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ABSTRACT OF THE DISSERTATION

Monoidal Extensions of a Locally Quasi-Unmixed Unique Factorization Domain

by

Paul Richard Oeser IV

Doctor of Philosophy, Graduate Program in Mathematics
University of California, Riverside, September 2012

Dr. David E. Rush, Chairperson

Let R be a locally quasi-unmixed domain, a, b1, . . . , bn an asymptotic sequence

in R, I = (a, b1, . . . , bn)R, and S = R[b1/a, . . . , bn/a] = R[I/a]. Then S is a locally

quasi-unmixed domain, a, b1/a, . . . , bn/a is an asymptotic sequence in S, and there is a

one-to-one correspondence between the asymptotic primes Â∗(I) of I and the asymptotic

primes Â∗(aS) of aS = IS. Moreover, if a, b1, . . . , bn is an R-sequence, then that one-

to-one correspondence extends between AssR(R/I) and AssS(S/aS).

We give a sufficient condition for the monoidal transform S to be a unique

factorization domain, or a Krull domain whose class group is torsion, finite, or finite

cyclic. As a corollary, we give a necessary and sufficient condition for R and its monoidal

transform to have the same class group.

In the case that R is a unique factorization domain, we examine the height-one

prime ideals of S to determine how far S is from unique factorization. In Section 3.2,

a complete description is given of which height-one prime ideals P of S are principal or

have a prinicpal primary ideal in the case that ht(P ∩ R) = 1. In Section 3.3, we show

that if the prime divisors of a satisfy a mild condition, we may give a similar description

in the case that ht(P ∩ R) > 1. We give a necessary and sufficient condition for S to
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be a Krull domain with finite cyclic class group in the case that a is a power of a prime

element, and we show that this holds for the Rees ring R[1/t, It] as a monoidal transform

over R[1/t] as well. Furthermore, if a is a power of a prime element, we show that if

Rad(I) is not prime and p is a height-one prime ideal of R contained in at least one but

not all asymptotic prime divisors of I, then the height-one prime ideal pR[1/a]∩S of S

has no principal primary ideal.
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Chapter 1

Introduction

For a ring R and elements a, b1, . . . , bn ∈ R, where a is not a zero divisor,

the overring S = R[ b1a , . . . ,
bn
a ], a subring of the total quotient ring of R, is called a

monoidal transformation, or transform of R [3]. Monoidal transformations arise natu-

rally in Algebraic Geometry and have been studied often since Zariski’s foundational

paper [33]. In addition to Zariski’s initial work, monoidal transformations were used by

himself, Abhyankar, and Hironaka on the resolution of singularities of algebraic vari-

eties. In 1965, Ratliff investigated monoidal transforms generated by R-sequences. He

established some properties of such a transformation, and showed that a, b1a , . . . ,
bn
a is

an S-sequence. In 1967, Davis published [3], which laid down some basic properties of

monoidal transformations, in particular that they behave nicely when generated by a

strongly analytically independent set, and that R-sequences are strongly analytically in-

dependent. More recently, Heinzer, Li, Ratliff and Rush gave conditions for a monoidal

transform of a Noetherian Cohen-Macaulay UFD to be also a Cohen-Macaulay UFD

[9]. Also, in 2006, Hetzel and Saydam gave conditions such that if the base ring satisfies

ACCP (ascending chain condition on principal ideals) (resp. is a Krull domain, resp. is a

1



UFD), then the monoidal transform would also satisfy ACCP (resp. be a Krull domain,

resp. be a UFD) ([10], [11]). Note that one of the conditions given by Hetzel and Saydam

was that the monoidal transform be generated by a strongly analytically independent

sequence.

Ratliff has proved many useful results for a class of rings which generalizes

properties of Cohen-Macaulay rings: locally quasi-unmixed rings. In 1974 [21] he proved

that a Noetherian ring R is locally quasi-unmixed if and only if for each ideal I of the

principal class in R all the associated primes of Ia have the same height (that is, Ia is

height unmixed), which we have restated below as Theorem 2.2.10 for ease of reference.

This is an analogue of Nagata’s classical result that a Noetherian ring R is Cohen-

Macaulay if and only if for each ideal I of the principal class in R all the associated

primes of I have the same height, known as the Unmixedness Theorem. Ideals of

the principal class (ideals I generated by height(I) elements) are well understood in

Cohen-Macaulay rings: they are generated by R-sequences. Rees introduced asymptotic

sequences, a generalization of R-sequences, in 1981 [29]. In 1983 [24], Ratliff proved that

most well-known results for R-sequences have a valid analogue for asymptotic sequences

in Noetherian rings, and that asymptotic sequences relate to locally quasi-unmixed

Noetherian rings very much as R-sequences relate to Cohen-Macaulay Noetherian rings.

I will consider monoidal transforms of locally quasi-unmixed Noetherian rings.

In Lemma 3.1.5, I give conditions on the sequence a, b1, . . . , bn such that S is a locally

quasi-unmixed Noetherian ring if R is. Theorem 3.1.10, the main result of Section 3.1,

is a strengthening of an analogous Theorem in [9]. Theorem 3.1.10 gives a sufficient

condition for the monoidal transform S to be a unique factorization domain, or a Krull

domain whose class group is torsion, finite, or finite cyclic. As a corollary, I give a

necessary and sufficient condition for R and its monoidal transform to have the same
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class group.

Since in a UFD every height-one prime ideal is principal, and since a Krull

domain has torsion class group if and only if every height-one prime has a principal

primary ideal, we examine the height-one primes of the monoidal transform S, to see

how far from a UFD it may be. Section 3.2 deals with the height-one prime ideals P

of S such that p := P ∩ R has ht(p) = 1. In Theorem 3.2.11 and Corollary 3.2.12,

which summarize the results in this section, it is shown that if R is a locally quasi-

unmixed UFD, I = (a, b1, . . . , bn)R is height unmixed, a, b1, . . . , bn is an R-sequence,

and S = R[I/a], then P = pS if and only if p is not in any prime divisor of I. Also, if p

is contained in some prime divisor of I, then P (= pR[1/a] ∩ S) has a principal primary

ideal if and only if there is a positive integer h and an element x ∈ p ∩ Ih such that

either a, x/ah is an S-sequence or (a, x/ah)S = S. This gives a complete description of

whether P is principal or has a principal primary ideal in the case ht(p) = 1.

Section 3.3 then deals with the case where ht(p) > 1. In particular, if R and I

are as in Theorem 3.2.11 and the prime factors of a satisfy a mild condition, then P is

principal (resp. has a principal primary ideal) if and only if for some prime factor ai of

a, the ideal (ai, b1, . . . , bn)R = P ∩R (resp. (ai, b1, . . . , bn)R is (P ∩R)-primary).

Chapter 4 treats two special cases: where a is a power of a prime element, and

the case of monoidal transformations over the Rees ring R[1/t, It]. In Section 4.1 we

show that if a is a power of a prime element and R is a locally quasi-unmixed UFD, I is

height unmixed and generated by an R-sequence, then S is a Krull domain with torsion

class group if and only if S is Krull with finite cyclic class group if and only if Rad(I) is

prime and integrally closed. Also, if Rad(I) is not prime, then for each height-one prime

ideal p contained in at least one but not all prime divisors of I, the height-one prime

ideal pR[1/a] ∩ S has no principal primary ideals. Section 4.2 shows that the results of
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the previous section hold for R[1/t, It], since 1/t is a prime element and R[1/t, It] is a

monoidal transform over R[1/t].
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Chapter 2

Preliminary Definitions and

Results

2.1 Cohen-Macaulay Rings and R-Sequences

In this section, we establish the definitions and some of the results for which

we will use asymptotic analogues in the next section. For more about R-sequences and

Cohen-Macaulay rings and modules, the reader may refer to [2], [15], [12], among others.

More about associated primes may be found in [1] and [15], among other places. If one

is interested in associated primes in non-Noetherian rings, Bourbaki ([1]) is especially

helpful.

Definition 2.1.1 Let a1, . . . , an ∈ R, Ai = (a1, . . . , ai)R. We say that the ordered

sequence a1, . . . , an is an R-sequence if

1. An 6= R

2. ai /∈ Z(R/Ai−1), that is (Ai−1 : aiR) = Ai−1 for i = 1, . . . , n.
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Definition 2.1.2 For a local ring (R,m), a1, . . . , ar is a system of parameters if r =

dim(R) = ht(m) and if (a1, . . . , ar)R is m-primary.

Definition 2.1.3 A local (Noetherian) ring R is a Macaulay local ring if there is a

system of parameters a1, . . . , ar forR that is anR-sequence. Such a system of parameters

is called distinct. A local ring R is a regular local ring if there is a system of parameters

a1, . . . , ar such that (a1, . . . , ar)R = m. In this case a1, . . . , ar is called a regular system

of parameters. In the non-local case, a Noetherian ring R is called Cohen-Macaulay (or

locally Macaulay) if for every prime ideal P of R, RP is a Macaulay local ring.

In fact, every regular system of parameters is an R-sequence (this result is

stated in Bruns and Herzog’s book [2, Proposition 2.2.5], among other places). Hence

any regular local ring is Macaulay.

Theorem 2.1.4 [12, Theorem 121] Let R be a Noetherian ring, I an ideal in R and

M a finitely generated R-module. Assume that M 6= IM . Then any two maximal

R-sequences on M contained in I have the same length.

Definition 2.1.5 Let R be a Noetherian ring, M a finitely generated R-module, and I

an ideal such that IM 6= M . Then the common length of the maximal M -sequences in

I is called the grade of I on M , denoted by

Grade(I,M).

We say that Grade(I,M) =∞ if M = IM .

Definition 2.1.6 Let (R,m, k) be a Noetherian local ring, and M a finitely generated

R-module. Then the grade of m on M is called the depth of M , denoted

depth(M).
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The following property is a generalization of Serre’s normality condition.

Definition 2.1.7 A Noetherian ring R is said to satisfy (Si) if for all P ∈ Spec(R),

depth(RP ) ≥ min{ht(P ), i}.

For an integral domain R, (S2) is equivalent to the property that, for every

prime divisor P of a non-zero principal ideal, ht(P ) = 1. (See [15, p. 183].) The

following theorem shows why (S2) is called Serre’s condition for normality.

Theorem 2.1.8 [15, Corollary to Thm 11.5] Let R be a Noetherian domain. Then R is

normal (integrally closed) if and only if R satisfies (S2) and RP is a discrete valuation

ring for each height 1 prime ideal P .

Definition 2.1.9 Let R be a ring and I an ideal. A prime ideal P of R is called an

associated prime ideal of I if P = (I :R x) for some x ∈ R \ I. The set of associated

primes of I is written AssR(R/I). The associated primes of an ideal are also known as

the prime divisors. The minimal members of this set are known as isolated associated

primes and are denoted mAssR(R/I). (Associated primes of I that are not minimal are

known as embedded primes.) If all the prime divisors of an ideal I have the same height,

then I is said to be height unmixed.

2.2 Asymptotic Sequences and Locally Quasi-Unmixed

Rings

In this section we review many of the properties of asymptotic sequences and

locally quasi-unmixed rings. The relationship between asymptotic sequences and locally

quasi-unmixed rings is analogous to that of R-sequences and Cohen-Macaulay rings.

Many of the results in this section are examples of reults for locally quasi-unmixed rings
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or asymptotic sequences that are analogues of well-known results on Cohen-Macaulay

rings or R-sequences. For more information on and quasi-unmixed rings, and m-adic

completion of local rings, one may refer to [17]. For more on integral closure of ideals,

rings and modules, see [32].

Definition 2.2.1 If (R,m) is a local ring, let R∗ be its completion in the m-adic topol-

ogy. Then R is called quasi-unmixed if for every minimal prime ideal z ∈ mAss(R∗),

dim(R∗/z) = dim(R).

Definition 2.2.2 A Noetherian ring R is called locally quasi-unmixed if for any prime

ideal P of R, RP is quasi-unmixed.

Definition 2.2.3 If I is an ideal in a ring R, then the integral closure of I in R (written

Ia) is the set of elements x ∈ R such that for some bi ∈ Ii and some n ∈ N

xn + b1x
n−1 + . . .+ bn = 0.

Then Ia is an ideal of R, and I ⊆ Ia ⊆ Rad(I). Also, if J is another ideal of R such that

I ⊆ J , then Ia ⊆ Ja. The following property of integral closure is called persistence in

[32, Remark 1.1.3(7)]: if φ : R→ S is a ring homomorphism, then φ(Ia) ⊆ (φ(I)S)a.

In 1984, Ratliff proved the following theorem, which was an improvement on

an earlier result of his from 1976, which required I to have ht(I) ≥ 1 ([22, Theorem

2.5]).

Theorem 2.2.4 [26, Theorem 2.4] Let I be an ideal in a Noetherian ring R and let Q

be a prime divisor of (Ii)a for some i ≥ 1. Then Q is a prime divisor of (In)a for all

n ≥ i.
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Definition 2.2.5 The ring R(R, I) = R[It, u], where t is an indeterminate and u = 1/t,

is called the Rees ring of R with respect to I. F(R, I) =
⊕

n≥0 I
n/In+1 is the form ring

of R with respect to I.

Rees proved in [28, Theorem 2.1] that F(R, I) ∼= R(R, I)/uR(R, I), and we

will frequently identify the two.

In the next theorem, R′ denotes the integral closure of R (in its total quotient

ring).

Theorem 2.2.6 [26, Theorem 2.7] If I is an ideal in a Noetherian ring R, then the

sets AssR(R/(Ii)a) are equal for all large i. In fact, if R = R[It, u] where t is an

indeterminate and u = t−1, then for all large i,

AssR(R/(Ii)a) =
{
p′ ∩R | p′ ∈ AssR′(R′/uR′)

}
= {P ∩R | P ∈ AssR(R/(unR)a) for some n ≥ 1} .

We write this eventual constant value as Â∗(I) := Ass(R/(Im)a) for large m.

The prime ideals Â∗(I) are known as the asymptotic primes of I.

Definition 2.2.7 Let b1, . . . , bn ∈ R,Bi = (b1, . . . , bi)R. For an ideal I of R, we say an

element r ∈ R is asymptotically prime to I if (r, I)R 6= R and ((Im)a :R rR) = (Im)a

for all m ≥ 1. Then we say the ordered sequence b1, . . . , bn is an asymptotic sequence

over I if

1. (I,Bn)R 6= R

2. for each i = 1, . . . , n, (((I,Bi−1)
m)a :R biR) = ((I,Bi−1)

m)a for all m ≥ 1.

The elements b1, . . . , bn are an asymptotic sequence in R if they are an asymptotic

sequence over (0).
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We will use asymptotic sequences over an arbitrary ideal for the statement of

some preliminary results, but for the main sections of this paper, we will restrict our

attention to asymptotic sequences over (0).

Observe that for I = (0), the second condition is equivalent to bi /∈
⋃
Â∗(Bi−1)

for i = 1, . . . , n. Indeed, ((Bm
i−1)a : biR) = (Bm

i−1)a for each m ≥ 1 is equivalent to bi is

not a zero divisor on R/(Bm
i−1)a. The set of zero divisors of R/(Bm

i−1)a is the union of

the associated primes, Ass(R/(Bm
i−1)a). By 2.2.4, P ∈ Ass(R/(Bm

i−1)a) for some m ≥ 1

if and only if P ∈ Â∗(Bi−1).

We will now record several theorems about asymptotic sequences and locally

quasi-unmixed rings for later use.

Corollary 2.2.8 [19, Corollary 2.2] Let R be a quasi-unmixed semi-local ring and let

A be an ideal in R. Then R/A is quasi-unmixed if and only if ht(A) = ht(P ) for every

prime ideal P ∈ mAssR(R/A).

Definition 2.2.9 If I is an ideal of a ring R, we say that I is of the principal class if I

can be generated by ht(I) elements. We say I is of the principal class m if ht(I) = m.

Theorem 2.2.10 [21, Theorem 2.29] The following statements are equivalent for a

Noetherian ring R:

1. R is locally quasi-unmixed.

2. For all ideals B of the principal class in R, (Bi)a is height unmixed, for all i > 0.

3. For all ideals B of the principal class in R such that ht(M/B) = 1, for some

maximal ideal M in R, (Bi)a : M = (Bi)a, for infinitely many i > 0.

