢𝑖𝑖,𝑗𝑗 is the non-zero normal strain equal to volumetric strain. If 

the wave is shear and propagates along 𝑗𝑗-direction and parallel to the 𝑖𝑖- 𝑗𝑗 plane, 𝑉𝑉 = 𝑉𝑉𝑠𝑠 and 

𝑢𝑢𝑖𝑖,𝑗𝑗 is the non-zero shear strain. Eq. (7) becomes meaningful if the vibration velocity and 

the strain are known for a point.  

In this Chapter, we propose a method by untangling compressional motions out of 

the fully coupled compression-shear strain field. The primary purpose is to decompose the 

coupled strain tensor by coordinate transformations and analytically untangle the CW-
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based strain and SW-based strain. Elastography then is mapped with Eq. (7) and Eq. (6) or 

Eq. (2). 

4.2 Method 

If a combined CW and SW passes through a point in a global system 𝒙𝒙, the 

deformation is a tangled field, i.e.,  

                                                                 𝜀𝜀𝑖𝑖𝑖𝑖 = 𝜀𝜀𝑖𝑖𝑖𝑖𝑐𝑐 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑠𝑠                                                                                (8) 

where 𝜀𝜀𝑖𝑖𝑖𝑖 is the total strain, 𝜀𝜀𝑖𝑖𝑗𝑗𝑐𝑐  is the strain tensor caused by CW and 𝜀𝜀𝑖𝑖𝑖𝑖𝑠𝑠  is the strain tensor 

by SW. It is assumed that the CW propagates along 𝑥𝑥1𝑐𝑐  in its local coordinate system 𝒙𝒙𝒄𝒄 and 

the SW along 𝑥𝑥1𝑠𝑠  and parallel to the 𝑥𝑥1𝑠𝑠 − 𝑥𝑥2𝑠𝑠  plane in its local system 𝒙𝒙𝒔𝒔. Therefore, the CW-

caused strain tensor, 𝜀𝜀𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐, is the uniaxial strain state in 𝒙𝒙𝒄𝒄; i.e., except for 𝜀𝜀11𝑐𝑐𝑐𝑐, other elements 

of 𝜀𝜀𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐 are zero. The SW-caused strain tensor, 𝜀𝜀𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 ,  has only non-zero shear strains; i.e., all 

normal strains of 𝜀𝜀𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠  are zero. Because the volumetric strain, 𝜀𝜀𝑖𝑖𝑖𝑖, is a constant and because 

SW cannot change volume, we always have 𝜀𝜀11𝑐𝑐𝑐𝑐 = 𝜀𝜀𝑖𝑖𝑖𝑖 . While 𝜀𝜀𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐  is determined, the 

propagation directions of CW and SW are unknown in fact. Define 𝑞𝑞𝑖𝑖𝑖𝑖𝑠𝑠  as the transformation 

matrix from 𝒙𝒙 to 𝒙𝒙𝒔𝒔 and 𝑞𝑞𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐 as the transformation matrix from 𝒙𝒙𝒄𝒄 to 𝒙𝒙𝒔𝒔, i.e. 𝑞𝑞𝑖𝑖𝑖𝑖𝑠𝑠 = cos (𝑥𝑥𝑖𝑖𝑠𝑠, 𝑥𝑥𝑗𝑗) 

and 𝑞𝑞𝑖𝑖𝑗𝑗𝑐𝑐𝑐𝑐 = cos (𝑥𝑥𝑖𝑖𝑠𝑠, 𝑥𝑥𝑗𝑗𝑐𝑐), and apply 𝑞𝑞𝑖𝑖𝑖𝑖𝑠𝑠  to Eq. (8), 

                                                𝑞𝑞𝑚𝑚𝑚𝑚𝑠𝑠 𝑞𝑞𝑛𝑛𝑛𝑛𝑠𝑠 𝜀𝜀𝑖𝑖𝑖𝑖 = 𝑞𝑞𝑚𝑚𝑚𝑚𝑠𝑠 𝑞𝑞𝑛𝑛𝑛𝑛𝑠𝑠 𝜀𝜀𝑖𝑖𝑖𝑖𝑐𝑐 + 𝑞𝑞𝑚𝑚𝑚𝑚𝑠𝑠 𝑞𝑞𝑛𝑛𝑛𝑛𝑠𝑠 𝜀𝜀𝑖𝑖𝑖𝑖𝑠𝑠                                                          (9) 

With the consideration of the analysis above, it can be established that 𝑞𝑞𝑚𝑚𝑚𝑚𝑠𝑠 𝑞𝑞𝑛𝑛𝑛𝑛𝑠𝑠 𝜀𝜀𝑖𝑖𝑖𝑖𝑐𝑐 =

𝑞𝑞𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐 𝑞𝑞𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐𝜀𝜀𝑘𝑘𝑘𝑘𝑐𝑐𝑐𝑐 and 𝑞𝑞𝑚𝑚𝑚𝑚𝑠𝑠 𝑞𝑞𝑛𝑛𝑛𝑛𝑠𝑠 𝜀𝜀𝑖𝑖𝑖𝑖𝑠𝑠 = 𝜀𝜀𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠 , which makes Eq. (9) become 

                                               𝑞𝑞𝑚𝑚𝑚𝑚𝑠𝑠 𝑞𝑞𝑛𝑛𝑗𝑗𝑠𝑠 𝜀𝜀𝑖𝑖𝑖𝑖 = 𝑞𝑞𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐 𝑞𝑞𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐𝜀𝜀𝑘𝑘𝑘𝑘𝑐𝑐𝑐𝑐 + 𝜀𝜀𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠                                                                  (10) 

Because 𝜀𝜀𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠 = 0 when 𝑚𝑚 = 𝑛𝑛, the relationship can be derived through Eq. (10),  
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                                               𝑞𝑞𝑚𝑚𝑖𝑖𝑠𝑠 𝑞𝑞𝑚𝑚𝑚𝑚𝑠𝑠 𝜀𝜀𝑖𝑖𝑖𝑖 = 𝑞𝑞𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐 𝑞𝑞𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐 𝜀𝜀𝑘𝑘𝑘𝑘𝑐𝑐𝑐𝑐                                                                            (11) 

which reveals a clue that the propagation direction of SW can be found if 𝑞𝑞𝑖𝑖𝑖𝑖𝑠𝑠  and 𝑞𝑞𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐 are 

determined.  

