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 Point-of-care technologies provide innovative solutions that improve treatment. 

Healthcare systems including some low-resource settings have begun implementing these 

technologies providing the convenience and reduction of large laboratory set-ups. Low-

cost is one of the main driving components when it comes to point-of-care diagnostics. 

Paper-based microfluidics has generated a great amount of interest for the development 

of low-cost diagnostic and self-contained analytical devices. Satisfying the World Health 

Organization’s (WHO) recommended ASSURED criteria; Affordable, Sensitive, 

Specific, User-friendly, Rapid and robust, Equipment free, Deliverable, paper-based 

microfluidics have made point-of-care testing more accessible. Applications range from 

healthcare, food safety, and environmental monitoring, among others. What has in part 

attracted attention is the low-cost, ease-of-use, and adaptability of these paper devices. 

Compared to conventional microfluidic devices, the paper-based counterparts are able to 
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utilize paper’s inherent wicking property to eliminate the external pumping needed to 

drive the fluid. Channels are easily formed by either selectively removing sections of the 

paper substrate or by pattering channel boundaries with a hydrophobic material. 

 In spite of the benefits and advantages described above, paper-based microfluidic 

technologies often lack the necessary sensitivity and sophistication available in 

conventional microfluidic devices. In order to be a competitive alternative, paper-based 

microfluidics require improvement and novel development of feasible detection methods. 

These methods will likely require increasingly complex chemistry and control of 

reagents. Thus, understanding imbibition as well as obtaining precise, accurate, and 

consistent fluid handling within the paper device will be crucial. 

Although considerable knowledge exists on techniques to manipulate fluid within 

the paper channel, what is lacking are studies on how non-laboratory conditions (e.g. 

relative humidity) influence fluid flow. This presentation aims to address this gap with 

particular focus on the effects of relative humidity and channel width. A series of 

controlled imbibition experiments is reported using cellulose papers commonly used in 

the field of paper-based microfluidics. We show that both the imposed relative humidity 

and the channel width have critical design considerations in paper-based devices. 

Additionally, we compare three models, the Lucas-Washburn model, the Fries et al. 

(2008) model which incorporates evaporation, and a newly developed water saturation 

model that incorporates evaporation as well as residual water in the paper. We assess 

their accuracy in representing the experimental data and systematically evaluate the 

importance of evaporation and water saturation under a wide range of relative humidity 
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conditions. The current study has created a library of paper-specific, imbibition-related 

properties for commonly used filter and chromatography papers for the first time. 

Lastly, the effort of fluid manipulation is continued. A qualitative investigation on 

two-dimensional wax-bound channels is covered. The channels encompass the most basic 

geometry that may be present in complex fluidic designs; sudden expansion, contraction, 

and a box along the channel. It is found that these simple channel cross-sections can 

accelerate and decelerate fluid flow, therefore altering the time of fluid delivery.  

Collectively, the success of this research will improve the development of future 

diagnostic and analytical paper devices producing a user-friendly and cost effective 

point-of-care alternative. 
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1.    PAPER-BASED MICROFLUIDICS: AN OVERVIEW 

 

 

 

1.1.   Introduction 

 Point-of-care technologies provide innovative solutions that improve treatment. 

Healthcare systems including ones in low-resource settings have begun implementing 

these technologies providing the convenience and reduction of large laboratory set-ups. 

Low-cost is one of the main parameters that drive the development of point-of-care 

diagnostics. 

 Paper-based microfluidics has become an emerging field that strives for low-cost, 

simple-to-use analytical and diagnostics devices. What has attracted many researchers 

into this emerging field is the low capital costs required for device fabrication. 

Fabrication of conventional microfluidic devices made of silicon, glass or 

polydimethylsiloxane (PDMS) requires bulk or surface micromachining, or replica 

molding with a micromachined master mold, all of which involve cleanroom equipment 

and facilities. On the other hand, paper-based microfluidics only requires paper and a tool 

that can define impermeable channel boundaries, significantly reducing the resources 

needed for newcomers to enter the field of microfluidics. Utilizing paper and paper-like 

materials as the main substrate, paper-based microfluidics devices utilize the inherent 

wicking property to drive the fluid. This serves a tremendous benefit over conventional 

microfluidics which require external machinery to drive the fluid. In this chapter, a brief 
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overview of paper-based microfluidics is given with emphasis on fabrication, detection 

techniques, and device functionality and capabilities. 

 

1.2.   Fabrication Methods 

 Fabrication methods have largely been developed and adapted from other 

platforms. Channels are formed by either selectively removing sections of the paper 

substrate or by pattering the channel design with a hydrophobic material. The former 

ranges from high precision CO2 laser-cutting to craft cutting. The latter methods range 

from those of traditional photolithography to techniques using commercially available 

printers including inkjet and solid ink. Ultimately, what all these fabrication methods 

have in common is the creation of defined impermeable boundaries for fluid transport.  

There exist a large amount of fabrication methods, and, a few are detailed here. See Fig. 

1.1 for a schematic overview (Cate et al. 2015).  

 

1.2.1.   Wax pattering 

 Obtaining hydrophobic barriers in the paper is a simple and quick method to 

control and direct fluid flow. Wax printing utilizes a commercially available printer with 

wax-based ink (Carrilho et al. 2009; Lu et al. 2009). In this method the paper is fed into 

the printer, after printing the wax patterned paper is heated in a hot plate or oven for a 

short time, usually a couple seconds to a few minutes. Wax screen printing uses a solid 

wax with a screen to apply the wax onto the paper and later heated, allowing the wax to 

penetrate onto the paper (Dungchai et al. 2011). Alternatively, wax dipping uses a mold 
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which acts as a mask where the pattern is transferred onto the paper by dipping into 

melted wax (Songjaroen et al. 2011). Although these wax patterning methods are low-

cost and require inexpensive instrumentation, the key disadvantage is the inconsistency 

and low-resolution of the final patterned design. 

  

1.2.2.   Printing methods 

 Inkjet printing allows for both selective hydrophobization and 

dehydrophobization of the patterned channels. The former uses a sizing agent such as 

alkyl ketene dimer (AKD) (Li et al. 2010; Li et al. 2008). AKD is printed onto the paper 

followed by a curing step and finally a wash by a solvent. The latter methods uses a 

solvent such as toluene to remove the hydrophobic polystyrene that was applied to the 

paper (Abe et al. 2008). This results in hydrophilic channels. 

 Flexographic printing allows for fast and high-throughput production of paper 

devices. Flexible plates are used to deposit the hydrophobic polystyrene solution onto the 

paper (Olkkonen et al. 2010). The key limitation are the high cost, availability of such 

printers, and the requirement of individualized plates for each pattern. 
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1.2.3.   Lithography 

 The influential work of Martinez et al. (2007) first used photolithography to 

develop the multi-analyte test on patterned paper. This photolithography technique uses a 

photoresist curable by a UV light exposed through a mask. The uncured photoresist is 

washed by a solvent, leaving the cured hydrophobic barriers. Martinez et al. (2008c) 

further improved this method for low-resource settings by using a combination of 

sunlight and a hot plate to cure the device. 

 

 

1.2.4.   Cutting Methods 

 Paper cutting fabrication removes material to create the desired design. Computer 

controlled plotters (Fenton et al. 2009) are quick and relatively inexpensive. 

Unfortunately, these can lead to tearing and warping of the paper, therefore, require 

precise optimization. The most popular cutting method is CO2 laser cutting (Evans et al. 

2014; Nie et al. 2013). This method is extremely precise, quick, and highly adaptable. 

Unfortunately laser cutters may require high initial cost. The advantages of paper cutting 

are the high precision and the lack of chemical treatments needed. Unfortunately, cut 

devices are fragile and suffer from a lack of mechanical rigidity. This results in the 

requirement of an additional rigid support or packaging. 
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Fig. 1.1 Schematic overview of paper-based microfluidic fabrication methods. (Cate et al. 

2015). 
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1.3.   Detection techniques 

 Detection techniques for paper-based microfluidics are generally adapted from 

established chemical and biological sensors in different platforms. The aim of detection 

techniques in paper-based microfluidics is to replicate or to develop alternatives to the 

established analytical devices. The most common technique for detection is that of 

colorimetry (i.e. change of a visual signal which can be correlated to an analyte 

concentration). More sensitive and quantitative techniques such as electrochemical 

sensing and different forms of light emitting sensing have also been adapted and 

implemented. See Fig. 1.2 for selected detection techniques.  

  

1.3.1.   Colorimetry 

 Colorimetry is the most common technique used primarily because of the ease-of-

use both in operation and in signal readout. The simplest signal readout is through merely 

indicating the presence of the analyte, such as those of glucose detection and pregnancy 

test strips (Abe et al. 2008; Martinez et al. 2007). Semi-quantitative techniques have also 

been developed. These require the use of a calibration chart, with intensity indicating the 

concentration strength. Similarly, applications range from simple enzymatic detection, to 

pH readout, and to protein presence (Abe et al. 2008; Martinez et al. 2007). These semi-

quantitative readouts can become more objective by recording the intensity through a 

scanner or camera (Hossain et al. 2009; Khan et al. 2010) or through smartphones 

(Lopez-Ruiz et al. 2014; Martinez et al. 2008a; Shen et al. 2012). 
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1.3.2.   Electrochemical sensing  

 Electrochemical sensing’s key advantage over colorimetric assays is the 

improvement in limit of detection. The target analyte concentration have been measured 

as low as a few nM (Yetisen et al. 2013). Initially demonstrated by Dungchai et al. 

(2009), electrochemical sensing has gained traction from the healthcare field to measure 

glucose (Noiphung et al. 2013; Santhiago and Kubota 2013), cancer biomarkers (Su et al. 

2014), as well as for monitoring drinking water for heavy metals (Dungchai et al. 2009; 

Nie et al. 2010). 

 

1.3.3.   Light emitting sensing 

 Light emitting sensing includes electrochemiluminescence, chemiluminescence, 

and fluorescence. Its sensitivity is within the same levels of that of electrochemical 

detection but it often requires smaller reagent volumes, with the main disadvantage being 

that readouts must be taken in a dark environment. Applications range widely, from 

cancer biomarkers (Wang et al. 2012), to DNA sensing (Ali et al. 2009), to heavy metal 

motoring, and to explosive residue detection (Taudte et al. 2013), among others. 

 

 

 



 8 

 

Fig. 1.2 Selected detection techniques. a) Colorimetric detection (Martinez et al. 2008c). 

b) Colorimetry with smartphone integration (Lopez-Ruiz et al. 2014). c) Electrochemical 

detection (Nie et al. 2010). d) Electrochemiluminescence with smartphone integration 

(Delaney et al. 2011).  

 

 

 

 

1.4.   Functionalities and capabilities 

 The numerous applications associated with paper-based microifluidics devices 

require the manipulation and control of the fluid. This applies to simple one-dimensional 

(1D) strips to three-dimensional (3D) devices capable of multiplexing and sophisticated 

sample processing. The ability to have a controlled stop of the fluid and redirect such 

fluid is key to the sophistication in detection techniques. Depending on the functionality 

desired, certain methods have been developed to deliver and control the fluid flow. 

Timed delivery of the fluid is arguably the most important aspect of designing paper-
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based microfluidics devices because it allows for sequential delivery of the reagents 

involved. Numerous detection techniques require specific incubation time, mixing, and 

washing steps. This fluid manipulation is expected to become increasingly important as 

the chemistry adopted to paper-based microfluidics becomes more sophisticated. See Fig. 

1.3 for a selected functionalities and capabilities. 

  

1.4.1.   Varying geometric cross-section 

 Delaying the fluid is the most common method to control sequential delivery (Fu 

et al. 2010; Fu et al. 2012; Kauffman et al. 2010; Osborn et al. 2010). At its simplest form 

this is done by varying the length and/or the cross-section of the channel. Fenton et al. 

(2009) demonstrated two-dimensional (2D) geometry changes to delay flow by 

fabricating the device using a computer controlled plotter. This allowed multiple assays 

on the same device creating multiplex capabilities. Fu et al. (2010) demonstrated 

chemical amplification with washing steps though sequential delivery in 2D. Chemical 

amplification was demonstrated with washing steps. Fridley et al. (2014) demonstrated a 

similar device with high sensitivity. Lutz et al. (2011), using pre-defined fluid reservoir 

demonstrated a novel 2D sequential delivery method by varying the length of the 

channel. This created automated shut-off vales allowing for termination of the reaction. 
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1.4.2.   Switches and valves 

 Another method in controlling fluid flow is by delaying the fluid through physical 

means, such as to some extent, stopping the flow by a specified time. This has been 

accomplished by sugar delays (Houghtaling et al. 2013; Lutz et al. 2013). Valve actuators 

and switches have been implemented, ranging from simple push down switches made of 

paper (Noh and Phillips 2010) to more complicated 3D devices created by a highly 

swelling material (Toley et al. 2013; Toley et al. 2015). Magnetic cantilevers acting as 

valves have been implemented (Li et al. 2013). Functional fluid circuits have been 

created using fluidic diodes that prevent or allow fluid flow in to a specific direction 

(Chen et al. 2012). Sequential delivery was shown to be possible by this method. 

 

1.4.3.   3D architecture 

 Three-dimensional (3D) devices have gain increasing popularity due to the 

potential in reducing device footprint. The 3D architecture allows for both lateral and 

vertical fluid flow creating efficient multiplexing. First developed by Martinez et al. 

(2008b) the device was fabricated by multi-layering paper using double –sided tape with 

cellulose powder sandwiched for interlayer contact. This 3D method was further 

expanded by Noh and Phillips (2010) to created fluidics timers. Thom et al. (2012) used 

multi-stacked paper to create a fluidic battery. 
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 Taking the 3D architecture further, origami-based devices have been proposed. 

