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Abstract

Background: Neighborhood deprivation is linked with inflammation, which may explain 

poorer health across populations. Behavioral risk factors are assumed to largely mediate these 

relationships, but few studies have examined this. We examined three neighborhood contextual 

factors that could exert direct effects on inflammation: (1) neighborhood socioeconomic status, (2) 

an index of concentration at extremes (that measures segregation), and (3) surrounding vegetation 

(greenness).

Methods: Using blood samples and addresses collected from prospective cohorts of 7,930 male 

(1990–1994) and 16,183 female (1986–1990) health professionals with at least one inflammatory 

marker, we prospectively linked neighborhood contextual factors to inflammatory biomarkers 

(adiponectin, C-reactive protein, interleukin-6, soluble tumor necrosis factor receptor-2). Log-
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transformed, z-scaled component measures were used to calculate an inflammation score. 

Neighborhood socioeconomic status and index of concentration of extremes were obtained 

from the 1990 decennial census and linked to participant addresses. Surrounding greenness was 

assessed from satellite data and focal statistics were applied to generate exposures within 270 m 

and 1230 m of the participants’ address. We fit multiple linear regression models adjusting for 

demographic, clinical, and behavioral risk factors.

Results: Higher neighborhood socioeconomic status was associated with lower inflammation 

score in women (β for interquartile range increase = –27.7%, 95% CI: –34.9%, –19.8%) and 

men (β = –21.2%, 95% CI: –31.0%, –10.1%). Similarly, participants in neighborhoods with 

higher concentrations of high-income households were associated with lower inflammation score 

in women (β = –27.8%, 95% CI: –35.8%, –18.7%) and men (β = −16.4%, 95% CI: –29.7%, 

–0.56%). Surrounding greenness within 270 m of each participant’s address was associated with 

lower inflammation score in women (β = −18.9%, 95% CI: –28.9%, –7.4%) but not men. Results 

were robust to sensitivity analyses to assess unmeasured confounding and selection bias.

Discussion: Our findings support the hypothesis that adverse neighborhood environments may 

contribute to inflammation through pathways independent of behavioral risk factors, including 

psychosocial stress and toxic environments.

Keywords

Biomarkers; Health behavior; Residence characteristics; Socioeconomic factors; Inflammation; 
Disparities

1. Introduction

Humans have long recognized that the places where people live influence their health, 

with records dating back to the fourth century BCE (Duncan et al., 2018). Neighborhood 

contextual factors, encompassing socioeconomic, demographic, and environmental features 

of areas surrounding peoples’ residences, have been linked with cardiovascular disease, 

diabetes, and many cancers (Roux et al., 2001; Malambo et al., 2016; Gomez et al., 2015; 

Bilal et al., 2018). However, translating this evidence into interventions has proven difficult, 

in part because mechanistic pathways linking neighborhood environmental exposure to 

pathological processes remain poorly understood (Duncan et al., 2018). Clarifying the 

relevant multilevel pathways that underlie associations between neighborhood environments 

and health is necessary for informing policies to improve neighborhoods and health of their 

residents (Roux and Mair, 2010).

Fig. 1 presents a conceptual model, based on Warnecke et al.’s model for organizing 

multilevel factors that contribute to health disparities (Warnecke et al., 2008). This model 

describes mechanistic pathways linking neighborhood environments to inflammation, which 

contributes to the development of numerous chronic diseases including cardiovascular 

disease and cancers (Lopez-Candales et al., 2017 Apr; Greten and Grivennikov, 2019). For 

example, neighborhood socioeconomic status (nSES) captures the educational, occupational, 

and wealth composition of a given area, as well as the material resources available to 

residents (Krieger et al., 1997). Income inequality, which captures the absolute and relative 
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differences between those at the highest and lowest ends of the income distribution in a 

given population, has also been linked with poorer mental and physical health (Kawachi et 

al., 2014). The Index of Concentration at Extremes (ICE), which captures the homogeneity 

of a given neighborhood with respect to, for example, income and race, has been linked 

with higher rates of chronic disease, cancer, and hypertension, and greater exposure to air 

pollution (Krieger et al., 2018; Krieger et al., 2018; Krieger et al., 2015). Growing evidence 

suggests that living in environments containing higher levels of vegetation (i.e., “greenness”) 

is linked with better mental health and stress reduction, and lower incidence of numerous 

health outcomes including cardiovascular disease, diabetes, and all-cause mortality (James et 

al., 2015; Jimenez et al., 2021; Fong et al., 2018; Rojas-Rueda et al., 2019).

