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Abstract

Current rodent connectome projects are revealing brain structural connectivity with unprecedented 

resolution and completeness. How subregional structural connectivity relates to subregional 

functional interactions is an emerging research topic. We describe a method for standardized, 

mesoscopic-level data sampling from autoradiographic coronal sections of the rat brain, and for 

correlation-based analysis and intuitive display of cortico-cortical functional connectivity (FC) on 

a flattened cortical map. A graphic user interface “Cx-2D” allows for the display of significant 

correlations of individual regions-of-interest, as well as graph theoretical metrics across the cortex. 

Cx-2D was tested on an autoradiographic data set of cerebral blood flow (CBF) of rats that had 

undergone bilateral striatal lesions, followed by 4 weeks of aerobic exercise training or no 

exercise. Effects of lesioning and exercise on cortico-cortical FC were examined during a 

locomotor challenge in this rat model of Parkinsonism. Subregional FC analysis revealed a rich 

functional reorganization of the brain in response to lesioning and exercise that was not apparent 

in a standard analysis focused on CBF of isolated brain regions. Lesioned rats showed diminished 

degree centrality of lateral primary motor cortex, as well as neighboring somatosensory cortex—
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changes that were substantially reversed in lesioned rats following exercise training. Seed analysis 

revealed that exercise increased positive correlations in motor and somatosensory cortex, with 

little effect in non-sensorimotor regions such as visual, auditory, and piriform cortex. The current 

analysis revealed that exercise partially reinstated sensorimotor FC lost following dopaminergic 

deafferentation. Cx-2D allows for standardized data sampling from images of brain slices, as well 

as analysis and display of cortico-cortical FC in the rat cerebral cortex with potential applications 

in a variety of autoradiographic and histologic studies.

Keywords

cerebral cortex; functional connectivity; brain mapping; exercise; motor training; Parkinson’s 
Disease; dopamine; software

INTRODUCTION

Rodents are primary animal models for studying the mammalian brain. Recent rodent 

connectome projects have begun to delineate anatomic connectivities of the rat and mouse 

brain with unprecedented resolution and completeness [1-3]. These connectome data clearly 

reveal rich and complex connectivity architectures at the subregional/mesoscopic level. How 

subregional structural connectivity relates to subregional functional interaction is an 

emerging research topic. The importance of subregional-level functional connectivity (FC) 

analysis is highlighted by recent reports of FC-based functional segregation within brain 

structures [4-6].

Correlation-based FC analysis quantifies the symmetrical statistical association between 

individual brain regions [7]. Two methods have been broadly used for FC analysis: inter-

regional, cross-correlation analysis of time series data such as blood oxygen-level dependent 

signals measured with functional magnetic resonance imaging (fMRI), and inter-regional 

correlation analysis of cross-sectional data such as regional cerebral blood flow (rCBF) 

measured with positron emission tomorgraphy (PET). The latter has been applied to rodent 

functional brain mapping data acquired with microPET, and autoradiographic measurement 

of deoxyglucose uptake [8-10] and rCBF [6, 11, 12].

Study of subregional FC requires data processing of large numbers of regions-of-interest 

(ROIs). Animal researchers working with whole brain data sets reconstructed from tens to 

hundreds of serial histologic sections often face the challenge of how best to summarize data 

and allow for rapid exploration. We describe here a simple approach for high-density, 

standardized ROI definition and data extraction from autoradiographic coronal brain slices 

of the rat. The method allows for correlational FC and graph theoretical analysis, between-

group comparison, and intuitive display of results in a flattened cortical map. Our software 

implementation “Cortex 2-Dimensional” (Cx-2D) was tested on a cerebral autoradiographic 

perfusion data set of rats that had undergone bilateral lesioning of the striatum, followed by 

4 weeks of daily aerobic exercise training or no exercise. Functional brain mapping was 

performed in animals walking on a treadmill. Effects of lesioning and exercise on 

subregional FC were examined across the cortical surface.

Peng et al. Page 2

Front Phys. Author manuscript; available in PMC 2015 March 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



MATERIALS AND METHODS

We previously developed a software for the measurement, analysis and display of rCBF data 

obtained from autoradiographic coronal brain sections of the rat [13]. The earlier work 

focused on the ROI selection, measurement and statistical analysis of between-group 

differences in rCBF, while the current study adapted this software for the analysis of FC 

between brain regions.

