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Intertemporal Risk Aversion Introduction

1 Introduction

The paper introduces a new concept of risk aversion that is independent of the good

under observation and its measure scale. To these ends, I introduce a new representation

theorem for preferences that coincide with the intertemporally additive standard model

when restricted to certain consumption paths, and that respect the von Neumann &

Morgenstern (1944) axiom for uncertain choices in every period. The representation

has a strong symmetry in time and risk and non-linearities can be shifted from one

dimension to the other.

1.1 Robinson Crusoe’s Motivation

More likely than not, Robinson Crusoe was among the first economic agents you en-

countered when introduced to economics. Have you ever wondered whether Robinson

was risk averse? Have you asked yourself how to measure risk aversion when stranded

on a lonely island where money is of no value? Robinson’s risk aversion, for example,

could be measured with respect to lotteries over coconut consumption. The standard

theory works great for coconuts. They are, at least with some effort, an arbitrarily di-

visible good that comes with a natural unit. And, if we want to measure the coefficient

of relative risk aversion, also ‘the zero coconut level’ is well defined. However, what

happens if Robinson also finds litchis on the island? They are similarly well suited for

measurement. However, with the standard concept of risk aversion, Robinson might well

be risk averse with respect to coconut consumption and turn out risk loving with respect

to litchis. If we think of risk aversion as an attitude toward risk, rather than toward co-

conuts or litchis, this classification of Robinson’s risk aversion might be unsatisfactory.

It gets worse when Robinson finds that not all coconuts taste the same. Assume he

elaborates a chart pinning down a quality distribution of different trees to decide which

of them is most worthy climbing up. For coconut quality there is no natural unit, nor is

there a naturally given ‘zero quality level’. In fact, whether Robinson is judged (Arrow

Pratt) risk averse or risk loving with respect to decisions involving coconut quality is

completely up to the measure scale he employs in the quality chart.

The quest for such an ‘isolated’ concept of risk aversion is about much more than

an islander’s decision making. The developed concept of intertemporal risk aversion

isolates the measure of an individual’s risk attitude from his valuation for money, which

is the outcome of a market aggregation depending on other agent’s preferences as well
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Intertemporal Risk Aversion Introduction

as the supply side of the economy.

1.2 Contribution and Relation to the Literature

The paper delivers two equivalent axiomatic characterizations of intertemporal risk aver-

sion. In contrast to Arrow Pratt risk aversion, intertemporal risk aversion is independent

of the good under observation or its measure scale. To analyze good and measure scale

dependence I analyze changes of the representations under appropriate coordinate trans-

formations on the consumption manifold. I also show that the time and state additive

standard model contains the implicit assumption of intertemporal risk neutrality.

The representational framework relates to the seminal work of Kreps & Porteus (1978),

who extend the atemporal von Neumann &Morgenstern (1944) setting to a temporal lot-

tery framework. Their representation can be interpreted as an extension of Koopmans’

(1960) recursive utility model under certainty to a recursive model for risky settings.

The present paper shows that, even when starting from a time-additive model for cer-

tain outcomes, the general time consistent model for the evaluation of risky outcomes

exhibits recursivity. While Kreps & Porteus’ (1978) representation is more general,

the present representation has the following attractive features. First, the recursive

intertemporal aggregation rules can be characterized by a family of one dimensional

functions. Second, it shows a trade-off between linearizing uncertainty aggregation

and intertemporal aggregation. Kreps & Porteus’ (1978) representation uses expected

value to evaluate uncertainty and relies on a nonlinear intertemporal aggregation.2 The

present representation makes it possible to transform nonlinear intertemporal aggre-

gation into nonlinear uncertainty integration. The resulting certainty additive welfare

function is helpful for economic intuition and for relating the analysis to e.g. models of

ambiguity (Traeger 2010). Third, the representation theorem admits freedom in picking

the evaluation function on the certain one period outcomes. I employ this freedom to

examine measure scale and good dependence of risk measures.

Epstein & Zin (1989) and Weil (1990) analyze Kreps & Porteus’ (1978) representation

in a one commodity setting in order to disentangle information about the attitude with

respect to risk and with respect to intertemporal substitutability.3 Taking the model

2A nonlinear intertemporal aggregation implies that a welfare gain of one unit today and a welfare
gain of another unit in the next period is not the same as welfare gain of two units in a third period.
Note that the nonlinearity is different in nature than discounting in a stationary setting, where the
discount factor just is part of the welfare evaluation.

3Such a distinction between risk aversion and intertemporal substitutability is not possible within a
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back to the multi-commodity setting, I study measure scale and good dependence of

the Arrow Pratt measure and show the invariance of the intertemporal risk aversion

measure.

In three accompanying papers I relate the risk aversion concept developed here to

different aspects of intertemporal choice, deriving the following insights. First, Kreps

& Porteus’ (1978) preference for the timing of uncertainty resolution can be explained

by a change of absolute intertemporal risk aversion over time (Traeger 2007b). Second,

the implicit assumption of intertemporal risk neutrality in the standard model removes

the bite of risk stationarity. Only for this reason does the standard model contain the

free parameter associated with pure time preference (Traeger 2007a).4 Third, ambiguity

aversion in the models of smooth ambiguity by Klibanoff, Marinacci & Mukerji (2005,

2009) can be understood as the difference between intertemporal risk aversion with

respect to subjective and with respect to objective lotteries. This insight permits an

immediate extension of the present model to incorporate ambiguity and extend the

smooth ambiguity concept to a more general concept of aversion to the subjectivity of

belief (Traeger 2010).

The paper is structured as follows. Section 2 develops the representation. Section 3

discusses measure scale and good dependence when extending Epstein & Zin’s (1989)

disentanglement of Arrow Pratt risk aversion and intertemporal substitutablity to the

multi-commodity setting. Section 4 introduces the concept of intertemporal risk aver-

sion. Section 5 concludes. All proofs are found in the appendix.

2 The Representation

The representation builds on the framework of temporal lotteries introduced by Kreps

& Porteus (1978). It is a natural extension of the classical von Neumann & Morgenstern

(1944) setting to an intertemporal framework. The employed recursive description of

uncertainty is richer than the more widespread framework of atemporal lotteries, where

probability measures are defined directly over consumption paths.5

standard intertemporally additive expected utility model. There, the Arrow-Pratt measure of relative
risk aversion is confined to the inverse of the elasticity of intertemporal substitution (Weil 1990).

4This reasoning assumes indifference to the timing of uncertainty resolution in the sense of Kreps &
Porteus (1978), which is another implicit assumption of the standard model that is not met in general
recursive models.

5In Traeger (2007b) I discuss the economic differences between these two different settings in detail.
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Intertemporal Risk Aversion The Representation

2.1 Setup and Notation

Let Y denote a generic connected compact metric space. Its elements are referred to

as outcomes. The set of Borel probability measures on Y is denoted P = ∆(Y ) and

equipped with the Prohorov metric (giving rise to the topology of weak convergence).

The paper takes uncertainty in form of unique probability measures as given.6 Extension

to a joint axiomatic framework in the sense of Savage (1954) or Anscombe & Aumann

(1963) is straightforward, but only obstructs the essential contribution of the paper. A

lottery yielding outcome y with probability p(y) = λ and outcome y′ with probability

p(y′) = 1− λ is written λy + (1− λ)y′ ∈ P . Note that a ‘plus’ sign between outcomes

always characterizes a lottery.7 The set of degenerate lotteries in P is identified with

the set Y of outcomes in the usual way. Preferences defined on P are denoted by �

(⊂ P × P ).8 The space of all real valued, continuous functions on Y is denoted by

C0(Y ). For an element v ∈ C0(Y ) the notation range(v) = [V , V ] = V and ∆V = V −V

is applied.9

Introducing time structure, the paper makes use of various compact metric spaces.

For all of them the above definitions apply. The primitive connected compact metric

space in this paper is denoted X and characterizes welfare determining factors within a

period. Its outcomes, i.e. elements x ∈ X, are also referred to as points in consumption

space. They can characterize consumption levels or more abstract descriptions of e.g.

consumption quality, a state of mood or the state of an ecosystem. Time is discrete with

planning horizon T ∈ IN. Individual periods are labeled by time indices t, τ ∈ {1, ..., T}.

The space X
t = XT−t+1 denotes the (T−t+1)– fold Cartesian product equipped with

the product metric. It characterizes the set of all certain consumption paths from

period t to period T .10 A consumption paths x ∈ X
t is written x = (xt, xt+1, ..., xT ) =

6Well suited for the context of this paper and its applications is the epistemological foundation
of probability in the line of Koopman (1940), Cox (1946,1961) and Jaynes (2003), who construct a
probabilistic logic.

7As Y is only assumed to be a compact metric space there is no immediate addition defined for
its elements. In case it is additionally equipped with a vector space or field structure, the vector
composition will not coincide with the “+” used here. The “+” sign used here alludes to the additivity
of probabilities.

8The relations� are required to be reflexive. The asymmetric part is denoted by≻ and interpreted as
strict preference. The symmetric part of the relation � is denoted by ∼ and interpreted as indifference.
Nonindifference is denoted by 6∼ and defined as 6∼≡ P × P \ ∼.

9Compactness of Y and continuity of v assure that the minimum and the maximum are attained.

10I do not distinguish different sets of outcomes for different periods. X stands for the union of all
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(xt, xt−1, ..., xT ). Given x ∈ X
t, I define (x−i, x) = (xt, ..., xi−1, x, xi+1, ..., xT ) ∈ X

t as the

consumption path that coincides with x in all but the ith period, in which it renders

outcome x. The uncertain choice objects of temporal lotteries are obtained by defining

X̃T = X and recursively X̃t−1 = X ×∆(X̃t) for all t ∈ {2, ..., T}. Each X̃t is equipped

with the product metric. I denote Pt = ∆(X̃t) and refer to the elements pt ∈ Pt as

(period t) lotteries. Observe that in every period the decision maker has a probability

distribution over the outcome in the respective period and the probability distribution

over the future faced in the next period. Preferences in period t are defined on the set

Pt and denoted by �t.

The group of non-degenerate affine transformations is denoted A = {a ∈ C0(IR) :

a(z) = a z + b , a, b ∈ IR, a 6= 0} with elements a ∈ A. The group of strictly positive

affine transformations is denoted A
+ = {a+ ∈ C0(IR) : a+(z) = a z+b , a, b ∈ IR, a > 0}.

Furthermore, for a given a ∈ IR++ define Aa = {aa ∈ C0(IR) : aa(z) = a z+ b , b ∈ IR}.11

For compositions of two functions I write f(g(·)) = f ◦ g(·) = fg(·).12

2.2 Employed Concepts

The first concept employed in the representations is that of a Bernoulli utility function.

Given a preference relation �t on Pt for some t ∈ {1, ..., T}, I introduce a binary relation

�∗
t on X by defining for all x, x′ ∈ X

x �∗
t x

′ ⇔ (x−t, x) �t (x−t, x
′) ∀ x ∈ X t .13

Define the set of Bernoulli utility functions corresponding to the preference relation �t

by B�t
= {ut ∈ C0(X) : x �∗

t x′ ⇔ ut(x) ≥ ut(x
′) ∀ x, x′ ∈ X}. Bernoulli utility

functions represent preferences over certain outcomes within a period.

The second concept relates to the aggregation of utility over uncertainty. Given a

strictly monotonic function f ∈ C0(IR) I define an uncertainty aggregation rule as the

possible outcomes perceivable in any period.

11IR+ = {z ∈ IR : z ≥ 0} and IR++ = {z ∈ IR : z > 0} denote the sets of all positive, respectively
strictly positive, real numbers.

12The omission of the composition sign in lengthy expressions shall not create confusion as regular
multiplication of functions only appears between fractions.

13An assumption of additive separability will turn �∗
t into a complete order on X. For a space

P = ∆(Y ) without time structure the definition implies �∗=� |Y .
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functional Mf : ∆(Y )× C0(Y ) → IR with14

Mf (p, v) = f−1

∫

Y

dp f ◦ v .

The uncertainty aggregation rule takes as input the decision maker’s perception of uncer-

tainty, expressed by a probability measure p on Y , and a valuation of certain outcomes

expressed by a real valued function v on Y . The uncertainty aggregation rule weighs

utility values by some function f , aggregates them, and applies the inverse of f to nor-

malize the resulting expression. For certain outcomes an uncertainty aggregation rule

returns the value of v itself, i.e. Mf (y, v) = v(y). The only difference between an un-

certainty aggregation rule and a generalized mean is that the former takes the valuation

function v as an explicit argument.15

The simplest example of an uncertainty aggregation rule corresponds to the expected

value operator which is induced by the arithmetic mean (f = id). A widespread non-

trivial example is obtained by choosing f(z) = zα (power mean). Then, for V ⊆ IR+

the following uncertainty aggregation rule obtains:

Mα(p, v) ≡ Midα(p, v) =

[
∫

Y

dp vα
] 1

α

.

It is defined for α ∈ IR with M0(p, v) ≡ limα→0M
α(p, v) = exp

[∫

Y
dp ln v

]
.16 Note

that M0(p, v) corresponds to a continuous form of the geometric mean, which takes

the standard form M0(p, v) =
∏

y v(y)
p(y) for simple probability measures. In the limit

of α going to plus or minus infinity, the uncertainty aggregation rule Mα only con-

siders the extreme outcomes (abandoning continuity in the probabilities): M∞(p, v) ≡

limα→∞ Mα(p, v) = maxy v(y) and M−∞(p, v) ≡ limα→−∞ Mα(p, v) = miny v(y). In

general it can be shown that the smaller is α, the lower is the certainty equivalent util-

ity that the respective uncertainty aggregation rule brings about (e.g. Hardy, Littlewood

& Polya 1964, 26).

The third concept employed in the representation is that of an intertemporal aggre-

14By continuity of f ◦ v and compactness of Y , Lesbeque’s dominated convergence theorem ensures
integrability (Billingsley 1995, 209).

15This correspondence is made precise as follows. Let pv ∈ ∆(V ) denote the probability measure
induced by p defined on Y through the function v ∈ C0(Y ) on its (compact) range V . Then an

uncertainty aggregation ruleM is said to be induced by a meanM : ∆(V ) → IR, wheneverM(p, v) =

M(pv) ∀p ∈ P. Mean inducedness implies that only the probability of y is used to weigh v(y).

16The easiest way to recognize the limit for α → 0 is to note that for any α > 0 the function
fα(z) = zα−1

α
is an affine transformation of f(z) = zα. Affine transformations leave the uncertainty

aggregation rule unchanged. Therefore, the fact that limα→0
zα−1

α
= ln(z) gives the result.
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gation rule. The assumption of additive separability on certain consumption paths will

allow me to bring intertemporal aggregation to a similar mean-like form. However,

two differences with respect to uncertainty aggregation apply. First, when evaluating

lotteries, aggregation over time will generally turn out to be recursive. Second, time

aggregation is generally period specific.17 Using a sequence of time dependent weight

functions g = (gt)t∈{1,...,T} for utility levels in Ut ⊂ IR with gt ∈ C0(Ut) ∀ t ∈ {1, ..., T} the

aggregation of utility over time can be characterized in the form ‘g−1
t [gt(·) + gt+1(·)]’.

Given some utility level from consumption in period t and an overall utility level in

period t + 1, both are aggregated with period specific weight functions and, by taking

the inverse, normalized back into the period t utility scale. However, the expression as is

would be ill defined because values in the ranges of gt and gt+1 generally do not add up

to values that lie in the domain of g−1
t . Introducing the necessary normalization yields

the intertemporal aggregation rule for period t

N g
t : Ut × Ut+1 → IR (1)

N g
t (·, ·) = g−1

t

[
θt gt(·) + θtθ

−1
t+1 gt+1(·) + θtθ

−1
t+1 ϑt

]
, (2)

where Ut, Ut+1 ⊂ IR and the normalization constants are defined as

θt =
∆Gt

∑

T

τ=t
∆Gτ

and ϑt =
Gt+1Gt−Gt+1Gt

∆Gt
. (3)

Generally, the representations will allow for a choice where Gt = 0 ∀ t. Then, the

intertemporal aggregation rule simplifies to

N g
t (·, ·) = g−1

t

[
θt gt(·) + θtθ

−1
t+1 gt+1(·)

]
with θt =

Gt
∑

T

τ=t
Gτ

.