There are three important pathways through which neighborhood environments may 

influence biological processes that lead to ill health (Kubzansky et al., 2014). One 

pathway is through psychosocial stress, caused by toxic social environments. Examples 

of toxic social environments include poor social cohesion, and limited social capital, civic 

engagement, and employment, which are more prevalent in socioeconomically deprived 

neighborhoods (Steptoe and Feldman, 2001) and possibly mediated through limited green 

space (Jennings and Bamkole, 2019). These exposures can contribute to adverse physical 

and mental health through low social support, limited coping, and frustration with lack of 

opportunities for social mobility (Marmot and Sapolsky, 2014). Second, individual-level 

demographic and behavioral risk factors may also serve as mediators of neighborhood 

environments and health. Examples include smoking, diet, physical activity, body mass 

index, and medications (Pollitt et al., 2007). Finally, toxic physical environmental factors, 

including air pollution, lead, and chemical pollutants, which often are more prevalent in low 

income neighborhoods composed primarily of people of color (Pastor et al., 2005; Rachel et 

al., 2006), also can lead to poorer health (Brauer et al., 2021).

Together, psychosocial stress, behavioral risk factors, and toxic environments may all 

contribute to physiologic stress (Kubzansky et al., 2014). There is a growing focus on stress-

related pathways leading to inflammation. Inflammation exerts pathological effects across 

organ systems that lead to many chronic diseases, including cardiovascular disease, diabetes 

complications, and many cancers. Toxic social environmental stressors exert physiologic 

changes via the hypothalamus–pituitaryadrenal (HPA) axis, stimulating sympathetic and 

adrenal hormone release of inflammatory cytokines and reducing adipokines (Irwin and 

Cole, 2011; Murphy et al., 2018). Sustained signaling through these pathways results in 

chronic inflammation, which may lead to higher risk of cardiovascular disease, cancer, and 

other conditions (Irwin and Cole, 2011). Higher levels of inflammatory markers such as 

C-reactive protein (CRP), interleukin-6 (IL-6), soluble tumor necrosis factor (sTNFR-2), 

and lower levels of adipokines may cause cells to adopt several “hallmarks of cancer” 

(Hanahan and Weinberg, 2011), including increased angiogenesis, cellular proliferation, and 

escape from apoptosis (Irwin and Cole, 2011; Murphy et al., 2018). These pathways may 

interact with underlying individual-level comorbidities to promote carcinogenesis (Murphy 

et al., 2018; Giovannucci, 2018). Higher levels of CRP and IL-6 in residents of low nSES 

neighborhoods support the hypothesis that neighborhood deprivation may influence disease 

through inflammatory pathways (Milaniak and Jaffee, 2019; Muscatell et al., 2020; Liu et 

al., 2017).
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We leveraged data from case-control studies nested within two cohorts of male and female 

health professionals in the United States to examine the strength of associations between 

nSES, neighborhood income ICE, and neighborhood greenness with blood biomarkers of 

inflammation. These neighborhood factors were chosen because their health effects may 

be mediated by inflammatory pathways. We hypothesized that higher nSES, income ICE, 

and neighborhood greenness exposure would be associated with lower (more favorable) 

inflammation profile.

2. Materials and Methods

2.1. Study design and population

We conducted this study using data collected as part of two ongoing nation-wide prospective 

cohort studies. The Nurses’ Health Study (NHS) is made up of 121,700 female registered 

nurses. The Health Professionals Follow-up Study (HPFS) is made up of 51,529 male 

health professionals. In NHS, 32,826 women provided blood samples between 1989 and 

1990, while in HPFS, 18,000 men provided samples between 1993 and 1995. Samples were 

used for nested case-control studies to prospectively assess impact of plasma biomarkers 

on cancer, cardiovascular, and neurodegenerative disease risk. Risk set sampling was used 

to identify controls. Participants with prior history of cancer, cardiovascular disease, and 

diabetes were not eligible for inclusion in these blood biomarker studies. Residential 

addresses were obtained from questionnaires in NHS in 1986, and every two years 

thereafter. Similarly, in HPFS, addresses were collected beginning in 1988 and biennially 

thereafter, and were a mix of home or place of work. If men reported an address that 

was both home and work, we classified that address as home. In order to standardize the 

exposure window across neighborhood contextual factors, we estimated exposures for all 

addresses for the four years prior to blood draw (NHS: 1986–1990; HPFS: 1990–1994).

In NHS, we identified 17,872 women with inflammatory biomarkers by pooling data across 

multiple nested case-control studies. Participants with erroneous records (n 16) and outlier 

values defined using the generalized extreme studentized deviate procedure (Rosner, 1983) 

for adiponectin (n = 4), CRP (n = 100), IL-6 (n = 86), and sTNFR-2 (n = 49), along with 

those with missing geospatial data (n = 14) and a prior history of cancer, cardiovascular 

disease, or diabetes prior to blood draw (n = 1,420) were excluded. In HPFS, we identified 

9,167 men with inflammatory biomarkers and then excluded participants with outlier values 

for adiponectin (n = 43), CRP (n = 100), IL-6 (n = 80), and sTNFR-2 (n = 13), as well 

as those missing geospatial data (n 5) or with a prior history of chronic disease (n = 996). 