REGION OF INTEREST SELECTION

Details on the method of ROI selection can be found in our prior publication [13]. In brief, 

using software written in Matlab (The MathWorks, Inc., Natick, MA, USA), ROIs were 

sampled on 8-bit digitized brain autoradiograms using two radial, hemigrid overlays, with 

rays spaced in 15° intervals from the midline (Figure 1), sufficient to resolve multiple 

subregions within the major cortical structures. Overlay of this template on each digitized 

brain slice image allowed for measurement of the optical density at locations in the cortical 

mantle in a standardized manner across animals. Along each grid line that intersects the 

cortical surface, the point of intersection was identified with an algorithm that detects the 

edge on a binary “mask” based on a threshold gray level in the original image [13, 14]. A 

square ROI (default size 358 × 358 μm2) was placed along the ray with its center 358 μm 

from the intersection point. After all ROIs had been placed, the user was able to manually 

reposition the ROIs to avoid any artifacts that may have appeared in any given brain slice. 

Mean optical density was measured for each ROI in each slice (current dataset: 806 ROIs 

selected in 34 coronal slices in each animal, 300-μm interslice distance, beginning at 4.8 mm 

anterior to the bregma). For each cortical ROI, a background ROI was automatically 

selected in close proximity along the same radial grid line. The subtraction of the mean 

optical density of each ROI from that of its corresponding background ROI allowed for 

correction of potential inhomogeneities in the background. In the autoradiographs, a region 

with greater rCBF showed greater darkness but lower optical density.

Data analysis and topographic mapping of results were performed using a custom software 

program written in LabVIEW (National Instruments Co., Austin, TX, USA). Required user 

inputs included (a) the text file containing ROI optical density data, (b) a file defining for 

each brain a reference slice with a distinct landmark (e.g., fusion of the anterior 

commissures across the midline), based on which brain slices were aligned along the 

anterior-posterior axis across all brains, and (c) a table identifying for each bregma level the 

number of ROIs to be analyzed (7–10 ROIs per hemisphere). The program also used a list of 

brain-structure identifiers for each cell of the data matrices. These identifiers were manually 

derived from the overlay of the radial grids on the digitized images of the coronal brain 

sections from a rat brain atlas [15].

For every brain, the global mean and standard deviation (SD) were calculated for all ROIs in 

the data matrix. A Z-score transformation [16] was performed to convert optical density data 

into “normalized” representation of rCBF for each brain. This transformation removed 

variations in the global mean between brains of all groups created by global effects and 

systematic experimental errors. Therefore, the analysis did not account for any global 

differences in tracer levels that could have been present between experimental groups.
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PAIRWISE INTER-REGIONAL CORRELATION AND DEGREE CENTRALITY ANALYSIS

We applied inter-regional correlation analysis to investigate functional connectivity in the 

LabVIEW program. This is a well-established method, which has been applied to analyze 

rodent brain mapping data of multiple modalities [6, 8-12, 17-20]. Correlations were 

calculated across subjects within a group, and different from the within subject cross 

correlation analysis often used on fMRI time series data [21-24]. Pearson’s correlation 

coefficients between each pair of ROIs were calculated across subjects within a group for all 

cortical ROIs. Significant correlations (P < 0.05 without correction for multiple 

comparisons) were interpreted as functional connections. For each ROI, we then calculated 

degree centrality, which was defined as the number of significant correlations (positive or 

negative) linking it to the other ROIs. For each group, a flattened, topographic map for the 

cortical surface was plotted with each cell representing an ROI and the color of the cell 

coding the ROI’s degree. This allowed for intuitive visualization of the degree metrics for all 

ROIs across the cortical surface. Group differences in degree were interpreted in a 

qualitative manner.

SEED ANALYSIS

To evaluate and compare the pattern of functional connectivity of individual cortical ROIs 

over the cortical surface, correlations of user-selected ROI seeds with all other ROIs were 

calculated within each group and visualized on the flattened cortical map with color-coded 

correlation coefficients. The threshold for significance was set at P < 0.05.

TEST DATA SET

The software was tested on an autoradiographic perfusion data set that mapped brain 

activation during a locomotor challenge in a rat model of Parkinsonism with a 4-week 

aerobic exercise as intervention. A whole-brain, voxel-based analysis of changes in rCBF in 

this dataset has been previously reported by our group, and the reader is referred to our 

publication for additional details [25].

