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Analogy and cognitive architecture: Two kinds of systematicity, one kind of
(universal) construction

Steven Phillips (steve@ni.aist.go.jp)
Mathematical Neuroinformatics Group, Human Technology Research Institute,

National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 JAPAN

Abstract

Cognitive science recognizes two kinds of systematicity: (1) as
the property where certain cognitive capacities imply certain
other related cognitive capacities (Fodor & Pylyshyn, 1988);
and (2) as the principle that analogical mappings based on col-
lections of connected relations are preferred over relations in
isolation (Gentner, 1983). These two kinds of systematicity
were shown to derive from one type of (universal) construction
(Phillips, 2014), using category theory (Mac Lane, 2000). Un-
derlying both forms of systematicity is a kind of optimization.
We provide an informal summary of this result, and suggest an
extension to address other (semantic) aspects of analogy.
Keywords: analogy; cognitive architecture; systematicity;
category theory; universal construction

Introduction
Cognitive science recognizes two kinds of systematicity. One
kind of systematicity is the property of cognition where the
capacity for certain cognitive abilities implies the capacity for
certain other cognitive abilities, i.e. capacity is distributed
around equivalence classes of cognitive abilities (Fodor &
Pylyshyn, 1988). Another kind of systematicity is the pref-
erence for analogical mappings based on collections of con-
nected relations over relations in isolation (Gentner, 1983).
Whether these two kinds of systematicity are aspects of a
deeper property of cognition is hitherto unknown.

In previous work (Phillips & Wilson, 2010, 2011, 2012,
2014), we explained Fodor and Pylyshyn’s kind of system-
aticity using the category theory notion of universal construc-
tion (Mac Lane, 2000). We also showed that these two kinds
of systematicity are derived from one type of universal con-
struction as an optimization of cognitive resources (Phillips,
2014). We provide an informal summary of this result (after
recalling the two notions of systematicity), and suggest ex-
tensions to address some other (semantic) aspects of analogy.

Systematicity (Fodor and Pylyshyn)
A remarkable property of human cognition is the distribution
of cognitive capacities, where the capacity for certain cogni-
tive abilities implies the capacity for certain other cognitive
abilities. For example, suppose one is shown pairs of geo-
metric shapes such as a square to the left of a triangle. If
one has the ability to infer square as the left shape in the pair
(square, triangle), then one also has the ability to infer trian-
gle as the left shape in the pair (triangle, square), assuming
that squares and triangles are individually recognizable. This
property is generally referred to as systematicity (Fodor &
Pylyshyn, 1988), and is characterized more broadly as hav-
ing capacity c1 if and only if c2 (McLaughlin, 2009), i.e. as
equivalence classes of cognitive capacities.

For cognitive science, a major challenge has been to pro-
vide a theory of cognitive architecture that explains system-
aticity: i.e. why certain cognitive capacities are distributed
in a particular, non-arbitrary way (Fodor & Pylyshyn, 1988;
Fodor & McLaughlin, 1990; Aizawa, 2003). Cognitive archi-
tecture is the collection of basic processes and their modes
of composition that together provide the basis for a slew of
cognitive abilities, from recognizing concrete physical ob-
jects to reasoning about abstract mathematical structures. The
problem with the major theoretical frameworks, including
classicism (symbols systems) and connectionism (neural net-
works), is that systematicity does not necessarily follow from
the core principles and assumptions of their proposed theo-
ries. Although classical and connectionist theories are suf-
ficiently general to derive models supporting the systematic-
ity property, they are insufficiently specific to rule out mod-
els (derived from the same core principles and assumptions)
that do not support systematicity (in those same cognitive do-
mains). Further, ad hoc (essentially, arbitrary) assumptions
are needed that take up the explanatory slack to exclude those
classical or connectionist models that do not support system-
aticity, and so neither classical nor connectionist theory fully
explains systematicity (Aizawa, 2003).