We obtained a final analytic sample of 16,183 participants from NHS and 7,930 participants 

from HPFS with at least one inflammatory biomarker.

2.2. Neighborhood socioeconomic status

Neighborhood socioeconomic status was assessed using a composite score derived 

separately in NHS and HPFS. Data used to generate the nSES score were obtained from 

the United States 1990 Decennial Census and linked to participants’ addresses during the 

four years prior to blood draw. The nSES score includes census tract level variables for 

educational attainment (% over 25 with college or higher education), income (median family 
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income), wealth (median family home value, % families receiving interest dividends or 

rent income, % occupied housing units), employment status (% population 16 + years old 

unemployed), and racial composition (% White, % Black, % foreign-born) (Krieger et al., 

1997). We calculated a study-specific summary index of nSES by z-scaling each component 

measure and then summing across the nine indicators. We checked the distribution of 

census tract-level poverty and income measures in the NHS and HPFS against census 

tract measures across the total population of the US and found remarkable similarities 

(Supplementary Fig. 1).

2.3. Index of Concentration at the Extremes

The Index of Concentration at the Extremes (ICE) is a measure of “social spatial 

polarization” that facilitates comparisons between neighborhoods exhibiting a high degree 

of racial and socioeconomic segregation (Krieger et al., 2016). The measure is computed by 

taking the difference in total number of people occupying an advantaged vs disadvantaged 

position in society with respect to race (White vs Black) and income (highest vs lowest 

quintile of income) and dividing by the total number of people in that geographic 

area.Values range from –1 to 1, with values of –1 indicating a uniformly segregated 

disadvantaged area (for example, all low-income), and 1 indicating a uniformly segregated 

advantaged area (for example, all high-income). We calculated 1990 census tract-level 

measures of income and joint race-income ICE for the contiguous United States and linked 

to participant addresses in the four years prior to blood draw.

Assessments of quintiles of income were based on the distribution of 1990 census household 

income. We summed the number of White, Black, American Indian, Asian, Native Hawaiian 

and other Pacific Islander, Other race households, and Hispanic/Latino households reporting 

≥$50,000 or more income in the prior year (highest income quintile) and those reporting 

≤$9,999 (lowest income quintile). The difference between these two quantities (numerator) 

was divided by the total population in that census tract (denominator) to calculate the 

Income ICE. For the joint race-income ICE measure, the numerator was the difference in the 

number of White households reporting ≥$50,000 or more income in the prior year (White 

households in highest income quintile) and Black households reporting ≤$9,999 (Black 

households in the lowest income quintile).

2.4. Neighborhood greenness

Exposure to neighborhood greenness was assessed using the Normalized Difference 

Vegetation Index (NDVI), a satellite-derived measure that captures photosynthetic activity 

of green, leafy vegetation (Kriegler et al., 1969). Values range from –1 to 1, with values 

between 0 and 1 corresponding to increasing levels of green leafy vegetation. Values 

below 0 indicate clouds, snow, or water. Data were obtained from the Landsat 5 and 

7 satellites, which captured NDVI at 30 m resolution from 1984 through 2014 using 

Google Earth Engine (Gorelick et al., 2017). We applied Google Earth Engine’s cloud 

cover algorithm to retain the least cloudy image within each season (January-March, April-

June, July-September, October-December) from 1986 through 1994, capturing the four-year 

window at all addresses prior to blood draw across both cohorts.
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Greenness may influence inflammation pathways through physical and psychosocial 

pathways that operate at different spatial scales38. We therefore chose to approximate 

greenness exposures at the level of the immediate environment around the participant’s 

address, and at a larger neighborhood-level scale. These two spatial scales would capture 

potential benefits of seeing and spending time in residential areas with high surrounding 

greenness, vs interacting with public green spaces. We calculated focal statistics using 

a 270 meter (270m) circular buffer and 1230 meter (1230m) circular buffer using the 

reduceNeighborhood, ee. Reducer.mean, and ee.Kernel.circle functions in Google Earth 

Engine.

We hypothesized that greenness exposure accumulated over time prior to blood draw, rather 

than contemporaneous greenness exposure, would be more strongly associated with lower 

inflammation. Our primary greenness exposure measure was modeled using a seasonal 

average of NDVI measures that were available during the four years prior to blood draw 

for both cohorts (NHS: 1986–1990; HPFS: 1990–1994.As a sensitivity analysis, we also 

obtained measures of seasonal greenness levels at participant’s addresses during the month 

of blood draw. Prior to calculating our greenness exposure measures, we set NDVI values 

that were either missing or < 0 to 0. NDVI measures were then assigned to participant 

addresses.