With given 𝜀𝜀𝑖𝑖𝑖𝑖  and 𝜀𝜀𝑘𝑘𝑘𝑘𝑐𝑐𝑐𝑐 ,  𝑞𝑞𝑖𝑖𝑖𝑖𝑠𝑠  and 𝑞𝑞𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐  can be sorted out by rotating 𝒙𝒙  and 𝒙𝒙𝒄𝒄 , 

independently, until 𝑞𝑞𝑖𝑖𝑖𝑖𝑠𝑠  and 𝑞𝑞𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐 are matched each other to satisfy Eq. (11). This is the key 

idea of the proposed method in the Chapter. The specific procedures are as follows.  

(i) Measure the displacement field and the vibration velocity field at all moments. In 

this procedure, interpolation may be implemented to have all positions displaced from the 

measured displacement field. 

(ii) Calculate the strain from 𝜀𝜀𝑖𝑖𝑖𝑖 = (𝑢𝑢𝑖𝑖,𝑗𝑗 + 𝑢𝑢𝑗𝑗,𝑖𝑖)/2. Accordingly, 𝜀𝜀𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐 is determined with 

𝜀𝜀11𝑐𝑐𝑐𝑐 equal to 𝜀𝜀𝑖𝑖𝑖𝑖 and other components equal to zeros. 

(iii) Rotate 𝒙𝒙  and 𝒙𝒙𝒄𝒄  to all possible orientations of 𝒙𝒙𝒔𝒔  with an angle step, 

independently, and record all corresponding transformations of 𝜀𝜀𝑖𝑖𝑖𝑖 and 𝜀𝜀𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐. It is not 

necessary to try all possibilities in practice. In order to reduce the computation time, 

possible orientations should be estimated appropriately upon the real excitations 

producing SW and CW. 

(iv) Compare each transformation of 𝜀𝜀𝑖𝑖𝑖𝑖 with each one of 𝜀𝜀𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐 and determine the best 

pair of 𝑞𝑞𝑖𝑖𝑖𝑖𝑠𝑠  and 𝑞𝑞𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐 making ∑ (𝑞𝑞𝑚𝑚𝑚𝑚𝑠𝑠 𝑞𝑞𝑚𝑚𝑚𝑚𝑠𝑠 𝜀𝜀𝑖𝑖𝑖𝑖 − 𝑞𝑞𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐 𝑞𝑞𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐 𝜀𝜀𝑘𝑘𝑘𝑘𝑐𝑐𝑐𝑐)23
𝑚𝑚=1  minimum.  

(v) Deduce the CW-based vibration velocity from the determined 𝑞𝑞𝑖𝑖𝑖𝑖𝑠𝑠  and 𝑞𝑞𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐. The 

vibration velocity in 𝒙𝒙 can be transformed to 𝒙𝒙𝒔𝒔 by 

                                                                  𝑣𝑣𝑖𝑖𝑠𝑠 = 𝑞𝑞𝑖𝑖𝑖𝑖𝑠𝑠 𝑣𝑣𝑗𝑗                                                                                   (12) 
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where 𝑣𝑣𝑗𝑗  is the vibration velocity in 𝒙𝒙, 𝑣𝑣𝑖𝑖𝑠𝑠 is the vibration velocity in 𝒙𝒙𝒔𝒔. The vibration 

direction of SW is perpendicular to 𝑥𝑥1𝑠𝑠 , from which 𝑣𝑣1𝑠𝑠 in Eq. (12) is the only component of 

the CW-caused motion. Consequently, the CW-caused vibration velocity, 𝑢̇𝑢1, and the 

corresponding volumetric strain, 𝑢𝑢1,1, in 𝒙𝒙𝒄𝒄 are untangled out of the combined strain field 

by 

                                                                   𝑢̇𝑢1 = 𝑣𝑣1𝑠𝑠/𝑞𝑞11𝑐𝑐𝑐𝑐                                                                              (13) 

                                                                   𝑢𝑢1,1 = 𝑞𝑞1𝑖𝑖𝑠𝑠 𝑞𝑞1𝑗𝑗𝑠𝑠 𝜀𝜀𝑖𝑖𝑖𝑖/(𝑞𝑞11𝑐𝑐𝑐𝑐𝑞𝑞11𝑐𝑐𝑐𝑐)                                                     (14) 

It is noted that 𝑢𝑢1,1 is 𝜀𝜀11𝑐𝑐𝑐𝑐. There could be numerical error between them. For having all data 

analyzed consistently with measurement, Eq. (14) is used. Based on the deformation 

gradient of shear motion that is asymmetrical, SW-caused strain and vibration velocity can 

be determined with the known CW-caused ones from Eq. (13) and Eq. (14). 

(vi) Map elastography by solving 𝑉𝑉 with substituting Eq. (13) and Eq. (14) into Eq. 

