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Abstract 

Transport of intense beams of heavy ions over long distances may be 

restricted by space-charge induced transverse instabi 1 it ies. The stabi­

lity of the microcanonical, or K-V, distribution is analyzed with the help 

of the Vlasov equation, and reduced to a study of the characteristics of 

solutions for a set of ordinary differential equations with periodic co-

·efficients. Numerical solutions for various periodic solenoid and quadru­

pole focusing channels are derived and provide information concerning sta­

ble regions of propagation in terms of betatron tune depression. The 

results are compared with computer simulation examples of beams in sole­

noid and quadrupole focusing channels to check linear growth rates and es­

tablish nonlinear saturation levels of instabilities. Conclusions are 

drawn for the design of a quadrupole lattice providing stable transport. 

* This work was supported by the Assistant Secretary for Defense Programs, 
Office of Inertial Fusion, Laser Fusion Division, U.S. Department of 
Energy, under Contract No. DE-AC03-76SF00098. 

**Max-Planck-Institut fur Plasmaphysik, 8046 Garching, West Germany. 

t Naval Research Laboratory, Washington, D.C. 
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I. INTRODUCTION 

The possibility of using high energy heavy ions as the igniting 

mechanism for inertially confined fusion has necessitated the considera­

tion of transporting currents in the kilo-ampere range for distances of 

the order of kilometers without significant degradation of beam emmit­

tance. In addition to the usual problems of field and alignment tole­

rances, there arises the question of the stability of beam propagation in 

a vacuum against fluctuations in. self-forces arising from initial devia­

tions from the desired distribution of the beam in the four-dimensional 

transverse phase space. 

The most powerful analytic technique for investigating this problem is 

a linearization of the Vlasov equation about a known· stationary solution, 

coupled with the appropriate equations for the perturbed electromagnetic 

fields. If the external focusing force is constant, an infinite variety of 

stationary solutions can readily be generated, since any function of the 

Hamiltonian is a solution of the Vlasov equation and the corresponding self 

electrostatic potential can be obtained by integrating Poisson's equation.(!) 

It furthermore is possible to show( 2) that a large class of such sta­

tionary solutions is stable against arbitrary fluctuations. 

For the more realistic situation of a focusing channel consisting of 

quadrupoles or discrete solenoids, however, the Hamiltonian function is 

not a constant of the motion and hence cannot be used directly to provide 

a stationary solution of the Vlasov equation. To our knowledge, the mi­

crocanonical distribution investigated by Kapchinskij and Vladimirskij( 3) 

(K-V), for which individual-particle restoring forces are linear functions 

of the displacement, is the only distribution for which a stationary 

(i.e., periodic) solution can be constructed. Because of its singular 

character, it is probably more susceptible to instability than real beams 

and so we have performed the present investigation concerning its stabi­

lity characteristics in the hope that the results may serve as a conserva­

tive guide to identifying regions in parameter space that might be 

dangerous. 

2 



... 

•. 

~.-. ... , 

We proceed by presenting in Sect. II the genera 1 framework of the 

linearized Vlasov analysis. This is followed, in Sect. III, by applica­

tion to periodic solenoid and to quadrupole focusing systems. Specific 

results are given (Sect. IV) for several perturbation modes in such sys­

tems (with the governing equations becoming increasingly complex for modes 

of high order) and suggest the particular importance of a 11 third-order 11 

mode. In Sect. V we compare the 1 i near growth of the third-order mode 

found in both the analytic theory and in computer simulation. Simulation 

will also be used to establish the practical significance of the remaining 

instabilities. The implications of these results are discussed in 

Sect. VI. 

we observe that intensity is frequently related to the ratio v/v
0 

tor beams in a continuous solenoia and to a/a
0 

in a periodic channel. 

Here v denotes the betatron oscillation 11frequency 11 (with time replaced by 

distance), and a the phase advance of betatron oscillations per focusing 

period; v
0

, a
0 

are the corresponding values for zero intensity. 
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II. GENERAL FORMULATION OF THE LINEARIZED VLASOV ANALYSIS 

We use the distance s along the transport channel as the independent 
variable, and write the total Hamiltonian function as 

( 1 ) 

where 

K Q 
K X = X - -aT:( a~+"'~""b"T") ' 

K represent the external force constants x,y 
[::t: B'(s)/[Bp] for quadrupoles, and 

( ~ B/(Bp])2 for solenoids in the Larmer frame], 

' 

qe = ion charge, A = ion mass/proton mass, 

N = number of ions per unit length, 

rp =classical proton radius, 2 (MKSA units), 
4'!f£0 Mp,oc 

a(s) and b{s) are respectively the x and y half widths of 
the matched (periodic) beam envelope [as determined by the 
K-V envelope equations -- Ref. 3, Eqs. {46) and {47)], and 

X electrostatic potential function due to 
perturbations. 

The first two terms in Eq. (1) represent the unperturbed Hamiltonian, 
which is not a constant of the motion for s-dependent focusing, and the 
terms proportional . to Q describe the effect of transverse components of 
the space-charge force for a K-V distribution. 
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We now make use ·Of the Courant-Snyder( 4) functions B(s) and a(s) 

for the unperturbed orbits, for which (with dots denoting d/ds) 

and(3,4) 

where 1T£ represents the emittance (assumed to be identical in the two 

transverse planes). The form of the governing Hamil toni an function can 

thereby be simplified through introduction of a transformation defined by 
the generating function 

followed by a sealing transformation X = x/ €1/2 , Px = Px/ 1/2 , etc., 
€: 

so that 

( 3) 

and similarly for y, Py. The new Hamiltonian function then becomes 

( 4) 

In the remainder of this work we shall omit, for brevity, the tilde 

that distinguishes these new (dimensionless) phase-space variables. In 

terms of these variables the unperturbed orbits can now be written as 
pseudo-harmonic oscillations 
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(5) 
x(s•) = x(s) cos [ wx(s•)-Wx(s)] + px(s) sin [ Wx(s•) -Wx(s)] 

px(s•) = px(s) cos [wx(s•)-Wx(s)]- x(s) sin [ Wx(s•) -Wx(s)] 

s 
with 1/Jx(s) = J dz/Bx(z), and similarlY for y(s') and Py(s'). 

from Eqs. (5) it is evident that x2 + px 2 and y2 + py2 are individually 

constants of the unperturbed motion. The unperturbed K-V distribution 

function, moreover, may now be written as 

(6) 
6 (x2 + P 2 + Y2 + P 2_ 1), 

X y 

with 6 denoting the Dirac delta function. 