The constants θt characterize the weight of an individual period with respect to the

future.18 In a stationary model they give rise to normalized discount rates, e.g. for

T = 2, g1 = g and g2 = βg it is

N g
1 (·, ·) = g−1

[
1

1+β
g(·) + β

1+β
g(·)
]

.

17While the independence axiom implies state independence for uncertainty aggregation, additive
separability over time does not imply time independence of intertemporal aggregation.

18In a representation where the Gt are not normalized and positive, the constants ϑt characterize an
overproportional upwardspread of future weight. Precisely, define constants γ and γ by the relations

Gt+1 = γ Gt and Gt+1 = γ Gt. Then ϑt > 0 is equivalent to γ > γ.
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2.3 Atemporal Uncertainty and Gauge Freedom

This subsection revisits the atemporal von Neumann-Morgenstern setting. A useful

perspective on the study is as follows. Choice in a certain and atemporal setting de-

termines the utility function on the certain outcomes only up to strictly increasing

transformations. Introducing uncertainty, von Neumann & Morgenstern (1944) single

out a particular cardinal utility function evaluating the certain outcomes, by requiring

that expected value maximization should represent choice over lotteries. However, in-

tertemporal considerations can cardinalize utility already in a certain setting. Given a

cardinal evaluation of certain outcomes, additive uncertainty aggregation rules no longer

suffice to represent all decision rules conforming with the von Neumann-Morgenstern

axioms.

For a slightly different perspective, I introduce a notion borrowed from physics. A

degree of freedom that has no observable effect within a theory is called gauge freedom.

It is a freedom to normalize. Analyzing this freedom, instead of choosing a normalization

right away, can deliver deeper insights into the model. I will make use of this idea when

analyzing good dependence and invariance of risk measures. In the meanwhile, carrying

along the gauge freedom of Bernoulli utility allows to derive different representational

forms that will prove useful for different inquiries.

The following theorem is a variation of von Neumann & Morgenstern’s (1944) famous

representation theorem, here on the general connected compact metric space Y . For

the simplest interpretation think of Y as the consumption space X. The proof of the

intertemporal representation will employ the theorem recursively with Y standing for

the spaces X̃t. In the present, atemporal version, the set of Bernoulli utility functions

is simply B� = {v ∈ C0(Y ) : y � y′ ⇔ v(y) ≥ v(y′) ∀ y, y′ ∈ Y }.

Theorem 1 (Variation of von Neumann-Morgenstern): Given a binary relation

� on P and a Bernoulli utility function v ∈ B� with range V , the relation �

satisfies the axioms

A1 (weak order) � is transitive and complete, i.e.:

− transitive: ∀ p, p′, p′′ ∈ P : p � p′ and p′ � p′′ ⇒ p � p′′

− complete: ∀ p, p′ ∈ P : p � p′ or p′ � p

A2 (independence) ∀ p, p′, p′′ ∈ P :

p ∼ p′ ⇒ λ p+ (1− λ) p′′ ∼ λ p′ + (1− λ) p′′ ∀ λ ∈ [0, 1]

8
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A3 (continuity) ∀p∈P : {p′∈P : p′ � p} and {p′∈P : p � p′} are closed in P

if and only if, there exists a strictly monotonic and continuous function f : V → IR

such that for all p, p′ ∈ P

p � p′ ⇔ Mf (p, v) ≥ Mf (p′, v). (4)

Moreover, f and f ′ both represent � in the above sense, if and only if, there exists

a ∈ A such that f ′ = af .

Axioms A1-A3 are standard, for a discussion I refer to Kreps (1988). The indetermi-

nacy of f up to affine transformations does not translate into an indeterminacy of the

functional Mf . A non-degenerate affine transformation f ′ = af yields the same un-

certainty aggregation rule as the one implied by f itself, i.e. Mf (·, ·) = Mf ′

(·, ·).19 In

consequence, the theorem can be stated as well using only increasing versions of f . The

proof of theorem 1 also shows that for preference relations � satisfying axioms A1-A3

the set of Bernoulli utility functions for � is non-empty.

In the atemporal setting, choice under certainty only renders ordinal information on

the Bernoulli utility function v. Theorem 1 states that this gauge freedom for Bernoulli

utility v translates into the representing uncertainty aggregation rule through the form

of the parameterizing function f . Taking this correspondence the other way round one

obtains

Corollary 1: For any strictly monotonic, continuous function f : IR → IR the following

assertion holds:

A binary relation � on P satisfies axioms A1-A3, if and only if, there exists a

continuous function v : Y → IR such that

∀ p, p′ ∈ P : p � p′ ⇔ Mf (p, v) ≥ Mf (p′, v). (5)

Moreover, v and v′ both represent � in this sense above, if and only if there exists

a
+ ∈ A

+ such that u = f−1
a
+ f u′ .

For f = id, where Mf (p, v) = Ep v, the corollary states the classical von Neumann &

Morgenstern (1944) theorem. Then, v is unique up to positive affine transformations.

However, the corollary delivers a similar representation theorem for all uncertainty ag-

gregation rules Mf . For example, setting f = ln, the uncertainty aggregation rule in

19This relation holds, because the linearity of the integral implies that the inverse f ′−1 cancels out
the affine displacement caused by f ′.

9
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the representation corresponds to the geometric mean. Here, the remaining freedom of

v is expressed by the group of transformations u → c ud , c, d ∈ IR++.
20 Recall that

f−1
a
+ f u′ describes the composed function f−1 ◦ a

+ ◦ f ◦ u′ and not a multiplication

of values. Note that equation (5) uses f only on the restricted domain U . I could also

define f : U → IR on a nondegenerate interval U and require u : X → U to be surjective.

Then, the representing u in equation (5) is unique (see analysis in section 4).

2.4 Intertemporal Representation

This subsection extends theorem 1 to the intertemporal setting. The two additional

assumptions imposed for time structure are additive separability on certain consumption

paths and time consistency. For convenience of presentation, I also assume that every

period involves essential choice alternatives:

A0 (non-degeneracy) For all t ∈ {1, ..., T} there exist x ∈ X
1 and x ∈ X such that

(x−t, x) 6∼1 x .

In order to match the predominant time-additive framework for certain intertempo-

ral choice I assume additive separability on certain consumption paths. I employ the

axiomatization of Wakker (1988).21

A4 (certainty separability)

i) For all x, x′ ∈ X
1, x, x′ ∈ X and t ∈ {1, ..., T}:

(x−t, x) �1 (x
′
−t, x) ⇔ (x−t, x

′) �1 (x
′
−t, x

′)

ii) If T = 2 additionaly: For all xt, x
′
t, x

′′
t ∈ X, t ∈ {1, 2}

(x1, x2) ∼1 (x
′
1, x

′′
2) ∧ (x′

1, x
′
2) ∼1 (x

′′
1, x2) ⇒ (x1, x

′
2) ∼1 (x

′′
1, x

′′
2)

Wakker (1988) calls part i) of the axiom coordinate independence. It requires that the

choice between two consumption paths does not depend on period t consumption, when-

ever the latter coincides for both paths. Part ii) is known as the Thomsen condition.

20Setting f = ln implies the remaining freedom u = f−1a+ f u′ = ea ln(u′)+b = u′aeb with a > 0.

21Other axiomatizations of additive separability include Koopmans (1960), Krantz, Luce, Suppes &
Tversky (1971), Jaffray (1974a), Jaffray (1974b), Radner (1982), and Fishburn (1992).
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It is required only if the model is limited to T = 2 periods.22 Axiom 4 is the main

ingredient to allow for a certainty additive representation of the form
∑T

t=1 u
ca
t (xt).

Preferences in different periods are related by the following consistency assumption

adapted from Kreps & Porteus (1978).

A5 (time consistency) For all t ∈ {1, ..., T − 1}:

(xt, pt+1) �t (xt, p
′
t+1) ⇔ pt+1 �t+1 p

′
t+1 ∀ xt ∈ X, pt+1, p

′
t+1 ∈ Pt+1 .

It is a requirement for choosing between two consumption plans in period t, which yield

a degenerate lottery with a coinciding entry in the respective period. For these choice

situations, axiom A5 demands that in period t, the decision maker prefers the plan that

gives rise to the lottery that is preferred in period t+ 1.

The recursive application of theorem 1 under assumptions A4 and A5 renders the

intertemporal representation. In every step, the uncertainty aggregation rule is applied

to the space Pt = ∆(X̃t) employing a recursively constructed aggregate utility function

ũt ∈ C0(X̃t) to evaluate the degenerate outcomes x̃t ∈ Pt.

Theorem 2: Let a sequence of preference relations �≡ (�t)t∈{1,...,T} on (Pt)t∈{1,...,T}

satisfy axiom A0. Let a sequence of functions u ≡ (ut)t∈{1,...,T} satisfy ut ∈ B�t
.

Then, the sequence of preference relations (�t)t∈{1,...,T} satisfies

i) A1-A3 for all �t, t ∈ {1, ..., T} (vNM setting)

ii) A4 for �1 (certainty additivity)

iii) A5 (time consistency)

if and only if, for all t ∈ {1, ..., T} there exist strictly increasing23 and continuous

functions ft : Ut → IR and gt : Ut → IR such that with defining the functions

ũt : X̃t → IR recursively by ũT (xT ) = uT (xT ) and

ũt(xt, pt+1) = N g
t

(
ut(xt) , Mft+1(pt+1, ũt+1)

)
(6)

it holds for all t ∈ {1, ..., T} that

pt �t p
′
t ⇔ Mft(pt, ũt) ≥ Mft(p′t, ũt) ∀ pt, p

′
t ∈ Pt . (7)

22In the case of two periods parts i) and ii) can also be replaced by the single requirement of triple
cancellation (see Wakker 1988, 427).

23Alternatively the theorem can be stated replacing increasing by monotonic for (ft)t∈{1,...,T} and
demanding that either all (gt)t∈{1,...,T} are strictly increasing or that all are strictly decreasing.
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Moreover, (ut, ft, gt)t∈{1,...,T} and (ut, f
′
t , g

′
t)t∈{1,...,T} both represent � in the above

sense, if and only if, for some a ∈ IR++ there exist aa
t ∈ A

a and a
+
t ∈ A

+ for all

t ∈ {1, ..., T} such that (f ′
t , g

′
t) = (a+

t ft,a
a
t gt).

I call a sequence of triples (u, f, g) ≡ (ut, ft, gt)t∈{1,...,T} as above a representation in the

sense of theorem 2 of the set of preference relations �= (�t)t∈{1,...,T}. The representa-

tion theorem recursively constructs an aggregate utility ũt that depends on the utility

gained from the outcome in the respective period ut(xt) and the aggregate utility de-

rived from a particular lottery pt+1 over the future. While the lottery over the future is

evaluated by means of the uncertainty aggregation rule, aggregation over time employs

the intertemporal aggregation rule N g
t .

2.5 Gauging

Like in section 2.3, the freedom to choose the Bernoulli utility function renders some

gauge freedom to the representation in theorem 2. The following lemma holds.

Lemma 1: Let (ut, ft, gt)t∈{1,...,T} represent (�t)t∈{1,...,T} in the sense of theorem 2. For

all t ∈ {1, ..., T} let st : Ut → IR be a strictly increasing and continuous transforma-

tions. Then, also the sequence of triples (u′
t, f

′
t , g

′
t) = (st◦ut, ft◦s

−1
t , gt◦s

−1
t )t∈{1,...,T}

represents (�t)t∈{1,...,T}.

Similar to corollary 1 in section 2.3, I can employ the current lemma to gauge the

uncertainty aggregation rules in theorem 2 to any desired form that is parameterized by

a sequence of strictly monotonic and continuous functions.

Corollary 2 (f-gauge) :

For any sequence of strictly increasing and continuous functions f = (ft)t∈{1,...,T}

with ft : IR → IR the following equivalence holds:

A sequence of preference relations �= (�t)t∈{1,...,T} on (Pt)t∈{1,...,T} satisfying ax-

iom A0, satisfies axioms A1-A5, if and only if, for all t ∈ {1, ..., T} there exist

continuous functions ut : X → IR as well as strictly increasing and continuous

functions gt : Ut → IR such that with defining equation (6) the representation (7)

of theorem 2 holds.

Moreover, (ut, gt)t∈{1,...,T} and (u′
t, g

′
t)t∈{1,...,T} both represent � in the above sense,

if and only if, for some a ∈ IR++ there exist affine transformations a+
t ∈ A

+ and

a
a
t ∈ A

a for all t ∈ {1, ..., T} such that (u′
t, g

′
t) = (f−1

t a
+
t ft ut , a

a
t gt f

−1
t a

+
t
−1
ft).

12
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Choosing all functions ft as the identity, corollary 2 yields the normalization, i.e. gauge,

implicitly used by Kreps & Porteus (1978). Setting ft = id implies that the uncertainty

aggregation rule becomes additive, i.e. expected utility, and the characterizing equations

(6) and (7) of the representation write as

Kreps Porteus gauge (f = id−gauge) :

ũt(xt, pt+1) = N g
t

(
ut(xt) , Ept+1

ũt+1

)

pt �t pt ⇔ Ept ũt ≥ Ep′
t
ũt .

Note that Kreps & Porteus (1978) do not demand additive separability on certain con-

sumption paths in the sense of axiom A4. Therefore, they obtain a slightly more general

intertemporal aggregation rule. In the notion of Johnsen & Donaldson (1985), Kreps &

Porteus (1978) axiomatization implies conditional strong independence, while the ax-

ioms of this paper imply unconditional strong independence. The latter step allows me

to characterize intertemporal aggregation by a sequence of one dimensional functions

g. While uncertainty aggregation is linear in the Kreps Porteus gauge, utility between

different periods generally has to be aggregated nonlinearly.

Alternatively, I can choose Bernoulli utility in a way to make time aggregation linear.

Stepping stone is the following

Corollary 3 (g-gauge) :

For any sequence of strictly increasing and continuous functions g = (gt)t∈{1,...,T}

with gt : IR → IR the following equivalence holds:

A sequence of preference relations �= (�t)t∈{1,...,T} on (Pt)t∈{1,...,T} satisfying ax-

iom A0, satisfies axioms A1-A5, if and only if, for all t ∈ {1, ..., T} there exist

continuous functions ut : X → IR as well as strictly increasing and continuous

functions ft : Ut → IR such that with defining equation (6) the representation (7)

of theorem 2 holds.

Moreover, (ut, ft)t∈{1,...,T} and (u′
t, f

′
t)t∈{1,...,T} both represent � in the above sense,

if and only if, for some a ∈ IR++ there exist affine transformations a+
t ∈ A

+ and

a
a
t ∈ A

a for all t ∈ {1, ..., T} such that (u′
t, f

′
t) = (g−1

t a
a
t gt ut , a

+
t ft g

−1
t a

a
t
−1 gt).

Choosing the functions gt as the identity for all t ∈ {1, ..., T} yields the certainty additive

gauge. This representation can be simplified by recognizing that the remaining freedom

in choosing a
a
t can be used to normalize ut = [0, U t] and the freedom in choosing a

+
t

13
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can be used to absorb the normalization constants θt into the functions ft.
24 Then, the

characterizing equations (6) and (7) of the representation write as

Certainty additive gauge (g = id−gauge) :

ũt(xt, pt+1) = ut(xt) +Mft+1(pt+1, ũt+1)

pt �t p′t ⇔ Mft(pt, ũt) ≥ Mft(p′t, ũt) .