Remark 2.2.11 [24, Remark 2.3] Let b1, . . . , bg be elements of a ring R, let Bi =

(b1, . . . , bi)R for i = 1, . . . , g and let B0 = (0). Then the following statements hold:
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1. For i = 1, the definition of asymptotic sequence simply says that b1 is not in any

minimal prime ideal in R.

2. If R is Noetherian, then the second part of the definition of asymptotic sequence

is equivalent to: bi is not in any P ∈ Â∗(Bi−1) for i = 1, . . . g.

3. If R is a Noetherian ring and b1, . . . , bg are an asymptotic sequence, then ht(Bi) = i

for i = 0, 1, . . . , g.

4. Let M be a maximal ideal in a Noetherian ring R and let b1, . . . , bg be an asymp-

totic sequence in R. If b1, . . . , bg are a maximal asymptotic sequence and Bg ⊆M ,

then M ∈ Â∗(Bg). The converse is also true.

5. If R is a Noetherian ring and b1, . . . , bg are an R-sequence, then b1, . . . , bg are an

asymptotic sequence, but not conversely.

6. If R is a quasi-unmixed local ring and ht(Bg) = g, then every P ∈ Â∗(Bi) has

height i (for i = 1, . . . , g) and b1, . . . , bg are an asymptotic sequence.

The next remark concerns the passage of asymptotic sequences and asymptotic

primes to and from localizations of Noetherian rings.

Remark 2.2.12 [24, Remark 2.9] Let b1, . . . , bg be elements in a Noetherian ring R

and let S be a multiplicatively closed subset of R such that BRS 6= RS , where B =

(b1, . . . , bg)R. Then:

1. If b1, . . . , bg are an asymptotic sequence in R, then the images of b1, . . . , bg are an

asymptotic sequence in RS . (The proof uses 2.2.11(2) and the fact that IaRS =

(IRS)a for all ideals I in R.)
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2. If I is an ideal in R and PS ∈ Spec(RS), then P ∈ Â∗(I) if and only if PS ∈

Â∗(IRS).

3. If b1, . . . , bg are an asymptotic sequence in R and P ∈ Â∗(B), then by 2.2.12(1),

2.2.12(2) and 2.2.11(4), the images of b1, . . . , bg are a maximal asymptotic sequence

in RP .

4. If the bi are in the Jacobson radical of R, then it follows immediately from 2.2.12(2)

and 2.2.11(2) that b1, . . . , bg are an asymptotic sequence in R if and only if their

images are an asymptotic sequence in RM for all maximal ideals M in R.

Corollary 2.2.13 [24, Corollary 2.10] If b1, . . . , bs are an asymptotic sequence in the

Jacobson radical of R, then each permutation of the bi is an asymptotic sequence in R.

We now consider ideals of the principal class. As mentioned in the introduction,

ideals of the principal class n in Cohen-Macaulay rings can be generated by an R-

sequence of length n. Before we classify ideals of the principal class in locally quasi-

unmixed rings, we first examine ideals of the principal class in Noetherian rings, as they

will also prove useful later.

Definition 2.2.14 Let R be a commutative ring with identity. A set {z1, . . . , zm} ⊂ R

is said to be analytically independent if every homogeneous f ∈ R[Z1, . . . , Zm] such

that f(z1, . . . , zm) = 0 has its coefficients in Rad((z1, . . . , zm)R). We say {z1, . . . , zm}

is strongly analytically independent if every homogeneous f ∈ R[Z1, . . . , Zm] such that

f(z1, . . . , zm) = 0 has its coefficients in the ideal (z1, . . . , zm)R itself.

Corollary 2.2.15 [3, Corollary 1] If R is Noetherian and I = (z1, . . . , zm)R is an ideal

of the principal class m, then {z1, . . . , zm} is analytically independent.
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This is sometimes called the theorem of “analytic independence of systems of

parameters” [4]. It is proved in many places, including [3, Corollary 1]. In 1968, Davis

proved the converse.

Proposition 2.2.16 [4, Theorem] If R is Noetherian and {z1, . . . , zm} is analytically

independent, then I = (z1, . . . , zm)R is of the principal class m.

Thus in a Noetherian ring, an ideal is of the principal class m if and only if

any generating set of m elements is analytically independent. For locally quasi-unmixed

rings, we have the following result.

Proposition 2.2.17 [24, Proposition 4.6] If B is an ideal of the principal class in a

locally quasi-unmixed ring R, then B is generated by an asymptotic sequence, and if P

is a prime divisor of (Bn)a for some n ≥ 1, then ht(P ) = ht(B).

Some of the standard results forR-sequences in Noetherian rings do not transfer

to asymptotic sequences: in particular, if b1, . . . , bi are an asymptotic sequence in R and

bi+1, . . . , bn are an asymptotic sequence in R/((b1, . . . , bi)R), it is not necessarily true

that b1, . . . , bn is an asymptotic sequence. (See [24, Example 7.1.2]. ) However, the next

result of Ratliff shows that this does hold if R is locally quasi-unmixed.

Theorem 2.2.18 [25, Theorem 3.7] Let b1, . . . , bi be an asymptotic sequence over an

ideal I in a locally quasi-unmixed Noetherian ring R, let B = (b1, . . . , bi)R, and let

bi+1, . . . , bs be elements in R whose images in R/B are an asymptotic sequence over

(I +B/B). Then b1, . . . bs is an asymptotic sequence over I.

13



2.3 Monoidal Transforms and Rees Rings

In this section we establish properties of monoidal transforms and Rees rings

for later use. Indeed, for a Noetherian ring R, an ideal I of R, and an indeterminate

u, the Rees ring R[I/u, u] is a monoidal transform over R[u], so results on monoidal

transforms are results on Rees rings. Rees rings are an important tool for study because

they allow us to view an ideal I in R as a contraction of the principal ideal gener-

ated by u in R[I/u, u]. For more about Rees rings, one may refer to [32] and others;

for monoidal transforms from a commutative algebra standpoint, see [3] and [5]. For

monoidal transforms from the perspective of algebraic geometry, see [33].

We recall the following definition given in the Introduction.

Definition 2.3.1 For a ring R and elements a, b1, . . . , bn ∈ R, where a is not a zero

divisor, the overring S = R[ b1a , . . . ,
bn
a ], a subring of the total quotient ring of R, is called

a monoidal transformation or transform.

Lemma 2.3.2 [18, Theorem 2.3] Let R be a locally Macaulay ring, let a, b1, . . . , bn be

an R-sequence, and let X1, . . . , Xn be algebraically independent over R. If H is the

kernel of the natural homomorphism from R[X1, . . . , Xn] onto S = R[ b1a , . . . ,
bn
a ], then

H = (aX1 − b1, . . . , aXn − bn)R[X1, . . . , Xn].

Ratliff has given a valid analogue of this result in terms of locally quasi-unmixed

rings and asymptotic sequences. Before we state it, some more definitions are in order.

Typically, we define monoidal transforms R ⊂ S = R[ b1a , . . . ,
bn
a ] where a is not

a zero divisor. The statement a ∈ R is an R-sequence is equivalent to saying that a

is not a zero divisor on R, so if we want that a, b1, . . . , bn is an R-sequence for certain

properties to ascend from R to S, we get that a is not a zero divisor. However, if we
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wish to work with asymptotic sequences, the statement a is an asymptotic sequence in

R is equivalent to a is not in any minimal prime, which means that a may be a zero

divisor. So to achieve the full generality, we adopt the following notation:

Let a be an element of R not contained in any minimal prime of R, let

T =
{
ak | k ≥ 0

}
, and let Z = ∪{(0 : amR) | m ≥ 0} , then: R[ 1a ] denotes the ring

(R/Z)(T+Z)/Z (or RT ). (Note that a is regular on R/Z, and R 6⊆ R[ 1a ] if a is not regular

on R.)

Let S denote the subring of R[ 1a ] generated over R/Z by the elements bi
a , where

x denotes residue class modulo Z.

Let f be the natural homomorphism f : R → R/Z. Then for an ideal I in R,

IS denotes f(I)S, and if J is an ideal in S then J ∩ R denotes f−1(J ∩ (R/Z)). Also,

if T is a multiplicative subset of R, then ST denotes Sf(T ).

Theorem 2.3.3 [23, Theorem 2.5] Let I = (a, b1, . . . , bn)R be an ideal in a Noetherian

ring R such that a /∈ Rad(R), B = R[X1, . . . , Xn], Yi = aXi − bi (i = 1, . . . , n),

K = (Y1, . . . , Yn)B and H = ker(B → S). Then

1. K ⊆ H and there is a one-to-one correspondence between z ∈ Ass(R) such that

a /∈ z and P ∈ Ass(B/H) given by P ∩R = z.

2. If z and P are corresponding ideals as in (1.) and z ∈ mAssR, then P is a minimal

prime divisor of H, ht(P ) = n, (K + Rad(BP ))BP = KaBP = HaBP = PBP ,

and L = BP /Rad(BP ) is a regular local ring and the images in L of the Yi are a

regular system of parameters.

3. Rad(K) ⊆ Rad(H), and if I is of the principal class (ht(I) = n+1), then ht(K) =

n = ht(H) and Rad(K) = Rad(H).
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4. If z ∈ mAss(R) is such that ht(I + z)/z = n + 1, then Rad(K + zB)/zB is a

prime ideal H∗. Further, H∗ is the H∗-primary component of (K + zB)/zB and

of (H + zB)/zB, and H∗ = Ker((B/zB)→ (S/z∗)), where z∗ = zR[ 1a ] ∩ S.

5. If ht(I) = n + 1 and R is locally quasi-unmixed, then K ⊆ H ⊆ Ka = Ha =

Rad(H) = Rad(K).

The next theorem of Ratliff has to do with the ascension of an asymptotic

sequence over an ideal I to a certain Rees ring.

Theorem 2.3.4 [27, Theorem 3.3] Let b1, . . . , bs be an asymptotic sequence over an

ideal I in a Noetherian ring R and let Bi = (b1, . . . , bi)R for each i = 1, . . . , s. Fix i

and let R = R(R,Bi). Then the following statements hold:

1. Let d1, . . . , ds+1 be a permutation of u, tb1, . . . , tbi, bi+1, . . . , bs of one of the follow-

ing types:

(a) d1 = u and if dj = bk and k > i+ 1, then bk−1 = dj−g for some g ≥ 1.

(b) d1 = tb1, . . . , dj = tbj (for some j (1 ≤ j ≤ i)), dj+1 = u, and if dh = bk and

k > i+ 1, then bk−1 = dh−g for some g ≥ 1.

(c) dj = tbj (j = 1, . . . , i), di+h = bi+h (for h = 1, . . . , k and with 1 ≤ k ≤ s− i),

di+k+1 = u and dm = bm−1 (for m = i+ k + 2, . . . , s+ 1).

Then d1, . . . , ds+1 are an asymptotic sequence over IR.

2. If every permutation of b1, . . . , bs is an asymptotic sequence over I, then every

permutation of u, tb1, . . . , tbi, bi+1, . . . , bs is an asymptotic sequence over IR.

Note that every permutation of b1, . . . , bs is an asymptotic sequence (over I =

(0)) if b1, . . . , bs are contained in the Jacobson radical of R by Corollary 2.2.13. In fact,
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Ratliff shows in [27, Corollary 6.3] that, for an arbitrary ideal I of R, every permutation

of b1, . . . , bs is an asymptotic sequence over I when the bi are in the Jacobson radical.

Using the correspondence u ↔ bk, bh ↔ bh for h = i + 1, . . . , s, and
bj
bk
↔ tbj

for j = 1, . . . i, we pass naturally from Rees algebras to monoidal transforms, resulting

in the following corollary.

Corollary 2.3.5 [27, Corollary 3.6] With the notation of (2.3.4), fix k (1 ≤ k ≤ i) and

let S = R[ b1bk , . . . ,
bi
bk

]. Then each permutation of the images of

bi+1, . . . , bs,
b1
bk
, . . . ,

bk−1
bk

,
bk+1

bk
, . . . ,

bi
bk
, bk

which corresponds to one of the permutations in (2.3.4(1)) is an asymptotic sequence

over IS.
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Chapter 3

Monoidal Transforms over

Locally Quasi-Unmixed Domains

3.1 A Sufficient Condition for S to Be a Locally Quasi-

Unmixed UFD

This section deals with with some basic results concerning monoidal transforms

of locally quasi-unmixed rings, including Lemma 3.1.5, which we shall use throughout

chapters 3 and 4. The main result of this section gives a set of conditions for S = R[I/a]

to be a unique factorization domain.

It is well known that for a Cohen-Macaulay ring R and an ideal I of the

principal class, R/I is also Cohen-Macaulay [18, p. 400]. Our first result is an asymptotic

analogue of this.

Theorem 3.1.1 If R is locally quasi-unmixed and A is an ideal of the principal class

and H is any ideal such that Rad(H) = Rad(A), then R/H is locally quasi-unmixed.

Proof. Note that Rad(A) = Rad(H) implies mAss(R/A) = mAss(R/H). Let
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M be a maximal ideal of R. If P 6⊆ M for some prime ideal P of R, RM/PRM = 0

is trivially quasi-unmixed. Now suppose P ∈ mAss(R/H) and P ⊆ M (and thus that

A ⊆M and therefore mAss(RM/HRM ) = mAss(RM/ARM )).

Since A is an ideal of the principal class in a locally quasi-unmixed ring, it

can be generated by an asymptotic sequence by Theorem 2.2.17, and since A ⊆ M ,

the images of that asymptotic sequence in RM form an asymptotic sequence in RM by

Theorem 2.2.12(1). Then by Remark 2.2.11(3) ARM is an ideal of the principal class in

a quasi-unmixed ring, so ht(PRM ) = ht(ARM ) for each PRM ∈ Â∗(ARM ) by Theorem

2.2.10. Further, Â∗(ARM ) = mAss(RM/ARM ) = mAss(RM/HRM ).

Then ht(PRM ) = ht(HRM ) for each PRM ∈ mAss(RM/HRM ), so by Corol-

lary 2.2.8, RM/HRM = (R/H)M is quasi-unmixed for each M .

Corollary 3.1.2 If R is locally quasi-unmixed, A is an ideal of the principal class, and

H is any ideal of R such that Ha = Aa, then R/H is locally quasi-unmixed.

Proof. If P ∈ mAss(R/H), P ⊇ Rad(H) ⊇ Ha = Aa. If P is not minimal

over A, there is a prime ideal Q such that P ⊃ Q ⊇ Rad(A) ⊇ Aa = Ha ⊇ H,

contradicting minimality of P over H. Thus mAss(R/H) ⊆ mAss(R/A). The opposite

inclusion follows similarly, and therefore Rad(H) = Rad(A). The result then follows

from Theorem 3.1.1.

The following lemma from E. Davis [5, Lemma 1] records several facts about

monoidal transforms for later use.

Lemma 3.1.3 [5, Lemma 1] Let I = (a, b1, . . . , bn)R, where a is regular on R, B =

R[X1, . . . , Xn], S = R[ b1a , . . . ,
bn
a ] and H = ker(B → S). If J is an ideal of R such that

H ⊆ JB, then JS ∩R = J , S/JS ∼= (R/J)[X1, . . . , Xn], and:
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1. If J is prime (resp. primary), then JS is prime (resp. primary).

2. If J =
⋂
Ji for some family of ideals {Ji}, then JS =

⋂
JiS.

3. (J :R L)S = (JS :S LS) for any ideal L of R.

4. If p is an isolated prime divisor of J , then lRp(Rp/JRp) = lSpS
(SpS/JSpS), where

lR(M) denotes the length of the R-module M .

In fact, the lemma holds if we only require that a is not in any minimal prime

of R (for example, if we wanted to assume that a, b1, . . . , bn is an asymptotic sequence).

The additional proof follows from the definitions and the discussion above for S in the

case that a is non-nilpotent. However, if a, b1, . . . , bn is an asymptotic sequence it is not

in general true that H ⊆ IB (see example below), so the conclusions of the preceding

Lemma do not necessarily hold for I = J .

Example 3.1.4 We shall exhibit an asymptotic sequence that is not strongly analyti-

cally independent.