With the introduction of a perturbing distribution function fp the 

1 inearized Vlasov equation provides the total derivative along the unper­

turbed trajectories in phase space, 

:l "'Ia! + !.[~x :x - x •~x] + !Y [Py :Y - Y a~Y] I fl 

(7) 

= :~. [ Px :~ + Py :~] • o' ( x
2 

+ px z + y + p/ - 1) , 

wherein 6 1 denotes the derivative of the delta function with respect to 

its argument. Equation ( 7) can be solved by integrating over the unper­

turbed trajectories. 

Introducing w' = o/ (s') as ancillary variables, Eq. (7) thus leads to 
X, y X ,y 

(8) f1 = -¥-[Jsds'(-a- +_a_) V (x•, y'; s')] 6• (x2 + P2 + Y2 + P2- 1) 
'II' £ 3W 1 3¢1 X Y 

X y 
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and (when we neglect the longitudinal field component) Poisson's equation 

becomes, in terms of our scaled variables and the associated distribution 

function, 

2 1 a2v + 1 a2v v v = 
--;_r~ t1 ai 

(9) 

s ~ ). 00 21f = _ _g_J ds'.-a-+_.a_~( d(p 2 )~'(p 2-(1- x2- y2))1.( deV(x',y';s'), 
1f£ ab aljJ • aljJ • ') j 

0 X y 0 0 

subject to th.e boundary condition that the external fields vanish at 

infinity.(S) 

By noting that 

(10) Joo dz g(z) ~ • {z-zo) =-*I -g{O) ~{zo), 
0 z = zo 

we see that Poisson's equation, as expressed by Eq. {9), leads to {i) 

1 a2v + 1 a2v 
7 ax2 ~ ai 

{11) 
s .! 

= _g_ J ds • {_. a_ + a 
u ab \ aljJ • aljJ • 

• X y 

21f . 

')[ d J deV{x',y';s')l 
d{p2) 0 . J 

in the interior of the beam, and {i i) to a relation that reflects the pre­

sence of an effective surface charge (that describes the effect of an in­

finitesimal perturbation of the beam boundary) 

1 2 a2v . a V + 1 

T;l ~~ 
{12) 

s 

= .1.Q_·[J ds • { a 
£ab a1P.' 

X 

+ _a_ ) V {x 1 , Y 1 ; 

a ljJ' 
y 

7 
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By introducing elliptic coordinates ( E;, z;;) defined {in terms of our scaled 

coordinates, for a > b ) by 

( 13 ) x = ( h I a ) Cosh E; cos z;; an d y = ( hI b ) S i n h E; s i n z;; 

{14) 

(where h2 = a2 - b2, and with Cosh E; = ~ , Sinh E; = * at the 

boundary x2 + y2 = 1), Eq. (12) may be written 

The discontinuity of the electric field at the beam boundary accordingly 

becomes 

( 15) 41 .!! - il J:s~(_a_·- +_a-) V (cos r; cos( 1JJ 1 -1JJ ) sin r; cos(1JJ 1 -1JJ ) · s 1) 
aE; - e . . a'ljJ 1 a'ljJ 1 · x x , Y Y ' • 

. . X y 

A consistent solution is obtained if we can find a function V(x,y;s) 

that satisfies Eqs. (11) and (15), where 6(aVIaE;) is such as to match the 

( 
a
2v a

2v ) solution interior to the beam to a harmonic . + __;....~ = 0 outwardly 
a~2 ar;2 

decreasing solution external to the beam. 
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III. APPLICATION TO SOLENOID AND QUADRUPOLE FOCUSING 

Finding a closed expression for the solutions of Eqs. (11) and (15) 

appears hopeless, but a brief. inspection of these equations shows that 

they can be satisfied by potential functions that are finite polynominals 

in x and y interior to the beam and finite sums of e-n F; e±i nz;: exterior 

to the beam. Finite polynominals emerge as a result of our choice of a 

K-V distribution for the stationary beam. The derivative of the delta 

function in Eq. (7) suggests that the perturbations describe distortions 

of the hyper-ellipsoid in four-dimensional phase space (cf. final sentence 

in Sect. III of Ref. 6). 

(a) Solenoid Focusing 

In the simplest case of continuous s-i ndependent focusing, 

= K = K, B ~ B = B and both K and B independent of 

with K 
X 

s, then y X y . . 
lP = lP = s/e and solutions are of the form V a: e1ws G(x,y). 

X y ( 6) 
Gluckstern has concluded that in this case G(x,y) can be expressed by 

means of hypergeometri c functions 

in terms of unsealed polar coordinates, where a is the radius of the un­

perturbed beam and 

j = 0, 1, 2, ••• , m = 0, 1, 2 ••• ,excluding j = m = 0. 

The "order" of the mode (highest power of r appearing in the function G) 

is 2j + m. Gluckstern has also indicated(?) the manner in which this 

solution may be employed to obtain an algebraic equation whose roots must 

all be real to insure stability of the matched K-V beam. Stability limits 

for the modes described here can be conveniently described in terms of the 

factor v /v
0 

by which space-charge forces may be permitted to depress the 

ind ivi dua 1-part i_cl e osci 11 ati on frequency with in the matched beam 

(Table 1). It is clear that intensities limited to values such that 

v/v
0 

> 0.3985 are those for which the m = 0 modes may be expected to be 

9 



stable, and the results presented in Table 1 suggest that this restriction 

may alsobe.sufficient to insure stability of the higher order modes for an 

uninterrupted solenoid transport system. 