In this gauge, uncertainty aggregation will generally be nonlinear and, thus, differ from

taking the expected value.

Another gauge is possible whenever the outcome space is a one-dimensional subset

of the reals, i.e. X ⊂ IR, and Bernoulli utility is strictly increasing in the consumption

level x ∈ X. Then, the representing Bernoulli utility functions ut in theorem 2 can be

chosen as the identity. The representation corresponding to equations (6) and (7) is

characterized by

Epstein Zin gauge (u = id−gauge, one commodity) :

ũt(xt, pt+1) = N g
t

(
xt , Mft+1(pt+1, ũt+1)

)
(8)

pt �t p
′
t ⇔ Mft(pt, ũt) ≥ Mft(p′t, ũt)

In this representation, Bernoulli utility is not explicit anymore. Such a gauge is used

by Epstein & Zin (1989) to distinguish between risk aversion and intertemporal substi-

tutability as explained in the next section.

3 Epstein Zin in General Consumption Space

The section analyzes Epstein & Zin’s (1989) disentanglement of (standard) risk aversion

and intertemporal substitutability. I discuss the coordinate and good dependence of the

risk measure and relate both to the gauge freedom in the representations of section 2.

3.1 Atemporal Risk Aversion & Intertemporal Substitutability

Risk aversion and intertemporal substitutability cannot be distinguished in the stan-

dard framework of intertemporally additive expected utility (Weil 1990). In the latter

24As gt = id, the normalization constants are θt =
∆Ut∑

T

τ=t
∆Uτ

= Ut∑
T

τ=t
Uτ

and ϑt =
Ut+1·0−0·Ut

Ut

= 0.

Recall that these constants were introduced to make the intertemporal aggregation rule well defined.
As the intertemporal aggregation rule is eliminated in the certainty additive gauge, it is no surprise
that the constants can be eliminated as well.
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approach, the Arrow-Pratt measure of relative risk aversion is confined to the inverse

of the intertemporal elasticity of substitution. In their seminal work Epstein & Zin

(1989) show that these two characteristics of preference can be disentangled in the more

general setting of temporal lotteries.25 The authors use a one commodity setting and

the Epstein Zin gauge derived in section 2.5, where aggregate utility is constructed by

the recursion

ũt(xt, pt+1) = N g
t

(
xt , Mft+1(pt+1, ũt+1)

)
. (9)

Precisely, the representation assumed by Epstein & Zin (1989) slightly differs from the

one supported by my axioms. On the one hand, with respect to the intertemporal

aggregation rule, the authors assume the special case where g(z) = zρ, which renders

an intertemporal aggregation with a constant elasticity of intertemporal substitution.

On the other hand, they employ a more general uncertainty aggregation rule, which

cannot be characterized by a simple function f and, in general, does not comply with

von Neumann & Morgenstern’s (1944) independence axiom.

In equation (9), the functions ft (respectively operators Mft) are interpreted to char-

acterize risk aversion. The functions gt are interpreted to characterize intertemporal

substitutability. The easiest way to derive these interpretations makes use of gauge

lemma 1. In the sense of theorem 2, the above representation corresponds to the se-

quence of triples (id, ft, gt)t∈{1,...,T}. First, restricting attention to intertemporal choice

under certainty, I replace the second entry by a ‘·’ to emphasize its insignificance. By

virtue of lemma 1, the representation can be transformed to the form (gt, ·, id)t∈{1,...,T},

where gt takes the position of Bernoulli utility and intertemporal aggregation is linear.

On certain consumption paths, this latter representation is equivalent to the standard

intertemporally additive model where the functional form of utility in period t is gt.

Therefore, gt is a measure of intertemporal substitutability. In a stationary setting with

a discount factor β and a constant elasticity of intertemporal substitution as assumed in

Epstein & Zin (1989) it is gt(xt) = βtx
ρ
t and the intertemporal elasticity of substitution

is σ =
(

− g̈(xt)
ġ(xt)

xt

)−1

= 1
1−ρ

. I use the Newtonian dot-notation for the derivative to avoid

confusion with the prime that labels changed coordinates or representations. Second,

restricting attention to atemporal choice under certainty, I replace the third entry by a ‘·’

to emphasize its insignificance. Here, I can rewrite the representing triples as (ft, id, ·).

In the atemporal case the representation is equivalent to the standard expected utility

25As I show in Traeger (2007b), such a disentanglement can also be achieved in an atemporal lottery
setting.
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model, where ft characterizes the utility function and, thus, uncertainty aversion.26 For

a twice differentiable function ft, the Arrow-Pratt measure of relative risk aversion is

defined as RRA(xt) = − f̈t(xt)

ḟt(xt)
xt. The advantage of the Arrow-Pratt-measure as opposed

to ft itself is that it eliminates the affine indeterminacy. For the case of constant relative

risk aversion, where ft(xt) = xα
t , the Arrow-Pratt coefficient becomes RRA = 1−α. As

pointed out by Normandin & St-Amour (1998, 268) the measures ft and α characterize

“a-temporal” risk attitude, as opposed to the “inter-temporal” information contained

in the parametrization of intertemporal substitutability.

In the special case where equation (8) exhibits constant elasticity of substitution and

constant relative risk aversion, the framework is also known as the generalized isoelastic

model. It has been developed independently as well by Weil (1990). Currently, the

latter model represents the predominantly employed framework for disentangling risk

aversion from intertemporal substitutability. Its applications range from asset pricing

(Attanasio & Weber 1989, Svensson 1989, Epstein & Zin 1991, Normandin & St-Amour

1998, Epaulard & Pommeret 2001) over measuring the welfare cost of volatility (Obstfeld

1994, Epaulard & Pommeret 2003b) to resource management27 (Knapp & Olson 1996,

Epaulard & Pommeret 2003a, Howitt et al. 2005) and evaluation of global warming

scenarios (Ha-Duong & Treich 2004). An overview over the empirical findings for the

parameters α and ρ can be found in Giuliano & Turnovsky (2003).

3.2 Measure Scale Dependence of the Risk Measure

The analysis in section 2.5 points out that the Epstein Zin gauge is a particular represen-

tation for a setting where a one dimensional scale allows to measure everything relevant

to preferences and welfare evaluation. By choosing Bernoulli utility as the identity, this

exogenously given scale is used to measure risk aversion and intertemporal substitutabil-

ity. In the following, I integrate the Epstein Zin model into the general setting with a

multidimensional consumption space. To these ends, I assume that X is locally home-

omporphic to the n–dimensional Eucledian space, making X an n–manifold.28 Then,

26While theorem 2 is constructed for T ≥ 2 periods, the atemporal treatment in section 2.3 with the
corresponding gauge lemma covers the case.

27While Knapp & Olson (1996) and Epaulard & Pommeret (2003a) solve theoretical models in order
to obtain optimal rules for resource use, Howitt, Msangi, Reynaud & Knapp (2005) try to rationalize
observed reservoir management in California, which cannot be explained by means of intertemporally
additive expected utility.

28X is complete metric and, therefore, a second countable Hausdorff space.
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for every ◦x in the interior of X, there exists an open neighborhood N(◦x) ⊂ X with a

coordinate chart Φ : N(◦x) → IRn. To simplify the presentation, I discuss consumption

changes in the neighborhood of a consumption point ◦x̄ ∈ X for which there is a single

chart Φ covering a compact subset
◦

X ⊂ X with some open neighborhood N(◦x̄) ⊂
◦

X .

It will be sufficient to analyze preferences and representations on the set
◦

X . I denote

the codomain of
◦

X under Φ by
∗

X ⊂ IRn. Then, making use of the coordinate system,

the mapping

◦

X
ut−→ Ut ,

can be broken up into the steps

◦

X
Φ

−→
∗

X
u∗

t−→ Ut (10)

where
◦

X ⊂ X describes goods and welfare determining states of the world,
∗

X ⊂ IRn

depicts their coordinate characterization in terms of n−tuples of real numbers, and

Ut ⊂ IR is the one dimensional codomain of the Bernoulli utility function. The function

u∗
t = ut ◦ Φ−1 denotes a Bernoulli utility function defined on the coordinate space.

Making use of the coordinate system, a representation of preferences � on
◦

X in the

sense of theorem 2 can be written as the triples

(ut, ft, gt)t∈{1,...,T} = (u∗
t ◦ Φ, ft, gt)t∈{1,...,T} .

The point of departure of most economic models is not the space of consumption goods

itself, but the coordinate space
∗

X . Taking as given some exogenous coordinate system Φ,

the models represent the implied preferences that are defined directly on the coordinate

values, i.e. on the space
∗

X . This approach leads to a reduced representation by the

triples

(u∗
t , ft, gt)

Φ
t∈{1,...,T} ,

which I label by the exogenous coordinate system Φ.29

I now restrict attention to a one dimensional variation in consumption space along a

one dimensional submanifold
◦

X
1
. I assume that the coordinates are picked such that

the first component of the coordinate chart Φ coincides with the consumption variation,

i.e. Φi(
◦x) = ∗x̄i ≡ Φi(

◦x̄) for i > 1 and ◦x ∈
◦

X
1
while the first coordinate varies in

29For a given coordinate system Φ, the functions ft and gt are the same in the ‘complete’ and
in the ‘reduced’ representation (up to their affine indeterminacy). The reduced representation is a
representation in the sense of theorem 2 for the ‘implied preferences’ � |∗X defined on

∗

X . These
‘implied preferences’ can formally be defined as the binary relation � |∗X ≡ {(∗xa, ∗xb) ∈

∗

X ×
∗

X :
∃(xa, xb) ∈ X ×X with (xa, xb) ∈� |◦X and ∗xa = Φ(xa), ∗xb = Φ(xb)}. As Φ is a coordinate system
of

◦

X , all necessary conditions for the representation theorem carry over.
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∗

X
1
= Φ1(

◦

X
1
). It is the space

∗

X
1
that is taken as point of departure in the Epstein Zin

representation. Restricting the map (10) to the one dimensional consumption variation

and choosing the restricted one dimensional Bernoulli utility functions u∗
t |∗X1 as the

identity yields

◦

X1 Φ1−→
∗

X1 id
−→ Ut =

∗

X1 .

The representation in the sense of theorem 2 that uses the above map to represent

preferences over the restricted part of the commodity space
◦

X1 is (Φ1, ft, gt)t∈{1,...,T}.

In its reduced form on
∗

X1 it becomes

(id∗

X
1 , ft, gt)

Φ1

t∈{1,...,T} . (11)

Equation (9) corresponds to such a representation.

A general change of the measure scale for the one dimensional good or consumption

variation depicted by the model corresponds to a change of the first component of the

coordinate chart by some strictly increasing continuous transformation s : IR → IR yield-

ing the new coordinates Φ′
1 = s◦Φ1. By gauge lemma 1, the coordinate transformation

implies a representation change to the triples (Φ′
1, ft ◦ s−1, gt ◦ s−1)t∈{1,...,T}. Defining

∗

X1′ = s(
∗

X1), f ′
t = ft ◦ s−1 and g′t = gt ◦ s−1 the new reduced form representation

becomes

(id∗

X
1′ , f ′

t , g
′
t)

Φ′

t∈{1,...,T} .

Assuming twice differentiability of ft and f ′
t , I compare the Arrow-Pratt measure in the

old
(

RRAt(
∗x) = −

f̈t(∗x)
ḟ ′

t(
∗x)

∗x
)

and in the new
(

RRA′
t(

∗x′) = − f̈ ′

t
(
∗x′

)

ḟ ′

t
(
∗x′

)

∗x′
)

coordinates.

To evaluate both at the same point ◦x in consumption space, the new measure has to

be evaluated at ∗x′ = s(∗x) yielding30

RRA′
t(

∗x′)|∗x′=s(
∗

x)=−
s(∗x)

ṡ(∗x)

[

f̈t (
∗x)

ḟt (
∗x)

−
s̈ (∗x)

ṡ (∗x)

]

=
s(∗x)

ṡ(∗x)

[
RRAt(

∗x)
∗x

+
s̈ (∗x)

ṡ (∗x)

]

. (12)

Equation (12) states that the Arrow-Pratt measure of relative risk aversion generally

depends on the measure scale.

Proposition 1: Whether an agent is Arrow Pratt risk averse or risk loving in the Ep-

stein Zin model depends on the measure scale of the good (coordinate system).

For a given preference relation and a given one dimensional variation in consump-

tion space, the Arrow Pratt measure of relative risk aversion RRA in the Epstein

30See proof of proposition 1. The relation between ∗x′ and ∗x follows from ∗x′ = Φ′
1(

◦x) = s◦Φ1(
◦x) =

s(∗x).
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Zin setting can be set to any desired real value by an appropriate choice of the

coordinate system.

Some goods come with a natural concept of doubling and a natural meaning of a ‘zero

level’. For these goods, a natural coordinate system can be singled out by requiring

that it preserves scalar multiplication and maps the ‘zero level’ into 0 ∈ IR. Then,

the Arrow Pratt measure for a good with respect to its natural coordinate system is

determined uniquely.31 However, many if not most of our welfare influencing factors are

not equipped with such a natural vector space structure. A ubiquitous example is the

quality of goods including taste, appearance, and e.g. environmental quality.32

3.3 Commodity Dependence of the Risk Measure

Next I consider a second variation in consumption space along the one dimensional

submanifold
◦

X
2
and assume that this second variation is captured by the second coor-

dinate Φ2, i.e.
∗x2 varies in

∗

X
2
= Φ2(

◦

X
2
) while Φi(

◦x) = ∗x̄i for i 6= 2 and ◦x ∈
◦

X
2
.

Moreover, let the variations described by Φ1 and Φ2 characterize a quantitative change

of two consumption goods with a naturally given vector space structure, i.e. there exists

a natural zero level, a natural concept of doubling, and a natural unit (e.g. coconuts

and litchi quantity). Let Φ be a natural coordinate system preserving the natural vector

(sub)space structure for the goods. In the following, I analyze Bernoulli utility on these

given coordinates (suppressing the fixed coordinates Φi(x) =
∗x̄i, i > 2). Let u∗

t id1 be a

Bernoulli utility function on
∗

X satisfying u∗
t id1|∗X1 = id∗

X
1 . It gives once more rise to

the representation (id∗

X
1 , ft, gt)

Φ
t∈{1,...,T} corresponding to equation (11).

Whenever the two consumption goods are not perfect substitutes, this Bernoulli util-

ity will not coincide to the identity for variations along
∗

X2 (keeping Φ1(
◦x) = ∗x̄1),

i.e. u∗
t id1 |∗X2 6= id∗

X
2 . The following mapping describes a representation using u∗

t id1 to

describe variations along
∗

X2

◦

X2 Φ2−→
∗

X2
u
id1

|∗
X

2

−−−→ Ut .

In order to obtain an Epstein Zin representation for variations of the second good I have

31The well known independence of the measure of relative risk aversion from the unit of measurement
is observed from equation (12) by setting s = ax with a > 0.

32Note that even in a setting where preferences would be defined on wealth, the choice of the ‘zero
level’ is somewhat arbitrary. Should it include the estimated value of an individiuals material goods,
his human capital, the value of his health state or his access to public goods? All would change the
agents Arrow Pratt measure of relative risk aversion.
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to employ gauge lemma 1, resulting in the representation

(id∗

X
2 , ft ◦ s

−1, gt ◦ s
−1)Φ2

t∈{1,...,T} with s = uid1 |∗X2 .

Then, the implied Arrow-Pratt risk measure at ◦x̄ for this one dimensional change along

the second coordinate is related to the Arrow-Pratt measure for a change along the

first coordinate the same way as are RRA′ and RRA in equation (12). However, in

section 3.2 s was determined by a change in the coordinate system. In the current

section I have assume a given natural coordinate system and s is now determined by

the preference relation. Within the set of preferences described by the axioms of this

paper, all functions s can hold. As a particular consequence the following proposition

holds.

