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EPIGRAPH

Far away in the heavenly abode of the great god Indra, there is a wonderful net that

stretches out indefinitely in all directions. At each node of the net is hung a single

glittering jewel. If we select one of these jewels for inspection we will discover that in its

polished surface are reflected all the other jewels in the net, infinite in number, with each

reflected in this one jewel reflecting all the others, so that the process of reflection is

infinite.

—-Avatamsaka Sutra

Fortney & Onellion Seeking Truth: the With Doubt
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ABSTRACT OF THE DISSERTATION

Multivariate Empirical Dynamic Approaches to State-Dependence in Ecological
Dynamics and Management: A practical, mathematical investigation into

sidestepping reductionism in the irreducible natural world

by

Ethan Robert Deyle

Doctor of Philosophy in Oceanography

University of California, San Diego, 2015

Professor George Sugihara, Chair

In this dissertation, I investigate a series of seemingly disparate topicsÑthe

theorem of a mathematician working on turbulence in fluid flows, the collapse of the

great California sardine fishery in the mid 20th century, competition between zooplankton

grazers in a marine mesocosm, and the occurrence of influenza in the tropics. All of

the work, however, is motivated by the ongoing endeavor to develop ecosystem-based

approaches to fisheries management. Ecosystem-based management remains an open

problem in part because the fundamental complexity of natural systems does not readily
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map onto the set of tools we’ve developed through our very successful accomplishments

in engineering. In combination, the chapters of this thesis address this disparity by

developing practical, empirical tools for studying and managing ecosystems that directly

address the complex reality of nature.
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Chapter 1

Introduction

Caveat

For the author, this introduction is both the first and last bit of substantial writing

for quite a stretch of time that does not need to pass anonymous journal or grant review.

As such, the author’s long repressed personal writing idiom, now unchecked and having

finally found outlet, has proceeded to run rampant through the text. The reader may well

find it excessively pedantic, self-indulgent, and possibly even inflammatory. They may

also find it repetitive, verbose, and possibly even redundant. I offer my sincere apologies

(to my committee in particular), and ask for the reader for their patience in getting to the

later chapters, where much greater restraint was exercised.

Humans have generally found it is most intelligent to design devices and systems

that behave predictably and reproducibly. As a mundane example, consider a bike pump.

Simple action on one end (pumping) produces simple reaction on the other end (air-flow).

This is what a bicycle pump doesÑnight or day, Tuesday or Sunday, summer or winter.

When a bicycle pump ceases to do these things, it is no longer a bicycle pump. It is a

broken bicycle pump.

What relevance does a metaphoric bicycle pump have to ecology? It should have

1
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very little. Unlike a bike pump, the natural world is full of complexity. But what does

“complexity” mean in this context? We might consider a watch complex. It has many

small, intricate parts. However, like a bicycle pump, the watch does the same thing day

after day; simple, unchanging cycle upon cycle. This is not the complexity that defines

the natural world.

We might instead consider an automated automobile assembly line complex. It

has many sophisticated parts- robotic arms with six degrees of freedom that grasp, weld,

and drill. However, the whole system involves a linear chain of causative events that

takes the same set of inputs (stamped sheet metal, glass panes, molded plastic bumpers,

nuts, bolts, paint, etc. etc.) and produces a fixed product (a Kia Sorrento). This is also

not the complexity of the natural world.

Rather, natural systems typically have many components that act with mutual

interdependence. This then gives rise to a range of complex, dynamic behaviors including

thresholds, feedbacks, vicious cycles, regime shifts, and catastrophic change1. Central

to all this is state-dependence. When system components, e.g. two species, have a

state-dependent interaction, the magnitude and even direction of the effect (whether it’s

small or large, positive or negative) can depend on the state of these variables or other

interdependent variables (e.g. climate). State dependence has fundamental consequences

for the way natural systems can be studied and managed, because systems with state-

dependence cannot be understood solely as the sum of their pairwise parts.

1.1 State dependence in principle

State-dependence in nature is well known in principal from empirical studies

and from theory. Indeed, empirical examples of state dependence can be found almost

1Recognizing here, of course, that some of these terms have murky, overlapping definitions.
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anywhere. A common case of state-dependence is when the presence of a third species

changes the behavior of two competitors (1, 2). For example, two co-occurring species

of tadpole decrease foraging in the presence of a predator, and this leads to less intense

competition between them (3).

This is just one very particular case. Work in semi-arid Peru found that predation

and competition among small mammals and rises and falls with inter-annual variations

in rainfall (4). In Atlantic-coast salt marshes, variations in vegetation structure funda-

mentally determining the impact of predators on insect herbivores (5). More broadly, fish

populations at low abundance show greater sensitivity to physical variability than at high

abundance (6, 7).

On the theoretical side, there are a host of general mechanisms that give rise to

state-dependent interactions- prey switching, adaptive foraging behavior (3), and even

alternating limiting resources. Perhaps most fundamental, nonlinear functional responses

readily give rise to state-dependent interactions. For example, in the very basic case

of two competitors with saturating feeding responses(8), competition between the two

will be state-dependent. At high food limitation, competition will be intense, but if the

relative prey abundance is large enough that consumers are food saturated, consumer

populations will not be actively competing with each other.

1.2 The Linear Expedient

The ecologists quantitative toolbox is chocked full of methods that were inherited

from the linear world of engineering and so are poorly suited to nonlinear, state-dependent

systems. Methods like PCA and ANOVA implicitly assume that system of study is

separable and thus contradict the fundamental idea of state-dependence. Does this make

sense in ecology?
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The common line of reasoning (when explicitly made) is to assume the system is

in equilibrium. This is critical, because systems that have nonlinear functional coupling

between components can still be treated with linear methods if they remain at or near

equilibrium over time (9). Thus, one can acknowledge the (ubiquitously accepted)

presence of nonlinear functional responses while still applying methods that do not

address state-dependence.

Facing ecosystem-based management, the equilibrium assumption looms large.

To my mind, there has been no convincing argument e.g. based on evolution or principles

of community assembly that we should a priori assume that systems are in equilibrium.

There is a sense by many that since equilibrium systems are easier to treat quantita-

tively, that equilibrium behavior is somehow more simple, more parsimonious than

non-equilibrium behavior. By Occam’s notoriously double-edged razor, the burden of

proof then falls on demonstrating that a system is not in equilibrium. This is false

reasoning!

Moreoever, evidence of nonlinear, non-equilibrium dynamics can be readily found

when tested properly. To say “properly” is an important caveat. Chaos first came on the

ecological scene through analysis of simple population models like the logistic equation,

ala (10). To address the implications of these simple models to understanding ecology

in the real world, May noted that the range of demographic parameters necessary for

chaos in these models were in fact feasible for some species (e.g. insects). However,

this led to later misunderstanding in subsequent works (e.g. (11)) that measuring single

species demographic parameters could be a test of chaos or nonlinearity in the intrinsic

dynamics of natural populations. This in turn led to conclusions that the growth rates and

demographics of many (e.g. non-insect) populations dismissed the possibility of chaos in

their dynamics. This overly interpreted exercise was in spite of the warning from May in

the original paper that “there are no single species populations in the natural world” and
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“replacing a population’s interactions ... by passive parameters may do great violence to

reality”.

In fact, more practical and empirical tests of nonlinearity and instability in

dynamics have arisen in the intervening decades. Most notable of these is S-maps,

which explicitly compares the predictive skill of equivalent linear and nonlinear models

of empirical time-series dynamics (12). Analysis across a wide range of systems and

populations has shown time (13) and time (14) again that marine populations, particularly

in the face of human exploitation (6), show nonlinear, non-equilibrium, state-dependent

dynamics. Straw men and hard evidence notwithstanding, there is a very fundamental

reason to be exceedingly wary of equilibrium assumptions in marine environments.

The ocean is not in equilibrium. It is dynamic. Highly so. Even if populations are

simply chasing the equilibrium under ever-changing environmental conditions (although

evidence speaks to the contrary (13)) , state dependence is still unavoidable. Thus, even

to call equilibrium dynamics an “assumption” may be too generous; in highly dynamic

environments like the coastal marine realm, it might be more fairly called a “myth”.

1.3 The challenges of Ecosystem-Based Management

Traditional “command and control” fisheries management sidesteps the well

known complex, interdependence of ecosystems by treating fish stocks as if they were,

well, bicycle pumps. The basic framework (written into Federal law!) relies on the

principle of maximum sustainable yield, which involves a simple calculus between the

reproductive potential of a stock and the mortality from fishing. The management target

is the highest rate of fishing possible while still maintaining fish out = fish in.

Ecosystem-based management seeks to acknowledge that fish and fishing do not

exist in a vacuum, but occur in the context of a complex, interdependent system. Fishing
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on a large predator that might be sustainable if it occurred in isolation may quickly

deplete the stock when fishing pressure is also applied to its prey. Fishing that may be

sustainable for one stretch of time may be disastrous if continued when the environment

shifts to a less favorable regime.

State dependence is central to these ecosystem behaviors. If you acknowledge the

ecosystem, you must allow for state-dependence. Yet despite the long list of laboratory,

field, and theoretical demonstrations of state-dependence in principle, acknowledging and

addressing state-dependence in practice has been slow. While the misleading equilibrium

assumption looms large, the biggest barrier to effectively treating state-dependence in

ecosystem management may well be simply a lack of practical methodology. Major

problems can arise in applying both traditional statistics and parametric model-based

approaches to address nonlinear, state-dependent systems.

1.3.1 Correlation

Nevertheless, statistical methods based on a linear framework are still commonly

applied to ecosystems, despite the potential mismatch between the implicit assumption

of the methods and reality. Correlation is a great and foundational example. Despite the

well-rehearsed mantra “correlation does not imply causation” that we have inherited from

Bishop Berkeley, correlation and correlation-based approaches like principle components

analysis still remain a powerful paradigm for studying interactions in ecosystems. And

it can certainly bear fruit. For example, the Pacific Decadal Oscillation shows a strong

correlation to zooplankton populations like the krill Nyctiphanes simplex in the Southern

California Bight (15).

In other instances, however, correlation has produced little insight or outright

confusion. Correlations between populations and the environment can be hard to find

in marine ecosystems even where interaction is suspected (16), and even when they
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are identified, they frequently disappear when retested later in time (17). This reflects

the simple fact that systems with state-dependent dynamics are apt to produce mirage

correlations. That is, the magnitude and even sign of interactions is liable to change

through time (maybe even rapidly!), and so correlations can be positive, negative, or

in-significant depending on when you look at the system. In this way, not only does

“correlation not imply causation”, but equally important lack of correlation does not imply

lack of causation.

Of course, these are all problems that can happen in nonlinear systems. This

also means that there are circumstances when correlation can potentially work. For

example, synchronization between populations and the environment has been observed

in numerous cases (18). This occurs when an external driver has a very strong influence,

so that the dynamics of the response system (e.g. a population) become entrained to

the driver. In this situation, the internal dynamics of the response no longer matter, and

lead to strong, persistent correlations. Thus, correlation and PCA can be well suited

e.g. to identify patterns due to strong environmental forcing. Witness that correlations

between fish species and the environment appear most robust along the edge of species

ranges (17), and indeed that in the previously mentioned case of Nyctiphanes simplex,

the Southern California Bight is on the edge of its range. However, it is important to

keep in mind that applying these methods will only identify a limited subset of possible

ecological relationships.

1.3.2 Problems modeling systems with state-dependent interactions

The obvious alternative to traditional statistics is parametric model-based ap-

proaches. There are a lot of reasons to like models. Models let you predict. They let you

understand interactions between two or more species, e.g. by taking partial derivatives.

You can also explore “what if” scenarios- e.g. what happens to species x if change fishing
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pressure on species y. Particularly appealing for management, they can let you explicitly

evaluate trade-offs (e.g. like Ecosim). And most relevant to the discussion at hand, it is

certainly possible to incorporate state-dependent behavior into ecological models.

Even so, using models to study ecosystems with nonlinear, state-dependent dy-

namics has some major roadblocks. Each particular model represents very specific

hypotheses about the way different variables interact and the choices, e.g. of functional

form, are often arbitrary. Importantly, even small differences in the functional form (e.g.

of species interactions) can lead to dramatically different conclusions about management

(19). Even if the correct model structure is somehow known a priori, fitting the coeffi-

cients of even simple population models (e.g. stock-recruitment relationships) can be

unreliable and grossly misleading (20, 21).

1.4 EDM as a solution

In contrast to these conventional approaches that have explicit or implicit assump-

tions (e.g. stable equilibrium dynamics, linearly separable cause-and-effect relationships,

simple parametric equations, etc.), Empirical Dynamic Modeling (EDM) relies on ex-

tracting system behavior directly from observed time series (12, 22-24). The essential

idea of EDM is to view a dynamic system from a geometrical perspective. At any point

in time the ecosystem occupies a single point in some n-dimensional state-space (e.g.,

Hutchinson’s n-dimensional niche), where each axis is a state variable like species abun-

dance or resource concentration. As the system changes over time, it occupies different

points in the state-space. This forms trajectories in the n-dimensional space that comprise

the geometric attractor (Figure 2). Time series of the state variables can then be viewed as

sequential projections of the attractor onto the coordinate axes. Just like model equation,

a dynamic system can also be completely described by these trajectories that it creates on
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its attractor manifold in state space. Moreover, the dynamics can be reconstructed from

the time-series simply by re-plotting them in multi-dimensional Cartesian space rather

than separately in the time-domain. In practice, all of the often important ecosystem

variables are not all measured together. This is where the embedding theorem of Takens

becomes important.

Takens’ Theorem states that instead of requiring observations of all n state

variables to construct an attractor from data, we can substitute lags of a single time series

for the unknown or unobserved variables. This allows the dynamics of a complex system

to be recovered from just a single time series.

The most immediate way to practically implement these ideas is with forecasting.

This single-variable forecasting with EDM can be an end unto itself (25), but can also

validate hypotheses about nonlinear dynamics (12) or environmental forcing (13, 23).

Recent work has specifically highlighted the power of forecasting with EDM (20, 21)

over parametric-based forecasting. In the most generous circumstances, e.g. when the

system equations are assumed to be exactly known, the empirical forecasts of EDM

are equivalent to the performance of other methods. In many other cases, EDM does

substantially better. One of the main objections to these methods based on Takens’

theorem has been that they are overly phenomenological. Indeed, univariate EDM on

its own does not address many of the needs of ecosystem-based management, such as

identifying and characterizing interactions or exploring different scenarios of environment

or management. Work by Dixon said. (23) showed how including multiple time-series in

the reconstruction can begin to address these criticisms.

In the damsel fish Pomacentrus amboinensis, spawning is known to coincide

with the lunar cycle (like many other reef fish). While the lunar cycle is simple and

linear, univariate EDM analysis shows that the larval supply is strongly nonlinear. But

by including additional factors in multivariate empirical dynamic models (EDM), Dixon
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et al. were able to go a step further. They show not only that there are wind and tidal

conditions for larval supply, but that these conditions must be met simultaneously to

create large larval supply.

In Chapter 2 of this dissertation, I revisit the idea of multivariate EDM explored

heuristically by Dixon et al. I show that multivariate EDM indeed on firm mathematical

group by explicitly expanding the mathematical proof of Takens’s theorem to include

multivariate time series data. In the remaining chapters, I build upon this foundation to

expand the multivariate EDM approach and demonstrate its emerging role for ecosystem-

based management.

1.4.1 Sardine: the most basic problem of physical-biological coupling

One aspect of ecosystem-based management referred to in the Magnusson-

Stevens Reauthorization Act is “to account for effects of environmental variation on fish

stocks and fisheries.” Even this one facet presents scientific questions both theoretical

and applied in nature. On a basic level, we need to identify predict the effect that different

environmental scenarios will have on population abundance and resilience. Critically,

even in this seemingly straightforward question of ecosystem-based management strains

conventional statistical and modeling approaches. Intuitively, it is clear that the effect

of the environment has to be nonlinear- when the environment goes far enough to either

extreme, it is bad for the species. But more importantly, there is comprehensive evidence

that the effect of the environment can be state-dependent (6, 7).

Debate over the management of Pacific sardine is a perfect example. Jacobson

and MacCall (26) found statistical correlation between log reproductive success (one

way of quantifying recruitment) and a three-year average of the Scripps Institution

of Oceanography (SIO) pier temperature (SST). They used a general additive model

to develop a management strategy for sardine that incorporated the influence of sea
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temperature. Based on this finding, the Pacific Fishery Management Council modified

the sardine management plan to afford extra protection when the SIO pier temperature is

unfavorable (27).

McClatchie et al. (28) repeated the correlation analysis of Jacobson and MacCall

with an additional 17 years of new data. Surprisingly they found that the statistical rela-

tionship between recruitment and SST is no longer significant when more recent data are

included in the analysis. McClatchie et al. argue that the SIO pier SST is a poor variable

to use for sardine management since it is a broad-scale, synoptic measure of conditions

in the California Current (29) that has no direct mechanistic link to sardine population

dynamics. They conclude that a more mechanistically motivated environmental index

must be developed that incorporates physical variables, larval predators, and prey. This

temporarily led to the suspension of the environmental control rule. However, subsequent

findings by Lindegren and Checkley (30) that used generalized additive models rather

than correlation led to conclusion that there is still a quantifiable effect of sea surface

temperature on Sardine in the recent decades, and led to revitalized discussions of a

temperature control rule for Pacific sardine.

As discussed above, using correlation as a measure of physical-biological inter-

action might be unwise, since it ignores the potential for state-dependent dynamics. So

despite the results of McClatchie et al., environmental forces reflected in large-scale,

synoptic variables like the SIO pier SST may in fact influence the Pacific sardine, but

in a state-dependent way. However, model based approaches also suffer difficulties.

Models represent very specific hypotheses. The so-called “environmental Ricker”, which

motivates the GAM analyses both of Jacobson & MacCall and of Lindegren & Checkeley,

is a great example. The traditional Ricker model describes the relationship between

recruitment and spawning stock biomass.
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R = Sexp(r(1−S/k))

From the classic work by Hjort (31), it has been understood for nearly a century

that recruitment is influenced by more than just stock size or number of eggs spawned.

Environmental conditions that affect larval retention or food supply during the critical

feeding period. To test hypotheses about environmental forcing, it has been common

practice to incorporate the environment (e.g. temperature, T ) into the Ricker model as

follows:

R = Sexp(r(1−S/k)+ψT )

This form has the convenience that it appears log-linear. That is, if we rewrite the

equations for the logarithm of recruitment, we have

ln(R) = [ln(S)+ r(1−S/k)]+ψT.

This form has the convenience that the effects of S and T are additive, and so

easily separable using GAM analysis. However, just because it is convenient doesn’t

mean it is correct. There are other perfectly reasonable ways to think of the environment

entering into the Ricker calculus. For example, growth can be a function of temperature,

Rt = St−D exp(r(Tt−D)(1−St−D/k))

or the carrying capacity

Rt = St−D exp(r(1−St−D/k(Tt−D))) .

Neither of these rather plausible mechanisms leads to separable effects amenable
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to the assumptions of GAMs.

This is not just talk and hand waving. While the analysis presented by Lindegren

and Checkeley appears to suggest that the GAM approach is robust across time (unlike

correlation), the different choices of L&C versus the original J&M in fact lead to different

conclusions over different periods of time (Table 1.1 below). If the original SIO pier SST

is used, the conventional F-test concludes there is no significant effect over the recent

period (1981-2010) studied by Lindegren and Checkeley, or the complete span studied

by McClatchie et al. (1935-63, 1981-2010).

In Chapter 3 of this dissertation, I show how re-examining environmental effects

on Pacific sardine using Empirical Dynamic Modeling tools suited to systems with state

dependence leads to a much clearer picture. We find that the original SIO pier SST

does have a significant effect on Pacific sardine, but that the effect is state-dependent.

Moreover, we show how multivariate EDM can be used to explore the effects of different

plausible environmental scenarios on sardine dynamics.

1.4.2 Interactions between trophically similar species

There are plenty more complicated questions to consider for ecosystem-based

management, particularly in trying to discern the multispecies effects of fishing. In

principle, there are a number of possible relationships that can exist between trophically

similar species (e.g. two planktivorous fish). The most well known, of course, is that two

species that share prey may have mutual indirect negative effects on each other due to

competition. Coupling by common predators can also lead to indirect effects, but depend

on the functional forms (e.g. the feeding response of the predator) (32). Some functional

forms can lead to apparent mutualism (mutual net positive effect between the two prey),

while others lead to apparent competition (mutual net negative effect). If prey preference

is introduced, the indirect effects can even be positive in one direct, but negative in the
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other. More importantly, in a system with state-dependent dynamics, the strength of these

various effects can wax and wane, meaning that the magnitude and sign of interactions

are apt to shift e.g. as the system transitions from bottom-up dominated to top-down.

Given that all these are possible in principle, how are we to ascertain which in

fact is relevant to a given ecosystem in practice? This question is difficult to answer with

linear statistics, as the interactions change in time, but are also difficult to answer with

models, as the conclusions depend greatly are difficult to evaluate choices of functional

forms and correct parameterization. Chapter 4, shows how EDM gives a straightforward

approach to answering these questions, and gives an equation-free method for tracking

and predicting species interactions for ecosystem study and management.