Systematicity (Gentner)
In the context of analogy, systematicity is the observation
that when matching source and target domains of (relational)
knowledge people match systems of (higher-order) relations
in preference to isolated (lower-order) relations (Gentner,
1983). This observation is embodied as the systematicity
principle, or assumption, in the structure mapping theory of
analogy (Gentner, 1983). Structure mapping theory supposes
that relational knowledge consists of a system of concepts ar-
ranged in tree-like structures. Three kinds of concepts are
distinguished: objects, attributes and predicates. Object con-
cepts are things like John; they are constants, which are nodes
in a concept tree from which there are no more branches. At-
tributes and predicates are concepts that express some propo-
sition about other concepts. An attribute expresses a propo-
sition about a single concept, e.g., Male(John) expresses the
proposition that John is a male, and its concept tree structure
has Male (attribute) as the root concept node and John (ob-
ject) at its only branch. Predicates are concepts that express
propositions about two or more concepts, e.g., Loves(John,
Mary) expresses the proposition that John loves Mary, and its
concept tree structure has Loves (predicate) as the root node,
John at its first branch and Mary at its second branch. Later,
we consider objects, attributes and predicates as instances of
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relations of arity n: i.e. nullary (n = 0), unary (n = 1) and
n-ary (n ≥ 2) relations, respectively.

The Water-Heat flow analogy example (see Gentner, 1983)
illustrates the systematicity principle in analogical mapping.
Suppose the following relational knowledge (concept trees):

1. And(Contains(Vessel, Water), On-top-of (Lid, Vessel)); and

2. Cause(And(Puncture(Vessel), Contains(Vessel, Water)),
Flows-from(Water, Vessel)).

Suppose two corresponding trees by replacing the objects in
the water flow domain with corresponding objects in the heat
flow domain, as given by the following object concept map-
pings: Vessel → House, Lid → Roof , and Water → Heat. The
systematicity principle as expressed in this example is the
preference for mapping the second tree over the first, because
the second tree involves a larger system of (higher-order)
predicates than the first (Gentner, 1983).

Category theory: universal constructions
In this section, we provide an informal introduction to the
category theory concepts needed to explain the two kinds of
systematicity, i.e. universal constructions, which depend on
the concepts of category and functor. Corresponding formal
definitions and results are given in Phillips (2014). Deeper
introductions to category theory can be found in many texts
on the subject (e.g., Mac Lane, 2000; Simmons, 2011).

Category
A category is a collection of objects and arrows (“relations”)
between objects with a composition operation for composing
arrows in a way that satisfies certain axioms. We will consider
the shapes example as part of a category whose objects are
sets, arrows are functions between sets, and composition op-
eration is function composition. Some of these objects (sets)
are sets of perceptual, or conceptual states for correspond-
ing shapes, and the arrows are functions (cognitive processes)
transforming representational states.

Objects and arrows may be constructed from
other objects and arrows. The set of shape con-
cept pairs, for example, is constructed from the
Cartesian product of the set of shape concepts,
S = {square, triangle}, with itself: i.e. the set S × S =
{(square,square),(square, triangle),(triangle,square), . . .},
which is another object. Elements are retrieved
by two functions (projections): π1 : S × S → S;
(square, triangle) 7→ square, (triangle,square) 7→ triangle,
etc.; and π2 : S × S → S; (square, triangle) 7→ triangle,
(triangle,square) 7→ square, etc. In general, the Cartesian
product of sets A and B is the set A × B of all pairwise
combinations of the elements taken from sets A and B, and
two functions, π1 : A × B → A and π2 : A × B → B, that
return the first and second elements of each pair. A Cartesian
product is a product in the category Set. More generally, in
some category C, a product of objects A and B is an object P
(also denoted A×B) together with two arrows π1 : A×B → A

and π2 : A×B → B such that certain universal conditions are
met (see Universal construction).