Proposition 2: For a given coordinate system, sign and magnitude of the Arrow Pratt

measure of relative risk aversion in the Epstein Zin model generally depend on the

good or consumption variation under observation.

For example, take a decision maker who exhibits isoelastic preferences with f(z) = z2,

g(z) = zρ and Bernoulli utility described by u∗(x1, x2) = x
1/4
1 x

3/4
2 with respect to the

natural coordinates. With respect to variations of the first good, the decision maker is

risk averse with an Arrow Pratt measure of relative risk aversion of RRA = 1
2
. With

respect to variations of the second good, the decision maker is risk loving with an Arrow

Pratt measure of relative risk aversion of RRA = −1
2
.33

3.4 Coordinate and Good Independence of ft ◦ g
−1
t

This subsection identifies a candidate for a risk measure that is not coupled to a partic-

ular consumption good or its measure scale, but rather to preference directly. In section

3.2, a change in measure scale corresponds to a change of Φ that translates into a change

of u∗
t . Regauging u∗

t to the identity, in order to conserve the Epstein Zin interpretation,

changes the representing funtions ft and gt characterizing Arrow Pratt risk attitude

and intertemporal substitutability. In section 3.3, changing the good under observation

gave rise to a similar change in u∗
t . Again, by regauging u∗

t , this change was carried

over into the functions characterizing Arrow Pratt risk attitude and intertemporal sub-

stitutability. Both changes, in the measure scale and in the good under observation,

33In the extension of atemporal risk aversion to multiple commodities, as developed by Kihlstrom
& Mirman (1974), this finding corresponds to a decision maker, who pays a positive risk premium for
lotteries of one good, but a negative risk premium for lotteries over another good.
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affect the Arrow Pratt characterization of risk (by means of ft) as a consequence of the

necessity to regauge Bernoulli utility u∗
t . Conversely, if a function in the representation

of a preference relation � is not affected by changes in the representing Bernoulli utility

function it will not affected by changes in measure scale or the good under observation

either. The following proposition identifies such a gauge-invariant function.

Proposition 3: Let the preference relation �= (�t)t∈{1,...,T} satisfy the axioms of the-

orem 2 and let u = (ut)t∈{1,...,T} and u′ = (u′
t)t∈{1,...,T} satisfy ut, u

′
t ∈ B�t

. Then,

there exist representations (ut, ft, gt)t∈{1,...,T} and (u′
t, f

′
t , g

′
t)t∈{1,...,T} in the sense of

theorem 2 such that ft ◦ g
−1
t = f ′

t ◦ g
′−1
t for all t ∈ {1, ..., T}.

The proposition states that the functions (ft ◦ g
−1
t )t∈{1,...,T} are independent of the co-

ordinate system and the good under observation. It can be restated as the fact that

the sequence of functions (ft ◦ g−1
t )t∈{1,...,T} is gauge invariant. Because of the affine

freedom of ft ◦ g−1
t in the representation only the class H� = {ht ∈ C0(IR) : ∃a,a′ ∈

A
+ s.th. ht = aft ◦ g

−1
t a

′} and not the function ft ◦ g
−1
t itself is uniquely determined by

�. The next section shows that the functions (ft ◦ g
−1
t )t∈{1,...,T} in fact are measures of

risk aversion.

4 Intertemporal Risk Aversion

The section introduces the concept of intertemporal risk aversion (IRA), relates it to

the invariant found at the end of the preceding section, and gives conditions for the

uniqueness of the measures of absolute and relative intertemporal risk aversion.

4.1 IRA – Axiomatic characterization

This subsection introduces the axiom of intertemporal risk aversion. I give two alter-

native formulations that turn out equivalent in the present preference framework. The

first formulation employs the lottery
∑T

i=t
1

T−t+1
(x−i, x

′
i). It yields with equal proba-

bility the consumption paths (x−i, x
′
i), i ∈ {t, ..., T}. The lottery can also be described

as follows. Starting from a consumption path x I switch one of its entries xi by the

entry x
′
i of a consumptin path x

′. The lottery draws with equal probability the period

i in which consumption is changed from xi to x
′
i.

A decision maker is said to exhibit weak intertemporal risk aversion in period t < T ,

if and only if the following axiom is satisfied:
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A6w (weak intertemporal risk aversion) For all x, x′ ∈ X
t holds

x ∼t x
′ ⇒ x �t

∑T
i=t

1
T−t+1

(x−i, x
′
i).

A decision maker is said to exhibit strict intertemporal risk aversion in period t < T , if

and only if the following axiom is satisfied:

A6 s (strict intertemporal risk aversion) For all x, x′ ∈ X
t holds

x ∼t x
′ ∧ ∃ τ ∈ {t, ..., T} s.th. xτ 6∼∗

τ x
′
τ

⇒ x ≻t

∑T
i=t

1
T−t+1

(x−i, x
′
i).

I start with the interpretation of the strict axiom.34 The first part of the premise states

that a decision maker is indifferent between the certain consumption paths x and x
′.

The second part of the premise requires that there exists a period τ , in which the

decision maker is not indifferent between the outcome delivered by consumption path x

and the one delivered by consumption path x
′. Without loss of generality assume that

outcome xτ is strictly preferred to outcome x
′
τ , i.e. xτ ≻∗

τ x
′
τ . Then, by the first part

of the premise, there also exists a period τ ′ in which x
′
τ ′ ≻∗

τ xτ ′ . Thus, the premise

implies that there exists a consumption path (x−τ ′ , x
′
τ ′) that is judged superior as well

as a consumption path (x−τ , x
′
τ ) that is judged inferior with respect to the consumption

path x. Overall, the paths (x−i, x
′
i) with i ∈ {t, ..., T} that are judged superior and

those that are judged inferior with respect to x balance each other in the sense of the

intertemporal trade-off given in the first part of the premise. The second line of axiom

A6 s states that for consumption satisfying the above conditions, an intertemporal risk

averse decision maker prefers the consumption path x with certainty over the lottery

that yields with equal probability any of the consumption paths (x−i, x
′
i), some of which

make him better off and some of which make him worse off.

The interpretation for the weak axiom A6w is analogous, only that the consumption

path x is allowed to coincide with x
′, and the implication only requires that the lottery

is not strictly preferred over the certain consumption path. If axiom A6 s [A6w] is

satisfied with ≻t [�t] replaced by ≺t [�t], the decision maker is called a strong [weak]

intertemporal risk seeker. If a decision maker’s preferences satisfy weak intertemporal

34In the interpretation I assume that preferences satisfy the axioms introduced for the representation
in theorem 2.
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risk aversion as well as weak intertemporal risk seeking, the decision maker is called

intertemporal risk neutral.

Before stating the theorem that characterizes intertemporal risk aversion in terms

of the representation of theorem 2, I offer an alternative axiomatic characterization of

intertemporal risk aversion, which only involves a lottery over two consumption paths.

To these ends, define for x, x′ ∈ X
t the consumption paths xhigh(x, x′), xlow(x, x′) ∈ X

t by

(xhigh(x, x′))τ =

{

x
′
τ if x′τ ≻∗

τ xτ

xτ if xτ �∗
τ x

′
τ

and

(xlow(x, x′))τ =

{

x
′
τ if xτ �∗

τ x
′
τ

xτ if x′τ ≻∗
τ xτ

for τ ∈ {t, ..., T}. The consumption path x
high(x, x′) collects the better outcomes of

every period of the two consumption paths x and x
′, while xlow(x, x′) collects the inferior

outcomes of every period. The definition of weak intertemporal risk aversion in period

t < T can also be stated as follows:

A6w
* (weak intertemporal risk aversion) For all x, x′ ∈ X

t holds

x ∼t x
′ ⇒ x �t

1
2
x
high(x, x′) + 1

2
x
low(x, x′).

And strict intertemporal risk aversion in period t < T can be written as:

A6 s
* (strict intertemporal risk aversion) For all x, x′ ∈ X

t holds

x ∼t x
′ ∧ ∃ τ ∈ {t, ..., T} s.th. xτ 6∼∗

τ x
′
τ

⇒ x ≻t
1
2
x
high(x, x′) + 1

2
x
low(x, x′).

The interpretations are analogous to those of axioms A6w and A6 s. However, the ‘worse

off’ versus ‘better off’ trade-off in the lottery can be observed more directly. For long

time horizons, the formulation in axioms A6w
* and A6 s

* reduces the consumption paths

offered by the lottery significantly. In the case of two periods, both axioms A6w and

A6w
* respectively A6 s and A6 s

* coincide. Theorem 3 in the next subsection proves the

general equivalence of the two formulations within the preference setup of representation

theorem 2.
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4.2 IRA – Functional Characterization

The following theorem relates the concept of intertemporal risk aversion to the invariant

found in proposition 3 of the preceding section. The set Γt is defined as Γt =
(
Gt, Gt

)
.

Theorem 3: Let the sequence of triples (ut, ft, gt)t∈{1,...,T} represent the preferences

�= (�t)t∈{1,...,T} in the sense of theorem 2. For t ∈ {1, ..., T − 1} the following

assertions hold:

a) A decision maker is strictly intertemporal risk averse [seeking] in period t in

the sense of axiom A6 s, if and only if, ft ◦ g−1
t (z) is strictly concave [convex] in

z ∈ Γt.

b) A decision maker is weakly intertemporal risk averse [seeking] in period t in the

sense of axiom A6w, if and only if, ft ◦ g
−1
t (z) is concave [convex] in z ∈ Γt.

c) A decision maker is intertemporal risk neutral in period t, if and only if,

ft ◦ g
−1
t (z) is linear in z ∈ Γt.

d) Assertions a-c) hold when replacing axiom A6 s by A6 s
* and axiom A6w by A6w

* .

Theorem 3 characterizes intertemporal risk attitude in period t by the curvature of the

functions ft ◦ g−1
t . Concavity of the composition h ≡ ft ◦ g−1

t can be paraphrased as

ft being concave with respect to gt (Hardy et al. 1964). This interpretation stands out

more clearly when rewriting the relation as ft = h ◦ gt. Then ft is seen to be a concave

transformation of gt. In the one dimensional Epstein Zin analysis with ft and gt being

twice differentiable, ft ◦g
−1
t concave is equivalent to the Arrow Pratt measure of relative

risk aversion dominating the aversion to intertemporal substitution, i.e. equivalent to

− f̈t(x)

ḟt(x)

∣
∣
∣
g−1
t

(x)
> − g̈t(x)

ġt(x)

∣
∣
∣
g−1
t

(x)
.35 However, the function ft ◦ g

−1
t is well defined also in the

multi-commodity setting. Moreover, as seen in proposition 3, in difference to ft and gt

taken individually, the composition is uniquely determined by the preference relation

(up to affine transformations). The composition expresses that an intertemporal risk

averse decision maker is more averse to substitute consumption into a risky state than

35Here aversion to intertemporal substitutability is measured as the inverse of the intertemporal
elasticity of substitution. The relation derives as follows

d2

dx2
ft ◦ g

−1
t (x) < 0 ⇔

d2

dx2 ft(x)
d
dx
ft(x)

< −
d2

dx2 g
−1
t (x)

(
d
dx
g−1
t (x)

)2 ⇔ −
d2

dx2 ft(x)
d
dx
ft(x)

∣
∣
∣
∣
∣
g
−1

t
(x)

> −
d2

dx2 gt(x)
d
dx
gt(x)

∣
∣
∣
∣
∣
g
−1

t
(x)

.
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to substitute it into a certain future.36 For period T , the function fT ◦g
−1
T is determined

by the underlying preferences �= (�t)t∈{1,...,T} to the same degree as the compositions

ft ◦ g
−1
t for any other period. Therefore, theorem 3 can be used to extend the definition

of intertemporal risk aversion to the last period of the planning horizon. A decision

maker, and only a decision maker who is intertemporal risk neutral in all periods can be

described by the intertermporally additive expected utility standard model.37 Then ft

equals gt up to affine transformations and, in the Epstein Zin setting, his Arrow Pratt

risk aversion is determined completely by choices under certainty.

An interesting interpretation of theorem 3 and the axioms of intertemporal risk aver-

sion arises in the certainty additive gauge. This representational form is particularly

well suited to give Bernoulli utility the interpretation of welfare, in the sense that a unit

of welfare more in one period and a unit of welfare less in another period bring about

the same aggregate welfare. For example axiom A6w
* gains the following interpretation.

The premise requires that for two consumption paths, x and x
′, the per period welfare

adds up to the same overall welfare. The consumption path x
high(x, x′) collects for ev-

ery period the outcome xt or x′
t that renders the comparatively higher welfare, while

the consumption path x
low(x, x′) collects the outcome xt or x

′
t that yields the compar-

atively lower welfare. By construction, the lottery in axiom A6 s
* between these ‘high

welfare’ and ‘low welfare’ consumption paths renders in expectation the same welfare

as the certain consumption path x. A decision maker who is weakly intertemporal risk

averse is defined by preferring the certain consumption path x over the welfare lottery

that leaves him with equal probability either worse or better off, and yields the same

welfare as the certain consumption path in expectation. With such an interpretation of

certainty additive Bernoulli utility as welfare, intertemporal risk aversion can be under-

stood as risk aversion with respect to welfare gains and losses or just as risk aversion

on welfare. That interpretation is immediate as well from theorem 3. For the certainty

additive gauge, the latter states that intertemporal risk aversion is characterized by the

concavity of ft alone. The difference between ft being a measure of intertemporal risk

36This intuition is formulated slightly more precise in a situation where a decision maker has the
possibility to either smooth consumption over time or over risk. Whenever the intertemporal risk
neutral decision maker is indifferent between the two options, the intertemporal risk averse decision
maker prefers to smooth consumption over the risky states, while the intertemporal risk seeking decision
maker prefers to keep the risk but smooth consumption over time.

37Take the certainty additive gauge (gt = id) and note that by part c) of theorem 3 ft becomes
linear. Thus, intertemporal aggregation is additive and the uncertainty aggregation rule coincides with
the expected value operator.
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aversion instead of a standard risk aversion in the Arrow Pratt (or Epstein Zin) sense

is that welfare replaces a one dimensional consumption argument.

4.3 Measures of IRA

This section establishes quantitative measures of intertemporal risk aversion. The natu-

ral candidate is the construction of an analogue to the coefficient of relative risk aversion

in the atemporal setting. For a twice differentiable function ft ◦ g
−1
t : Γt → IR define a

measure of relative intertemporal risk aversion in period t as the function

RIRAt : Γt → IR

RIRAt(z) = −
d2

dz2
ft ◦ g

−1
t (z)

d
dz
ft ◦ g

−1
t (z)

z .

To evaluate the measure of relative intertemporal risk aversion for a particular point in

consumption space define

RIRAt[x̃t] = RIRAt(z)|z=gt◦ũt(x̃t) .

The so defined numerical measure is not uniquely determined by preferences. In differ-

ence to the Arrow Pratt measure of atemporal risk aversion, however, the indeterminacy

of RIRAt is not caused by a dependence on the Bernoulli utility function employed in

the representation. The indeterminacy is caused by the affine freedom prevailing in the

representations. Define a(z) = az + b and ã(z) = ãz + b̃ with a, ã > 0 and let f ′
t = aft

and g′t = ãgt. The transformation corresponds to the freedom of ft and gt in theo-

rem 2. For the new choice f ′
t and g′t in the representation, the coefficient38 of relative

intertemporal risk aversion, evaluated for the same outcome x̃t as RIRAt, calculates to

RIRA′
t(z

′)|z′=ãz+b̃ = −
d2

dz′2
f ′
t ◦ g

′
t
−1(z′)

d
dz′

f ′
t ◦ g

′
t
−1(z′)

z′

∣
∣
∣
∣
∣
z′=ãz+b̃

= −
d2

dz2
ft ◦ g

−1
t (z)

d2

dz2
ft ◦ g

−1
t (z)

ã z + b̃

ã
. (13)

While the affine indeterminacy corresponding to the transformation ft ◦g
−1
t → aft ◦g

−1
t

leaves the coefficient of relative intertemporal risk aversion unchanged, an affine change

corresponding to a non-zero b̃ in ft ◦ g
−1
t → ft ◦ g

−1
t ã

−1 changes the coefficient.