Animal model—The protocol was approved by the Institutional Animal Care and Use 

Committee (IACUC) of the University of Southern California (Protocol #11121). The 

animal facility at this Institution is accredited by the Association for Assessment and 

Accreditation of Laboratory Animal Care (AAALAC). In brief, 3-month old, male Sprague-

Dawley rats were randomized into the following groups: Lesion/Exercise (n = 12), 

Lesion/No-Exercise (n = 10), and Sham/No-Exercise (n = 9). The number of animals 

reflects data loss due to technical issues such as cryosectioning artifact, freezer malfunction, 

and catheter occlusion in 3 animals. Rats received stereotaxic injection of the dopaminergic 

toxin 6-hydroxydopamine (10 μg 6-OHDA in 2 μL of 1% L-ascorbic acid/saline, Sigma-

Aldrich Co., St. Louis, MO, USA) at four injection sites targeting the dorsal caudate 

putamen (striatum) bilaterally (AP: +0.6, ML: ±2.7, DV: −5.1 mm, and AP: −0.4, ML: ±3.5, 

DV: −5.5 mm), which resulted in ~40% of bilateral striatal volume affected, as well as a ~30 

and ~38% loss in tyrosine hydroxylase optical density at the level of the striatum and 

substantia nigra compacta, respectively, measured by immunohistochemical staining 7 

weeks after the lesion. Sham-lesioned rats received 4 injections of an equal volume of 
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vehicle. To prevent noradrenergic effects of the toxin, rats received desipramine (25 mg/kg 

in 2 mL/kg bodyweight saline, i.p., Sigma-Aldrich Co.) before the start of surgery [26].

Exercise training—Two weeks after the lesioning, animals assigned to the exercise group 

were trained in a running wheel (36 rungs of 14.6 mm diameter, 4.4° angular spacing, 

Lafayette Instrument, Lafayette, IN, USA) for 20 min/day (4 sessions, 5 min each with 2-

min inter-session intervals), 5 consecutive days/week. No-exercise animals were handled 

and left in a stationary running wheel for 30 min/day. Animals were trained for 4 weeks 

using an individually adjusted, performance-based speed adaptation paradigm as described 

[25]. Thereafter, rats received implantation of the right external jugular vein cannula that 

was externalized dorsally in the suprascapular region. Brain mapping studies occurred 4 

days postoperatively.

All animals were habituated to a horizontal treadmill for 4 days prior to cerebral perfusion 

experiments. Each day, they were individually placed on the stationary treadmill (single 

lane, L = 50, W = 7, H = 30 cm) for 10 min followed by 3 min of walking at 8 m/min.

Functional brain mapping—On the day of the perfusion experiment, rats during 

treadmill walking at 8 m/min received a bolus intravenous administration of [14C]-

iodoantipyrine (125 μCi/kg in 300 μL of 0.9% saline, American Radiolabeled Chemicals, St. 

Louis, MO, USA), followed immediately by the euthanasia agent (pentobarbital 50 mg/mL, 

3 M potassium chloride). This resulted in cardiac arrest within ~10 s, a precipitous fall of 

arterial blood pressure, termination of brain perfusion, and death. This approach uniquely 

allowed a 3-dimensional (3-D) assessment of functional activation in the awake, non-

restrained animal, with a temporal resolution of ~10 s and an in-plane spatial resolution of 

100 μm2 [27, 28]. Wiping the treadmill with a 1% ammonia solution between animals 

minimized olfactory cues. Brains were removed, flash frozen at approximately −55°C in 

methylbutane on dry ice and serially sectioned for autoradiography (57 coronal 20-μm thick 

slices, including the cerebellum with a 300-μm interslice distance of which 34 slices were 

used for current analysis of the flattened cortex). Sections were exposed for 3 days at room 

temperature to Kodak Biomax MR film in spring-loaded x-ray cassettes along with 16 

radioactive 14C standards (Amersham Biosciences, Piscataway, NJ). Autoradiographs were 

digitized on an 8-bit gray scale. CBF related tissue radioactivity was measured by the classic 

[14C]-iodoantipyrine method [29, 30]. In this method, there is a strict linear proportionality 

between tissue radioactivity and rCBF when the radioactivity data is captured within a brief 

interval (~10 s) after the radiotracer injection [31, 32].