Recall that a set {z1, . . . , zm} ⊂ R is said to be analytically independent if

every homogeneous f ∈ R[Z1, . . . , Zm] such that f(z1, . . . , zm) = 0 has its coefficients in

Rad(z1, . . . , zm). A set {z1, . . . , zm} ⊂ R is said to be strongly analytically independent if

every homogeneous f ∈ R[Z1, . . . , Zm] such that f(z1, . . . , zm) = 0 has its coefficients in

(z1, . . . , zm)R itself. Davis shows in [3, Remarks 1.b, 1.b′] that these two conditions have

equivalent formulations in terms of monoidal transforms, namely that {a, b1, . . . , bn} is

analytically independent if and only if H ⊆ Rad(I)B, where I, H, and B are as in

Lemma 3.1.3; and that {a, b1, . . . , bn} is strongly analytically independent if and only if

H ⊆ IB. Let k be a field, X,Y indeterminates. Set R = k[[X,Y ]]/(X2, XY ) ∼= k[[x, y]].

As associated primes are (prime) annihilators of elements, (x) = (0 :R y), (x, y) = (0 :R
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x) and all other elements are regular (in fact, all elements of R not in (x, y)R are units),

R has associated primes (x) ⊂ (x, y). Then y is not in any minimal (i.e. asymptotic

prime of (0)), but y ∈ (x, y), an associated prime. So y is an asymptotic sequence but

not an R-sequence.

Let f = xZ ∈ R[Z] \ yR[Z]. Then f(y) = xy = 0, and so f is a homogeneous

polynomial which is zero on y whose coefficients are not in yR[Z]. Therefore {y} is not

a strongly analytically independent set.

This brings us to the following asymptotic analogue of [9, Proposition 2.2].

Lemma 3.1.5 Let a, b1, . . . , bn be an asymptotic sequence in a locally quasi-unmixed

ring R, (a, b1, . . . , bn)R = I, and let S = R[ b1a , . . . ,
bn
a ]. Then

1. S is locally quasi-unmixed

2. a, c1, . . . , cn is an asymptotic sequence on S for any permutation c1, . . . , cn of

b1
a , . . . ,

bn
a

3. Rad(aS) ∩ R = Rad(IS) ∩ R = Rad(I), S/Rad(aS) ∼= (R/Rad(I))[X1, . . . , Xn],

and there is a one-to-one correspondence between elements of Â∗(aS) and elements

of Â∗(I) given by p (∈ Â∗(I)) = P ∩R with P ∈ Â∗(aS) and P = pS.

4. Each q ∈ Â∗(I) has height n+ 1.

Additionally, if a, b1, . . . , bn is an R-sequence, then (3) becomes aS ∩ R =

IS∩R = I, S/aS ∼= (R/I)[X1, . . . , Xn], so there is a one-to-one correspondence between

elements of AssS(S/aS) and elements of AssR(R/I) given by p (∈ AssR(R/I)) = P ∩R

with P ∈ AssS(S/aS) and P = pS.

Proof. For (1), let B = R[X1, . . . , Xn], K = (aX1 − b1, . . . , aXn − bn)B and

H = ker(B → S) be as in Theorem 2.3.3. Since I is generated by an asymptotic
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sequence, it is an ideal of the principal class (by Remark 2.2.12), K is of the principal

class by Theorem 2.3.3. Then by Theorem 3.1.1, B/H ∼= S is locally quasi-unmixed.

For (2), Ratliff proved this for general Noetherian rings with Corollary 2.3.5.

For (3), observe that K = (aX1− b1, . . . , aXn− bn)B ⊆ IR[X1, . . . , Xn] = IB.

So by Theorem 2.3.3, H ⊆ Rad(H) = Rad(K) ⊆ Rad(IB). Thus most of the conclusions

follow from Lemma 3.1.3 and it remains to show the correspondence between Â∗(I) and

Â∗(aS).

It is clear from above that

{P ∈ Spec(B) | P ⊇ (Rad(I)B)} = {P ∈ Spec(B) | P ⊇ IB}

is in one-to-one correpsondence with

{P ∈ Spec(S) | P ⊇ IS} = {P ∈ Spec(S) | P ⊇ aS} = {P ∈ Spec(S) | P ⊇ Rad(aS)} .

Since R is locally quasi-unmixed and a, b1, . . . , bn is an asymptotic sequence in R, for any

associated prime divisor P of (In)a for some n ≥ 1, ht(P ) = ht(I) (Proposition 2.2.17).

Therefore P is minimal over I and Â∗(I) = mAssR(R/I). Similarly, S is locally quasi-

unmixed and a is an asymptotic sequence in S, so Â∗(aS) = mAssS(S/aS). So suppose

p ∈ Â∗(I) = mAssR(R/I). Then pB is minimal over IB, and so pS ∈ mAssS(S/aS) =

Â∗(aS). For P ∈ mAssS(S/aS), there is a Q ∈ mAssB((B/IB) corresponding to it.

Then Q ∩R = p ∈ mAssR(R/I) and pB = Q. Thus pS = P and P ∩R = p.

(4) is given by Proposition 2.2.17.

Recall that an ideal J is pre-normal if all large powers of J are integrally closed,

and J is normal if Jn is integrally closed for all positive integers n. The following two

theorems will help provide conditions for S to be integrally closed. The first was proved

by Lipman and Mattuck independently, and the second is a theorem of Goto.
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Theorem 3.1.6 [14, Lemma 5.2][16, Theorem 1] Let R be an integrally closed Noethe-

rian domain and J an ideal of R. Then every monoidal transform R[J/b] with respect

to J is integrally closed if and only if J is pre-normal, where b is a nonzero element of

J .

Theorem 3.1.7 [8, Theorem 1.1] If J is an ideal of the principal class in the Noetherian

ring R, the following are equivalent:

1. J is integrally closed

2. J is normal

3. For each p ∈ AssR(R/J), Rp is regular and lRp((JRp + p2Rp)/p
2Rp) ≥ ht(J)− 1.

When this holds, each p ∈ AssR(R/J) is minimal over J and J is generated by an

R-sequence.

We use the following extension of [9, Remark 2.3].

Remark 3.1.8 Let R be an integrally closed Noetherian domain, let I be generated by

the analytically independent set {a, b1, . . . , bn}, and S = R[I/a]. Then for the following

statements, (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇔ (5). If a, b1, . . . , bn is an R-sequence, then

(4)⇒ (1).

1. I is integrally closed

2. I is normal

3. I is pre-normal

4. S is integrally closed

5. Sq is integrally closed for each prime divisor q of aS.
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Proof. By [4, Theorem], if R is Noetherian and {a, b1 . . . , bn} is analytically

independent, then I is an ideal of the principal class n + 1. Thus the hypotheses of

theorems 3.1.6 and 3.1.7 are satisfied.

It is clear that (2) ⇒ (3) and (4) ⇒ (5). The implication (1) ⇒ (2) holds by

Theorem 3.1.7, and (3)⇒ (4) by Theorem 3.1.6.

Now assume that (5) holds and let q be a prime divisor of a principal ideal

in S. If a ∈ q, then Sq is integrally closed, by (5). If a /∈ q, then S[ 1a ] = R[ 1a ] is

integrally closed, since R is, and Sq = S[ 1a ]qS[ 1
a
], so Sq is integrally closed. Therefore Sq

is integrally closed for each prime divisor q of a principal ideal in S, so S is integrally

closed, by [12, Theorem 54], hence (5)⇒ (4).

Finally, let a, b1, . . . , bn be an R-sequence. Then we have that

ker(R[X1, . . . , Xn]→ S) ⊆ IR[X1, . . . , Xn] ⊆ IaR[X1, . . . , Xn],

so by Lemma 3.1.5 we get that aS ∩R = I and IaS ∩R = Ia. Also, S integrally closed

implies that aS is integrally closed [32, Proposition 1.5.2]. Using persistence of integral

closure as defined in Definition 2.2.3, IaS ⊆ (IS)a, so aS = IS ⊆ IaS ⊆ (IS)a =

(aS)a = aS. Thus Ia = IaS ∩R = aS ∩R = I, so (4)⇒ (1).

Remark 3.1.9 If R is a Noetherian domain, a, b1, . . . , bn is an R-sequence, and S =

R[I/a] satisfies (S2), then aS is primary if and only if Rad(aS) is prime, since principal

ideals in domains which satisfy (S2) have no embedded primes. Moreover, by Lemma

3.1.5, the elements of AssR(R/I) are in one-to-one correspondence with the elements of

AssS(S/aS), so I is primary if and only if aS is primary if and only if Rad(aS) is prime

if and only if Rad(I) is prime.

We will use this fact in two particular cases. If R is an integrally closed
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Noetherian domain, a, b1, . . . , bn are an R-sequence, I = (a, b1, . . . , bn)R is integrally

closed, and S = R[I/a], then S is integrally closed by Remark 3.1.8, so S satisfies (S2)

by Corollary 2.1.8.

If R is locally quasi-unmixed unique factorization domain, a, b1, . . . , bn is an

R-sequence, I = (a, b1, . . . , bn)R, and S = R[I/a], then S satisfies (S2) by [5, Theorem]

We now introduce a sufficient condition for S to be a UFD. For R a Krull

domain, we will denote its divisor class group by Cl(R).

Theorem 3.1.10 [9, cf. Theorem 2.4] Assume that R is an integrally closed Noetherian

domain and that I = (a, b1, . . . , bn)R is of the principal class n+ 1. Then:

1. If I is integrally closed, then S is integrally closed, and there is a surjective ho-

momorphism φ : Cl(S) → Cl(S[ 1a ]) whose kernel is generated by the classes of

elements of mAssS(S/aS).

2. If I is integrally closed, Rad(I) is prime, and if Cl(R) is torsion (resp. finite,

resp. trivial), then Cl(S) is torsion (resp. finite, resp. finite cyclic).

3. If I is prime and a is a product of prime elements of R, then aS ∈ Spec(S) and

the divisor class groups Cl(R) and Cl(S) are isomorphic.

4. If I is prime and R is a UFD, then S is a UFD.

Proof. By [3, Corollary 1], {a, b1, . . . , bn} is analyticaly independent, since I

is of the principal class n+ 1. Thus if I is integrally closed, then S is integrally closed,

by Remark 3.1.8, so S is a Krull domain. Then [7, Corollary 7.2] tells us that we have

a surjection between the class group Cl(A) of a Krull domain A and the class group

Cl(AM ) of its localization AM for each multiplicative set M , and that the kernel is
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generated by the classes of the height one prime ideals which meet M . For our case,

Cl(S) surjects onto Cl(S[ 1a ]), and the kernel is generated by the classes of the height

one primes of S containing a, which necessarily belong to the set of minimal primes of

aS. Since a is a regular non-unit in the integrally closed Noetherian domain S, these

are exactly the minimal primes of aS, mAssS(S/aS).

For (2), if I is integrally closed, then S is a Krull domain, by (1). Also,

by Theorem 3.1.7, I is generated by an R-sequence. Therefore, if Rad(I) is prime,

Lemma 3.1.5 gives a one-to-one correspondence between AssR(R/I)) = {Rad(I)} and

mAssS(S/aS) = {Rad(aS)}. Thus Ker(φ) is the finite cyclic subgroup of Cl(S) gener-

ated by the class of (Rad(aS)). If Cl(R) is torsion, so is its image, Cl(R[ 1a ]). This means

that for any g ∈ Cl(S), (φ(g))m = (0) for some m, or that gn ∈ Ker(φ) = 〈(Rad(aS))〉.

R is Noetherian, so there is a k such that (Rad(aS))k ⊆ aS. But aS is a principal divi-

sorial ideal, so is in the same coset as (0) in Cl(S), i.e. (Rad(aS)) has finite order, thus

Cl(S) is torsion. If Cl(R) is finite, Cl(S[ 1a ]) is finite, and Cl(S)/ 〈(Rad(aS))〉 ∼= Cl(S[ 1a ]),

so by Lagrange’s Theorem,

[Cl(S) : (0)] = [Cl(S) : 〈(Rad(aS))〉][〈(Rad(aS))〉 : (0)] <∞.

If Cl(R) is trivial, so is Cl(R[ 1a ]). Since φ is surjective, Cl(S) = Ker(φ) = 〈(Rad(aS))〉.

Thus Cl(S) is finite cyclic.

Cl(R)

ψ

(( ((

Cl(S)

φ

vvvv
Cl(R[ 1a ]) = Cl(S[ 1a ])

For (3), if I is prime, I ⊆ Ia ⊆ Rad(I) = I. Then since a, b1, . . . , bn is analyti-

cally independent, S is integrally closed (and therefore a Krull domain) by Remark 3.1.8,
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and ker(R[X1, . . . , Xn] → S) ⊆ Rad(IR[X1, . . . , Xn]) = IR[X1, . . . , Xn], so a, b1, . . . , bn

is in fact strongly analytically independent. Then by Lemma 3.1.3, aS is prime, so

AssS(S/aS) = {aS}. We then have that Ker(φ) is generated by (aS), which is in the

equivalence class of (0). Thus φ is an isomorphism. Since a is a product of prime el-

ements of R, the canonical surjection ψ is also an isomorphism by [7, Corollary 7.3].

Then ψ−1 ◦ φ must also be an isomorphism.

(4) then follows from (3).

Remark 3.1.11 It follows from Lemma 3.1.5 that if R, I, and S are as above and,

additionally, R is locally quasi-unmixed, then S is locally quasi-unmixed for each of

Theorem 3.1.10(1)-(4). In particular, if R is a locally quasi-unmixed UFD and I =

(a, b1, . . . , bn)R is of the principal class n+ 1, then S is a locally quasi-unmixed UFD.

Corollary 3.1.12 [9, cf. Corollary 2.7] Assume R is a locally quasi-unmixed UFD, that

a, b1, . . . , bn is a permutable asymptotic sequence, and that I = (a, b1, . . . , bn)R is a

prime ideal. Then each of the rings Sj = R[ Ibj ] is a locally quasi-unmixed UFD and

bjSj ∈ Spec(Sj).

Proof. This follows from [18, Theorem 2.4], 3.1.5 and 3.1.10 (4).

The following two theorems of Samuel and Li respectively were listed in [9] as

special cases of Theorem 2.4 (of which Theorem 3.1.10 is the asymptotic analogue) from

same article:

Corollary 3.1.13 [31, Proposition 7.6, p. 28] If A is an integrally closed Noetherian

domain and if aA ∩ bA = abA, and if aA and (a, b)A are prime ideals, then A′ =

A[X]/(aX − b) is again integrally closed and the class groups Cl(A) and Cl(A′) are

canonically isomorphic.
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Corollary 3.1.14 [13, Corollary 2.4] If A is a Noetherian UFD, aA ∩ bA = abA, and

(a, b)A is a prime ideal, then B = A[ ba ] is a UFD.

Note that for a Noetherian domain R, the conditions aR ∩ bR = abR, and

(a, b)R is a prime ideal imply that a, b is an R-sequence. Since R is a domain it suffices

to show that (aR : bR) = aR. Suppose rb ∈ aR for some r ∈ R. Then rb = ar′ for some

r′ ∈ R and rb = ar′ ∈ aA ∩ bR = abR. Thus rb = ar′ = abr′′ for some r′′. Since R is a

domain, rb = abr′′ implies r = ar′′, and hence b is not a zero divisor on aR and a, b is

an R-sequence. Conversely, if R is an integrally closed Noetherian domain and a, b is an

asymptotic sequence in R, then a, b is an R-sequence since integrally closed Noetherian

domains satisfy (S2) (and therefore AssR(R/aR) = mAssR(R/aR) = Â∗(aR)). It is

clear that abR ⊆ aR∩ bR, so suppose r ∈ aR∩ bR. Then r = ax = by for some x, y ∈ R.

Therefore y ∈ (aR : bR) = aR, y = ar′, and r = by = abr′ ∈ abR.

These corollaries are technically not special cases of [9, Theorem 2.4], because,

as stated, [9, Theorem 2.4] requires that A be Cohen-Macaulay. However, as the proof

of Theorem 3.1.10 (3) shows, we do not need to assume that A is locally quasi-unmixed

or Cohen-Macaulay to obtain the isomorphism of class groups.