When the focusing strength of the solenoid is not constant but is 

periodically s-dependent, the matched beam radius (~) becomes a (periodic) 

function of s. The function a(s) may be sought computation-ally in such 

cases, and the entire investigation of beam stability conducted in a 

manner analogous to that adopted for quadrupole-focusing systems. 

(b) Quadrupole Focusing 

For the case of alternating-gradient quadrupole focusing (Ky(s) = 

-Kx (s)) we have not found a general closed form for the .potential analo­

gous to that indicated by Eq. (16). The analysis of Sect. II leads, how­

ever, to a procedure that can be followed to determine the stability 

characteristics of· individual perturbation modes. As will be shown, 

moreover, the eigenvalues that characterize the stability or instability 

of a mode can be determined by reference solely to terms of the highest 

power in x andy and of highest harmonic order in E; in Eqs. (11) and (15). 

(i) Example: 

To illustrate this procedure we first consider a simple example that 

will be seen to correspond to a coherent oscillation of the beam 

as-a-whole. In this example the internal potential is assumed to be, in 

terms of the scaled coordinate x, v. = A(s)x. 
1 

10 
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a) For Modes of Even Order 

Or~ 2j + m 0 2 

2 Stable Stable 

4 0.2425 Stable 

6 0.3859 0.1741 . 
8 0.3985 0.2582 

10 0. 3972 0.2314-

12 0.3921 0.1885 

14 0.3861 0.1971+ 

16 0.3798 0.1898-

18 0.3728- 0.2062-

20 0.3680 0.2305 
--·---

' .. 
TABLE 1 

Threshold Values of v/v
0 

b) For Modes of Odd Order 

4 0~~ 2j + m · 1 3 5 

- - - - 1 Stable - - - - - - - -
Stable . .3 Stable Stable - - - -
Stable 5 Stable Stable Stable 

0.1384 7 0.2874 0.2184 Stable 

0.1396 . 9 0.3235 0.3124 0.2038 

0.2940 ll 0.3373 - 0.3246+ 0.2608 

0.3205 - 13 0.3425 0.3148 0.2248 

0.3263 15 0.3439 - 0.2968 0.2072 

17 0.3432 0.2757 

19 0.3415 
-- - - ------



It is seen that Eq. (11) is trivially satisfied by this potential 

function, sine~ v2v = 0 and 

21T J de x' 

0 

sin (liJ I 
X 

To treat the boundary equation (15) we employ the elliptic coordinates intro­

duced earlier, writing Vi as V; = A(s)(Cosh ~/Cosh ~ 0 ) cos r.;; and 

-( ~ - ~ ) 
taking the exterior potential to be V

0 
= A(s)e 0 cos r.;; , where ~0 

is such that Cosh E;
0 

= a/h. By employing these forms, 

6 :~ = -A(s) a:b cos z;; and Eq. (15) 1 eads to the integral equation 

s 

(17) a: b A(S) = ~ J ds' A(s') sin(<P~ - <Pxl· 

Then by differentiating twice the integral {I(s)) that appears in Eq. (17), 

one finds that it satisfies the differential equation 

( 18) 

[ 
Q Bx a ] 

= - . 1 + ; a + b I 

[ 
B2 Q ] 

= - 1 + a(a+b) I 

With the quantities a, b, Bx' and l~Jx determinable (e.g., numeri­

cally) as periodic functions of s, numerical integrations of Eq. (18) 

throu~ one period of the transport channel will provide the elements of 

the matrix that advances the vector I, di/ds through this interval. The 

eigenvalues of this matrix provide the frequency of the perturbation 

12 
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mode, and none may have an absolute value exceeding unity if this mode is 

to be stab 1 e • 

We note that, by use of the previously cited relation connecting the 

Courant-Synder parameter ax (and its derivatives) to the force constant 

Kx' the differential equation (18) for l in this case may be transformed 

to 

( 19) = 0 

- which will be recognized as ·Of the form expected for a simple coherent 

oscillation. Similarly, adoption of a potential function whose dependence 

on the scaled coordinates is of the form Vi = A(s) x2 + B (s )i will 

lead to a pair of coupled second order equations equivalent to those cus­

tomari 1 y taken to represent a 1 in ear perturbation of the envelope equa­

tions. 

(ii) General Treatment: 

More generally, we·assume a potential function of the form 

(20) 
n n-m m n- 2 (l) n-m-2 

Vn=L: Am(s)x y +L Am(s)x l+ 
. 111=0 111=0 

in the interior. For a given order n, "even'' and "odd" modes conveniently 

may be treated separately on the bas is of whether the index m in Eq. ( 20) 

is restricted to even or to odd integer values. 

For the stability analysis, Eq. (11) provides a set of .coupled alge­

braic equations that relate the functions \(s) to integrals of the form 

s 

Ij; k,R. = J ds' AJ(s') sin [k(l/J~ ~1/Jxl +f.(l/1). ~l)JY)J (21) 

while Eq. (15) provides a second set of such equations~ and these equa­

tions taken together can be solved (at any s for which a(s), b{s) 

13 



are known) to express each individual A. in terms of the integrals de-J . 
fined by Eq. {21). From Eq. (21), moreover, one finds that 

(22a) ck ,~ ( s ) dds [ c ( s) d I j; k ,t J + I . 
k,t ds J; k,~ 

=-

where 

( 22b) 

With the Aj obtainable (as just mentioned) in terms of the Ij, ;k,t' 

Eqs. (22a) constitute a set of coupled second order differential equations 

for the 1 atter quanti ties, and nurrerical integrations through one period 

of the structure wi 11 provide the elements of the matrix that advances 

such quantities (and their first derivatives) through one period of the 

transport channel. 