RESULTS

EFFECTS OF 6-OHDA LESIONING AND AEROBIC EXERCISE ON CORTICO-CORTICAL 
FUNCTIONAL CONNECTIVITY NETWORK DEGREES

Sham animals during walking showed the highest FC degrees in the anterior part of the 

primary motor cortex (M1) and in the neighboring primary somatosensory cortex, 

particularly in the jaw area (S1J, Figure 2A). Lesioned/no-exercise animals showed a 

decrease in FC degrees in these motor and somatosensory regions (Figure 2B). A map 

showing differences in FC degree between the sham and lesioned/no-exercise rats (Figure 
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3A) revealed widespread decreases in FC degree throughout M1, S1J, and the upper lip 

region of primary somatosensory cortex (S1ULp), as well as to a lesser extent in secondary 

somatosensory cortex (S2). Increases in FC degrees were observed in the anterior and 

ventral areas of the piriform (Pir) and olfactory/piriform transition cortex, as well as in the 

auditory (Au), temporal association (TeA), and posterior aspect of primary and secondary 

visual cortices (V1, V2, Figure 3A). Exercise training of the lesioned animals compared to 

lesioned/no-exercise rats resulted in an increase in FC degree in the anterior M1 and 

secondary motor cortex (M2). FC degree was also increased by exercise training in 

somatosensory areas (S1J, S1ULp, S2), while decreases were apparent in broad regions of 

V1, V2, and in the posterior-most aspect of M1 and M2 (Figure 3B).

SEED CORRELATION

Intra-structural correlation—We used seed correlation analysis to explore alterations in 

the spatial pattern of FC of the regions showing the greatest changes in FC degree following 

6-OHDA lesioning and exercise (Figures 4-6). In sham animals, a seed placed in the left M1 

showed significant, bilateral, positive correlations with a large number of other M1 ROIs 

(Figure 4), and similar intra-structural (correlations between subregions within a brain 

structure) FC patterns were found when a seed was placed in M2, S1ULp, V1, V2, Pir or Au 

(Figures 5, 6, Table 1). Lesioned/no-exercise rats showed a significant loss of these intra-

structural positive correlations, particularly in motor and somatosensory structures. Exercise 

training in lesioned animals re-established many of the intra-structural positive correlations 

that were lost after lesioning in areas such as M1, M2, which in fact showed greater numbers 

of positive intra-structural correlations than those noted in sham animals (Table 1). Similar 

observations were made when seeds were placed at alternate subregions within the same 

brain structure (data not shown).

Inter-structural correlation—Inter-structural correlation (i.e., correlations between 

subregions of different brain structures) also showed disruption following lesioning and 

recovery following exercise. For an M1 seed, lesions resulted in a decrease in the number of 

significant positive correlations with M2, frontal area 3 (Fr3), S1J, primary somatosensory 

cortex of the forelimb (S1FL), S1ULp, and S2, whereas exercise in lesioned animals 

increased the number of significant correlations with these structures. Importantly, the 

number of significant positive correlations for the M1 seed with M2, S1ULp and S2 was 

equal or slightly greater than those noted in the sham animals (Table 1). A similar picture 

was observed for the M2 seed in which lesions decreased the number of significant positive 

correlations with M1, Fr3, S1J, S1FL, S1ULp, and S2, and exercise increased the number of 

significant correlations with these structures. For the S1ULp seed, lesions decreased the 

number of positive correlations with M1, Fr3, S1J, S1FL, and S2, which were increased 

following exercise training (Figure 5, Table 1). Similar observations were made when seeds 

were placed at alternate ROI locations within the same brain structure (data not shown).

For the V1 seed, sham animals showed significant negative correlations to M1, S1ULp, and 

S1J (Figure 6A). These connections were lost in lesioned/no-exercise animals (Figure 6B) 

and remained absent in the lesioned/exercise animals (Figure 6C). Similar observations were 
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made for the Au and for the Pir seeds such that lesions decreased FC with M1 and S1, which 

exercise did not restore (data not shown).

DISCUSSION

While advances in the fields of human functional brain mapping have rapidly been adopted 

in animal imaging, several limitations remain in the application of fMRI and microPET for 

the functional brain mapping of rodents. Limitations center around spatial resolution, animal 

sedation [33-35] and animal restraint. Classic autoradiographic and histologic methods 

retain an important role as a means of examing whole brain functional activation with high 

spatial resolution in the awake, non-restrained, behaving rodent.