2.5. Inflammatory biomarkers

To examine associations between neighborhood contextual exposures and inflammatory 

pathways, we selected a set of biomarkers related to inflammatory response (adiponectin, 

CRP, IL-6, sTNFR-2). Inflammatory biomarkers were extracted from blood samples 

provided by study participants. Those who agreed to participate were sent a blood collection 

kit containing supplies for drawing, storing, and shipping the sample, along with detailed 

instructions. Blood samples were collected remotely by each participant in treated tubes, 

placed on ice, stored in styrofoam containers and shipped overnight to the laboratory. 

Blood samples were then centrifuged, divided into aliquots and stored in liquid-nitrogen 

freezers. Case and control samples were run together for all assays, and laboratory 

staff were blinded to case status of samples. The enzyme-linked immunosorbent assay/

radioimmunoassay (ELISA/RI from ALPCO Diagnostics (Heidemann et al., 2008) was used 

to assess adiponectin. The latex-enhanced immunoturbidimetric assay (LEI) with reagents 

and calibrators from Denka Seiken was used to assess CRP. ELISA was used to assess IL-6 

and sTNFR-2. Random quality-control samples were run with each batch of case-control 

samples. Quality-control sample intra-assay CV ranged from 1% to 20% across all batches 

of inflammatory markers. Summary statistics for measured inflammatory markers by cohort 

and laboratory batch are available in Supplementary Table 1. Further details regarding the 

assays are reported elsewhere (Hang et al., 2019).

In order to assess associations between neighborhood environmental factors and overall 

inflammation, we calculated a summary inflammatory score using the approach of Tabung et 

al. (Eq. (1)) (Tabung et al., 20162016):

zscore log IL − 6 + zscore log CRP + zscore log TNFαR2 − zscore log Adiponectin
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Although this score was initially designed to capture diet-induced inflammation, the score 

does not explicitly incorporate diet-based weighting but rather simply summarizes the 

overall relationship between CRP, IL-6, sTNFR-2, and adiponectin. This global summary 

score complements findings from investigations of individual inflammation biomarkers 

by providing a composite estimate of blood levels of inflammation. We accounted for 

variability in mean stress biomarker levels arising from laboratory procedures, technicians, 

and time of collection by applying Rosner’s method for standardizing within-batch mean 

values for a given biomarker to the global mean for that biomarker, reflecting the value of an 

“average batch.” (Rosner et al., 2008).

2.6. Statistical analysis

We examined correlations between independent and dependent variables using Spearman’s 

correlation to account for the skewed distribution of biomarker variables. All biomarker 

measures were log-transformed prior to regression modeling to account for skewness. 

Comparing correlations between variables in men and women separately revealed different 

patterns of correlation between NDVI, stress biomarkers, and covariate data and so we chose 

to present results stratified by sex.

For our primary analysis, we fit multiple linear regression models to estimate the association 

between neighborhood contextual variables and our stress biomarker endpoints. Beta 

coefficients were transformed to represent a percentage change in biomarker associated with 

a change in exposure. Deviations from linearity for dose–response relationships between 

each exposure and outcome were assessed via restricted cubic splines. As no deviations 

were observed, associations are presented for an interquartile range (IQR) increase for nSES, 

NDVI, and ICE measures. All covariates were assessed at blood draw unless otherwise 

stated. We adjusted for age, fasting status, smoking status (current smokers, former smokers, 

never smokers), history of hypertension (binary), history of hypercholesterolemia (binary), 

BMI (<23, 23–<25, 25-<27.5, 27.5-<30, ≥ 30 kg/m2), census region (Northeast, Midwest, 

South, West), population density (<1000 people/mi2, 1000 people/mi2), post-menopausal 

hormone use (women only: pre-menopause and missing, post-menopause and never use, 

current use, past use), case status (binary), and any use of anti-inflammatory medications 

(binary). In order to account for air pollution exposures, we adjusted for Particulate Matter 

2.5 µm in diameter or less (PM2.5) using estimates from a spatiotemporal model for the 

contiguous US (Yanosky et al., 2014). We averaged daily PM2.5 estimates at participant 

addresses over 24 months prior to blood draw (due to the temporal availability of air 

pollution estimates). We did not mutually adjust for nSES and the ICE measures because 

they were created from shared input variables, which led to collinearity. We adjusted for 

continuous nSES in models for NDVI because nSES was assumed to drive exposure to 

NDVI, rather than the reverse. In the NHS, we considered the following variables as 

measures of individual SES: mother’s occupation, father’s occupation, husband’s education 

level, and marital status because these individual-level SES variables were only available in 

that cohort. Further adjustment for these variables did not lead to changes in our results and 

so we did not include them in our final models.
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To determine robustness of our results to potential bias arising from sample selection and 

participant neighborhood mobility, we performed multiple sensitivity analyses. We repeated 

analyses further adjusting for diet quality (Alternative Healthy Eating Index, quintiles) and 

physical activity (categorical: <3, 3-<9, 9-<18, 18-<27, ≥27 MET-hours/week) to determine 

whether results were independent of these potential confounding or mediating variables. 