This folding fabrication technique allows for the device to be patterned onto a single 

sheet of paper (Liu and Crooks 2011). Alternatively, to just folding, using adhesive spray, 

multiple groups have created more robust and sophisticated 3D devices (Kalish and 

Tsutsui 2014; Kalish and Tsutsui 2016; Lewis et al. 2012). 
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Fig. 1.3 Selected functionalities and capabilities. a) Array of different geometric shapes 

(Fenton et al. 2009). b) Switch created by an expandable actuator (Toley et al. 2015). c) 

Sequential delivery method (Fridley et al. 2014). d) Origami paper-based microfluidics 

(Kalish and Tsutsui 2014). 
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1.5.   Conclusion 

 Since the first seminal work by Martinez et al. (2007), the rapid development of 

paper-based microfluidic devices have allowed for a wide range of medical and chemical 

diagnostic applications. The low-cost and ease-of-use of point-of-care technologies have 

allowed them to be more accessible to those in low-resource settings. A large variety of 

fabrication techniques have been adapted from other fields. Though still considered to be 

in the early stages of development, paper-based microfluidics’ increasing sophistication 

has led to successful implementation of a variety of detection techniques, each with its 

advantages and disadvantages. These sophisticated detection techniques require 

increasingly complex chemistry, which has led to the creation of fluid controlled 

mechanisms. The understating of these mechanisms and thereby improved controllability 

of fluid imbibition will lead to more accurate and precise analytical devices. 
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2.    TOWARD UNDERSTANDING IMBIBITION IN PAPER-BASED 

MICROFLUIDICS 

 

 

2.1.   Introduction 

 Paper-based microfluidic devices have gained an increasing amount of interest 

over the last few years. Satisfying the World Health Organization’s (WHO) 

recommended ASSURED criteria  (Affordable, Sensitive, Specific, User-friendly, Rapid 

and robust, Equipment-free, Deliverable) (Kettler et al. 2004), paper-based microfluidics 

have made point-of-care (POC) testing more accessible. Current applications, range from 

healthcare (Hu et al. 2014; Martinez et al. 2007), to food safety (Hossain et al. 2009), and  

to environmental monitoring, among others. What has attracted attention is the speed and 

ease of manufacturing, the low-cost, and the adaptability of these paper devices. 

 Compared to conventional microfluidic devices, the paper-based counterparts are 

able to utilize paper’s inherent wicking property to eliminate need for the external 

pumping to drive the fluid. Channels are easily formed by either selectively removing 

sections of the paper substrate or by patterning channel boundaries with a hydrophobic 

material. The former methods ranges from using high-precision CO2 laser-cutting  

(Chitnis et al. 2011; Fu et al. 2010b) to craft cutting (Fenton et al. 2009), while the latter 

methods range from those of photolithography (Martinez et al. 2008c) to techniques 

using commercially available printers with inkjet (Abe et al. 2010) or solid ink (Carrilho 

et al. 2009). Ultimately, the shared result of these fabrication methods is the creation of 
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defined impermeable boundaries for fluid transport. Thorough reviews on the variety of 

available fabrication methods have recently been published (Jiang and Fan 2016; Xia et 

al. 2016; Yetisen et al. 2013). 

 Paper, composed of cellulosic fibers, has similar properties to that of pure 

cellulose, such as a high affinity for water, swelling during liquid uptake, 

biocompatibility, and biodegradability. For detailed properties of cellulose, see the 

thorough reviews (Eichhorn et al. 2001; Klemm et al. 2005; Moon et al. 2011). Paper is a 

ubiquitous material that is often assumed to be a simple material. In actuality, paper is a 

intricate structure of intertwining fibers. During liquid imbibition, flow is described by 

complex transport theory. Paper’s non-uniformity arises from its manufacturing process, 

where the stochastic nature of fiber suspension, pressing, and drying leads to an 

anisotropic fiber network. Accurate calculation of imbibition parameters such as pore size 

distribution, porosity, interconnectivity, and internal permeability are especially difficult 

due to paper’s inherent disorder. The development of structural models from simple 

capillary tubes to random network models have allowed for the better understanding and 

characterization of liquid imbibition  

 As such, for devices to continue to advance toward more complex and 

sophisticated functions, obtaining accurate and consistent fluid imbibition will become 

increasingly important. The purpose of this chapter is to expose the reader to fundamental 

aspects of paper and its liquid imbibition. Understanding the essentials of imbibition in 

paper-based microfluidics will allow the further design of precise and reproducible paper-

based microfluidic devices. 
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2.2.   Characteristics of paper  

 Paper is an abundant and ubiquitous material. As a diagnostic platform, paper has 

been of interest since the 19th century, when urine test strips were first developed (Clarke 

and Foster 2012). What makes paper particularly attractive to the paper-based 

microfluidic community is its low-cost, the wide range of available paper grades, and its 

inherent wicking properties. What gives paper its desired characteristics are the cellulosic 

fibers and the pore properties. For a full description of the chemical and physical 

properties of cellulose, see comprehensive reviews (Credou and Berthelot 2014; Klemm 

et al. 2005; Moon et al. 2011). 

 

2.2.1.   Paper 

 Paper is produced from an aqueous suspension of cellulose fibers primarily 

derived from wood and cotton. The general manufacturing process entails drawing such 

aqueous suspensions through a sieve, pressing the remaining product, and finally drying 

which results in an interconnected network of cellulose fibers. The final composition and 

characteristics of the paper are highly dependent on the suspension’s drawing process. 

This highly dynamic and random process is what gives paper its anisotropic nature and 

inhomogeneity. Careful optimization of this process is what gives paper its physical 

properties such as pore size distribution, porosity, and interconnectivity. Furthermore, to 

improve the surface quality of the paper or alter wicking properties, many additives and 

fillers can be added. These include sizing agents such as alkyl ketene dimer (AKD) and 

alkenyl succinic anhydride (ASA) (Bracher et al. 2010; Hubbe et al. 2007; Modaressi and 
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Garnier 2002) and super absorbent polymers (Hua and Qian 2001). The range of potential 

additives can also produce papers not suitable for imbibition such as regular printing 

paper where additives improve the paper surface while reducing porosity (smooth 

surface). Another unfavorable paper for applications are high absorbent substrates such as 

paper towels where uneven liquid uptake is seen (Zhong et al. 2012). In the paper-based 

microfluidic field high quality cellulose of at least 98% alpha-cellulose if often used, such 

as papers are associated with filter and chromatography applications. 

 

2.2.2.   Paper Structure 

 As mentioned earlier, the paper manufacturing process, especially during fiber 

suspension, gives paper the majority of its fiber network properties such as porosity and 

pore size distribution. Being a highly dynamic process, the aggregation, or so called 

flocculation of the fibers are dependent on a variety of forces including electrostatic, 

colloidal, and mechanical (Alava and Niskanen 2006). This process, albeit controlled, 

leads to local inhomogeneity that can influence paper’s bulk properties. This non-

uniformity can be seen when the paper is held to a light, as shown in Fig. 2.1 This shows 

a qualitative visual representation of the mass variation within the paper structure. Since 

the paper is pressed, the mass variation might give rise to a range of porosities and pore 

sizes along the thickness of the paper.  
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Fig. 2.1 Whatman #1 filter paper showing non-uniformity of fiber distribution. a) Bulk 

paper image (grey scale). b) Zoomed in image (grey scale). Scale bar: 10 mm. 

 

 

 The anisotropy of paper makes modeling the structure particularly difficult. The 

simplest and most widely used model is that of the Lucas-Washburn (L-W) equation, 

where paper is represented as a bundle of uniform capillary tubes. This is obviously 

physical inaccurate, but allows the characterization and prediction of flow from effective 

parameters extracted from experimental data. Alternatively, the paper can be modeled as 

an isotropic media where the liquid flow is taken as unsaturated. In this approach, the 

flow and paper substrate properties can be coupled into a permeability term. 

 More accurate models for paper structure are network pore and random fiber 

network models where the paper structure is modelled to be more realistically. In network 

pore models the paper structure is represented by a discrete set of connected pore 
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channels. These can be as simple as one-dimensional connected capillary tubes of 

varying sizes (Fig. 2.2a) (Dullien 1991; Ruoff et al. 1960). More organized structures 

such as a network unit cell (Ridgway et al. 2002) or organized periodic cylinders (Blunt 

2001; Hayes et al. 2000; Ruoff et al. 1960) have also been proposed. In these more 

organized structures, the pore size is controlled by varying the space and stacking 

orientation of the rigid cylinders (Fig. 2.2b). More realistic pore network models utilize 

pseudo-random pore channels, where the paper structure is represented by an array of 

pore throats and pore bodies  (Fig. 2.2c) (Ghassemzadeh and Sahimi 2004; Wiklund and 

Uesaka 2012). 

 

 

 

Fig. 2.2 Pore network structure model. a) Capillary tubes of varying sizes (Ruoff et al. 

1960). b) Organized stacked solid fibers (Ruoff et al. 1960). c) SEM image of paper with 

represented pore throats and pore bodies (Wiklund and Uesaka 2012).  
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 To truly capture the anisotropic structure of paper, random fiber networks can be 

utilized. Here, fibers are randomly oriented to produce a fibrous network that resembles 

that of paper (Jaganathan et al. 2009; Koponen et al. 1998) (Fig. 2.3a). These model 

structures are useful to study the dependence of fiber orientation on imbibition (Ashari et 

al. 2010) (Fig. 2.3b), the dependence of fiber distribution on permeability (Qi and Uesaka 

1996) (Fig. 2.3c), study wetting dynamics of adjacent fibers (Sauret et al. 2015), study 

two-dimensional to three-dimensional fiber network scaling (Hatami-Marbini 2016) (Fig. 

2.3d), and study the degree of randomness and fiber structure on liquid uptake 

(Thompson 2002). 
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Fig. 2.3 Random fiber networks.  a) Fibrous network (Koponen et al. 1998). b) 

Differently oriented fibers (Ashari et al. 2010). c) Varying fiber distribution (Qi and 

Uesaka 1996).  d) 2-D to 3-D random scaling (Hatami-Marbini 2016). 
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 As simple as paper might seem, the randomness and anisotropic structure of the 

fiber network make modeling approaches difficult, computationally intense, or, to some 

degree, physically inaccurate. The nature of paper’s structure and its liquid imbibition has 

created analogies to percolation theory and fractal geometry (Hunt 2005). For a detailed 

description, see (Isichenko 1992; Sahimi 1993; Wang et al. 2002). Along with 

percolation behavior, the dynamic interface at the liquid front is an area of interest, 

primarily due to direct applications ranging from film growth (Forgerini and Marchiori 

2014)  to fracture phenomena (Engoy et al. 1994). The dynamic interface at the liquid 

front is largely attributed to the kinetic roughening created by the random structure 

encountered during the imbibition process (Alava et al. 2004). An abundance of studies 

have used paper as a model substrate to investigate roughening (Balankin et al. 2013; 

Balankin et al. 2006; Horvath and Stanley 1995; Kwon et al. 1996). The pinning behavior 

and fingering phenomenon seen at the liquid front during imbibition (Fig. 2.4) is 

attributed to roughening dynamics, which can be augmented by adding inhibitory agents 

onto the paper (Lutz et al. 2013).   
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Fig. 2.4 Pinning behavior and fingering phenomena. a) Filter paper during imbibition 

(grey scale). b) Black and white image showing pinning behavior. c) Extreme fingering 

phenomena due to adding inhibitory agent (Lutz et al. 2013). 

  

 

2.3.   Imbibition in paper media 

 Fluid penetration into paper-like or porous media is a highly complex process. 

The detailed description is governed by many length and time-scaled parameters which 

are highly coupled. While the flow and detailed physics take place within the micro- and 

macro-structure of the porous media, the underlining interest lies in the macroscopic 

regime. Darcy, in the 19th century, found that flow is proportional to the pressure gradient 

applied across the porous substrate. This is analytically presented as, 
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p
k

v 


,            (2.1) 

where v is the average liquid velocity, k is the permeability of the substrate, which 

describes the ease of fluid penetration, μ is the dynamic viscosity, and p  is the pressure 

gradient across the porous substrate. Since then, flow in porous materials have been 

modeled as simple capillary tubes to highly complex network models associated with 

percolation phenomena. Given the complexity of the structure in paper media, certain 

conditions and assumptions are placed within the developed models. Emphasis will be 

placed on two fundamental modeling approaches; capillary tube flow and diffusion-like 

flow. 

 

2.3.1.   Capillary tube flow 

 The simplest way to model imbibition is by treating the porous substrate as a 

bundle of parallel rigid capillary tubes of uniform size with an infinite liquid reservoir at 

the inlet. The liquid front movement is governed by a single representative capillary tube 

with generally four main forces influencing the flow: the suction force created by the 

interfacial pressure different at the meniscus, the viscous force, the gravitational force, 

and the force due to inertia. As shown schematically in Fig. 2.5, a capillary tube of 

diameter D contains two immiscible fluids (here liquid and air) immersed in an infinite 

reservoir at ambient pressure. A meniscus is formed at the interface and in combination 

with the surface tension γ creates a pressure difference (suction) denoted in the Young-

Laplace equation as the capillary pressure, 
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D
Pc

 cos4
 ,         (2.2) 

 

where θ is the static contact angle.  

 

Fig. 2.5 Representative porous substrate using a bundle of capillary tubes. 

 

 

The momentum balance of the capillary front yields (Fries and Dreyer 2008; Zhmud et al. 

2000),  

gh
dt

dh
h

DDdt

dh
h

dt

d



 








2

32cos4
,       (2.3) 

where ρ is the liquid density, and h is the height of the meniscus. The left hand side 

represents the force due to inertia while the right hand side represents the capillary 

pressure (suction), viscous force represented by Hagen-Poiseuille flow, and the 
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gravitational force, respectively. An analytical solution to Eq. 2.3 is not possible,  though 

numerical methods such as the Runge-Kutta method have previously been used (Szekely 

et al. 1971). The gravitational effect generally plays a negligible role for short distance 

imbibition, around 10% of the final equilibrium height (Fries and Dreyer 2008). 

Inspecting the Bond number which quantifies the ratio between body forces to surface 

tension forces, adds support to this claim. The influence of the inertial term has been 

investigated by Rideal (1922) and  Bosquanet (1923) which determined that inertia is 

only important in the very early stages of imbibition when the imbibition distance was 

found to be linearly proportional to time or when the capillary is large. Hence, the inertia 

term is often ignored. Therefore, for paper imbibition, gravity and inertia are ignored and 

Eq. 2.3 becomes, 

dt

dh
h

DD 2

32cos4 
           (2.4) 

where the capillary pressure is balanced by the viscous force. Solving Eq. 2.4 with initial 

conditions   00 th  results in the widely used Lucas-Washburn (L-W) equation, 

t
D

h




4

cos
 ,          (2.5) 

where the distance is proportional to the square root of time. 
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2.3.2.   Modification and application of Lucas-Washburn equation to paper media 

 The Lucas-Washburn equation gives a simple model of imbibition by representing 

the porous substrate as a bundle of capillary tubes. Paper, to some extent, is not an ideal 

substrate for modeling purposes. The nature and structure of the media produces inherent 

complexities, such as random fibrous networks and paper’s hygroscopic properties. From 

the need to model imbibition data more accurately, several modifications to the L-W 

equation have been proposed. In coming sections we look at some of these parameters. 

 

2.3.3.   Effective diameter 

 The governing Eq. 2.3 represents a perfect capillary tube. In porous materials, this 

is obviously not the case. Therefore, a slight modification is needed. Often the flow is 

modified by represented diameters. As follows, 

dt

dh
h

DD
h

2

32cos4 
           (2.6) 

Where D is the static diameter of the pore and Dh is the hydrodynamic diameter of the 

represented capillary tube (Fries et al. 2008; Masoodi and Pillai 2010). Solving Eq. 2.6 

produces, 

t
D

h e





4

cos
  ,         (2.7) 

where De is the effective diameter given by 
D

D
D h

e

2

 . The use of this substitution has 

been proposed to improve the accuracy in modeling polymer wicks (Masoodi et al. 2007) 

and metal weaves (Fries et al. 2008). For paper-like media, the static and hydrodynamic 
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diameters are difficult to obtain due to the complex structure, therefore the effective 

diameter is taken as the represented diameter of the substrate having no physical 

significance other than as a measure of the ease of liquid penetration.  