A dilemma faced by animal researchers working with autoradiographic or histologic datasets 

is how best to present whole brain data obtained from large numbers of consecutive brain 

sections. In the past, such data has been presented, either in table format, as individual 

representative slices or as summary representations on hand-drawn sketches. The current 

method and our prior publication described a means for the compact display of significant 

group differences of regional signal intensity (rCBF in the current study) and their 

interregional correlation. Although our method was described in relation to autoradiographic 

brain slice images measuring cerebral blood flow, in principle, a correlational analysis 

would be applicable to a wide range of modalities that use quantitative brain slice images, 

such as autoradiographic measurement of glucose uptake, immunohistochemical analysis of 

protein expression, and analysis of gene expression with in situ hybridization. In principle, 

the method for evaluating cortical FC could also be applied to the reanalysis of a vast store 

of data obtained from cryosections of the brain and published over the past three decades. 

Most of this data has not examined functional correlations between brain regions.

METHODOLOGIC ISSUES

We described a subregional, cortico-cortical functional connectivity analysis toolbox for 

mapping data of the rat brain. The advantage of the current approach to FC analysis was its 

unbiased, semi-automated selection of large numbers of ROIs sufficient to allow detailed 

mapping of subregional, functional segregation. The flatmap approach to result display 

provided an intuitive interface to summarize FC findings across hundreds of ROIs. The 

representation of a brain structure by multiple subregional ROIs allowed for detection of FC 

differences that involve only a portion of the structure. A future improvement of this method 

might entail a whole-brain, voxel-based FC analysis, as has been done in human 

neuroimaging studies [36]. Another improvement might be to enable ROI definition and 

data extraction in deep midline cortical structures, including the prelimbic, infralimbic, part 

of cingulate, and part of retrosplenial cortices. The current framework of software allowed 

implementation of additional functionalities to address important functional connectivity 

issues. For example, flatmap display of FC could be restricted to only crosshemispheric or 

intrahemispheric FC, to only positive or negative correlations. More graph theoretical 

metrics of the cortico-cortical FC network could be calculated besides degree. The Cx-2D 

software could also be adapted for use in the mouse brain.

Peng et al. Page 7

Front Phys. Author manuscript; available in PMC 2015 March 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Given the large number of ROIs, we did not attempt a correction for multiple comparisons. 

Interpretation of our data, however, was not based on individual ROIs, but rather on patterns 

of change across multiple ROIs across the topographic flatmap display. Additional measures 

may contribute to the confidence of effects detected in a data set. Such effects may be the 

presence of left–right symmetry for paradigms that are intrinsically symmetrical (e.g., 

quadrupedal locomotion in a rat) and the correspondence of clusters of significant ROIs 

within the boundaries of known anatomical structures—both of which were the case for our 

data. These cannot be easily quantified but increase the significance of the current findings. 

Nevertheless, given the ongoing spirited discussion of the need for corrections for multiple 

comparisons in neuroimaging data, our results should be considered exploratory rather than 

definitive [37-39].

In our study, we applied autoradiographic perfusion mapping, with FC calculated using 

cross-sectional data across subjects in a group. As such, our analysis precluded evaluation of 

the temporal dynamics of functional brain activation. Furthermore, it is important to 

remember that while correlation-based analyses provide information about functional 

connectivity, they do not directly address causal relationships. It is possible that functional 

connectivity may arise in the absence of a direct structural connection, through indirect 

pathways or due to the influence of a common factor. Finally, although positive and 

negative correlations are generally interpreted as functional, neural interactions, their exact 

neurophysiologic substrates are not completely understood and may vary [6, 40, 41].

EFFECTS OF DOPAMINERGIC DEAFFERENTATION AND EXERCISE TRAINING

The 6-OHDA basal ganglia injury rat model is a widely accepted model of dopaminergic 

deafferentation, and while not capturing all aspects of human Parkinson’s Disease (PD), 

parallels the human disorder remarkably well [42]. Parkinson’s patients show alterations in 

basal ganglia thalamocortical networks primarily due to loss of nigrostriatal dopaminergic 

neurons. These changes in subcortical networks lead to neuroplastic changes in motor 

cortex, which mediates cortical motor output. Cortical functional connectivity is impaired in 

PD subjects during the execution of motor tasks [43-47] and may reflect underlying 

abnormalities in cortical excitability [48]. The current cortico-cortical FC analysis revealed 

findings not initially apparent from the standard analysis of rCBF [25]. Lesions diminished 

much of the intra- and inter-structural FC of anterior M1 and its neighboring anterior S1 that 

was present in sham animals during treadmill walking. Decreases in FC were also noted in 

M2, however, these were more patchy. These changes were observed in the degree maps, 

and were confirmed using seed correlation of individual ROIs placed in M1 and S1ULp. The 

loss of FC across S1J, S1FL, S1ULp, and S2 was particularly apparent when only positive 

correlations were examined (Table 1). Lesions resulted in an increase in FC degree in dorsal 

areas of Au, TeA, Pir, and broadly across V1 and V2 (Figure 3B).