Functor
Functors are to categories as arrows are to objects. They send
objects and arrows in one category to (respectively) objects
and arrows in another category. Functors can also be con-
sidered as a way of constructing categories from other cate-
gories. For example, the product functor constructs product
objects and arrows from pairs of objects and arrows.

Universal construction
The intuition behind the formal notion of universal construc-
tion involves the idea of capturing the common component
of a collection of entities (arrows). We can see this intuition
in action from our shapes example. Observe that every pair
of maps that extracts the first and second shape concept
from shape images (firsti and secondi) can be composed of
a map sending each image to a pair of shape concepts in
the Cartesian product set and the projections for extracting
the first and second shape concepts from each pair of shape
concepts. For example, the map first1 : �4 7→ square
is composed of the map u1 : �4 7→ (square, triangle)
and the projection π1 : (square, triangle) 7→ square. The
map first2 : 4� 7→ triangle is composed of the map
u2 : 4� 7→ (triangle,square) and π1. Maps first1 and first2
share the common component map π1. Similarly, maps that
extract the second shape concept from each image, secondi,
share the common component map π2 : (square,square) 7→
square,(square, triangle) 7→ triangle,(triangle,square) 7→
square,(triangle, triangle) 7→ triangle. Universal construc-
tions can also be thought of as a kind of optimization relative
to the underlying functor, described next.

Systematicity and universal constructions
Two kinds of systematicity are derived from universal con-
structions. For succinctness, Fodor and Pylyshyn’s kind of
systematicity is termed F-systematicity, and Gentner’s kind
of systematicity is termed G-systematicity.

F-systematicity (Fodor and Pylyshyn)
The shapes example is used for the explanation of F-
systematicity based on universal constructions. In this ex-
ample of F-systematicity, if one has the capacity to infer from
�4 that the left shape is square, then one also has the ca-
pacity to infer from 4� that the left shape is triangle, and
likewise for the right shape in each instance. Cognitive ar-
chitecture is modeled in the category Set where objects are
sets of cognitive representations, arrows are cognitive pro-
cesses mapping representations, and the composition opera-
tor is function composition. For the specific shapes example,
we have objects that are sets of representations of shape con-
cepts (indicated by name, e.g., square) and images (indicated
by symbol, e.g., �), and arrows that are functions from repre-
sentations to representations. For example, the set of shape
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concepts is the set S = {square, triangle}, the set contain-
ing the square-triangle image is the singleton (one-element)
set Z1 = {�4}, and the set containing the triangle-square
image is the singleton set Z2 = {4�}. (We also have sets
Z3 = {��} and Z4 = {44}.) The arrow representing the
capacity to infer from �4 that the left shape is square is the
function first1 : Z1 → S;�4 7→ square, and the arrow repre-
senting the other left-shape inferential capacity is first2 : Z2 →
S;4� 7→ triangle. Likewise, we have arrows for right-shape
inferential capacities: second1 : Z1 → S;�4 7→ triangle, and
second2 : Z2 → S;4� 7→ square.

F-systematicity follows from the fact that in Set
we also have the Cartesian product set of all pair-
wise combinations of elements of S, i.e. S × S =
{(square,square),(square, triangle), . . .}, and two functions
(projections) that return the first and second elements of each
pair, i.e. π1 : S×S → S;(square, triangle) 7→ square, etc., and
π2 : S×S→ S;(square, triangle) 7→ triangle, etc. Together, the
Cartesian product and projections constitute the product con-
struction (S× S,π1,π2), which is an instance of a universal
construction. As a universal construction, for each set Zi and
each function firsti : Zi → S, there must exist a unique func-
tion ui : Zi → S× S such that firsti = π1 ◦ ui and secondi =
π2 ◦ ui. Indeed, for first1 and second1, we have the function
u1 : Z1 → S;�4 7→ (square, triangle), where first1(�4) =
π1((square, triangle)) = π1(u1(�4)) = π1 ◦ u1(�4). This
function, u1, is the only function that satisfies the equality
(first1,second1) = (π1,π2) ◦ u1, as required by the definition
of product. Likewise, u2 : Z2 → S;4� 7→ (triangle,square) is
the only function satisfying (first2,second2) = (π1,π2) ◦ u2.
The collection of objects and arrows modeling the shape ca-
pacities is given in the following commutative diagram (i.e.
paths from the same start object to the same end object are
equal, where one path has at least two arrows)—sets and ar-
rows associated with the �� and 44 cases are not shown; a
dashed arrow indicates uniqueness:

Z1

first1
��

u1

""D
D

D
D second1

((RRRRRRRRRRRRRRRRR Z2first2

vvlllllllllllllllll
u2

||z
z

z
z

second2

��
S S×Sπ1

oo
π2

// S

(1)

Systematicity is realized by common functions π1 and π2: the
presence/absence of each arrow implies the presence/absence
of each collection of inferential capacities.

F-systematicity, universal constructions and optimization
A universal construction is also a kind of optimization in the
sense that it consists of an object (from a collection of ob-
jects) that is “closest” (relative to the collection) to an object
of interest. If we consider each cognitive capacity as a path
from one set of cognitive states (input) to another set of cog-
nitive states (output), then closest is interpreted in terms of
path length, i.e. the number of component arrows between
two objects. The following diagram illustrates this concep-
tion by comparing the paths associated with the set S×S and

the paths associated with the set T , corresponding to archi-
tectures having universal and non-universal constructions (re-
spectively):
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v1

""E
E

E
E
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��3
3

3
3

3
3

3
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s
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s

s
s

s
s

s
s

T

π′

((QQQQQQQQQQQQQQQQ

i

��
S×S π

// S

(2)

This diagram omits the functorial component of this univer-
sal construction and simplifies some objects and arrows to
highlight the characterization of universal constructions as a
kind of optimization. The omitted details are given in Phillips
(2014). In particular, the projections, π1 and π2, are simply
denoted here as the arrow π : S× S → S, which stands in for
the arrow pair (π1,π2) : (S× S,S× S)→ (S,S). Likewise, ui
and Zi stands in for the arrow (ui,ui) : (Zi,Zi)→ (S×S,S×S),
and similarly for v j and T . With the exception of S, π and π′,
these objects and arrows belong to the image of the diagonal
functor, sending objects and arrows to pairs of objects and ar-
rows. The image of a functor F : C → D is the collection of
objects F(A) and arrows F( f ).

Diagram 2 reveals the sense in which object S×S is closer
to S than T . Arrow π′ is composed of two arrows, the pro-
jection π and the injection i. Hence, the “distance” (number
of component arrows) from T to S (two) is greater than the
distance from S× S to S (one). All capacities fi : Zi → S are
composed of π, only capacities f1, f2 and f3 are composed of
π′. Universal construction as closeness motivates a reconcep-
tualization of analogy as structure approximation to provide
a categorical treatment of G-systematicity, next.

G-systematicity (Gentner)
All categorical constructions, including universal construc-
tions, reside in a category of some kind. So, the first step in
providing a categorical account of G-systematicity is to recast
source and target knowledge domains in terms of a suitable
category. The second step is to show that G-systematicity de-
rives from a universal construction in regard to that category.
The explanation for G-systematicity also considers two cases
of analogy: (1) a special case, where the source and target
knowledge domains each consist of a single concept tree; and
(2) the general case, where the source or target domains con-
sist of multiple concept trees.