 The effective diameter generally gives values two orders of magnitude less than 

the actual physical pore size of the substrate (Dullien et al. 1977; Ruoff et al. 1960). The 

effective diameter has been proposed as a way of incorporating tortuosity (Lundblad and 

Bergman 1997) as well as other complex structures of the substrate (Schuchardt and Berg 

1991). 

 The form of the L-W equation shown in Eq. 2.7 is the most widely recognized 

model for characterizing imbibition in the field of paper-based microfluidics. This is 

primarily because of its straight forward approach and ease-of-use. It has been used to 

characterize one-dimensional imbibition numerous times (Bohm et al. 2014; Jafry et al. 

2016; Lutz et al. 2013). It has also served to compare and be the basis to model two-

dimensional flows within paper-like media (Benner and Petsev 2013; Elizalde et al. 2015; 

Fu et al. 2011; Shou et al. 2014).  

 

2.3.4.   Permeability  

 Permeability is an alternative to the effective diameter,  and a represented value in 

describing the ease of fluid penetration which is generally a material specific property. In 

relating the interstitial velocity (Hagen-Poiseuille flow) of the capillary to the superficial 

velocity (Darcy), the relationship,  
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KDe




2

8
,            (2.8) 

gives the capillary model permeability (Masoodi and Pillai 2010), where   is the porosity 

and K is the effective permeability. This can be substituted into Eq. 2.7 to produce an 

alternative form of the Lucas-Washburn equation, 

t
K

h






cos2
2





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


  .         (2.9) 

Aside from the permeability relation of Eq. 2.8, other permeability relationships have 

been proposed, generally in the form, 

2

eDK             (2.10) 

where ψ is a function of the substrate geometry (Kao and Hunt 1996). 

 Once of these permeability relationships, the Kozeny-Carman equation has 

frequently been used (Wyllie and Gregory 1955; Xu and Yu 2008). It was developed for 

a pack bed of solids. For paper, more appropriate permeability relations are those 

developed for fiber beds using analytical, numerical, and experimental methods, such as 

those from Gebart (1992), Van der Westhuizen et al. (1996), and Nabovati et al. (2009). 

Numerous others have been developed. The aforementioned are briefly summarized in 

Table 2.1. Using these types of relationships would be difficult for paper-like media due 

to the dependence of porosity and fiber properties. Fibers, being hygroscopic and 

absorbent, the porosity and fiber properties are humidity and fluid dependent. 

Nevertheless, studies investigating permeability relationships would undoubtedly be 

beneficial to the paper-based microfluidic community. 
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 Current studies in modifying and adjusting the permeability of the paper have 

been shown to be effective in controlling the liquid flow.  These methods, among others, 

include using hydrophobic polymers (Bohm et al. 2014; Noh and Phillips 2010; Weng et 

al. 2014) that are deposited onto the paper substrate to delay liquid flow, using 

dissolvable and erodible barriers (Jahanshahi-Anbuhi et al. 2014; Lutz et al. 2013) to 

create time delay barriers, as well as physical methods such as compressing paper (Park 

et al. 2016) and selectively cutting the paper (Giokas et al. 2014; Renault et al. 2013). 

 

Table 2.1 Selected permeability relations.  

Permeability relations Developed for 

Kozeny-

Carman equations  2

3
2

1180 




 DK  

Pack bed of solids 

Gebart 2/5
2

1
1

1

4 

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
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









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

cC
d

K  

Close-packed fibers 

Van der 

Westhuizen et al. 
 

  
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










2/3

2
2

124

11

4 




d
K  

Random unidirectional 

fiber beds 

Nabovati et al.  2

1
1

1

4
1

2
C
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d

K

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



















 

3-D random fiber 

network 

D, pore diameter ;    d, fiber diameter;;     C, C1, C2 geometric factors 

c , critical value of porosity below which there is no permeating flow 
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2.3.5.   Tortuosity 

 Tortuosity τ is a quantitative value describing how tortuous the system is. It is 

dependent on the topology of the media, which includes the porosity and the 

interconnectivity of the microstructure. It also has a direct contribution to the 

permeability of the substrate (Cai and Yu 2011; Hodgson and Berg 1988; Liu et al. 

2016). To obtain a better representation of the complex structure of the media, attempts 

have been made to isolate the tortuosity from the effective diameter and its corresponding 

effective permeability. It is quantitatively defined as the ratio between the actual length 

traveled, Lf to the straight-line length, Ls. Analytically this is represented as, 

2













s

f

L

L
  

(Benavente et al. 2002) or 
s

f

L

L
  (Cai et al. 2010). 

 In paper-like media, tortuosity is difficult to obtain and arguably impossible to 

accurately measure due to its complex structure. Nevertheless, a simple modification to 

the Lucas-Washburn equation is often used, 

t
D

h e

24

cos


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           (2.11) 

As seen in Eq. 2.11, the tortuosity modified the L-W equation (Cai et al. 2010; Hodgson 

and Berg 1988) serves as a direct modification to the effective diameters by decoupling 

the effect of the tortuous internal structure. Though Eq. 2.11 is not directly derived from 

capillary theory, the tortuosity factor serves as a great relative comparison between 

similar substrates. 
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 Largely driven by observations of cotton fabrics not following the L-W behavior, 

(Laughlin and Davies 1961), attempts to better relate the tortuosity to the topology of the 

substrate have been proposed. Random porous media have been characterized by fractal 

theory,  such as, paper (Kopelman et al. 1986), soil (Perfect and Kay 1991), and porous 

fabrics (Yu and Lee 2002), among others. Wheatcraft and Tyler (1988) proposed that the 

fractal path traveled by a particle through heterogeneous porous media is, 

TT d

s

d

f LL



1          (2.12) 

where ε is the scale of observation and dT is the fractal dimension. Simply put, the fractal 

dimension serves as a way to describe the complexity of a pattern within a designated 

space. Yu and Cheng (2002) proposed that the pore diameter D can be implemented as 

the scale of observation. Therefore, 

TT d
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f LDL



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 .         (2.13) 

 Derived from capillary theory and the fractal dimension relation, the imbibition 

distance can be described by (Cai et al. 2010),  
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when the fractal dimension dT  is a single capillary, dT = 1, and Eq. 2.14 reduces to the L-

W equation (Eq. 2.7). 
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2.3.6.   Contact angle 

 The contact angle in the L-W equation is that from the contact angle formed under 

static conditions in a single capillary. This was done for simplification purposes. It is 

known that the contact angle is associated with the speed of the moving front (Degennes 

1985; Dussan 1979) as well as to the internal structure of the substrate. There have been 

many investigations as to the importance of this dynamic contact angle (Hamraoui and 

Nylander 2002; Marmur 1992; Martic et al. 2002). 

 Bracke et al. (1989) proposed that the dynamic contact angle θd and the static 

contact angle θs are related by, 

2/12
1cos

coscos
Ca

s

sd 







         (2.15) 

where Ca is the capillary number, 


v
Ca  . However, the front speed does not change 

significantly, except briefly during the initial imbibition and upon reaching its final 

position. Therefore, the contact angle can be taken as a static value, which is frequently 

done. 

 For cellulose, the static contact angle has been shown to be approximately 26ᵒ 

(Joubert et al. 1959; Liukkonen 1997); however, due to the high water affinity of 

cellulose, the contact angle quickly reduces to 0ᵒ (Liukkonen 1997). Therefore, for paper-

based microfluidics, specifically for cellulose based substrates, a contact angle of 0ᵒ is 

appropriate. 
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2.3.7.   Swelling 

 Swelling of the substrate up to this point has largely been neglected, primarily due 

to imbibition models assuming a rigid structure, which makes the final solutions 

relatively simple. One can argue that because the effective diameter and effective 

permeability are represented parameters, the effects of swelling can be incorporated into 

these values. This is what has generally been done in the paper-based microfluidics 

community, however cellulose has a high affinity to water. It’s been shown that a single 

fiber can expand up to 85% (Mantanis et al. 1995). Therefore, for paper-based 

microfluidics, swelling is a major influence during imbibition dynamics. This has a 

noteworthy affect in topology parameters such as permeability and porosity. 

 Accurately incorporating swelling in the initial stages of model derivation is 

simple in concept since porosity and liquid uptake of the substrate can be made to be time 

dependent. Unfortunately, practical implementation produces immensely complicated 

relationships due to the system becoming a deformable porous media (Ambrosi 2002; 

Diersch et al. 2010; Spiegelman 1993). 

 Attempts have been made to produce straightforward models (i.e. less accurate) 

while still implementing the overall swelling effects. Schuchardt and Berg (1991) 

incorporated swelling through a linear function, 

tDD  0           (2.16) 

where D is the pore diameter, D0 is the pore diameter “seen” by the meniscus, and β is a 

fitting constant representing the rate of constriction. Incorporating Eq. 2.16 in the 

capillary model results in, 
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Note, when β = 0, Eq. 2.17 reduces to the traditional L-W equation (Eq. 2.7). Eq. 2.17 

has been shown to agree favorably with experimental data. Based on the Schuchardt and 

Berg’s swelling relation (Eq. 2.16), constrictions will become more apparent as time 

increases. Therefore, caution should be taken as to not allow imbibition time to surpass 

the maximum swelling time (porosity dependent). 

 Masoodi et al. (2010) proposed a more complex model derived by using Darcy’s 

equation and by incorporating sink terms in the mass conservations, 
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where 
0 is the porosity in front of the meniscus, b is a fitted absorbent coefficient, and 

K(t’) is a time dependent permeability utilizing the same linear relationship (Eq. 2.16) as 

Schuchardt and Berg. 

 

2.3.8.   Humidity effects 

 Non-ideal environmental conditions such as changing humidity, can play a 

significant role in imbibition. Most significantly is evaporation and, when dealing with a 

hygroscopic material, residual saturation as well. Studying imbibition alongside 

evaporation can be difficult to model and characterize primarily due to influences from 

factors such as fluctuations in air flow and variations of evaporation across the substrate. 
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 In the paper-based microfluidics community, humidity effects can typically be 

eliminated by confining the device (Schilling et al. 2012; Toley et al. 2013), but in 

general humidity effects are largely ignored. The significant influence of evaporation has 

sparked some researchers to incorporate such inhibitory effects within the modeling 

process (Camplisson et al. 2015; Jahanshahi-Anbuhi et al. 2014; Mendez et al. 2010). 

The majority of these studies have adopted the capillary model with evaporation by Fries 

et al. (2008). This model incorporates a uniform constant evaporation flux from the 

surface in the mass conservation. The derived model, neglecting gravity, results in, 
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where 
em  is the evaporation rate, W is the width of the substrate, and T is the thickness of 

the substrate. A large portion of the mentioned studies utilize the correlation found in the 

ASHRAE handbook to estimate the evaporation rate. 

 
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vwe

0782.0089.0 
         (2.20) 

where Pw is the saturated pressure, Pv is the partial pressure of vapor, Vair is the air flow 

speed, and Y is the heat of vaporization of water. Though Eq. 2.20 is a good estimate, 

caution should be taken depending in the type of substrate being used, as the ASHRAE 

correlation is for evaporation of static pool surfaces. Nevertheless, with no convection 

effects, evaporation from a porous surface behaves as a fully wetted surface, provided the 

pore size is small relative to the size of the surface (Beyhaghi et al. 2014).  
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 The constant evaporation flux assumption was questioned (Barry et al. 2009) in 

Fries et al. (2008). Veran-Tissoires et al. (2012) computationally determined that the 

evaporation flux in Fries et al. would result in a non-uniform evaporation flux 

distribution, with a much higher flux within the imbibition front surface. 

 Evaporation is not the only result from humidity, residual saturation can also 

occur, especially for paper substrates, due to cellulose’s hygroscopic property. Depending 

on the degree of humidity the paper can become moist by developing some degree of 

saturation. This such parameter has been implemented into Fries et al. (2008) by a 

multiplicative adjustment (Jahanshahi-Anbuhi et al. 2014) due to the paper’s water 

content. A more analytical approach was done to model initially moist soils (Kao and 

Hunt 1996). By modeling the soil as a capillary tube, the capillary diameter was adjusted 

by an initial saturation to account for the reduction in volume due to the liquid coated 

internal wall. 

 Aside from evaporation and saturation, humidity will influence other crucial 

paper-based microfluidic qualities such as device handling, shelf life, and moisture 

sensitive chemistry. To our best knowledge no studies have been done to investigate 

these potential issues for paper-based applications. 

 

2.3.9.   Diffusion-like model 

 The L-W equation is widely used and frequently researched in liquid penetration 

applications. It is widely known that paper’s pores do not resemble the idealized capillary 

tubes. This has led to a wide range of modifications with the aim of obtaining a slightly 
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more accurate model. The key disadvantage in using the L-W model for porous materials 

is the assumption of a saturated flow front (e.g. completely wet or complexly dry). 

Macroscopic observations have clearly shown this is not the case (Alava et al. 2004; 

Alava and Niskanen 2006). 

 Diffusion-like models aim to surpass this binary flow by treating the porous 

material as an unsaturated flow. Diffusion-like models emphasize concepts to obtain 

valuable predictions. The underlying mechanism of liquid penetration is not caused by 

molecular diffusion, but by mechanisms analogous to diffusion. Unlike capillary flows 

where the system is binary wetting; fully saturated or fully dry, flow in porous media, 

particularly hygroscopic systems, a gradient of liquid is seen during the advancing of the 

front (see Fig. 2.6). These models are often used in soil science, therefore such 

terminology will be used while placing emphasis on important concepts. 

 To our best knowledge, no application of diffusion-like theory has specifically 

been applied in the field of paper-based microfluidics. This is likely because the 

saturation gradient at the front is seen to be of little interest. But as  Berli et al. (2016) has 

pointed out, during solute capture in lateral flow assays, concentrations are important for 

efficient detection. As such gradients at the liquid front will have a direct impact on 

detection. Nonetheless, the paper-based microfluidics community should be aware due to 

the saturation/wetting dependent parameters mentioned in previous sections.  
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Fig. 2.6 Unsaturated flow in a porous substrate. 