Exercise training in lesioned animals partially restored lesion-induced loss in FC in M1 and 

its neighboring somatosensory cortex, as well as in M2. This was noted both in FC degree 

and in seed correlation, especially with regard to positive correlations. These findings were 

consistent with recent reports in human subjects demonstrating increases in FC of the motor 

cortex following several minutes [49, 50] or 4 weeks of motor training [51]. Exercise-
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induced restoration of FC of the sensorimotor structures may be mediated by neuroplastic 

changes in motor circuits [52, 53], or normalization of corticomotor excitability [54].

CONCLUSION

In summary, dopaminergic deafferentation of the striatum in the rat lead to diminished intra- 

and inter-structural positive correlations in motor and somatosensory cortex. Such abnormal 

sensorimotor integration has been well documented in Parkinson’s disease patients [55-57]. 

The altered FC in the sensorimotor structures may underlie such abnormality in our 

Parkinsonian rats. The disruption of cortical FC of the motor and sensory structures was 

partially normalized by 4 weeks of aerobic exercise training. The software Cx-2D enabled 

standardized, subregional ROI data extraction, functional connectivity and simple graph 

theoretical analysis, as well as intuitive display of FC findings. The subregional-level FC 

analysis and visualization in a flattened cortical map facilitated between-group comparison, 

as well as comparison of cortico-cortical FC with cortico-cortical anatomic connectivity as 

has been previously revealed by others [3]. Organizational principles learned from animal 

models at the macro- and mesoscopic level (brain regions/subregions and pathways) will not 

only inform future work at the microscopic level (single neurons and synapses), but will 

have translational value to advance our understanding of human brain structure and function 

in health and disease.
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FIGURE 1. Schematic of region-of-interest and background selections in a single coronal brain 
autoradiographic slice as reported previously [13]
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FIGURE 2. Degree of cortico-cortical functional connectivity
Cortico-cortical functional connectivity degrees in animals receiving (A) sham treatment, 

(B) lesion without exercise, and (C) lesion with exercise are color-coded and shown on a 

flattened map of the cortical surface. The rows denote coronal sections, with ROIs 

represented by cells and numbered starting from the midline. Right (R) and left (L) 

hemispheric ROIs are shown on the left and right side of the figure, respectively. 

Abbreviations [15]: A, amygdala; Au, auditory; Fr3, frontal cortex area 3; I, insular; LEnt, 

lateral entorhinal; M1, primary motor; M2, secondary motor; O, olfactory; P, parietal; Pir, 

piriform; RS, retrosplenial; S1BF, primary somatosensory for the barrel fields; S1FL, 

forelimbs; S1HL, hindlimbs; S1J, jaw; S1ULp, upper lip region; S2, secondary 

somatosensory; TeA, temporal association; V1, primary visual; V2, secondary visual. 

Unlabel regions represent transitional areas between two regions.
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FIGURE 3. Between-group differences in functional connectivity degree
Differences in cortico-cortical functional connectivity degree between (A) animals with 

bilateral striatal lesions and sham animals (Lesion/No Exercise—Sham/No Exercise) and 

(B) lesioned animals with and without exercise intervention (Lesion/Exercise—Lesion/No 

Exercise) are color-coded and shown on a flattened cortical map. Abbreviations are as in 