(7). The measurement is a set of discrete data within a certain period of time. For reducing 

the noise effect and making use of all measured data, Eq. (7) can mathematically and 

generally be reorganized as, 

                                                                      𝑉𝑉 = �
∑ 𝑢̇𝑢𝑖𝑖

2𝑡𝑡=𝑡𝑡𝑛𝑛
𝑡𝑡=1

∑ 𝑢𝑢𝑖𝑖,𝑗𝑗
2𝑡𝑡=𝑡𝑡𝑛𝑛

𝑡𝑡=1
                                                                     (15)              

where 𝑡𝑡𝑛𝑛 is the number of the collected data. Young’s modulus or shear modulus can 

further be obtained through Eq. (2) or (6). In fact, the numerator and the denominator of 

Eq. (15) can be understood as the autocorrelations of 𝑢̇𝑢𝑖𝑖  and 𝑢𝑢𝑖𝑖,𝑗𝑗 at zero lag, respectively. 
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4.3 Validation 

To demonstrate the performance of current study, numerical models are built for 

forward analysis, followed by the inverse reconstruction. The first model (9.0 cm × 5.0 cm 

with a 1.5 cm inclusion embedded) is a two-dimensional case in which the 300 Hz shear 

excitation is set on the top surface of the sample and fixed on the bottom [144]. The shear 

modulus of matrix is 40 kPa and the inclusion is 15 kPa. Poisson’s ratio is assumed to be 

0.49. The densities of the matrix and inclusion are assumed to be 612 kg/m3 and 1000 

kg/m3, respectively, making the shear-wave impedances of the matrix and inclusion 

identical or matched. Using the commercial finite element analysis package, COMSOL, the 

wave motion is simulated with 0.1 cm quadrilateral elements of plane strain. The excitation 

lasts 0.03 s with the time step of 5 × 10-5 s. It is noted that, while plane-strain case is 

assumed in the COMSOL forward analysis, the algorithm for elastography reconstruction 

does not require whether the problem is a plane-strain or a plane-stress case, since such 

information is intrinsically embedded in the displacement data. With the conventional SWE 

method directly measuring the wavelength through the displacement distribution that is 

used to estimate the wave speed [144], the position of inclusion can be detected, whereas 

the geometrical shape cannot, as shown in Fig. 23 (a). When the current study is applied to 

the same displacement field, not only can the inclusion location be located, but the shape be 

identified as shown in Fig. 25 (b). In the procedure (ⅲ), the rotation step of each axis is 

π/120 and the searching range is [0, π/2], which takes 2.5 hours of computation on a PC 

with Intel(R) Core (TM) i7-3770 CPU @ 3.40 GHz. After the density of matrix is assigned 

1000 kg/m3 that makes impedances mismatched and induces reflections and mode 

conversion at the interface between matrix and inclusion, the displacement difference is 
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subtle compared with Fig. 25 as shown in Fig. 26. Due to the mismatched impedance that 

produces tangled deformation of SW and CW near the interface, the inclusion can hardly be 

targeted by the conventional SWE method of measuring the wavelengths as shown in Fig. 

26 (a). In other words, the tangled field will mislead the measurement of wavelengths. 

When the current study is implemented, the inclusion still can clearly be identified even 

with reflection occurrence as shown in Fig. 26 (b). 

The second example, 15 cm × 8 cm, is a four-inclusion case as shown in Fig. 27 (a) 

on which the arrows denotes the positions acted with the 1 Hz sine displacement 

excitation. The displacement excitation is expected to generate a CW-SW tangled field. The 

  

Fig. 25. Matched impedance case: 
Displacement distribution in cm (top) 
and corresponding elastography of 
shear moduli in Pa (bottom): (a) by 
conventional SWE and (b) by the current 
method 
 

Fig. 26. Mismatched impedance case: 
Displacement distribution in cm (top) and 
corresponding elastography of shear 
moduli in Pa (bottom): (a) by 
conventional SWE and (b) by the current 
method 
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diameters of inclusions are all 2 cm. Young’s moduli are 25 kPa for the matrix and 8 kPa, 14 

kPa, 45 kPa and 80 kPa for inclusions as marked on Fig. 27 (a) [73]. The density is assumed 

1000 kg/m3 and Poisson’s ratio is 0.49 for all materials, which yields 20.7 m/s CW velocity 

to the matrix, 11.7 m/s, 15.5 m/s, 27.8 m/s and 37.0 m/s to inclusions. Obviously, the 

wavelengths are tens of meters under 1 Hz. The model is meshed with 10040 triangular 

elements of plain strain. During the simulation, the left boundary is fixed, and the exciting 

duration is 0.5 s with the time step of 5 × 10-3 s. Thereafter, the velocity and strains are 

exported to trigger the procedures (i) ~ (vi). After 𝑞𝑞𝑖𝑖𝑖𝑖𝑠𝑠  and 𝑞𝑞𝑖𝑖𝑗𝑗𝑐𝑐𝑐𝑐 are found, the elastography is 

mapped with the distribution of Young’s moduli through Eq. (15) and Eq. (6) as shown in 

Fig. 27 (b) with the computation time of 12 minutes. It is illustrated that the inclusions are 

clearly differentiated with sharp interface identification. The reconstructed Young’s moduli 

of four inclusions are 8.0±2.0, 14.0±3.5, 45.0±7.6 and 80.0±15.9 in kPa. Although the CW 

wavelength is far greater than the inclusion size and the model dimension under 1 Hz, the 

current method works well. It is impossible for the traditional SWE to map moduli by 

directly measuring such long wavelengths under 1 Hz. This further promotes the current 

study valid for low frequencies which make waves penetrate deeper with low attenuation. 

In addition, the low frequency wave will not deliver a resolution loss because the present 

study centers on deformation, not on wavelength. To show that the method does not 

depend on the frequency, one more image under 100 Hz are simulated and reversely 

mapped as shown in Fig. 27 (c), which agree with the image of 1 Hz. For further showing 

the capacity and uniqueness of the proposed method, if the stimulus of Fig. 27(a) is set to 

be perpendicular to the right surface under 100 Hz making the traditional SWE useless, the 

corresponding elastography is mapped in Fig. 27(d) that is consistent with Fig. 27(c). 
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To demonstrate the sensitivity of current algorithm to noise, all fields of Fig. 27(c) 

are added artificially with the white noise of signal-to-noise-ratio (SNR) of 55 dB and 60 dB, 

respectively. Fig. 28(a) shows the typical displacement of a point with noises. Compared 

with Fig. 27(c), the elastography is acceptable with the 60 dB noise imaged in Fig. 28(b) 

despite existing errors at some points, but not with 55 dB noise even if the interfaces are 

sharp as shown Fig. 28(c). Therefore, it is recommended that the data need to be filtered or 

smoothed if SNR is down to 60. 