The economic interpretation of this indeterminacy is best understood in the certainty

additive gauge, where I interpreted certainty additive Bernoulli utility as welfare. Here,

intertemporal risk aversion turns into risk aversion with respect to welfare gains and

38I adopt the word coefficient also for the case where the function is non-constant and, thus, ‘the’
coefficient is a function of z.
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losses. However, the intertemporal trade-off determines the respective welfare function

only up to affine transformations. In order to obtain a measure of relative risk aver-

sion, the zero level has to be defined. This reasoning is analogous to that on measure

scale dependence in section 3. However, intertemporal risk aversion is measured with

respect to the abstract concept of welfare, whose measure scale is determined up to

affine transformations. As soon as a zero welfare level is fixed, the coefficients of relative

intertemporal risk aversion are uniquely defined. Formally, in equation (13) the choice

of a zero welfare level eliminates b̃.

A similar reasoning applies for the definition of a measure of absolute intertemporal

risk aversion in period t as the function

AIRAt : Γt → IR

AIRAt(z) = −
d2

dz2
ft ◦ g

−1
t (z)

d
dz
ft ◦ g

−1
t (z)

,

with absolute intertemporal risk aversion at point x̃t in consumption space defined by

AIRAt[x̃t] = AIRAt(z)|z=gt◦ũt(x̃t). Thinking of intertemporal risk aversion as risk aver-

sion on (certainty additive) welfare gives rise to the insight that the intertemporal trade-

off leaves the unit of welfare measurement undetermined. While the indeterminateness

of the unit is irrelevant for relative measures of risk aversion, it is required for absolute

measures. Formally, under the same transformation of ft and gt as above, the new coeffi-

cient of absolute intertemporal risk aversion, evaluated for the same outcome, calculates

to

AIRA′
t(z

′)|z′=ãz+b̃ = −
d2

dz′2
f ′
t ◦ g

′
t
−1(z′)

d
dz′

f ′
t ◦ g

′
t
−1(z′)

∣
∣
∣
∣
∣
z′=ãz+b̃

= −
d2

dz2
ft ◦ g

−1
t (z)

d
dz
ft ◦ g

−1
t (z)

1

ã
. (14)

Again, the affine indeterminacy corresponding to the transformation ft◦g
−1
t → aft◦g

−1
t

leaves the coefficient of absolute intertemporal risk aversion unchanged. However, a

linear change corresponding to ã in ft ◦ g−1
t → ft ◦ g−1

t ã
−1 changes the coefficient.

Fixing the unit of welfare measurement eliminates the constant ã.

Note that, no matter what gauge, it is always the information obtained from the eval-

uation of intertemporal trade-offs that has to be enriched in order to render either of the

measures well defined. In the certainty additive gauge, this information is characterized

by the certainty additive Bernoulli utility (which I identified with welfare). In general

gauges it is characterized by the composition gt ◦ ut. The following proposition states

the general premises to make the numerical measures RIRAt and AIRAt well defined.
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Proposition 4: Let a sequence of preference relations �= (�t)t∈{1,...,T} be represented

in the sense of theorem 2 with twice differentiable functions (ft ◦ g
−1
t )t∈{1,...,T}.

a) Choose x̄t ∈ X and fix gt ◦ ut(x̄t) = 0 for all t ∈ {1, ..., T}. Then, the risk

measures RIRAt[x̃t] are uniquely determined and coincide for all representations

of � in the sense of theorem 2 .

b) Choose two outcomes x́t∗ , x̀t∗ ∈ X with x́t∗ ≻
∗
t∗ x̀t∗ , a strictly positive number w̄

and fix gt∗ ◦ut∗(x́t∗)− gt∗ ◦ut∗(x̀t∗) = w̄t∗ for some arbitrary period t∗ ∈ {1, ..., T}.

Then, the risk measures AIRAt[x̃t] are uniquely determined and coincide for all

representations of � in the sense of theorem 2.

A particularly convenient form of fixing the risk measures uniquely is choosing the

certainty additive gauge and U t = 0 for all t ∈ {1, ..., T} and U1 = 1. Then, the zero

welfare level is fixed to be the worst outcome in every period and the unit of welfare

corresponds to the welfare difference between the best and the worst outcome in the

first period.

4.4 Revisiting the Castaway

What have we learned about characterizing Robinson’s risk attitude? Taking into ac-

count his intertemporal decisions, the measure of intertemporal risk aversion allows us

to uniquely tell whether Robinson likes risk or dislikes risk. Identifying some point in

consumption space with a zero welfare level,39 Robinson’s numerical measure of relative

intertemporal risk aversion is uniquely determined for every point in (physical40) con-

sumption space. The measure can be derived from decisions over coconuts as well as

over litchies or from his decisions involving the coconut quality chart. The numerical

measure of absolute intertemporal risk aversion is uniquely determined for every point

in consumption space, whenever two (non-indifferent) points in consumption space are

identified with a unit difference in welfare.

39Welfare is understood as Robinson’s certainty additive Bernoulli utility function.

40That is, for every physical state of the world and Robinson’s ‘real world consumption’ independent
of the coordinate system applied to describe the consumption or the state of the world.
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5 Conclusions

I derived the general time consistent model that yields an additive evaluation of cer-

tain consumption paths, and respects the von Neumann Morgenstern axioms in every

period. The representation admits the freedom to pick strictly increasing transforma-

tions of Bernoulli utility, the evaluation function for certain outcomes within a period.

I related good and measure scale dependence of risk measures to the behavior of the

representation under transformations of Bernoulli utility. This relation served to iden-

tify good and measure scale (in)dependence of risk measures. Moreover, the freedom

in picking Bernoulli utility allowed for a simultaneous derivation of different representa-

tional forms, including a new certainty additive representation and a multicommodity

extension of the Epstein Zin representation.

I employed this framework to introduce a concept of intertemporal risk aversion that

is independent of the good under observation or its measure scale. I provided two alter-

native axiomatic characterizations of intertemporal risk aversion. I derived measures of

relative and absolute intertemporal risk aversion and discussed there uniqueness prop-

erties. An intertemporal risk averse decision maker has a stronger propensity to smooth

consumption over risk than to smooth consumption over time. The widespread modeling

framework of intertemporally additive expected utility implicitly assumes intertemporal

risk neutrality. Conversely, intertemporal risk neutrality uniquely pins down the stan-

dard model within the more general framework. In the certainty additive form of the

representation, which permits a time additive conceptualization of welfare, intertempo-

ral risk aversion can be interpreted as risk aversion with respect to welfare gains and

losses. Areas of application of the concept of intertemporal risk aversion comprise any

field where time and uncertainty play an important role.
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Appendix

A Proofs for Section 2

Notational Remark: Some proofs employ the additional notation that xt ∈ X
t denotes

a consumption path from period t to period T . As before, xtτ denotes the period τ entry

of consumption path x
t.

Proof of theorem 1: Sufficiency: i) As X is a compact metric space it is Polish and,

thus, separable. Therefore, by theorem 3 of Grandmont (1972) axioms A1-A3 imply the

existence of an expected utility representation.

ii) Denote a general representation in the sense of theorem 1, equation (4), by (v, f).

The expected utility representation corresponds to the special case (v0, id), for some v0 ∈

C0(X). Obviously v0 is a Bernoulli utility function and it holds v0(x1) ≥ v0(x2) ⇔ x1 �

x2 ⇔ v(x1) ≥ v(x2) for all x1, x2 ∈ X. Therefore, a strictly increasing transformation

s relates the function v stated in the theorem to the one in the expected utility form:

v = s ◦ v0.

iii) To find that continuity of v and v0 imply continuity of s : V 0 → V , define V 0 ≡

range(v0) and V ≡ range(v). The preimage of any closed subset A ⊂ U under s is

closed:

As v is continuous the preimage of A under v, B = v−1(A), is closed. Moreover, a closed

subset of a compact space B is compact and the image of a compact set under the

continuous function v0 is compact (Schofield 2003, 111). In consequence the resulting

image v0(B), which is the sought for preimage of A under s,41 is closed. Hence, s is

continuous.

iiii) If a tuple (v, f) represents � in the sense of theorem 1, then so does the tuple

(s ◦ v, f ◦ s−1) for any s : V → IR strictly increasing and continuous:

The second tuple denotes the representation sf−1
[∫

X
(fs−1)(sv dp

]
= sf−1

[∫

X
fv dp

]
.

It a strictly increasing transformation of the representation Mf (p, v) for � and hence a

representation for � itself. Moreover s ◦ v and f ◦ s−1 are continuous and the latter is

strictly monotonic.42

Therefore, the tuple (s ◦ v0, s−1) represents �. Defining f ≡ s−1 yields the desired

41To confirm that v0(B) is the preimage of A under s note that s ◦ v0(B) = s ◦ v0(v−1(A)) =
v(v−1(A)) = A.

42Continuity of s−1 follows from the fact that the inverse of a strictly monotonic function on an
interval is continuous (Heuser 1988, 231).
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representation (v, f) for �.

Necessity: i) First let f be strictly increasing and (v, f) represent � in the sense of

theorem 1. By iiii) in the sufficiency part of the proof with s = f strictly increasing

and continuous find that (f ◦ v, id) represents �. But with v0 ≡ f ◦ v the latter is an

expected utility representation. Therefore, theorem 3 of Grandmont (1972) verifies that

axioms A1-A3 are satisfied.

ii) For f strictly decreasing note that Mf = M−f and hence the above reasoning can

be applied to the representing tuple (v,−f) with −f strictly increasing.

Uniqueness: As is well known, in the expected utility presentation (v0, id) the function

v0 is unique up to positive affine transformations. Thus, the uniqueness up to positive

affine transformations of f follows from v0 = f ◦ v.

2

Proof of corollary 1: Sufficiency: As in the proof of theorem, 1 axioms A1-A3 imply

the existence of a representation (u0, id) for �. By part iii) in the latter proof, also

(f−1v0, f) represents �. Due to continuity of f−1 (see footnote 42) and v0, the function

u ≡ f−1v0 is a continuous function for which the representation of corollary 1 holds.

Necessity: As v in equation (4) is a Bernoulli utility function, this part of the proof is

implied by necessity in theorem 1.

Uniqueness: Assume v and v′ both represent �: Equation (5) implies for degenerate

lotteries the existence of a strictly increasing function s such that v′ = s ◦ v. As in

iii) of the proof of theorem 1 it follows that s is continuous. By iiii) in the proof of

theorem 1 it follows that with (v′, f) = (s ◦ v, f) also (s−1 ◦ s ◦ v, f ◦ s) = (v, f ◦ s) is a

representation of �. Comparing the latter with the representation (v, f) the uniqueness

part of theorem 1 implies the existence of a ∈ A such that f = afs. From the fact that

s is strictly increasing I can infer that also a has to be strictly increasing and therefore

a = a
+ ∈ A

+. It follows fv = a
+fsv ⇒ fv = a

+fv′ ⇒ v = f−1
a
+fv′.

Assume it exists a+ ∈ A
+ such that v = f−1

a
+fv′: First let f be increasing. If (u, f) is

a representation of � then by theorem 1 also (u,a+f) is a representation. By part iiii)

of the proof of theorem 1 it follows that also ([a+f ]u,a+f [a+f ]−1) is a representation.

Using part iiii) of the proof of theorem 1 once more yields the result that (f−1
a
+fu, f)

is a representation of �. As in the necessity part of the proof of theorem 1, for f de-

creasing use the representation (u,−a
+f). By a similar reasoning as above, the tuples

([−a
+f ]u, id), (f−1{−[−a

+f ]u},−f), (f−1
a
+fu,−f) and (f−1

a
+fu, f) are represena-

tions of �. 2
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Proof of theorem 2: The proof is divided into four parts. The first part gives a

representation for certain consumption paths. Part two derives a corresponding recursive

formulation, still only for certain consumption paths. Finally, part three elaborates the

general representation for temporal lotteries as given in the theorem. Part four verifies

that the derived representation implies all axioms.

Sufficiency: Part I: First, the axioms imply the existence of an additive representation of

�1 |X1 . Hereto note that, if the sets {p′1∈P1 : p
′
1 �1 x} and {p′1∈P1 : x �1 p

′
1} are closed

in P1 for all x ∈ X
1 ⊂ P1, then the sets {p′1 ∈P1 : p′1 �1 x} ∩ X

1 = {x′ ∈X
1 : x′ �1 x}

and {p′1 ∈ P1 : x �1 p′1} ∩ X
1 = {x′ ∈X

1 : x �1 x
′} are closed in X

1 endowed with the

relative topology for all x ∈ X
1. Moreover the relative topology on X

1 is the product

topology on XT . Therefore, by Wakker (1988, theorem III.4.1) axioms A0, A1, A3

and A4’ bring about the existence of a sequence uca
t ∈ C0(X), t ∈ {1, ..., T}, such that

∑T
t=1 u

ca
t represents �1 |X1 .

Second, note that certainty additivity for �1 carries over to �t for all t with coinciding

Bernoulli utility functions uca
τ ,τ≥t . The argument works inductively. Given that �t |X1

has a certainty additive representation with Bernoulli utility functions uca
τ ,τ≥t , it follows

from time consistency A5 that for all xt+1, x′t+1 ∈ X
t+1 and any xt ∈ X:

x
t+1 �t+1 x

′t+1

⇔ (xt, x
t+1) �t (xt, x

′t+1)

⇔ uca
t (xt) +

∑T
τ=t+1 u

ca
τ (xt+1

τ ) ≥ uca
t (xt) +

∑T
τ=t+1 u

ca
τ (x′t+1

τ )

⇔
∑T

τ=t+1 u
ca
τ (xt+1

τ ) ≥
∑T

τ=t+1 u
ca
τ (x′t+1

τ ).

Therefore �t+1 has a certainty additive representation which uses the same Bernoulli

utility functions uca
τ for τ ≥ t+1 as does the above representation for �t. In the following

uca
t continues to denote the above utility index derived from certainty additivity, while

ut denotes the period t (Bernoulli-) utility function given in the theorem.

Third, I show that for every pair of utility functions uca
t and ut there exists a strictly

increasing, continuous transformation gt such that ut = gt ◦ u
ca
t . By uτ ∈ B�t

I have:

ut(xt) ≥ ut(x
′
t)

⇔ xt �∗
t x′

t

⇔ (xt, xt+1, ..., xT ) �t (x′
t, xt+1, ..., xT ) ∀ xt+1, ..., xT ∈ X

⇔ uca
t (xt) +

∑T
τ=t u

ca
τ (xτ ) ≥ uca

t (x′
t) +

∑T
τ=t u

ca
τ (xτ ) ∀ xt+1, ..., xT ∈ X

⇔ uca
t (xt) ≥ uca

t (x′
t)
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Hence ut is a stricly43 monotonic transformation of uca
t and it exists a strictly increasing

function gt : Ut → IR such that uca
t = gt ◦ ut. For the fact that continuity of uca

t and ut

imply continuity of gt consult the proof of theorem 1.

Forth, I give a representation over certain consumption paths in terms of the Bernoulli

utility functions ut, t ∈ {1, ..., T}, given in the theorem. This is merely a task of com-

bining the two results derived above which yield for all t and all xt, x′t ∈ X
t:

x
t �t x

′t

⇔
∑T

τ=t u
ca
τ (xtτ ) ≥

∑T
τ=t u

ca
τ (x′tτ )

⇔
∑T

τ=t gτ ◦ uτ (x
t
τ ) ≥

∑T
τ=t gτ ◦ uτ (x

′t
τ ).