Figure 2.
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FIGURE 4. Cortical functional connectivity of the M1 seed
Shown are animals receiving (A) sham treatment, (B) lesion without exercise, and (C) lesion 

with exercise. The seed is placed in the left anterior, primary motor cortical area (M1) at 

bregma AP + 3.6 mm (black cell on the right side of each map). Each ROI is represented by 

a cell with its Pearson’s correlation coefficient with the M1 seed color-coded. Positive and 

negative correlations are denoted by red and blue colors, respectively. The critical value of 

the correlation coefficient (R) for statistical significance (P < 0.05) is denoted by a dot (•) 

placed on the R-value color scale. Abbreviations are as in Figure 2.
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FIGURE 5. Cortical functional connectivity of the S1ULp seed
Shown are animals receiving (A) sham treatment, (B) lesion without exercise, and (C) lesion 

with exercise. The seed is placed in the left anterior part of the upper lip region of the 

primary somatosensory cortex (S1ULp) at bregma AP +1.2 mm (black cell on the right side 

of each map). Each ROI is represented by a cell with its Pearson’s correlation coefficient 

with the S1ULp seed color-coded. Positive and negative correlations are denoted by red and 

blue colors, respectively. The critical value of the correlation coefficient (R) for statistical 

significance (P < 0.05) is denoted by a dot (•) placed on the R-value color scale. 

Abbreviations are as in Figure 2.
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FIGURE 6. Cortical functional connectivity of the V1 seed
Shown are animals receiving (A) sham treatment, (B) lesion without exercise, and (C) lesion 

with exercise. The seed is placed in the left primary visual cortex at bregma AP −6.6 mm 

(black cell on the right side of each map). Each ROI is represented by a cell with its 

Pearson’s correlation coefficient with the V1 seed color-coded. Positive and negative 

correlations are denoted by red blue colors, respectively. The critical value of the correlation 

coefficient (R) for statistical significance (P < 0.05) is denoted by a dot (•) placed on the R-

value color scale. Abbreviations are as in Figure 2.

Peng et al. Page 18

Front Phys. Author manuscript; available in PMC 2015 March 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Peng et al. Page 19

T
ab

le
 1

T
ot

al
 n

um
be

r 
of

 s
ig

ni
fi

ca
nt

 p
os

iti
ve

 c
or

re
la

tio
ns

 o
f 

se
le

ct
 c

or
tic

al
 s

ee
ds

 w
ith

 o
th

er
 c

or
tic

al
 r

eg
io

ns
.

M
1 

SE
E

D
M

2 
SE

E
D

S1
U

L
p 

SE
E

D

R
eg

io
n

Sh
am

L
es

io
n

L
es

io
n/

E
x

Sh
am

L
es

io
n

L
es

io
n/

E
x

Sh
am

L
es

io
n

L
es

io
n/

E
x

M
1

21
 (

39
%

)
5 

(9
%

)
20

 (
37

%
)

10
 (

19
%

)
2 

(4
%

)
19

 (
35

%
)

16
 (

30
%

)
1 

(2
%

)
15

 (
28

%
)

M
2

4 
(7

%
)

15
 (

27
%

)
3 

(5
%

)
3 

(5
%

)
29

 (
52

%
)

1 
(2

%
)

11
 (

20
%

)

M
1/

M
2

1 
(6

%
)

2 
(1

2%
)

1 
(6

%
)

Fr
3

8 
(1

00
%

)
6 

(7
5%

)
4 

(5
0%

)
1 

(1
2%

)
6 

(7
5%

)
6 

(7
5%

)
1 

(1
2%

)
5 

(6
2%

)

S1
J

15
 (

75
%

)
1 

(5
%

)
6 

(3
0%

)
10

 (
50

%
)

1 
(5

%
)

4 
(2

0%
)

12
 (

60
%

)
3 

(1
5%

)
12

 (
60

%
)

S1
FL

11
 (

29
%

)
1 

(3
%

)
8 

(2
1%

)
3 

(8
%

)
9 

(2
4%

)
8 

(2
1%

)
1 

(3
%

)
6 

(1
6%

)

S1
U

L
p

10
 (

33
%

)
1 

(3
%

)
12

 (
40

%
)

4 
(1

3%
)

1 
(3

%
)

9 
(3

0%
)

11
 (

37
%

)
2 

(7
%

)
3 

(1
0%

)

S2
1 

(5
%

)
5 

(2
3%

)
6 

(2
7%

)
7 

(3
2%

)
7 

(3
2%

)
2 

(9
%

)
3 

(1
4%

)

V
1

1 
(3

%
)

2 
(5

%
)

1 
(3

%
)

3 
(8

%
)

1 
(3

%
)

V
2

2 
(7

%
)

2 
(7

%
)

6 
(2

0%
)

1 
(3

%
)

A
u

Pi
r

6 
(1

0%
)

1 
(2

%
)