Special case: single pair of trees Each concept tree is con-
sidered as an object in some (to be specified) category. In
the water flow knowledge domain, for example, the binary
relation Contains(Vessel, Water) is represented by the tree
〈Contains,(〈Vessel〉,〈Water〉)〉, where the first component is
the relational concept (Contains) and the second component
is the list of trees representing the related concepts (Vessel and
Water). An n-ary relation is represented by a tree consisting
of an n-ary relational concept and a list of n concept trees.
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Universal constructions are a kind of optimization. Opti-
mization suggests analogical mapping as structure approxi-
mation. Approximation ordering for inductively defined data
structures, such as lists and trees, affords a categorical treat-
ment of recursion (Bird, 1998). Hence, approximation or-
dering over trees is considered as the arrows of this cate-
gory of concept trees. In this context, approximation refers
to partial knowledge about some concept tree. For exam-
ple, suppose the contents of a vessel are unknown. A repre-
sentation of this partial knowledge is the approximation tree
〈Contains,(〈Vessel〉,⊥)〉, where the symbol ⊥ indicates the
unknown concept tree. Conversely, for example, suppose one
does not know the source of a water leak. This situation is
represented by the tree 〈Flows-from,(⊥,〈Water〉)〉.

Trees are (partially) ordered by an approximation order re-
lation, denoted v. The expression t v r says that tree t is no
better an approximation (expresses no more knowledge) than
a tree r; or, in passive form, tree r is at least as good an ap-
proximation (expresses at least as much knowledge) as tree
t. The definition of the specific approximation order relation
for concept trees has two parts that formalize the following
intuitions: (1) the concept tree ⊥ is no better an approxima-
tion (expresses no more knowledge) than any tree t, and (2)
recursively, an n-ary tree t is no better an approximation (ex-
presses no more knowledge) than an n-ary tree r whenever the
two trees express the same relational concept and each related
tree ti is no better an approximation than its corresponding re-
lated tree ri. Formally, the approximation order relation for
n-ary trees of arity 0 to N is defined by:

⊥v t and

〈a,(ti)n
i=1〉 v 〈b,(ri)

n
i=1〉 ⇔ (a = b)∧

(
n̂

i=1

ti v ri

)

We have the following examples:

• ⊥v 〈Contains,(〈Vessel〉,〈Water〉)〉;

• 〈Contains,(〈Vessel〉,⊥)〉 v
〈Contains,(〈Vessel〉,〈Water〉)〉; and

• 〈Contains,(⊥,〈Water〉)〉 v
〈Contains,(〈Vessel〉,〈Water〉)〉.

There is no order relation between 〈Contains,(⊥,〈Water〉)〉
and 〈Contains,(〈Vessel〉,⊥)〉, for example.

The approximation order relation has three properties.

1. Reflexivity (t v t): t no better approximates itself.

2. Transitivity (s v t ∧ t v r ⇒ s v r): if s is no better an
approximation than t, and t is no better an approximation
than r then s is no better an approximation than r.

3. Antisymmetry (t v r ∧ r v t ⇒ t = r): if t is no better an
approximation than r, and r is no better an approximation
than t then t is the same as r.

Hence, the approximation relation is a partial order. The set
of tree approximations, T⊥, together with the partial order, v,
constitute a partially ordered set, or poset, denoted (T⊥,v).

The composition operator, ◦, for partial orders is conjunc-
tion. The transitivity property of partial orders means that if
we have (the corresponding arrows) a v b and b v c then we
have a v c, which satisfies the requirement for a category that
there is an arrow for every pair of composable arrows. The
reflexivity property of partial orders means that for every el-
ement (object) a we have (the corresponding arrow) a v a,
which satisfies the requirement for a category that every ob-
ject has an identity arrow. The proof that this collection of ob-
jects, arrows and composition operator is a category follows
immediately from the fact that (T⊥,v) is a partially ordered
set and every partially ordered set is a category.