 

 

2.3.10.   Richard’s equation 

 The fundamental equation governing unsaturated flows is the Richard’s equation 

(Richards 1931), which is derived by assuming permeability and suction are dependent 

on volumetric water content, θ . These assumptions, along with Darcy’s law and mass 

conservation, leads to, 
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where  K
~

 is the hydraulic conductivity and   is the pressure head (suction). Eq. 2.21 

can also be rewritten as, 
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where    






 KD

~
 and is referred to as the water diffusivity. Eq. 2.21 can also be 

written in several other formulations, other with or without a gravity term (Ashari et al. 

2010; Gillespie 1959; Jaganathan et al. 2009; Kao and Hunt 1996; Lockington et al. 

2007; Ruoff et al. 1960). For clarity, saturation,  , is defined as the ratio between 

volumetric water content and porosity, 



 . The system is fully saturated when 

volumetric water content and porosity are equal. Due to the high non-linearity of Eq. 

2.22, an analytical solution is seldom attainable. In order for the Richard’s equation to be 

solvable, the permeability and pressure head need to be functions of saturation 

(Jaganathan et al. 2009). 

 

2.3.11.   Permeability and pressure head 

 Similarly to the L-W equation, permeability is key to obtaining useful results. The 

most widely used formulation to model permeability is the Brook and Corey (1964) 

power law relationship, 

  n

sKK            (2.23) 

where Ks represents the intrinsic permeability (e.g. Darcy permeability) of the material. 

Since in Eq. 2.23 Ks represents the intrinsic permeability, the power function can be taken 

as the relative permeability being a function of saturation. This is frequently shown as 
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  rs KKK   (Jaganathan et al. 2009; Nilsson and Stenstrom 1997). Therefore, if the 

flow is not fully saturated, the permeability will be reduced. 

 Suction pressure, similar to permeability, is also saturation dependent. This is 

seen from the water diffusivity of Eq. 2.22. Brook and Corey  (1964) proposed that the 

capillary pressure follows, 

  /1
 bc PP           (2.24) 

where Pb is a constant parameter of the substrate measuring the maximum pore size 

forming a continuous network  of flow channels within the substrate and λ is also a 

constant parameter which characterizes the pore size distribution. 

 

2.4.   Characterizing flow 

 Attaining consistent and precise liquid control is desired when designing paper-

based microfluidics devices. This is achieved by applying the theoretical knowledge and 

building a fluid control framework through experimentation. Unlike the numerous 

fabrication methods available, in the context of paper-based microfluidics, development 

of this experimental framework has not been as rapid. Characterization of the fluid flow 

serves to both visually validate observe flow behavior and associated predictions. 
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2.4.1.   Flow visualization 

 Visualizing fluid flows is a valuable tool to researchers and to paper device 

designers. It is often necessary to obtain flow characterization and gives visual feedback 

of flow dynamics. The easiest and widely used method is to record the imbibition process 

and subsequently measuring the liquid front (Elizalde et al. 2016; Fu et al. 2010b; Tian et 

al. 2016) (Fig. 2.7a). To better visualize the liquid front, a high contrast dye can be used, 

but is not required. Caution should be taken when using dyes at high concentrations, as 

clogging of the pores may occur in addition to dye-water separation. As an alternative to 

dyes, fluorescent markers can also be used (Hong and Kim 2015; Kauffman et al. 2010) 

(Fig. 2.7b). A key advantage of fluorescent visualization, is that concentration gradients 

within the flow can be seen. This can aid in optimizing detection zones and delivery 

methods for the desired concentrations. To visualize such flow profiles, (Kauffman et al. 

2010) developed an electrochemical marking method where a pH sensitive marker is 

used. Flow profiles are observed by varying the local pH through cycling electrical pulses 

(Fig. 2.7c). Bathany et al. (2015) used a more advanced electrochemical system to 

measure real-time liquid uptake in paper-based devices. Their system records the 

amperometric signal created in the electrolyte solution as it moves through the paper 

device. 
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 Computational simulations are also used, especially when detailed 

characterization is desired. Martic et al. (2002; 2004) used molecular dynamic 

simulations to study the early stages of the velocity dependent contact angle. Simulations 

can be particular important when the channel design increases in complexity. Fu et al. 

(2010a) and Masoodi et al. (2011) used simulations to validate and visualize flow in 

expanding and contracting channels. Mendez et al. (2010) similarly validated results in 

fan-shaped porous channels. WitkowskaNery et al. (2016) investigated an array of 

channel geometries where computational simulations were used to optimize the channel 

geometry for glucose and uric acid detection (Fig. 2.7d). Using electrochemical 

measurements along the channel allowed them to obtained concentration reading. Which 

compared to simulations, showed good agreement to each other.  
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Fig. 2.7 Flow visualization. a) Optically measuring dye front (Elizalde et al. 2016). b) 

Using fluorescence intensity (Kauffman et al. 2010). c) Electrochemical system set-up 

(Kauffman et al. 2010). d) Computer simulations (WitkowskaNery et al. 2016). 
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 As beneficial as these simulations are, a key disadvantage over experimentally 

determined flow, is the paper structure itself. As mentioned in earlier sections, modeling 

the paper structure is especially difficult due to its anisotropy and inhomogeneity, which 

can lead to inaccurate fluid flow representation. Advanced imaging methods however 

have enabled the accurate representation of the paper structure and fluid flow. Nuclear 

magnetic resonance (NMR) cryoporometry has frequently been used in the geology and 

soil science field to non-destructively determine pore parameter such as the porosity and 

pore size distribution of the material (Gane et al. 2004; Strange et al. 1993). For a 

detailed review see (Mitchell et al. 2008). The NMR technique has been applied to paper 

for determining porosity and pore size distribution as well as to characterize the 

morphology of the paper (Capitani et al. 2002). NMR has also been used to evaluate the 

moisture content (Froix and Nelson 1975) and to determine the diffusivity coefficient 

with relation to moisture content (Topgaard and Soderman 2001). de Azevedo et al. 

(2008) used magnetic resonance imaging (MRI) to determine the diffusivity of paper 

fibers. They were able to characterize imbibition in unsized paper and determine the 

existence of a precursor film that develops in front of the macroscopic liquid front.  

 Imbibition simulations using accurate representation of the paper structure can be 

done using x-ray imaging techniques. In x-ray microtomography, a large number of two-

dimensional projections of the material can be combined to reconstruct the paper sample.  

Hyvaluoma et al. (2006) used this technique to study radial liquid penetration in paper 

board, which is a much thicker form of paper. They determined that unidirectional 

penetration is described well by the L-W equation. They also theorized that the leading 
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liquid front proceeds along fibers, a similar conclusion to that of de Azevedo et al. 

(2008). Lavrykov et al. (2016) developed a technique to determine the directional 

permeabilities of the paper substrate. By using x-ray microtomography, the three-

dimensional paper reconstruction was able to be skeletonize. Once skeletonize, 

simulations allowed the resistances and tortuosities to be correlated to permeabilities. 

 X-ray microtomography has also been used to study the link between paper’s 

manufacturing process and its microstructure and the mechanical properties of the fibers 

(Marulier et al. 2012). Using x-ray densitometry, a detailed visualization of the 

imbibition in paper can be obtained (Beuther et al. 2010). From these images, the 

roughening of the liquid front can be seen in detail along with potential precursor films 

and the liquid gradients assumed in Richard’s equations. 

 

2.5.   Conclusion 

 Paper-based microfluidics has generated a great amount of interest for the 

development of diagnostic and self-contained analytical devices. They are inexpensive, 

rapid, and user-friendly making them ideal diagnostic tools for resource limited settings. 

Obtaining precise fluid control during imbibition will allow for more sophisticated device 

functions. Paper being the main substrate is a versatile material readily available with an 

array of appealing physical properties. Understanding the transport properties of paper 

and its interaction with water has led to an understanding of complex fibrous structures. 

The highly stochastic nature of the paper manufacturing process leads to a high 

anisotropic material where the macroscopic flow in paper is influenced by the 
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microscopic arrangement of cellulose fibers and pore space. This complicates the 

modeling of the structure which leads to physical inaccuracies during fluid 

characterization. Models ranging from simple capillary tubes to highly dynamic 

percolation theory and fractal geometry have been implemented. The advanced and 

sophisticated models are valuable in understanding the detailed dynamics occurring 

within and during the imbibition process. However, practical implementation of these 

models under the context of paper-based microfluidic devices is lacking mainly due to 

the extensive empirical model parameters required to reproduce the highly dynamic 

imbibition phenomena. Consequently, the Lucas-Washburn model is still widely used by 

the paper-based microfluidic community due to its simplicity, ease-of-use, and adequate 

accuracy for the current characterization needs.  
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3.   CHARACTERIZING EFFECTS OF HUMIDITY AND CHANNEL SIZE ON 

IMBIBITION IN PAPER-BASED MICROFLUIDIC CHANNELS  

 

 

3.1.   Introduction  

Paper-based microfluidics has generated a great amount of interest for the 

development of diagnostic and self-contained analytical devices. Applications range from 

healthcare, food safety, environmental monitoring, among others. What has in part 

attracted attention is the low-cost, ease-of-use, and adaptability of these paper devices. 

Compared to conventional microfluidic devices, the paper-based counterparts are able to 

utilize paper’s inherent wicking property to eliminate the external pumping needed to 

drive the fluid. Channels are easily formed by either selectively removing sections of the 

paper substrate or by pattering channel boundaries with a hydrophobic material. The 

former methods ranges from using high precision CO2 laser-cutting (Chitnis et al. 2011; 

Fu et al. 2010) to craft cutting  (Fenton et al. 2009) while the latter methods range from 

those of photolithography (Martinez et al. 2008b)  to techniques using commercially 

available printers with inkjet (Abe et al. 2010) or solid ink (Carrilho et al. 2009) 

technology. Ultimately, the common result of these fabrication methods is the creation of 

a defined impermeable boundary for fluid transport.  Thorough reviews on fabrication 

methods have recently been published (Jiang and Fan 2016; Xia et al. 2016; Yetisen et al. 

2013). In spite of the benefits and advantages described above, paper-based microfluidic 

technologies often lack the necessary sensitivity and sophistication available in 
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conventional microfluidic devices. In order to be a competitive alternative, paper-based 

microfluidics require improvement and novel development of feasible detection methods. 

These methods will likely require increasingly complex chemistry and control of 

reagents. Thus, obtaining precise, accurate, and consistent fluid handling within the paper 

device will be crucial.  

Currently, the most widely used imbibition model in the paper-based microfluidic 

community is the Lucas-Washburn (L-W) equation (Lucas 1918; Washburn 1921) where 

the progression of the imbibition front is taken to be proportional to the square-root of 

time. More extensive theoretical models for imbibition as well as fluid front 

concentration gradients in analyte transport  (Berli and Kler 2016) are available from the 

porous media research community. These imbibition models include models derived 

from diffusion dynamics  (Richards 1931), models that include fluctuations created by 

the roughness of the material (Krug and Meakin 1991), and models based on statistical 

methods  (Kardar et al. 1986), among others (Alava et al. 2004). These models are 

valuable and used to understand the detailed dynamics occurring within and during the 

imbibition process. However, practical implementation of these models under the context 

of paper-based microfluidic devices is lacking mainly due to the extensive empirical 

model parameters required to reproduce the highly dynamic imbibition phenomena. 

Consequently, the L-W model is still widely used by the paper-based microfluidic 

community due to its simplicity, ease-of-use, and adequate accuracy for the current 

characterization needs. The L-W equation has been used to compare superabsorbent 

material to lab grade filter paper (Schuchardt and Berg 1991), used to design simple 
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sequential delivery devices  (Fridley et al. 2014; Fu et al. 2010; Lutz et al. 2013), and to 

characterize wettability of modified paper (Bohm et al. 2014; Li et al. 2010; Lutz et al. 

2013). Even though the L-W equation is arguably the standard in paper-based 

microfluidics, for the field to continue advancing toward more sophisticated and precise 

device functions, it is imperative that better knowledge in and tools for characterization 

of the liquid imbibition be available to researchers. 

One of the primary applications of paper-based microfluidics is analyte detection. 

Various flow control methods have been investigated in order to provide the necessary 

fluid handling for the varying degree of detection processes. These processes can range 

from simple glucose detection (Martinez et al. 2007) or signal amplification  (Fu et al. 

2010) to more complex processes where sequential and timed handling of the fluid 

sample and reagents are required such as with enzyme-linked immunosorbent assay 

(ELISA) (Apilux et al. 2013) and with “paper machines” where fluid handling is 

integrated with loop-mediated isothermal amplification (LAMP) (Connelly et al. 2015). 

Methods to control imbibition include changing the channel geometry and the physical 

properties of the paper. Several groups have investigated and proposed several cross-

section geometries. The Yager group investigated the wet-out and fully wetted flows in 2-

D channel networks (Fu et al. 2011; Kauffman et al. 2010), Mendez et al. (2010) studied 

fan-shaped expansion channels that can induce quasi-steady-state flows in the preceding 

straight channel section, Shou et al. (2014) investigated contraction/expansion segments 

along the channel, and Elizalde et al. (2015) proposed a general expression for 

continuous cross-sectional change in geometry as a way to control fluid flow. In addition 
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to geometrical manipulation of the paper channel, modifying and adjusting the 

permeability of the paper have also been shown to be effective.  These methods, among 

others include using hydrophobic polymers (Bohm et al. 2014; Noh and Phillips 2010; 

Weng et al. 2014), using dissolvable and erodible barriers (Jahanshahi-Anbuhi et al. 

2014; Lutz et al. 2013), as well as physical methods such as compressing paper (Park et 

al. 2016) and selectively cutting the paper (Giokas et al. 2014; Renault et al. 2013). 

Although considerable knowledge exists on techniques to manipulate fluid within the 

paper channel, what is lacking are studies on how non-laboratory conditions (e.g. relative 

humidity) influence fluid flow.  

 The present study aims to address this gap. In particular, we focus on the effects 

of relative humidity and channel width. We report a series of controlled imbibition 

experiments using cellulose papers commonly used in the field of paper-based 

microfluidics. We show that both the imposed relative humidity and the channel width 

have critical design considerations in paper-based devices. Additionally, we compare 

three models, the L-W model, the Fries et al. (2008) model which incorporates 

evaporation, and a newly developed water saturation model. We assess their accuracy in 

representing the experimental data and systematically evaluate the importance of 

evaporation and water saturation under a wide range of relative humidity conditions.  
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3.2.   Materials and methods 

 

3.2.1.   Material and device fabrication 

 Four different paper types were surveyed in this study: Whatman qualitative filter 

paper of Grade #1, Grade #4, Grade #5, and Whatman chromatography (Chr) paper of 

Grade 1 (GE Healthcare, Pittsburgh, PA). Based on the distance wicked over time, the 

paper types can be classified into three qualitative imbibition speeds (slow, medium, and 

fast). The test device and the specified paper pieces’ dimensions were designed in 

SolidWorks (Dassault Systèmes, Vélizy-Villacoublay, France) and cut using a Zing 16 

CO2 laser cutter (Epilog Laser, Golden, CO). All wetting and imbibition experiments 

were conducted using ultrapure water (18.2 MΩ-cm) prepared by a Millipore Synergy 

UV water purification system (Billerica, MA). Relevant properties of the surveyed papers 

are summarized in Table 3.1. An ambient temperature of 25 ± 0.5°C was maintained 

throughout the experiments in this study. 
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Table 3.1 Properties of the surveyed paper types in the current study. * See Appendix A 

for more information. 