It is well known that an integral domain is a UFD if and only if each height-one

prime ideal is principal [12, Theorem 5]. For a Krull domain A, Cl(A) is torsion if and

only if each height-one prime ideal of A has a principal primary ideal [7, Proposition

6.8]. Therefore, if we want to know how far S = R[I/a] is from a UFD, we want to

investigate which height-one primes P of S are principal, and which have a principal

primary ideal. We consider two cases: when ht(P ∩ R) = 1 (section 3.2) and when

ht(P ∩R) > 1 (section 3.3).

The last result in this section is the asymptotic version of [9, Proposition 2.9].
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If P is a height-one prime ideal of S = R[I/a], the next lemma shows that if R is locally

quasi-unmixed and a, b1, . . . , bn is an asymptotic sequence, there are only two possible

values of ht(P ∩R), and will be helpful in the next two sections as we classify such P .

Lemma 3.1.15 [9, cf. Proposition 2.9] Let a, b1, . . . , bn be an asymptotic sequence in a

locally quasi-unmixed domain R, I = (a, b1, . . . , bn)R, and let S = R[ b1a , . . . ,
bn
a ]. For

any P ∈ Spec(S), let p = P ∩R. Then the following hold:

1. ht(P ) ≤ ht(p) ≤ ht(P ) + n.

2. If a /∈ p, then ht(p) = ht(P ) and P = pR[ 1a ] ∩ S (so SP = Rp).

3. If ht(P ) = 1, then ht(p) is either 1 or n+ 1, and ht(p) = n+ 1 if and only if a ∈ p

if and only if p ∈ Â∗(I). Moreover, if ht(p) = n+ 1, then P = pS.

Proof. (1) By [20, Theorem 3.6], a Noetherian domain R is locally quasi-

unmixed if and only if the dimension equality (also called the altitude formula) holds

between R and any finitely generated extension of R that is also a domain. In particular,

the dimension formula holds between R and S. Thus for any prime ideal P of S, if we

let p = P ∩R, we have

ht(P ) + tr.deg.[S/P : R/p] = ht(p) + tr.deg.[S : R].

But S is algebraic over R, so this reduces to

ht(P ) + tr.deg.[S/P : R/p] = ht(p).

Since S/P is an extension of R/p by n elements (the residues of b1/a, . . . , bn/a modulo

P ), ht(p) is at most n larger than ht(P ).
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(2) If a /∈ p, pRp ∩ S is the only prime ideal lying over p, so P = pRp ∩ S, and

Rp = SP , by [3, Lemma]. Since a /∈ p, Rp ⊇ R[ 1a ], and thus

P = pRp ∩ S = pR[
1

a
] ∩ S = pS[

1

a
] ∩ S.

(3) If ht(P ) = 1 and ht(p) > 1, then by (2), a ∈ p. By [3, Lemma], a ∈ p if and

only if I ⊆ p. If I ⊆ p, ht(p) ≥ n+1. But from (1) we have that ht(p) ≤ ht(P )+n = 1+n.

Then p is minimal over I and p ∈ Â∗(I) By Lemma 3.1.5, P = pS. Conversely, if

p ∈ Â∗(I), ht(p) = n+ 1 by Lemma 3.1.5 and clearly a ∈ I ⊆ p.

Note that if R is a locally quasi-unmixed ring (which may contain zero divisors),

for any z ∈ mAss(R), R/z is a locally quasi-unmixed domain and satisfies the dimension

formula. Let P be a prime ideal of S and let z be a minimal prime of S such that P ⊇ z.

Let p = P ∩R and z′ = z ∩R. Then

ht(P/z) + tr.deg.[S/z/P/z : R/z′/p/z′] = ht(p/z′) + tr.deg.[S/z : R/z′]

ht(P/z) + tr.deg.[S/P : R/p] = ht(p/z′).

Thus 3.1.15(1) holds for locally quasi-unmixed rings that may have zero divisors.

3.2 The case where ht(P ∩R) = 1

Throughout this section, let R be a Noetherian ring, (a, b1, . . . , bn)R = I,

S = R[ b1a , . . . ,
bn
a ].

As mentioned above, this section examines height-one prime ideals P of S such

that ht(P ∩ R) = 1 to discover when P is principal or when P has a principal primary

ideal. The first result in this section is an extension of [5, Theorem 2] from Noetherian

domains to Noetherian rings.
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Lemma 3.2.1 Let R be a Noetherian ring, let a, b1, . . . , bn be an R-sequence, and let

I = (a, b1, . . . , bn)R be height unmixed. Then if R satisfies Serre’s condition (S2), so

does S = R[I/a].

Proof. Let x ∈ S be a regular non-unit, P ∈ AssS(S/xS), and p = P ∩ R.

Then x is a maximal S-sequence in P , so Grade(xS) = Grade(P ) = 1. Thus for any

other regular element y ∈ P , y is a maximal S-sequence in P , so P ∈ AssS(S/yS).

Suppose a /∈ P . Since R[1/a] = S[1/a], we have PS[1/a]∩S = PR[1/a]∩S = P

and pR[1/a]∩R = p. Thus pR[1/a]∩R = p = P ∩R = (PS[1/a]∩S)∩R, and PS[1/a]∩

(S ∩R) = PS[1/a]∩R = PR[1/a]∩R. So pR[1/a] = PS[1/a]. Now pR[1/a] contains a

regular element y
a , so ya

a = y
1 is also a regular non-unit in pR[1/a]. Then y

1 /∈ Q for each

Q ∈ Ass(R[1/a]). Suppose y ∈ q for some q ∈ Ass(R). By the one-to-one correspondence

between prime ideals of R[1/a] and prime ideals of R which do not contain a, we must

have a ∈ q. But a is regular and q consists of zero divisors. Therefore y is also regular

in R. Then 1 = Grade(P ) = Grade(PS[1/a]) = Grade(pR[1/a]) ≥ Grade(p) ≥ 1. Thus

p ∈ AssR(R/yR), so by hypothesis 1 = ht(p) = ht(pR[1/a]) = ht(PS[1/a]) = ht(P ).

Now suppose a ∈ P . Thus P ∈ AssS(S/aS), so by Lemma 3.1.3, p ∈

AssR(R/I). Then hypothesis p is minimal over I and ht(p) = n + 1, so P is mini-

mal over aS. Then by the Prinicpal Ideal Theorem, ht(P ) = 1.

The following lemma is an extension of [18, Corollaries 3.6, 3.7] which is nec-

essary for Lemma 3.2.3, itself an extension of [9, Lemma 3.2].

Lemma 3.2.2 Assume that R is a locally quasi-unmixed ring satisfying (S2). Let

a, b1, . . . , bn be an R-sequence and assume that I is height unmixed. Then for each

e ≥ 1 and k ≥ e, (Ik :R a
eR) = Ik−e.

Proof. Let R[u, ta, tb1, . . . , tbn] = R(R, I) = R. For any ideal B in R let
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B′ = BR[u, t] ∩R. For any homogeneous ideal B∗ in R let [B∗]k = {r ∈ R | rtk ∈ B∗}.

It follows that [B∗]k is an ideal in R and Ik ⊇ [B∗]k. We may decrease the degree of

any element of B∗ by multiplying by u. That is, for any x ∈ [B∗]k+1, xt
k+1 ∈ B∗,

so xtk = (xtk+1)u ∈ B∗, and x ∈ [B∗]k. Similarly, we may increase the degree of an

element in B∗ by multiplying by a nonzero element of It, so for any x ∈ [B∗]k, xt
k ∈ B∗,

so xytk+1 = (xtk)yt ∈ B∗ for some y ∈ I, thus yx ∈ I[B∗]k. Collectively, we see that

Ik ⊇ [B∗]k ⊇ [B∗]k+1 ⊇ I[B∗]k for all integers k (using the convention that Ik = R if

k ≤ 0). Since R is Noetherian, if k is greater than or equal to the maximum degree of

the generators of B∗, then [B∗]k+1 = I[B∗]k, and therefore [B∗]k+j = Ij [B∗]k. If k is

less than or equal to the minimum degree of the generators of B∗, then [B∗]k+1 = [B∗]k.

Now consider B = aeR ⊂ Ie and B∗ = aeteR. Clearly B′ = aeR[u, t] ∩ R ⊇ B∗. For

k ≤ e, [B′]k = aeR ∩ Ik = aeR = [B∗]e = [B∗]k. For k > e, [B′]k = aeR ∩ Ik ⊇ [B∗]k =

Ik−e[B∗]e = Ik−eB = aeIk−e. Since B′R[u, t] = B∗R[u, t] = aeR[u, t], B∗ = B′ if and

only if u is not in any prime divisor of B∗.

Since R satisfies (S2), R[u] also satisfies (S2). Let AssR(R/I) = {q1, . . . , qm}.

Then AssR[u](R[u]/(u, I)R[u]) = {(u, qi)R[u]}mi=1, so that ht(qi) = ht(qj) for each i, j =

1, . . . ,m, ht(qiR[u]) = ht(qjR[u]), and thus

ht((u, qi)R[u]) = ht(qiR[u]) + 1 = ht(qjR[u]) + 1 = ht((u, qj)R[u]).

So (u, I)R[u] is height unmixed. Then since R = R[u, ta, tb1, . . . , tbn] is a monoidal

transform over R[u], by [5, Theorem 2], R satisfies (S2).

From Theorem 2.3.4 we see that at, u is an asymptotic sequence in R, and

since Rad(atR) = Rad(aeteR) and R is locally quasi-unmixed, Â∗(atR) = Â∗(aeteR),

and therefore aete, u is an asymptotic sequence in R. Because R satisfies (S2), a
ete, u

is in fact an R-sequence, so B′ = B∗. In particular, [B′]k = aeR ∩ Ik = aeIk−e = [B∗]k
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for k > e. Finally, since a is not a zero divisor in R,

Ik−e = (aeIk−e :R a
eR) = ((aeR ∩ Ik) :R a

eR) = (Ik :R a
eR).

We use the next lemma frequently, including in the statement of Proposition

3.2.4. The lemma shows that each element β ∈ S \ I has a unique representation as

β = x/ah, where x ∈ Ih \ (Ih+1 ∪ aR). Note that elements of I cannot be written in

this form. Later in this section, and in the next, this lemma will help us classify prime

ideals with principal primary ideals and prime ideals that are principal.

Lemma 3.2.3 Assume that R is a locally quasi-unmixed ring satisfying Serre’s condi-

tion (S2). Let a, b1, . . . , bn be an R-sequence and assume that I is height unmixed. For

each element β ∈ S \ I there exists a unique nonnegative integer h and a unique element

x ∈ Ih \ (Ih+1 ∪ aR) such that β = x/ah. (If β ∈ S \R, then h > 0.)

Proof. Every element β ∈ S \ I may be written β = yk(a, b1, . . . , bn)/ak for

all large integers k, where yk(X0, X1, . . . , Xn) ∈ R[X0, X1, . . . , Xn] is a form of degree k.

Then since a, b1, . . . , bn is an R-sequence and hence strongly analytically independent,

yk(a, b1, . . . , bn) ∈ Ik \ Ik+1. If yk ∈ aR, then let i be the positive integer such that

yk ∈ aiR \ ai+1R, so yk = xai for some x ∈ R (and note that i ≤ k). Then by Lemma

3.2.2, x ∈ (Ik :R a
iR) = Ik−i, so β = x/ak−i with x ∈ Ik−i, and by choice of k and i we

see that x /∈ (Ik−i+1 ∪ aR).

Suppose β = x
ah

= x′

ah′
, and without loss of generality, assume h′ ≥ h. Since a is

regular, xah
′

= x′ah, and xah
′−h = x′. If h′ > h, then x′ ∈ aR, which is a contradiction.

So h′ = h, and hence x = x′. Finally, it is clear that if β ∈ S \R, h > 0.

Proposition 3.2.4 has an asymptotic version of [9, Proposition 3.3]. The original

result on R-sequences did not assume that R is an integral domain, but we retain the
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hypothesis to make some of the proofs easier and because after this result we will assume

that R is a domain for the rest of the chapter and the next. The proposition gives

several characterizations for an element β ∈ S \ I to have the property that a, β is an

S-sequence or (a, β)S = S; and characterizations for β to have the property that a, β is

an asymptotic sequence in S or (a, β)S = S.

Proposition 3.2.4 Let R be a locally quasi-unmixed domain, and let a, b1, . . . , bn be an

asymptotic sequence in R. Let β be a nonzero nonunit in S \ I such that there exist

h, a nonnegative integer, and an x ∈ Ih \ (Ih+1 ∪ aR), where β = x/ah. Also, let

R = R(R, I) = R[u, ta, tb1, . . . , tbn]. Consider the following:

1. (βS :S aS) = βS.

2. Either a, β is an S-sequence or (a, β)S = S.

3. βS[ 1a ] ∩ S = βS.

4. Either u, thx is an R-sequence or (u, thx)R = R (in which case h = 0 and

(I, x)R = R).

5. Either u, thx is an R[ 1
ta ]-sequence or (u, thx)R[ 1

ta ] = R[ 1
ta ].

6. x ∈ Ih \
⋃{

qIh | q ∈ AssR(R/I)
}

.

7. x+ Ih+1 is a regular element in the form ring F(R, I).

8. For all nonnegative integers e and for all y ∈ Ie \ Ie+1 it holds that xy ∈ Ih+e \

Ih+e+1.

and their asymptotic analogues:

1.∗ ((βmS)a) :S aS) = (βmS)a for large m.
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2.∗ Either a, β is an asymptotic sequence in S or (a, β)S = S.

3.∗ (βmS)a = (βmS[ 1a ])a ∩ S for large m.

4.∗ Either u, thx is an asymptotic sequence in R or (u, thx)R = R (in which case

h = 0 and (I, x)R = R).

5.∗ Either u, thx is an asymptotic sequence in R[ 1
ta ] or (u, thx)R[ 1

ta ] = R[ 1
ta ].

6.∗ x ∈ Ih \
⋃{

qIh | q ∈ Â∗(I)
}

.

7.∗ x+ Ih+1 is not contained in any minimal prime of the form ring of R with respect

to I, F(R, I) =
⊕

i≥0 I
i/Ii+1.

Then

(i.) the star statements (1∗)-(7∗) are equivalent.

(ii.) We have (1)⇔ (2)⇔ (3)⇔ (5), and (4)⇔ (7)⇔ (8).

(iii.) if a, b1, . . . , bn is an R-sequence, then in addition, we have (4)⇔ (6).

(iv.) if a, b1, . . . , bn is an R-sequence, R satisfies Serre’s condition (S2) and either I is

height unmixed or I = Rad(I), then for any β ∈ S \R there exist x, h such that h

is a nonnegative integer, x ∈ Ih \ (Ih+1 ∪ aR), and β = x/ah; and (1) through (8)

are equivalent.

(v.) Now assume that a, b1, . . . , bn is an R-sequence, R satisfies Serre’s condition (S2)

and either I is height unmixed or I = Rad(I), and that (1)-(8) hold. If xR is a

prime (resp., primary) ideal, then βS is a prime (resp., primary) ideal, and the

converse holds if (xR :R aR) = xR.
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Proof. For (ii): That (1), (2), (3) and (5) are equivalent follows from the

proof of [9, Proposition 3.3], as does the equivalence of (4), (7) and (8).

For (i): We proceed to show that the star statements (1∗)-(7∗)are equivalent.

Let S = R[ 1
at ], so S = R[I/a] ⊂ R[I/a, ta, 1/(ta)] = R[u, tI, 1

ta ] = S, since bi
a = tbi

ta .

Observe that S = S[ta, 1
ta ] is a localization of S[ta], a simple transcendental extension

of S. Then u = a
ta ∈ aS[ta, 1

ta ], and a = u(ta) ∈ uS[ta, 1
ta ], so uS = aS. Also note that

thx = (ta)h( x
ah

) ∈ x
ah
S and x

ah
= ( 1

ta)hthx ∈ thxS, so thxS = x
ah
S.

(1∗)⇒ (2∗): Assume that ((βmS)a) :S aS) = (βmS)a for large m. Recall that

this is equivalent to a /∈ P for every P ∈ Â∗(βS). Then either (a, β)S = S or β, a

is an asymptotic sequence. If the latter, then ht((a, β)S) = 2. Thus β /∈ Q for each

Q ∈ Â∗(aS). Indeed, if β ∈ Q for some asymptotic prime of aS, (a, β)S ⊆ Q, whence

ht(Q) ≥ 2. But a is regular, and thus an asymptotic sequence, so ht(Q) = 1. Therefore,

if (a, β)S 6= S, a, β is an asymptotic sequence.