(iii) Computational Procedures: 

Computational programs have been devised to perform the computations 

outlined above, for various modes of order up through n=6. Computations 

of this nature for quite large values of n may not 'be of practical impor­

tance. In a real is tic beam with a natural spread of individual particle 

wavelengths (as may result from a nonlinear space-charge force), it is 

very unlikely that fine- grained transverse density variations (1 arge n) 

persist through several periods. Computational results of Sect. Ilia per­

taining to focusing in a continuous (s independent) solenoid-focusing sys­

tem indicate, moreover, that the most stringent stability conditions are 

those imposed by modes of order less than6 orB. 

To summarize the procedure followed in examining the stability of any 

particular perturbation mode, one first specifies the type of periodic 

1 attice one wishes to employ( 9) and a value of beam intensity (e.g., Q 

-- or the pararreter Q'-- cited in Ref. 8). By a convergent iterative pro­

cedure one then determines initial conditions (for a, b, and their first 

derivatives) that lead to periodic (mat·ched) solutions of the envelope 

equations, ·and, with this solution obtained, the individual particle tune 

a is also obtainable (i.e., from solutions of the equations of motion for 

14 
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individual particles, or as ax = e J dsJi etc) •. With this information 

0 
available, the computations .ar_e then repeated to include (for various 

initial values o,f the IJ .. k R. and their first derivatives) integration of 
' ' the differential equations for the integrals I ··k R,· [Note that inte-

J, ' 
gration of these equations requires repeated evaluations of the relations 

that express the quantities A. in terms of the I.,·ki --as can be· 
J J ' ' 

done by use of a matrix-inversion/simultaneous-equation-solver routine.] 

Such integrations yield the elements of the matrix that advances these in­

tegrals (and their first derivatives) through one period of the structure, 

and the eigenvalues A (and eigenvectors, if desired) of such a matrix are 

then determined. The occurrence of any eigenvalue of magnitude greater 

than unity then is indicative of instability for the perturbation mode un­

der consideration, and the magnitude of such an eigenvalue denotes the 

factor, per period, by which such a perturbation ultimately (in ·the linear 

regime) will be expected to grow. 

15 



IV. COMPU TA TIO NAL RESULTS 

Based on the analysis of Sect. Ill, we have examined computationally 

the behavior of several types of modes -- both for a periodically inter­

rupted solenoid system (Fig. la) and for a periodic alternating-gradient 

quadrupole (FODO) transport channel (Fig. lb), although with greater em­

phasis on the quadrupole systems.(lO) It is convenient and efficient, 

in all such cases, to employ "scaled variables". Useful parameters for 

describing a particular situation are the phase advances o
0 

and o (of 

individual particle transverse oscillations, per period of the structure, 

respectively for a zero intensity beam and for a beam of intensity charac­

terized by the parameter Q' (8)), and (for a given lattice) the "tune de­

pression" factor o}o
0 

will serve as a useful index of beam intensity. 

In addition to the magnitudes of the eigenvalues that characterize 

the behavior of a perturbation mode, their phase angles, <I> [defined, with 

an anbiguity of 360°, as tan- 1 ( Im "A/ Re. "A) and evaluated so that -180° 

< <I>~ 100°] also are of interest. Thus, with eigenvalues occurring as 

complex-conjugate and as reciprocal pairs, the development of an instabi­

lity indicated by an eigenvalue moving away from the unit circle in the 

complex plane can occur either (i) when eigenvalues becone real, or (ii) 

when at least two pairs are present, as a result of a confluence having 

occurred at the threshold of instability. In the first of these cases 

(and if <I> I= 0 ) the mode frequency becomes locked to the period of the 

lattice ("inhomogenous" or "structure" resonance). 

Results are best presented as regions of instability on a plot of o 

v s. Q', since it has been found that the 1 ocations of these regions and 

the associated growth rates within them depend primarily on o/o
0 

and are 

remarkably insensitive to changes of the lattice structure_;.. particularly 

for instabilities that arise as a result of a confluence of eigenvalues. 
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(!_) Interrupted'"-SO 1 enoid Focusing 

The solenoid modes we have studied can be classified in terms of in­
dices corresponding to those introduced by Gluckst~rn. (G) We present 

specific results for symmetric interrupted solenoid systems with an occu­

pancy factor of 1/2 (n = 1/2 in Fig. la). 

( i ) Envelope Modes: 

j = 1' m = 0, with v a:r2 and oay = oax; 

j = 0, m = 2, with v a:r2 sin 2/J and oay = -oax. 

At zero intensity the true phases of the eigenvalues for these modes 

are I~ I = 2a
0 

and the phase will decrease as the intensity is in­
creased .• ACcordingly, if a

0 
> 90°, there thus is the opportunity, with 

either type of mode, for an instability to develop at an intensity such 

that 1~ I becomes 180° (an example of a structure resonance). This beha­
vior is illustrated by the curves of I~ ( vs. Q' on Fig. 2 for the case in 

which a
0 

= 120°, and by the regions of instability shown on the curves 

of a vs. Q' in Fig. 3. From Fig. 3 it is seen that, as expected, the en­

velope i.nstabil ities occur only for a
0 

> 90°. The instability region 

for the oay = oax mode becomes quite extensive, moreover, when a 
0

_ is 
as 1 arge as 120°. 

(ii) "Fourth Order" and "Sixth Order" Modes: 

j = 2, m = 0, with V a: r4 + terms of lower order; 

j = 3, m = 0, with V a: r6 + •••• 

As illustrated by Figs. 4 and 5, each of these modes exhibits minor 
patches of instability-- which may not warrant concern. More significant 

are the extended regions of instability that are seen to develop for va­
lues of a/a

0 
close to the values of v/v

0 
shown in Table 1 for m6des of 

4th or 6th order respectively (and m = 0). 

(iii) R4 cos 2/J and R4 cos 4/J Modes: 

j = 1, m = 2, with V a: r4 cos 2/J + terms of 1 ower order; 

j = 0, m = 4; with V a: r4 cos 4/J. 