1.4.3 Related applied problems: the seasonality of influenza

Some of the same questions arising in EBM also arise in epidemiologyÑnamely,

how we understand the effect of the environment on ecology. It is universally appreciated

by residents of temperate countries like the U.S. that influenza is seasonal. You get the flu

in the winter. However, the environmental causes (and hence possibility for productive

public health policy) have continued to remain in debate. Part of this reason is that there

are many different potential mechanisms that coincide with winter in temperate countries.

In the winter, air temperature is colder. When air temperature is colder, people

spend more time indoors, and hence have increased contact rates. Winter also coincides

with weaker solar irradiance, which suppressed the production of Vitamin D, and could

in theory lead to decreased immune response. But correlation, as we know, does not

imply causation. Recent lab analysis has suggested another route, which is that dry air

in the winter increases the transmission rate of the virus due to longer residence time of

droplets in the air (33) or greater survival when airborne (34). As with our discussions

of ecosystem interactions above, there are multiple plausible mechanisms here that are
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valid in principle, and hence the cause cannot be determined without examining the real

system.

Human population scale analyses have focused on identifying correlative rela-

tionships. Hence, they have not addressed state-dependence in the environmental drivers

of influenza and have not satisfactorily resolved the conundrum. In temperate countries,

influenza outbreaks strongly correlate to the seasonal changes in temperature and absolute

humidity, and so correlation does not distinguish alternate hypotheses. In tropical coun-

tries, annual climate cycles are much weaker and influenza seasonality is much harder to

find. Naive interpretation (neglecting the nonlinear reality of epidemics) suggests that

there must be other factors at work in the tropics.

In 5 chapter of this dissertation, I use multivariate EDM methods to directly

examine global drivers of influenza outbreaks from country-level time series. By identi-

fying causal drivers rather than correlations, I show that despite the apparent differences

between temperate and tropical countries, absolute humidity and to a lesser extent tem-

perature drive influenza outbreaks globally. Using multivariate EDM, I also corroborate

a U-shaped relationship between absolute humidity and influenza at the population level

that has been suggested in principle by experiment.

1.5 Summary

Together, these chapters address develop multivariate EDM as a practical, em-

pirical tool for studying and managing ecosystems that directly address the complex

reality of nature. There remain many potential ways to refine and improve EDM methods.

The weighting schemes in simplex projection or S-maps can be modified to explicitly

considering non-Gaussian sampling error. Quasi-parametric forms can be included in

generalizations of S-maps to incorporate qualitative knowledge about constraints on
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species dynamics. Nevertheless, the work herein demonstrates that even simple imple-

mentations of multivariate EDM can lead to powerful and novel insights by removing the

disparity between the methods we use and the fundamental reality of state dependence in

nature.
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Table 1.1: Results of sequential F-test on Pacific sardine to detect effect of SIO SST.
Over an initial 30-year period, there appears to be a highly significant effect of tempera-
ture on (log recruitment). However, when examining a more recent period of time or
the entire span, the effect disappears. Using 3rd order thin-plate smoothing instead of
LOESS, as in (30), F-test finds no significant temperature effect over any of these time
periods.

  Resid. Df Resid. Dev Df Deviance F Pr(>F) 
1935-63, 1981-90 (Data Range of Jacobson & MacCall) 
 m1 29.138 26.164     
 m2 28.138 21.338 1 4.8256 6.3633 0.012 
 
1981-2010 (Data Range of Lindegren & Checkley) 
 m1 23.43 15.055     
 m2 22.43 14.984 1 0.0706 0.1056 0.75  
 
1935-63, 1981-2010 (Data Range of McClatchie et al.) 
 m1 46.641 34.516     
 m2 45.641 34.194 1 0.3219 0.4296 0.52  
        
 m1 lnR ~ 1 + lo(SSBt-2) 
 m2 lnR ~ 1 + lo(SSBt-2) + SSTt-2 
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Chapter 2

Generalized theorems for nonlinear

state space reconstruction

Abstract

Takens’ theorem (1981) shows how lagged variables of a single time series can

be used as proxy variables to reconstruct an attractor for an underlying dynamic process.

State space reconstruction (SSR) from single time series has been a powerful approach for

the analysis of the complex, non-linear systems that appear ubiquitous in the natural and

human world. The main shortcoming of these methods is the phenomenological nature

of attractor reconstructions. Moreover, applied studies show that these single time series

reconstructions can often be improved ad hoc by including multiple dynamically coupled

time series in the reconstructions, to provide a more mechanistic model. Here we provide

three analytical proofs that add to the growing literature to generalize Takens’ work and

that demonstrate how multiple time series can be used in attractor reconstructions. These

expanded results (Takens’ theorem is a special case) apply to a wide variety of natural

systems having parallel time series observations for variables believed to be related to

21
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the same dynamic manifold. The potential information leverage provided by multiple

embeddings created from different combinations of variables (and their lags) can pave the

way for new applied techniques to exploit the time-limited, but parallel observations of

natural systems, such as coupled ecological systems, geophysical systems, and financial

systems. This paper aims to justify and help open this potential growth area for SSR

applications in the natural sciences.

2.1 Introduction

A growing realization in many natural sciences is that simple idealized notions

of linearly decomposable, fixed equilibrium systems often do not accord with reality.

Rather, empirical measurements on ecosystems, metabolic systems, financial networks,

and the like suggest a more complex, but potentially more information-rich paradigm

at work [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. Despite a long history of linear

methods development in the engineering sciences, natural systems are generally not

well described as sums of independent frequencies that can be sensibly decomposed,

analyzed as non-interacting, and reassembled (e.g. Fourier or spectral analysis) in the

style of traditional reductionism [15, 16]. Rather, quantitative measurements show many

systems to be fundamentally non-equilibrium and unstable, in a manner more consistent

with nonlinear (state dependent) dynamics occurring on a strange attractor manifold M,

where relationships between state variables cannot be studied independently of the overall

system state [17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27]. This emergent comprehensive

view may help explain why many natural systems, such a those mentioned above, appear

so difficult to understand and predict. Mirage correlations are commonplace in nonlinear

systems where the manifold may contain trajectories that can temporarily exhibit positive

correlations between variables for surprisingly long time periods (and in some regions
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of the state space) and can subsequently and rapidly exhibit negative correlations or no

relationship in other time periods (and other regions of M). This transient property of

apparent non-stationarity in correlations is one of the confounding phenomena faced by

traditional linear models that require continual refitting and exhibit little or no predictive

power.

In this paper, we present two general theorems that addresses the problem of

characterizing the coupled dynamics of nonlinear systems using time series observations

on a manifold M. A special case of this theorem, attributed originally to Takens [12],

provided the first sketch of a mathematical proof for reconstructing a diffeomorphic

shadow manifold M′ using lags of a single time series as coordinate axes. The basic

idea, that was earlier demonstrated by Packard, Crutchfield, Farmer, and Shaw [28] and

Crutchfield [2], is that under generic conditions, a shadow manifold M′ can be created

using time-lagged observations of M based on a single observation function (Cartesian

coordinate variable) that is a smooth and smoothly invertible 1 : 1 mapping with M.

Subsequently, Sauer, Yorke, and Casdagli [29] provided a definitive proof and an explicit

extension of Takens’ theorem to fractal sets; their theorems are also more powerful than

the original theorem, as they show embeddings are not just generic in the sense of being

open and dense in the set of all mappings, but in fact almost every mapping in the sense of

prevalence [30] is an embedding (see [30] for an in-depth explanation of the advantages

of “prevalence” over “generic”). The theorem was also extended by Stark, Broomhead,

Davies, and Huke [31, 32] and Stark [33] to the certain classes of stochastic systems.

Practical methods for reconstruction have also been explored, particularly to address

the presence of noise in real data (e.g. [29, 34]). Casdagli et al. [35] give a thorough

treatment of such techniques based on transformations of univariate maps, showing how

optimal noise reduction can be achieved. These very important prior results all focused on

reconstruction from a single time series; however, as proven below, they can be extended
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to the more practically significant case where multiple observation functions are used to

generate M′.

Here we prove the more general case of multivariate embeddings (embeddings

using multiple time series and lags thereof), and show how time series information can

be leveraged if multiple time series and their lags are used to construct embeddings of

M′. These theorems pave the way for more extensive use of state space reconstruction

methods in practical applications where long time series may not be available, so that

multiple diffeomorphic embeddings may be created in factorial fashion to more fully

exploit the coupled non-redundant information that can be extracted from multiple time

series (multiple observation functions of dynamics on a manifold) to create predictive

shadow manifolds [36]. The use of multiple time series allows the possibility of noise

reduction that exceeds the limitations of univariate reconstructions in the presence of

noise [35].

The possibility of extending Takens’ theorem to allow lags of multiple observation

functions was mentioned in Remark 2.9 from [29], but was not explicitly proven. The

remark was also restricted to mappings strictly formed from consecutive lags, which is

not the only possibility that needs to be considered in the multivariate case. Given the

potential importance of multivariate reconstructions, we believe a full proof is required—

in particular, one that extends the generalization to non-consecutive lags. We show

how Takens’ theorem is a special case of our more general Theorem 2 (below) and by

following the structure of Takens’ original proof we clarify the logic and highlight the

restrictions and special cases (non-generic cases) that can arise in its application to real

world systems. We then give explicit proof of a stronger version of Remark 2.9 from

Sauer et al. [29] that allows non-consecutive lags. This third theorem is stronger than the

first two in the sense that it shows embeddings are prevalent and not just generic. For

those less familiar, we begin with a brief overview of some basic terms and concepts
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used in our proofs.

2.1.1 Some Basic Concepts of Embedding Theory

Consider the classic Lorenz attractor [37] shown in Figure 2.1a, consisting of

trajectories in three-dimensional space that together define a butterfly shaped surface or

manifold. For simplicity, a manifold can be thought of as a generalized, n-dimensional

surface embedded in some higher dimensional space, where the dimension of the manifold

may be fractal (as is the case for the Lorenz attractor). More generally, an embedding is

a multivariate transformation of a manifold that resolves all trajectories on the original

manifold without crossings. That is, an embedding is globally 1 : 1 in that it resolves

all singularities in trajectories that define the manifold (singularities are points on the

manifold where trajectories cross so that future paths are not uniquely determined).

An immersion is a local embedding that may not preserve the global topology of

a manifold. Rather an immersion preserves the topology of every local neighborhood of

the original manifold, so that each point of the tangent space of the immersed manifold

has the same dimensionality as the true manifold. Thus, an immersion is a mapping

that is 1 : 1 between any given “piece” of the true manifold and the immersed manifold.

However, this condition does not guarantee that the global topology is preserved. This

is illustrated in Figure 2.1c, where two different pieces of the original manifold are

mapped to the same piece of the immersed manifold, producing an immersion that is

not an embedding. Immersions are nonetheless a useful conceptual stepping stone for

constructing proofs about embeddings, since all embeddings are necessarily immersions.

The Lorenz attractor, Figure 2.1a, provides an excellent example to illustrate

both of these concepts. Consider two different multivariate functions that transform

the original manifold, Φy = (y(t),y(t− τ),y(t−2τ)) and Φz = (z(t),z(t− τ),z(t−2τ))

where τ is a small time lag as in Takens’ theorem. Both of these functions map points
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on the true manifold to points on a shadow manifold, shown in Figures 2.1b and 2.1c.

Examining these shadow manifolds, it is evident that both are immersions of the Lorenz

attractor, because zooming in on a particular piece of either will reveal that the tangent

spaces have the same dimensionality as the original. However, only Figure 2.1b is an

embedding that successfully reproduces the two lobes of the butterfly. The reconstruction

in Figure 2.1c, based on lags of the z-coordinate, fails to do so, because the two fixed

points of the original attractor have the same z-coordinate; they are mapped to the same

point on the shadow manifold, so the two lobes are stacked on top of each other. This

singularity is a consequence of a special, non-generic symmetry in the Lorenz system

that violates an assumption of Takens’ theorem. Figure 2.1d shows an embedding based

on lags of both y- and z-coordinates and is an example of the generalized mappings

addressed in this paper.

2.2 Results

2.2.1 Two Theorems in the Style of Takens: The Generic Case

Let M be a compact manifold of dimension m. A dynamical system is a dif-

feophorism φ defining the trajectories or “flow” on M for discrete time or a vector

field X on M for continuous time. Takens [12] proved generically that given φ and

M, a smooth observation function y : M → R can be used to construct an embed-

ding of M in 2m+ 1 dimensions under the transformation Φ(φ ,y) : M→ R2m+1 where

Φ(φ ,y)(x) = 〈y(x),y(φ(x)),y(φ 2(x)), . . . ,y(φ 2m(x))〉. Here the components

〈y(x),y(φ(x)),y(φ 2(x)), . . . ,y(φ 2m(x))〉

correspond to time-lagged observations of the dynamics on M defined by φ .
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Notice that such mappings involve a single distinct observation function (i.e. a single

time series), and represent a small subset in the larger set Y 2m+1of all possible mappings

M→ R2m+1 that could, for example, involve multiple time series and their lags.

Takens explicitly refers only to the unlagged y as an observation function, but

in its most general sense an observation function is any y : M→ R. Thus, the functions

y(φ(x)),y(φ 2(x)), . . . , corresponding to the lags of the time series are technically ob-

servation functions as well. This bears mention, because in the more general case of

mappings Φ : M→R2m+1, the observation functions making up the components of Φ are

not all derived from a single time series, but can be various lags of multiple time-series.

To treat these cases, it is necessary to acknowledge that these are all observation functions,

and we will refer to distinct time series as “unlagged” observation functions.

For a mapping Φ in the larger set Y 2m+1of all mappings M→ R2m+1, consider

the case with 2m+ 1 component functions yk : M → R which are multiple unlagged

observation functions of M (i.e. multiple time series). Again, an observation function is

any function M→ R that assigns a real number to each point on the manifold M. For a

mapping Φ : M→R2m+1, we can think of Φ in terms of its 2m+1 component functions,

which correspond to the coordinates in R2m+1. These component functions may all be

lags of a single distinct observation function tracking a dynamical system, as in the case

of Takens, or they may be multiple observation functions, as in the case of Whitney, or

they may be lags of multiple observation functions, as in Theorems 2 and 7 below.

The question arises whether general multivariate mappings

Φ(x) = (y1(x),y2(x), . . . ,y2m+1(x))

form legitimate embeddings. Here we present two theorems: one that demon-

strates that maps created from 2m+ 1 distinct observation functions are generically

embeddings and another that shows that maps created from lags of multiple observation
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functions are also generically embeddings. Both of these theorems generalize Takens’

theorem for which the component functions only involve a single observation function.

It follows from Whitney [38] that generically Φ ∈Y 2m+1 is an embedding. Note,

however, that Whitney’s work does not apply to the specific subsets of Y 2m+1 involving

fixed lagged relationships as discussed by Takens for reconstructing attractor manifolds

M for dynamic systems. That is, Whitney’s theorem is generic and does not address

these specific subsets of Y 2m+1 which have “measure zero” (e.g. in the sense of “shy”

defined in [30]). To tackle this problem, we look to the proof of Takens and see that it

can be readily generalized to the other subsets of Y 2m+1, including the case of generic

Φ ∈ Y 2m+1.

Recall that, for a compact manifold, a mapping that is an immersion and injective

is also necessarily an embedding. Thus, Takens’ general approach was to first show

that (i) immersions are dense in the set of mappings {Φ(φ ,y)}, then that (ii) there is a

dense set of 1 : 1 mappings within this set of immersions. Since the set of embeddings is

open in the set of all possible mappings, Takens concludes that mappings in {Φ(φ ,y)} are

generically embeddings. The critical word here is “generically,” meaning there can be

exceptions (and as explained in [30], the set of such exceptions doesn’t necessarily have

zero measure).

To demonstrate both (i) and (ii), Takens argues that even when the property of

interest (e.g. the 1 : 1 property) does not hold for some particular mapping, by making

an arbitrarily small perturbation, it is possible to find a nearby mapping for which that

property holds. The key to the theorem and also to adapting it to other sets of mappings

is finding how to make these perturbations. The proof is most straightforward for the

general case involving 2m+1 distinct observation functions (each a distinct time series)

because it is possible to perturb the component functions of Φ〈yk〉 independently. Thus

we begin with this proof to add clarity to the more powerful main theorem 2 involving
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lags of multiple observation functions.

Theorem 1. Consider a compact, m-dimensional manifold M and a set of 2m+1 observa-

tion functions 〈y1, . . . ,y2m+1〉, where yk : M→R smoothly; by “smooth” we mean at least

C2. Then it is a generic property of all possible 〈yk〉 that the mapping Φ〈yk〉 : M→R2m+1

defined as

Φ〈yk〉 = (y1(x),y2(x), . . . ,y2m+1(x))

is an embedding.

Proof. Consider an arbitrary set of 2m+1 observation functions 〈ȳk〉 on M. We define

a corresponding mapping Φ〈ȳk〉 ∈ Y 2m+1 by letting each of these 2m+ 1 observation

functions be one of the component functions of Φ〈ȳk〉. Now, recall that an immersion is a

map with a derivative that is globally injective, i.e. 1 : 1. We denote the total derivative of

a function f as D f . If the derivative is evaluated at a particular point x in the domain of f ,

we will write (D f )x, and if D f is a matrix, then we denote the derivative at a particular

point and along a particular tangent vector v as (D f )x(v).

For any point x ∈M, we can perturb the co-vectors (Dȳk)x ∈ T ∗(M) indepen-

dently by perturbing individual ȳk. By making infinitesimal perturbations at points x ∈M

for which rank (DΦ〈ȳk〉)x < m, we can get a set of observables 〈 ¯̄yk〉 arbitrarily close to

〈ȳk〉 such that rank (DΦ〈 ¯̄yk〉)x = m for all x ∈M—i.e., Φ〈 ¯̄yk〉 is an immersion. Since the

set of immersions is open in the set of all mappings, there is a neighborhood U ⊂Y 2m+1

around this Φ〈 ¯̄yk〉 such that every Φ〈yk〉 ∈U is an immersion.

Since immersions are local embeddings, we can find a δ > 0 such that on the

manifold, 0 < ρ(x,x′)≤ δ implies Φ〈ȳk〉(x) 6= Φ〈ȳk〉(x
′). Here we depart from Takens’

notation and let δ denote infinitesimal separations between two points on the manifold

M to avoid confusion with the later defined ε which is used to perturb the observable; ρ
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is any fixed metric on M. In fact for this fixed δ , there is a subset U ′ ⊂U such that for

any 〈yk〉 in U ′, the associated map Φ〈yk〉 is an immersion, and ρ(x,x′)≤ δ implies that

Φ〈yk〉(x) 6= Φ〈yk〉(x
′).

Next, we show that we can find a globally 1 : 1 Φ〈yk〉 ∈U ′ arbitrarily close to

Φ〈 ¯̄yk〉 . To do this, we construct a finite collection of subsets {Ui}N
i=1 such that the Ui are

open subsets of M, the collection covers M, and diameter(Ui)< δ for every i. Then, we

take a partition of unity {λi} corresponding to these Ui, so that we can vary the value of

any ¯̄yk by an infinitesimal amount ¯̄yk→ ¯̄yk + εkiλi without altering the value of Φ ¯̄yk
(x)

for x 6∈Ui.

We now consider the mapping Ψ : M×M→R2m+1×R2m+1 defined as Ψ(x,x′)=

(Φ ¯̄yk
(x),Φ ¯̄yk

(x′)). We define the set W ⊂M×M as W = {(x,x′) ∈M×M|ρ(x,x′)≥ δ},

so that (by our choice of δ ), the mapping Φ〈 ¯̄yk〉 is necessarily injective on the complement

of W in M×M. Furthermore, note that the intersection of Ψ(W ) with the diagonal

of R2m+1×R2m+1 gives the set of points {(x,x′) ∈ M×M|Φ ¯̄yk
(x) = Φ〈 ¯̄yk〉(x

′)}, and

therefore Ψ(W )∩4= /0 is equivalent to Φ〈yk〉 injective. Our task, then, is to perturb the

manifold Ψ(W ) using the εki and εki′ so that it does not intersect the diagonal manifold

4.

At each p ∈Ψ(W )∩4 we know that ρ(x,x′)> δ , so x and x′ cannot belong to

the same Ui. Consequently, varying an εki or εki′ only alters the value of Φ〈 ¯̄yk〉 at either

x or x′ (respectively). In the tangent space T ∗
p (R2m+1×R2m+1), then, the direction of

the (2m+ 1)+ (2m+ 1) infinitesimal changes given by the εki and εki′ are all linearly

independent (indeed orthogonal) and as such span T ∗
p (R2m+1×R2m+1). Since the

tangent spaces of Ψ(W ) and ∆ are at most 2m and 2m+1 dimensional, respectively, we

can construct a vector from a linear combination of ( ∂Ψ

∂εki
)p and ( ∂Ψ

∂εki′
)p that lies outside

of both T ∗
p (Ψ(W )) and T ∗

p (∆). Therefore, an infinitesimal perturbation corresponding

to this linear combination will move the sub-manifolds Ψ(W ) and ∆ away from each
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other at the point p without creating a new intersection at another point. By keeping the

size of these perturbations sufficiently small, we ensure that we stay confined to U ′, so

that Φ〈yk〉 is still an immersion. This is a more transparent statement of the transversality

argument used in the Takens proof (1981).