Part II: In this part, I construct the recursive analogue to the above representation for

certain consumption paths. It employs the intertemporal aggregation rules defined in

equations (1) and (2). The first step is to show that the normalization constants defined

in equation (3) ensure that the domain of g−1
t in the intertemporal aggregation rule is

[Gt, Gt]. To this purpose, note that

Gt+1 + ϑt =
Gt+1(Gt−G

t
)+Gt+1Gt

−G
t+1Gt

∆Gt
= ∆Gt+1

∆Gt
Gt and

Gt+1 + ϑt =
G

t+1(Gt−G
t
)+Gt+1Gt

−G
t+1Gt

∆Gt
= ∆Gt+1

∆Gt
Gt .

The maximal value of the argument of g−1
t [ · ] in N g

t is taken on for Gt = gt(U t) and

Gt+1 = gt+1(U t+1) which yields

θt
[
gt(·) + θ−1

t+1 {gt+1(·) + ϑt}
]max

= ∆Gt
∑

T

τ=t
∆Gτ

[

Gt +
∑

T

τ=t+1
∆Gτ

∆Gt+1

{
Gt+1 + ϑt

}]

= ∆Gt
∑

T

τ=t
∆Gτ

[

Gt +
∑

T

τ=t+1
∆Gτ

∆Gt+1

{
∆Gt+1

∆Gt
Gt

}]

= ∆Gt
∑

T

τ=t
∆Gτ

[
Gt∆Gt+Gt

∑

T

τ=t+1
∆Gτ

∆Gt

]

= Gt.

The minimal value of the argument of g−1
t [ · ] in N g

t is taken on for Gt = gt(U t) and

Gt+1 = gt+1(U t+1). In this case, the same equation holds true with Gt replaced by Gt.

Hence the expression defining the intertemporal aggregation rule N g
t is well defined.

For the second step, I introduce the notation t
x
t−1 to denote the continuation of the

consumption path x
t−1 ∈ X

t−1 from period t on, i.e. xt−1 = (xt−1
t−1,

t
x
t−1). Then, define

the aggregate intertemporal utility functions for certain consumptions paths by setting

ũT = uT and for 1 < t ≤ T recursively:

ũt−1(x
t−1) ≡ ũt−1(x

t−1
t−1 ,

t
x
t−1) = N g

t−1

(
ut−1(x

t−1
t−1), ũt(

t
x
t−1)

)

= g−1
t−1

[
θt−1 gt−1 ◦ ut−1(x

t−1
t−1) + θt−1θ

−1
t gt ◦ ũt(

t
x
t−1) + θt−1θ

−1
t ϑt−1

]
.

43The strictness follows from the fact that the transformation work in both directions and negation.
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From the first step in this part it follows that range(ũt) = [U t, U t].

Third, I show that there exist constants ξt, such that the following equation holds for

all t ∈ {1, .., T}:

θ−1
t gt ◦ ũt(x

t) =
∑T

τ=t gτ ◦ uτ (x
t
τ ) + ξt . (15)

As θT = 1 this relation obviously holds for t = T (with ξT = 0). The following

manipulation shows that the equation holds by (backwards) induction for all t:

θ−1
t−1 gt−1 ◦ ũt−1(x

t−1)

= θ−1
t−1 gt−1 ◦ g

−1
t−1

[
θt−1 gt−1 ◦ ut−1(x

t−1
t−1) + θt−1θ

−1
t gt ◦ ũt(

t
x
t−1) + θt−1θ

−1
t ϑt−1

]

= gt−1 ◦ ut−1(x
t−1
t−1) + θ−1

t gt ◦ ũt(
t
x
t−1)

︸ ︷︷ ︸
+ θ−1

t ϑt−1

= gt−1 ◦ ut−1(x
t−1
t−1) +

∑T
τ=t gτ ◦ uτ (x

t−1
τ ) + ξt + θ−1

t ϑt−1
︸ ︷︷ ︸

=
∑T

τ=t−1 gτ ◦ uτ (x
t−1
τ ) + ξt−1 .

But (15) states that on certain consumption paths ũt is a (strictly) increasing transfor-

mation of
∑T

τ=t gτ ◦ uτ and hence a representation of �t |Xt .

Part III: The extension of the representation to uncertainty recursively employs theo-

rem 1 and the following proposition:

In the setup of theorem 1 there exists a certainty equivalent yp for all p ∈ P satisfying

v(yp) = Mf (p, v).

Proof: Pick an arbitrary p ∈ P . I show that the set of certainty equivalents {y ∈

Y : v(y) = Mf (p, v)} is nonempty. As Y is connected compact and v is continuous,

the range is a closed interval v(X) = [V , V ]. Moreover V = min
y

v(y) = f−1
∫ (

min
y

f ◦

v(y)
)
dp ≤ Mf (p, v) ≤ f−1

∫ (
max

y
f◦v(y)

)
dp = max

y
v(y) = V. Therefore, v−1

(
Mf (p, v)

)

is nonempty for all p ∈ P (q.e.d.).

The induction hypothesis in proving theorem 2 is the following: For some t ∈ {1, ..., T}

and ũt defined as in the theorem

H1 ∃ft : Ut → IR s.th. pt �t p
′
t ⇔ Mft(pt, ũt) ≥ Mft(p′t, ũt) ∀ pt, p

′
t ∈ Pt.

The induction step will move backwards from t = T to t = 1. The proof uses (and also

proves recursively) an additional hypothesis claiming that for every lottery there exists

a certainty equivalent that is a certain consumption path:

H2 For all pt ∈ Pt there exists xpt ∈ X
t such that xpt ∼ pt.

First, I verify that induction hypothesis H1 and H2 are satisfied for t = T . Setting

Y = X, y = xT = xT and v = ũT = uT , H1 is an immediate consequence of theorem 1
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and H2 is an immediate consequence of the above proposition.

Given H1 and H2 for period t, I proceed to show that the induction hypotheses also

hold for t− 1. To this end, note that Mft(pt, ũt) = Mft(xpt , ũt) = ũt(x
pt) and find that

the following equivalence holds:

(xt−1, pt) �t−1 (x′
t−1, p

′
t)

⇔ (xt−1, x
pt) �t−1 (x′

t−1, x
p′
t)

⇔ ũt−1(xt−1, x
pt) ≥ ũt−1(x

′
t−1, x

p′
t)

⇔ N g
t−1 (ut−1(xt−1), ũt(x

pt)) ≥ N g
t−1

(

ut−1(x
′
t−1), ũt(x

p′
t)
)

⇔ N g
t−1

(
ut−1(xt−1),M

ft(pt, ũt)
)

≥ N g
t−1

(
ut−1(x

′
t−1),M

ft(p′t, ũt)
)

⇔ ũt−1(xt−1, pt) ≥ ũt−1(x
′
t−1, p

′
t) ,

where ũt−1 is the aggregate intertemporal utility function for degenerate period t−1 lot-

teries as given in the theorem. ũt−1 ∈ C0(Xt−1 ×Pt) satisfies (xt−1, pt) �t−1 (x
′
t−1, p

′
t) ⇔

ũt−1(xt−1, pt) ≥ ũt−1(x
′
t−1, p

′
t) for all (xt−1, pt), (x

′
t−1, p

′
t) ∈ Xt−1 × Pt. Therefore, apply-

ing theorem 1 on the compact metric space Y = Xt−1 × Pt with the preference relation

�t−1 and v = ũt−1 implies the existence of ft−1 : Ut−1 → IR such that:

pt−1 �t−1 p
′
t−1 ⇔ Mft−1(pt−1, ũt−1) ≥ Mft−1(p′t−1, ũt−1) ∀ pt−1, p

′
t−1 ∈ Pt−1.

Hence, H1 also holds for t− 1. Moreover, as shown in the above proposition, for every

lottery pt−1 ∈ Pt−1 there exists a certainty equivalent x̃c = (xc
t−1, p

c
t) ∈ Xt−1 × Pt such

that pt−1 ∼t−1 x̃c. Moreover, given that induction hypothesis H2 holds for t, there

exists a certain consumption path x
pc
t with x

pc
t ∼t p

c
t . Therefore, by time consistency

x
pt−1 ≡ (xc

t−1, x
pc
t ) is a certain consumption path which satisfies xpt−1 ∼t−1 pt−1. Hence,

the second induction hypothesis H2 is satisfied for t− 1. Recursion implies that H1 and

H2 are satisfied for all t ∈ {1, ..., T}, which proofs the sufficiency of the axioms for the

representation.
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Part IV: Necessity:

A1 (weak order): Transitivity and completeness are trivial.

A2 (independence): Let pt ∼t p
′
t. Then for any p′′t ∈ Pt, a ∈ [0, 1] it follows:

pt ∼t p′t

⇔ f−1
t

∫
ftũt dpt = f−1

t

∫
ftũt dp

′
t

⇔
∫
ftũt dpt =

∫
ftũt dp

′
t

⇔ a
∫
ftũt dpt + (1− a)

∫
ftũt dp

′′
t = a

∫
ftũt dp

′
t + (1− a)

∫
ftũt dp

′′
t

⇔ f−1
t

∫
ftũt d(a pt + (1− a) p′′t ) = f−1

t

∫
ftũt d(a p

′
t + (1− a) p′′t )

⇔ a pt + (1− a) p′′t ∼t a p′t + (1− a) p′′t .

A3 (continuity): Using the topology of weak convergence on Pt, the functional

Mft(·, ũt) : Pt → IR is continuous. For all pt ∈ Pt define the numbers Upt ∈ IR by

Upt = Mft(pt, ũt). Then, the sets {p′t ∈ Pt : p
′
t �t pt} and {p′t ∈ Pt : pt �t p

′
t} are the

inverse image of the closed intervals [Upt , U ] and [U,Upt ] under Mft(·, ũt) and as such

they are closed.

A4 (certainty additivity): Defining uca
τ = gτ ◦ uτ for all τ ∈ {1, ..., T} find that for all

x, x′ ∈ X
T :

x � x
′

⇔ ũt(x) ≥ ũt(x
′)

⇔
∑T

τ=t gτ ◦ uτ (xτ ) ≥
∑T

τ=t gτ ◦ uτ (x
′
τ )

⇔
∑T

τ=t u
ca
τ (xτ ) ≥

∑T
τ=t u

ca
τ (x′τ ).

A5 (time consistency): For all t ∈ {1, ..., T} find for all xt ∈ Xt and pt+1, p
′
t+1 ∈ Pt+1:

(xt, pt+1) �t (xt, p
′
t+1)

⇔ g−1
t

[
θt gt ◦ ut(xt) + θtθ

−1
t+1 gt+1 ◦M

ft+1(pt+1, ũt+1) + θtθ
−1
t+1ϑt

]

≥ g−1
t

[
θt gt ◦ ut(xt) + θtθ

−1
t+1 gt+1 ◦M

ft+1(p′t+1, ũt+1) + θtθ
−1
t+1ϑt

]

⇔ M ft+1(pt+1, ũt+1) ≥ M ft+1(p′t+1, ũt+1)

⇔ pt+1 �t+1 p′t+1.

Uniqueness: Let (ut, ft, gt)t∈{1,...,T} and (ut, f
′
t , g

′
t)t∈{1,...,T} both represent�: ByWakker

(1988, theorem III.4.1) and part one of the proof, it follows that there exists a
a
t ∈ A

a

such that g′t = a
a
t gt. The fact that there exists a

+
t ∈ A

+ such that f ′
t = a

+
t ft, rather

than at ∈ A as in theorem 1, follows from the fact that in theorem 2 I restricted the pa-

rameterizing functions ft of the uncertainty aggregation rule to increasing versions.

Let there be given a ∈ IR++ as well as aa
t ∈ A

a and a
+
t ∈ A

+ for all t ∈ {1, ..., T} such
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that (f ′
t , g

′
t) = (a+

t ft,a
a
t gt): If (gt, ft) represents �, so does (gt,a

+
t ft) as M

a+
t
ft(pt, ũt) =

f−1
t a

+
t
−1 ∫

a
+
t ftũt dpt = Mft(pt, ũt). Similarly it holds that (ft,a

a
t gt) and, thus, (f

′
t , g

′
t)

is a representation of � as N g
t = N g′

t : For the g′-scenario the normalization constants

change as follows.

θ′t =
∆G′

t
∑

T

τ=t
∆G′

τ

= a∆Gt
∑

T

τ=t
a∆Gτ

= ∆Gt
∑

T

τ=t
∆Gτ

= θt and

ϑ′
t =

G′
t+1G′

t
−G′

t+1G
′
t

∆G′

t

=
(aGt+1+bt+1)(aGt

+bt)−(aG
t+1+bt+1)(aGt+bt)

a∆Gt

= aϑt +
bt+ta(Gt

−Gt)+bta(Gt+1−G
t+1)

a∆Gt
+ bt+1bt−bt+1bt

a∆Gt
= aϑt − bt+1 + bt

∆Gt+1

∆Gt

for t ∈ {1, ..., T}.44 Hence, noting that g′−1
t (·) = g−1

t

[
a−1
t {(·)− bt}

]
, the intertemporal

aggregation rule transforms as

N g′

t (·, ·) = g′−1
t

[
θ′tg

′
t(·) + θ′tθ

′−1
t+1g

′
t+1(·) + θ′tθ

′−1
t+1ϑ

′
t

]

= g−1
t

[

a−1
{

θt(agt(·) + bt) + θtθ
−1
t+1(agt+1(·) + bt+1)

+θtθ
−1
t+1(aϑt − bt+1 + bt

∆Gt+1

∆Gt
)− bt

}]

= g−1
t

[

θtgt(·) + θtθ
−1
t+1gt+1(·) + θtθ

−1
t+1ϑt + a−1

{

θtbt + θtθ
−1
t+1bt+1 + θtθ

−1
t+1(−bt+1 + bt

∆Gt+1

∆Gt
)− bt

}]

= g−1
t

[

θtgt(·) + θtθ
−1
t+1gt+1(·) + θtθ

−1
t+1ϑt

]

= N g
t (·, ·) .

To arrive at the last line I have used the relation

θtθ
−1
t+1 = ∆Gt

∑

T

τ=t
∆Gτ

∑

T

τ=t+1 ∆Gτ

∆Gt+1
= ∆Gt

∑

T

τ=t
∆Gτ

∑

T

τ=t
∆Gτ

∆Gt+1
− ∆Gt

∑

T

τ=t
∆Gτ

∆Gt

∆Gt+1

= (1− θt)
∆Gt

∆Gt+1
.

Proof of lemma 1: For the last period it holds ũ′
T = sT ◦ ũT and Mf ′

T (pT , ũ
′
T ) =

sT ◦ f
−1
T

[ ∫
fT ◦ s−1

T ◦ sT ◦ ũT dpT
]
= sT ◦M

fT (pT , ũT ). Moreover, recursively for period

t ∈ {1, ..., T − 1} find that the new aggregate intertemporal utility function becomes45

ũ′
τ (xt, pt+1)= stg

−1
t

[
θt gts

−1
t stut(xt) +θtθ

−1
t+1 gt+1M

ft+1(pt+1, ũt+1) +θtθ
−1
t+1ϑt

]

= st ◦ ũt(xt, pt+1) .

and that the uncertainty aggregation rule changes to

Mf ′

t(pt, ũ
′
t) = st ◦ f

−1
t

[ ∫

ft ◦ s
−1
t ◦ st ◦ ũt dpt

]

= st ◦M
ft(pt, ũt).

As the latter is a strictly increasing transformation of Mft(pt, ũt), it represents �t. 2

44Where bT+1 and ∆GT+1 are treated as zero to render ϑ′
T = 0.

45As the range of gτ and g′τ are the same, the normalization constants do not change.
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Proof of corollary 2: Sufficiency: By Wakker (1988, theorem III.4.1) the axioms

imply that the sets of Bernoulli utility functions are nonempty. Therefore, theorem

2 implies the existence of a representation (u0
t , f

0
t , g

0
t )t∈{1,...,T}. Define the functions

st = f−1
t f 0

t which are strictly increasing and continuous (see footnote 42). Lemma 1 im-

plies that ([f−1
t f 0

t ]u
0
t , f

0
t [f

−1
t f 0

t ]
−1, g0t [f

−1
t f 0

t ]
−1)t∈{1,...,T} = (f−1

t f 0
t u

0, ft, g
0
t f

0
t
−1
ft)t∈{1,...,T}

is a representation of �, with ft characterizing the uncertainty aggregation rule.