17 



Examination of stability of these modes (choosing a
0 

= 120°, 90°, and 

60°) indicates the occurrence only of short patches of instabi 1 ity -- as 

are expected to become possible (for a
0 

> 45°) when eigenvalues with 

initial phase angles of 4a
0 

(or 2a
0

) cross the real axis as the inten­

sity is increased, but that have been s~en also to arise as a result of a 

confluence. No .extensive regions of instability are found, however, and 

one notes that no instability of these modes is expected in a continuous 

solenoid (see Table 1). 

(b) FODO Quadrupole Focusing 

We have investigated the behavior of several modes, for different 

values of the occupancy factor n, in the symmetrical lattice of Fig. lb. 

It is noticeable that for quadrupole focusing the instabilities of a given 

order become more numerous than found for the m = 0 solenoid modes. This 

occurs because, for example, the solenoid modes (j = 3, m = 0), (j = 2, 

m = 2), (j = 1, m = 4), and (j = 0, m = 6) are all contained in the sixth 

order quadrupole case, but extended regions of instability appear in close 

analogy to the solenoid case. It appears, however, that the onset of re­

gions of pronounced instability can be associated either with a definite 

value of eigenvector phase t (as in the case of the envelope instability) 

or with a value of a/a
0 

that depends only slightly on the occupancy fac­

tor (n) of the lattice and on the value of a
0

, so that specific results 

will be cited here chiefly for n = 1/2 (Fig. lb}. We first present 

results for modes of even order. 

( i) Envelope ( 11 Second-Order Even 11
) Mode: 

As was found to be the case for the envelope modes in an interrupted sole­

noid transport system (Sect. IV, a, i), we find that envelope instabi­

lities in a FODO focusing structure occur only if a
0 

> 90°. This beha­

vior is illustrated in Fig. 6 for n = 1/2, wherefrom it is evident that 

very extensive regions of instability for this mode develop when a
0 

is 

substantially greater than 90°. 
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(ii) Second-Order Odd Mode: 

The second order-odd mode will not lead to instabilities in a symmetrical 

FODO structure if (as is customary) a
0 

< 180°. 

(iii) Fourth-Order Even Mode: 

!I Computations pertaining to the fourth-order even mode (requiring evalua­

tion of the eigenvalues of a 14 x 14 matrix) indicate the appearance of a 

substantial nurrber of regions of instability that are of somewhat 1 imited 

extent (Fig. 7). [In Fig. 7, or in similar graphs, regions of very re­

stricted instability may not always be fully depicted.] For a
0 

< 90° 

[as appears desirable in order to avoid potential envelope instabilities 

(Sub-sect i )], however, the most substantial instability is that which on 

Fig. 7 .is shown to occur for Q' > 3. The particular unstable fourth-order 

mode just mentioned is one in which the eigenvalue A has assumed a real 

(positive) value. 

This significant extended instability of a fourth-order even mode 

provides an opportunity to illustrate that the threshold for such a mode 

is given alrmst uniquely by a/a
0 

(Table 2) and that such a threshold 

value of ala is surprisingly close to a corresponding threshold value 
0 

o·f v/v
0 

for a continuous solenoid (namely, in this instance, to the 

value 0.2425 shown in Table 1 for the mode j = 2, m = 0, for which the 

associated phase advance also is zero). 
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TABLE 2 

Instabi 1 ity Thresho1 ds for Extended tf-h Order Even Mode 

Occupancy 
I 

For a0 = 60° For a0 = 90° t I 
I 

Factor j 

' I 
i 
! t i Q' a(deg.) a/a0 Q' a( deg.) a/a n ! 

i 

i ' 
' 

! i 
! I 
! I 

1 ! 3.055 14.58 0.2430 3.713 22.03 0.24481 
I I 

I I 
I 

0. 24481 1 I 2 I 2.572 14.58 0.2430 3. 130 22.03 
i 
I 

' 

1/4 1.925 14.58 0.2430 2.347 22.02 
. i 
0.2447! 

i ! 
I 

·t ; I 

I I 

1/6 14.58 0.2430 1 .950 22.02 0. 24471 11.598 : I l 
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{iv) Sixth-Order Even Mode: 

As with the fourth-order even mode, the sixth-order even mode exhibits a 

substantial number of patches of instability and ultimately develops an 

extended instability when the tune depression is sufficiently great (Fig. 

8). As was found for the fourth-order even instability, the onset of this 

extended instability is given alroost uniquely by a/a
0

• The threshold 

value of a/a
0 

for this mode again is close to a threshold value of 

v/v
0 

for. a continuous solenoid -- specifically to the value 0.3859 shown 

in Table 1 for j = 3, m = 0. [It is of interest to note that the maximum 

threshold value of v/v
0 

shown in Table 1 for m = 0 modes is not markedly 

greater than the value cited here, namely the value 0.3985 for j = 4, vs. 

0.3859 for j = 3.] 

(v) Third-Order Modes: 

The third-order mode.shows regions of pronounced instability, that appear 

to account for simulation results presented in the following Section 

(Sect. V). Because the quadrupole lenses were taken to be very short in 

the simulation work, we present our results for cases in which n = 1/6 or 

n = 1/10. 

The instabilities are shown in Fig. 9 for a FOOO lattice with a
0 

= 
90° and n = 1/10. The small region of instability shown on Fig. 9 as ori­

ginating at a = 57.3° and the major instability centered near a= 45° are 

attributable to eigenvalue phases having been depressed from ~ 
0 

= 3a
0 

= 2 70° to become 180°, thus indicating a structure resonance; while the 

instability that originates for a = 56° arises from a confluence of eigen­

values. With I>. I seen to become as 1 arge as approximately 1.27, it is of 

interest to examine the pass ib i 1 i ty of avoiding such a strong i nstab i­

lity. The 11 180-degree .. modes may be avoided by use of a lattice for which 

a
0 

< 60°, and it appears also that no confluent third-order mode then 

will occur (Fig. 10). We remark in passing that in an interrupted­

solenoid focusing system we also have found( 11) {Fig. 11) unstable 

180-degree modes similar to those shown in Fig. 9 for the FOOO quadru­

pole transport system. 
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(vi) Fifth-Order Mode: 

Our computations pertaining to the fifth-order mode did not indicate any 

substantial instabilities that would account for the simulation results. 