We restricted analysis to controls only, thereby limiting confounding by emergent disease 

processes that may have been associated with NDVI and stress biomarkers. We then 

repeated analyses restricting to participants who did not change addresses during follow-up. 

Since HPFS participants reported either home or work address, we examined whether 

associations varied by address type. We also assessed whether associations between NDVI 

and inflammatory markers varied by census region. All hypothesis tests were two-sided with 

alpha = 0.05.

3. Results

Characteristics of the study population at the time of blood draw by quintiles of nSES 

(higher indicates increasing neighborhood privilege) are presented in Table 1. In NHS, most 

women (98.6%) were White, with a median age of 57.4 years. In HPFS, men were also 

predominantly White (93.8%) with a median age of 62.5 years. Women living in areas with 

higher nSES were less likely to be never smokers (Q5: 42.6% vs Q1: 48.9%) and had better 

diet quality as measured by the Alternative Healthy Eating Index (Q5: 55.9 vs Q1: 51.4). 

Men in higher nSES were more likely to be never smokers (Q5: 46.8% vs Q1: 45.1%) and 

reported higher diet quality (Q5: 56.6 vs Q1: 51.9). Men and women living in areas with 

higher nSES also lived in more densely populated areas. Correlations between neighborhood 

contextual factors, individual diet and lifestyle factors, and inflammatory biomarkers in NHS 

and HPFS are described in Supplementary Fig. 2. We observed distinct correlation patterns 

within several groups of variables: (1) NDVI measures, (2) nSES and ICE measures, and (3) 

the inflammatory biomarkers and BMI.

3.1. Associations between neighborhood contextual factors, inflammatory biomarkers 
and inflammation score

Results from covariate-adjusted linear regression models for the association between 

neighborhood contextual factors and inflammatory biomarkers are presented in Fig. 2, with 

numerical estimates provided in Supplementary Table 2. In the NHS, an IQR increase in 

nSES was inversely associated with CRP (β = −8.38%, 95% CI: –10.99%, –5.69%), IL-6 (β 
= −5.19%, 95% CI: –7.07%, –3.28%), sTNFR-2 (β = −1.95%, 95% CI: –2.74%, –1.14%), 

and the overall inflammation score (β = −27.73%, 95% CI: –34.91%, –19.76%). In the 

HPFS, an IQR increase in nSES was inversely associated sTNFR-2 (β = −2.18%, 95% CI: 

–3.30%, –1.04%) and the overall inflammation score (β = −21.21%, 95% CI: –30.95%, –

10.09%). Similar dose–response relationships between neighborhood contextual factors and 

inflammatory biomarkers were observed using quintiles and Ptrend. For example, comparing 

those in quintile 5 to 1 of nSES, there was a 54.57% (95% CI: –65.12%, –40.81%) lower 

inflammation score in NHS and 39.46% (95% CI: –56.76%, –15.24%) lower inflammation 

score in HPFS (Supplementary Table 2).
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ICE measures of neighborhood income segregation and race-income segregation were 

inversely associated with inflammation (Fig. 2, Supplementary Table 2). In the NHS, an 

IQR increase in ICE-income was associated with lower CRP (β = −6.98%, 95% CI: −9.99%, 

−3.88%), IL-6 (β = −4.96%, 95% CI: –7.09%, –2.79%), sTNFR-2 (β = −1.97%, –2.89%, 

–1.05%), and inflammation score (β = −27.75%, 95% CI: –35.83%, –18.66%). An IQR 

increase in joint ICE-race/income was associated with lower CRP (β = −6.08%, 95% CI: 

–8.92%, −3.16%), IL-6 (β = −3.86%, 95% CI: –5.87%, −1.80%), sTNFR-2 (β = −1.54%, 

95% CI: –2.39%, –0.67%), and inflammation score (β = −23.13%, 95% CI: –31.22%, 

–14.07%). In the HPFS, associations between ICE-income and ICE-race/income were 

generally weaker relative to the NHS. An IQR range increase in ICE-income was associated 

with lower sTNFR-2 (β = −1.68%, 95% CI: –3.13%, –0.20%) and overall inflammation 

score (β = −16.41%, 95% CI: –29.72%, –0.56%). An IQR range increase in joint ICE-race/

income was associated with higher adiponectin (β = 2.65, 95% CI: 0.38%, 4.98%), and 

lower inflammation score (−13.81%, 95% CI: –25.61%, –0.14%).