Necessity: Necessity of the axioms to hold is implied by theorem 2.

Uniqueness: Let (ut, ft, gt)t∈{1,...,T} and (u′
t, ft, g

′
t)t∈{1,...,T} be representations in the sense

of the corollary: For every t there exist strictly increasing and continuous functions st

such that u′
t = st◦ut. Lemma 1 implies that with (u′

t, ft, g
′
t)t∈{1,...,T} = (st ut, ft, g

′
t)t∈{1,...,T}

being a representation of �, so is the sequence of triples

(ut, ftst, g
′
tst)t∈{1,...,T}. Comparing the latter to the representation (ut, ft, gt)t∈{1,...,T},

the uniqueness part of theorem 2 implies the existence of a ∈ IR++ and the existence of

affine transformations a+
t ∈ A

+ and a
a
t ∈ A

a for all t ∈ {1, ..., T}, such that

ft = a
+
t ft st ⇔ s−1

t = f−1
t a+t ft and (16)

gt = a
a
t g

′
tst. (17)

Substituting the relation for st in equation (16) into the equations for gt and ut renders

gt = a
a
t g

′
tf

−1
t a+t

−1
ft and

ut = s−1
t u′

t = f−1
t a+t ft u

′
t.

Let (ut, ft, gt)t∈{1,...,T} be a representation of � and let a ∈ IR, a+
t ∈ A

+ and a
a
t ∈ A

a for

all t ∈ {1, ..., T}: Then, by theorem 2, the sequence (ut,a
+
t ft,a

a
t gt)t∈{1,...,T} is a represen-

tation of�. By lemma 1 it follows that also ([a+
t f ]ut,a

+
t ft[a

+
t ft]

−1,aa
t gt[a

+
t ft]

−1)t∈{1,...,T}

= (a+
t ftut, id,a

a
t gtf

−1
t a

+
t
−1
)t∈{1,...,T} is a representation of �. Applying lemma 1 once

again yields the result that the sequence (f−1
t a

+
t ftut, ft,a

a
t gtf

−1
t a

+
t
−1
ft)t∈{1,...,T} is a rep-

resentation of �. 2

Proof of corollary 3: Imitates the proof of corollary 2. In the uniqueness part

instead of equations (16) and (17) find

ft = a
+
t f

′
t st and

gt = a
a
t gtst ⇔ s−1

t = g−1
t a

a
t gt .
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Substituting the result for the functions st into the equations for ft and ut renders

ft = a
+
t f

′
t g

−1
t a

a
t
−1gt and

ut = s−1
t u′

t = g−1
t a

a
t gt u

′
t . 2

B Proofs for Section 3

Proof of proposition 1: First, I confirm equation (12). Let z′ = s(z) ⇔ z = s−1(z′)

and note that d
dz′

s−1(z′) = [ d
dz
s(z)]−1 and

d2

dz′2
s−1(z′)

d2

dz′2
s−1(z′)

= −
d2

dz2
s(z)

(

d
dz

s(z)

)2 ,

d
dz′

f ′
t(z

′) = d
dz′

ft ◦ s
−1(z′) = d

dz
ft(z) ·

d
dz′

s−1(z′) ,

d2

dz′2
f ′

t(z
′) = d2

dz2
ft(z) ·

[
d
dz′

s−1(z′)
]2

+ d
dz
ft(z) ·

d2

dz′2
s(z′)−1 ,

d2

dz′2
f ′

t(z
′)

d
dz′

f ′

t(z
′)

=
d2

dz2
ft(z)

d
dz

ft(z)

d
dz′

s−1(z′) +
d2

dz′2
s(z′)−1

d
dz′

s(z′)−1

= 1
d
dz

s(z)

[
d2

dz2
ft(z)

d
dz

ft(z)
+

d2

dz2
s(z)

d
dz

s(z)

]

Thus, for z = ∗x the risk measure RIRA′
t evaluated at z′ = ∗x′ = Φ̃1(

◦x) = s ◦ Φ1(
◦x) =

s(∗x) = s(z) is given by equation (12).

Second, let RIRAt = −
d2

dz2
ft(z)

d
dz

ft(z)
z = co characterize risk aversion for some coordinate

system at point ◦x with z = Φ1(
◦x). Let z′ = s(z) be the first coordinate of ◦x after the

change of coordinate system described in the text. Let cn be the desired value of risk

aversion at ◦x. Choosing s = id−Φ1(
◦x) + cn

co
yields

RIRA′
t(z

′)|z′=Φ′

1
(
◦x) = −

d2

dz′2
f ′

t(z
′)

d
dz′

f ′

t(z
′)
z′|z′=Φ′

1
(
◦x)

= − s(z)
d
dz

s(z)

[
d2

dz2
ft(z)

d
dz

ft(z)
+

d2

dz2
s(z)

d
dz

s(z)

]

|z=Φ1(
◦x)

= −
id−Φ1(

◦x)+
cn

co

1
[co + 0] |z=Φ1(

◦x) = cn .
2

Proof of proposition 2: Follows immediately from equation (12) and the fact that

preferences cannot, in general, be represented by Bernoulli utility functions that are

linear in all arguments at all points.
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Proof of proposition 3: Because ut, u
′
t ∈ B�t

, there exist strictly increasing

and continuous transformations st such that u′
t = st ◦ ut for all t ∈ {1, ..., T}. By

lemma 1 the sequence (st ◦ut, ft ◦ s
−1
t , gt ◦ s

−1
t )t∈{1,...,T} = (u′

t, ft ◦ s
−1
t , gt ◦ s

−1
t )t∈{1,...,T} =

(u′
t, f

′
t , g

′
t)t∈{1,...,T} is a representation of� in the sense of theorem 2 with f ′

t◦g
′−1
t = ft◦g

−1
t

for all t ∈ {1, ..., T}. 2

C Proofs for Section 4

Proof of theorem 3: The proof is divided into five parts. In the first, I translate

axiom A6 s into the representation of theorem 2. In the second part, I show that the

equation derived in the first part locally implies strict concavity of ft ◦ g
−1
t . Part three

extends this result to strict concavity on the entire set Γt. Part four proofs the necessity

of axiom A6 s for the strict concavity of ft ◦ g
−1
t . Together, parts one through four proof

assertion a) of the theorem for the case of strict intertemporal risk aversion. For the

case of strict intertemporal risk seeking just change the signs in the inequalities and

replace concave by convex. Part five lays out how assertions b-d) follow from the proof

of assertion a).

Part I (“⇒”): In part one I translate axiom A6 s into the representation of theorem 2.

I start with the first line, i.e the premise, and use equation (15) to find:

x
t ∼t x

′t

⇒ g−1
t

[

θt

T∑

τ=t

gτuτ (x
t
τ ) + ξt

]

= g−1
t

[

θt

T∑

τ=t

gτuτ (x
′t
τ ) + ξt

]

. (18)

The existence of τ ∈ {t, ..., T} such that xtτ 6∼∗
τ x

′t
τ , translates into

gτuτ (x
t
τ ) 6= gτu(x

′t
τ ) for some τ ∈ {t, ..., T}. (19)

The second line of axiom A6 s becomes

x
t ≻T

∑T
i=t

1
T−t+1

(xt−ix
′t
i ).

⇒ g−1
t

[

θt
∑T

τ=t gτuτ (x
t
τ ) + ξt

]

>

f−1
t

[
∑T

i=t
1

T−t+1
ftg

−1
t

[

θt
∑T

τ=t gτuτ

(
(xt−ix

′t
i )τ
)
+ ξt

]]

⇒ftg
−1
t

[

θt
∑T

τ=t gτuτ (x
t
τ ) + ξt

]

>
∑T

i=t
1

T−t+1
ftg

−1
t

[

θt
∑T

τ=t gτuτ

(
(xt−ix

′t
i )τ
)
+ ξt

]

.
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Using equation (18) the left hand side can be transformed as follows:

ftg
−1
t

[
T−t

T−t+1

[

θt
∑T

τ=t gτuτ (x
t
τ ) + ξt

]

+ 1
T−t+1

[

θt
∑T

τ=t gτuτ (x
′t
τ ) + ξt

]]

>

∑T
i=t

1
T−t+1

ftg
−1
t

[

θt
∑T

τ=t gτuτ

(
(xt−ix

′t
i )τ
)
+ ξt

]

⇒ ftg
−1
t

[
1

T−t+1

[

θt
∑T

i=t

∑T
τ=t gτuτ

(
(xt−ix

′t
i )τ
)
+ ξt

]]

>

∑T
i=t

1
T−t+1

ftg
−1
t

[

θt
∑T

τ=t gτuτ

(
(xt−ix

′t
i )τ
)
+ ξt

]

⇒ ftg
−1
t

[
∑T

i=t
1

T−t+1

[

θt
∑T

τ=t gτuτ

(
(xt−ix

′t
i )τ
)
+ ξt

]]

> (20)

∑T
i=t

1
T−t+1

ftg
−1
t

[

θt
∑T

τ=t gτuτ

(
(xt−ix

′t
i )τ
)
+ ξt

]

.

Let me define the function z̃ : Xt → Γt by z̃(xt) = θt
∑T

τ=t gτuτ (x
t
τ ) + ξt. Compare

part two of the proof of theorem 2 to see that, when restricting the domain to those

consumption paths satisfying equation (19),46 the function z̃ is onto Γt =
(
Gτ , Gτ

)
=

(

θt
∑T

τ=t Gτ+ξt , θt
∑T

τ=t Gτ+ξt

)

. In particular define zi = z̃
(
(xt−ix

′t
i )
)
. In this notation

equation (20) becomes

ftg
−1
t

(
∑T

i=t
1

T−t+1
zi

)

>
∑T

i=t
1

T−t+1
ftg

−1
t (zi). (21)

If equation (21) had to hold for all zi ∈ Γt it would be a straight forward condition for

strict concavity of ft ◦ g
−1
t . However, axiom A6 s does not immediately imply that the

equation has to be met for every choice (zi)i∈{t,...,T}, zi ∈ Γt. Equation (21) has to hold

only for sequences (zi)i∈{t,...,T} that are stemming from consumption paths (xt−ix
′t
i ) for

which x
′t ∈ X

t and x
t
τ ∈ X

t satisfy the premise of axiom A6 s. In what follows, I proceed

to show that this restricted demand is enough to imply strict concavity of ft ◦g
−1
t on Γt.

Part II (“⇒”): Let zo ∈ Γt. In this part I show that for every such zo there exists an

open neighborhood Nzo ⊂ Γt such that equation (21) implies strict concavity of ft ◦ g
−1
t

on Nzo .

In the first step I define a certain consumption path x
ot ∈ X

t with z̃(xot) = zo. It

will satisfy the additional characteristic that none of its outcomes is extremal. Define

(Go
τ )τ∈{t,...,T} to be a sequence with Gτ < Go

τ < Gτ∀τ and θt
∑T

τ=t G
o
τ + ξt = zo. Such a

sequence has to exist as zo ∈ Γt implies θt
∑T

τ=t Gτ+ξt < zo < θt
∑T

τ=t Gτ+ξt. Moreover

by connectedness of X and continuity of gτ ◦ uτ there exists for every τ ∈ {t, ..., T} an

outcome xo
τ ∈ u−1

τ [g−1
τ (Go

τ )] such that Go
τ = uτgτ (x

o
τ ). Define x

ot
τ = (xo

t , ..., x
o
T ).

In the second step I define deviation paths x
µt around x

ot. Set ǫτ = min{Go
τ −

Gτ , Gτ − Go
τ} for τ ∈ {t, ..., T} and let ǫ = minτ∈{t,...,T} ǫτ . By construction of xot it is

46It is for the latter restriction that the theorem is considering the open set Γt.
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ǫ > 0. For any sequence µ = (µτ )τ∈{t,...,T} with µτ ∈ (−ǫ, ǫ) define Gµ
τ = Go

τ + µτ for all

τ ∈ {t, ..., T}. Then each Gµ
τ is element of (Go

τ − ǫ, Go
τ + ǫ) ⊂ (Gτ , Gτ ) and hence there

exists xµ
τ
t ∈ u−1

t

[
g−1
t (Gµ

τ )
]
. Define x

µt = (xµ
t , ..., x

µ
T ).

Third, I calculate the z
µ
i ∈ Γt corresponding to the consumption paths (xot−ix

µt
i) and

restate the condition xot ∼t x
µt in terms of zo and (zµi )i∈{t,...,T}. It is

z
µ
i = z̃

(
(xot−ix

µt
i)
)
= θt

∑T
τ=t gτuτ

(
(xot−ix

µt
i)τ
)
+ ξt

= θt

(

(
∑T

τ=t G
o
τ )−Go

i +G
µ
i

)

+ ξt

= zo + θt(G
µ
i −Go

i ).

Hence z
µ
i = z̃

(
(xot−ix

µt
i)
)
as a fuction of µi is onto (Go

τ − θtǫ , G
o
τ + θtǫ). The equation

also implies that the condition [xotτ ] 6∼τ [xµtτ ] ⇔ gτuτ (x
η
τ ) 6= gτu(x

µ
τ ) ⇔ Go

τ 6= Gµ
τ for

some τ ∈ {t, ..., T} is equivalent zµi 6= zo for some τ . Using equation (18) I further find

that xot ∼t x
µt translates into

θt
∑T

τ=t G
o
τ + ξt = θt

∑T
τ=t G

µ
τ + ξt

⇒ θt
∑T

τ=t G
o
τ + ξt =

T−t
T−t+1

(

θt
∑T

τ=t G
o
τ + ξt

)

+ 1
T−t+1

(

θt
∑T

τ=t G
µ
τ + ξt

)

⇒ θt
∑T

τ=t G
o
τ + ξt =

1
T−t+1

∑T
i=t

(

θt

(

(
∑T

τ=t G
o
τ )−Go

i +G
µ
i

)

+ ξt

)

⇒ zo = 1
T−t+1

∑T
i=t z

µ
i .

Summarizing steps one to three I have shown that equation (21) has to hold for all

sequences (zi)i∈{t,...,T} with zi ∈ (zo−θtǫ, z
o+θtǫ) satisfying

1
T−t+1

∑T
i=t zi = zo (and not

all zi = zo). However, due to the restriction that the weighted average has to equal zo

this requirement is not enough to guarantee concavity of ftg
−1
t on zi ∈ (zo−θtǫ, z

o+θtǫ).

Define Nzo = (zo− θtǫ
2
, zo+ θtǫ

2
). In the following I proceed to show that (21) has to hold

for all non-constant sequences (zi)i∈{t,...,T} with zi ∈ Nzo . The latter will be sufficient to

guarantee strict concavity of ftg
−1
t on the open set Nzo .

In step four, take any z∗ ∈ Nzo . I construct a corresponding consumption path x
∗t

with z∗ = z̃(x∗t) as well as a perturbation x
ηt around it. Define

G∗
τ = Go

τ +
z∗−zo

θt(T−t+1)
∈
(
Go

τ −
−θtǫ

2θt(T−t+1)
, Go

τ +
−θtǫ

2θt(T−t+1)

)
⊂ (Go

τ − ǫ, Go
τ + ǫ) .

Then there exists x∗
τ ∈ u−1

t

[
g−1
t (G∗

τ )
]
. Define the consumption path x

∗t = (x∗
t , ..., x

∗
T )

and find that indeed

z̃(x∗t) = θt

T∑

τ=t

G∗
τ + ξt = θt

(
T∑

τ=t

Go
τ +

z∗−zo

θt(T−t+1)

)

+ ξt

= zo + z∗ − zo

(
T∑

τ=t

1
(T−t+1)

)

= z∗
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Aim of the following construction is to make sure that the perturbations x
ηt around

x
∗t account for all sequences (zi)i∈{t,...,T} with zi ∈ Nzo that satisfy 1

T−t+1

∑T
i=t zi = z∗.