Thus, we have shown that for any arbitrary set of 2m+1 observables 〈ȳ〉, we can

find a set of observables 〈yk〉 arbitrarily close to 〈ȳk〉 such that Φ〈yk〉 is an embedding—

i.e., there is a dense set of observables {〈yk〉} ⊂ Y 2m+1 such that Φ〈yk〉 is an embedding.

The set of embeddings is open in the set of all mappings, so this set is dense and open,

meaning that the embedding property is generic over all mappings.

When mappings are confined to fixed lag relationships, Takens showed it is

valid to independently perturb each component of Φ at a given point of the domain

by perturbing the unlagged observation function, y, in the other parts of the domain

corresponding to neighborhoods of the lagged states φ−1(x), φ−2(x), etc. This ensures

that the perturbations to Φ maintain the structure of the lag relationships and that we

have not inadvertently left the subset of interest. As we now show, this allows the above

result to be easily extended to families of maps having component functions that are

the lags of multiple observation functions. This is the relevant case for many practical

examples where lags of multiple time series (multiple variables or observation functions)

are required to achieve a mechanistic reconstruction of M (e.g.[20]). It also allows

information on M to be leveraged when the time series are short, as is the case in many

physical and biological problems[22, 36].

Before starting the proof, however, we must clarify exactly what the “subsets of

interest” are. We define these sets as follows. First, we say yq is a lag of the observable

y if we can write yq = φ b(y) for positive b. We consider the lags in the positive time

direction only to simplify notation in the proof, noting that the results apply equally to

negative lags. Let r = {r1,r2, . . .} be the subset of k = 1, . . . ,2m+1 for which yr, r ∈ r
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is an unlagged observable, i.e. yr is not a lag of another y ∈ 〈yk〉. We begin with the

“unlagged” observation functions, yr, or observation functions that are not a lag of another

observable in 〈yk〉. Now define a set Cr for each r ∈ r that contains yr and any other

observation function in 〈yk〉 which is a lag of it. That is, Cr is the set of yq ∈ 〈yk〉 that are

lags of yr given as yq = φ bq(yr), where the lags bq are distinct for fixed r. This choice of

C = {Cr : r ∈ r} and b = {bk : k = 1, . . . ,2m+1} determine a subset Ỹ 2m+1
C,b ⊂ Y 2m+1

containing all choices of 2m+1 observables 〈yk〉 which obey the correct lag relationships

under a dynamical system φ . Note that each element of Ỹ 2m+1
C,b can be identified by the

dynamical system and the yr. We denote such an element, then, as (φ ,〈yr〉).

Theorem 2. Consider a diffeomorphism φ : M→M on some compact manifold M of

dimension m, along with 2m+1 observation functions yk : M→R, smoothly; by “smooth”

we mean at least C2. Restrict the yk to have the lag relationships corresponding to a

collection of sets C and lags b under the dynamical system φ , and impose the following

generic [39, 12] properties on φ :

1. The set A of periodic points with period p < max(bk) has finitely many points,

2. The eigenvalues of (Dφ b)x at each x in a compact neighborhood A are distinct and

not equal to 1.

Then, for generic 〈yk〉 ∈ Ỹ 2m+1
C,b , the mapping described by

Φ(φ ,〈yr〉) = (y1(x),y2(x), . . . ,y2m+1(x))

is an embedding.

Proof. The proof of this theorem closely follows the logic of the previous proof and

the original argument of Takens[12]. As noted above, any perturbations to Φ via its

component functions 〈yk〉 must remain within Ỹ 2m+1
C,b (the set of observables having
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the desired lag relationships under φ prescribed by the Cr and the bq). Here we must

also deal with points of M that are fixed points or periodic under the dynamical system

φ , i.e. the points for which there exists a b such that φ b(x) = x (including the fixed

point case, b = 1). The above proof shows that the mapping Φ〈yk〉 is generically an

immersion because the co-vectors (Dȳk)x ∈ T ∗(M) can be independently perturbed.

This is also true for non-periodic points where there are fixed lag relationships between

some observables, as we can perturb yr in the neighborhood of φ−bq(x) and thus perturb

yq = yr(φ
bq(x)) without affecting yr in the neighborhood of x.

Note that periodic points x can exist such that the period b or some integer

multiple of it, n ·b, is the fixed time lag between two observables yq1,yq2 ∈ 〈yk〉 belonging

to the same Cr. Let V ⊂M be a compact neighborhood of all such points. For x ∈ V ,

the vectors (Dyq1)x and (D(yq1 ◦φ n·b))x cannot necessarily be perturbed independently.

Nonetheless, while yq1(x) = yq1(φ
n·b(x)) for such a point, it is not generally true that

(Dyq1)x = (D(yq1 ◦ φ n·b))x. By assumption, for each x ∈ V , the eigenvalues of the

(Dφ b)x are distinct and not equal to 1. Thus, by the chain rule, it is clear that (Dyq1)x and

(D(yq1 ◦φ n·b))x are linearly independent. As noted above, all the other (Dyk)x can be

perturbed independently, so we can find a set of observables 〈ȳk〉 arbitrarily near 〈yk〉 in

Ỹ 2m+1
C,b for which Φ(φ ,〈ȳr〉) is an immersion on V . Note that because the set of immersions

is open, there is an open neighborhood in Ỹ 2m+1
C,b around this 〈ȳk〉 for which every set of

observables in that neighborhood gives an immersion.

We must also satisfy Φ(φ ,〈yr〉) injective. The proof above relied on the ability

to independently perturb the manifold Ψ(W ) ⊂ R2m+1×R2m+1 at any point (x,x′) by

an infinitesimal amount in any coordinate direction. For a periodic point on M with

perioid b and two observables related as yq and yq ◦φ n·b, it is impossible to independently

perturb Ψ(W ) locally in the coordinate yq(x) or yq(x′), as you also perturb yq(x)◦φ n·b

or yq(x′)◦φ n·b. By assumption, the set V has a finite number of elements. For such a



34

generic φ and any set 〈yk〉 ∈ Ỹ 2m+1
C,b , any neighborhood of the 〈yk〉 will contain a set of

observables 〈ȳk〉 for which the unlagged observation functions 〈ȳr〉 take distinct values at

each point in V .

We first perturb the yr to find an open neighborhood of observables which give

immersions when restricted to the set V . We then further perturb the observables to find

within this neighborhood a set of observables 〈ȳk〉 for which Φ(φ ,〈ȳr〉)|V is also injective

and therefore an embedding (on V ⊂M). Since embeddings are dense in the space of all

mappings, there is a neighborhood U ⊂ Ỹ 2m+1
C,b such that for all (φ ,〈yr〉) ∈U , the map

Φ(φ ,〈yr〉)|V is an embedding.

We now show that we can find a (φ ,〈 ¯̄yr〉)∈U such that Φ(φ ,〈 ¯̄yr〉) is an embedding

on all of M. We first note that at points x ∈M\V , the vectors (Dȳk)x ∈ T ∗(M) can be

perturbed independently, so we can find (φ ,〈 ¯̄y〉)∈U for which Φ(φ ,〈 ¯̄yk〉) is an immersion.

Because an immersion is a local embedding, there is a δ such that for x,x′ ∈M, 0 <

ρ(x,x′)< δ implies that Φ(φ ,〈 ¯̄yr〉)(x) 6= Φ(φ ,〈 ¯̄yr〉)(x
′). Since the set of immersions is open

in the set of possible mappings, there is a neighborhood U ′ ⊂ U such that for any

(φ ,〈yr〉) ∈U ′, the corresponding mapping Φ(φ ,〈yr〉) is an immersion. Thus, for the same

δ as above, 0 < ρ(x,x′)≤ δ implies Φ(φ ,〈yr〉)(x) 6= Φ(φ ,〈yr〉)(x
′).

Now we need to show that there is a (φ ,〈yr〉)∈U ′ such that Φ(φ ,〈yr〉) is also injec-

tive on M. As noted in the first proof, this is equivalent to Ψ(V )∩4= /0 for the mapping

Ψ : M×M→R2m+1×R2m+1 defined as Ψ(x,x′) = (Φ(φ ,〈yr〉)(x),Φ(φ ,〈yr〉)(x
′)). If x and

x′ are both in V or ρ(x,x′)≤ δ , we already know that Φ(φ ,〈yr〉)(x) 6= Φ(φ ,〈yr〉)(x
′). Thus

we restrict ourselves to the set W = {x,x′ ∈ M×M | φ(x,x′) > δ and not both x,x′ ∈

int(V )}.

To perturb the manifold Ψ(W ) away from4 at points of intersection, p∈Ψ(W )∩

4, we must be able to find variations for which the tangent vector (∂Ψ

∂ε
)p is linearly

independent from the 2m tangent vectors (∂Ψ

∂xi
)p and (∂Ψ

∂x′i
)p and lies outside of T ∗

p (4). In
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the first proof, it was obvious that each component of Ψ could be perturbed independently.

Now we must be more careful. We do this by first creating a collection of N open subsets

of M, {Ui}, with the following properties:

1. The {Ui} cover the closure of M\V .

2. For each bq and i = 1, . . . ,N, the diameter of φ−bq(Ui) is less than δ .

3. For all choices of i, j ∈ {1, . . . ,N}, the set U j intersects with φ−bq(Ui) for at most

one bq.

4. For x and x′ such that φ−b(x) ∈M\
⋃

Ui for some b ∈ b, x′ /∈V , and ρ(x,x′)> δ ,

no two of x,{φ bq(x)},x′,{φ b(x′)} belong to the same Ui.

Take a partition of unity {λi} corresponding to this {Ui}. Because of the way

we constructed the {Ui}, we can vary the value of each ¯̄yk at any point x ∈M\V by an

infinitesimal amount without altering the value of the other ¯̄yk in the neighborhood of

x. We make this explicit as follows. To perturb the yr, we take ¯̄yr → ¯̄yr + εriλi for i

corresponding to x ∈Ui. To perturb the other yk (yk = yr ◦φ bq for some r), we perturb

¯̄yr→ ¯̄yr + εriλi for i corresponding to φ−bq(x) ∈Ui . Consider the 2m+1 perturbations,

εri, which are independent shifts at x in distinct yk. In R2m+1×R2m+1, we note that each

corresponding tangent vector ( ∂Ψ

∂εri
)p lies outside of T ∗

p (4). Note the ( ∂Ψ

∂εri
)p together

with any basis of T ∗
p (4) form a linearly independent set of vectors. Since the dimension

of span
(
(∂Ψ

∂xi
)p,(

∂Ψ

∂xi′
)p

)
is at most 2m, there must be a linear combination of the ( ∂Ψ

∂εri
)p

that lies outside of both T ∗
p (Ψ(W )) and T ∗

p (∆), which can be used to perturb Ψ(W )

away from ∆. By keeping variations in the εri sufficiently small, we can find a set of 〈yk〉

such that (φ ,〈yr〉) ∈U ′ and Ψ(x,x′)∩4= /0 (where Ψ now corresponds to the Φφ ,〈yk〉

map). This pair gives a mapping Φ(φ ,〈yk〉) that is both an immersion and injective, and

thus is an embedding. Because U ′ was an arbitrarily small neighborhood of any point in
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Ỹ 2m+1
C,b , this means embeddings are dense in Ỹ 2m+1

C,b , and the set of embeddings is open

in the set of mappings. Thus, the map Φ(φ ,〈yr〉) given by (φ ,〈yr〉) ∈ Ỹ 2m+1
C,b is generically

an embedding.

Just as Takens extends the original result for discrete time to dynamical systems

in continuous time, we can extend our result as follows:

Corollary 3. Consider a smooth vector field X on some compact manifold M along with

2m+1 observables yk : M→ R, smoothly; by “smooth” we mean at least C2. Define φt

as the flow on X. Suppose we restrict the yk to have the lag relationships corresponding

to a collection of sets Cr and lags bq under the discrete dynamical system φτ , where τ is

a constant. We impose the following generic properties on X:

1. For points x such that X(x) = 0, the eigenvalues of (Dφτ)x are distinct and not

equal to 1.

2. No periodic integral curve of X has integer period ≤ 2m+1.

Then, for generic 〈yk〉 ∈ Ỹ 2m+1
C,b , the mapping described by

Φ(φτ ,〈yr〉) = (y1(x),y2(x), . . . ,y2m+1(x))

is an embedding.

Proof. In this case, φτ is a discrete time dynamical system on M satisfying the conditions

imposed in the theorem above, and this corollary follows directly.
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2.2.2 A Theorem in the Style of Sauer et al.: The Prevalent Case

We now give an explicit proof of Remark 2.9 from [29] using the framework

constructed in their original paper, but we extend the language to cover reconstructions

using non-consecutive lags (from multiple time series). The proof uses Lemma 4.1, 4.6,

and 4.11 from [29] to show that 1 : 1 mappings and immersions are prevalent in the

space Ỹ 2m+1
C,b , just as Sauer et al. use Lemma 4.6 to prove Theorem 3.3, and Lemmas 4.1

and 4.11 to prove Theorem 3.5. These lemmas are now stated (for the proofs, see their

original paper).

Lemma 4. (Originally part 2 of 4.1 ) Let n and k be positive integers, x1, . . . ,xn distinct

points in Rk, u1, . . . ,un in R, and v1, . . . ,vn in Rk. Then there exists a polynomial h in k

variables of degree at most n such that for i = 1, . . . ,n, ∇h(xi) = vi.

Lemma 5. (Originally 4.6) Let A be a compact subset of Rk. Let Φ0,Φ1, . . . ,Φt : A→Rn

be Lipschitz maps. For each integer r≥ 0, let Sr be the set of pairs x1 6= x2 in A for which

the n× t matrix

Mx1x2 = (Φ1(x1)−Φ1(x2), . . . ,Φt(x1)−Φt(x2))

has rank r, and let dr = lower boxdim(S̄r). Define Φα =Φ0+∑
t
i=1 αiΦi : A→Rn.

If dr < r for all integers r ≥ 0, then for α = (α1, . . . ,αt) outside a measure zero subset of

Rt , the map Φα is 1 : 1.

Lemma 6. (Originally 4.11) Let A be a compact subset of a smooth manifold embedding

in Rk. Let Φ0,Φ1, . . . ,Φt be a set of smooth maps from an open neighborhood U of A to

Rn. For each positive integer r, let Sr be the subset of the unit tangent bundle S(A) such

that the n× t matrix

((DΦ1)x(v), . . . ,(DΦt)x(v))
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has rank r, and let dr = lower boxdim(S̄r). Define Φα =Φ0+∑
t
i=1 αiΦi : A→Rn.

If dr < r for all integers r≥ 0, then for almost every α ∈Rt , the map Φα is an immersion

on A.

To apply these lemmas, it is necessary to restrict the dimension of the sets of

periodic orbits—that is, the sets Ap = {x∈ A : φ p(x) = x} for p < max({b∈ b}). For the

case of consecutive lags, Sauer et al. state sufficient conditions to be boxdim(Ap)< p/2.

A sufficient condition for non-consecutive lags is a bit more complicated. Define the

constants Bpr = number of yq ∈Cr such that bq =m · p+bq′ for at least one bq′ and m∈N.

Also, define Bp = ∑r Bpr. A sufficient condition on the Ap is 2 ·boxdim(Ap)< n−Bp.

Theorem 7. Let φ be a diffeomorphism on an open subset U of Rm, and let A be a

compact subset of U, boxdim(A) = d. Let C be a collection of sets and b a set of lag

relationships as above, such that n = ∑r nr > 2d. Assume that for every positive integer

p≤ max({b ∈ b}), the set Ap of periodic points of period p satisfies 2 ·boxdim(Ap)<

n−Bp, and that for each point of Ap, the Jacobian Dφ p has distinct eigenvalues. Then,

for almost every set of n observation functions {yk} satisfying the given lag relationships,

the map

Φ(φ ,〈yr〉)(x) = (y1(x), . . . ,yn(x))

is an embedding on A.

Proof. Without loss of generality, assume we have ordered the components of Φ(φ ,〈yr〉)

with yr1 and all its lags first, then yr2 and its lags, etc. That is,

Φ(φ ,〈yr〉)(x) = (yr1(x),y
b2
r1
(x), . . . ,yr2(x), . . .).

To show prevalence, we find a suitable probe space (see [29]). The infinite

dimensional space for the univariate theorem is the observation functions y : U → R,
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smoothly. For maps constructed from multiple lags, this becomes the sets of sr = size(r)

unlagged observation functions. Sauer et al. take the probe space for the univariate

theorem to be any set H of polynomials in m variables which include all such polynomials

up to degree 2n. It is now necessary to have a set of polynomials for each of the yr. Thus,

we take the probe space for this theorem to be the Cartesian product of sr copies of H.

Let 〈h1, . . . ,ht〉 be a basis for H. We want to show that for almost all choices

of sr× t coefficients αr,t , the map Φ(φ ,〈ȳr〉) defined by the observation functions ȳr =

yr +∑
t
i=1 αr,ihi is an embedding. We first demonstrate that almost every Φ(φ ,〈ȳr〉) is 1 : 1,

proceeding as in the proof of Theorem 4.3 in [29].

To sensibly apply Lemma 5, we adopt the following convention: think of Φ(φ ,〈ȳr〉)

as a perturbation of Φ(φ ,〈yr〉), which is the summed effect of perturbations on each yr

separately. For each pair (r, i), r ∈ r and i ∈ {1, . . . , t}, there is a map Φr,i : U → Rn

which is Φ(φ ,〈ỹr′〉) for ỹr′ = hi if r = r′ and 0 otherwise. The components of Φr,i(x) are

either 0 or of the form hi(φ
bq(x)). Consequently, Φφ ,〈ȳr〉 = Φφ ,〈yr〉+∑r ∑

t
i=1 αr,iΦr,i(x),

which matches the structure Lemma 5.

We now check that the rank of the matrix Mx1x2 satisfies the conditions of Lemma

5 for each pair of distinct x1,x2 ∈ A. Note that to avoid confusion with the previous

section of this paper and Takens’ original work, we continue to use row vectors to

describe the transformations Φ. However, Sauer et al. [29] prefer column vectors, so it is

necessary to use of transposes in several instances. Thus, we have

MT
x1x2

=



Φr1,1(x1)−Φr1,1(x2)

...

Φr1,t(x1)−Φr1,t(x2)

Φr2,1(x1)−Φr2,1(x2)

...


.
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Note that Mx1x2 is a block diagonal matrix, and so it has rank equal to the sum

of the rank of the blocks. Each of the sr blocks can be rewritten as the product of two

matrices, Jr and Hr, where the entries of Hr are values of a single polynomial h and the

entries of Jr are each one of {1,0,−1}. Note, there are multiple possible choices for Hr

and Jr that give the same Mx1x2 .

Case 1: First consider x1 and x2 that do not both lie in a periodic orbit of integer

period less than max(b). We specify Hr so that the first nr rows, where nr is the size of

the set Cr, correspond to the hr,i(x1),hr,i(φ
br+1(x1)), . . . ,hr,i(φ

br+nr (x1)), and the next nr

correspond to the hr,i(φ
bqr (x2)). Hr is onto, so the rank of Mx1x2 is just the sum of the

ranks of the Jr. For this case, Jr contains a copy of Inr , and thus will have rank nr. The en-

tire matrix Mx1x2 will thus have rank n=∑r nr, which satisfies the conditions of Lemma 5.

Case 2: Now consider x1 and x2 in separate periodic orbits with periods p1

and p2 such that 1 ≤ Bp1 ≤ Bp2 and p1, p2 < max(b). Hr will have Bp1r fewer rows

corresponding to the bq1 = m · p1 +bq2 for some m ∈ N (there will also be a reduction in

the number of rows associated with Bp2). In this case, Jr will still contain the column

space of I(nr−Bp1r) and thus rank(J)≥∑r nr−Bp1r = n−Bp1 . Again the Hr are onto, and

so the rank of Mx1x2 is the rank of J.

The dimension of the set S of all pairs x1 and x2 is dim(S) = dim(Ap1) +

max(dim(Ap2)). By the conditions placed on the size of the Ap, we can conclude

that dim(S)< n−Bp1 ≤ dim(Mx1x2), and thus that Lemma 5 applies to this case as well.

Case 3: Finally we consider x1 and x2 in the same p-periodic orbit, p < max(b).

Now the matrix Hr becomes more complicated, since some of the h(z) pertaining to x2

may be equal to h(z) pertaining to x2. Consequently, the Jr are no longer guaranteed
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to contain the column space of the identity. Each Jr does contain the column space of

an nr−Bpr dimensional matrix with 1 along the upper diagonal and a single −1 off the

diagonal in each column. Using elementary operations, it is possible to make the first m

columns of Jr upper diagonal for some integer m≥ (nr−Bpr)/2. Thus, the rank of each

Jr is at least (nr−Bpr)/2 and the entire matrix has rank(J)≥ (n−Bp)/2.