(2∗) ⇒ (1∗): Assume that a, β is an asymptotic sequence in S. Then we have

ht((a, β)S) = 2. If a ∈ P for some P ∈ Â∗(βS), then (a, β)S ⊆ P , so ht(P ) ≥ 2. But

β is regular, and hence and asymptotic sequence, thus ht(P ) = 1 for each asymptotic

prime P of S/βS.

Now assume that (a, β)S = S. If a ∈ P for some asymptotic prime P of βS,

then S = (a, β)S ⊆ P , which is a clear contradiction.

(1∗) ⇔ (3∗): For large integers k and m, ((βmS)a :S a
kS) = (βmS)aS[ 1a ] ∩ S.

Since integral closure behaves well with respect to localization (see [32, Proposition

1.1.4] for reference), (βmS)aS[ 1a ]∩S = (βmS[ 1a ])a ∩S. Thus ((βmS)a :S a
kS) = (βmS)a

if and only if (βmS[ 1a ])a ∩ S = (βmS)a.

(2∗) ⇒ (5∗): If (a, β)S = S, 1 ∈ (a, β)S ⊂ (a, β)S = (u, thx)S. Now suppose

a, x/ah is an asymptotic sequence in S. Then since S[ta] is a flat S-module, by [24,
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Proposition 5.1], either a, x/ah is an asymptotic sequence in S[ta] or (a, x/ah)S[ta] =

S[ta]. As the latter implies (a, x/ah)S = (u, thx)S = S, we may assume that a, x/ah is

an asymptotic sequence in S[ta]. Since S is a localization of S[ta], by Remark 2.2.12,

either (a, x/ah)S = (u, thx)S = S or a, x/ah is an asymptotic sequence in S.

(5∗)⇒ (2∗): If (u, thx)S = S, (a, x/ah)S = S, so there are elements r1, r2 ∈ S

such that r1a+r2(x/a
h) = 1. We can write ri =

m∑
j=−n

rij(ta)j for i = 1, 2, where rij ∈ R.

m∑
j=−n

r1jt
jaj+1 +

m∑
j=−n

r2jt
jaj−h = 1

We see then that rij = 0 for j 6= 0, so this reduces to r10a + r20(x/a
h) = 1, whence

(a, x/ah)R = R.

Now suppose u, thx is an asymptotic sequence in S, i.e.

(umS)a = (amS)a = ((amS)a :S (x/ah)S) = ((umS)a :S thxS) for each m ≥ 1.

So a, x/ah is an asymptotic sequence in S. If x/ah ∈ P for some P ∈ Â∗(aS), then

thxS ⊆ (x/ah)S ⊆ PS ⊆ Q, where Q is some prime ideal minimal over PS, and hence

over uS = aS, contradicting our assumption that u, thx is an asymptotic sequence in

S.

(5∗) ⇒ (4∗): Suppose u, thx is an asymptotic sequence in S. If u, thx is not

an asymptotic sequence in R, then thx ∈ P for some P ∈ Â∗(uR). Then ht(P ) = 1

since R is locally quasi-unmixed and u is an R-sequence. Then thx ∈ PS. Since S is a

localization of R, there is a one-to-one correspondence between prime ideals of S and

prime ideals of R which miss
{

(ta)k
}∞
k=1

, either ht(PS) = 1 and PS is prime, or ta ∈ P .

But ta /∈ Q for any Q ∈ Â∗(uR) since u, ta is an asymptotic sequence in R by Theorem

2.3.4. Thus ht(PS) = 1. But u, thx an asymptotic sequence in S means that (u, thx)S

is an ideal of the principal class and therefore has height 2, so since (u, thx)S ⊆ PS,
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ht(PS) ≥ 2, which is a contradiction.

Now assume (u, thx)S = S and (u, thx)R 6= R. If thx ∈ P for some P ∈

Â∗(uR), then either ta ∈ P or PS is a prime ideal of S. We see that ta /∈ P since

u, ta is an asymptotic sequence in R. We also have that (u, thx)R ⊆ P implies S =

(u, thx)S ⊆ PS, which contradicts the fact that PS is a prime ideal. Thus thx /∈ P for

any P ∈ Â∗(uR) and u, thx is an asymptotic sequence in R.

(4∗) ⇒ (5∗): Suppose that (u, thx)R = R. It is clear that S = (u, thx)S =

(a, x
ah

)S, so (a, x
ah

)S = S as above. So now suppose that u, thx is an asymptotic sequence

in R. Since S is a localization of R, by Remark 2.2.12, either u, thx is an asymptotic

sequence in S or S = (u, thx)S.

(4∗) ⇔ (6∗): Since (R[u]/(u, I)R[u]) ∼= R/I, there is a one-to-one correspon-

dence between prime ideals of R containing I and prime ideals of R[u] containing

(u, I)R[u]. In particular, all asymptotic primes of (u, I)R[u] are in one-to-one corre-

spondence with Â∗(I), and they will be the smallest prime ideals containing uR[u] and

qR[u] for each q ∈ Â∗(I). That is, Â∗((u, I)R[u]) =
{

(u, q)R[u] | q ∈ Â∗(I)
}

.

Let L = ker(R[u][X0, X1, . . . , Xn] → R). Now u, a, b1, . . . , bn is an asymp-

totic sequence in R[u][X0, X1, . . . , Xn] by [27, Proposition 3.2], and observe that R =

R[u][ta, tb1, . . . , tbn] = R[u][ au ,
b1
u , . . . ,

bn
u ] is a monoidal transform over R[u], so Lemma

3.1.5 applies. So the asymptotic primes of (u, I)R[u] and of uR = (u, I)R (this equality

holds since IR ⊆ uR) are in one-to-one correspondence. Thus for every p ∈ Â∗(uR),p =

PR for some P ∈ Â∗((u, I)R[u]), that is p = ((u, q)R[u]R = (u, q)R, and we have

Â∗(uR) =
{

(u, q)R | q ∈ Â∗(I)
}

.

Say Â∗(I) = {q1, . . . , qm}. Then u, thx is an asymptotic sequence in R if and

only if thx /∈
⋃
{(u, qi) | i = 1, . . . ,m}, which is true if and only if x /∈ ((u, qi)R)[h] ={

r ∈ R | rth ∈ (u, qi)R
}

for i = 1, . . . ,m. Then ((u, qi)R)[h] = qiI
h + Ih+1 = qiI

h since

38



Ih+1 ⊆ qiIh for all h ≥ 0.

(4∗)⇒ (7∗): If u, thx is an asymptotic sequence in R, then thx is an asymptotic

sequence in R/uR, which by Remark 2.2.11 means that thx is not in any minimal prime

of R/uR. Since (u, thx)R 6= R, there is no element y ∈ R such that (thx+uR)(y+uR) =

(thxy + uR) = 1 + uR.

If (u, thx)R = R, then h = 0 and (I, x)R = R. Thus i+ xr = 1 for some i ∈ I

and r ∈ R. Thus xr + I = 1 + I, or x is a unit in R/I, and hence in
⊕

i≥0 I
i/Ii+1.

(7∗) ⇒ (4∗): If x + Ih+1 is a nonunit not contained in any minimal prime of⊕
Ii/Ii+1, then thx+uR is not in any minimal prime of R/uR under the isomorphism⊕
Ii/Ii+1 ∼= R/uR, as given by Rees in [28, Theorem 2.1]. By Theorem 2.2.18, u, thx

is an asymptotic sequence in R, since R is locally quasi-unmixed and since u is an

asymptotic sequence in R.

If x + Ih+1 is a unit in
⊕
Ii/Ii+1, then by the isomorphism, thx + uR is a

unit in R/uR. Thus for some y ∈ R, (thx+ uR)(y + uR) = (thxy + uR) = 1 + uR, so

thx+ uz = 1 + wu for some z, w ∈ R. Then 1 = (z − w)u+ thxy ∈ (u, thx)R = R.

For (iii), let us now assume that a, b1, . . . , bn is an R-sequence. (4) ⇔ (6):

There is a one-to-one correspondence between the prime divisors of (u, I)R[u] and the

associated primes of I, so

AssR[u](R[u]/(u, I)R[u]) = {(u, q)R[u] | q ∈ AssR(R/I)} .

Now u, a, b1, . . . , bn is an R[u][X0, . . . , Xn]-sequence, so the additional statement in

Lemma 3.1.5 holds and there is a one-to-one correspondence between AssR(R/uR) and

AssR[u](R[u]/(u, I)R[u]). Thus AssR(R/uR) = {(u, q)R | q ∈ AssR(R/I)} and the rest

follows.

To prove (iv), it suffices to show that (4) ⇔ (5). Since (4) ⇒ (5) is clear, we
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will simply show that (5)⇒ (4).

Let us also assume that R satisfies (S2) and that I is height unmixed, so that

by [5, Theorem 2], R also satisfies (S2), as in the proof of Lemma 3.2.2. Then Lemma

3.2.3 applies, so for every β ∈ S \R there exist x, h as in Lemma 3.2.3.

Suppose u, thx is an S-sequence. If u, thx is not a regular sequence in R, then

thx ∈ P for some P ∈ AssR(R/uR). Then ht(P ) = 1 since R satisfies (S2) and u is

an R-sequence. Then thx ∈ PS. Since S is a localization of R, there is a one-to-one

correspondence between prime ideals of S and prime ideals of R which miss
{

(ta)k
}∞
k=1

,

either ht(PS) = 1 and PS is prime, or ta ∈ P . Note that since R satisfies (S2) (and R

is locally quasi-unmixed), AssR(R/uR) = Â∗(uR). Thus u, ta is an asymptotic sequence

in R if and only if it is an R-sequence, so it is clear that ta /∈ Q for any Q ∈ AssR(R/uR)

since u, ta is an asymptotic sequence in R. Thus ht(PS) = 1. But u, thx an S-sequence

means that (u, thx)S is an ideal of the principal class and therefore has height 2, so

since (u, thx)S ⊆ PS, ht(PS) ≥ 2, which is a contradiction.

Now assume (u, thx)S = S and (u, thx)R 6= R. If thx ∈ P for some P ∈

AssR(R/uR), then either ta ∈ P or PS is a prime ideal of S. We see that ta /∈ P since

u, ta is an R-sequence. We also have that (u, thx)R ⊆ P implies S = (u, thx)S ⊆ PS,

which contradicts the fact that PS is a prime ideal. Thus thx /∈ P for any P ∈

AssR(R/uR) and u, thx is an R-sequence.

The proof of (v) is the same as the proof of the final statement in [9, Proposition

3.3].

The next proposition is not quite a generalization of [9, Proposition 3.6], since

the original result did not require R to be an integral domain. Nonetheless, it allows us

to prove Proposition 3.2.7, which does generalize [9, Proposition 3.9]. For the following

proposition, if p = πR with π /∈ I, the preceding result could be used to obtain a short
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proof. However, π may be in I, so we give an alternate proof. This result gives three

conditions equivalent to when a nonzero principal prime ideal p of R (such that a /∈ p)

extends to a prime ideal in S.

Proposition 3.2.5 Let R be a locally quasi-unmixed domain, let a, b1, . . . , bn be an R-

sequence, I = (a, b1, . . . , bn)R and S = R[I/a]. Let p be a height one principal prime

ideal of R such that a /∈ p. Then the following are equivalent:

1. pS is a (principal) prime ideal.

2. p 6⊆
⋃
{q | q ∈ AssR(R/I)}.

3. (pS :S aS) = pS.

4. pS = pR[ 1a ] ∩ S.

Proof. Let π ∈ R be the prime element such that πR = p.

(3) ⇒ (2): If there exist r, r′ ∈ S such that πr = ar′, we must have that

r′ ∈ pS, or r′ = πr′′ for some r′′ ∈ S. Then πr = aπr′′, and since S is a domain,

r = ar′′, that is r ∈ aS. So (aS :S πS) = aS and π is not a zero divisor on aS. Thus

π /∈ qS, and therefore π /∈ q for each q ∈ AssR(R/I). (Note that by Lemma 3.1.5, all

associated primes of aS are of this form.) Finally, since π /∈ q for each q ∈ AssR(R/I),

πR = p 6⊆
⋃
{q | q ∈ AssR(R/I)}.

(2) ⇒ (3): If π /∈ q ⊂ qS for every q ∈ AssR(R/I), then π /∈
⋃
{qS | q ∈

AssR(R/I)} =
⋃

AssS(S/aS). Thus π is not a zero divisor on aS. It remains to show

that a is not a zero divisor on πS = pS. Suppose πr = ar′ for some r, r′ ∈ S. Then

r = ar′′ for some r′′ ∈ S. Because a is not a zero divisor on S, we may cancel a, and

πar′′ = ar′ becomes πr′′ = r′, whence r′ ∈ πS = pS. Therefore (pS :S aS) = pS.

The rest of the proof follows exactly as in [9, Proposition 3.6].
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For the rest of the chapter, our base assumption will be that R is a locally quasi-

unmixed unique factorization domain, and that a, b1, . . . , bn are an R-sequence. Let us

say that a factors uniquely as follows: a = ac11 · · · a
cd
d , where the ai are non-associate

prime elements in R and the ci are positive integers.

The next result examines the height one prime ideals of R with no prime ideals

of S lying over them. That is, prime ideals p of R such that there are no prime ideals

P of S where P ∩ R = p. The remark is essentially the same as [9, Remark 3.8], since

as the proof below shows, we need only assume that R is a Noetherian UFD.

Remark 3.2.6 The height one prime ideals p of R such that pS ∩ R 6= p are exactly

the prime ideals a1R, . . . , adR.

Proof. It is clear that aR ⊆ aiR and I 6⊆ aiR for each i, so by [3, Lemma],

there are no primes in S contracting to aiR. Thus aiR ∈ {p ∈ Spec(R) | ht(p) =

1 and pS ∩R 6= p}.

To show the reverse inclusion, suppose p ∈ Spec(R), ht(p) = 1 and pS∩R 6= p.

Then p ⊂ pS ∩ R ⊆ pS[ 1a ] ∩ R = pR[ 1a ] ∩ R. Since p 6= pR[ 1a ] ∩ R and since the prime

ideals of R[ 1a ] are in one-to-one correspondence with the prime ideals of R that do not

contain a, we have pR[ 1a ] ∩ R = R and ac11 · · · a
cd
d = a ∈ p. This gives aiR ⊆ p for some

i, but aiR and p are both height one prime ideals, so aiR = p.

Proposition 3.2.7 examines height one prime ideals P of S such that P is the

radical of a principal ideal xS for some x ∈ R. Naturally this includes P that have

a principal primary ideal, and using Remark 3.1.9, we see that if we also assume I is

height unmixed, these primes P are the same.

Proposition 3.2.7 Let R be a locally quasi-unmixed unique factorization domain, let

a, b1, . . . , bn be an R-sequence, I = (a, b1, . . . , bn)R and S = R[I/a]. Assume that x is
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a nonzero nonunit in R such that xS is a primary ideal. Let P = Rad(xS), and let

p = P ∩R.

1. If ht(p) > 1, then a ∈ Rad(xR), p ∈ AssR(R/I) and Rad(xS) = pS.

2. If ht(p) = 1, then (xR :R akR) is p-primary for k � 0, xS = (xR :R akR)S for

all k ≥ 0, P = Rad(pS) and p 6⊆
⋃{

q | q ∈ Â∗(I)
}

.

If we also have that I is height unmixed, then for (2), the above holds and in addition,

P = pS and p 6⊆
⋃
{q | q ∈ AssR(R/I)}.

Proof. For (1), if ht(p) > 1, then by Lemma 3.1.15 (3), a ∈ p ∈ AssR(R/I)

and P = pS. If q ∈ Â∗(xR)(= mAssR(R/xR)), ht(q) = 1, so if a /∈ q, then Q = qR[ 1a ]∩S

has ht(Q) = ht(q) by Lemma 3.1.15 (2). Thus Q is a height 1 prime divisor of xS and

Q = P . But q = Q ∩R = P ∩R = p is a contradiction (ht(q) = 1 < ht(p) = g + 1). We

conclude a ∈ ∩{q | q ∈ mAssR(R/xR)} = Rad(xR).