 

Paper type (speed) 
Density of cellulose 

fiber, ρc 

Thickness, 

T 

Basis 

Weight*, WB 

Porosity*

, Φ 

Whatman  #1 

(Medium) 1,500-1,600 kg/m3   

 

(Bledzki and Gassan 

1999; Moon et al. 

2011) 

180 μm 81.71 g/m2 0.707 

Whatman #4 (Fast) 205 μm 83.96 g/m2 0.736 

Whatman #5 

(Slow) 
200 μm 92.35 g/m2 0.702 

Whatman Chr-1 

(Medium) 
180 μm 81.98 g/m2 0.706 

 

 

3.2.2.   Characterization of evaporation flux 

 Evaporation flux was experimentally measured in two ways as described below: 

evaporation from a fixed pre-wetted area (static evaporation) and evaporation from a 

dynamically wetted area (dynamic evaporation). 

 In the static evaporation experiment, a 40 x 40 mm laser-cut piece of paper was 

hung on an analytical scale (Model TP-64, Denver Instrument, Bohemia, NY) placed 

inside an environmentally controlled chamber (Model 5503-E, Electro-Tech Systems, 

Glenside, PA). Preliminary studies showed that the lowest possible relative humidity that 

was able to be maintained during the imbibition process was 18%. The chamber was set 

to a specified relative humidity value (18, 25, 50, 75, 90, or 99%) and left for an hour to 

allow the paper piece to reach equilibrium with the chamber environment. The paper was 

then wetted by evenly applying water using a micropipette. 0.25 mL of water fully wetted 
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the sample without visible excess water accumulating at the edges. The mass of the paper 

was recorded as water evaporated over 30 minutes while relative humidity was 

maintained at the designated value. This experiment was repeated 5 times for each 

relative humidity value and each paper type. The rate of evaporated water mass was 

divided by the total surface area of the paper piece to calculate the evaporation flux, F.  

 In the dynamic evaporation experiment, the evaporation rate was measured from a 

laser-cut piece of paper (50 x 150 mm) undergoing the imbibition process on top of an 

analytical scale. The relative humidity was set to 25, 50, and 75%. The evaporation flux 

was calculated using the rate of water evaporation from the piece of paper and the 

changing surface area of the wetted region. Similarly to the static evaporating 

experiments, measurements were repeated 5 times for each relative humidity value and 

each paper type. 

 

3.2.3.   Characterization of residual water 

 A 70 x 70 mm laser-cut piece of paper was put in an open glass container and 

dried at 105ᵒC for one hour in a convection oven (Model FD-53, Binder, Bohemia, NY). 

The glass container was then immediately sealed with a dry lid and transferred to the 

environmentally controlled chamber. Once the chamber reached its lowest possible 

relative humidity value (3%), the paper sample was taken out and immediately placed on 

the analytical scale to measure its dry mass. The paper strip was then hung on the scale 

and left for an hour at a specified relative humidity value (10, 18, 25, 50, 75, 90, or 99%) 

to reach equilibrium before its mass was measured and recorded. Ten replicates were 
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tested for each relative humidity value and each paper type. Based on the dry mass of 

paper, the amount of water retained (i.e., volume fraction of residual water) in the unwet 

paper, here called water saturation Sw, was calculated for each relative humidity. See 

Appendix C for more information. 

 

3.2.4.   Measurement of imbibition distance 

 The paper device was mounted vertically on the test fixture inside the 

environmentally controlled chamber (Fig. 3.1a-b). As shown in Fig. 3.1c, each device 

features 41 mm long channels of 1 mm, 2 mm, 4 mm, 10 mm, and 20 mm widths. A 

water reservoir was placed on a laboratory jack (Model L-490, Thorlabs, Newton, NJ). 

The jack’s platform was then raised quickly to the start line of the channels. The 

imbibition process was recorded using a Nikon D5100 digital camera (Tokyo, Japan). 

Image frames were then extracted from the recorded video files using Adobe Premiere 

Pro CS6 (San Jose, CA). Image brightness was adjusted digitally to increase the contrast 

of the imbibition front. Imbibition distance was then measured at the centerline position 

of the liquid front using ImageJ with the Manual Tracking plug-in. Ten replicates were 

tested for each combination. The combinations include variations in channel width (1, 2, 

4, 10, 20 mm), relative humidity (18, 25, 50, 75, 90 and 99%) and paper type (Whatman 

#1, #4, #5, and Chr-1). 
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3.2.5.   Calculation of effective permeability 

 A custom MATLAB script was written and used to calculate effective 

permeabilities, K, of the L-W model, the Fries et al. model, and the water saturation 

model by curve fitting against the experimentally obtained imbibition data. The effective 

permeability value was chosen based on the highest R2 value. 
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Fig. 3.1 Test set-up for imbibition experiments. a) Overview of test set-up. A pair of 

gloves (not shown) were attached to the glove ports and used during the experiments to 

access the sample and the laboratory jack. b) Close-up view of the testing section. c) An 

unmounted paper device featuring 5 channels of 1, 2, 4, 10, and 20 mm width.  
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3.3.   Results and discussion 

 

3.3.1.   Imbibition studies 

 An array of imbibition studies was conducted to explore a wide range of 

imbibition scenarios. These scenarios included combinations of five different channel 

widths (1, 2, 4, 10, and 20 mm), four commonly used paper types (Whatman #1, #4, #5, 

and Chr-1), and six different relative humidity values (18, 25, 50, 75, 90, and 99%). Fig. 

3.2 shows imbibition distance vs. time for different channel widths at selected relative 

humidity values for each surveyed paper (complete set available in Appendix E Fig. E.2-

E.5).  
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Fig. 3.2 Imbibition distance vs. time of surveyed paper types at selected relative 

humidity: a) Whatman #1, b) Whatman #4, c) Whatman #5, and d) Whatman Chr-1. 

Channel width tested: 1, 2, 4, 10, and 20 mm. Data shown as mean ± SD (N = 10).  
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 Within each paper type, two relations were consistently observed. First, the 

imbibition distance at a specified time increased as relative humidity increased. This 

phenomenon is visible at about 15 mm and becomes clear as the channel length increases. 

For example, to reach a height of 40 mm with a 2 mm wide channel the relative humidity 

can delay the liquid front by as much as 60-800 seconds depending on the type (speed) of 

the Whatman paper. This demonstrates the strong inhibitory effect of low relative 

humidity on liquid imbibition. The second observed relation corresponds to the channel 

width. For a specified relative humidity, the liquid front travels less distance for narrow 

channels after an elapsed time and becomes less pronounced as the channel width 

increases.  This phenomenon becomes visible at about 20 mm and becomes clear as the 

channel length increases. This channel width effect decreases as the relative humidity 

increases. The channel width dependence on imbibition has previously been observed in 

channels with hydrophobic boundaries. The inhibitory effect is suggested to be caused 

when the fiber length is larger than the width of the channel, terminating the flow at the 

side edges of the channel (known as dead-end pores) (Bohm et al. 2014) or caused by the 

increase in contact angle seen at the wall (Hong and Kim 2015). Nonetheless, a narrow 

channel has an increased resistance, with an asymptotic plateau for wider channels. 

Interestingly, the dependence in both relative humidity and channel width are more 

pronounced in slower wicking papers.   
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3.3.2.   Imbibition modeling 

 A detailed description of imbibition becomes increasingly complicated as the 

parameters involved are frequently time and length-scale dependent. These parameters, 

among others, include properties involving pore size, porosity, tortuosity, contact angle, 

the degree of swelling, and roughening terms describing perturbations of liquid front. 

Extensive studies have been done to understand the underlining imbibition dynamics, and 

sophisticated models have been derived from diffusion theory (Richards 1931), stochastic 

theory (Kardar et al. 1986), and percolation theory (Amaral et al. 1995). However, the 

shared trait among these advanced models is the large number of parameters and 

theoretical constants needed, often requiring fit to the specific situation to be addressed. 

Even analytically friendly models incorporating swelling are case specific and swelling 

parameters need fitting to the experimental data (Masoodi and Pillai 2010). For practical 

characterization and usage in the paper-based microfluidics filed, more user-friendly 

models are preferred. 

 The current standard for paper-based microfluidic modeling is the L-W model 

(Eq. 3.1), a simple imbibition model derived by combining capillary theory with Hagen-

Poiseuille flow. (Lucas 1918; Washburn 1921). Though known to be theoretically 

inaccurate in describing the imbibition flow (Alava et al. 2004), the L-W equation is 

frequently used as a first order approximation due to the very good empirical description 

of the liquid front and the ease-of-use. The liquid front is described by, 

t
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where, yf is the imbibition distance of the liquid front, De is the effective capillary 

diameter, γ is the surface tension of the liquid, θ is the capillary contact angle, μ is the 

dynamic viscosity, and t is the imbibition time. Since the L-W model is only dependent 

on effective material pore and the liquid properties, it predicts that any channel width will 

have the same imbibition behavior. However, the simple characterization attributes 

associated with the L-W equation can be invalidated in non-ideal laboratory settings, 

such as imbibition in different relative humidity. This specific issue raises questions and 

concerns about relative humidity effects such as evaporation and water saturation. 

Therefore, there is a need in the paper-based microfluidic field to characterize such 

possible effects in a straight forward manner and with approachability.  

 To characterize the imbibition front of all surveyed combinations and to assess the 

importance of relative humidity, we compare three models, the L-W model, the Fries et 

al. (2008) model which incorporates evaporation, and a newly developed water saturation 

model, where evaporation and residual water are incorporated. 

 The Fries et al. model stems from the need of an evaporation based model. 

Originally derived for metal weaves, the Fries et al. model results in a relatively simple, 

straight forward imbibition equation that takes evaporation into account. 
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where, De is the effective pore diameter, K is the effective permeability, ϕ is the porosity 

of the material, F is the evaporation flux, ρ is the liquid density, W is the channel width, 

and T is the paper thickness. 

 Paper, unlike metal weaves, is hygroscopic by nature, and will absorb moisture at 

high relative humidity. Accounting for this, we developed a model that includes residual 

water associated with the relative humidity. The resulting model (see Appendix F for 

derivation) is a modified version of the Fries et al. model accounting for the internal 

volume changes due to the residual water. With gravitational effects being negligible, the 

implicit model simplifies to Eq. 3.3, here on called the water saturation model, 
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where Sw is the degree of water saturation. 

 To compare Eq. 3.3 to the L-W model and the Fries et al. model, Hagen-

Poiseuille and Darcy flows are related so as to produce an alternative form of the L-W 

equation, 
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Similarly, the Fries et al. model becomes, 
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It is to be noted that when evaporation is zero (F = 0), both Eq. 3.3 and Eq. 3.5 reduce to 

the L-W model (Eq. 3.4). 

 

3.3.3.   Evaporation flux 

 The evaporation flux, F in both Eq. 3.3 and Eq. 3.5 were modelled as being 

constant. To determine this value, a static evaporation flux was calculated by measuring 

the mass of evaporated water over time under different relative humidity and paper type. 

Fig. B.1 in Appendix B shows the linear relationships between mass evaporation and 

time among all relative humidity/paper combinations. The linear relationship confirms 

that at constant relative humidity the rate of evaporation (i.e., slope of the plot divide by 

area) from a constant area is constant irrespective of the wetness of the paper. The only 

exception was when the majority of the water is evaporated. The nonlinearity is seen 

during the last 5 minutes of 18% relative humidity (Fig. B.1). At this instant, the four 

surveyed papers contained at most 5% of the 0.25 mL water added. This results in an 

approximate liquid-to-surface-area ratio of 8 nL/mm2 after 30 minutes at 18% relative 

humidity. Since the longest imbibition time was approximately 22 minutes (see Fig. 3.2), 

the linear approximation for 18% relative humidity was assumed. The evaporation flux 

vs. relative humidity is plotted in Fig. 3.3 with a linear best-fit line for each paper type. 
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As shown, for all paper types the evaporation flux is an almost identical with a linear 

decline as the relative humidity increases. 

 

Fig. 3.3 Static evaporation flux vs. relative humidity of surveyed paper types with linear 

fit (mean R2 = 0.9965). Data shown as mean ± SD (N = 5).  

 

 

  The assumption of constant evaporation flux in Eq. 3.3 and Eq. 3.5 makes the 

usage of the models more user-friendly. As the paper undergoes the imbibition process, 

the continuously increasing wetted area might lead to a dynamic evaporation process. 

Dynamic evaporation results showed, comparable to the static evaporation, the four 

surveyed papers exhibited similar evaporation fluxes at each relative humidity (Fig. 3.4). 

The dynamic behavior was seen more explicitly at the higher relative humidity (i.e., 
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75%). Interestingly, the evaporation flux approached and reached the static evaporation 

flux values observed in Fig. 3.3. Because of the relatively fast asymptotic approach of the 

dynamic evaporation flux to the static value, as well as the decreasing effect of 

evaporation with higher relative humidity, we concluded that the static flux values 

represented evaporation during imbibition reasonably well and therefore used in the 

subsequent imbibition analysis. 
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Fig. 3.4 Dynamic evaporation flux of surveyed paper types vs. time. Horizontal line 

shows the average static evaporation flux value of the four paper types at the specified 

relative humidity. Data shown as mean (N = 5). 
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3.3.4.   Water saturation 

 The degree of residual water (i.e., water saturation) at specified relative humidity 

is particularly important when it comes to paper due to the hygroscopic nature of 

cellulose. Fig. 3.5 shows the calculated water saturation Sw for each paper type at relative 

humidity of 10, 18, 25, 50, 75, 90, and 99%. For each relative humidity, water saturation 

was observed to be similar across the surveyed paper types up to about 50% relative 

humidity. Above 50%, the Whatman #4 absorbed water noticeably less than the others. 

This can be due in part to the relatively large pore structure within this specific paper 

(Appendix D Fig. D.1). Water retention at 99% relative humidity resulted in a maximum 

water saturation of 7.5% for Whatman #4 and about 9% for the other three paper types.  
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Fig. 3.5 Water saturation vs. relative humidity of surveyed paper types with a cubic fit 

(mean R2 = 0.9986). Data shown as mean ± SD (N = 10). 