Define ǫ∗− = ǫ−(Go
i−G∗

i ) and ǫ∗+ = ǫ+(Go
i−G∗

i ). For any sequence η = (ητ )τ∈{t,...,T} with

ητ ∈ (−ǫ∗−, ǫ
∗
+) letG

η
τ = Go

τ+ητ for all τ ∈ {t, ..., T}. Then each Gη
τ is in (Go

τ−ǫ, Go
τ+ǫ) ⊂

(Gτ , Gτ ) and hence there exists xη
τ
t ∈ u−1

t

[
g−1
t (Gη

τ )
]
. Let xηt = (xη

t , ..., x
η
T ).

In step five, I calculate the zηi = z̃
(
(x∗t−ix

ηt
i)
)
corresponding to the consumption paths

(x∗t−ix
ηt
i) and restate the condition x∗t ∼t x

ηt in terms of z∗ and (zηi )i∈{t,...,T}. It is

z
η
i = z̃

(
(x∗t−ix

ηt
i)
)
= θt

∑T
τ=t gτuτ

(
(x∗t−ix

ηt
i)τ
)
+ ξt

= θt

(

(
∑T

τ=t G
∗
τ )−G∗

i +G
η
i

)

+ ξt

= z∗ + θt(G
η
i −G∗

i ). (22)

As before with xot and xµt the condition [x∗tτ ] 6∼τ [xηtτ ] for some τ ∈ {t, ..., T} is

equivalent to z
µ
i 6= zo for some i and equations (18) and (22) translate x∗t ∼t x

ηt into

z∗ = 1
T−t+1

∑T
i=t z

η
i .

In step six it is shown that the z
η
i calculated in the previous step can generate any

sequence (zi)i∈{t,...,T} with elements zi ∈ Nzo that satisfies 1
T−t+1

∑T
i=t z

η
i = z∗. To verify

this fact find that each z
η
i = z∗ + θt(G

η
i −G∗

i ) can take any47 of the values in
(

z∗ + θt(−ǫ∗−) , z
∗ + θtǫ

∗
−

)

=
(

zo + (z∗ − zo)− θt
(
ǫ− (Go

i −G∗
i )
)
, zo + (z∗ − zo) + θt

(
ǫ+ (Go

i −G∗
i )
))

=
(

zo + (z∗ − zo)− θtǫ− θt
z∗−zo

θt(T−t+1)
, zo + (z∗ − zo) + θtǫ− θt

z∗−zo

θt(T−t+1)

)

=
(

zo − θtǫ+ (z∗ − zo)
(
1− 1

T−t+1

)
, zo + θtǫ+ (z∗ − zo)

(
1− 1

T−t+1

) )

which due to z∗ ∈ Nzo = (zo − θtǫ
2
, zo + θtǫ

2
) is a superset of

⊇
(

zo − θtǫ+
θtǫ
2

(
1− 1

T−t+1

)
, zo + θtǫ−

θtǫ
2

(
1− 1

T−t+1

) )

⊇
(

zo − θtǫ
2

, zo + θtǫ
2

)

.

Therefore the z
η
i can take on any value in Nzo as long as the sequence satisfies z∗ =

1
T−t+1

∑T
i=t z

η
i . Hence equation (21) also has to hold for all non-constant sequences

(zi)i∈{t,...,T} with zi ∈ Nzo and 1
T−t+1

∑T
i=t zi = z∗.

Finally, I show that ftg
−1
t has to be strictly concave on Nzo . Equation (21) has to hold

for all non-constant sequences (zi)i∈{t,...,T} with zi ∈ Nzo and
1

T−t+1

∑T
i=t zi = z∗. But z∗

47Of course all zi together have to sum up to (T − t+ 1)z∗ and not all zi can be equal to z∗. These
however are the only restrictions.
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was an arbitrary element of Nzo and steps four to six hold for any z∗ ∈ Nzo . Therefore

equation (21) has to hold for all sequences (zi)i∈{t,...,T} with zi ∈ Nzo except for the

constant sequences with zi = zj ∀ i, j ∈ {t, ..., T}).48 Now pick any l ∈ {t, ..., T − 1} and

define λ = l−t+1
T−t+1

> 0. Furthermore for any pair za, zb ∈ Nzo select zt = ... = zl = za

and zl+1 = ... = zT = zb. Then equation (21) becomes

ftg
−1
t

(
λza + (1− λ)zb

)
> λftg

−1
t (za) + (1− λ)ftg

−1
t (zb)

and has to hold for all za, zb ∈ Nzo , za 6= zb. But due to the continuity of ft ◦ g
−1
t this

implies strict concavity of ft ◦ g
−1
t on Nzo (Hardy et al. 1964, 74,75).

Part III (“⇒”): In this part I show that the local strict concavity of ft ◦ g
−1
t on Nzo

for all zo ∈ Nzo as derived in the second part implies strict concavity on Γt.
49 I will

first demonstrate that weak concavity extends to Γt and then that local strict concavity

together with global weak concavity imply strict concavity of ft ◦ g
−1
t on all of Γt.

First, note that a concave function ht = ft ◦ g−1
t on Nzo has non-increasing right-

continuous right-derivatives h′
t+ as well as non-increasing left-continuous left-derivatives

h′
t− at every point in Nzo (van Tiel 1984, 4,5). Moreover there are at most countably

many points in Nzo where ht is not differentiable (van Tiel 1984, 5). Take any closed

interval [zl, zu] ⊂ Γt. Then already a finite number of open sets Nzo with zo ∈ I ⊆ Γt, I

finite, cover [zl, zu] (Heine-Borel-theorem). Hence there are just countably many points

where ht is not differentiable on [zl, zu]. Denote the countable set where ht is not differ-

entiable by A. Then on [zl, zu]\A it is h′
t− = h′

t+ and due to the left-continuity of the

left-derivative and right-continuity of the right-derivative ht
′ is continuous on [zl, zu]\A.

Moreover for all points in A the left- and right-derivative exist. But for such an almost

everywhere continuously differentiable function the fundamental theorem of calculus

applies (Königsberger 1995, 217). Therefore the relation ht(z) = ht(c) +
∫ z

c
h′
t+(z

′) dz,

c, z ∈ [zl, zu] holds. By van Tiel (1984, 9) such an integral representation with a right-

continuous non-increasing integrand is a sufficient condition for weak concavity of ht on

[zl, zu]. Moreover any open set Γt ⊂ IR is exhaustible by compact sets, i.e there exists

an isotone sequence of closed intervals [zln, z
u
n],n∈IN such that Γt =

⋃

n∈IN[zln, z
u
n]. Hence

ht has to be weakly concave on Γt.

Second, I show that local strict concavity together with global weak concavity implies

strict concavity on Γt. Take any pair of points za, zb ∈ Γt, za < zb. Let zc ∈ Nzb be a

48Any such sequence yields a weighted arithmetic mean that lies within Nzo .

49I have to show that concavity does not only hold for convex combinations within a particular set
Nzo but for all convex combinations within Γt.
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point satisfying za < zc < zb. Moreover define λ ∈ (0, 1) by zc = λza + (1 − λ)zb and

let µ = 1
2λ
. Then the following inequality holds for any pair za 6= zb in Γt (as za < zb is

wlog):

ftg
−1
t

(
1
2
za +

1
2
zb
)
= ftg

−1
t

(
µλ za + (1− µλ) zb

)

= ftg
−1
t

(
µλ za +

(
µ (1− λ) + (1− µ)

)
zb
)

= ftg
−1
t

(
µ (λ za + (1− λ) zb)
︸ ︷︷ ︸

zc

+(1− µ) zb
)

> µ ftg
−1
t

(
λza + (1− λ) zb

)
+ (1− µ) ftg

−1
t (zb)

≥ µ
(
λ ftg

−1
t (za) + (1− λ) ftg

−1
t (zb)

)
+ (1− µ) ftg

−1
t (zb)

= µλ ftg
−1
t (za) +

(
µ (1− λ) + (1− µ)

)
ftg

−1
t (zb)

= µλ ftg
−1
t (za) + (1− µλ) ftg

−1
t (zb)

= 1
2
ftg

−1
t (za) +

1
2
ftg

−1
t (zb) .

Therefore ftg
−1
t is strictly concave on Γt (Hardy et al. 1964, 75).

Part IV (“⇐”): It is left to proof that strict concavity on Γt implies axiom A6 s. As

in part one of this proof the prerequisite of A6 s becomes

x
t ∼t x

′t

⇒ g−1
t

[

θt

T∑

τ=t

gτuτ (x
t
τ ) + ξt

]

= g−1
t

[

θt

T∑

τ=t

gτuτ (x
′t
τ ) + ξt

]

. (23)

The existence of i ∈ {t, ..., T} such that xti 6∼
∗
i x

′t
i translates into

gτuτ (x
t
i) 6= gτu(x

′t
i )

⇔ θt

T∑

τ=t
τ 6=i

gτu(x
t
τ ) + θtgiuτ (x

t
i) + ξt 6=

T∑

τ=t
τ 6=i

gτu(x
t
τ ) + θtgτu(x

′t
i ) + ξt

⇔ z̃(xt) 6= z̃
(
(xt−ix

′t
i )
)

(24)

for some i ∈ {t, ...T}. But then due to strict concavity of ft◦g
−1
t , the fact that z̃

(
(xt−ix

′t
i )
)
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cannot be the same for all i,50 and using equation (23) it has to hold that

ftg
−1
t

[
∑T

i=t
1

T−t+1

[

θt
∑T

τ=t gτuτ

(
(xt−ix

′t
i )τ
)
+ ξt

]]

>

∑T
i=t

1
T−t+1

ftg
−1
t

[

θt
∑T

τ=t gτuτ

(
(xt−ix

′t
i )τ
)
+ ξt

]

⇒ ftg
−1
t

[
T−t

T−t+1

[

θt
∑T

τ=t gτuτ (x
t
τ ) + ξt

]

+ 1
T−t+1

[

θt
∑T

τ=t gτuτ (x
′t
τ ) + ξt

]]

>

∑T
i=t

1
T−t+1

ftg
−1
t

[

θt
∑T

τ=t gτuτ

(
(xt−ix

′t
i )τ
)
+ ξt

]

⇒ g−1
t

[

θt
∑T

τ=t gτuτ (x
t
τ ) + ξt

]

>

f−1
t

[
∑T

i=t
1

T−t+1
ftg

−1
t

[

θt
∑T

τ=t gτuτ

(
(xt−ix

′t
i )τ
)
+ ξt

]]

⇒ x
t ≻T

∑T
i=t

1
T−t+1

(xt−ix
′t
i ) .

Note that the flow of manipulations is laid out in more detail (going backwards) in part

two of the proof.

Part V: Assertion b) is obtained by replacing A6 s by A6wand the strict inequaties

by their weak counterparts.51 A decision maker is intertemporal risk neutral if his

preferences satisfy weak risk seeking as well as weak risk aversion. Therefore, assertion

b) implies that the function ft ◦ g−1
t has to be concave and convex at the same time

and, thus, linear. On the other hand, a representation featuring a linear composition

ft ◦ g
−1
t yields indifference between the certain consumption path and the lottery and,

therefore, satisfies weak risk seeking as well as weak risk aversion (compare part four of

the proof). In consequence, assertion c) holds. The proof of assertion d) is completely

analogous to that of assertion a). Equation (21) becomes

ftg
−1
t

(
1
2
zhigh + 1

2
zlow

)
> 1

2
ftg

−1
t (zhigh) + 1

2
ftg

−1
t (zlow) ,

implying that the last step (“Finally...”) in part three of the proof can be omitted. 2

Proof of proposition 4: Let the triples (ut, ft, gt)t∈{1,...,T} and (u′
t, f

′
t , g

′
t)t∈{1,...,T} be

arbitrary representations for the set of preference relations �= (�t)t∈{1,...,T} in the sense

of theorem 2. For all t ∈ {1, ..., T} there exist strictly increasing continuous functions

st such that u′
t = st ◦ ut. By lemma 1 and the uniqueness part of theorem 2, there exist

a ∈ R++ and affine transformations a
+
t ∈ A

+ and a
a
t ∈ A

a such that f ′
t = a

+
t ft ◦ s−1

t

and g′t = a
a
t gt ◦ s

−1
t for all t ∈ {1, ..., T}.

To compare the measures of intertemporal risk aversion at the same point in consump-

50This is implied by equation (24) as again z̃(xt) equals the weighted average 1
T−t+1

∑T

i=t z̃
(
(xt

−ix
′t
i )
)
.

51In this case the second step in part three becomes redundant.
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tion space x̃t, find that

z′ = g′t ◦ ũ
′
t(x̃t) = a

a
t gt ◦ s

−1
t ◦ st ◦ ut(x̃t) = a

a
t gt ◦ ut(x̃t) = az + bt .

a) The requirement gt ◦ ut(x̄t) = g̃t ◦ ũt(x̄t) = 0 for all t ∈ {1, ..., T} yields

0 = g̃t ◦ ũt(x̄t) = agt ◦ s
−1
t stut(x̄t) + bt = agt ◦ ut(x̄t) + bt

= a · 0 + bt = bt .

In consequence, for twice differentiable functions ft ◦ g−1
t , it follows by equation (13)

that

˜RIRAt(z̃)
∣
∣
∣
z̃=az

= −

(
f̃t◦g̃

−1
t

)
′′

(z̃)
(
f̃t◦g̃

−1
t

)
′

(z̃)
z̃

∣
∣
∣
∣
z̃=az

= −
(ft◦g−1

t )
′′

(z)

(ft◦g−1
t )

′

(z)
z = RIRAt(z) .

Thus, the measures of relative intertemporal risk aversion RIRAt are independent of the

particular choice of the triples (ut, ft, gt)t∈{1,...,T} representing the underlying preferences

�= (�t)t∈{1,...,T} .

b) The requirement implies

w̄ = g′t∗ ◦ u
′
t∗(x́t∗)− g′t∗ ◦ u

′
t∗(x̀t∗)

= a
a
t∗ gt∗ ◦ s

−1
t∗ ◦ u′

t∗(x́t∗)− a
a
t∗ gt∗ ◦ s

−1
t∗ ◦ u′

t∗(x̀t∗)

= a
a
t∗ gt∗ ◦ ut∗(x́t∗)− a

a
t∗ gt∗ ◦ ut∗(x̀t∗)

= agt∗ ◦ ut∗(x́t∗) + bt∗ − agt∗ ◦ ut∗(x̀t∗)− bt∗ = aw̄ .

Therefore, a = 1 and, as the multiplicative constant is the same for all periods, the

remaining freedom of the expression ft ◦ g
−1
t corresponds to transformations ft ◦ g

−1
t →

f̃t ◦ g̃
−1
t = a

+
t ft ◦ g

−1
t a

1
t
−1
, where a

1
t
−1

denotes the inverse of aa=1
t , i.e. a1

t
−1
(z) = z − bt.

In consequence, evaluating the twice differentiable functions ft ◦ gt and f ′
t ◦ g′t at the

same point in consumption space yields by equation (14) that

˜AIRAt(z̃)
∣
∣
∣
z̃=z+bt

= −

(
f̃t◦g̃

−1
t

)
′′

(z̃)
(
f̃t◦g̃

−1
t

)
′

(z̃)

∣
∣
∣
∣
z̃=z+bt

= −
(ft◦g−1

t )
′′

(z)

(ft◦g−1
t )

′

(z)
= AIRAt(z) .

Thus, the measures of absolute intertemporal risk aversion AIRAt are independent of

the particular choice of the triples (ut, ft, gt)t∈{1,...,T} representing the underlying prefer-

ences �= (�t)t∈{1,...,T} . 2
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