The dimension of the set S of all such x1 and x2 is just Ap. By the imposed

conditions, dim(S)< (n−Bp)/2≤ dim(Mx1x2), and Lemma 5 applies.

Now we want show that almost every Φ(φ ,〈ȳr〉) is an immersion. We check that

the matrix

(
(DΦr1,1)x(v)T , . . . ,(DΦr1,t)x(v)T ,(DΦr2,1)x(v)T , . . .

)
has full rank and thus satisfies the conditions of Lemma 6 for each (x,v) in the

tangent bundle S(A). Note that this is a block diagonal matrix with sr blocks, so it is

sufficient to show that the columns of the ith block span the subspace Rnri for i = 1, . . . ,sr.

We consider two cases.

Case 1: Consider first the subset S′ of x that are not periodic with period

p < max(b). The entries of each block are of the form ∇h(φ b(x))T (Dφ b)x(v). Since φ

is a diffeomorphism and v 6= 0, we know that (Dφ b)x(v) 6= 0. Furthermore, the φ b(x)

are distinct points. Examining Lemma 4, it is clear that the columns span Rnr . The

dimension of S′ is at most 2d−1, so we may apply Lemma 6.

Case 2: Now consider the subset S′ of x that are periodic with period p < max(b).

By the conditions of the theorem, (Dφ b1)x has distinct eigenvalues from (Dφ b2)x. There-

fore, ∇h(φ b1(x))T (Dφ b1)x(v) 6= ∇h(φ b2(x))T (Dφ b2)x(v). Furthermore, the relationship
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depends on h, and again referencing Lemma 4, it is clear that the columns span Rnr . The

dimension of S′ is certainly less than 2d−1, so we can safely apply Lemma 6.

Theorem 7 can be extended to continuous dynamical systems (smooth vector

fields on a manifold) by letting the flow φt of X be φ in the statement of the theorem.

2.3 Discussion

Theorem 1 and the more general result presented in Theorem 2 (and its corollary)

were given proofs intended to follow those presented by Takens. The original “transver-

sality” argument, however, has been replaced with what we reckon is a simpler and more

direct argument. These clarify how perturbations to the observation functions can be

constructed and highlight why 2m+1 dimensions are necessary to have mappings that

are generically embeddings. Theorem 7 is similar to Theorem 2, but takes advantage

of the more powerful framework, built around the notion of prevalence, established by

Sauer et al. [29]. It also provides more specific conditions on the periodic orbits than

Theorem 2 and thus can be applied to certain non-generic situations that Takens’ original

framework would exclude. Namely, the set of periodic points need not be finite (as

required in Takens’ original theorem and Theorem 2), so long as the dimensionality does

not exceed the bounds stated in Theorem 7. Theorem 7 is an extension of Remark 2.9 in

[29], which we explicitly proved by determining a sufficient restriction for the periodic

orbits when the lags composing Φ aren’t necessarily consecutive.

This work also develops a language to describe a wider family of cases for

reconstructing state space manifolds from multiple observational time series to encourage

wider applicability of SSR in the natural sciences. For example, these results can be

extended to another special case of interest for reconstructions using time derivatives
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[40], when multiple observation functions are available. The argument for this case is

analogous to that used by Takens [12] for the case when all the derivatives are from a

single observation function. Furthermore, these theorems validate heuristic work using

spatial lag reconstructions and mixed spatial and temporal lag reconstructions to study

spatially coupled dynamics [41].

More importantly, in terms of future applications, Theorems 2 and 7 set the

stage for practical reconstruction of state space manifolds from multiple observation

functions. This is significant in answering objections to single variable state space

reconstruction (SSR) concerning the excessive phenomenology of lagged-coordinate

embeddings [26]. These two theorems provide proof of principle for modeling attempts of

nonlinear dynamics in the natural sciences involving multiple time series (e.g. [20]), and

lays bare the rather non-restrictive assumptions required in such applications for building

mechanistic models from multiple time series variables. Moreover, it gives support to

the notion of using multiple embeddings as a potentially efficient way of extracting

information from time series data of limited length, but where there are potentially many

simultaneous observations of dynamics on the same attractor manifold. By reducing

correlations in noise between the reconstructed coordinates, these techniques should allow

reconstructions to exceed the limitations placed on univariate methods [35], as heuristic

examples have already suggested [20]. The potential information leverage provided by

multiple embeddings possible from novel combinations of variables (and their lags) can

pave the way for a plethora of new applied techniques to exploit the time-limited, but

parallel observations of nature [36]. This paper is intended to complement the existing

literature on SSR and help promote this potential growth area in the natural sciences.
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Figure 2.1: Lorenz attractor with three shadow manifolds. The Lorenz attractor [37] is
shown with three shadow manifolds created from lag-coordinate transformations. The
typical parameters were used: σ = 10, ρ = 28, and β = 8/3, giving the three coupled
equations as ẋ = 10(y− x), ẏ = 28x− xz− y, and ż = xy− (8/3)z. The solution was
computed using a fourth order Runge-Kutta method with a time step of δ t = 0.01,
and the time lag used to create the shadow manifolds was τ = 8δ t = 0.08. (A) The
trajectory shown in the x, y, and z coordinates of the original system reveals a two-
lobed manifold. (B) A univariate transformation using time lags of the y-coordinate,
Φ = (y(t),y(t− τ),y(t−2τ)), preserves this two-lobed structure (and other topological
properties), verifying Takens’ theorem. (C) A univariate transformation using time
lags of the z-coordinate, Φ = (z(t),z(t− τ),z(t−2τ)), does not preserve the two-lobed
structure. Local neighborhoods of the original attractor are, however, preserved. Thus,
though this mapping violates a genericity assumption of the original theorem and is
not an embedding, it is an immersion of the original manifold. (D) A multivariate
transformation using both the y- and z-coordinates, Φ = (y(t),y(t− τ),z(t)), fulfills
the assumptions of Theorems 2 and 7. As predicted, it also preserves the two-lobed
structure of the Lorenz and is a valid embedding.
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Chapter 3

Predicting climate effects on Pacific

sardine

Abstract

For many marine species and habitats, climate change and overfishing present

a double threat. To manage marine resources effectively, it is necessary to adapt man-

agement to changes in the physical environment. Simple relationships between environ-

mental conditions and fish abundance have long been used in both fisheries and fishery

management. In many cases, however, physical, biological, and human variables feed

back on each other. For these systems, associations between variables can change as the

system evolves in time. This can obscure relationships between population dynamics and

environmental variability, undermining our ability to forecast changes in populations tied

to physical pro- cesses. Here we present a methodology for identifying physical forcing

variables based on nonlinear forecasting and show how the method provides a predictive

understanding of the influence of physical forcing on Pacific sardine.

49
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3.1 Introduction

Ecosystem-based management (EBM) is an essential challenge that places strong

demands on our understanding of coupled social-ecological systems. EBM requires an

understanding of how human activities such as fishing influence and are influenced by

other parts of the ecosystem. This includes accounting for the effects of the physical

environment on exploited populations. However, the interactions between ecosystem

components can be complex, and unraveling physical-biological interactions remains a

challenge. For instance, a retrospective study of 35 exploited and unexploited species

in the California Current shows that fishing pressure can amplify the influence of envi-

ronmental forcing on populations by truncating the age structure (1). This study and

others (2-4) demonstrate that the effect of environ- mental forcing on populations can

be contingent on fishing effort, current abundance, and age structure. This raises an

important issue: Ecosystem variables are not separate, decomposable forces. Instead,

their interactions are state-dependent, meaning that the impact of one variable on another

depends on the state of the variables.

State-dependent behavior can confound many traditional statistical methods.

Witness that valid correlations between physical and biological variables can be difficult

to find (5) and can appear and disappear with time (6). In fact, nonlinear systems (systems

with state-dependent interactions) can produce mirage correlations: variables that seem

positively correlated over one period in time may seem negatively correlated or unrelated

over another period (7). A meta-analysis of environment-recruitment relationships in

marine populations shows that these correlations hold up poorly when retested with

new data (6). Consequently, EBM requires more robust methods for identifying driving

variables and understanding their influence on population and community dynamics. Here,

we show that methods based on multivariate state space reconstruction (SSR) (8) offer an
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alternative method for studying physical-biological interactions from observational time

series. It is a robust framework for studying ecosystems empirically. For those unfamiliar

with state space reconstruction, we recommend two short animations (http://simplex.ucsd.

edu/Movie_s1.mov and http://simplex.ucsd.edu/Movie_s2.mov). These techniques have

been successful in identifying state-dependent physical-biological interactions in larval

reef fish populations (9) and in models with simple periodic forcing (10). To demonstrate

the utility of multivariate SSR for ecosystem-based management, we investigate the

current conundrum over the management of Pacific sardine (Sardinops sagax). The

Pacific sardine fishery in the California Current ecosystem (CCE) is a rare example of a

fishery that has been managed with explicit consideration for the environment. However,

conflicting evidence concerning the effect of temperature on sardine productivity (11)

led to removal of this pioneering environmental control rule in 2012.

The policy was informed by a rich history of research. Sardine populations around

the world have undergone boom-bust cycles. Crashes in California have coincided with

crashes in other areas of the world (12), and boom-bust dynamics appear in sedimentary

records well before human exploitation began (13). These facts have led to the hypothesis

that changing environmental conditions drive sardine crashes and/or shifts in distribution,

al- though fishing pressure has likely exacerbated global crashes in the recent past (3,

14). In the CCE, sardine recruitment seems to peak when and where upwelling is

intermediate (15). In the CCE, intermediate upwelling is associated with low (14−15oC)

and high (> 20oC) temperatures. The association between high sardine recruitment and

warm episodes is puzzling, because warm episodes are associated with low productivity.

This sparked a search for potential mechanisms linking water temperature and sardine

abundance. One possible mechanism is that release from larval predation during warm

periods outweighs the scarcity of food (16). Alternatively, sardine may respond to

offshore upwelling driven by wind-stress curl, as opposed to coastal up-welling (17).



52

Motivated by these studies, Jacobson and MacCall (18) sought a quantitative rela-

tionship between sardine and temperature. They found a statistical correlation between

log reproductive success (one way of quantifying recruitment) and the 3-year average of

the Scripps Institution of Oceanography (SIO) pier sea surface temperature (SST). They

then verified the relationship using a modeling approach based on generalized additive

models and formulated a best-management strategy for sardine that incorporated the

influence of sea temperature. In light of these findings, the Pacific Fishery Management

Council modified the sardine management plan to explicitly account for SST (19). Re-

cently, McClatchie et al. (11) repeated the correlation analysis of Jacobson and MacCall

(but not the modeling approach) with the addition of 17 years of new data. They found

that the statistical correlation between recruitment and SST is no longer significant when

the newer data are included. They concluded that the SIO pier temperature does not

influence sardine dynamics, and the temperature-based control rule was subsequently

rescinded.

Another explanation for these new findings is that temperature does influence

sardine, but in a state-dependent way, causing mirage correlation between temperature

and sardine. Indeed, we can directly test for state dependence in sardine population

dy- namics using S-maps (20). With S-maps, a family of models that range from linear

(θ = 0) to highly nonlinear (θ ≥ 1) is used to forecast the target time series. For the

sardine ichthyoplankton time series, nonlinear (state-dependent) models produce better

forecasts than linear models, suggesting that sardine have state-dependent dynamics (Fig.

3.6 and 3.7). Furthermore, Sugihara et al. (7) analyzed historical landings of sardine and

SIO pier SST with convergent cross-mapping (an alternative to correlation that detects

state-dependent interactions) and found that the SIO pier temperature does affect sardine.

Consequently, the failure of the sardine-temperature correlation to hold up to

retesting does not mean that the SIO pier temperature is irrelevant to sardine. Rather, the
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problem requires an analytical framework specifically suited to ecological systems with

interdependent parts. To this end, the recent work (7) with convergent cross-mapping

detected a cause-effect relationship between temperature and sardine. However, it is not

sufficient for management to know whether a physical variable is affecting a population. It

is also necessary to predict how environmental conditions will affect population dynamics.

Multivariate SSR can address this need.

Thus, we seek to demonstrate multivariate SSR as a practical tool for understand-

ing the influence of temperature on Pacific sardine population dynamics. First, we present

a conceptual overview of multivariate SSR and use simple models to demonstrate the

methods. We then apply the method to ichthyoplankton time series of Pacific sardine.

We show that when the population dynamics of sardine are treated nonlinearly, the SIO

SST and other broad-scale indicators can improve forecasts of year-to-year changes in

abundance. We illustrate how multivariate SSR can predict the effect of changes in SIO

SST on sardine and is thereby a useful tool for exploring possible temperature scenarios.

Finally, models show how these methods can predict the outcomes of harvest targets

under different climate regimes.

3.1.1 Primer on Multivariate State Space Reconstruction

SSR is based on the theory of dynamic systems. If a time series variable X(t)

is part of a dynamic system, a set of rules (e.g., a system of difference or differential

equations) dictates how X changes in time based on the current value of X and the

variables that interact with X . As an example, consider three species, X , Y , and Z,

modeled with coupled logistic equations that represent a three- species food chain (21)

(Appendix gives a full description). The differential equations dictate how the abundance

of each species changes in time given the current state of each population.

A typical way to view the system is as separate time series of each species,
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as shown for species X in Fig. 3.1D. However, we can also view the system in a

multidimensional space, taking the abundances of species X , Y , and Z as the coordinate

axes. This defines the state space of this simple ecosystem. Viewed in the state space,

each time point corresponds to a vector and the changes in the ecosystem over time

(abundances of the three populations) form a trajectory (Fig. 3.1A). Two time points

nearby in the state space represent two similar states of the ecosystem and the populations

will follow similar trajectories as time progresses.

Often in ecology only one or a few variables are actually measured. In these

cases, Takens’s theorem and its multivariate generalization (8, 22, 23) show that it is still

possible to represent the system dynamics in a state space by substituting time lags of the

measured variables [e.g., X(t−1)] for the unknown variables as coordinates. In effect,

the information in the unobserved variables is encoded in the observed time series, and so

a single time series can be used to reconstruct the state space. This gives a time-delayed

coordinate representation (or embedding) of the system trajectories. Fig. 3.1B and C

illustrate univariate (using lags of only one variable) and multivariate (using lags of two

or more variables) embeddings for the three-species model. Importantly, the trajectories

in the reconstructed state space are uniquely matched to trajectories in the original state

space, and states (vectors) that are neighboring in one space are also neighboring in the

others. Observe that at time t1, t2, and t3 (shown in red) the ecosystem is in a similar state

based on all three pictures.

One basic application of SSR embeddings is forecasting. Because vectors nearby

in state space evolve similarly in time, the future abundance at one time point can be

predicted based on the behavior of its nearest neighbors in the reconstructed state space.

In this paper, we use two different types of forecasts. The first is simplex projection, where

a weighted average is taken over the E +1 nearest neighbor vectors in the reconstructed

state space (24) (E is the dimension of the state space). The second is S-maps (20, 25),
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where a linear model is fit for each observed vector in the reconstructed state space using

all of the remaining vectors (cross-validation). However, the vectors nearby the target

in state space are given greater weight, controlled by the nonlinearity parameter θ , and

so S-maps can give either linear (θ = 0) or nonlinear (θ > 0) forecasts. By comparing

the performance of locally weighted (nonlinear) forecasts to the global linear forecasts

(θ = 0), S-maps can be used to test for nonlinear dynamics. A significant increase in

forecast skill for the locally weighted model is taken as evidence of nonlinear dynamics

(state dependence). Note that simplex projection can be the better tool for exploratory

analysis (less possibility for overfitting), but S-maps can ultimately give better forecasts.

A detailed mathematical description of these techniques with summary code is given in

Appendix. Interested parties are encouraged to contact the authors regarding software

and guidance for analysis.

3.1.2 Validating Multivariate Embeddings

Multivariate embeddings that use two variables X and Y should make good

forecasts only if Y and X are interacting parts of the same system. This suggests that

SSR forecasting can be used to check for interactions between variables (7). Each SSR

embedding is a different representation of the same fundamental system. A priori it is

not possible to know whether one particular choice of lagged variables will give better

forecasts than another (8). Stochastically forced systems, however, are a special case.

For a purely stochastic forcing variable Y, the current state cannot be inferred from past

values of the forced variable. The only way to include this environmental information

in SSR forecasts of X is to have Y (t) as a coordinate variable, and nearest neighbor

forecasts based only on lags of X(t) will necessarily have greater uncertainty. By this

logic, if a stochastic variable Y has an effect on X , then adding Y (with the appropriate

lag) should always improve univariate forecasts of X . In this way, comparing multivariate
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to univariate SSR forecasts can identify stochastic driving variables.

3.1.3 Scenario Exploration with Multivariate SSR

In ecology we are interested not only in knowing whether two variables interact,

but also how they interact. Consider a Ricker model for a population S (Eq. 1). In this

case, the model is exactly known, and we can simply calculate S(t + 1) for different

hypothetical past temperatures T1, T2, and so on, to understand the effect temperature has

on the population. When studying real populations, however, the true model is not known.

Scenario exploration with multivariate SSR is a way to explore climate effects in real

systems without assuming a particular model structure. Scenario exploration involves

constructing a multivariate embedding to predict S(t +1) using different values of T to

explore the effect of temperature on the stock.

To demonstrate scenario exploration, we begin with toy models, which allow us to

compare predictions based on multivariate SSR to calculations with the exact model. The

temperature-driven Ricker model given by Eq. 1 in Materials and Methods is a simple

model of a population that has nonlinear dynamics and is driven by temperature. We

explore the effect of temperature, T , on the stock, S, using the multivariate embedding

〈S(t),S(t−1),S(t−2),S(t−3),T (t)〉. For each t, we predict the effect that an increase

in past temperature ∆T = 0.1σT (10% of the standard deviation of the temperature time

series) would have on the population abundance the following year. That is, we use

simplex projection to make a nearest-neighbor forecast of S(t + 1) for the state space

vector [S(t),S(t−1),S(t−2),S(t−3),T (t)+∆T ]. Fig. 3.2A shows the predictions of

SSR scenario exploration plotted against the true values calculated from the model for 10

time series of 50 y each with different initial conditions and realizations of T and εproc.

The result is robust to a wide range of growth rates (Fig. 3.8).

Importantly, SSR methods can be applied in both single- and multi-species con-
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texts, even when there are no records of the other interacting species. As a demonstration

we repeat the analysis above on the three-species extension of the basic Ricker model

defined in Eq. 2. However, we only use the time series of the target species S1 and the

temperature T to do scenario exploration. Fig. 3.2B shows that scenario exploration can

still predict the effect of temperature on a population in a multi-species complex, even

if the other species are unobserved. For both the single- and multispecies models, the

correlation between SSR predictions and model calculations is high: ρ = 0.75 and 0.86,

respectively.

3.2 Results

We use multivariate SSR methods to determine whether and how sardine are

affected by their environment. We first apply multivariate SSR to sardine data to verify

that the SIO pier SST influences sardine dynamics and determine whether it is the best

single environmental indicator variable. Table 1 displays the improvement in forecast

skill ∆F of multivariate embeddings using the SIO pier SST and other environmental

indicators. Including SIO pier SST in embeddings improves forecasts with simplex

projection, indicating that SIO SST influences sardine, and ∆F is significantly greater

than can be explained by the null model (p < 0.05). Several other variables show positive

∆F , including the Pacific Decadal Oscillation (PDO), North Pacific Gyre Oscillation

(NPGO), and the Southern California Bight (SCB) satellite SST, suggesting these are also

relevant to Pacific sardine population dynamics. Of these, only the PDO is significant

(p < 0.05). The PDO and SIO SST are highly correlated, so this is not surprising. The

method suggests three variables that are least likely important to sardine dynamics:

Newport Pier SST, North Pacific Index (NPI), and Southern Oscillation Index (SOI);

each of these has a strong negative effect on forecasting.
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To explicitly test the notion that the influence of environment (SST) on sardine

depends on population state, we compare the out-of-sample forecasts of Pacific sardine

ichthyoplankton with a univariate linear forecasting model (using only lags of sardine) to

both linear and nonlinear multivariate forecasting models that also account for tempera-

ture. For simplicity, all models use S-maps, which can be made linear or nonlinear by

adjusting the nonlinear tuning parameter, θ . The base univariate linear (θ = 0) model

is equivalent to an order-E autoregressive (AR) model, whereas the multivariate linear

(θ = 0) model has an added linear term for the SIO pier SST. The nonlinear S-map model

uses the same dimensions as the multivariate linear model, but the nonlinear parameter

θ > 0 is fit in-sample. Fig. 3.3 shows the percentage reduction in error of the multivari-

ate models over the univariate linear base model. Error is quantified as mean absolute

error (Fig. 3.3 left) or root-mean-squared error (right). Using either measurement, the

nonlinear model that incorporates temperature does best. Furthermore, linearly including

temperature increases forecasting error (percentage improvement in error is negative in

both plots). Thus, accounting for temperature only improves forecasts when the model is

state-dependent (nonlinear).