 

 

3.3.5.   Effective permeability and model comparison 

 The effective permeability, K, of the channel was determined as a way to 

characterize the observed imbibition behavior. The effective permeability for each 

scenario (channel width, relative humidity, paper type) was extracted by fitting the L-W 

model (Eq. 3.4), the Fries et al. model (Eq. 3.5) , and the water saturation model (Eq. 3.3) 

to the imbibition distance vs. time data (see Appendix E for the complete set). It should 

be noted that the L-W model is inherently independent of channel width and relative 

humidity but here it was fitted to each scenario. This allowed for a direct comparison of 

the three models. Because of paper’s high affinity to water and the highly dynamic 
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contact angle within the porous media, the water-paper interface was taken as perfectly 

wetting ( 0 ) (Ballerini et al. 2011; Liukkonen 1997; Songok et al. 2014).  

 The resultant effective permeabilities for each paper type were plotted as a 

function of relative humidity (Fig. 3.6–3.8). Direct comparisons between the models 

show that the permeabilities are higher with the inclusion of the evaporation term, in 

particular, at low relative humidity. A linear relationship with a positive constant slope 

was observed, irrespective of the channel width and model. Additionally, the effective 

permeability asymptotically approached an upper limit with the increasing channel width. 

These simple practical relationships that are conserved across different paper types can be 

used by researchers to design better paper devices. Specifically, by knowing the slope 

and the intercept in the vertical axis (see Appendix G Table G.1, G.2, and G.3), the 

imbibition behavior can be easily calculated for a specific paper type, a specific channel 

width, and a relative humidity value. 
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Fig. 3.6 Effective permeability vs. relative humidity of surveyed paper types for the L-W 

model. a) Whatman #1, b) Whatman #4, c) Whatman #5, and d) Whatman Chr-1. Dotted 

lines are best-fit lines with a constant slope. Data points shown as mean ± SD (N = 10). 

  

 

 Comparing the effective permeability associated with the L-W model (Fig. 3.6) to 

either the Fries et al. model (Fig. 3.7) or the water saturation model (Fig. 3.8) shows the 

importance of evaporation, particularly the high evaporation rate that occurs at low 

humidity. Without a designated term for evaporation, the effective permeability in the L-

W model must account for the slowing of imbibition due to evaporation. Differences in 

the models become less apparent as the relative humidity increases because of the 

reduced evaporation. This results in a convergence of the L-W model (Eq. 3.4) and the 

evaporation models (Eq. 3.3 and Eq. 3.5).  
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Fig. 3.7 Effective permeability vs. relative humidity of surveyed paper types for the Fries 

et al. model. a) Whatman #1, b) Whatman #4, c) Whatman #5, and d) Whatman Chr-1. 

Dotted lines are best-fit lines with a constant slope. Data points shown as mean ± SD (N 

= 10). 
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Fig. 3.8 Effective permeability vs. relative humidity of surveyed paper types for the water 

saturation model. a) Whatman #1, b) Whatman #4, c) Whatman #5, and d) Whatman Chr-

1. Dotted lines are best-fit lines with a constant slope. Data points shown as mean ± SD 

(N = 10). 

  

 

 In comparing the accuracy in these effective permeabilities, the coefficient of 

determination, R2, was investigated.  Fig. 3.9 shows the R2 value (note difference in 

vertical axis) for all the permeabilities associated with the surveyed papers at selected 

relative humidity (for full set see Appendix H). The relatively low R2 value at low 

relative humidity for the L-W model reiterates its limitations associated with evaporation. 

Interestingly, as the relative imbibition speed of the paper decreases (e.g. slow imbibition 

in Whatman #5), the accuracy of the evaporation models also decreases with that of the 
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L-W model being the most prominent, (Fig. 3.9c). On the other hand, the accuracy of 

these models increases as the channel width increases. Collectively, this comparison 

shows a critical importance of treating the permeability and hence the effective pore 

diameter as a function of both relative humidity and channel geometry.  

 

 
 

Fig. 3.9 R2 values of effective permeability of surveyed paper types at selected relative 

humidity for L-W model, Fries et al. model, and the water saturation model. a) Whatman 

#1, b) Whatman #4, c) Whatman #5, and d) Whatman Chr-1. Data shown as mean ± SD 

(N = 10).  
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 In comparing the water saturation model to the Fries et al. model, it is found that 

the effective permeability values are almost identical. This result can be foreseen by 

finding the ratio of the evaporation to the water saturation. At high relative humidity, 

evaporation is low while water saturation is at its highest. At low relative humidity, 

evaporation is high while water saturation is at its lowest. Irrespective of the case, for 

these types of paper, the evaporation term dominates over the water saturation at a 

specified relative humidity. Therefore, for characterization purposes the degree of water 

saturation is found to be negligible, although water saturation might have a significant 

impact on other aspects in paper-based microfluidic devices (e.g. morphological changes, 

moisture sensitive chemistry, device handling, shelf life). These types of investigations 

are beyond the scope of this study. 

 

3.4.   Conclusion 

 In the current study, we characterized the effect of relative humidity and channel 

width on imbibition for paper-based microfluidic applications. The significant role of 

relative humidity on imbibition was demonstrated, as well as the impact of channel width 

on imbibition. Comparing the L-W model to the evaporation models showed the 

ineffectiveness of the former in accurately describing flows at low relative humidity. In 

addition, comparison of the water saturation model to the Fries et al. model showed the 

water saturation term to be negligible for characterizing the fluid front. The strong 

interdependence of different parameters (relative humidity, channel width, paper type) 

has left the paper-based microfluidic device designers with an optimization challenge. 
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Practical tools to accurately describe fluid transport in paper devices will become 

increasingly important as the designs of the devices evolve from 1-D to 3-D (Han et al. 

2016; Kalish and Tsutsui 2014; Kalish and Tsutsui 2016; Li and Liu 2014; Liu and 

Crooks 2011; Martinez et al. 2008a) as well as incorporate advanced timing (Chen et al. 

2012; Fu et al. 2012; Toley et al. 2013; Toley et al. 2015) and 

demultiplexing/multiplexing functions (Cate et al. 2015; Lopez-Marzo and Merkoci 

2016). The current study has created a library of paper-specific properties (e.g. water 

saturation, evaporation flux, effective permeability) for common cellulose papers used in 

the field of paper-based microfluidics. Effective use of this information will allow 

researchers to design more precise and reproducible paper-based microfluidic devices. 
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 4.   IMBIBITION IN TWO-DIMENSIONAL WAX-BOUND PAPER 

CHANNELS 

 

 

4.1.   Introduction  

 Paper-based microfluidics have emerged as a tool to create inexpensive 

microfluidic devices for chemical analysis or medical diagnosis. Such devices commonly 

use cellulose paper or nitrocellulose membranes. Because paper is a low-cost, ubiquitous, 

and a self-wicking material, it is an ideal substrate for developing simple-to-use, portable, 

and disposable devices for fluid specimen. Existing devices are typically simple lateral-

flow tests whose functions are limited to low-level qualitative detection of analytes. To 

significantly expand functionality of paper-based analytical devices, it is necessary to 

better understand fluid transport within the channel networks defined on the paper 

substrate. 

 Channels in paper-based microfluidics are fabricated by either cutting the paper 

substrate to the desired design or by pattering the design with a hydrophobic material on 

the paper substrate. When pattering the channel network is preferred, methods range from 

those of traditional photolithography (Martinez et al. 2007; Martinez et al. 2008), to 

techniques using commercially available printers, including ink-jet (Abe et al. 2010; Abe 

et al. 2008) or solid ink (Carrilho et al. 2009; Lu et al. 2009).  In solid ink printing, a 

commercially available printer (e.g. Xerox ColorQube 8880) uses a wax-based ink. After 
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the pattern is printed, the wax pattern is either melted using an oven or a hotplate, 

resulting in an impermeable channel boundary. 

 In order to improve paper-based microfluidics’ capabilities, the paper device must 

incorporate multi-step processes such as those found in enzyme-linked immunosorbent 

assays (ELISA) where timed sequences of manual pipetting are needed with washes in 

between every step. An important aspect of the multi-step processes is attained through 

controlled sequential delivery. Fu et al. (2010) used a laser to cut nitrocellulose 

membrane with varying channel lengths to create a multi-step mixing process. Lutz et al. 

(2011) used a nitrocellulose membrane network of varying channel lengths in a plastic 

housing containing a buffer solution that served all inlets. This platform allows for 

sequential delivery as well as a programmed disconnection of flow in the channels. In 

addition to the channel length, changing the cross section of the channel can also be used 

to implement sequential delivery. Fu et al. (2011) briefly investigated how sudden 

geometric changes, such as expansion and contraction of the channel, affected fluid flow 

in a nitrocellulose membranes. As expected, an expansion of the width of the channel 

slowed the fluid front propagation, while a contraction caused the fluid front to 

accelerate. Analytical relationships for the wet-out (imbibition) process have been 

developed with the aim of better understanding fluid flow in two-dimensional paper 

networks.  Medina et al. (2001) investigated wicking in blotting paper with different 

geometrical shapes and found that correction terms to the Lucas-Washburn (L-W) 

equation are needed to appropriately describe the flow in the channels. Mendez et al. 

(2010) investigated how the radial expansion in two-dimensions affected flow in 
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nitrocellulose membranes. It was found that the gradual increase in cross-sectional area 

of the channel caused the wicking fluid to maintain a quasi-steady state flow, where the 

fluid speed remains constant.  

 Here, the effort of fluid manipulation is continued, specifically to that of cellulose 

paper. We qualitatively investigate channels with the most basic geometrical changes that 

may be present in complex fluidic designs. These include a sudden increase in channel 

width, a sudden decrease in channel width, and a square box along the channel (as a 

reaction or mixing chamber). 

 

4.2.   Materials and methods 

 

4.2.1.   Materials and fabrication 

 Three different paper types were surveyed in this study: Whatman qualitative 

filter paper of Grade #1, Grade #4, and Grade #5 (GE Healthcare, Pittsburgh, PA). Based 

on the distance wicked over time, the paper types can be classified into three qualitative 

imbibition speeds, medium, fast, and slow, respectively. The channel geometries were 

designed in SolidWorks (Dassault Systèmes, Vélizy-Villacoublay, France). The designed 

channels were printed on filter paper using a solid wax ink printer (Xerox Phaser 8860) 

following previously published methods (Carrilho et al. 2009; Lu et al. 2009). The 

printed paper was then placed on a hotplate for two minutes at 170°C melting the wax, 

allowing it to penetrate through the paper, creating hydrophobic channel boundaries. 

Channels were designed such that the desired channel dimensions are achieved post-
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melting (see Fig. I.1 in Appendix I). All imbibition experiments were conducted using a 5 

mM solution of Allura Red AC.  Allura Red AC was purchased from Sigma-Aldrich (St. 

Louis, MO) and dissolved in ultrapure water (18.2 MΩ-cm) prepared by a Millipore 

Synergy UV water purification system (Billerica, MA). 

 

4.2.2.   Data acquisition and analysis 

 The imbibition process took place in an open lab environment with an ambient 

relative humidity of 50 ± 2% and temperature of 22 ± 1°C. The channels were fixed 

vertically on a mount. A reservoir containing the wicking fluid was placed onto a 

laboratory jack (Model L-490, Thorlabs, Newton, NJ). The jack’s platform was then 

raised quickly to the start line of the channels. 

 The imbibition process was recorded using a Nikon D5100 digital camera (Tokyo, 

Japan). Image frames were then extracted from the recorded video files. Imbibition 

distance was then measured at the centerline position of the liquid front using ImageJ 

with the Manual Tracking plug-in. Six replicates were tested for each combination. The 

combinations include variations in paper type and channel geometry type with three 

respective contraction-expansion variations. 
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4.3.   Results and discussion 

 We investigate the most basic geometrical changes that can occur in a channel 

network. These include a sudden increase in channel width, a sudden decrease in channel 

width, and a square box along the channel (as a reaction or mixing chamber). It is worth 

noting that some of these sudden changes in channel width violate the non-limiting 

source requirement of the L-W equation. Nevertheless, in certain instances L-W like flow 

seems to hold. 

 These wax-bound channels are two-dimensional wet-out flows with sudden 

rectangular geometry changes. It was shown that channels with a larger expansion had 

larger wicking times (Fig. 4.1). This was due to the radial fluid front expanding onto the 

increased volume. In the case of sudden contraction, the width of the larger segment 

acted as a non-limiting source to the smaller segment. This allowed flow in the 

downstream of the narrower segment to follow the L-W equation, with a slight increase 

in speed at the varying geometric interface. To better visualize the divergence from the L-

W flow, the wicking distance curves are plotted as a function of the square root of time 

(Fig. 4.1). In these plots, L-W flow is when the curves are linear with a positive slope. 
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4.3.1.   Sudden channel expansion 

 Relating to Fu’s observation in nitrocellulose membrane (Fu et al. 2010), a sudden 

expansion of channel width should cause a decrease in flow speed. We confirmed that 

this is indeed happening and investigated the effect of expansion ratio on imbibition in 

the three paper types. We compared three different expansion ratios, 1:2, 1:3, and 1:4, 

with a base channel of 2 mm in three different paper types. With the geometric change 

located at a distance of 10 mm. For example, a Whatman #1 with a 1:3 ratio will have an 

initial channel of 2 mm up to a distance of 10 mm and a larger channel of 6 mm after the 

geometric change. 
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Fig. 4.1 Sudden expansion geometry. a) Whatman #1 paper. b) Whatman #4 paper. c) 

Whatman #5 paper. Wicking distance data shown as mean ± SD (N = 6). 
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 Fig. 4.1 shows the wicking distance vs square root of time. At the point of the 

sudden geometry change (~10 mm), the flow stops being L-W like as seen by the 

deviation from the linearity. At this instance the flow expands radially until it reaches the 

edge (See Fig. 4.2 for a time sequence visualization). There exists a slight time delay 

until the fluid front becomes flat at the centerline, at which point, the wicking data 

becomes linearly dependent on the square root of time. Depending of the paper type and 

expansion ratio the deviation from L-W flow can last for approximately 25-120 seconds 

for Whatman #1, 10-40 seconds for Whatman #4, and 45-300 seconds for Whatman #5. 

The faster the paper type the faster the recovery.  

 Fig. 4.1 also shows the wicking distance as a function of speed. As seen, in the 

initial stages of imbibition there is a rapid uptake of water. This sudden up take of water 

rapidly decreases within a few millimeters. Nonetheless, after the fluid flow reaches a flat 

front, the speed converges to that of the L-W flow. The deceleration in speed due to the 

sudden channel expansion is more evident in the faster wicking paper. As expected, the 

larger the expansion ratio the greater the deceleration. These trends are seen across all 

three paper types. 

 

 

 

 

 

 



 107 

 
Fig. 4.2 Time lapse of different sudden expansion ratios. Whatman #1 paper shown. 
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4.3.2.   Sudden channel contraction 

 Next we investigated whether fluid behavior through a sudden contraction of 

channel width follows the same observations of that seen by Fu et al. (2010). Three 

contraction ratios, 2:1, 3:1, and 4:1 based on a 2 mm width channel on three different 

paper types were tested.  