Measures of neighborhood greenness (Fig. 2, Supplementary Table 2) were generally 

inversely associated with inflammatory biomarkers in the NHS but not HPFS. Associations 

between four-year average NDVI at 270m resolution were more strongly associated with 

inflammation across the blood biomarkers compared to 1230m and to NDVI measured at 

season of blood draw. In NHS, an IQR increase in four-year NDVI at 270m was associated 

with lower CRP (β = −4.36%, 95% CI: –7.74%, −0.87%), IL-6 (β = −3.56%, 95% CI: –

5.97%, –1.08%) and overall inflammation score (β = −18.88%, 95% CI: –28.91%, –7.44%). 

An IQR increase in seasonal NDVI was associated with lower IL-6 (β = −3.90%, 95% 

CI: –6.66%, –1.06%) and, contrary to expectation, higher sTNFR-2 (β = 1.36%, 95% CI: 

0.15%, 2.58%).

3.2. Sensitivity analyses for confounding and selection

We performed multiple sensitivity analyses to determine robustness of results from 

regression models by evaluating associations between neighborhood contextual factors, 

IL-6, and overall inflammation score (Fig. 3, Supplementary Table 3). We further 

adjusted for individual-level lifestyle factors (physical activity, diet quality) that could be 

considered confounders or mediators of the association between neighborhood context and 

inflammation. We also restricted the study population to those sampled as controls (disease-

free within the risk set as part of the case-control studies of cardiovascular disease, cancer, 

and mental health), and separately to those who did not change address over follow-up. 

Findings from our main analyses were generally robust to these sensitivity analyses (Fig. 3, 

Supplementary Table 3). In the NHS, the inverse association between an IQR increase in 

NDVI within 270m of address and overall inflammation score was less precise in controls (β 
= −20.12%, 95% CI: –32.29%, −5.76%, Ptrend 0.070). In the HPFS, the association between 

an IQR increase in ICE-income and overall inflammation score was weakened in controls 

(β = −2.60%, 95% CI: –22.07%, 21.74%) and following adjustment for diet and physical 

activity (β = −15.14%, 95% CI: 28.61%, 0.87%).

There was no evidence of effect modification of associations between neighborhood 

contextual factors and inflammatory markers by address type in the HPFS (Supplementary 
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Table 4). We found no evidence of effect modification of associations between NDVI at 

270m resolution and inflammatory markers by census region, except for CRP (Phet = 0.014) 

and IL-6 (Supplementary Table 5, Phet = 0.0052). Inverse associations were driven by the 

Northeast (CRP: −10.14%, 95% CI: −14.82%, −5.21%; IL-6: −4.30%, 95% CI: –7.83%, 

−0.65%) and South (IL6: −9.27%, 95% CI: –13.84%, –4.46%).

4. Discussion

In this study of male and female health professionals, we observed lower levels of 

inflammatory biomarkers among participants residing in neighborhoods that had more 

favorable contextual environments. In both cohorts, those with higher nSES exhibited lower 

overall inflammation. Among participants residing in neighborhoods heavily segregated 

by income (ICE), those with higher compared to lower concentrations of high-income 

households had lower inflammatory biomarker profiles, though in the HPFS these 

associations were not statistically significant. Higher greenness within a 270 m buffer 

surrounding a participant’s address was associated with lower inflammatory biomarker 

profiles in the NHS, but not HPFS. Consistency in the direction of associations across 

multiple measures of neighborhood context and inflammatory biomarkers support the 

hypothesis that adverse neighborhood context may contribute to poorer health through 

inflammatory pathways, independent of an individual’s demographics and behavioral risk 

factors (Fig. 1).

Previous studies have examined associations between neighborhood deprivation and 

biomarkers of inflammation, though most have focused on objective and perceived nSES 

only and were conducted in limited geographic areas. Prior cohort studies have examined 

associations between neighborhood deprivation and inflammation (Pollitt et al., 2007; Pollitt 

et al., 2008). These studies used prospective designs and controlled for individual-level SES 

to examine whether perceived stress and neighborhood disorder was associated with greater 

inflammation among racially diverse populations across several US states. Early childhood 

SES and adult neighborhood SES were associated with higher CRP, with some evidence 

of mediation by adult demographic and life-style risk factors (Pollitt et al., 2007). One of 

the few longitudinal studies of 946 participants in the Multi-ethnic Study of Atherosclerosis 

reported higher IL-6 over a 3–4 year period among those with lower nSES and lower 

perceived neighborhood safety (Nazmi et al., 2010). While some studies examined effect 

modification by race, sex, and other characteristics, patterns were inconsistent, suggesting 

that mechanistic pathways linking neighborhood environments to health may vary across 

populations. Recent reviews also find multiple reports supporting a role of inflammation 

as a mediator of neighborhood deprivation and poorer health, although most studies are 

cross-sectional (Muscatell et al., 2020; Ribeiro et al., 2018). Our findings from a study using 

multiple neighborhood measures and a composite index of inflammation provide additional 

support for the hypothesis that neighborhood context may influence health disparities 

through inflammation pathways.