It is noticeable that they are not strictly two independent plane waves (CW and SW) 

passing each point throughout each model of the two demonstrations in terms of wave 

scattering and multiple excitations. For example, there are three sources in the second 

demonstration. But sticking to the fact that any volumetric strain can just be produced by 

CW, the deformation of a point can always be decomposed into a CW-caused component 

and a SW-caused component if the wave numbers are same from all sources. If the wave 

 

Fig. 27.  (a) The 2D model with 4 circular inclusions of the 2 cm diameter, (b) - (c) Young’s 
modulus elastography images reconstructed by the current method under 1 Hz and 100 Hz, 
respectively, and (d) elastography under 100 Hz with the excitation perpendicular to the 
right surface in the model. 
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numbers of sources are different, a central frequency may need to be estimated first for 

making Eq. (7) realizable and then, the proposed study can be employed. 

4.4 Conclusion 

An elastography method is developed that aims at untangling compression-shear 

field by rotating strain tensor. With simply measuring a displacement field over time, the 

region of interest can be mapped with the stiffness distribution. Demonstrations show that 

the method can identify the heterogeneous inclusions clearly and map the modulus 

distribution accurately. The Chapter provides an effective and executable path for clinical 

imaging in healthcare practice. 

 

  

 

Fig. 28.  (a) Displacement with noise and (b) - (c) elastography images with SNR of 60 dB 
and 55 dB, respectively. 
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Chapter 5 Microstructural Origins of Wave Modulus of Composites 

5.1 Introduction 

Ultrasound-based methods have been widely used to evaluate the mechanical 

properties of composite materials. For example, the elastic modulus can be assessed 

according to the measured velocity of wave propagation [78]–[82]. The estimation of 

elastic modulus or modulus of elasticity comes from the well-known relationship of Eq. (2) 

rewritten as, 

                                         𝑉𝑉𝑠𝑠 = � 𝐸𝐸𝑤𝑤
2(1+ν)𝜌𝜌

                                                                                        (16) 

where 𝐸𝐸𝑤𝑤 is called wave modulus (WM) in the Chapter. In practice, the time of flight (TOF) 

of wave is measured through the input and transmitted signals [82], [159]. For 

homogeneous materials, 𝐸𝐸𝑤𝑤 is equal to the elastic modulus, i.e., the Young’s modulus. In 

contrast with the static uniaxial compression testing, the distinct advantage of the pulse 

velocity test is nondestructive and easy to perform in-situ. There are a few terminologies 

regarding wave-velocity-based modulus estimation, such as pulse modulus, dynamic 

modulus, and wave modulus. In this study, the term of wave modulus (WM) of elasticity is 

used. 

When either the direct transmission or surface transmission is currently performed 

practically, WM relies on the wave velocity estimation while avoiding the material 

heterogeneity on the propagation path [159]–[161]. Due to the composite nature of 

concrete materials even with exiting voids, the heterogeneity takes effect in both 

microscale and macroscale. So far, investigations have been conducted, using the analytical 

micromechanics principles and experiments to reveal the effect of heterogeneity not only 
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on the static modulus of elasticity [162]–[164], but on the wave propagation [165]–[168]. It 

needs to be pointed out that current discussion is under the requirement of separation-of-

scales, namely, 𝑑𝑑 ≪ ℜ ≪ λ (where ℜ is the characteristic length of the representative 

volume element (RVE), 𝑑𝑑 is the characteristic length of heterogeneities in RVE and λ is the 

wavelength) [168], [169]. While those analytical explorations are limited to inclusions of 

regular shape, some fundamental conclusions have been reached. First, the influence of 

inclusions on the propagation path is coupled with wavelength or frequency. Second, the 

product of the wave number and the inclusion radius, 𝑘𝑘𝑘𝑘 (where 𝑘𝑘 is the wave number 

equal to 2π/λ and 𝑎𝑎 is the inclusion radius), is a useful parameter to better understand 

their coupling mechanisms. If the wavelength is much greater than the characteristic length 

of inclusions, it has limited sensitivity to the inclusions scale. When 𝑘𝑘𝑘𝑘 → 0, WM tends to be 

the corresponding static modulus of elasticity. If the wave frequency makes 𝑘𝑘𝑘𝑘 → 1, i.e., the 

inclusion size is in the same order as the wavelength, the propagation starts showing 

wavelength dependence. With increase of 𝑘𝑘𝑘𝑘, when λ < 𝑑𝑑, the wave can have multiple 

interaction with a single inclusion during propagation, which is beyond the scope of 

current discussion. Third, for the cases of stiffer inclusions, WM is less than the static 

modulus of elasticity in relatively low ultrasound frequencies because of wave scattering, 

in which the wavelength is larger than the aggregate scale. In WM testing, with considering 

the frequency dependent attenuation, the required frequency is set on the order of 100 kHz 

[82], [159]–[161], [167]. Taking concrete as an example, in the range of such frequency, the 

wavelength of concrete is ~101 mm that is larger than fine aggregates. Therefore, mortar 

that is the mixture of fine aggregate and cement can be treated as homogeneity [170]. For 

coarse aggregates and voids, the frequency causes 𝑘𝑘𝑘𝑘~1 that is approved to affect wave 
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motion. It has been reported that WM of concrete is up to 30% higher than its 

corresponding static modulus of elasticity based on both longitudinal and shear wave 

excitations [78], [82], [83], which seems to contradict with the aforementioned third 

conclusion. Because aggregates and voids of concrete are of irregular shapes, there are no 

analytical solutions available to predict their effects on the overall elastic properties of 

concrete. The analytical analysis with the assumption of regular shapes could only present 

some basic ideas, but not the full picture. Numerical solutions through finite element 

method (FEM) is anticipated to provide more insight because FEM is free of the inclusion 

shape restriction and sheds light on studying complex heterogeneous multi-phase concrete 

[170]–[172]. Furthermore, realistic microstructures of concrete can be resolved by utilizing 

the state-of-the-art imaging technologies such as X-ray microscopic computerized 

tomography (micro-CT) [173]–[175]. The integration of FEM and the micro-CT imaging 

technology helps bridge the microstructural features of concrete and its macroscopic 

mechanical performance. The current study is among the first efforts to investigate the 

microstructural origins of WM of concrete by combining the computational 

micromechanics and micro-CT technology.  