Because multivariate attractor reconstructions using either SIO SST or PDO

give good predictions of sardine abundance, these embeddings can be used for sce-

nario exploration to understand how past conditions affected sardine and to predict

the response of sardine to future environmental scenarios. As an illustration, we do

scenario exploration using the multivariate embedding that includes SIO pier SST,

〈X(t),X(t−1),X(t−2),SST (t)〉. For each historical observation, X(t), we explore

how X(t + 1) would have differed if temperatures were warmer or cooler by half the

SD σSST of the historical pier temperature. That is, we predict X(t + 1) for the state

[X(t),X(t−1),X(t−2),SST (t)±∆T ], where ∆T = 0.5σSST . Fig. 3.4 shows the multi-

variate SSR prediction for sardine with the historic temperature (yellow circles), increase
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in temperature (red triangles), and decrease in temperature (blue triangles), along with

the ob- served time series (dashed black line). Note that SSR predictions were made of

first differences and converted back into raw ichthyoplankton abundance.

3.3 Discussion

We demonstrated the application of multivariate SSR to studying physical-

biological interactions. The predictions obtained do not assume a particular functional

form for the environmental interaction; they rely only on the choice of the embedding

dimension and environmental variable(s). This multivariate embed- ding can then be

used in place of model equations to understand and predict the effect of changes in a

driving variable on population dynamics.

Scenario exploration with multivariate embeddings motivates the development of

new adaptive management schemes based on short-term forecasting. If time series of a

human control variable (e.g., fishing effort or mortality) are available, management could

be based on scenario exploration with multivariate embeddings that include abundance,

temperature, and the control variable. Simultaneously exploring different temperature and

harvesting scenarios could then reveal how temperature affects the relationship between

fishing and future biomass. As an ad hoc illustration of this idea, take the Ricker model

described by Eq. 3, which explicitly includes temperature and fishing mortality. Fig.

3.5 shows the results of using scenario exploration at a single time point to assess the

relationship between fishing mortality and next year’s abundance when the temperature

increases by ∆T = 0.5σT (half the SD of T ) from the previous year (red), remains

constant (green), or decreases by ∆T = 0.5σT (blue). The results of scenario exploration

(filled squares) closely match the calculations made with the exact model (dotted lines).

This type of scenario exploration would tell managers the permissible level of fishing
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given a target biomass and recent ocean conditions. This approach is analogous to the

greedy heuristic strategies that are used in high-dimensional approximate optimization

problems (26). Of course, considerable work remains to be done to develop and evaluate

management plans based on these methods.

More immediately, these methods offer a data-motivated perspective on the

dynamic relationship between sardine and environmental conditions in the CCE. We

find that including either SIO SST or the PDO in the multivariate embedding improves

forecast skill (ρ) by roughly 30%. These indicators reflect environmental forcing of

sardine population dynamics that is not captured by more traditional methods. We

conclude that environmental considerations should in fact play an important role in

Pacific sardine management. Additional analyses demonstrating the influence of SIO

SST on Pacific sardine landings using related SSR methods (7) support this assertion.

Our results further suggest that good management must reflect the complexity

underlying the interaction between environmental changes and population dynamics (Fig.

3.3). Exploring the effect of SIO pier SST on sardine using multivariate SSR (shown in

Fig. 3.4) suggests that, on average, increasing temperature results in higher forecasts of

abundance than decreasing temperature. This corroborates the previous results used in the

management plan that warm water is better for sardine. However, our empirical analysis

shows that the effect of temperature depends on the specific state of the population. For

example, changes in temperature seem to have little or opposite effect in the early years of

the time series, when the population is at a much lower abundance, and in later years with

very large abundance (e.g., 1999-2001). This suggests any temperature-sensitive control

rule for sardine should be different at low, intermediate, and high sardine abundances.

Like other nonparametric methods, SSR benefits from greater time series length.

Although there is no absolute rule regarding length, forecast skill improves with time

series length (7); for fisheries it is usually difficult to get significant predictability with
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time series shorter than 30 points. Therefore, management applications of SSR will be

best suited to fisheries with longer time series. Even when time series are short, however,

good predictability is possible by combining data from similar fisheries (27). For practical

application to management, it is also important to acknowledge measurement error. State

space forecasting is robust to measurement error (28, 29). Furthermore, we can consider

extending the deterministic simplex projection (or S-map) to incorporate an estimated

distribution for measurement error for each time series point. This would be extended

to spatial distributions for the state vectors in the attractor reconstruction and ultimately

give distributions for the forecast.

Note that we expect greater error in scenario exploration when temperature scenar-

ios exceed the bounds of historic data. In these cases, there are no appropriate historical

observations of the dynamics on which to base forecasts. The more extreme the scenario,

the greater the chance of encountering dynamics never previously recorded. Parameter-

ized methods have a potential advantage over nonparametric methods in extrapolating

beyond observed behavior. However, there is uncertainty in extrapolation with any

method. The grim reality of anthropogenic climate change and overfishing is that as we

continue stressing ecosystems, we catalyze ecological outcomes that are increasingly

surprising but less and less predictable from historical observations. Regardless of the

analytical approach, the precautionary principal is critical.

Moving forward, scenario exploration with multivariate SSR can be applied to

understand relationships between two (or more) dynamically interacting variables. Here,

we focused on the case of abundance and temperature. It would also be possible to use

catch or abundance of another species as the second variable and explore the ecological

impact of harvesting one stock on another. Demonstrating the feasibility of using SSR

in a multi-species context for a particular fishery is an important potential capability of

these methods that remains to be shown.
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Given that climate change and overfishing are dual threats to many marine species,

it is critical to consider environmental conditions when formulating management strate-

gies. Our analysis with multivariate SSR illustrates the value of explicitly considering

complex dynamics in population responses to environmental forcing. For Pacific sardine,

there is a clear dependence on the physical environment that can be captured using

available, broad-scale indicators of conditions in the CCE. These general methods can

offer immediate insight into environmental forcing of species with long time series

and suggest a promising avenue of research into operational schemes for implementing

ecosystem-based management.

3.4 Materials and Methods

3.4.1 Variable Identification

We compare the forecasting skill of the univariate state space

〈X(t),X(t−1), . . . ,X(t− (E−1))〉

and the multivariate state space

〈X(t),X(t−1), . . . ,X(t− (E−1)),Y (t−d)〉 ,

where E is the optimal univariate embedding dimension (Appendix) and d is the lag

of the environmental forcing. We then evaluate the forecast skill using the correlation

coefficient ρ between observed and predicted values, and the relevant quantity for iden-

tifying variables is ∆F = ρmulti−ρuni. A physical variable is considered relevant if ∆F

is significantly greater than 0. To test significance, we use the Ebisuzaki randomization
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procedure to shuffle the environmental time series values while preserving the spectrum

(30); this destroys any temporal relationship with the biological time series. For our anal-

ysis of Pacific sardine, we compute ρmulti for 500 randomizations of each environmental

variable to produce null distributions for ∆F . Note that each environmental variable thus

has its own null distribution.

3.4.2 Forecast Comparison

To explicitly investigate state dependence in the influence of temperature on

sardine, we compare three S-map forecasts of the Pacific sardine ichthyoplankton. S-

maps requires two parameters: the em- bedding dimensions, E (number of lags to use

for forecasts), and the nonlinear tuning parameter, θ . For simplicity, we restrict all three

models to use the same number of univariate lags (lags of sardine), but the multivariate

models also includes SIO pier SST (averaged over the previous 3 y) as an additional

dimension. As is typically done for S-map analysis (20), we use simplex projection to

determine E (the optimal number of univariate lags) over the range 1-8. For the linear

models, θ = 0. For the nonlinear model, we must also fit 0 < θ < 10.

All forecasts were made out-of-sample. We restricted our forecasts to the 22

points in the time series that have eight consecutive lags. So for each target point, we

find the E that minimizes the mean absolute error (MAE) of forecasts using univariate

simplex projection on the remaining 21 points. We then find θ over the range [0,10]

that minimizes the MAE of multivariate S-map forecasts using cross-validation over

the remaining 21 points. Finally, we use these parameters to forecast the target point

out-of-sample.
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3.4.3 Model Examples

The most basic Ricker model only shows nonlinear dynamics (as demonstrated

for Pacific sardine in Figs. 3.6 and 3.7) at values of the growth parameter, r, that are

considerably higher than those usually fit in management models. However, when the

species dynamics are influenced by process error, nonlinear dynamics arise at consider-

ably lower values of r (31). Here, we include process error as additive with the growth

rate, giving

S(t +1) = S(t)exp [(r+ ε(t))(1−S(t))]exp(ψT (t)) (3.1)

where ε(t) is a normally distributed random variable with mean(ε) = 0 and

SD(ε) = 0.2. The temperature T (t) was modeled as red noise by applying a 10-y

averaging window to white noise. For Fig. 3.2A, we set r = 2 and ψ = 0.3.

Nonlinear dynamics can also arise in the Ricker model when the interactions

between multiple species are considered. Thus, we also used the following three-species

extension of the Ricker model:

Si(t +1) = Si(t)exp

[
ri

(
1−

3

∑
j=1

αi jS j(t)

)]
exp(ψiT (t)) , (3.2)

α =


1 0.2200 0.3490

0.0455 1 0.2670

0.3576 0.2900 1



r =


2.2327

1.8287

1.8209


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ψ =


0.3

0

−0.3


for i = (1,2,3). Note that the growth rates ri were drawn randomly from the

interval [1.5,2.5] and the non-diagonal elements of the interaction matrix α were drawn

randomly from [0,0.5].

For Fig. 3.5 we include a term for fishing mortality, F , in Eq. 1 as follows:

S(t +1) = S(t)exp [(r+ ε(t))(1−S(t))−F(t)]exp(ψT (t)) (3.3)

where F(t) is modeled as a uniformly distributed random variable over the range

[0,0.3]. As in Fig. 3.2A, we set r = 2 and ψ = 0.3. To explore how temperature

conditions change the effect of harvesting on the population, we did scenario exploration

with the multivariate embedding 〈S(t),S(t−1),S(t−2),S(t−3),T (t),F(t)〉. The three

temperature scenarios we illustrate are T (t) = T (t−1)+0.5σT , T (t) = T (t−1), and

T (t) = T (t−1)−0.5σT (σT is the SD of the modeled temperature). The figure was made

using a 50-y time series to predict the behavior at time t = 50. To get the best forecasts,

we use a strongly nonlinear S-map rather than simplex projection. For simplicity, we

specified θ = 5 rather than explicitly fitting θ for this model example.

3.4.4 Data

We used five climate indices that have been linked to biological changes in the

California Current: the SOI (32), NPI (33), PDO (34), NPGO (35), and Multivariate El

Nino/Southern Oscillation Index (36). We also used daily temperature data from the SIO

Pier in La Jolla, CA and the City of Newport Beach Pier in Newport Beach, CA (http:
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//shorestation.ucsd.edu/data/index_data.html). For the SIO Pier, we used both surface (0

m) and bottom (5 m) temperatures. Finally, we used an index for SST in the Southern

California Bight based on National Oceanic and Atmospheric Administration Extended

Reconstructed Sea Surface Temperature v3 analysis (http://www.esrl.noaa.gov/psd/)

averaged over four contiguous 2o× 2o areas, following McClatchie et al. (11). All

environmental indicators were averaged over a 3-y window and normalized to match

the original analysis (18), but not first-differenced. For time series with daily resolution,

this meant a straight daily average. For the other time series, the average was taken over

monthly values.

Time series for S. sagax were derived from the CalCOFI ichthyoplankton surveys

as in Hsieh (5) from 1950 to 2007. CalCOFI ichthyoplankton abundance provides an

index of adult spawning stock biomass (37). For the normalized first differences of the

sardine ichthyoplankton data, we determined the best embedding dimension to be E = 3

(see Appendix).
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Figure 3.1: State space reconstruction demonstrated with a three-species logistic model.
(A) The trajectory of the model ecosystem is plotted in three dimensions using the
abundances X(t), Y (t), and Z(t) as coordinates. (B) The trajectory is shown in the
univariate SSR coordinates, 〈X(t),X(t?1),X(t?2)〉, where lags of X take the place
of the other variables. (C) The trajectory is shown in multivariate SSR coordinates,
〈X(t),X(t?1),Y (t)〉. The system is in a similar state (nearby in state space) at times
t1, t2, and t3 (red) based on all three representations. Hence, any of these state spaces
(original or reconstructed) can be used for nearest- neighbor forecasting. (D) The
abundance of species X is shown as a time series
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Figure 3.2: Scenario exploration illustrated for a short (50-y) time series generated with
known models that are forced by temperature. For each time series point t, the effect
of warming on S(t +1) is predicted with multivariate SSR for warming of ∆T = 0.1σT

(10% of the SD of T). SSR predictions are compared with calculations with the known
model for (A) a single-species Ricker model (Eq. 1) and (B) species 1 in a multispecies
Ricker model (Eq. 2) for 10 model realizations.
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Figure 3.3: Linear and nonlinear forecasting models for Pacific sardine icthyoplankton
that include SIO pier SST are compared with a base univariate linear model. The left
plot shows the percent improvement in mean absolute error (MAE) of the out-of-sample
forecasts for each model over the base model, (MAEbase−MAEmodel)

/
MAEbase. The

right plot shows the same, but using RMSE. The base model errors are MAE = 0.99,
RMSE = 1.47 (normalized to the SD).
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Figure 3.4: Effect of warming and cooling on sardine population calculated using
scenario exploration. Using the multivariate embedding based on lags of sardine
abundance and SIO pier SST (Table 1), we explore the effect of perturbing the historical
temperatures (averaged over 3 y) by ∆T = ±0.5σSST on sardine abundance in the
following year. The historical time series is shown as a black dashed line. Multivariate
SSR forecasts based on historical temperatures (yellow circles), warming by ∆T =
+0.5σSST (red triangles), and cooling by ∆T =−0.5σSST (blue triangles) are shown.
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Figure 3.5: Model illustration of how simultaneous scenario exploration over tempera-
ture and fishing mortality might hypothetically be used in management. The effect of
fishing mortality F on future biomass S(t +1) is plotted for three temperature scenarios:
T increases by 0.5σT (red), remains constant (green), or decreases by 0.5σT (blue).
Even with just a 50-y time series, multivariate SSR predictions (filled squares) closely
match the model calculations (dotted lines).
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3.6 Appendix

3.6.1 Three-Species Logistic Model

The general form for a three-species coupled logistic model for species X1, X2,

and X3 in continuous time is given by

dXi

dt
= Xi

(
ri +

3

∑
j=1

αi jX j

)
.

The parameter values were from figure 5 of ref 6.

α =


−0.0020 −0.4606 −0.5051

0.2324 −0.1920 2.3847

1.2949 −0.0153 −0.306

 ;

r =


0.9675

−2.4281

−0.9736

=


−0.0020

0.2324

1.2949

 .

The data were generated using a fourth-order Runge-Kutta with integration step

of h = 0.01 and initial conditions X1 = 5, X2 = 0.001, and X3 = 11. Fig. 4.1 shows data

for t = (101,102, . . . ,300). The three red points correspond to time indices t1 = 108,

t2 = 143, and t3 = 248.

3.6.2 Expanded Model Example of Scenario Exploration

We repeat the analysis shown in Fig. 4.2A of the main text to show that the result

is robust over a wide range of the growth rate parameter, r. The model structure is the

same (Eq. 1 in the main text):
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S(t +1) = S(t)exp [(r+ ε(t))(1−S(t))]exp(ψT (t)),

where ε(t) is a normally distributed random variable with mean(ε) = 0 and

SD(ε) = 0.2. As in the analysis in the main text, we set ψ = 0.3. However, the growth

parameter is varied between 1.8 and 2.8. The temperature T (t) was modeled as red noise

with mean 0 and SD 1 by applying a 10-y averaging window to white noise. Using

scenario exploration with multivariate SSR, we predict the effect on stock size S of a

10% increase in temperature, ∆T , relative to the SD σT of the temperature time series.

We then compare the SSR predictions to the exact calculations with the model. As in Fig.

4.3A of the main text, we use the multivariate embedding

〈S(t),S(t−1),S(t−2),S(t−3),T (t)〉

that contains lags of population abundance and temperature. We predict the effect

that an increase in temperature ∆T at time t would have on the population abundance the

following year, t +1. That is, we make a nearest-neighbor forecast of the adult SSB for

the state

〈[S(t),S(t−1),S(t−2),S(t−3),T (t)+∆T 〉 .

Fig. 4.7 displays the results. For each value of r, we generated 10 time series of

50 y each with different initial conditions and realizations of T and ε .
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Figure 3.6: Embedding dimension for Pacific sardine. Univariate prediction skill
(1 - MAE) is shown as a function of embedding dimension (E) for normalized first
differences of the CalCOFI S. sagax ichthyoplankton time series. MAE, mean absolute
error.
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oplankton. The improvement in forecast skill, ∆ρ , of sardine ichthyoplankton abundance
for nonlinear models compared with the completely linear model (θ = 0) for increasing
values of the nonlinear tuning parameter, θ . Here, forecast skill is measured by the Pear-
sonÕs correlation coefficient between model predictions (using cross-validation) and the
observed values. Increasing the nonlinear parameter substantially improves forecasts,
suggesting that the dynamics of Pacific sardine are state-dependent (nonlinear).
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Figure 3.8: Scenario exploration illustrated for short (50-y) time series generated with
a simple Ricker model forced by temperature for a range of growth rates, r. For each
time series point t, the effect of warming on S(t +1) is predicted with multivariate SSR
for warming of ∆T = 0.1σT (10% of the SD of T ). Predictions are compared with the
true value calculated with the model over 10 model realizations for each r.
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Chapter 4

Tracking and Forecasting Ecosystem

Interactions in Real Time

Abstract

Evidence shows that species interactions are not constant but change as the

ecosystem shifts to new states. While controlled experiments and model investigations

demonstrate how nonlinear interactions can arise in principle, empirical tools to track

and predict them in nature are lacking. Here, we present a practical method that uses

available time series data to measure and forecast changing interactions in real systems,

and identify the underlying mechanisms. The method is demonstrated with model data,

data from a marine mesocosm experiment, and limnologic field data from Sparkling Lake,

WI. From simple to complex, these examples demonstrate the feasibility of quantifying,

predicting, and understanding state-dependent, nonlinear interactions as they occur in situ

and in real time- a requirement for managing resources in a nonlinear, non-equilibrium

world.
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4.1 Introduction

A particularly challenging aspect of ecological interactions is that they are not

generally static. Rather, they are state-dependent (i.e. nonlinear) and change as ecosystem

factors shift- e.g., fish populations show sensitivity to oceanographic conditions that

increases when populations decline (1), competition among small desert mammals varies

with rainfall (2,3), predation on insect herbivores changes with vegetation structure

(4), and tadpole competitors suppress feeding in the presence of predators (5).While

controlled experiments and model investigations demonstrate how varying interactions

arise in principle, empirical tools to track and predict them in the field are lacking. Here,

we present a practical method that uses available time series data to quantify, predict and

understand changing ecosystem interactions as they occur in real time- a requirement for

managing resources in a nonlinear non-equilibrium world.

Although much is known about nonlinear interactions in principle (6), heuristic

understanding from models or controlled experiments may not accurately reflect what

occurs in any particular natural setting. For example, consider two species that occupy the

same trophic level. If their diets overlap, we might expect mutual negative competitive

effects. However, if their feeding responses are nonlinear, the strength or even the

existence of competitive effects can depend on food limitation (7). Moreover, if they

share a common predator, the possible net interaction could either be positive or negative,

depending on the functional forms of coupling (8) as well as the time scale of effects (9).

When predators exhibit prey switching, there can be even more complicated interactions

(10). The point is that in nature it is difficult at best to say which of these plausible

expectations has in fact occurred.

Indeed, a dearth of quantitative tools has limited our ability to measure interactions

as they are realized in natural systems. A few exceptional studies have tracked changes in
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food-webs through labor-intensive field methods (11)- e.g., gut content analyses (12). But

while these studies verify the complexity of interactions in principle, the high labor costs

do not permit practical applications aimed at tracking (much less predicting) continually

changing species interactions across many systems. A more practical alternative would be

to estimate mutual interactions from time series of abundance that already exist. Although

this is more readily scalable, the currently available tools assume linear constancy and

are thus limited to studying fixed linear interactions (e.g. (13)) or randomly drifting ones

(discussed below) without predictive capacity and without mechanism.

In this paper, we present an approach based on empirical dynamic modeling

(EDM) (14-19) that is intended to measure and predict dynamic interactions as they occur

in the field from readily available time series data. It is an approach that does not require

assumptions of equilibrium or constancy. We first introduce the logic of the method,

and then demonstrate it by applying it to three systems- a model ecosystem where the

interactions are exactly known, a mesocosm experiment from the Baltic Sea where the

interactions are as expected, and finally data on zooplankton from Sparkling Lake, WI.

4.2 The Method: Measuring Interactions with S-Maps

The method extends the classical community matrix idea, defined for systems

in equilibrium, to dynamic systems that are not in equilibrium. The community matrix

is commonly computed as the matrix of partial derivatives of the system evaluated

at equilibrium (i.e. the Jacobian) or its per-capita equivalent (20,21). It represents a

theoretical expedient where pair-wise interactions are treated as fixed coefficients that

are thereby independent of each other.