For (2), P is a minimal prime divisor of xS (which is generated by an S-

sequence) in a locally quasi-unmixed domain, so ht(P ) = 1. Thus by Lemma 3.1.15, if

ht(p) = 1, a /∈ p = P ∩ R, and P = pR[ 1a ] ∩ S. Since PS[ 1a ] ∩ S = P , (P :S aS) =

PS[ 1a ] ∩ S = P . Then since a is not in the only associated prime of xS, it is not a zero

divisor on S/xS, and (xS :S aS) = xS. Thus also xS = xS[ 1a ] ∩ S. Then xS ∩ R =

xS[ 1a ] ∩ S ∩ R = xS[ 1a ] ∩ R = (xR :R akR) for all large integers k. Since contractions

of primary ideals are primary, xS ∩ R is p = P ∩ R-primary. Therefore (xR :R akR)

is p-primary. Also, since xR ⊆ xS ∩ R = (xR :R akR) ⊂ xS, (xR :R akR)S = xS

for k ≥ 0. Further, xS ⊆ pS ⊆ P , so P = Rad(xS) ⊆ Rad(pS) ⊆ Rad(P ) = P .

It follows that P is the only prime ideal of S minimal over pS, and since S is locally

quasi-unmixed, that ht(P ) = 1. Observe that since R is a UFD, p = πR for some

prime element π ∈ R. Lastly, assume p ⊂ q for some q ∈ Â∗(I). Then pS ⊂ qS and,
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more importantly, Rad(pS) ⊂ qS, since a /∈ Rad(pS) ∩ R = p. But qS ∈ Â∗(aS) and

ht(qS) = 1 by Lemma 3.1.5, whence Rad(pS) is not prime. This is a contradiction, so

p 6⊆
⋃{

q | q ∈ Â∗(I)
}

.

Now assume that I is height unmixed. Then the asymptotic primes of I coin-

cide with the associated primes of I, so p 6⊆
⋃
{q | q ∈ AssR(R/I)}, which is equivalent

to pS = P by Proposition 3.2.5.

The next remark extends [9, Remark 3.10], and is used in the proof of Propo-

sition 3.2.9.

Remark 3.2.8 Let R be a locally quasi-unmixed unique factorization domain, and let

a, b1, . . . , bn an R-sequence, I = (a, b1, . . . , bn)R and S = R[I/a]. If x ∈ I \ {0} and if

xS is P -primary, then Â∗(aS) = {P} and ht(P ∩ R) = n+ 1. If we also have that I is

height unmixed, then I is P ∩R-primary and aS is P -primary.

Proof. Let Q ∈ Â∗(aS). Then ht(Q) = 1. But xS ⊆ (x, a)S ⊆ IS = aS ⊆ Q.

So Q is minimal over xS, thus Q = P . Therefore mAssS(S/aS) = Â∗(aS) = {P}. By

Lemma 3.1.5, P ∩R ∈ Â∗(I) and ht(P ∩R) = n+ 1.

Now assume that I is height unmixed. Since R is a UFD, R satisfies (S2), so

by [5, Theorem 2], S also satisfies (S2). Therefore AssS(S/aS) = Â∗(aS) = {P} and

aS is P -primary. By Lemma 3.1.5, each associated prime of I is the contraction of an

associated prime of aS, so I must also be P ∩R-primary.

The following proposition and its corollary are slight generalizations of [9,

Proposition 3.11, Corollary 3.12]. These results examine height one prime ideals p of R

such that a /∈ p. Since Proposition 3.2.5 deals with such p when p 6⊆
⋃{

q | q ∈ Â∗(I)
}

,

the next result assumes that p ⊆
⋃{

q | q ∈ Â∗(I)
}

. Proposition 3.2.9 then characterizes

when pR[1/a]∩S has a principal primary ideal, and the following corollary characterizes
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when pR[1/a] ∩ S is principal.

Proposition 3.2.9 Let R be a locally quasi-unmixed UFD, let a, b1, . . . , bn be an R-

sequence, let I = (a, b1, . . . , bn)R be height unmixed, and S = R[I/a]. Let p = πR be

a (height-one) prime ideal in R, assume a /∈ p ⊆
⋃{

q | q ∈ Â∗(I)
}

and let Â∗(I) =

{q1, . . . , qm}. Then the following are equivalent:

1. P = pR[ 1a ] ∩ S has a principal primary ideal.

2. There exist positive integers e, h and non-negative integers e1, . . . , ed such that

πeae11 · · · a
ed
d ∈ Ih \ (aS ∪ q1I ∪ · · · ∪ qmI), and then ((πeae11 · · · a

ed
d )/ah)S is P -

primary.

3. There exist a positive integer h and an element x ∈ (p ∩ Ih) such that (x/ah)S is

P -primary.

Proof. (2) ⇒ (3) ⇒ (1) is clear, so it remains to show (1) ⇒ (2). Let βS be

P -primary for some β ∈ S. If β ∈ I, by Remark 3.2.8, Â∗(aS) = {P} and therefore

ht(P ∩ R) = n + 1. So since ht(p) = 1, β /∈ I. Let x and h be those given by Lemma

3.2.3, such that β = x
ah

, x ∈ Ih \ (aR ∪ Ih+1). Then ahβ = x ∈ πR = P ∩R, so since R

is a UFD, there is a positive integer e such that x ∈ πeR \ πe+1R.

We have aS = IS and Â∗(aS) = {q1S, . . . , qmS} by Lemma 3.1.5. Also S is

locally quasi-unmixed, so ht(qiS) = 1 for each i = 1, . . . ,m. Since βS is P -primary and

a /∈ p = P ∩ R, it follows that (βS :S aS) = βS. Then, by Proposition 3.2.4(1) ⇔ (2)

either (a, β)S = S or a, β is an S-sequence (and hence an asymptotic sequence in S. Then

by Proposition 3.2.4(2∗)⇔ (6∗), x ∈ Ih\(aS∪q1S∪· · ·∪qmS). Since π ∈ P = Rad(βS),

there is a k1 > 0 such that πk1 = βγ for some γ ∈ S.
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If γ /∈ I, let k2 be the non-negative integer and y the element in Ik2\(aS∪Ik2+1)

such that γ = y/(ak2) given by Lemma 3.2.3. Then x/ah = β = πk1/γ = (πk1ak2)/y,

or xy = πk1ah+k2 . Using unique factorization of R and the fact that x ∈ πeR \ πe+1R,

we may write x = uπeae11 · · · a
ed
d for some non-negative integers e1, . . . , ed and some unit

u ∈ R (and since a /∈ xR, at least one ei < gi).

In the case γ ∈ I, πk1ah = xγ, so the argument follows similarly to the previous

paragraph and the same conclusion holds.

Corollary 3.2.10 Let R be a locally quasi-unmixed UFD, let a, b1, . . . , bn be an R-

sequence, let I = (a, b1, . . . , bn)R be height unmixed, and S = R[I/a]. Let p = πR be a

height-one prime ideal in R such that a /∈ p ⊆
⋃{

q | q ∈ Â∗(I)
}

. Then P = pR[ 1a ] ∩ S

is a principal prime ideal if and only if e may be chosen to be 1 in Proposition 3.2.9.

Proof. Suppose that P is a principal prime ideal, P = βS. Since ht(P∩R) = 1,

by Remark 3.2.8, we must have β /∈ I. Then let β = x
ah

as in Lemma 3.2.3. Following the

proof of Proposition 3.2.9, we get x = πeae11 · · · a
ed
d for some positive integer e and non-

negative integers e1, . . . , ed. Then πeS[ 1a ] = xS[ 1a ] = βS[ 1a ] = PS[ 1a ] = pS[ 1a ] = πS[ 1a ],

so e = 1.

For the converse, let P have a principal primary ideal, βS. Then by Proposition

3.2.9, β = (πae11 · · · a
ed
d )/ah, so βS[ 1a ] = ((πae11 · · · a

ed
d )/ah)S[ 1a ] = πS[ 1a ], and πS[ 1a ]∩S =

βS[ 1a ] ∩ S = βS since βS is P -primary and a /∈ P . Thus βS is prime.

The following theorem and its corollary summarize the results from the section.

Theorem 3.2.11 classifies height one prime ideals P of S such that ht(P ∩ R) = 1 (so

that a /∈ P ∩R) and P is the radical of a principal ideal. As mentioned above in Remark

3.1.9, the hypotheses of the theorem imply that P in fact has a principal primary ideal.
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Theorem 3.2.11 Let R be a locally quasi-unmixed UFD, let a, b1, . . . , bn be an R-

sequence, let I = (a, b1, . . . , bn)R be height unmixed, and S = R[I/a]. Let P ∈ Spec(S)

have a principal primary ideal, let p = P ∩ R, and assume that ht(p) = 1 (so a /∈ p).

Then exactly one of the following holds:

1. P = Rad(πS) for some prime element π ∈ R. (This is true if and only if p = πR

for some prime element π ∈ R \
⋃
{q | q ∈ AssR(R/I)} and pS = P .)

2. P = Rad(βS) for some β ∈ S \ R. (This is true if and only if p = πR ⊆⋃{
q | q ∈ Â∗(I)

}
, P = pR[ 1a ] ∩ S, and β may be chosen to be (πeae11 · · · a

ed
d )/ah

as in Proposition 3.2.9(2).)

Proof. Let βS be P -primary. Either β ∈ R or β ∈ S \R. Suppose that β ∈ R.

It then follows from the proof of Proposition 3.2.7(2) that P = Rad(πS) for some prime

element π ∈ R and that p 6⊆
⋃{

q | q ∈ Â∗(I)
}

. Moreover, if we suppose that p = πR

for some prime element π ∈ R\
⋃{

q | q ∈ Â∗(I)
}

, then since βS∩R ⊆ P ∩R = p = πR,

βS ⊆ πS ⊆ P . Therefore P = Rad(βS) ⊆ Rad(πS) ⊆ Rad(P ) = P .

For (2), suppose that β ∈ S \R. The preceding paragraph showed that β ∈ R

if and only if p 6⊆
⋃{

q | q ∈ Â∗(I)
}

, so we must have p ⊆
⋃{

q | q ∈ Â∗(I)
}

. The rest

follows from Proposition 3.2.9(1)⇔ (2).

Since I is height unmixed, Â∗(I) = AssR(R/I), so by Proposition 3.2.5, pS =

P .

This next corollary then classifies height one primes P of S such that ht(P ∩

R) = 1 and P is principal.

Corollary 3.2.12 Let R be a locally quasi-unmixed UFD, let a, b1, . . . , bn be an R-

sequence, let I = (a, b1, . . . , bn)R be height unmixed, and S = R[I/a]. If P is a nonzero

principal prime ideal in S and ht(P ∩R) = 1, then either:
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1. P = πS for some prime element π ∈ R \
⋃
{q | q ∈ AssR(R/I)}; or,

2. P = βS for some β ∈ S \R as in Theorem 3.2.11(2) with e = 1.

Proof. The prime element generating P is either in R or S \R. If that element

is in R, then by Proposition 3.2.5, (P ∩R) 6⊆
⋃
{q | q ∈ AssR(R/I)}.

If that element is in S\R, then by Theorem 3.2.11, (P∩R) ⊆
⋃{

q | q ∈ Â∗(I)
}

,

so the rest follows from Corollary 3.2.10.

3.3 The case where ht(P ∩R) > 1

This section deals with height-one prime ideals P of S for which a ∈ P . For the

best statement of results, we will assume a mild condition on the prime factors a1, . . . , ad

of a in Proposition 3.3.6, and for the results which follow it. Each of the results in this

section is an extension of the results of section 4 of [9] to the case where R is locally

quasi-unmixed and I is height unmixed.

Throughout this section we will continue to assume that R is a locally quasi-

unmixed unique factorization domain, that a, b1, . . . , bn are an R-sequence, and that

a factors uniquely as a = ac11 · · · a
cd
d , where the ai are non-associate prime elements

in R and the ci are positive integers. We will denote by J = (b1, . . . , bn)R, so that

I = (a, J)R.

Our first result, Proposition 3.3.1, is a variation on Lemma 3.1.5. We will use

this variation in later results of this section.

Proposition 3.3.1 Assume that a = ac11 · · · a
cd
d , where the ai are non-associate prime

elements in R and the ci are positive integers. Then for each i = 1, . . . , d, either

1. (ai, J)R = R (which holds if and only if aiS = S); or
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2. (ai, J)S = aiS, aiS ∩ R = (ai, J)R, and S/aiS ∼= (R/(ai, J)R)[X1, . . . , Xn], so

there is a one-to-one correspondence between the elements of Â∗((ai, J)R) and

Â∗(aiS) given by p (∈ Â∗(ai, J)) = P ∩ R with P ∈ Â∗(aiS) and P = pS. Also,

each q ∈ Â∗((ai, J)R) has ht(q) = n+ 1.

Moreover, (2) holds for at least one i = 1, . . . , d.

Proof. Observe that bj = ai((
∏
k 6=i ak)

bj
a ) ∈ aiS for each j = 1, . . . , d. Since

the reverse inclusion is obvious, aiS = (ai, J)S.

Clearly I ⊆ (ai, J)R for each i = 1, . . . , d. Also, since a, b1, . . . , bn is an R-

sequence, it is strongly analytically independent, so

(∗) H = Ker(R[X1, . . . , Xn]→ S) ⊆ IR[X1, . . . , Xn] ⊆ (ai, J)R[X1, . . . , Xn].

Then by Lemma 3.1.3, it follows that aiS ∩ R = (ai, J)S ∩ R = (ai, J)R, and S/aiS ∼=

(R/(ai, J)R)[X1, . . . , Xn].

Each ai is either a unit in S or not. Fix i, and suppose that ai is a unit in

S. Then aiS = S, and (ai, J)R = (ai, J)S ∩ R = aiS ∩ R = S ∩ R = R. It is clear

that 1 ∈ (ai, J)R ⊂ (ai, J)S = aiS. Now suppose ai is not a unit in S. Lemma 3.1.3

and (∗) give the desired correspondence between Â∗((ai, J)R) and Â∗(aiS). Moreover,

Â∗((ai, J)R) =
{
p ∈ Â∗(I) | ai ∈ p

}
, so ht(q) = n+ 1 for each q ∈ Â∗((ai, J)R).

Finally, since a, b1, . . . , bn is an R-sequence, it must have at least one minimal

prime p, and a = ac11 · · · a
cd
d ∈ p, so ak ∈ p (and thus (2) holds) for some k.

Remark 3.3.2 Let p ∈ Spec(R) have ht(p) = n+ 1. Then the following are equivalent:

1. p ∈ Â∗(I);

2. pS is a height-one prime ideal;
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3. ht(pS) = 1;

4. there is a prime ideal P of S such that ht(P ) = 1 and P ∩R = p;

5. pS ∈ Â∗(aS) and p = pS ∩R.

Proof. (5)⇒ (1)⇒ (2) by Lemma 3.1.5. (2)⇒ (3) is clear. For (3)⇒ (4), let

P be a height-one prime divisor of pS. Then p ⊆ pS ∩R ⊆ P ∩R, and n+ 1 = ht(p) ≤

ht(P ∩R) ≤ n+ 1. Therefore p = P ∩R.

For (4)⇒ (5), we see that by Lemma 3.1.15(3), the fact that there is a height-

one prime lying over p tells us that p ∈ Â∗(I). So by Lemma 3.1.5, pS = P ∈ Â∗(aS)

and pS ∩R = P ∩R = p.

Our next proposition, which is an extension of [9, Proposition 4.5], examines

height one prime ideals of R which contain a.

Proposition 3.3.3 If p is a height-one prime ideal in R such that a ∈ p, then p = aiR

for some i = 1, . . . , d. Also, pS = aiS is a (height-one) prime (resp., primary) ideal

(resp., = S) if and only if (ai, J)R is a (height n+1) prime (resp., primary) ideal (resp.,

= R).