We find that a quadrupole lattice with a
0 

= 60° exhibits only moderate 

patches of instability for the fifth-order roode until the tune has been 

markedly depressed to a = 10° (Fig. 12). 
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V. COMPARISON WITH SIMULATION RESULTS 

Computer simulation provides a possibility of testing the results ob­

tained from analytic theory (and vice versa). The simulation programs 

used here are based on the parti cl e-i n-cell method; they employ typically 

- 104 simulation particles and solve Poisson's equation with a fast 

Poisson solver. Results obtained from different simulation programs 

developed independently( 12 - lS) have been found to yield essentially 

the same conclusions (apart from variations due to different statistical 

sets for the initial distribution). 

Sirrulation not only allows the study of the initial growth of an in­

stability within the validity of the linearized theory (section V (a)); it 

also provides information on the nonlinear saturation of an instability 

and its effect on beam quality (for instance the r.m.s. emittance). In 

section V (b) it will be seen that large linear growth rates do not 

necessarily induce deterioration of beam quality. 

(a) Growth of third-order mode within the 1 inearized theory 

The theoreti ca 1 results obtained for the third-order even mode 

strongly suggested that this mode could account for the strong instability 

observed in simulation computations(lS) (see also following Section) 

with a K-V beam whose tune is depressed from a 
0 

= 90° to a = 45 o. The 

expected strong instability is characterized by an eigenvalue that is 

real,. but negative -- a feature indicated by the sirrulation results, 

wherein distortions of projected phase-space distributions (and their 

boundaries) were observed to oscillate with respect to the origin with a 

period twice that of the structure, while the centroid of the distribution 

remained essentially undisturbed. A quantitative check of the corres­

pond~nce between theory and ·the simulation work accordingly was undertaken 

in order to establish the validity of each of these approaches." We com­

pared both the relative magnitudes of various moments of the distribution 

(e.g., <XP2>a , etc.) and the shape of the evolving distortion of 
X V. 

projections of the distribution (e.g., for a projection onto the py; y 

plane). Such comparisons were undertaken both at "full-period" points 
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(i.e., at the centers of F-quadrupole lenses) and at "half-period" points 

(centers of 0 lenses). 

In making such a comparison it will be realized that the growing per­

turbation will be characterized by an arbitrary initial amplitude and 
3 2 

phase, so that "x-1 ike" (even) moments (<x >av.' <XY >av.' etc.) 

may be intercompared at full-period points but separately from "y-1 ike" 

(odd) moments (<Y
3
>av.' <x

2
y>av.' etc.). The growing magnitudes 

of x-1 ike rooments at half-period points in a symmetrical FODO lattice may 

be compared, however, with the growth of y-like rooments at full-period 

points. All such rooments, of course, should grow in magnitude in propor­

tion to I). l p, where P denotes the nurrber of periods traversed by the 

beam, and should alternate in sign once per period. Simulation data ap­

propriate for evaluation will be restricted to an interval ·wherein the 

perturbation has grown sufficiently to dominate stat is ti ca 1 noise, but has 

not become significantly influenced by the onset of (nonlinear) satura­

tion. In practice certain rooments are more pronounced than others, and 

the most pronounced moments accordingly are the most suitable for statis­

tically significant intercomparison. 

T~e theoretical description of a developing instability requires re­

tention of terms beyond the 1 eading term in the express ion for the pertur­

bation potential. Since the coefficients that determine the rooments de­

pend significantly on the value assigned to a within the zone of instabi­

lity, the trajectories of the individual sirrulation particles were 

examined to establish a value of a= 45.7° (with an associated theoretical 

eigenvalue >. = -1.27, for n = l/6). The theoretical values of the co­

efficients required for the present comparison were then evaluated for 

these conditions. 

(i) Comparison of Moments 

The growth and satisfactory i ntercomparison of x-1 ike rooments at 

full-period points is illustrated by Figs. 13-15, where we have used a 

value of >. = -1.26. Curves (a) are based on individual fits of the 

moments <x3>a , etc., to curves of the form Y = SxP-lB, while v. 
curves (b) are drawn with the values of S for the respective rooments 
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constrained to be in the theoretically expected ratio. Figures 16-18 

similarly indicate the behavior of three y-like moments at full-period 

points. Analogous plots (not shown) have indicated similar performance 

for moments evaluated at half-period points, and the values of the res­

pective y-1 ike or x-1 ike morrents moreover were found to be correctly re­

lated to the values of the corresponding x-1 ike or y-1 ike moments at the 

fu 11-period points. 

(i i) Comparison of Boundary Curves 

We investigated the form of significantly di~torted boundary curves 

for a two-dirrensional projection of the simulation results arising from a 

perturbed four-dimensional phase-space dis tr ibut ion. Such si mul at ion 

results are influenced by statistical fluctuations and may be sensitive to 

the development of nonl inearities in the dynamics. Comparisons with 

theory are most effectively made for the (px,x) or (py,y) pro­

jections and we have considered these both at full-period points and at 

half-period points, since fitting the boundary to the expected theoretical 

forms for such projections requires adjustment of only ~ coefficient, 

narrely that giving the initial value of the perturbation. Empirically, 

the values of this coefficient found from such fits appear to be somewhat 

better characterized by a growth factor A = -1.22 than by A = -1.26 

(possibly because of an incipient nonlinearity), but the values inferred 

from data that pertain to periods near P = 11 have been found to agree 

with in a few percent with those expected from examination of the moments. 

A fit to the (p , y) projection of the simulation results is shown in y . 
Fig. 19 for P = 16. Other projections (i.e., y vs. x and Py vs. px) 

have also shown agreement between the computation and simulation results. 