V
1 

SE
E

D
Pi

r 
SE

E
D

A
u 

SE
E

D

R
eg

io
n

Sh
am

L
es

io
n

L
es

io
n/

E
x

Sh
am

L
es

io
n

L
es

io
n/

E
x

Sh
am

L
es

io
n

L
es

io
n/

E
x

M
1

1 
(2

%
)

2 
(4

%
)

M
2

1 
(2

%
)

2 
(4

%
)

M
1/

M
2

3 
(1

9%
)

2 
(1

2%
)

1 
(6

%
)

1 
(6

%
)

Fr
3

1 
(1

2%
)

S1
J

1 
(5

%
)

1 
(5

%
)

S1
FL

1 
(3

%
)

4 
(1

1%
)

S1
U

L
p

1 
(3

%
)

1 
(3

%
)

S2
4 

(1
8%

)
2 

(9
%

)
1 

(5
%

)

V
1

4 
(1

1%
)

5 
(1

3%
)

4 
(1

1%
)

9 
(2

4%
)

3 
(8

%
)

1 
(3

%
)

V
2

3 
(1

0%
)

1 
(3

%
)

7 
(2

3%
)

4 
(1

3%
)

3 
(1

0%
)

A
u

1 
(2

%
)

1 
(2

%
)

1 
(2

%
)

2 
(5

%
)

13
 (

30
%

)
20

 (
45

%
)

21
 (

48
%

)

Front Phys. Author manuscript; available in PMC 2015 March 03.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Peng et al. Page 20

M
1 

SE
E

D
M

2 
SE

E
D

S1
U

L
p 

SE
E

D

R
eg

io
n

Sh
am

L
es

io
n

L
es

io
n/

E
x

Sh
am

L
es

io
n

L
es

io
n/

E
x

Sh
am

L
es

io
n

L
es

io
n/

E
x

Pi
r

11
 (

18
%

)
1 

(2
%

)
20

(3
2%

)
6 

(1
0%

)
10

 (
16

%
)

6 
(1

0%
)

2 
(3

%
)

3 
(5

%
)

L
ef

t h
em

is
ph

er
ic

 s
ee

ds
 w

er
e 

ch
os

en
 in

 p
ri

m
ar

y 
m

ot
or

 c
or

te
x 

(A
P 

+
3.

6 
m

m
),

 s
ec

on
da

ry
 m

ot
or

 c
or

te
x 

(A
P 

+
4.

5 
m

m
),

 p
ri

m
ar

y 
so

m
at

os
en

so
ry

 c
or

te
x 

(u
pp

er
 li

p 
re

gi
on

, A
P 

+
1.

2 
m

m
),

 p
ri

m
ar

y 
vi

su
al

 c
or

te
x 

(A
P 

−
6.

6 
m

m
),

 p
ir

if
or

m
 c

or
te

x 
(A

P 
−

1.
8 

m
m

) 
an

d 
au

di
to

ry
 c

or
te

x 
(A

P 
−

4.
8 

m
m

).
 S

ho
w

n 
ar

e 
th

e 
nu

m
be

r 
of

 p
os

iti
ve

 c
or

re
la

tio
ns

 a
nd

 th
ei

r 
re

pr
es

en
ta

tio
n 

as
 a

 p
er

ce
nt

ag
e 

of
 th

e 
to

ta
l n

um
be

r 
of

 b
ra

in
 r

eg
io

ns
 

w
ith

 th
e 

sa
m

e 
re

gi
on

 id
en

tif
ie

r 
(%

 r
ou

nd
ed

 to
 n

ea
re

st
 in

te
ge

r)
, w

ith
 e

m
pt

y 
ce

lls
 in

di
ca

tin
g 

ab
se

nc
e 

of
 s

ig
ni

fi
ca

nt
 c

or
re

la
tio

n.
 G

ra
y 

sh
ad

ed
 c

el
ls

 s
ho

w
 a

n 
in

cr
ea

se
 in

 p
os

iti
ve

 c
or

re
la

tio
ns

 o
f 

11
–2

0%
, w

he
re

as
 

bl
ac

k 
sh

ad
ed

 r
eg

io
ns

 s
ho

w
 a

n 
in

cr
ea

se
 g

re
at

er
 th

an
 2

0%
. A

bb
re

vi
at

io
ns

 a
re

 a
s 

in
 F

ig
ur

e 
2.

Front Phys. Author manuscript; available in PMC 2015 March 03.