Proof. The first statement follows from Remark 3.2.6. By Proposition 3.3.1,

pS = aiS = S if and only if (ai, J)R = R. If pS = aiS is prime (resp., primary) then by

Proposition 3.3.1 pS ∩ R = aiS ∩ R = (ai, J)R is prime (resp., primary). Note that if

pS is prime or primary and ht(pS) = 1, then by Proposition 3.3.1 ht((ai, J)R) = n+ 1.

If (ai, J)R is prime (resp., primary) then aiS is prime (resp., primary). Also,

if (ai, J)R is prime or primary and ht((ai, J)R) = n+ 1, then ht(aiS) = 1.

The following result extends [9, Remark 4.6], and strengthens the conclusions

of Proposition 3.2.7(1).
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Remark 3.3.4 Let x be a nonzero nonunit in R such that xS is a primary ideal, let

P = Rad(xS), let P ∩ R = p, and assume that ht(p) > 1. Then there exists an i ∈

{1, . . . , d} such that Rad(aiS) = Rad(xS) = P , Rad((ai, J)R) = p, and P ∩R ∈ Â∗(I).

Also,

1. if I is height unmixed, then (ai, J)R and aiS are primary.

2. if xS is prime, then aiS = P and (ai, J)R = p.

Proof. By Lemma 3.1.15(3), a ∈ p ∈ Â∗(I) and ht(p) = n + 1, and a ∈

Rad(xR). Further, x ∈ P ∩ R = p, so there is an asymptotic prime divisor q of xR

such that xR ⊆ q ⊂ p, and then ac11 · · · a
cd
d = a ∈ Rad(xR) ⊆ q. Therefore ai ∈ q

for some i ∈ {1, . . . , d} and aiR ⊆ q. Both aiR and q are height-one prime ideals,

so aiR = q. Therefore xR ⊆ aiR ⊆ p, so xS ⊆ aiS ⊆ pS ⊆ P , and then we have

P = Rad(xS) ⊆ Rad(aiS) ⊆ Rad(pS) ⊆ P . In particular, Rad(xS) = Rad(aiS) = P .

Via the one-to-one correspondence given in Proposition 3.3.1, this means that (ai, J)R

has only one asymptotic prime divisor, p, and Rad((ai, J)R) = p.

For (2), assume that xS is in fact prime. Then the above holds and P = xS ⊆

aiS ⊆ pS ⊆ P gives us aiS = P . That (ai, J)R = p follows from Proposition 3.3.1.

For (1), assume that I is height unmixed. Then since R is a UFD, S sat-

isfies (S2) by [5, Theorem 2], so Rad(aiS) = P implies that aiS is P -primary and

Rad((ai, J)R) = p implies (ai, J)R is p-primary.

We use the following definitions from [9]. These definitions will allow us to

obtain sharper conclusions for the following results.

Definition 3.3.5 1. With a1, . . . , ad as above, we say that a1, . . . , ad satisfy the Rad-

ical Property with respect to J = (b1, . . . , bn)R if for each i = 1, . . . , d it holds that

a1 · · · ai−1ai+1 · · · ad /∈ Rad((ai, J)R).
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2. A product-quotient of elements x1, . . . xm in R is a product xn1
1 · · ·x

nd
d where at

least one of the ni > 0 and possibly some nj are nonpositive.

Proposition 3.3.6 Let R be a locally quasi-unmixed UFD, let a, b1, . . . , bn be an R-

sequence, let I = (a, b1, . . . , bn)R be height unmixed, and S = R[I/a]. Let P be a height-

one prime ideal in S, let p = P∩R, and assume that ht(p) > 1 and that P = Rad(βS) for

some β ∈ S. Then P = Rad(δS) for some product-quotient δ of a1, . . . , ad. Moreover,

if a1, . . . , ad satisfy the Radical Property with respect to J , then aiS is P -primary for

some i ∈ {1, . . . , d} and (ai, J)R is p-primary.

Proof. If ht(p) > 1, then a ∈ p, I ⊆ P ∩R, and P = pS, by Lemma 3.1.15(3).

If β ∈ R, then by Proposition 3.3.4, P = Rad(aiS) for some i ∈ {1, . . . , d}.

Therefore assume that β /∈ R. Since a ∈ P = Rad(βS), there is a positive integer m

such that am = βγ for some γ ∈ S. Then by Lemma 3.2.3, we may write β = x
ah

, with

x ∈ Ih \ (Ih+1 ∪ aR) and h > 0. There are then two cases:

Case 1: γ ∈ R. Multiplying both sides of am = βγ by ah, we obtain am+h =

a
c1(h+m)
1 · · · acd(h+m)

d = xγ in R. If γ is a unit in R, then β = x/ah = (ah+mγ−1)/ah =

aγ−1 ∈ R, which is a contradiction. Thus x = ωae11 · · · a
e1
d , where ω is a unit in R,

ej ≤ cj(h + m) for each i = 1, . . . , d, el > 0 for at least one l and ek < ck(h + m) for

at least one k (since γ is a non-unit). Therefore β = x
ah

= ωae1−hc11 · · · aed−hcdd and at

least one el − hcl < 0, since β /∈ R. Reorder the subscripts so that β = u
v , where u =

ωae1−hc11 · · · aei−hcii , v = a
ei+1−hci+1

i+1 · · · aei+j−hci+j

i+j (for some i, j such that 1 ≤ i < j ≤ d)

and the exponents of u and v are all positive. If afS = S for f = i + 1, . . . , j, then

βS = (u/v)S = uS = (ae1−hc11 · · · aei−hcii )S, so am ∈ Rad(βS) for some m ∈ {1, . . . , i}.

Since clearly β ∈ (amS), P = Rad(βS) = Rad(amS) as desired.

Therefore we may assume that for at least one f ∈ {i + 1, . . . , i + j}, afS 6=
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S, say for f = i + 1. Then P = Rad(δS) for the product-quotient δ = u/v of

a1, . . . , ad. It follows from this that u = v(u/v) = vβ ∈ vS ∩ R ⊆ a
ei+1−hci+1

i+1 S ∩

R ⊆ ai+1S ∩ R = (ai+1, J)R, by Proposition 3.3.1. Therefore u ∈ (ai+1, J)R, so

a1 · · · ai ∈ Rad((ai+1, J)R). It follows that if a1, . . . , ad satisfy the Radical Property

with respect to J , this is a contradiction, hence P = Rad(amS) for some m ∈ {1, . . . , i},

and then Rad((am, J)R) = p by Proposition 3.3.1. Additionally, since R is a UFD and

I is height unmixed, S satisfies (S2), thus amS is P -primary and by Proposition 3.3.1

so (am, J)R is p-primary.

Case 2: γ ∈ S \R. Using Lemma 3.2.3, there exists y ∈ Ik \ (Ik+1 ∪ aR) with

k > 0 such that γ = y/ak. Then ah+m+k = xy ∈ R, so the argument follows similarly.

The following corollary shows that if a1, . . . , ad satisfy the Radical Property

with respect to J , then for each q ∈ Â∗(I), we can know whether qS has a principal

primary ideal from q itself.

Corollary 3.3.7 Let R be a locally quasi-unmixed unique factorization domain, let

a, b1, . . . , bn be an R-sequence, let I = (a, b1, . . . , bn)R be height unmixed, and S =

R[I/a]. Assume that a1, . . . , ad satisfy the Radical Property with respect to J . Then for

each q ∈ Â∗(I) the following are equivalent:

1. qS has a principal primary ideal;

2. (ai, J)R is q-primary for some i ∈ {1, . . . , d};

3. aiS is qS-primary for some i ∈ {1, . . . , d}.

Proof. (1) ⇒ (3) by Proposition 3.3.6. (2) ⇔ (3) by Proposition 3.3.1.

(3)⇒ (1) is clear.
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Corollary 3.3.8 Let R be a locally quasi-unmixed unique factorization domain, let

a, b1, . . . , bn be an R-sequence, let I = (a, b1, . . . , bn)R be height unmixed, and S =

R[I/a]. Assume that a1, . . . , ad satisfy the Radical Property with respect to J and that

P is a height-one prime ideal of S such that ht(P ∩ R) > 1. Then the following are

equivalent:

1. P is a principal prime ideal;

2. (ai, J)R = P ∩R is prime;

3. aiS = P .

Proof. (2) ⇔ (3) by Proposition 3.3.3. (3) ⇒ (1) is clear. (1) ⇒ (3) by

Remark 3.3.4 and the proof of Proposition 3.3.6.

Our last result in this section considers asymptotic prime divisors of πS, where

π is a prime element of R. We showed in Proposition 3.2.5 that πS is prime if and only

if π /∈
⋃
{q | q ∈ AssR(R/I)}, so here we assume that π ∈

⋃
{q | q ∈ Â∗(I)}, which is

naturally contained in the union of the associated prime divisors of R/I. Furthermore,

by Proposition 3.3.1, we know that aiS is primary if and only if (ai, J)R is primary, so

we may also assume that πR /∈ {a1R, . . . , adR}.

Proposition 3.3.9 Let R be a locally quasi-unmixed unique factorization domain, let

a, b1, . . . , bn be an R-sequence, let I = (a, b1, . . . , bn)R be height unmixed, and S =

R[I/a]. Let Â∗(I) = {q1, . . . , qm} and let l be the non-negative integer such that (ai, J)R

is a primary ideal for i = 1, . . . , l but not for i = l + 1, . . . , d. Define the set W0

to be W0 =
{
q ∈ Â∗(I) | q = Rad((ai, J)R) for some i = 1, . . . , l

}
= {q1, . . . , qr} (so

0 ≤ r ≤ l, since Rad((ai, J)R) = Rad((aj , J)R) may hold for some i 6= j in {1, . . . , l}).

Let π ∈
⋃{

q | q ∈ Â∗(I)
}

be a prime element such that πR /∈ {a1R, . . . , alR}. Assume
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that π is in exactly s (0 ≤ s ≤ r) of the elements of W0 and exactly k of the elements

of Â∗(I) \W0. Then

1. πR ∈ {al+1R, . . . , adR} if and only if πS has exactly s + k asymptotic prime

divisors. At least s of them have a principal primary ideal. (If we also have that

I is height unmixed and a1, . . . , ad satisfy the Radical Property with respect to J ,

then exactly s of the asymptotic primes of πS have a principal primary ideal.)

2. πR /∈ {al+1R, . . . , adR} if and only if πS has exactly s + k + 1 asymptotic prime

divisors. At least s of these have a principal primary ideal, and at least s + 1 of

them have a principal primary ideal if I is height unmixed and there exist h and

x as in Proposition 3.2.9(3) for p = πR.

Proof. For each of the s elements q ∈W0 and the k elements q ∈ Â∗(I) \W0

that contain π, qS is a height-one prime ideal containing πS, and therefore a minimal

(and hence asymptotic) prime divisor of πS. Thus πS has at least s + k asymptotic

primes. For each of the s elements W0 such that π ∈ q, we have by hypothesis that q

contains a primary ideal (ai, J)R for some i = 1, . . . l. Then by Proposition 3.3.1, qS

contains the principal primary ideal aiS, so at least s of the asymptotic primes of πS

have a principal primary ideal. (If πR ∈ {al+1R, . . . , adR}, I is height unmixed, and

a1, . . . , ad satisfy the Radical Property with respect to J , then by Proposition 3.3.6,

these are the only prime divisors of πS that have principal primary ideals.)

Let p = P ∩ R, where P is any asymptotic prime of πS. Then we have that

either ht(p) = 1 or ht(p) = n+ 1 by Lemma 3.1.15(3). Also by Lemma 3.1.15, we have

that ht(p) = n + 1 if and only if a ∈ p if and only if p ∈ Â∗(I), or equivalently, that

ht(p) = 1 if and only if a /∈ p. Note that if ht(p) = 1, πR = p, so a /∈ p = πR and

πR /∈ {al+1R . . . , adR}. Further, P = πR[ 1a ]∩S, and by Proposition 3.2.9 πR[ 1a ]∩S has
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a principal primary ideal if and only if there exist x and h as in Proposition 3.2.9(3).

Thus if there exist such x and h, πS has at least s+ 1 asymptotic primes with principal

primary ideals.

If πS has exactly s+k+1 asymptotic prime divisors, we must have πR[ 1a ]∩S is

an asymptotic prime of πS in addition to the s+k elements qS ∈ Â∗(aS) which contain

π. By Lemma 3.1.15, as we observed above, this means that πR /∈ {al+1R, . . . , adR}.

The reverse implication is clear.

Then if πS has exactly s + k asymptotic primes, by the above paragraph we

must have that πR ∈ {al+1R, . . . , adR}.

56



Chapter 4

Special Cases

For this chapter we will assume that R is a locally quasi-unmixed unique fac-

torization domain, a, b1, . . . , bn is an R-sequence, I = (a, b1, . . . , bn)R is height unmixed,

and S = R[I/a]. The results of sections 1 and 2 are extensions of the results in sections

5 and 6 of [9] repsectively.

4.1 When a is a primary element

In this section we consider the case where a is a power of a single prime element,

a = ac11 . If this is the case, we say that a is a primary element. This allows us to obtain

some additional results. In particular, we have a necessary and sufficient condition for

S to be a Krull domain with finite cyclic class group.

Our first result shows that if a is a primary element and Rad(I) is not prime,

then S is not a UFD.

Theorem 4.1.1 Let R be a locally quasi-unmixed UFD, let the elements a, b1, . . . , bn

be an R-sequence, let I = (a, b1, . . . , bn)R be height unmixed, and S = R[I/a]. Assume

a = ac11 is a power of a prime element a1 in R. If P is a height-one prime ideal in S
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that is the radical of a principal ideal, if ht(P ∩R) = 1, and if P ∩R ⊂ q ∈ Â∗(I), then

P ∩R ⊆ Rad(I). Therefore, if Rad(I) is not prime, then for each height-one prime ideal

p in R that is contained in at least one, but not all, asymptotic prime divisors of I it

holds that pR[ 1a ]∩S is not the radical of any principal ideal (and hence has no principal

primary ideals).

Proof. The second statement follows from the first, so it suffices to prove the

first.

Suppose that q 6= q′ are asymptotic primes of I such that P ∩ R ⊂ q and

P ∩ R 6⊆ q′. (Note that a /∈ P ∩ R since ht(P ∩ R) = 1 by Lemma 3.1.15.) Let

p = P ∩R = πR, so a /∈ πR, and P = πR[ 1a ]∩S, so P is the only prime ideal of S lying

over p by Lemma 3.1.15. We will show that P is not the radical of a principal ideal, so

this contradiction to the hypothesis shows that Rad(I) is prime.

Assume that P = Rad(βS) for some β ∈ S. Since ht(qS) = 1 by Lemma 3.1.5,

for any nonzero r ∈ p we have rR ⊆ πR ⊂ q, so rS ⊆ qS, thus qS is a minimal prime

divisor of rS. Therefore P is the only height-one prime divisor of βS, so β ∈ P \R. Now

let β = x
ah

, where x ∈ Ih \ (Ih+1 ∪ aR) and h > 0, as in Lemma 3.2.3. Then πm ∈ βS,

since P = Rad(βS) and π ∈ P ∩ R, so πm = βγ for some γ ∈ S. There are then two

cases.

Case (1): If γ ∈ R, πm = (xγ)/ah becomes ahπm = xγ. Since x /∈ aR and

a is a1-primary, unique factorization of R gives us x = ωaf1π
e for some unit ω of R,

some non-negative integer f < c1 and some e > 0. (Observe that e > 0 because

x = βah ∈ βS ∩ R ⊆ Rad(βS) ∩ R = P ∩ R = πR.) If f = 0, πeR = xR ⊆ I,

hence πR = p ⊂ Rad(I) ⊆ q′, a contradiction. Therefore f > 0, so β = x/ah =

(ωaf1π
e)/ahc11 = (ωπe)/ahc1−f1 , so πeR ⊆ ahc1−f1 S∩R ⊆ Rad(ahc1−f1 S)∩R ⊆ Rad(aS)∩R,

58



and Rad(aS) ∩ R = Rad(I) by Lemma 3.1.5. Then πe ∈ Rad(I) and π ∈ q′, which is a

contradiction, so γ /∈ R.