However, ecological systems are rarely if ever in static equilibrium. Rather, they

exhibit nonlinear and non-equilibrium behavior, and as a consequence the interaction
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strengths (as defined below) and even the sign of the interactions can change with

ecosystem state. In other words, interactions can vary with the abundances of interacting

species and with changes in important environmental factors.

In principle, interactions for non-equilibrium systems can still be represented with

matrices, however to do so it must be possible to recalculate the matrix continually for

each successive ecosystem state. Although this may seem infeasible for a system being

studied in the field, it is our aim here to show how this task is possible with time series

data and empirical dynamic modeling (EDM). EDM is an equation-free mechanistic

modeling approach based on the idea of reconstructing the underlying dynamical system

(attractor manifold) from observational time series (14-19). The concept of building

an attractor manifold from time series is clearly illustrated in a brief video animation

http\://simplex.ucsd.edu/RMM_S1.mov and the rationale is as follows.

Briefly, in EDM the state of a dynamical system can be thought of as a location

in a multivariate coordinate space, or state space, whose coordinate axes are ecosystem

variables such as species abundance, temperature, or resource abundance. The system

state changes and evolves in time according to the rules/equations that describe the

system dynamics, and this traces out a trajectory. The collection of these time-series

trajectories forms a geometric object known as an attractor manifold, which describes

empirically (in fact) how variables relate to each other in time- hence “empirical dynamic

modeling” (14-19).

To illustrate, Figure 4.1 shows a hypothetical (cartoon) ecosystem consisting of

two consumers, C1 and C2, competing for a shared resource, R. An empirical attractor for

this system can be constructed from the time series of the two consumers and the resource

(Figure 4.1a) simply by taking the three time series variables as Cartesian coordinates,

x(t) = [C1(t),C2(t),R(t)] and plotting out successive points in time to yield the system

trajectory in the state space (Figure 4.1b).
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The dynamics of the first consumer, i.e. how C1 changes from one time point to

another, is a function of the current ecosystem state x(t) and can be written as

C1(t +1) = F (x(t))

where F represents the 3-dimensional dynamics on the attractor with respect to

C1. Note that the current system state x(t) is also referred to as the target point.

Consider two points on the attractor, p and q, representing specific ecosystem

states. Zooming into a small neighborhood of these points we see the interactions

between C1 and the other variables are nearly linear (Fig. 4.1c & 4.1d), and so F can be

characterized by the appropriate row of the Jacobian matrix, which in discrete time is

taken over the time interval t to t +1 (see Materials and Methods).

DF =

[
∂C1(t +1)

∂C1(t)
,
∂C1(t +1)

C2(t)
,
∂C1(t +1)

∂R(t)

]
.

The elements of this row (the Jacobian elements) define the interaction strengths

or net local effect that each of the three variables C1, C2 and R has on the predicted variable

C1 (22). Again, in a system with a globally stable equilibrium, DF is evaluated only at

the equilibrium point fixed point. However, in our hypothetical example the interactions

between variables are very different at p and q. The surface F at p (Fig. 4.1d) has a steep

positive slope in the R direction, indicating strong dependence on food abundance, and a

steep negative slope along the C2 direction, indicating strong competition. In contrast,

at q, C1(t +1) is not sensitive to changes in R or C2. Consequently, F at q is flat (Fig.

4.1c) and the partial derivatives are zero. In this way, the partial derivatives or Jacobian

elements corresponding to these slopes define the interaction strengths at system states p

and q.

The key to implementing these ideas is that the Jacobian elements (and thus the
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interaction strengths) can be recovered for any predicted variable, at any target point x(t)

on the attractor using S-maps (15,16,18). S-maps is a locally weighted multivariate linear

regression scheme, where points on the attractor that are near the target are given the

greatest weight. As S-maps is just a specific type of weighted linear regression, it can

be easily implemented in common statistical languages like MATLAB and R. Example

marked-down R code is provided in the supplement, but we also now briefly outline the

procedure.

Like other regression schemes, S-maps involves computing the linear model C

that approximates F locally at x(t∗), so that

x̂i(t∗+1) =C0 +
E

∑
j=1

C jx j(t∗),

where E is the number of system variables (i.e. the embedding dimension). The

linear model is fit to the other observed vectors on the empirical attractor manifold, but

the vectors that are closer to the target point x(t∗) get stronger weighting. The weighting

applied to observation k is exponential by distance to the target point x(t∗)

wk = exp
(
−θ ||x(tk)−x(t∗)| |/d̄

)
.

The parameter θ ≥ 0 tunes how strongly the regression is localized to the region

of state space around the target, and the weights are normalized to the average distance

of the observed vectors on the empirical attractor to the target point x(t∗)

d̄ =
1
n

n

∑
k=1
||x(tk)−x(t∗)| |.

Here ||x−y|| denotes the Euclidian distance between two vectors. Note that if

θ = 0, the S-map model reduces to a vector autogressive (VAR) model. That is, VAR

models can be thought of as a special case of S-map. For θ ≥ 0, the elements of C are
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the locally weighted linear coefficients, and the larger the parameter θ , the more the

coefficients are allowed to vary as the system changes state.

With this local weighting, the S-map model is the SVD (singular value decompo-

sition) solution for C to the linear equation

B = A ·C.

A is the n×E dimensional matrix of weighted state-space vectors given by

Ak j = wkx j(tk),

and B is the n-element vector of the 1-step ahead value of the target variable

xi(tk +1) given by

Bk = wkxi(tk +1).

Since for the target species xi, it is therefore approximating the partial derivatives

of the dynamics with respect to the . Note that with S-maps, the locally weighted linear

regression is generally performed using leave-one-out cross-validation, which means that

the time point at which we want to measure the interaction coefficients is not used in the

fit.

S-maps have been used both as a simple test for nonlinear dynamics (16) and as a

non-parametric tool for ecosystem forecasting (e.g. (18)). Here we note simply that in

multivariate embeddings (i.e. native embeddings using raw variables rather than lags of a

single variable) S-maps approximate the Jacobian or interaction elements at successive

points along the attractor (see methods and SI). That is, S-maps generate the relevant

Jacobian elements that define the interaction strengths, and as required do so sequentially

(hence the name S-map, S = “Sequential”). Moreover, in real time, when the time series
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data for C1 at time t +1 are not available for fitting, the interaction strengths computed at

that instant are actually forecasts of the influence of each variable on C1.

The only general assumptions of EDM are that (1) there is a deterministic com-

ponent to the ecosystem dynamics and (2) the attractor is adequately embedded by the

chosen set of coordinate variables (i.e. the state space). If the attractor is not fully embed-

ded, there will be singularities: places where trajectories cross and so the interactions

are not uniquely determined. If the attractor is embedded, there are no such singularities.

Do note that while we are limited to showing 3-dimensional embeddings in graphical

plots, real systems often require more than 3-dimensions (which is easily done with the

calculations). Importantly, these two core assumptions can be explicitly validated by

nearest-neighbor prediction with S-maps. Prediction means that there are deterministic

dynamics and that there are few if any singularities on the attractor (23). Testing these

assumptions is a prerequisite for applying the method. Thus, in general EDM should

not apply if the system cannot be properly embedded, such as would occur in a purely

stochastic system with no discernible dynamics or when observational noise dominates

to the extent that no predictive nonlinear manifold can be uncovered. In addition because

the multivariate S-map method described here can be sensitive to the specific embedding

coordinates, when possible care must be taken to examine a comprehensive set of time

series variables that can be verified with a causation test (e.g., convergent cross mapping

(14)) and a multivariate prediction test as shown below (e.g.(18,19)).

S-maps track the interactions as the system travels through different states (Fig.

4.1e). At point p (purple arrow) with steep slopes, the S-map coefficients or partial

derivatives show that C1 is affected strongly by both food ∂C1(t + 1)/R(t) > 0 and

competition ∂C1(t +1)/∂C2(t)< 0. At point q (orange arrow), the S-map coefficients

are both near 0, reflecting the lack of food-limitation and competition.

Notice that because the S-map coefficients are state dependent they portray the
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mechanistic conditions (system state) associated with any particular interaction strength.

This is a key point that differentiates the EDM approach from non-mechanistic fitting

methods developed in econometrics that allow the coefficients of a vector autoregressive

model to drift over time (dynamic linear models). These methods suppose points nearby

in time have similar coefficients rather than points nearby in state space (see Fig. 4.5a,b).

They treat time variation as random excursions without providing a mechanistic basis for

understanding why interactions are changing, and typically require forward information

(x(t + 1)) to fit the drifting coefficients (e.g., Kalman filters). Consequently the non-

mechanistic drift approach lacks predictive power and can fail to correctly measure

interactions at all (see supplemental text, Fig. 4.5c).

4.3 Test Cases

To demonstrate the method for tracking state-dependent interactions we will apply

it to three test cases: a model, an experimental mesocosm, and a natural lake ecosystem.

The model (Fig. 4.2d) is a classic food web (24,25) consisting of two consumers (C1, C2),

their predators (P1, P2), and a single resource (R). The trophic interactions are governed

by saturating (Holling Type II) feeding responses, and this gives rise to state-dependent

competition (see methods) (7,8). The model is reckoned to be a transparent example of

state-dependent interactions.

Figure 4.2 shows how the EDM approach with S-maps can uncover the mecha-

nisms that cause the interaction strength to vary, focusing on the interactions between

the consumer C1 and the other ecosystem components. For example, in Figure 4.2b

competition between C1 and C2 only occurs at low to moderate food levels, and at high

food concentrations competition tends to zero. Moreover, Figure 4.2c shows that ∂C1/∂R

(a direct measure of food limitation) sets a maximum on the strength of competition. This
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is explicitly demonstrated by the 0.05 quantile regression (26) of ∂C1/∂C2 on ∂C1/∂R

(dashed red line). The effect is consistent with the underlying structure of the model, and

validates the approach. Finally, Figure 4.2e shows that the S-map forecasted interaction

strength estimated from the time-series agrees well with the Jacobian elements computed

directly from the system equations. Importantly, like applications of S-maps to simple

population forecasting (27), these S-map predictions of the interaction coefficients are

robust to realistic amounts of observational noise (see supplemental online material).

Next, we apply the method to the interaction between calanoid copepods and ro-

tifers in a freely evolving marine mesocosm isolated from the Baltic sea (28,29). We focus

on calanoids, rotifers, and their two main prey items, nanoflagellates and picocyanobacte-

ria (see Fig. 4.3d). Figure 4.3a shows the interaction coefficients estimated with S-maps

for the effects of rotifers, nanoflagellates, and picocyanobacteria on calanoids. As ex-

pected, interactions with the chief prey item (nanoflagellates) are always positive, and

interactions with the other grazer (rotifers) are always negative, and the intensity of these

interactions changes through time. Similar to the model above, we find that competition

(−∂Cal/∂Rot) is strong only when the prey (nanoflagellate) concentration is near-zero

(Fig. 4.3b) and that the maximum strength of competition is set by food limitation

(Fig. 4.3c), as demonstrated by the 0.05 quantile regression line (dashed red). Although

analogous results have been obtained from experimental evidence of saturating feeding

responses (6), here they are recovered non-invasively in the freely-evolving mesocosm,

and directly by analysis of the abundance time series. Although there is no direct way to

validate the specific estimates of interaction strength (as we could for the model), our

results are reasonably in line with ecological expectations (that competition depends

on food limitation) and this validates the approach. Moreover, the convenience of the

approach suggests its utility in cases where experimental manipulations are logistically

infeasible, such as in large marine ecosystems.
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As a final example, we consider the ecological interactions in Sparkling Lake,

WI, focusing again on calanoid copepods and trophically similar cyclopoids. Following

Beisner et al.(30), we group species by broader taxa- calanoid copepods, cyclopoid cope-

pods, cladocerans, and rotifers. While these are relatively broad groupings, the calanoid

and cyclopoid copepod groups were each dominated by single species, Leptodiaptomus

minutus and Diacyclops thomasi, respectively, both of which are microplankton grazers.

Figure 4.4a shows the S-map estimates of the time-varying effects of cyclopoids,

temperature, and planktivorous fish on calanoids. Note that the effect of cyclopoids

on calanoids, ∂Cal/∂Cyc, is only negative in certain periods, indicating that there is

only intermittent competition. Much of the time, the interaction is positive. In theory,

a positive interaction can arise from apparent mutualism between trophically similar

species who share common predators(8). If this were the case, we would also expect

competition to occur only when predation pressure is low. Indeed, plotting ∂Cal/∂Cyc

against total predator biomass, Fish, shows that competition only occurs in periods with

low planktivorous fish abundance (Fig. 4.4b). Similarly, plotting ∂Cal/∂Cyc against

the predator prey ratio (Fig. 4.4c) shows that the positive effect occurs most strongly

at the highest ratios whereas competition occurs only at the lowest predator prey ratios.

Here, the predator prey ratio is Fish/(1+Cal +Cyc), where 1 is added to accommodate

times when both Cal and Cyc are measured as 0. This evidence is consistent with

predator-mediated mutualism (here explicitly showing commensalism)- an interpretation

that resonates with previous work showing that Sparkling Lake has been dominated by

top-down forcing (30).

However, consistency is not proof. Indeed, because food supply will have a

positive effect on both calanoids and cyclopoids, increases in one species could correlate

with increases in the other for this reason alone. Unfortunately, this effect could not be

examined in the Sparkling Lake study because there was no effective measure of food
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supply to drive the analysis (in terms of adequate temporal and/or taxonomic resolution,

as discussed in the methods). Thus, although not conclusive, the weight of evidence in

Figure 4.4b & 4.4c is indeed consistent with apparent mutualism mediated by common

predators as a mechanism that contributes to the net interaction.

4.4 Concluding Remarks

These three demonstrations illustrate how S-maps can be used to quantify chang-

ing species interactions and identify the underlying mechanisms. In the model system, we

are able to recover the known interactions directly from the time series. In the mesocosm,

we find competition that intensifies as food becomes limiting (Fig. 4.3b,c), as expected.

Conversely, in Sparkling Lake we find that competition between copepods only occurs

when predator abundance is low (Fig. 4.4b). Much of the time there is a positive net

interaction that intensifies when the predator prey ratio increases, suggestive of apparent

mutualism.

EDM is an equation-free mathematical framework built on minimal assumptions

for studying ecosystem dynamics directly from time-series data. It accommodates non-

equilibrium dynamics and does not require assumed functional forms or heuristic models

based on correlations. As noted elsewhere (14), such correlations can be inappropriate in

nonlinear dynamic systems, which tend to produce “mirage correlations” - ephemeral

associations among variables that appear then disappear, or even change sign. As a case

in point, in Sparkling Lake where the sign of ∂Cal/∂Cyc clearly flips through time, the

presence of an interaction may be missed with a linear time-averaged analysis. Indeed,

this can explain why previous linear analysis of this system using vector auto regression

did not find a significant linear-constant effect of cyclopoids on calanoids (30).

Previous work has shown how EDM can be used for population forecasting
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(16,18,27) for exploring alternative environmental scenarios (19), and for detecting

causal linkages (14). Here, we apply the S-map approach to track and forecast the

changing interactions in ecosystems. While models and field experiments can identify

species interactions in the abstract, in the field these interactions are embedded in an

evolving network of factors. Therefore, by allowing the study of interactions as they

are realized in nature, EDM offers a vetted path, verified by out of sample prediction

for studying biological systems as a dynamically changing interconnected whole (14).

Moreover, insofar as the framework involves data that can be feasibly collected close to

real time (e.g., as occurs at many LTER sites, fisheries systems, and other monitoring

programs around the world) and can actually forecast expected interactions, we believe

it could become a practical tool for ecosystem control and management. It is a concep-

tual framework that speaks to the critical importance of on-going and long-term data

collection.
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Figure 4.1: Measuring interactions in a hypothetical 3-species ecosystem. The empirical
attractor is constructed by re-plotting the time series of C1, C2, and R (a) simultaneously
in 3 dimensions (b). The attractor displays the historical relationships between variables.
The magnitude of the interactions with respect to C1 are different at the two ecosystem
states (points on the attractor), p (purple) and q (orange). Panels (c) and (d) show the
local effect of C2 and R on C1 at these states. The slopes of these local surfaces (i.e the
partial derivatives or Jacobian elements) define the interaction strengths, and these are
calculated by the S-map coefficients (e). The surface at p is steep (c), thus the estimated
interaction coefficients (e) have large magnitude (purple arrow). Conversely, the surface
at q is flat (d), so the estimated interaction coefficients (e) are near zero (orange arrow).
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Figure 4.2: Dynamic interactions measured from the output of a 5-species model food
web (d). Panel (a) shows the S-map estimated interaction coefficients over 1000 model
years for the effects on consumer 1 (C1) of the shared resource (R), predator 1 (P1),
and of consumer 2 (C2) on C1. Panels (b) and (c) show the dependence of competition
(-∂C1/∂C2) on food abundance (R) and food limitation (∂C1/∂R), respectively. Red
dashed line indicates 0.05 quantile regression (slope is significantly different from
0, p < 0.01). Grey error bars indicate 95% confidence limits on S-map coefficients.
Consumers and predators have saturating feeding responses, which leads to state-
dependent dynamics and competition between consumers (red-arrow) that depends on
food limitation. Panel (e) compares the estimated S-map forecasts of interaction strength
to those computed directly from the model equations (correlation coefficients given in
figure). The demonstrated ability to forecast interactions is important for system control
and management. All axes are in normalized units.
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Figure 4.3: Dynamic interactions in the Baltic Sea mesocosm. (a) The S-map estimated
interaction coefficients for calanoid copepods (Cal) with respect to the main prey
item, nanoflagellates (Nano); secondary prey item, picocyanobacteria (Pico); and main
competitor, rotifers (Rot) through the duration of the experiment. The effect of rotifers
∂Cal/∂Rot is shown as a function of (b) food abundance (Nano) and (c) food limitation
(∂Cal/∂Nano), with the grey error bars indicating 95% confidence limits on S-map
coefficients. The 0.05 quantile regression (red dashed line) has a significant slope
(p < 0.01), and demonstrates the state dependent nature of competition (indicated by
-∂Cal/∂Rot) between rotifers and calanoids. Panel (d) shows the focal species within a
summary interaction network for the mesocosm. Axes are in normalized units.
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Figure 4.4: Dynamic interactions in Sparkling Lake. (a) S-map estimates of interaction
coefficients quantify the changing effects of cyclopoids (Cyc), temperature (T ), and
planktivorous fish abundance (Fish) on calanoid copepods (Cal). The interaction of
cyclopoids on calanoids ∂Cal/∂Cyc is shown as a function of (b) planktivorous fish
abundance (CPUE) and (c) the log of the predator prey ratio, with grey bars indicating
95% confidence on the S-map coefficients. The red dashed line represents the 0.05
quantile regression in (c) and regression on the mean in (d). Here, the predator prey
ratio is defined as Fish/(1+Cal +Cyc).
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4.6 Appendix

4.6.1 S-maps vs. DLM

At first glance S-maps may seem similar to multivariate auto-regression (MAR)

or vector auto-regression (VAR) methods that allow coefficients to change or drift in time

(usually referred to under the more general umbrella of dynamic linear models or DLM).

Both are based on the idea of weighted linear regression. However, there is a fundamental

and critical difference between the two: DLM methods do not explicitly address state

dependence. DLM determine coefficients by weighting ecosystem states that are nearby

in time, rather than ecosystem states that are actually most similar (closest in the state

space). States can change quite rapidly in ecosystems (e.g. outbreaks of spruce budworms

or fishery collapses), and thus states nearby in time may be very dissimilar (have different

interaction strengths). To illustrate the difficulty of applying DLM to measure interactions

in state-dependent ecosystems, we examine the 5-species model from main text. Figure

4.5 illustrates which observations get used to determine the coefficients when weighting

is determined by (a) proximity in state space (a la S-maps) versus (b) proximity in time (a

la standard DLM). Note that when weighting is based on time (b), there are points on the

trajectory that get weighting even though they represent very different ecosystem states.

At the target point (solid red circle), resource abundance is high, but at several points

nearby in time (open red circles), food abundance is much lower. Note also that there are

many points on the attractor that are nearby the target point (solid red circle), but don’t

happen to be nearby in time. The interaction coefficients at these time points are very

close to the coefficients at the target point. S-maps take advantage of this, whereas DLM

do not.

To further illustrate this point, we compare the explicit calculations of interaction

coefficient of DLM and S-maps to the exact calculations obtained from the known model.
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The DLM is computed using the R package dlm (4) and is formulated as follows:

x1(t +1) =
E

∑
j=1

[
Θ j(t)x j(t)

]
+ ε(t)

Θ j(t) = Θ j(t−1)ω j(t),

where ε ∝ N[0,σobsess is the observational noise, and the ω j(t) ∝ N[0,α]. The

Θ j(t) are the interaction coefficients between the target species xi and the x j. We use

capital Θ for these coefficients to avoid confusion with the nonlinear S-map parameter θ

above). The coefficients are assumed to follow a random walk with parameter α . We

present results for α = 0.03, which we found in our analysis maximized the correspon-

dence with the actual competition values calculated from the model. Panel (c) of Fig.