 Fig. 4.3 shows the wicking distance vs square root of time. At the point of the 

sudden geometry reduction (~10 mm), the flow slightly stops being L-W like as seen by 

the deviation from the linearity. At this instance (See Fig. 4.4 for a time sequence 

visualization) the flow is accelerated briefly until it gradually reconverges to the speed of 

the constant channel. This observation agrees with Fu et al. (2010) observation of flow 

continuing the L-W behavior. Depending of the paper type and contraction ratio, the 

speed can increase approximately 20% for Whatman #1, 60% for Whatman #4, and 8% 

for Whatman #5. The faster the paper type, the faster the overall increase in speed.  
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Fig. 4.3 Sudden contraction geometry. a) Whatman #1 paper. b) Whatman #4 paper. c) 

Whatman #5 paper. Wicking distance data shown as mean ± SD (N = 6). 

 

 



 110 

 
Fig. 4.4 Time lapse of different sudden contraction ratios. Whatman #1 paper shown. 
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4.3.3.   Box along channel  

 Lastly, we also investigated flow through a sudden square box to see whether the 

combined expansion and contraction canceled the acceleration/deceleration effects seen 

earlier. Ratios include, 1:2:1, 1:3:1, 1:4:1. The wicking plots (Fig. 4.5) show that the flow 

reconverges to that of the constant width channel after the fluid passes thought the box 

geometry. The flow reconvergence is better seen in the slower wicking paper (Whatman 

#5). We see that the time of the convergence increases as the box size increases, which is 

expected since the converging flow happens only when the channel contracts, as seen in 

the precious section 4.3.2. By incorporating this square box onto a channel, a throttling 

effect can be created by decreasing and increasing flow speeds transitionally. 

 Fig. 4.6 shows a time lapse sequence of the Whatman #1 (medium speed) paper 

during the advancement of the fluid front. As seen previously in the sudden expanding 

channel, the flow decelerates upon entering the box.  This deceleration continues until the 

fluid front reaches the end of the box, where a sudden contraction occurs.  
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Fig. 4.5 Sudden box along the channel. a) Whatman #1 paper. b) Whatman #4 paper. c) 

Whatman #5 paper. Wicking distance data shown as mean ± SD (N = 6). 
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Fig. 4.6 Time lapse of different sudden box ratios. Whatman #1 paper shown. 
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4.4.   Conclusion 

 Simple lateral-flow tests are limited in functionality. The key to increase the 

complexity of paper-based microfluidic devices is sequential delivery. A method to 

accomplish this sequential delivery of fluids is by two-dimensional flows. These flows 

are created by varying the cross-section of the channel. Here we investigated wax-bound 

channels encompassing the most basic geometrical changes that may be present in 

complex fluidic designs; sudden expansion, contraction, and a box along the channel. We 

found that a sudden expansion can significantly delay and decrease the speed of the fluid 

flow, with its intensity depending on the paper type and channel ratio. The sudden 

contraction can momentarily increase the speed of the fluid front. The paper type is a 

more significant parameter than the channel ratio. Incorporating a box along the channel 

can potentially serve as a mixing chamber. This geometry set-up combines both the 

decelerating and accelerating effect seen in the other geometries to momentarily delay the 

fluid flow. 

 Though this study was conducted without the use of precise environmental 

controls such as those used in chapter 3, results show a clear method to accomplish 

sequential delivery of liquid. These preliminary studies will provide the basis for future 

studies where more complex geometrical changes are investigated under controlled 

environments as well as aid in deriving simple yet accurate models toward developing 

systematic designs of complex channel networks. 
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5.    CONCLUSIONS   

 

 

 Paper-based microfluidics, though not new, allow for the creation of an 

inexpensive self-contained analytical device. Paper is abundant, self-wicking, and a 

versatile material readily available with an array of physical properties. It is highly 

adaptable to different fabrication methods ranging from simple craft cutting to using 

commercially available printing technologies. Since the seminal work by Martinez et al. 

(2007), the paper-based microfluidic community has rapidly expanded. The low-cost, 

ease-of-use, lightweight, and rapid prototyping of paper devices have allowed point-of-

care technologies to be more accessible to low-resource settings. Reagent detection 

techniques from simple colorimetry to highly sensitive electrochemical sensing have 

allowed for a wide range of different applications ranging from food safety to 

environmental monitoring. There is a continuous effort to increase the sensitivity and 

specificity to become vital competitors as a diagnostic and analytical tool. An increase in 

device sophistication is directly coupled with accurately manipulating fluid flow. This 

has led the field of paper-based microfluidics to develop an array of fluid control methods 

with complex sequential delivery capabilities.  

 The accuracy of the liquid behavior has become increasingly important. 

Imbibition studies are needed to investigate how certain parameters influence the wicking 

behavior. In this dissertation, an extensive series of controlled experiments where 

conducted on commonly used paper types to investigate the effect of varying relative 
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humidity and channel width. It was found that as the relative humidity increased the 

imbibition distance increased and as the channel width increased the imbibition distance 

increased with the effect reaching an asymptotic value with the increase in channel width. 

To characterize the imbibition front of all surveyed combinations and to assess the 

importance of relative humidity, we compared three capillary tube models, the L-W 

model, the Fries et al. (2008) model which incorporates evaporation, and a newly 

developed water saturation model, where evaporation and residual water are 

incorporated. Evaporation is an important parameter for imbibition, therefore must be 

taken into account. In general, evaporation is dominant compared to water saturation, 

therefore the water saturation model is not more advantage to the Fries et al. model. 

Effective use of this information will allow researchers to better design more precise and 

reproducible paper-based microfluidic devices. 

 The key to increase the complexity of paper-based microfluidic devices is 

sequential delivery. Here we investigated wax-bound channels encompassing the most 

basic geometrical changes that may be present in complex fluidic designs; sudden 

expansion, contraction, and a box along the channel. The results show a clear method to 

accomplish sequential delivery of liquid. These studies will provide the basis for future 

studies where more complex geometrical changes are investigated under controlled 

environments as well as aid in deriving accurate models to develop systematic designs of 

complex channel networks. 
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6.   SUGGESTED FUTURE WORK  

 

 

6.1.   Effect of channel width and relative humidity  

 The results shown in this dissertation, which investigated the effect of relative 

humidity and channel width on imbibition, have provided a vast amount of data that can 

be used by the paper-based microfluidic community. The data was fitted to three capillary 

models; Lucas-Washburn (Lucas 1918; Washburn 1921), Fries et al. (2008), and a water 

saturation model to obtain the effective permeabilities of the channels. The effective 

permeabilities for the models extracted from the experimental data show that the effective 

permeability asymptotically approaches an upper limit with the increasing channel width. 

Additionally, a linear relationship with a positive slope with relative humidity, 

irrespective of the channel width, is observed. Future work in the following three main 

areas will further the understanding of relationships between the transport properties of 

paper and its interaction with water. 

 

6.1.1.   Channel width obstruction 

 The asymptotic relation between the effective permeability and channel width is 

very intriguing. According to the capillary tube model any potential width effect should 

not be present. This potentially could be an issue attributed to scalability. As suggested 

by Bohm et al. (2014) possible dead-end pores created when the fiber length is larger 

than the width of the channel can terminate the flow at the edge causing inhibitory 
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effects. This issue can be further investigated by obtaining high-resolution microscopic 

images of cut edges such as those obtained from scanning electron microscopy (SEM) or 

by optical microscopes. The combination with video recording of imbibition in the 

micro-scale will help determine if dead-end pores do in fact exist as well as if they 

contribute to the increased flow resistance observed in narrow channels. 

 Additionally, possible cause of the inhibitory effect is due to the method in which 

the paper was cut. The laser cutter works by sending a high powered beam capable of 

obliterating the material. In paper, the cut edge is essentially microscopically burnt. This 

affects the edge by leaving behind residue such as soot. This can be seen in the image 

below (Fig. 6.1). If this residue is hydrophobic, the increase in contact angle at the edge 

will retard the flow as was determined by Hong and Kim (2015) with other hydrophobic 

materials. Therefore, it will be valuable to investigate whether multiple washes eliminate 

or reduce such channel width effect. Moreover, alternative fabrication methods that do 

not deform or significantly alter the channel edge should be explored. 
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Fig. 6.1 SEM image of Whatman #1 showing laser cut edge. Residue at edges is present 

after cut. Scale bar: 300 μm. 

 

 

 Finally, the increased resistance associated with channel width could be 

exclusively a source of the cellulose paper. Therefore, a study investigating other “paper” 

types that are not made of cellulose fibers, such as nitrocellulose or nylon membranes 

will help determine the extent of the channel width phenomena. 
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6.1.2.   Relative humidity: Increased imbibition 

 Relative humidity can alter the paper by two possible mechanisms; 1) either 

through water leaving the paper 2) or through water entering the paper. The effective 

permeability extracted for the three models show a consistent linear relationship with a 

positive slope with relative humidity, irrespective of channel width as well as paper type.  

Because there is a dependence of relative humidity on the effective permeability, future 

work will help determine possible unknown sources influencing the liquid flow.  

 Undetermined evaporation could be a sole culprit. Ways to completely eliminate 

evaporation should be explored. This can be accomplished by laminating the paper with a 

transparent film, paying close attention as not to deform the paper substrate. The 

evaporation flux can be much higher within the imbibition front region creating non-

uniform evaporation flux. This was computationally studied by Veran-Tissoires et al. 

(2012) while investigating salt on porous media. If evaporation is indeed higher than 

what was measured, the effective permeability vs relative humidity plots are expected to 

approach a much more horizontal relationship. 

 Aside from undetermined evaporation, the relative humidity dependence in the 

effective permeability might be attributed to a previously undetermined effect caused by 

the residual water. A precursor film with the aid of the residual water at higher relative 

humidity can potentially develop over the paper fibers. Visually undetected by the user, 

microscopic precursor films can develop ahead of the macroscopic flow (de Azevedo et 

al. 2008), particularly along the fibers (Hyvaluoma et al. 2006). Future work can 

investigate this possible phenomenon using advance imaging techniques such as 
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magnetic resonance imaging (MRI) as well as x-ray microtomography (Beuther et al. 

2010). These techniques give a detailed visualization of the imbibition process, down to 

the cellulose fiber length scales of approximately 30 μm. 

6.1.3.   Improving model parameters 

 The three models compared are derived assuming a rigid bundle of capillary 

tubes. The hygroscopic nature and inhomogeneous structure of the paper produces 

inherent complexities such as fibrous random networks, swelling deformation, and a wide 

distribution of pore sizes. To make the capillary tube models more physically meaningful, 

modifications and decoupling attempts have been proposed. For a brief overview of some 

of these approaches, please see section 2.3.2 Modification and application of Lucas-

Washburn equation to paper media. Nevertheless, the underlining value and usefulness of 

the model modifications rely on obtaining accurate physical properties of the paper. 

Therefore future work should improve on the measurement and calculations of these 

values.  

 The highly stochastic nature of the paper manufacturing process leads to a high 

degree of inhomogeneity, where the macroscopic flow is influence by the microscopic 

arrangement of the cellulose fibers and pore space. This creates a challenge problem to 

accurately measure important properties such as pore size and porosity. A very valuable 

future contribution would be to obtain pore size data for the surveyed papers. The bubble 

point method can be used (Nassehi et al. 2011). It is based on the Young-Laplace 

equation where the pressure is inversely proportional to the pore diameter. By 

determining the pressure to force an air bubble though the pore, the average diameter (in 
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the transverse direction) of the paper substrate can be obtained. Similarly to the bubble 

point method, using mercury intrusion will be useful in determining the pore size and 

porosity. Additionally, the pore size can be extracted using capillary theory by obtaining 

the maximum height of the water-paper column. 

 A more accurate value of pore size and porosity will help eliminate inaccuracies 

in the permeability calculation. Permeability is a function of the interconnectivity of the 

pores (tortuosity). Using imaging techniques such as the previously mentioned x-ray 

microtomography will help determine the arrangement and measure the interconnectivity 

of the cellulose fiber network. It is important to know that these methods will not result in 

a single defined value, but by using a combination of methods the individual parameters 

can be validated. But undoubtedly, the strong interdependence of different properties has 

left a challenge to future researchers. 

 

6.2.   Two-dimensional channels 

 Chapter 4 presented initial work on two-dimensional fluid flows. Though in its 

infancy, it gives a quick overview on how a sudden change in the channel’s cross-section 

can alter fluid flow. Unlike the presented data in chapter 4, future imbibition experiments 

need to be conducted inside an environmentally controlled chamber similar to the study 

in chapter 3. Findings obtained from investigating the effect of relative humidity and 

channel width should be applied to two-dimensional flows. These include physical 

properties of the paper such as pore size distribution, porosity, and permeability. Once 

these accurate values are obtained, analytical equations representing the flow should be 
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developed.  An analytical model for a two-segment channel was derived and is shown 

below for the main purpose of discussion. For full details see Appendix J.  
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Where, t is time, K is permeability,   is porosity,   is dynamic viscosity, And   is 

surface tension,  is contact angle, W1 is the channel width at segment 1, W2 is the 

channel width at segment 2, L1 is the length of segment 1, F is the evaporation flux, T is 

the thickness of the paper,   is fluid density, and L is the distance from the reservoir of 

the imbibition front. 

 The implicit analytical relationship shown above is a model for imbibition in a 

two rectangular segment channel (similarly to an expansion or contraction channel seen 

in chapter 4). It incorporates evaporation. The above model simplifies two-dimensional 

flows by combining the coupled effects between two one-dimensional flows. Yet, even 

with this simplification the derived model is increasingly more complex than the 
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traditional Lucas-Washburn equation. Therefore caution should be taken when creating 

analytical expressions. It would be best to accurately measure the physical properties of 

the paper, followed by numerical and computational simulations using a combination of, 

MATLAB, COMSOL Multiphysics, and ANSYS CFX. If creating a toolbox is desired 

that includes the effect of certain cross-sections, then this method will circumvent the 

need for an immense amount of imbibition experiments.  
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APPENDIX 

 

 

Appendix A.   Porosity of filter paper 

 

The porosity of the surveyed paper (Table 3.1) was calculated using the basis weight, WB, 

and thickness, T, as well as the density of cellulose fiber, ρc. The basis weight is the mass 

per unit area hence expressed as  

 TW cB   1 .   

The basis weight for the surveyed paper was calculated at RH = 3%. Solving for porosity 

ϕ, 

T

W

c

B


 1 .   
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Appendix B.   Measurement of evaporated water mass 

 

Rates of evaporation of water from sample paper pieces were recorded as described in the 

Materials and methods section. Fig. B.1 shows the time course of static evaporation for 6 

different relative humidity values (18, 25, 50, 75, 90, and 99%). The slope of best fit line 

(evaporation rate) of each data set divided by the total surface area results in evaporation 

fluxes. 