(b) Simulation of beams in long transport systems 

The question of (nonlinear) saturation of an unstable mode is beyond 

the capabilities of a linearized theory and is most convincingly investi­

gated by computer si mul at ion. To this end we are presenting bel ow charac­

teristic examples which shed 1 ight on the continuous solenoid K-V instabi­

lities and the 11Structure 11 resonances found in periodic focusing. 
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(i) Solenoid Focusing 

The findings of section III (a) have been checked by silllJlating an 

initial K-V distribution beam matched to a continuous solenoid focusing 

system. The intensity is described by the factor v/v
0

, which is assuned 

to be 0.16 for the example shown in Fig. 20. Azimuthal symmetry has been 

imposed on the beam, hence all roodes evaluated in the first column of 

Table I (m = 0) are expected to be unstable. There is evidence for rapid 

growth of instabilities of rather low order (j = 2, 3). The saturation of 

these instabilities leads to a different phase space distribution, but 

evidently to no noticeable increase of phase space volume. The r.m.s. 

emittance even remains constant within < 1%. This supports the conclusion 

that the K-V instabilities found for v/v
0 

< 0.39 (similar in periodic 

focusing to a/a
0 

< 0.39) have no effect on beam quality, but only emerge 

as a result of a non-monotonic distribution function. 

(ii) FOOO quadrupole focusing 

In Fig. 21 we show an initial K-V distribution in a FODO channel with 

a
0 

= ~o and a= 45.7°. According to section IV (b) this case is in the 

center of a third-order "structure" resonance, and projections onto the 

X-Px and Y-Py planes clearly. show the dominant character of this par­

ticular roode. The r.m.s. emittances have grown by a factor of 2.0 in 

x-px and 2.5 in Y-Py after 50 cells (with no further growth). 

The third-order "structure" resonance is evidently suppressed in a 

FODO channel with a
0 

= 60°. Furtherroore silllllations of such a 60° sys­

tem exhibit a qualitative behavior reseiTbling that of a continuous sole­

noid. Thus even for systems with strongly depressed tune (cases with a as 

low as 6° have been simulated) the instabilities result in a rearranged 

phase-space distribution but saturate before any growth in the r.m.s. 

emittance is observed. These results suggest that although the system is 

unstable, in agreenent with the analytic predictions, no restriction on 

allowable tune depression is imposed if r.m.s. emittance is a proper mea­

sure of beam quality. (19, 20 ) This conclusion is illustrated in Fig. 22 

with a= 12.7° and an initial ''waterbag" distribution (in contrast to the 

K-V distribution it is assuned that the interior of a hyper-ellipsoid in 
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four-dimensional phase space is uniformly fi 11 ed, which produces a roore 

realistic beam). Initial matching has been performed by assuming the same 

r.m.s. quantities as would apply for an exactly matched K-V distribution. 

This. give rise to 10% r.m.s. emittance growth, due to lack of detailed 

matching, but no further emittance growth over 100 focusing periods. 

Figs. 23 and 24 deroonstrate the importance of a
0 

in a roore direct 

way. :Fig. 23 gives the ratio of r.m.s. emittance to initial emittance for 

a K-V distribution initially depressed from a
0 

= 90° to a = 7°. The 

emittance is seen to grow rapidly at first and then more slowly for the 

duration of the run. In Fig. 24 the time is initially depressed fr-om 

a
0 

= 60° to a= 6°; there is no detectable change in r.m.s. emittance. 
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VI. CONCLUSION 

The special character ot the microcanonical or K-V distribution 

assumed in the present work may lead to instabilities that would not arise 

with other, more realistic, aistributions. Simulations(l6) do, however, 

suggest that in regions where instabi 1 ity is strong (.:!_.~., lead to sub­

stantial growth in r.m.s. emittance) the behavior of non-KV systems does 

not differ substantially. Some insight into the physical mechanism 

causing instability for the K-V and other distributions can be obtained 

from a fluid model(l 3) and by invoking the concept of negative energy 

waves. In particular, the extended regions of instability found for con­

tinuous solenoid tocusing (which also occur for periodic tocusing at the 

same threshold values in terms of tune depression) can be interpreted as 

coupling of positive and negative energy oscillations(l4) and are a 

characteristic feature of a distribution function that is a non-monotonic 

function of the Hamiltonian. These instabilities cause a marked redistri­

bution of density in phase space, but do not lead to a growth in r.m.s. 

emittance. For quadrupole transport, on the other hand, the strenqth of 

the focusing force seems to provide a mechanism which causes emittance 

growth for a
0 

> 60°; for smaller values of a
0 

the saturated state is 

very similar to·that reached in the case of continuous focusing. If one 

disregards the minor patches ot instability found analytically as peculiar 

to the K-V distribution, the results of the linear analysis seem to pro­

vide a valid guide for design of periodic transport systems for high in­

tensity beams and are particularly significant for a
0 

> 60°. 

In this spirit it appears prudent not merely to require that 

a
0 

< 90 o (in order to avoid s igni ticant envelope i nstabi 1 it ies), but to 

impose the restriction a < 60° with the object of avoiding a pro-a -
nounced instabi 1 ity of the third-order mode. If the restriction a

0 
~ 60° 

is adopted, one may expect that beam intensities will be limited only by 

potential instabilities of fourth or higher order and that significant in­

stabilities of this nature will not occur tor a/~0 ~ 0.4 (see Sect. IV, 

b, iv, and Table 1) --e.g., tor a> 24° if a
0 

= 60°. 
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Sirrulation work indicates that, for a
0 
~ 60°, the rema1nmg insta­

bilities saturate at low levels and the r.m.s. emittance is not affected 
by the rearrangment in phase space. If r.m.s. emittance is an adequate 

measure of beam quality there is then no limit on allowable tune de­

pression. However, if the transported beam is to be delivered to a small 
focal spot, a practical limit then would be set ultimately by aberrations 

in the final focusing s ys tern. 