We assessed associations between ICE measures and inflammation because place-based 

health disparities often arise as a result of historical segregationist policies that excluded 

non-White, low-income populations from certain neighborhoods (Massey, 1993). Using 
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the ICE measure focuses our analysis on how neighborhood inequalities, driven by class 

and racial hierarchies, may contribute to poorer health in disadvantaged communities. A 

recent study examining associations between childhood SES and inflammation in Black 

and White adults found that lower childhood SES was associated with inflammation only 

among participants who reported lower optimism and purpose in life (Boylan et al., 2020). 

While detailed longitudinal examinations of effects of social hierarchies on humans are 

limited, results from animal models demonstrate that disrupting animal housing and social 

environments can lead to marked changes in biological stress response and gene expression 

(McClintock et al., 2005; Hermes et al., 2009; Williams et al., 2009; Volden et al., 2013). 

Evidence from social non-human primates indicates that occupying a lower rank in a 

social hierarchy leads to high blood pressure and elevated stress hormone levels, slower 

cardiovascular and endocrine responses to stressors, and a suppressed immune system 

(Marmot and Sapolsky, 2014). Although results from animal studies cannot be directly 

extrapolated to humans, common features of primate and human social hierarchies’ effects 

could shape health responses to repeated stressors.

Our study examined neighborhood socioeconomic and segregation-based measures in a 

predominantly white, affluent population. Despite limited variability in individual-level SES 

(race/ethnicity, educational attainment and occupation), the neighborhood socioeconomic 

measures represented in our cohort were found to reflect that of the US population as a 

whole (Supplementary Fig. 1). Therefore, our study provides evidence supporting a role 

of contextual influences of socioeconomic status on blood inflammation pathways that 

operate independently of individual-level SES. Our findings build on earlier hypotheses and 

empirical data showing independent individual- and contextual-level impacts of SES on 

health by testing a proposed biologic pathway that links these upstream contextual factors 

to health (Pollitt et al., 2007; Pollitt et al., 2008). Confounding by individual-level SES is 

mitigated through restriction by race/ethnicity, educational attainment, and occupation in our 

study population. Therefore, these data suggest that social stressors at neighborhood-level, 

arising from lack of material resources, poor social cohesion, and adverse environmental 

context may lead to higher blood levels of inflammatory markers regardless of one’s 

individual ranking in a given social hierarchy (Warnecke et al., 2008; Kawachi and 

Berkman, 2003; Krieger and Krieger, 2011; McEwen, 1998).

Our study contributes important evidence regarding biological mechanisms through which 

nature contact influences health. Nature contact may reduce psychosocial stress, which 

may influence other health outcomes, but specific biological mechanisms remain poorly 

characterized (Frumkin et al., 2017). Theories of stress reduction and attention restoration 

arising from nature contact have been proposed as stress-related mechanisms that lead to 

health benefits (Ulrich et al., 1991; Kaplan and Kaplan, 1989). Experimental studies in 

East Asian populations have reported physiologic changes associated with nature contact, 

including lower natural killer cell activity (Li et al., 2008), lower blood pressure, and lower 

heart rate (Park et al., 2010), but these were conducted in small samples and findings may 

not be generalizable to other populations. Cross-sectional studies have demonstrated inverse 

associations between greenness and cardiometabolic biomarkers (Yeager et al., 2018; Yeager 

et al., 2019). Our study provides additional support for the hypothesis that inflammation may 

mediate the association between neighborhood greenness and chronic diseases, although we 
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only observed these patterns in women in the NHS. Reasons for this discrepancy could be 

related to the demographic profiles of these two cohorts (women in the NHS were younger 

and reflected a broader socioeconomic distribution compared to men in the HPFS) and 

different locations where neighborhood context was assessed (men reported either home or 

work addresses). Larger studies with higher spatiotemporal resolution measures of greenness 

exposure including GPS-based activity spaces could improve understanding of potential 

differences in associations between greenness and inflammation in men and women (Labib 

et al., 2020).

Our study has some important limitations. First, our sample relied on data pooled from 

multiple case-control studies nested within two large cohorts examining a variety of 

cardiovascular, cancer, and mental health endpoints which could have led to selection bias 

if case status were differentially associated with neighborhood environmental variables. 

Reassuringly, our major findings were robust to restriction to controls only, possibly because 

blood samples were generally taken far before onset of disease. Second, our measures 

reflect a single address (home or work), which may not reflect the totality of neighborhood 

contextual exposures encountered by participants over the study period. We averaged 

neighborhood contextual exposures over time to account for any changes in exposure 

among participants who moved over follow-up. Restricting to non-movers did not change 

findings, suggesting that the time periods captured are relevant for inflammation. The 

summary inflammation score used here may not have fully captured potential inflammation-

related pathways specific to the neighborhood contextual factors studied. Use of objective 

measures of nSES mitigates the potential for differential measurement error, but perceived 

measures could provide more details regarding the specific chemical and social stressors 

in the neighborhood environment that drive associations between nSES and inflammation. 