In this Chapter, with the treatment of concrete as a three-phase composite material 

(aggregates, mortar and voids), effect of aggregates on WM is first studied using FEM to 

simulate shear-wave motion. In this part, the aggregate with 𝑘𝑘𝑘𝑘~1 is analyzed and 

approved that its presence is not the reason causing higher WM. In addition, different 𝑘𝑘𝑘𝑘 

values, i.e. different λ/𝑑𝑑, are disused. Second, the effect of voids is investigated and 

approved that crack-like voids are the reason causing higher WM. In this part, aspect ratio 

is specially analyzed and concluded that smaller aspect ratio makes faster drop of static 
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modulus than of WM. Finally, the wave velocity analysis is performed on the real concrete 

structures resolved with micro-CT. 

5.2 Effect of Particle Inclusions 

In this section, the role of particles in wave motion is analyzed using the 

microstructure-based finite element method (FEM). To ensure the simulation accuracy, at 

least ten nodes are introduced with a wavelength in developing finite element mesh. 

Further, the incremental time step is less than the propagation time passing through a 

single element [106], [171]. A commercial FEM package, Marc Mentat 2017 (64 bit) (MSC 

Software Corporation), is used to conduct all simulations. The input signal is the 

acceleration excitation of a half-sine pulse of 100 kHz. In an idealized homogeneous 

material with no consideration of microstructures, WM depends on the time of flight (TOF) 

between two points that one serves as the source (e.g., transmitter) and the other as the 

detection (e.g., receiver). The velocity evaluated from the TOF between any two points is 

simply a constant. However, for heterogeneous concrete, the wave velocity can locally be 

path-dependent because of the aggregate variation. To demonstrate the local path-

dependence of aggregates, three plane-strain cases are modeled. The first two are a 

triangular aggregate of 6.7 mm size as shown in Fig. 29 (a) and a circular aggregate (area 

unchanged) embedded in a matrix of 102 mm × 120 mm, respectively, while the third one 

is a homogeneous matrix-only case as a reference. The three models are meshed with 

11332 triangular elements with the maximum edge of 1.5 mm that is 1/10 (or finer) of 

wavelength. The triangle is represented by 28 elements and the circle by 36 elements. The 

basic property input includes the elastic modulus of 14 GPa, density of 2200 kg/m3, and 
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Poisson’s ratio of 0.17 for the matrix, and the elastic modulus of 45 GPa, density of 2690 

kg/m3, and Poisson’s ratio of 0.17 for aggregates. The excitation of the half-sine pulse is set 

near the left end as denoted by arrows in Fig. 29. The time increment per step is 0.25 µs 

(which is about 27% of time traveling within a matrix element and 42% within an 

aggregate element). Upon the completion of simulation, the typical acceleration contours 

are illustrated at the moment of 25 µs in Fig. 29 from which the wave front and the 

reflection of boundaries can be observed. The model size can allow the front to reach the 

right boundary first without interfering with the boundary reflections. To reveal the 

difference among the three cases, the accelerations normalized by the maximum absolute 

value are plotted in Fig. 29 (b) along the wave propagation centerline. It shows that the 

difference emerges and presents the shape effect apparently. In relation to the WM 

evaluation, the first peak head is the only interest used to estimate the TOF between the 

two peaks of the input and the transmitted signal. Specifically, TOF is estimated by 

subtracting the quarter period of the input signal from the first peak moment of the 

transmitted signal, followed by the determination of the wave velocity by dividing the 

distance between the excitation source and the receiver by TOF. Thus, WM is obtained 

through Eq. (16). Estimated from Fig. 29 (b), the normalized WMs are 1.00, 1.08 and 1.13 

for the no-aggregate (matrix-only) case, the circular one and the triangular one, 

respectively. Although the areas of the triangle and the circle are same, i.e. the same volume 

fraction, the triangular aggregate delivers a faster motion because of more occupation on 

the wave path and has larger effective 𝑘𝑘𝑘𝑘. WM of the triangular case is 4.6% higher than 

WM of the circular one, showing that the triangular orientation affects the WM estimation. 

If the wave propagates right along one triangular side, it reaches 5.0% higher than WM of 
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the circular particle. The difference may exist in their corresponding static moduli. Even if 

their static moduli of elasticity are the same, the 5.0% cannot eliminate the large 30% gap 

between WM and the static counterpart.  

Real concrete materials contain many aggregates. In fact, the existence of aggregates 

causes lower WM than the static counterpart. If a 30% volume fraction of 5 mm diameter 

aggregates is embedded in the matrix as shown in Fig. 30 (a), the simulation results show 

that the WM is lower than the static as shown in Fig. 30 (b). Boundary conditions of Fig. 30 

(a) are set free, except that the two end points of the left boundary are fixed. The half-sine 

excitation is set at the center on the left boundary. In the simulation, the time increment of 

0.25 µs is determined through comparison with other increments as shown in Fig. 31 (a). It 

is shown that the increment starts to converge below 0.4 µs although the time passing 

through an element is ~ 1 µs. For all simulations in the current study, the time step is 

chosen as 1/4 of the time length passing the element. The loading position of excitation is 

set at the center of the left boundary. To demonstrate the chosen model satisfying RVE 

 

Fig. 29. Acceleration (mm/s2) contour bands at 25 µs with (a) a single triangular 
aggregate and (b) the propagation comprison of three cases along the propagation 
centerline at 25 µs 
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requirement, the loading is also applied with different positions within ±5𝑎𝑎 (𝑎𝑎 is the radius 

of the inclusion) around the center of the boundary. The results illustrated in Fig. 31 (b) 

indicate that the times having the peak front are consistent, only causing WM errors within 