Case (2): Since γ ∈ S\R, let γ = y
ak

, where y ∈ Ik\(Ik+1∪aR) and k > 0, as in

Lemma 3.2.3. We have πm = x
ah

y
ak

, or πmah+k = πma
c1(h+k)
1 = xy, with h+k ≥ 2. Then

by unique factorization in R, xy ∈ ac11 R, which contradicts the fact that x /∈ ac11 R = aR

and y /∈ ac11 R = aR. So the assumption that I has two distinct asymptotic prime

divisors gives the contradiction that P is not the radical of a principal ideal.

The next theorem characterizes when S is a Krull domain with torsion class

group, under the running hypotheses of this section.

Theorem 4.1.2 Let R be a locally quasi-unmixed UFD, let the elements a, b1, . . . , bn

be an R-sequence, let I = (a, b1, . . . , bn)R be height unmixed, and S = R[I/a]. Assume

a = ac11 is the power of a prime element a1 ∈ R. Then the following are equivalent.

1. S is a Krull domain with finite cyclic class group.

2. S is a Krull domain with torsion class group.

3. Rad(I) is prime and I is integrally closed.

Proof. It is clear that (1)⇒ (2). By Theorem 3.1.10(2), (3)⇒ (1).

For (2) ⇒ (3): By Remark 3.1.8, S a Noetherian Krull domain implies that

I is integrally closed. If Rad(I) is not prime, then there is an element r ∈ I that is in

some q ∈ Â∗(I) and not in some other q′ ∈ Â∗(I). Then rR has a height-one prime

divisor p ⊂ q (and p 6⊆ q′), so by Theorem 4.1.1, pR[ 1a ] ∩ S = P (which has ht(P ) = 1

by Lemma 3.1.15(2)) has no principal primary ideal. But S has torsion class group, and

by [7, Proposition 6.8], this is equivalent to every height-one prime ideal of S having a

principal primary ideal, so we have a contradiction. Thus Rad(I) is prime.
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The following is a corollary to Proposition 3.3.6.

Corollary 4.1.3 Let R be a locally quasi-unmixed UFD, let the elements a, b1, . . . , bn

be an R-sequence, let I = (a, b1, . . . , bn) be height unmixed, and let S = R[I/a]. Assume

that a = ac11 for some prime element a1 of R, and that P is a height-one prime ideal in

S such that ht(P ∩R) > 1. If P is the radical of a principal ideal, then P = (P ∩R)S =

Rad(a1S) and Rad(I) = P ∩ R. Additionally, if I is height unmixed, then a1S is P -

primary and I is P ∩R-primary.

Proof. It follows from Proposition 3.3.6, since a1 satisfies the Radical Property

with respect to J .

The next remark restates Proposition 3.2.9 under the additional hypothesis

that a is a primary element, and again when a is a prime element.

Remark 4.1.4 Let R be a locally quasi-unmixed unique factorization domain, let the

elements a, b1, . . . , bn be an R-sequence, let I = (a, b1, . . . , bn)R be height unmixed, and

S = R[I/a]. Let a = ac11 be a power of a prime element a1 in R, let Â∗(I) = {q1, . . . , qm},

let a1 /∈ p = πR ⊆ q1∪· · ·∪qm, and let P = pR[ 1a ]∩S. Then it follows from Proposition

3.2.9 that p = πR is such that P has a principal primary ideal if and only if there exist

positive integers e, h and a nonnegative integer k such that πebk1 ∈ Ih\(aR∪q1I∪· · ·∪qmI)

(so k < c1), and then ((πeak1)/ah)S is P -primary. If a = a1 is a prime element in R,

then p = πR (6= aR) is such that P has a principal primary ideal if and only if there

exist positive integers e, h such that πe ∈ Ih \ (aR∪ q1I ∪ · · · ∪ qmI), and then (πe/ah)S

is P -primary.

Remark 4.1.5 Let R be a locally quasi-unmixed unique factorization domain, let the

elements a, b1, . . . , bn be an R-sequence, let I = (a, b1, . . . , bn)R be height unmixed, and

S = R[I/a].

60



1. If aiS = S for all but one i (say a1S 6= S), then the results in this section hold

concerning S. Since 1/(a2 · · · ad) is a unit in S and C = R[1/(a2 · · · ad)] is a UFD

such that aC = ac11 C, a, b1, . . . , bn is a C-sequence, and S = C[I/b] = C[I/ac11 ].

2. The results in this section hold for the Rees ring R(R, I), as is shown in the next

section.

4.2 Application to the Rees Ring

In this section we apply the previous results to the Rees ring R(R, I), where R

is a locally quasi-unmixed UFD, a, b1, . . . , bn are an R-sequence, I = (a, b1, . . . , bn)R and

S = R[I/a]. (Recall that R(R, I) = R[u, ta, tb1, . . . , bn], where u = 1/t, is a monoidal

transform over R[u].)

Remark 4.2.1 Let R be a locally quasi-unmixed unique factorization domain, let I be

generated by the R-sequence a, b1, . . . , bn, and let A = R[u], where u is an indeterminate.

Then A is a locally quasi-unmixed UFD, u, a, b1, . . . , bn is an A-sequence, and R =

R(R, I) = R[u, ta, tb1, . . . , tbn] = A[ au ,
b1
u , . . . ,

bn
u ]. Therefore the results in the previous

sections apply with A and u, a, b1, . . . , bn in place of R and a, b1, . . . , bn. Also, u is a

prime element in A, so by Lemma 3.1.5 there is a one-to-one correspondence between

the elements of AssR(R/uR) and the elements of AssA(A/(u, I)A), which have a natural

one-to-one correpsondence with AssR(R/I). (The respective sets of asymptotic primes

Â∗(uR), Â∗((u, I)A), and Â∗(I) are analogously in one-to-one correspondence.) Also,

if I is height unmixed,then the results of section 4.1 apply to R = R(R, I).

For the next proposition we temporarily lift the restrictions on a, b1, . . . , bn and

R for the sake of generality. The proposition is essentially a restatement of Theorem

3.1.10 in terms of R as a monoidal transform over R[u].
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Proposition 4.2.2 Let R be an integrally closed Noetherian domain, let a, b1, . . . , bn be

an asymptotic sequence, and I = (a, b1, . . . , bn)R. Let R = R(R, I) and let A = R[u].

Then:

1. If I is integrally closed, we have that R is integrally closed and there is a surjective

homomorphism φ : Cl(R) → Cl(R[ 1u ]) whose kernel is generated by the classes of

elements of Â∗(uR).

2. If R is locally quasi-unmixed, I is integrally closed, Rad(I) is prime (in particular,

if I is primary), and if Cl(R) is torsion (resp. finite, resp. trivial), then Cl(R) is

torsion (resp. finite, resp. finite cyclic).

3. If I is prime, then uR ∈ Spec(R) and the divisor class groups Cl(R) and Cl(R)

are isomorphic.

Proof. Note that Cl(R[ 1u ]) = Cl(R[u, t]), and by [7, Theorem 8.1] Cl(R[u, t]) =

Cl(R[u]) = Cl(R).

For (1), if I is integrally closed and generated by an asymptotic sequence, then

so is (u, I)A. (That (u, I)A is integrally closed if I is follows from [32, Proposition

1.3.5].) Thus (1) follows from Theorem 3.1.10(1) with R in place of S and u in place of

a.

For (2), if I is integrally closed and Rad(I) is prime, then so is (u, I)A, so (2)

follows from Theorem 3.1.10(2).

For (3), uA is prime, and if I is prime, then so is (u, I)A, so (3) follows from

Theorem 3.1.10(3).

For the next proposition, observe that if R is a locally quasi-unmixed domain,

P is a height-one prime ideal of R(R, I) such that ht(P ∩ R[u]) = 1, then by Lemma

3.1.15, u /∈ P . In particular, if P ∩ R[u] ⊆ (u, q)R[u] for some q ∈ Â∗(I), then in fact
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P ∩ R[u] ⊆ qR[u]. This proposition is essentially a restatement of Proposition 4.1.1 in

terms of the Rees ring.

Proposition 4.2.3 Let R be a locally quasi-unmixed unique factorization domain, let

a, b1, . . . , bn be an R-sequence, and let I = (a, b1, . . . , bn)R be height unmixed. Let A =

R[u], where u is an indeterminate and R(R, I) = R. If P is a height-one prime ideal in

R that is the radical of a principal ideal, if ht(P ∩A) = 1, and if P ∩A ⊆ qA for some

q ∈ Â∗(I), then P ∩ A ⊆ (Rad(I))A. Therefore, if Rad(I) is not prime, then for each

height-one prime ideal p in A that is contained in at least one, but not all, asymptotic

prime divisors of (u, I)A it holds that pR[u, t] ∩ R is not the radical of any principal

ideal (and hence has no principal primary ideals).

Proof. Note that u is a prime element in A, Â∗(IA) =
{
qA | q ∈ Â∗(I)

}
,

and Â∗((u, I)A) =
{

(u, q)A | q ∈ Â∗(I)
}

. By the remarks preceding the proposition,

if P ∩ A ⊂ (u, q)A for some q ∈ Â∗(I), then P ∩ A ⊆ qA. In particular, if P ∩

A ⊂
⋂{

(u, q)A | q ∈ Â∗(I)
}

= Rad((u, I)A), then P ∩ A ⊆
⋂{

qA | q ∈ Â∗(I)
}

=

(Rad(I))A. Thus the rest follows from Theorem 4.1.1.

It follows immediately from Proposition 4.2.3 that R is not a UFD if Rad(I) is

not prime. The next result gives a characterization of when R is a locally quasi-unmixed

UFD.

Theorem 4.2.4 Let R be a locally quasi-unmixed UFD, let the elements a, b1, . . . , bn be

an R-sequence, and let I = (a, b1, . . . , bn)R be height unmixed. Then R(R, I) is a locally

quasi-unmixed UFD if and only if I is prime, and then uR(R, I) is a prime ideal.

Proof. If I is prime, R(R, I) is a UFD and uR(R, I) is prime by Proposition

4.2.2(3).
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For the converse, assume I is not prime. By Proposition 4.2.3, if I is not

primary (and hence by Remark 3.1.9 Rad(I) is not prime), then R(R, I) is not a UFD,

so we may assume that I is primary, say Rad(I) = q. Then uR(R, I) is primary for

(u, q)R(R, I), by Lemma 3.1.5, and u is part of a minimal basis for (u, q)R(R, I) since

all elements of negative degree are a multiple of u, hence (u, q)R(R, I) has more than

one generator and is not a principal prime ideal. Therefore R(R, I) is not a UFD.

The following corollary strengthens Corollary 3.1.12.

Corollary 4.2.5 Let R be a locally quasi-unmixed unique factorization domain and let

a, b1, . . . , bn be an asymptotic sequence. If I is prime, then each of the rings Sj = R[I/bj ]

is a locally quasi-unmixed UFD and bjSj ∈ Spec(SJ).

Proof. Let R(R, I) = R. If I is prime, then by Proposition 4.2.2(3) R is

a UFD, so each Sj = R[1/(tbj)] is a UFD. However, Sj = Sj [tbj , 1/(tbj)], and tbj is

transcendental over Sj and therefore prime in Sj [tbj ]. By Nagata’s Theorem, Sj [tbj ] is

a UFD, so Sj is also a UFD.

The next theorem is a restatement of Theorem 4.1.2 for Rees rings.

Theorem 4.2.6 Let R be a locally quasi-unmixed unique factorization domain, let the

elements a, b1, . . . , bn be an R-sequence, and let I = (a, b1, . . . , bn)R be height unmixed.

Let R(R, I) = R. The following are equivalent:

1. R is a Krull domain with finite cyclic class group.

2. R is a Krull domain with torsion class group.

3. Rad(I) is prime and I is integrally closed.

Proof. I is primary and integrally closed if and only if (u, I)A is primary and

integrally closed. Furthermore, (u, I)A is primary if and only if Rad((u, I)A) is prime,
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by Remark 3.1.9, so I is primary if and only if Rad(I) is prime. Also, u is prime in A,

so the result follows from Theorem 4.1.2.

Corollary 4.2.7 Let R be a locally quasi-unmixed UFD, let the elements a, b1, . . . , bn

be an R-sequence, let I = (a, b1, . . . , bn)R be height unmixed, and S = R[I/a]. Let

R(R, I) = R. If the equivalent conditions in Theorem 4.2.6 hold, then for j = 1, . . . , n

each Sj = R[I/bj ] is a Krull domain with finite cyclic class group.

Proof. If R is a Krull domain with finite cyclic class group, then so is Sj =

R[1/(tbj)] = Sj [tbj , 1/(tbj)] (by [7, Corollary 7.2] Cl(R)→ Cl(R[1/(tbj)]) is a surjection,

and since the homomorphic image of a finite cyclic group is finite and cyclic). The

element tbj is transcendental over Bj , thus prime in Sj [tbj ], so Sj is a localization of

Sj [tbj ] at a prime element, so by [7, Corollary 7.3], Cl(Sj [tbj ]) ∼= Cl(Sj). Finally, using

[7, Theorem 8.1] we have that Cl(Sj [tbj ]) ∼= Cl(Sj).

Proposition 4.2.8 Let R be a locally quasi-unmixed UFD, let a, b1, . . . , bn be an R-

sequence, let I = (a, b1, . . . , bn)R be height unmixed, and S = R[I/a]. Let R(R, I) = R.

Assume that Rad((x/ah)S) = qS for some q ∈ Â∗(I). If thx, ta is an R-sequence, then

Rad(I) = q and Rad(aS) = qS. Additionally, if I is height unmixed, then I is q-primary

and aS is qS-primary.

Proof. Let S = S[ta, 1/(ta)] = R[1/(ta)]. Then uS = aS.

By hypothesis, Rad((x/ah)S) = qS, so Rad(thxS) = qS, so thxS ∩ R =

(thxR :R (ta)kR) and Rad(thxS ∩ R) = qS ∩ R = (u, q)R for all large integers

k. (Note that (u, q)S = (a, q)S = qS.) Therefore, if thx, ta is an R-sequence, then

Rad(thxR) = (u, q)R. Since u is a prime element in R[u], it follows from Corollary 4.1.3

that Rad((u, I)R[u]) = (u, q)R[u] and that Rad(uR) = (u, q)R. Therefore Rad(I) = q,
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and by Lemma 3.1.5, Rad(aS) = qS. The final statement follows from [5, Theorem 2].

The last result characterizes when pR[u, t] ∩ R(R, I) has a principal primary

ideal and when it is a principal prime ideal, where p ⊆
⋃
{(u, q)A | q ∈ Â∗(I)}.

Proposition 4.2.9 Let R be a locally quasi-unmixed UFD, let the elements a, b1, . . . , bn

be an R-sequence, let I = (a, b1, . . . , bn)R be height unmixed, and S = R[I/a]. Let

R(R, I) = R and R[u] = A. Let p = πA be a height-one prime ideal in A such that

u /∈ p ⊆
⋃{

(u, q)A | q ∈ Â∗(I)
}

, let P = pR[u, t] ∩ R, and let Â∗(I) = {q1, . . . , qm}.

Then the following hold:

1. P has a principal primary ideal if and only if there exist positive integers e, h such

that πe ∈ (u, I)hA \ (uA∪ (u, q1(u, I)hA∪ · · · ∪ (u, qm)(u, I)hA), and then (πeth)R

is P -primary.

2. P is a principal ideal if and only if e in (1) can be chosen to be 1.

Proof. (1) follows from Remark 4.1.4, and (2) follows from (1) and Corollary

3.2.10.
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Chapter 5

Future Directions for Research

The Rees ring R = R[It, t−1] is often referred to as the extended Rees algebra,

while the R-algebra R[It] is often referred to as the Rees algebra. As we have seen,

the extended Rees algebra may be viewed as a monoidal transform over R[t−1], and

this allowed us to easily apply our results to the extended Rees algebra case. We

will investigate which of the results hold for the (unextended) Rees algebra, R[It]. In

particular, there is a notion of a Rees algebra for modules (which generalizes R[It]), but

nothing analogous to the extended Rees algebra [6]. Thus to generalize our results to

the module case, we will first see how they extend to the Rees algebra R[It].

There is also a notion of the extended Rees algebra and asymptotic primes for

multiplicative Noetherian lattices, where asymptotic primes of lattice elements show up

as the centers of Rees valuations [30]. Therefore we will investigate which of our results

transfer to the Noetherian multiplicative lattice case.
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