4.5 in the main text compares DLM predictions of competition between C1 and C2 to

S-map predictions and model calculations for a section of the time-series. The S-maps

estimates match the model calculations exceedingly well, while the DLM estimates do

not. Effectively, the DLM cannot account for how quickly competition changes in the

model. During the rapid bursts of intense competition, there are points nearby in time

in which competition is quite low. The DLM scheme gives weight to these points, and

therefore misestimates the true competition. Taken over the whole time series, the S-map

estimates of competition are highly accurate, ρ = 0.75 (Pearson’s correlation), but the

DLM are not, ρ = 0.3.

If the time series is highly over-sampled (observations are very close together

in time compared to the rate of change of the system variables), weighting in time can

approximate weighting in state space, and thus DLM can give similar results as S-maps.

In practice, however, such over-sampling is rare in ecology.
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4.6.2 CCM Analysis for Mesocosm Example

Convergent cross-mapping (CCM) is based on the theorem of Takens (1). An

important consequence of the theorem is that if two species X and Y are part of the same

dynamic system, then it is possible to predict the current abundance of species X using

the time lag embedding of species Y (2). In this way, CCM can test if one ecosystem

variable drives another. Here, we apply CCM to the species abundances in the Baltic

Sea mesocosm time series to provide additional validation of the causal relationships

between the species.

To calculate the cross-mapping between species, we follow the method described

by Sugihara et al.(2), but with one additional consideration. The number of time lag

coordinates of the predictor species Y defines the embedding dimension, E. The theorem

of Takens states that an embedding dimension of E = 2d+1 (where d is the dimension of

the system) is sufficient, but not strictly necessary. Thus, even though the ecosystem may

have d key state variables (i.e. it is d-dimensional), the optimal embedding dimension

(number of time lags) E for predicting a species X from Y could be anywhere between

d and 2d +1, depending on the particular mathematical properties of that system, the

amount of data, and quality of the data (observation noise).

Fitting the embedding dimension outright to maximize cross-prediction for each

predictor-target pair bears significant risk of over-fitting. Instead, it is better to use a statis-

tically independent (or at least quasi-independent) criterion to choose E. We propose the

following. CCM is typically done for simultaneous prediction, that is predicting species

X at time t (i.e. X(t)) from the lag coordinates of Y , 〈Y (t),Y (t−1), . . . ,Y (t− (E−1))〉.

However, it is also possible to predict future and past values of X (i.e. X(t + p)) from

the same Y embedding. The optimal embedding dimension for lag coordinates of Y

should be consistent for changes in the prediction time, p. Generally speaking, there will

be some limited statistical dependence between these quantities, even if the two time
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series X and Y are actually unrelated. Nevertheless, the rate of false positives will be

much lower than simply picking E to maximize the ordinary p = 0 cross-prediction. 4.1

shows predicting X j(t) from lags of Xi (p = 0) using the embedding dimension E that

maximizes the predictions of X j(t−1) from the same lags of Xi (p = −1). Statistical

significance is tested using the method of surrogates. In this case, surrogate time series

are created for each species by sampling values from the original time series at random

(with replacement). This gives a distribution for the expected cross-mapping between

species under the null hypotheses that the variables are dynamically unrelated. We find

statistically significant (p < 0.05) evidence for bidirectional interactions among the four

species focused on in the main text: calanoid copepods, rotifers, nanoflagellates, and

picophytoplankton.

To have a definitive test for causality, it is not only necessary for the cross-mapping

predictability to be statistically significant, but also that predictability shows convergence-

that is, predictability with the amount of data used in the lag coordinate reconstruction

up to a practical limit (2). This is convergent cross-mapping (CCM). Figure 4.6 shows

cross-mapping convergence for the interactions between calanoid copepods and the three

other focal species. CCM with filamentous diatoms, harpacticoids, and bacteria are also

shown.

4.6.3 Weighting Parameter

S-maps, the sequential local linear regression scheme employed in the paper,

contains a parameter, θ , which controls how strongly the points nearby the target in

multidimensional state space are weighted in the regression. When θ = 0, the weighting

is equal across all points on the attractor (and independent of distance), and hence S-maps

reduces to simple vector autoregression (VAR). This means the regression coefficients do

not vary across the time series; this corresponds a system where interaction strengths are
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fixed (a system at equilibrium).

For small positive θ , the regression coefficients will vary by state, but only weakly.

If θ is too small, the coefficients will underestimate the true variability in interaction

strength. However, the larger θ becomes, the more the regression hinges on only the

most proximal points, and will therefore be more sensitive to observation error. In

practice, some intermediate value of θ will optimally balance bias and uncertainty. The

simplest way to chose an appropriate θ is to examine prediction error as a function of θ .

Looking at the mesocosm example, the normalized mean absolute error (nMAE) between

S-map predictions and observations of calanoid abundance are shown as a function of

θ for the multivariate embedding 〈Cal(t),Rot(t),Nano(t),Pico(t)〉 (Fig. 4.8). Error is

minimized at θ = 3. For comparison, the error as a function of θ is also shown for the

best univariate embedding (Fig. 4.7). To determine the best univariate embedding, we

apply the same method as Glaser et al. (3), which is to minimize the error of simplex

projection as a function of embedding dimension. The four dimensional embedding, i.e.

〈Cal(t),Cal(t−1),Cal(t−2),Cal(t−3)〉 is best (Fig. 4.9).

Most notably, the best multivariate embedding improves prediction (has lower

error) relative to the univariate model: nMAE is 0.28 for the multivariate embedding

(θ = 3) and 0.31 for the univariate embedding (θ = 4.5). This provides additional

confirmation to CCM that the population dynamics of calanoids can be understood well

in terms of calanoids, rotifers, nanoflagellates, and picophytoplankton. That is to say, the

dynamic attractor is well embedded by these four variables.

A similar analysis for the multivariate embedding is applied to the Sparkling

Lake case study (Fig. 4.10). We find an optimal value of θ = 2.8 for the multivariate

embedding analyzed in the main text, 〈Cal(t),Cyc(t),Rot(t),T (t),Fish(t)〉. Note that as

discussed in the main text, univariate comparison is not possible for Sparkling Lake, due

to the difficulty in taking time lags for irregularly sampled data.
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4.6.4 Observation Error and Bias

Here we directly investigate effects of observation error and bias in the S-map

estimations of interaction strength. We use the 5-species model from Figure 4.2 in the

main text, so that we have exact calculations of interaction strength to which we can

compare the S-map estimates. The model is run as described in the material and methods,

but for 50,000 time points. Random time-series segments of a fixed length L are selected,

then normally distributed i.i.d. observation error is added to all 5 variables, where the

magnitude of the observation error is scaled to the standard deviation of the time series.

We ran 200 replicates for each time-series length L and magnitude of observation error.

Figure 4.13 looks at the accuracy of S-map estimates as a function of observation error for

L = 300 and 1000. Accuracy is quantified both by Pearson’s correlation between S-map

estimated interaction strength and true value and by the mean error (S-map estimate - true

value). The upper 0.95 quantiles and lower 0.05 quantiles (taken over the 200 replicates)

of accuracy are shown in red dotted lines. Though the accuracy measured by Pearson’s

correlation does decline some with the magnitude of error, the effect is modest, and

demonstrates the ability of S-maps to cope realistic levels of observation error.

We also note that for this model, the S-map method for estimating the interaction

coefficients shows an error bias in two cases, ∂C1/∂R and ∂C1/∂P1. Note that in both

cases, S-map is consistently under-estimating the magnitude, as the effect of R is always

positive and the effect of P1 is always negative. This is not surprising. The obvious

source of bias comes from applying linear regression to a nonlinear function. If we

have not “zoomed in” close enough to the manifold, there will still be some curvature

(nonlinearity) in the local neighborhood that we are analyzing. We expect the most

noticeable bias specifically in the areas of the manifold with greatest curvature. This is

in fact suggested by Figure 4.2 (e), as the magnitude of the peaks e.g. in ∂C1/∂R are

consistently under-estimated.
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As an aside for those interested, we note that S-maps were specifically designed

with noisy ecological data in mind (i.e. the case studies in Sugihara:1994kn). In a

noise-free system there are other ways to perform linear regression that conceivably

give greater accuracy and less bias- for example, simply performing the regression over

the attractor points that fall within a small epsilon ball. By giving some consideration

to points outside the smallest neighborhood, S-maps have the ability to average out

observational noise. As noted, the theta parameter controls this trade-off between noise

averaging and potential bias in the linear model due to including distant points where

the slopes are considerably different. That being said, there is clearly plenty of room

to tinker with the specific scheme for performing local linear regression, for example

allowing the theta parameter to change in state space based on preliminary estimates of

curvature.

4.6.5 Robustness to Choice of Embedding

Though the 4-dimensional multivariate embedding for the Baltic Sea mesocosm

analyzed in the main text produces good forecasts of calanoid copepod population

dynamics, CCM (Table 4.1, Fig. 4.6) suggests there might be additional influences on

calanoid dynamics beyond calanoids, rotifers, nanoflagellates, and picophytoplankton.

Specifically, filamentous diatom and bacteria abundances cross-map well with calanoid

abundance. Thus, we wish to check that the main results of the paper are robust to

including either of these variables as additional state variables in the analysis shown

in main text Fig. 4.3. Thus, we repeat the analysis from Fig. 4.3, but with bacteria

abundance (Fig. 4.11) and filamentous diatom abundance (Fig. 4.12) each included as

a 5th state variable. As in Figure 4.3 (b), competition (−∂Cal/∂Rot) is strongest only

when food abundance is near zero (Fig. 4.11b, Fig. 4.12b). Furthermore, the maximum

competition is controlled by the amount of food limitation, űCal Ú űNano (Fig. 4.11c,
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Fig. 4.12c). We test this quantitatively by calculating the 0.95 quantile regression. In

both cases, the slope of the 0.95 quantile is significantly greater than zero (p < 0.01).
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Figure 4.5: S-map versus Dynamic Linear Model (DLM). S-map and DLM are both
applied to measuring competition in the 5-species food chain model described in the
main text. The DLM model is a vector autoregressive (VAR) model where the linear
interaction coefficients are allowed to drift in time as a random walk. Panels (a) and
(b) illustrate the weighting of points (open red circles) on the empirical attractor (grey
line) for measuring competition at the target point (solid red circle). In (a) weighting is
determined by distance in state space (as in S-maps), while in (b) it is determined by
distance in time (as in DLM). Note in (b) that weighting is given to several points where
the ecosystem was in a substantially different state (e.g. much lower food abundance)
that the target point (solid red). Panel (c) compares estimates of competition based
on S-map, DLM, and explicit calculations from the model. DLM is unable to keep
up with the rapid changes in competition observed in the real model and consistently
misestimates competition.
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Figure 4.6: Convergent cross mapping (CCM) between calanoid copepods and the six
other target population variables. If the target variable can predict calanoids (blue line),
this indicates that the calanoid population has a causal influence on the target variable.
Likewise, if calanoids can predict the target variable (red line), then the target variable
has a causal influence on the calanoid population. Shaded region indicate 10th and 90th
percentiles.
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Figure 4.7: Prediction error vs. θ for multivariate forecasts of calanoid abundance. Blue
line indicates normalized mean absolute error (nMAE) in 1-week S-maps forecasts of
calanoid abundance using the multivariate embedding 〈Cal(t),Rot(t),Nano(t),Pico(t)〉.
The red star indicates the optimal θ (minimizes error), which was then used for analysis
in the main text.
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Figure 4.8: Prediction error vs. θ for multivariate forecasts of calanoid abundance. Blue
line indicates normalized mean absolute error (nMAE) in 1-week S-maps forecasts of
calanoid abundance using the multivariate embedding 〈Cal(t),Rot(t),Nano(t),Pico(t)〉.
The red star indicates the optimal θ (minimizes error), which was then used for analysis
in the main text.
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Figure 4.9: Prediction error vs. E for univariate forecasts of calanoid abundance.
Simplex projection is used to forecast calanoid abundance 1 week in the future based
on univariate embeddings with a range of embedding dimension, E. Normalized
mean absolute error (nMAE) between observations and predictions is minimized
with an embedding dimension E = 4. That is, the state space with coordinate axes
〈Cal(t),Cal(t−1),Cal(t−2),Cal(t−3)〉.
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Figure 4.10: Prediction error vs. θ (nonlinearity) for multivariate EDM forecasts
of calanoid abundance in Sparkling Lake. Blue line indicates normalized mean ab-
solute error (nMAE) in 2-week S-maps forecasts of calanoid abundance using the
five-dimensional embedding 〈Cal(t),Cyc(t),Rot(t−2),T (t),Fish(y)〉. S-maps with
θ = 0 represent the best linear model (VAR) with constant coefficients. As θ increases,
the coefficients become increasingly more locally determined (nonlinear). Best predic-
tion is obtained for θ = 2.8, suggesting that calanoid dynamics are best understood as
nonlinear.
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Figure 4.11: Reproduction of main text Fig. 4.3 with bacterial abundance as a 5th
state variable. (a) S-map estimates of interaction coefficients capturing the effects
of the nanoflagellates (Nano), picocyanobacteria (Pico), rotifers (Rot), and bacteria
(Bact) on calanoid copepods (Cal) through the duration of the experiment. Competition
(−∂Cal/∂Rot) is shown as a function of (b) food abundance (Nano) and (c) food limi-
tation (∂Cal/∂Nano). Red dashed lines indicate the 0.05 and 0.95 quantile regressions.
The slope of the 0.95 quantile is significantly different from 0 (p < 0.01). Results
qualitatively match Fig. 4.3.
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Figure 4.12: Reproduction of main text Fig. 4.3 with filamentous diatom abundance
as a 5th state variable. (a) S-map estimates of interaction coefficients capturing the
effects of the nanoflagellates (Nano), picocyanobacteria (Pico), rotifers (Rot), and
diatoms (Diat) on calanoid copepods (Cal) through the duration of the experiment.
Competition (−∂Cal/∂Rot) is shown as a function of (b) food abundance (Nano) and
(c) food limitation (∂Cal/∂Nano). Red dashed lines indicate the 0.05 and 0.95 quantile
regressions. The slope of the 0.95 quantile is significantly different from 0 (p < 0.01).
Results qualitatively match Fig. 4.3.
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Figure 4.13: Error and bias in S-map interaction estimates are examined in the 5-species
model. The correlation between S-map estimated interaction and true values, ρcoe f f ,
and the mean error (S-map estimate minus true value) are shown as a function of the
level of observation error εobsv applied to all 5 variables. Here, εobsv is measured as a
fraction of the standard deviation of the time-series, and thus ranges from 0 to 30%.
Accuracy is calculated for 200 replicates at each εobsv and time-series length. Upper
0.95 and lower 0.05 quantiles are shown as red dotted lines.
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Table 4.1: Cross-mapping between species in Baltic Sea mesocosm. If target (column)
species, Y , can be predicted from time series of predictor (row) species, X , then Y
causally influences X . Cross-mapping prediction skill is measured as the Pearson’s
correlation ? between observed and predicted values. Statistically significant cross-
mapping (p < 0.05) is indicated by grey shading, and suggests that the column species
causally affects the row species.
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Chapter 5

Global Environmental Drivers of

Influenza

Abstract

In temperate countries, influenza outbreaks are well correlated to the seasonal

changes in temperature and absolute humidity. However, in tropical countries where

annual climate cycles are much weaker, influenza seasonality is harder to find and more

difficult to explain. Here, we use a dynamical systems approach (convergent cross

mapping) to directly examine global drivers of influenza outbreaks from country-level

time series. By identifying causal drivers rather than correlations, we show that despite

the apparent differences between temperate and tropical countries, absolute humidity and

to a lesser extent temperature drive influenza outbreaks globally. We also corroborate a

U-shaped relationship between absolute humidity and influenza at the population level

that has been suggested in principle by experiment. The results show that there are global

rules for environmental drivers of flu that apply across latitudes.

116
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5.1 Introduction

A diverse host of plausible mechanisms have been put forward to explain the

wintertime occurrence of seasonal influenza outbreaks. Low solar irradiance is thought to

impair host immune functions (1, 2). Laboratory experiments show that relative humidity

controls droplet size and aerosol transmission rates (3). Experiments with mammalian

models showed that viral shedding by hosts increases at low temperature (4).

Recent laboratory experiments have given strong support that seasonal lows in

absolute humidity might in fact be the ultimate driver of seasonal influenza outbreaks

in temperate regions (5). Statistical analysis of population level data using correlation

has supported absolute humidity as a driver of seasonal influenza outbreaks, but not

without some ambiguity. Analysis shows a high correlation between flu peaks and

absolute humidity in temperate countries (6) and individual U.S. states (7). However,

absolute humidity also tends to be tightly correlated to the seasons and to other possible

drivers like temperature and precipitation (8). Indeed, other regression-based analysis

has suggested that it is temperature not humidity that is the most immediate drivers of flu

seasonality (9).

Conversely, weather and flu have weaker seasonal patterns in the tropics, and

significant correlations are much harder to find. The effect of absolute humidity and

other climatic variables on influenza in the tropics continues to be questioned (8). Many

tropical countries do not experience the low absolute humidity levels associated with

outbreaks in temperate countries, and there has been speculation that there is a different

set of “rules” for influenza in low latitudes- for example that precipitation, mediated by

contact rates, drives tropical seasonality (6). However, there is laboratory and modeling

evidence that flu persistence might in fact have a U-shaped response to absolute humidity

(10, 11), which could potentially operate across latitudes. Host-pathogen dynamics are
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widely regarded as being nonlinear. Generally speaking, correlation is poorly suited to

understanding cause-effect relationships in nonlinear systems (12). However, correlation

can still be useful to nonlinear systems in specific circumstances-most notably when

there is synchrony between driver and response variables. That is, the effect of the

driving variable is strong enough that the response becomes enslaved to the driver and the

internal dynamics of the response variable cease to be important. For example, historical

chickenpox infections in New York City appear to passively track the annual public

school calendar of opening and closing . This fact could explain the success of correlative

approaches in temperate countries and failure in the tropics. Firstly, basic host-pathogen

dynamics exhibit dynamical resonance when forced by periodic drivers (13) which can

cause the intrinsic nonlinear epidemiological dynamics to become synchronized (phase-

locked) to the simple cyclic motion of the environmental driver. However, not all regions

of the world have strong climate seasonality. While the seasonal cycle in a temperate

country like Germany can explain more than 90% of the variance in absolute humidity

across multiple decades, in tropical countries like Singapore it can explain less than

30%. Moreover, there is a strong correspondence between seasonality of climate and

seasonality of influenza. This is illustrated in Figure 1, which shows the seasonality in

absolute humidity (panel a) and influenza (panel b) across countries. The countries with

the least seasonality in environment (yellow shades) also have the least seasonal influenza

(Spearman’s ρ = 0.73).

When drivers do not induce synchrony, the underlying nonlinear dynamics can

cause the statistical relationship between driver and response to become very complex.

Indeed, the same simple epidemiological model of (13) illustrates how the identical

mechanistic effect of a driver can produce very different behavior when only the peri-

odicity is changed. Driving the model with a strongly seasonal environmental variable

produces consistent seasonal outbreaks that correlate very strongly to the driver (Figure



119

2a). However, replacing the driver with another signal of the exact same magnitude but

much weaker seasonality results in both much weaker seasonality in flu and much less

correlation between flu infections and climate (Figure 2b). The mechanisms have not

changed, only the spectrum (periodicity) of the driver. This illustrates an important point:

lack of seasonality in influenza and lack of correlation between flu and climate does

not mean a lack of environmental forcing. Thus, to develop a global understanding of

climate and influenza, it is important to consider methods that can cope with nonlinear

interactions.

Here, we employ an empirical dynamical modeling framework to study climactic

effects on influenza at the population level. Using convergent cross-mapping (CCM)

and related methods, we show clear effects of absolute humidity and to a lesser extent

temperature across latitudes. We also corroborate the U-shaped response of flu to

absolute humidity at the population level that has been suggested by previous laboratory

and modeling work (10, 11).

5.2 Results

First, we examine CCM between influenza and three environmental drivers:

absolute humidity, temperature, and precipitation. We not only want to look for evidence

of causality, but we want to distinguish actual causal relationships from shared seasonality.

Thus, we compare the cross-map prediction we measure for the empirical environmental

time series to the null distribution we get for randomized surrogate time series that have

the same seasonality as the actual driver. Figure 3 shows box-and-whisker plots of the null

distributions for cross-map skill (ρCCM) ordered according to distance from the equator

(absolute latitude). The measured CCM skills are plotted on top-red stars if the value

is significantly different from the null distribution (p≤ 0.05) and red circles otherwise.
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Panels (a) and (b) show significant forcing by absolute humidity and temperature across

latitude. The results have very high meta-significance (Fisher’s method): p < 5×10−6

for AH and p < 5× 10−5 for T , but a paired t-test does not distinguish one over the

other. Panel (c) shows that there is also meta-significant evidence for forcing across

latitudes by relative humidity, p < 3×10−4. However, paired t-tests with both AH and T

confirm that CCM with relative humidity is weaker on average (p < 0.01). Finally, panel

(d) shows that there is no significant evidence with CCM for driving by precipitation

in any of the tropical countries examined and globally CCM with flu and precipitation

is not meta-significant (p≈ 0.39). Note for Fisher’s method, we set a small individual

p-value of 0.001 for real CCM measures that are larger than all 500 surrogates. Although

the absolute level of cross-map skill is lower in the tropics, the causal effect of climate

(absolute humidity or temperature) is more distinct from the base seasonal signal. This

dichotomy is illustrated with the model shown in Figure 2. While the magnitude of the

effect is equal between the two panels, the absolute level of ρCCM is higher in (a), where

the driver has strong seasonality. The seasonal cycle is trivial to predict, and so that the

stronger the effect of the seasonal cycle, the easier the driver is to predict. Conversely,

removing the seasonal cycle from the driver makes prediction more difficult, but it also

removes the ambiguity caused by mutual seasonal correlation among variables.