 

 

Fig. B.1 Static evaporation. Change of mass in paper strip over time of the surveyed 

paper types at different relative humidity. Data shown as mean ± SD (N = 5). 
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Appendix C.   Residual water at different relative humidity 

 

 

Fig. C.1 Illustration of water absorbed and retained by cellulose fibers in unwetted paper. 

 

 

As illustrated in Fig. C.1, the paper increasingly absorbs and retains water vapor as the 

ambient relative humidity of air rises. Water saturation, Sw, is here defined as the volume 

fraction of the retained water in the available pore volume of the porous substrate (i.e. 

paper): 

T

rw

w
V

m
S


 ,   

where mrw is mass of the retained water and VT is the total volume of the paper. 
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At non-zero relative humidity, the fibers are pre-wetted due to the retained water. This 

effectively reduces the available pore volume for water from the reservoir to move 

through. Mathematically, this volume can be written as follows, and the factor of  wS1  

appears in Eq. F.2 accordingly: 
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Appendix D.   Scanning electron microscopy (SEM) of papers 

   

 

Fig. D.1 SEM images of the surveyed papers.  
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Appendix E.   Measurement of imbibition front 

 

Imbibition of water in the test devices was recorded as described in the Materials and 

methods section. To illustrate progression of the imbibition fronts in time, a time-lapse 

sequence is shown in Fig. E.1. Brightness of these images was adjusted in ImageJ to 

maximize visibility of the imbibition fronts. Imbibition distances vs. time for all paper 

types, channel widths, and relative humidity are plotted in Fig. E.2– E.5. 

 

 

Fig. E.1 Time-lapse images of imbibition experiments of different channels Whatman #1 

at 50% relative humidity. Scale bar: 5 mm. 
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Fig. E.2 Imbibition distance vs. time of Whatman #1 at different relative humidity. Data 

shown as mean ± SD (N = 10). 
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Fig. E.3 Imbibition distance vs. time of Whatman #4 at different relative humidity. Data 

shown as mean ± SD (N = 10). 
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Fig. E.4 Imbibition distance vs. time of Whatman #5 at different relative humidity. Data 

shown as mean ± SD (N = 10). 
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Fig. E.5 Imbibition distance vs time of Whatman Chr-1 at different relative humidity. 

Data shown as mean ± SD (N = 10). 
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Appendix F.   Theory: Derivation of models 

 

Fig. F.1 shows a schematic of a rectangular paper strip of width W and thickness T, 

into which a liquid (e.g., water) rises from an infinite reservoir. While the liquid 

wicks vertically, it evaporates laterally unless the surrounding atmosphere is fully 

saturated, in which case a dynamic equilibrium is reached.  

 

Considering a small control volume of length Δy shown in Fig. F.1, the 

conservation of mass is written as, 

    022
22
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 yMyM
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yM zxyy
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,
    (F.1) 

where zyx MMM   and, ,  are the mass flow rates in the respective directions. 

 

Assuming a flat imbibition front (i.e., 1-D flow), the mass flow rate in the vertical 

direction can be written as 

     WyvSyM wy  1 ,       (F.2) 

where ρ is the density of the liquid, Sw  is the water saturation of the paper matrix, 

and  yv  is the vertical flow speed. Here,  wS1 is factored in because the cellulose 

fibers of paper are hygroscopic and absorb water vapor from the atmosphere.  
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Fig. F.1 Schematic of liquid imbibition in a paper channel. 

 

 

Similarly, assuming uniform evaporation from the wetted surfaces, the mass flow 

rates in the lateral directions are written as 

    yFWyMyFTyM zx    and , ,       (F.3) 

where F is the evaporation flux. Unlike the mass flow rate in y direction, those in x 

and z directions do not include  wS1 . This is because F, usually measured 

experimentally or calculated from experimentally fitted models, takes the effects of 

the water saturation into account by default. 
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Substituting Eq. F.2 and F.3 into Eq. F.1 and dividing by Δy, the mass balance is 

expressed as 
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Dividing both sides by  WTSw1  and taking the limit of 0y , the following 

differential equation is obtained:  

 
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TWF

dy

dv
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2


.        (F.5) 

Flow velocity in a porous medium is also described by Darcy’s law, which is a 

form of conservation of momentum. For the 1-D flow in the paper strip, it is 

written as 
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where K is the permeability, μ is the dynamic viscosity of water, p is the pressure, 

and g is the gravitational acceleration. Differentiating once, Eq. F.6 becomes 

2
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pdK
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dv


 .        (F.7) 

Equating the right hand sides of Eq. F.5 and F.7 and dividing by K , a 2nd-

order differential equation of pressure is obtained: 
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Integrating twice and applying two pressure boundary conditions (p = patm at y = 0 

and p = patm – ps at y = yf, where patm and ps are the atmospheric pressure and the 

capillary suction pressure, respectively) yields, 
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This expression is then used to evaluate dydp  at the imbibition front (y = yf), 
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Substituting Eq. F.10 into Eq. F.6 evaluated at the front (y = yf) and recognizing

    dtdyyvyv ffcf   , where ϕ and vc are porosity and interstitial velocity 

respectively, one finds 
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Dividing by ϕ, Eq. F.11 is simplified as 
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In the above expression, the capillary suction pressure is defined as, 

e

s
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where γ is the surface tension of the liquid, θ is the liquid-solid contact angle, and 

De is the effective diameter, an equivalent of the diameter in the capillary tube 

model.  

 

Furthermore, the permeability K and the diameter De can be related as follows by 

comparing the Darcy’s law and Hagen-Poiseuille law: 

32

2

eD
K


 .        (F.14) 

The solution form of Eq. F.12 is found elsewhere and with the initial condition of 

yf = 0 at t = 0, it is implicitly given as 
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where 24 cab  . 

 

Eq. F.15 provides an implicit solution of imbibition distance which makes the 

model inconvenient. It is commonly understood that the effect of gravity is 

negligible during imbibition up to 10% of the equilibrium height. Inspecting the 
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Bond number (10-8≪1) which quantifies the ratio between body force to surface 

tension force adds support to this claim.  

 

 

Fig. F.2 Comparison of the developed model with or without gravity. 

 

 

Comparing the model with and without gravity (Fig. F.2) shows the difference 

between the equations of only 30 μm or 0.0425% after 1 hour of imbibition for a 2 

mm channel at RH = 50%. These results strongly support that the effects of gravity 

is negligible and that Eq. F.17 provides sufficient results. Therefore if the effect of 

gravity is neglected (i.e., c = 0), Eq. F.15 becomes 
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or 
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When effects of both gravity and evaporation are neglected (i.e., c = 0 and b = 0), 

and Eq. F.14 is used, the solution of Eq. F.12 simplifies to the Lucas-Washburn 

equation: 
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Alternatively, if Eq. F.14 is used the term ‘a’ can be written as, 
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With Eq. F.18 becoming, 
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In the current study, perfect wetting was assumed ( 0 ).  

 

Our current model, without gravity, is derived based on the following assumptions: 1) 

Overall dimensions of the channel do not change before and after imbibition (i.e., no bulk 

swelling of paper); 2) Inertia effects are neglected by the use of Darcy’s law; 3) Wetting 

of paper is binary (fully saturated when wetted, and Sw when unwetted; 4) Evaporation 

flux of the wetted surface is uniform and solely depends on relative humidity; 5) 
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Imbibition front is flat; 6) Contact angle θ is zero and independent of relative humidity; 

and 7) Gravity is neglected. One may critique that some of these assumptions are 

neglecting potentially important effects. For example, some studies reported importance 

of inertia effects at the onset of imbibition, or change of θ over time. Nevertheless, these 

assumptions are required in order to derive the simple, explicit, and powerful model 

expressed in Eq. F.17 and compare side by side with the L-W model and Fries et al. 

model. 
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Appendix G.   Slopes and y-intercepts from effective permeability vs RH plots 

 

 

Table G.1 Lucas-Washburn model. Slopes and y-intercepts corresponding to Fig. 3.6. 

 

 Paper type 
Slope x10-15 

(m2/RH) 
y-intercept x10-15 (m2) 

  Channel width 

    1 mm 2 mm 4 mm 10 mm 20 mm 

Whatman #1 0.0260 -0.059 0.471 1.066 1.510 1.608 

Whatman #4 0.1144 3.437 6.257 9.890 11.690 11.767 

Whatman #5 0.0093 -0.219 -0.072 0.133 0.270 0.296 

Whatman Chr-

1 
0.0271 0.003 0.953 1.485 1.985 1.992 

 

 

 

Table G.2 Fries et al. model. Slopes and y-intercepts corresponding to Fig. 3.7. 

 

 

 Paper type 
Slope x10-15 

(m2/RH) 
y-intercept x10-15 (m2) 

  Channel width 

    1 mm 2 mm 4 mm 10 mm 20 mm 

Whatman #1 0.0231 0.223 0.765 1.373 1.828 1.925 

Whatman #4 0.1077 4.105 6.934 10.594 12.405 12.479 

Whatman #5 0.0082 -0.115 0.037 0.259 0.401 0.428 

Whatman Chr-

1 
0.0239 0.301 1.270 1.821 2.330 2.354 

 

 

 

Table G.3 Water saturation model. Slopes and y-intercepts corresponding to Fig. 3.8. 

 

 Paper type 
Slope x10-15 

(m2/RH) 
y-intercept x10-15 (m2) 

  Channel width 

    1 mm 2 mm 4 mm 10 mm 20 mm 

Whatman #1 0.0231 0.223 0.768 1.375 1.830 1.926 

Whatman #4 0.1076 4.118 6.946 10.604 12.416 12.491 

Whatman #5 0.0081 -0.105 0.057 0.277 0.411 0.439 

Whatman Chr-

1 
0.0241 0.293 1.254 1.825 2.320 2.330 
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Appendix H.   R2 values of effective permeability of surveyed paper types 
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Fig. H.1 R2 values of effective permeability of surveyed paper types at various relative 

humidity for L-W model, Fries et al. model, and the water saturation model. a) Whatman 

#1, b) Whatman #4, c) Whatman #5, and d) Whatman Chr-1. Data shown as mean ± SD 

(N = 10). 
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Appendix I.   Wax expansion 

 

 
Fig. I.1 Wax expansion plot. Expansion of wax vs printed dimensions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 149 

Appendix J.   Theory: Imbibition in a channel with multiple sections 

 

 

 

 
 

Fig. J.1 Schematic of liquid imbibition in a multi-channel. 

 

Flow in porous media is described by the mass conservation and Darcy’s law.
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 Here we look at a porous channel that contain a sudden rectangular change in 

cross section. We take the porous strip to be constant in thickness, T, and a constant mass 

flux (mass/second-area) due to evaporation, F. 

 Assuming incompressible flow, the mass conservation of the second segment can 

be written as, 

022)(  xzyy MMyyMM   

Similarly to the constant-width channel, the mass conservation can be represented as, 
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Taking the derivative of Eq. J.2 in the vertical direction with respect to y2, 
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Substituting Eq. J.4 into Eq. J.3 and solving for the pressure with boundary conditions: 

P2  = PJ1    @ y2 = 0 

P2  = Patm –Ps  @ y2 = y2f 

 

The pressure becomes, 
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Evaluating the gradient at y2f, 
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Substituting back into Eq. J.2 
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Rearranging, 
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We know at the junction the flow rates must be identical, 
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From the constant-width analysis, the V1 evaluate at the junction L1, becomes, 
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Substituting the velocity relationship, 
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Substituting Eq. J.11 into Eq. J.8, 
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Therefore solving for Ps, 
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Multiplying both sides by k/μ and substituting the interstitial velocity, 
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Dividing by the porosity, 
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Eq. J.15 becomes, 
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The differential equation can be solved by rearranging and integrating both sides, 
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Note: From Handbook of Mathematics, Bronstein, 5th edition pg. 1025 
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Eq. J.18 becomes, 
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Initial condition of y2f = 0 @ t2 = 0 gives C as, 
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Substituting back into Eq. J.20, 
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Next we switch to global coordinates (l,t) by substituting  y2f = L-L1 and t2 = t-t1 into Eq. 

J.22. First we need to manipulate t1. Taking take t1 from that of the constant width 

channel, where yf = L1. 
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Substituting out the a1, b1, c1,  
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

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1
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2
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L
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d
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L
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Taking 2
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 157 

Cancelling terms, 


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


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4
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Multiplying the inside of the second logarithm term by 
2

1

1










L

L
and letting

 24 dac , 

  
  

















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














 ddc

ddc

c
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a

c

L
t

2

2
ln

2
ln

2

2

1

2

1

1   (J.23) 

 

Now switching to global coordinates (l,t) by substituting  y2f = L-L1 and t2 = t-t1 into Eq. 

J.23. 
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           (J.24) 

If the effect of gravity is neglected, d = f =0, Eq. J.24 becomes, 
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     (J.25) 

 

If the effect of evaporation is neglected, c = e =0, Eq. J.18 becomes, 

f

f

f

f

f
dy

dayf

b
dy

dayf

y
t 2

2

2

2

2

2
)()()()(  




     (J.26) 

 

Integrating, 

    Cdafy
f

b
dafy

f

da

f

y
t ff

f









 22

2

2 lnln    (J.27) 
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 da
f

bda
C 


 ln

Initial condition of y2f = 0 @ t2 = 0 gives C as, 

 

 

Substituting back into Eq. J.27, 

 

   dadafy
f

bda

f

y
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f






 2

2

2 ln      (J.28) 

 

Switching to global coordinates (l,t) by substituting  y2f = L-L1 and t2 = t-t1 into Eq. J.28. 

Taking t1 from that of the constant width channel when evaporation is neglected, 
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


1

1

1

2

1
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1ln

   (J.29) 

 

If the effect of evaporation and gravity are neglected Eq. J.18 becomes, 

f

f
dy

a

yb
t 2

2

2 


          (J.30) 

 

Integrating, 

Cybyat ff 
2

222
2

1
 

Initial condition of y2f = 0 @ t2 = 0 gives C as, 
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0C  

Rearranging, 

 

022 22

2

2  atbyy ff         (J.31) 

 

Which is, 

2

2

2 2atbby f   

Because y2f > 0, 

2

2

2 2atbby f          (J.32) 

 

Switching to global coordinates (l,t) by substituting  y2f = L-L1 and t2 = t-t1 into Eq. J.32. 

Taking t1 from that of the constant width channel when both evaporation and gravity are 

neglected, 





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
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




a

L
tabbLL

2
2

2

12

1        (J.33) 

Rearranging, 

2

1

2

1 2 LatbbLL         (J.34) 

It is important to note that when W1 = W2, Eq. J.34 reduces to constant-width flow, 

 

atL 2           (J.35) 

 