The expected transportable intensities or beam power, based on a 60° 
- 24° transport line and the associated maxirrum beam radii in symmetric 

FODO quadrupole transport systems are then given by the sealed-variable 

entries of Table 3. The quantities tabulated in Table 3 are 

e = K 1' 2 • L, where L is the half~period of the 1 attice; 

, where 11'£ is the (un-normal ized) emittance 
in either plane (meter radians); 

u
0 

= K1/ 4 e:-112 a(maxirrum scaled beam radius); and 

[FM] = Q 1

/ u
0

213 is a "figure of merit" that enters into a forrrula 
of the type proposed by Maschke( 2l) and analyzed by Reiser( 22) for the 

maxirrum transportable beam current or power (Eq. 23). {The maxirrum beam 

radius becomes less if the intensity is reduced). 

(23) p = CS (A/q)4/3 {y-1) {By)7/3 e:2/3 BQ 2/3. [FM] 

= C5 (A/q)4/3 {y-1) {By)5/3 e:N2/3 BQ2/3. [FM] ' 

where 

e:N =Bye: (meter radians), 

and BQ is the quadrupole pole-tip field (Teslas). 
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The figure of merit [FM] in Table 3 increases as a - 213 as a is de­

creased from 24 o, but the required aperture increases also and care must 

be taken in transporting very high currents that the aperture to length 

ratio of the quadruples does not becorre too large. (8 , 22 ) 
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TABLE 3 

Scaled-Variable Parameters 

for a Tune Depression from a
0 

= 60° to a= 24° 

Occupancy 0 Q' uo [FM] 
Factor 

. 1 1.32 1 .66 3.20 .764 

2/3 1.42 1.54 3.34 .688 

l/2 1.57 1.40 3.54 .601 

1/3 1.84 1.19 3.87 .481 

l/4 2.09 1.04 4.13 .405 

l/5 2.32 .944 4.36 .354 

1/6 2.52 .867 4.56 .315 

l/8 2.89 .757 4.89 .263 

l/10 3.22 .600 5.16 .228 

1/20 4.51 .485 6.13 • 145 

l>. 
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Captions for Figures: 

Fig. 1. Assumed periodic transport lattice, (a) with interrupted 
solenoid elements and (b) with quadrupole lenses. n denotes the 
fraction of the lattice occupied by lens elements. 

Fig. 2. Behavior of envelope roo des for an interrupted-solenoid s ys­
tem for which n = 1/2 and a 0 = 120°, with regions of instability 
indicated by heavy 1 ines on plots of ct> vs. Q'. 

Fig. 3. Behavior of envelope modes for interrupted-solenoid systems 
for which n = 1/2 and a0 = 120°, 100°, 90°, and 60°. 

Fig. 4. Behavior of fourth-order rrode (j = 2, m = 0) for 
interrupted-solenoid systems for which n = 1/2 and a0 = 120°, 90°, 
and 60°. 

Fig. 5. Behavior of sixth-order mode (j = 3, m = Ol for interrupted-
solenoid systems for which n = 1/2 and a 0 = 120°, 90 , and 60°. . 

Fig. 6. Behavi~r of oenvelope rro~e foro quadrupo}e systems with n = 
1/2 and a0 = 100, 150, 130, 110, 100, and 90 • 

Fig. 7. Behavior of fourth-order even roo de for quadrupo 1 e s ys terns 
with n = 1/2 and a0 = 120°, 90°, 80°, and 60°. 

Fig. 8. Behavior of sixth-order even rrode for quadrupole systems 
w i th n = 1/2 and a 0 = 80 o and 60 o 

Fig. 9. Behavior of third-order mode for a quadrupole system with 
n = l/10 and cr0 = 90°. 

Fig.10. Depression of eigenvalue phase, let>!, for third-order rrodes 
of a quadrupole system with n = 1/6, and a0 = 60° 

Fig. 11. Behavior of third-order rrode for interrupted-solenoid sys­
tems for which n = 1/2 or n = 1/6 and a0 = 90°. 

Fig. 12. Behavior of fifth-order even rrode for a quadrupole system 
w i th n = 1/6 and a 0 = 60 o • 

Fig. 13. Growth of the moment Y = <XPi>av. at integer period 
nun'bers, from simulation computations. Curve (a) is based on a fit 
of this individual moment to the form Y = S>.P-18, while the curve 
(b) is such that the values of S for this and other rroments of the 
same type are constrained to be in the theoretically expected ratio. 

Fig. 14. Growth of the moment Y = <X2Px>av. 

Fig. 15. Growth of the moment Y = <XS>av. 
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Fig. 16. Growth of the rroment Y = <YP~> av. 

Fig. 17. Growth of the morrent Y = <Y2Py>av. 

Fig. 18. Growth of the morrent Y = <y5>av. 

Fig. 19. Boundary of Py vs. y projection, at period nurrber 16. 
The crosses denote s imul at ion results and the curve represents the 
th eoreti ca 11 y expected boundary. 

Fig. 20. Phase space projections of. initial K-V distribution in a 
continuous solenoid with 'IJ/'IJo = 0.16. The beam is assurred azirru­
thally symmetric with 1.3 •105 simulation particles. Frarres are in 
time steps of 1/1 Oth of a betatron period. 

Fi 9· 21. Initial K-V distribution in a FOOO channel with a0 = 
90, a= 45.7° and 8•103 simulation particles. Frarres every 5th 
focusing period. 

Fig. 22. Initial ''waterbag" distribution (r.m.s. matched) in a FODO 
channel with a0 = 60°, a= 12.7° and 8•103 simulation particles. 
Frames every 5th focusing period. 

Fig. 23. Ratio of r.m.s. emittance to its initial value for a K-V 
d.istribution· with a0 = 90° and a = 7°. 

Fig. 24. Ratio of r.m.s. emittance to its in.itial value for a K-V 
distribution with a0 = 60° and a = 6° . 
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