1%, although the amplitudes are variable due to scattering. Furthermore, the position 

change leads to the wave path different which can be understood on different random 

generalizations of the inclusion distribution. Up to 50% volume fraction of aggregates, 

normalized by the elastic modulus of the matrix, the tendencies of WM and the static 

modulus are plotted in Fig. 30 (b). It is shown that WM becomes smaller than the static 

modulus of elasticity with the increase of the volume fraction of aggregates. For the sake of 

demonstrating the effect of changing frequency, Fig. 33 shows the normalized WM by the 

static modulus with different λ/𝑑𝑑 and demonstrates that the WM variation is subtle in the 

frequency range of WM; yet the WM is always lower than the static modulus. To further 

demonstrate the aggregate irregularity in concrete, an X-ray microscopy slice of the natural 

aggregate concrete is segmented and meshed as shown in Fig. 33. The simulation of wave 

motion and comparison are conducted on two directions, which reports the static modulus 

of 19.68 GPa and WM of 15.27 GPa on the horizontal direction, and the static modulus of 

19.29 GPa and WM of 17.59 GPa on the vertical direction. The two static moduli are 

consistent. WM values reflect the path dependence, but lower than related static moduli. 

Based on the analysis, the aggregate existence is not the reason causing higher WM.  



 
 

63 
 

 

 

 

 

Fig. 30. (a) Concrete microstructure with 30% volume fraction of aggregates and (b) 
the comparison between the WM and static modulus of elasticity of concrete as a 
function of volume fraction of aggregates 

 

Fig. 31. (a) The comparison of different time increments and (b) comparison of 
loading positions 

 

Fig. 32.  WM with different λ/𝒅𝒅 values 
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Lower WM due to the presence of aggregates can be interpreted by the wave 

refraction. Known from wave’s characteristics [95], if the wave incidence is not on the 

direction of the interface normal of two media, the refraction occurs and its angle is not 

equal to the incidence angle. From this point of view, refraction tends to change the 

propagation direction and makes the travel path not in a straight line between two points, 

but in polylines. Because the length of polylines is longer than that of a straight line, the 

propagating velocity under the assumption of the straight line thus leads to an 

underestimation of wave modulus of elasticity. This also concludes that the higher WM 

does not result from its sensitivity to aggregates. 

5.3 Effect of Voids 

Different from particles, micro-voids reduce elastic modulus of material. If voids are 

spherical and evenly distributed, the similar analysis process can be conducted as done for 

aggregates, and the similar conclusions can be drawn that spherical voids are not the 

reason causing higher WM. For example, if the volume fraction of 2-mm-diameter void is 

 

Fig. 33. An X-ray CT resolved concrete slice (17.2 mm × 18.9 mm), segmented 
aggregate (30% volume fraction) and finite element mesh with no consideration of 
voids 
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5% in a 2D model (with the RVE of 102 mm by 120 mm), the normalized static modulus of 

elasticity is 1, whereas the WM is 0.88 under both 10kHz and 50kHz, corresponding to 

λ/𝑑𝑑~8 and λ/𝑑𝑑~16, respectively. Within RVEs, the propagation path is the presentative of 

cross-section based on which the static modulus is determined. The tendency in 2D 

simulations may be applied to 3D cases.  

Based on the above analysis, both aggregates and spherical voids are not the 

reasons causing higher WM. They make WM and static modulus of elasticity varying 

synchronically. Furthermore, WM is smaller than the corresponding static modulus of 

elasticity. In real concrete, all voids are not possible in spherical shape. There is a need to 

investigate the effect of non-spherical voids such as crack-like voids. For a cracked solid 

[176], [177], the elastic modulus is the function of the crack density that can be defined as, 

                                                     𝑐𝑐𝑑𝑑 = 2𝑁𝑁
𝜋𝜋

< 𝐴𝐴2

𝑃𝑃
>                                                                                   (17) 

where 𝑐𝑐𝑑𝑑 is the crack density, 𝑁𝑁 is the number of cracks per unit volume, 𝐴𝐴 is the area of 

crack, 𝑃𝑃  is the perimeter of crack, and <  > denotes the volume average of the quantity. For 

2D cracks, the crack density is computed accordingly as, 

                                                     𝑐𝑐𝑑𝑑 = 8
𝜋𝜋3
𝑀𝑀 < 𝑙𝑙 >2                                                                               (18) 

where 𝑀𝑀 is the number of cracks per unit area, and < 𝑙𝑙 > is the average trajectory of the 

cracks [176], [178]. It is noticed that the effect of cracks on the static modulus of elasticity 

is associated with the order of the third power of the crack size for 3D and the second 

power for 2D. However, WM is just associated with the first power of the crack length, i.e., 

𝑘𝑘𝑘𝑘, which implies higher WM. In addition, both 𝑐𝑐𝑑𝑑 and 𝑘𝑘𝑘𝑘 are directly linked to the length 𝑎𝑎, 

instead of the porosity. High crack density can reduce the elastic modulus severely [176], 

[178], [179]. For concrete, the crack density depends on the compression stress level 
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because higher stress will induce more microcracks and initiate existing cracks to 

propagate. At the initial status of zero stress, the crack density of cementitious materials is 

above 0.2 [178]. Based on Eq. (18), the crack density of 0.2 is modeled with the 8 mm long 

cracks of random distribution, as shown in Fig. 34. Through FEM simulation, the 

normalized WM by the corresponding static modulus of elasticity is 1.49, which is 49% 

higher than the static modulus. In this simulation, the boundary conditions are set as the 

same as those in Fig. 29. It seems clearly that crack results in the larger decrease of the 

static modulus of elasticity. In other words, the existence of crack leads to higher WM. It 

needs to be pointed out that the volume fraction of crack-like voids is only 1.5% in the 

model as shown in Fig. 34. If the 1.5% volume fraction counts on spherical voids, the 

conclusion is totally different, being lower WM. 