Unmeasured confounding could have contributed to the associations we observed between 

our neighborhood contextual factors and inflammation in this observational study. However, 

our data allowed for detailed control of multiple clinical, demographic, and behavioral risk 

factors. For example, data on smoking, a major behavioral factor linked with inflammation 

that was more prevalent at the time the cohorts were enrolled, was readily available. 

Conducting this study in a fairly affluent, predominantly white population may limit 

generalizability. However, because the male and female health professionals occupied 

similar levels of individual SES, residual confounding by SES is unlikely to be a major 

threat to validity.

4.1. Conclusions

In summary, we find support for the hypothesis that neighborhood deprivation is associated 

with inflammation across nSES, neighborhood income segregation, and neighborhood 

greenness. These findings are particularly compelling given that they were observed in 

this narrow spectrum of the population (white health professionals), persisted following 

adjustment for individual behavioral risk factors, and were consistent across multiple 

neighborhood contextual factors hypothesized to influence health through inflammation. Our 

findings can be used to inform individual- and community-level interventions and policies 

aimed at improving population health.
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Fig. 1. 
Conceptual framework linking neighborhood environments to health outcomes via stress-

related, demographic, environmental, and physiological pathways.
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Fig. 2. Associations between neighborhood contextual factors and inflammatory blood 
biomarkers from linear regression models among women and men in the Nurses’ Health Study 
(n = 16,183 womena) and Health Professionals Follow-up Study (n = 7,930 mena)
Abbreviations: ADIPO: Adiponectin; CRP: C-Reactive Protein; IL-6: Interleukin-6; 

TNFR-2: soluble tumor necrosis factor receptor-2; INFLM: inflammation score; nSES: 

Neighborhood Socioeconomic Status; ICE-Inc: Index of Concentration at Extremes-Income; 

ICE-RI: Index of Concentration at Extremes-Race/Income; NDVI: Normalized Difference 

Vegetation Index (NHS: 1986–1990; HPFS: 1990–1994), NDVI-270se: 270m seasonal 

Normalized Difference Vegetation Index. NHS: Nurses’ Health Study; HPFS: Health 

Professionals Follow-up Study. All variables are scaled to one-interquartile range increase 

except ICE-measures which are scaled to standard deviation. Multiple linear regression 

models for inflammatory markers adjusted for age, fasting status, smoking, hypertension, 

hypercholesterolemia, body mass index, census region, population density, case status, 

air pollution (PM2.5), and use of anti-inflammatory medication. For NHS, models further 

adjusted for postmenopausal hormone use. Models for association between NDVI and 

inflammatory biomarkers were adjusted for nSES. aSample sizes from NHS and HPFS 

with at least one biomarker. Sample sizes corresponding to models for each inflammatory 

biomarker endpoint and neighborhood contextual variable are provided in Supplementary 

Table 2.
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Fig. 3. Associations between neighborhood contextual factors, Interleukin-6, and inflammation 
score from linear regression models following sensitivity analysis among women and men in the 
Nurses’ Health Study and Health Professionals Follow-up Study
Abbreviations: nSES: Neighborhood Socioeconomic Status; ICE-Inc: Index of 

Concentration at Extremes-Income; NDVI: Normalized Difference Vegetation Index 

(NHS: 1986–1990, HPFS: 1990–1994), NHS: Nurses’ Health Study; HPFS: Health 

Professionals Follow-up Study. All variables are scaled to one-interquartile range increase 

except ICE-measures which are scaled to standard deviation. Multiple linear regression 

models for inflammatory markers adjusted for age, fasting status, smoking, hypertension, 

hypercholesterolemia, body mass index, census region, population density, case status, 

air pollution (PM2.5), and use of anti-inflammatory medication. For NHS, models further 

adjusted for postmenopausal hormone use. Models for association between NDVI and 

inflammatory biomarkers were adjusted for nSES. Sensitivity analyses included (1) Controls 

(n = 10,061 for participants with at least one biomarker in NHS, n = 4,481 for HPFS) 

results from models fit in sampled controls only; (2) Non-movers results from models fit 

only in those participants who remained at the same address from 1986 (NHS, n = 15,933) 

or 1988 (HPFS, n = 7,423) through blood draw; (3) Lifestyle models further adjusted for 

physical activity and diet quality. SocioDem models correspond to main results from Fig. 2. 
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Sample sizes from models for associations between each neighborhood contextual factor and 

inflammatory biomarker are provided in Supplementary Table 3.
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