This brings up another important point. In the case when “all other things are

equal”, the skill of CCM (ρCCM) can be used as a relative measure of interaction strength.

However, this is not an applicable case to comparing CCM across latitudes, since the

climate time series in tropical and temperate countries do not have the same basic levels

of predictability. To compare the actual magnitude of effect across latitude, we instead

can use scenario exploration with multivariate EDM.

We predict the change in resulting flu incidence, denoted ∆ f lu, at historical points

that would occur from small increases and decreases in the environmental driver. Figure
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4a shows country-by-country that the magnitude of the effect of absolute humidity on flu,

∆ f lu/∆AH, is roughly comparable between tropical and temperate countries. However,

countries at high latitudes generally show a negative effect of absolute humidity on

influenza, while low latitude countries generally show a positive effect. This would

follow from a U-shaped response of flu survival to absolute humidity.

To examine this effect further, we aggregate the results of scenario exploration

across all the countries. Figure 4b shows that at low AH, the effect of AH on flu is

negative (∆ f lu/∆AH < 0), while at high AH the effect is positive (∆ f lu/∆AH > 0),

confirming a U-shaped response of flu survival to absolute humidity. The negative effect

at low AH on incidence and positive effect at high AH appear roughly equivalent, at least

when weekly reported cases are normalized to average total reported cases in a year in

that country. The same analysis for temperature (Fig. 4c) does not exhibit the same clear

state-dependent effect (temperature variations). Temperature changes can have a positive

(∆ f lu/∆T > 0) or negative (∆ f lu/∆AH < 0) effect on flu at the same temperature. To

further investigate this question, we apply forecast improvement with multivariate EDM

(14, 15). The results are summarized in Figure 5. Both globally and in the tropics

specifically, AH and T show an effect on influenza (the mean improvement is greater than

zero with p < 0.05). However, a paired t-test shows that the two cannot be distinguished

(p > 0.1), as was the case with CCM. More notably, adding both AH and T together leads

to an even great improvement (p < 0.01). This suggests that there could be some effect

of temperature on influenza not mediated through absolute humidity. Unsurprisingly, in

temperate countries where correlations between AH and T are extremely high (generally

> 0.9), these variables contain almost identical information, and hence there is less

difference in forecast skill on average between embeddings with AH, T, or both.
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5.3 Discussion

Our results build on understanding from previous laboratory, statistical, and

modeling studies. Prior population-level analysis has focused on seeking environmental

explanations for influenza seasonality, which is most prominent in temperate countries

(as is clear from Figure 5.1). By reframing the question more generally as identifying

external drivers of nonlinear dynamics, we are able to provide additional insight into the

global relationship between environment and influenza, showing that there are general

rules that span temperate and tropical latitudes.

Cross-map analysis indicates that globally there is a causal effect of both temper-

ature and absolute humidity on influenza that is distinct from their mutual seasonality

(Figure 5.3). These results are augmented by analysis with multivariate EDM forecast

improvement (Figure 5.5). Of key importance is that the results show that environmen-

tal drivers are important at all latitudes, regardless of the degree of seasonality in the

environment and flu.

However, there is interest not only in the question of if environmental drivers

are important across latitudes, but also which environmental drivers are most important.

The tight statistical relationship between temperature and absolute humidity (stemming

from reflects their fundamental physical relationship) makes this a difficult question

to address at the population level. CCM shows clear evidence that temperature and

absolute humidity have more direct effects on global influenza than precipitation and

relative humidity (Fig. 5.3). Between absolute humidity and temperature, CCM finds a

significant effect of absolute humidity in more countries, but the difference is small and

not terribly compelling. Multivariate forecast improvement similarly fails to distinguish

the two (Figure 5.5).

Both cross-mapping and multivariate forecast improvement of these methods
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detect the bulk effect of a variable on another and do not always distinguish direct

from indirect effects. A much sharper difference emerges from scenario exploration.

Scenario exploration reveals a general relationship between absolute humidity and flu

that is independent of country (Figure 5.5b). At low levels of absolute humidity, absolute

humidity has a negative effect on influenza (∆ f lu/∆AH < 0); while at high levels of

absolute humidity, it has a positive effect (∆ f lu/∆AH > 0). These results corroborate

the molecular basis for a U-shaped effect of absolute humidity on influenza mediated by

desiccation at high absolute humidity and disruption at low absolute humidity (11).

When the same analysis with scenario exploration is performed with temperature,

there is no evidence for a simple general relationship (Fig. 5.5c). Rather, temperature

appears to affect influenza both positively and negatively at the same values of temperature

at different times. This suggests that the effect of temperature on influenza is strongly

dependent on the state of other variables, for example if temperature has an indirect

effect on influenza that is mediated by absolute humidity. Note however that there are

particular temperature ranges where the variance of the effect seems to be much greater

(e.g. around 82oF). This could indicate that there are important temperature thresholds

for flu infection. It is important to keep in mind that multivariate forecast improvement

showed that including both variables ultimately gave the best predictions of flu (Figure

5.5). Moreover, the molecular arguments for a U-shaped effect of absolute humidity on

influenza also predict that temperature should be a control on the balance between the

positive effect of absolute humidity via desiccation and the negative effect of absolute

humidity via disruption (11).

With this in mind, we look at the effect of absolute humidity on influenza

(∆ f lu/∆AH) as a function of temperature (Fig. 5.5d). Indeed, this is perhaps the most

interesting picture to emerge, as there are a number of features that corroborate and

elaborate existing ideas. (1) Temperature has a relatively loose control on (∆ f lu/∆AH)



124

when it is below ≈ 70oF , but the effect (∆ f lu/∆AH) is consistently negative. (2) The

positive effect of absolute humidity appears more strongly controlled by temperature,

and appears to be restricted to a narrow band of temperature between 75oF and 85oF .

(3) At the highest temperatures, the effect of absolute humidity goes to zero in exact

concordance with the laboratory finding that aerosol transmission of influenza is blocked

at 30oC (86oF) (16).

The results reveal influenza-specific ranges for the temperature and absolute

humidity effects. In particular, the balance between positive and negative effects of

absolute humidity appears to shift somewhere between 70oF and 75oF . This is especially

clear if we look back at the plot in Figure 5.4b that shows the effect of absolute humidity

on influenza across the global range of absolute humidity. Figure 5.6 shows the same

data, but now the points are split between two panels based on temperature. On the

left are observations where temperature was below 75oF; on the right are observations

where the temperature was between 75oF and 85oF . The red lines represent the 0.1

and 0.9 quantile regressions. The quantile regressions indicate that the measured effect

of AH on flu is almost always negative when T < 75oF and almost always positive

when 75oF ≤ T ≤ 85oF . At present, there do not appear to be modeling or laboratory

results to compare these threshold results against. However, this population level result

sets the stage for laboratory studies that experimentally test this threshold by varying

temperature and humidity over the full range of conditions experienced globally. Notably,

our analysis has sidestepped a number of important epidemiological processes, including

strain dependent effects, spatial dynamics within countries (17), spatial dynamics between

countries (18), and antigenic drift (19). Part of the power of EDM is that these factors-

insofar as they interrelate to the deterministic dynamics in countrywide infection- are

indirectly accounted for using lag-coordinate embeddings. However, the challenge for

future research on flu with EDM will be to specifically incorporate these processes.
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The fullest understanding surely will not emerge until all these factors can be treated

integratively (20).

5.4 Methods

5.4.1 Data

Total laboratory confirmed influenza A & B cases per week were retrieved from

the World Health Organization via FluNet by country (http://apps.who.int/globalatlas/

dataQuery/). Ideally, we would like to analyze an index of incidence density (per capita),

and thus need to account for population size and reporting rates. To account for changes

in population size, we divide by linearly interpolated annual population data take from

The World Bank: Health Nutrition and Population Statistics.

Accounting for changes in reporting rate over time is a more difficult issue to

address. A typical approach is to divide weekly incidence by the total reported incidence

for that country, that year. However, this masks all year-to-year differences in flu

infections, including those that arise naturally from the nonlinear intrinsic dynamics

of host-pathogen dynamics and from the state-dependent effect of climate variability.

Such standardization would artificially inflate the seasonal signature in flu incidence, and

hence would make the task of disentangling causality from shared seasonality harder, not

easier.

However, accounting for the substantial differences in reporting rates between

countries can be addressed to first order by dividing weekly incidence by the total reports

per year in that country averaged over all years reported. Note that CCM is unaffected by

arbitrary scaling, so this normalization only affects the comparisons between countries

(Figures 5.4 & 5.5).
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5.4.2 Empirical Dynamic Modeling

Empirical dynamic modeling is a general quantitative framework that centers on

reconstructing and studying attractor manifolds of systems from empirical time series

data. Dynamical systems are typically studied in terms of parametric equations, for

example a SIR model of disease outbreak. These equations can then be solved to

generate the changes of the system variables through time. When viewed in state space

(multivariate space where each axis corresponds to a system variable), this becomes

a trajectory that traces out the underlying dynamic attractor of the system (illustrated

in the brief animation: http://simplex.ucsd.edu/RMM_S1.mov). The dynamic attractor

is a complete representation of the unique system, and thus can be studied in place of

parametric equations to predict and understand systems like host-pathogen dynamics.

Most immediately, historical points on the manifold represent similar system

states, and similar states will follow similar trajectories forward in time. Thus, dynamics

can be predicted using nearest neighbor forecasting, that is predicting the future trajectory

of the system using the trajectories of historical points nearby on the manifold. Here we

use simplex projection (23) and S-maps (24) for nearest neighbor forecasting.

This general framework of empirical attractor reconstruction and nearest neighbor

forecasting can then be used in a number of ways. First, convergent cross-mapping

(CCM) can be used to understand cause-effect relationships in nonlinear systems (12).

The basic idea of CCM is that if states on the empirical manifold of X can be used to

predict variable Y , this indicates that the dynamic signature of Y is present in X , and

hence that Y caused X .

When driver variables can be treated as stochastic (e.g. seasonal anomalies

of climactic variables), multivariate forecast improvement using S-maps can provide

an additional test for causality (14, 15). A stochastic variable is considered causal if

explicitly including that variable as a coordinate in the state space leads to improved
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nearest neighbor forecasts.

Finally, when driver variables are explicitly included in the reconstructed state

space, the idea of scenario exploration can be used to assess the dynamic the impact

of environmental drivers on ecological or epidemiological dynamics (15). The key to

scenario exploration is that nearest-neighbor forecasts are not constrained to predictions

based on the current ecosystem state. Thus, when drivers are explicitly included, it is

possible to make predictions for a given state of the biological variables (e.g. susceptible

and infected individuals), but with varying values of the driver (e.g. absolute humidity).

By comparing the predict effect e.g. of a small decrease and a small increase in the driver,

it is possible to track the dynamic (changing in time) effect of the driver.

All EDM calculations can be done with the R package ‘rEDM’. Prediction skill is

always measured with Pearson’s correlation (ρ) between observed and predicted values.

Additional details on the exact calculations are given below.

5.4.3 Seasonality

The seasonal cycle is determined using a smoothing spline (smoothing parameter

= 0.8) to the target variable across Julian day, where the spline is wrapped December

31st - January 1st. Unlike other methods for extracting seasonal cycles based on Fourier

decomposition, this method works for both unbounded (e.g. temperature) and bounded

(e.g. precipitation, influenza incidence) variables.

5.4.4 CCM Analysis and Seasonal Surrogates

For basic CCM analysis, we use simplex projection, which has a single parameter

to select- the embedding dimension E. We select E based on the optimal prediction of

cross-mapping lagged 1 week, then measure the un-lagged cross-map skill with this value
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of E.

While checking for convergence in cross-map skill (i.e. that cross-map skill

improves with the amount of data used) is a general way to distinguish cross-mapping

from spurious correlation (12), we are concerned here with a more specific problem of

distinguishing driving effects from mutual seasonality. This is more directly addressed

by developing a null test with surrogate time series.

For a forcing variable Z(t) (e.g. absolute humidity or temperature), we calculate

the seasonal average Z̄ as above and the anomaly from the seasonal average Z̃ = Z− Z̄.

We then randomly shuffle (permute) the time indices of the seasonal anomalies. Adding

the shuffled anomalies back to the season average gives a surrogate time series Z∗ that

has the same seasonal average as Z, but with random anomalies. If Z is in fact a driver

of flu, then flu will not only be sensitive to the seasonal component of Z, but also to

the anomalies. Thus, flu should better predict the real time series Z than the surrogate

Z∗. In practice we repeat the shuffling procedure 500 times to produce an ensemble of

surrogates.

5.4.5 Multivariate EDM: Scenario exploration

Scenario exploration with multivariate EDM (15) provides an empirical frame-

work to assess the effect of a small increase in a physical driver (e.g. absolute humidity)

on influenza incidence. We predict the effect of a small increase in absolute humidity or

temperature on influenza 2-weeks later to understand the sensitivity of flu outbreaks to

the environment. For each historical time point, t, we predict flu with a small increase

(+∆Z/2) and a small decrease (−∆Z/2) in historically measured driver Z(t). The dif-

ference in predicted flu is ∆ f lu = f lut+1(Z = Z(t)+∆Z/2)− f lut+1(Z = Z(t)−∆Z/2),

and the ratio of ∆ f lu/Z quantifies the sensitivity of flu infection to the driver Z at time

t. We use ∆Z = 0.2g/m3 and 0.5oF for absolute humidity and temperature, respectively.
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These values correspond to approximately 5% of the standard deviation of these variables

across all the countries analyzed. Forecasts were done using S-maps (24), with E = 6

and θ = 0.9.

5.4.6 Multivariate EDM: Forecast Improvement

Previous implementation of forecast improvement with multivariate EDM focused

on stochastic environmental drivers (15). In the case of season influenza, however, we

should not regard the environmental time series as stochastic variables. Rather, in many

cases the majority of the dynamics reflect the simple periodic cycle of the seasons.

Therefore, information about the drivers is already contained in the univariate embedding

(12, 21). Thus, we modify the method of (15) as follows.

We determine the optimal univariate embedding dimension, E∗, for each influenza

time series following (22). A univariate embedding with dimension E <E∗ will be “under

embedded”, i.e. it will not contain full information about the system state and dynamics.

In this case, incorporating information about a driver in a multivariate embedding will

generally lead to an increase in forecast skill. Thus, we calculate the improvement in

forecast skill using simplex projection of the univariate embedding with E = E∗− 1

and the same embedding but with the candidate environmental variable(s) included as a

coordinate.
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Figure 5.1: Correspondence between seasonality of environment and seasonality of
influenza infection. Countries are colored from the least seasonal to most seasonal for
absolute humidity (A) and influenza infection (B). The Spearman correlation between
the two is high, ρ = 0.73.
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Figure 5.2: Stochastic SIRS model with strongly and weakly seasonal drivers. (A) A
strongly periodic environment induces synchrony through dynamical resonance, causing
peaks in infection to correlate with seasonal lows in the seasonal environment. (B) If
the same SIRS model is driven by a seasonal signal with the same variance but much
weaker seasonality, there is no dynamic resonance, infection peaks show much weaker
seasonality, and correlation between infection and environment is much lower.
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Figure 5.3: Detecting cross-map causality beyond shared seasonality of environmental
drivers on influenza. Red circles show the measured cross-map skill (ρCCM) for observed
influenza predicting purported seasonal drivers: absolute humidity, temperature, relative
humidity, and precipitation. Together with this, box-and-whisker plots show the null
distributions for ρCCM expected from random surrogate time series that shares the same
seasonality as the true environmental driver. Countries are ordered according to distance
from the equator (absolute latitude). Filled circles indicate that the measured ρCCM is
significantly better than the null expectation (p < 0.05).
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Figure 5.4: Scenario exploration with multivariate EDM. We measure the effect of
environment on influenza infection by predicting the change in influenza (∆ f lu) that
results from a small change in absolute humidity (∆AH) or temperature (∆T ). Panel (A)
shows the range of values for ∆ f lu/∆AH for each country across latitude. Countries
closest to the equator tend to show a positive effect of AH on influenza infection,
while countries furthest from the equator show a negative effect. Panel (B) shows the
effect of absolute humidity on flu (∆ f lu/∆AH) as a function of AH grouped over all
countries. At low AH (typical of high latitude countries), AH has a negative effect on flu
infection, while at high AH (typical of low latitude countries), AH has a positive effect
on flu. Similarly, (C) shows the effect of temperature on flu (∆ f lu/∆T ) as a function
of T . Evidence of a single global effect is much weaker, but it suggests there might be
important temperature thresholds.
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Figure 5.5: Forecast improvement with multivariate EDM. Causal effect is demon-
strated if EDM forecast skill (ρ) improves when a driver variable is included in the
EDM model. This is quantified by ∆ρ = ρ(withdriver)−ρ(withoutdriver), where ρ is
the Pearson’s correlation between observations and EDM predictions. Including either
absolute humidity (AH) or temperature (T ) leads to significant (p < 0.05) improvement
in forecast skill both globally (panel A) and the tropics specifically (panel B). However,
even greater improvement results from including both (AH +T ), suggesting that there
are compound effects of temperature and humidity.
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Figure 5.6: Temperature thresholds in the effect of absolute humidity on influenza.
The results of scenario exploration in Figure 5.4b are re-plotted based on temperature.
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Chapter 6

Summary

Although the chapters of this dissertation cover diverse areas of research, when

taken together they are a multifaceted investigation into the use of empirical dynamic

methods for ecosystem-based management. In particular, this dissertation describes

several applied EDM methods for studying state-dependent interactions.

In many ways, the approach presented in Chapter 4 represents the ideal situation.

When all the important variables are measured in an ecosystem, the system dynamics can

be reconstructed in a so-called “native” state space. Thus, when a local linear modeling

approach (using S-maps) is applied to these data, the local linear coefficients capture the

partial derivatives that correspond to the dynamic interaction strengths.

However, in marine science, we rarely expect to have full-ecosystem observation.

More often just a few important variables are measured, such as fish abundance and

temperature. When important variables are unobserved, it is not possible to recover the

native state-space dynamics. The original embedding theorem of Takens (Takens 1981)

established the framework for reconstructing state-space dynamics from a single time

series using time-lag coordinates in lieu of the unobserved variables.

A great deal of insight can be had from applying univariate reconstruction to
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ecological data (Sugihara and May 1990, Sugihara 1994, Hsieh et al. 2005, Hsieh

and Ohman 2006, Sugihara et al. 2011, Glaser et al. 2013), including the critical

task of identifying causal interactions(Sugihara et al. 2012). Nevertheless, univariate

embeddings lack the mechanistic insight that’s possible in native embeddings. For

example, it is still possible to use local linear regression with S-maps to approximate

the system dynamics, but the coefficients correspond to partial derivatives that have no

immediate mechanistic meaning to us, i.e. the effect of species X at time t-1 on species

X at time t when all other time lags of X are held constant.

Multivariate embeddings represent a middle ground that is critical to management.

They cover the common case where some but not all of the important variables are

observed, and so multiple time-series are used with their lags to reconstruct the state-

space dynamics. Multivariate embeddings were conjectured (Sauer et al. 1991) and

heuristically found to be insightful (Dixon et al. 1999). However, Chapter 2 in this

dissertation provides a formal mathematical foundation for the approach that confirms its

generality.

With multivariate embeddings, scenario exploration can be used to assess the

dynamic impact of environmental drivers on ecological dynamics. When drivers are

explicitly included, it is possible to make predictions for a given state of the biological

variables, but with varying values of the driver. In Chapter 3, this idea is explored in

the case of the temperature effect on Pacific sardine, and in Chapter 5, it is applied to

understanding climate drivers of seasonal influenza.

What is the upside of these results in practical management? That is an open

question. Preliminary work shows that CCM and multivariate EDM can identify multi-

species effects of fishing in well observed case-studies, such as the juvenile albacore tuna

fishery in the United States. In theory, scenario exploration would then be possible to

explore trade-offs between different multi-species harvesting strategies. This capability
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gets more to the key practical questions of ecosystem management.

However, Nevertheless, multi-objective programming is extremely difficult,

falling afoul of the so called “curse of dimensionality”. It is computationally inten-

sive, and can be very sensitive to measurement or modeling error. Thus, even if a method

exists, exhaustive multi-species cost-benefit analysis may be completely impractical.

Looking forward, I question whether species-by-species analysis will really bear fruit for

practical management. Rather, the most promise may well lie in considering management

that keys to larger ecosystem indicators like resilience.
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