However, spherical voids and cracks are the two extreme ends. One end presents 

higher static modulus and the other does higher WM. Even if the crack density is constant, 

the wave velocity will decrease with respect to the extent of crack opening [180]. This 

phenomenon is anticipated because wider crack gives higher volume fraction. Obviously, 

 

Fig. 34. FEM model of concrete with randomly distributed cracks 
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the aspect ratio of a void, being the scenario between crack and spherical void, plays the 

role manipulating the difference of WM and its static counterpart, which can be illustrated 

in Fig. 35 with the void volume fraction (porosity) of 5%. The void shape is elliptical. It can 

be seen that the static modulus drops dramatically with the smaller aspect ratios. Although 

WM has the same tendency, it has the same value as the static modulus at about 0.2 aspect 

ratio and starts being larger below 0.2. It is noted that WM does not change smoothly, 

which may be because of the strong nonlinear interactions among wave motion, aspect 

ratio and the number of voids. The discussion about this is beyond the scope of current 

study. However, one thing is confirmed that WM is always lower than its static counterpart 

above a specific aspect ratio, and higher than the static counterpart below the specific ratio. 

The voids with aspect ratios smaller than a specific value are identified as crack-like voids 

because they cause higher WM. The voids above the specific aspect ratio are called as 

round voids because they cause lower WM like ideally spherical voids. 

In reality, however, the void configuration is commonly irregular and cannot be 

simply delineated by an ellipse and an ellipsoid. For example, as shown in Fig. 36, it is 

difficult to use the aspect ratio to quantify the real void that is detected by X-ray micro-CT. 

 

Fig. 35.  Comparison of WM and its static counterpart with different aspect ratios 
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Another parameter, sphericity, is thus suggested to deal with the irregular void [181]. 

Sphericity, 𝑠𝑠,  is defined as, 

                                                   𝑠𝑠 = 6√𝜋𝜋 𝑉𝑉𝑠𝑠

�𝐴𝐴𝑠𝑠3
                                                                                              (19) 

where 𝑉𝑉𝑠𝑠 is the void volume and 𝐴𝐴𝑠𝑠 the surface area. For the ideal sphere, 𝑠𝑠 = 1, and for the 

ideal penny shape crack, 𝑠𝑠 = 0. Accordingly, for 2D problems, the roundness can be defined 

as, 

                                                   𝑟𝑟 = 4𝜋𝜋 𝐴𝐴
𝐶𝐶2

                                                                                                   (20) 

where 𝑟𝑟 is the roundness, 𝐴𝐴 is the area and 𝐶𝐶 is the circumference. For the ideal circle, 𝑟𝑟 =

1, and for the ideal crack, 𝑟𝑟 = 0. If Eq. (20) is applied to the case with the specific aspect 

ratio 0.2 as shown in Fig. 7, 𝑟𝑟 = 0.45, meaning that roundness below 0.45 tends to generate 

higher WM. 

 

Fig. 36. A real void detected by X-Ray micro-CT that can be characterized by 
sphericity rather than aspect ratio 
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5.4 Simulation on real concrete structures 

In order to strengthen the conclusion that higher WM is attributed to crack-like 

voids, two concrete samples are imaged by X-ray micro-CT, followed by FEM simulations. 

The CT scanner is Xradia 410 Versa (Carl Zeiss X-ray Microscopy, Inc.) that has the best 

spatial resolution of 0.9 µm. In the present study, the resolution is 25 µm. The two samples 

are the recycled aggregate concrete (RAC) and the natural aggregate concrete (NAC) [83]. 

For each concrete, the cubic specimen with approximate edge-length of 15 mm and 

prismatic specimen with dimensions of 50 mm by 50 mm by 100 mm are cut from the same 

laboratory-cast beam with dimensions of 75 mm by 100 mm by 400 mm. Cubic specimens 

are used in micro-CT scan and prismatic specimens in uniaxial compression testing. The X-

ray CT images are shown in Fig. 37, showing internal structures of concrete. ScanIP®, a 

professional image processing product of Simpleware LTD, is employed to segment, 

measure and mesh all components of 3D concrete images.  

According to these CT images, the difference between RAC and NAC cannot be 

visually identified. It has been characterized that RAC has less elastic modulus, lower 

density, and greater water absorption than NAC [83]. Scales of voids below 0.1 mm are not 

 

Fig. 37. Micro-CT images of RAC and NAC: (a) a typical slice of 15.8 mm × 13.9 mm and 3D 
image of NAC, and (b) a typical slice of 13.1 mm × 14.8 mm and 3D image of RAC 
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counted, and the measured volume fraction of voids is 5.6% for NAC and 5.2% for RAC as 

shown in Fig. 38. During segmentation, only is the aggregate above 1.5 mm picked out, 

which shows the volume fraction of aggregate of 28.2% in NAC and 33.9% in RAC. Smaller 

aggregate is merged into mortar treated as a part of the matrix because they are not 

expected to affect WM under current wavelength. The size of aggregates ranges from 1.5 

mm to 8 mm, which is less than the wavelength amounting to ~20 mm. Although the 

requirement of separation-of-scales is not strictly satisfied [168], [169], the expected error 

is less than 1.8% as shown in Fig. 32. This level of accuracy is sufficient for the present 

study. Because of microstructural features inside concrete, the final mesh is reasonably 

dense as shown in Fig. 38. 

Before FEM simulation, the two kinds of concrete properties are measured by 

uniaxial compression testing. The corresponding elastic static moduli are tested on the 

prismatic specimens using a MTS machine [182]. Two LVDTs with 2-inch gauge length are 

oppositely mounted on specimen surface to measure the compressive strain. To enable 

compression under quasi-static state, a very low loading rate (i.e., 0.1 mm/min.) is chosen. 

The measured elastic static moduli are 20.36 GPa and 16.85 GPa for NAC and RAC, 

respectively, extrapolated from compressive stress-strain curves as shown in Fig. 39. 

 

Fig. 38. Microstructural voids and FEM mesh of (a) NAC and (b) RAC concrete materials 
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Although cement paste is viscoelastic in nature, identification of the elastic Young’s 

modulus from quasi-static tests on cement pastes (by accounting for both elastic and creep 

deformation during loading) delivers virtually the same stiffness values as ultrasonic 

testing [183]. With added aggregates, the WM will be below the static modulus as discussed 

in aforementioned analysis, indicating that viscoelastic nature is not the reason causing 

higher WM. In addition, the creep evolution of concrete is significantly slower than its 

stiffness [184]. However, there is no apparent relaxation in Fig. 39, which shows that the 

samples are nearly mature in creep evolution. Then, the material properties’ input of FEM 

can be estimated based on the measured elastic static moduli. Initial rough estimations 

follow the rule of mixtures [185] and, then, use the trial-and-error method to match with 

the measured elastic static moduli. Input of material parameters are listed in Table 4. The 

final resultant homogenization moduli are listed in Table 5 in which errors compared with 

experiments are shown in parentheses. During the simulation, the symmetric boundary 

conditions are assigned to each model.  

 

Fig. 39. Stress versus strain curves of compression test of NAC and RAC samples 
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Table 4. Material parameters of NAC and RAC  

Parameter 
NAC RAC 

Aggregate Mortar Aggregate Mortar 

Elastic modulus (GPa) 33.0 19.3 25.6 16.4 

Density (kg/m3)          2337                       2337           2262                      2262 

Poisson’s ratio          0.15                        0.15                        0.15                       0.15 

 

For RAC and NAC, the wave speed is around 2,000 m/s which results in a 

wavelength of around 20 mm with 100 kHz frequency. For FEM models shown in Fig. 37, 

the wavelength is larger than the boundary scale, which influences the wave velocity [161]. 

Therefore, three dimensions of both RAC and NAC models are doubled by symmetric 

duplication. With applying symmetric boundary conditions, four original images are piled 

up together. Totally, the RAC FEM model contains 8,069,700 tetrahedral elements and 

1,547,822 nodes, while the NAC model contains 7,130,676 elements and 1,348,910 nodes. 

The time step is 0.25 µs which satisfies the accuracy requirement of numerical simulation. 

Both computations take more than 48 hours per job for WM estimation, running in a 4-core 

i7 CPU and 16 GB memory PC. Wave pulse is applied at the center of an outer surface and 

the transmitted data acquired on the opposite surface. The propagation velocity is 

Table 5.  Simulation results of RAC and NAC 

Concrete 

Static modulus of elasticity (GPa) Wave modulus of elasticity (GPa) 

Experiment 
FEM 

Experiment 
FEM 

With  
voids 

Without 
voids 

With  
voids 

Without 
voids 

NAC 20.36 20.41 (-0.25%) 23.74 23.11 23.08 (0.13%) 23.85 

RAC 16.85 16.98 (-0.77%) 19.10 18.81 18.22 (3.1%) 19.60 
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estimated by comparing the input signals with its transmitted signals. Thereafter, WM is 

calculated based on Eq. (16). 

Except the simulation on real concrete, the simulation with all voids removed and 

merged into the matrix is performed as the comparison origin. All simulation results and 

the static measurement are tabled in Table 5 and graphed in Fig. 40. The experimental 

WMs are obtained from Qiao 2010 that reported how to measure WMs in detail. It can be 

seen that the simulated WMs agree well with the experimental ones and are larger than 

corresponding elastic static moduli by 13.1% for NAC and by 7.3% for RAC. Taking the 

results without voids as the reference, the simulated WM is reduced by 3.2%, and the static 

modulus of elasticity by 14.0% for NAC, and by 7.0% and 11.1% for RAC.  Both NAC and 

RAC results verify that the static modulus of elasticity decreases larger. To verify whether 

or not these higher WMs of NAC and RAC are attributed to crack-like voids, the probability 

density functions of sphericity of NAC and RAC are computed in terms of the micro-CT 

images and Eq. (19) as shown in Fig. 41. It can be seen that all voids are not ideal spheres 

and have sphericity mostly in range of 0.2 to 0.6. It is further validated that higher WM 

must be caused by non-spherical pores. 

 

Fig. 40. Experimental and FEM results of NAC and RAC 
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5.5 Conclusion 

With the aid of computational micromechanics and finite element method, factors 

associated with the wave modulus (WM) of elasticity evaluation are analyzed to investigate 

the microstructural origins on why WM is higher than its corresponding static modulus of 

elasticity. Possible factors (aggregate and void) are analyzed and discussed. While higher 

aggregate concentration results in an increase of both WM and static modulus of elasticity, 

it does not indicate that WM is more sensitive to aggregates than static modulus of 

elasticity. It is also noted that the presence of wave scattering and refraction around 

aggregates tends to result in lower WM when compared with the static cases. 

Microstructural porosity due to spherical voids leads to lower WM than the static modulus 

of elasticity of concrete. However, the crack-like voids prove to be the critical factor causing 

the higher WM. The crack-like voids are identified with a specific roundness or sphericity. 

 

  

 

Fig. 41.  Probability density functions of sphericity of NAC and RAC 
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Chapter 6 Summary and Future Research 

Based on the fundamentals of elastodynamics, the first main study focuses on 

elastography mapping. Resultantly, three elastography methods have been developed, 

considering external responses, data process of deep learning and untangling shear-

compressional deformation, respectively. Validations show that these methods have the 

ability imaging elastography accurately. The common advantage of the three methods are 

free of frequency dependence. The integration method makes full use of CT image, which 

sheds light on those imaging devices that don’t have the function of mechanical detection. 

The deep learning architecture greatly reduces the computation time of inverse analysis for 

the integration method. The deformation untangled method makes elastography more 

general and applicable without the limit of pure shear deformation. 

The second main effort has been put in the investigation how microstructures affect 

the wave motion in composite materials. In this part, a question confusing researcher for 

more than half century has been clearly answered, why wave modulus is higher than its 

static counterpart. Finally, the crack-like voids prove to be the critical factor causing the 

higher WM. 

In the future, deep learning based elastography will be studied furtherly and 

combined with the untangling algorithm for improving efficiency and removing noise. In 

addition, the physical relationship between WM and its static counterpart requires in-

depth investigation based on computational mechanics. 
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