We now want to consider a particular universal construc-
tion in regard to this category. We consider an analogical
mapping between two trees t and r as involving their greatest
common approximation tree, i.e. the tree p that shares the
greatest number of (higher-order) relational concepts, which
is a product of concept trees in the category of trees and
approximations. The definition of the greatest common ap-
proximation (gca) of two trees is motivated by the following
considerations: (1) if either tree is the no approximation (no
knowledge) tree, ⊥, then their gca is also the no approxima-
tion tree; (2) if either tree represents a different relational con-
cept then their gca is also the no knowledge tree; and (3) if
both trees represent the same relational concept then their gca
is that relational concept together with the gca of each pair of
trees at the corresponding role of the relation. Formally, the
gca for trees t,r ∈ T⊥ is defined by:

gca(t,⊥) =⊥
gca(⊥,r) =⊥

gca(〈a,(ti)m
i=1〉,〈b,(r j)

n
j=1〉) =⊥ a 6= b

gca(〈a,(ti)n
i=1〉,〈a,(ri)

n
i=1〉) = 〈a,(gca(ti,ri))

n
i=1〉

Some examples of the gca of two trees follow:

• gca(〈Contains,(〈Vessel〉,〈Water〉)〉,⊥) =⊥;

• gca(〈Contains,(〈Vessel〉,〈Water〉)〉,
〈Contains,(〈Vessel〉,〈oil〉)〉) =

〈Contains,(〈Vessel〉,⊥)〉;

• gca(〈Contains,(〈Vessel〉,〈Water〉)〉,
〈Contains,(〈House〉,〈Heat〉)〉) =

〈Contains,(⊥,⊥)〉; and

• gca(〈Contains,(〈Vessel〉,〈Water〉)〉,
〈Flows-from,(〈Vessel〉,〈Water〉)〉) =⊥.

As the last example illustrates, gca is the greatest common ap-
proximation tree, not the correspondence between two trees:
Contains and Flows-from are relational concepts, not rela-
tional concept trees, hence the greatest common approxima-
tion tree is not 〈⊥,(〈Vessel〉,〈Water〉)〉). Having obtained the
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gca, a subsequent process can be employed to obtain corre-
spondences between the other concepts.

The gca of trees t and r is their greatest lower bound p. The
poset (T⊥,v) is a category where each tree t ∈ T⊥ is an ob-
ject in the (poset as a) category (T⊥,v). The product of two
trees t and r in this category is their gca together with two
approximation arrows: i.e. (gca(t,r),vt ,vr). The proof fol-
lows from the proof that the gca of two trees is their greatest
lower bound, and that the greatest lower bound is a product
in a poset considered as a category (see Phillips, 2014).

The product of trees t and r is the tree with the greatest
number of connected higher-order relations in common to t
and r (together with their approximation arrows). A product
is a universal construction. Hence, a universal construction
provides an explanation for G-systematicity.

General case: multiple pairs of trees In general, a source
and target domain may consist of multiple trees, as illustrated
in the Water-Heat flow example in the Introduction. The ex-
planation generalizes to this situation, sketched here.

Suppose there are multiple candidate pairs of source-target
trees. The pairs of source-target trees considered during an
analogy constitute a list of tree pairs. Computing the gca of
each pair gives a list of product trees. Since product trees
are also trees, we can also define an ordering on them. In this
case, the ordering is over tree size, rather than tree approxima-
tion. Again, we have a partially ordered set and hence a prod-
uct of product trees as the greatest lower bound. Suppose size
is a natural number, for example, indicating tree height which
corresponds to the order of the root relation, where size of
the unknown tree is zero, i.e., size(⊥) = 0. The set of natural
numbers, N, and the usual ordering on them, ≤, is the poset
(N,≤). This set is also a totally ordered set (i.e. every pair
of elements in the set is ordered) and the product of two nat-
ural number objects x and y in the poset as a category (N,≤)
is the minimum of x and y: e.g., the categorical product
2×3 = (2,≤2,≤3). In the case that we require the maximum
size of two trees, we can work in the dual (opposite) category
(N,≥), whose product is the maximum of two numbers: e.g.,
in (N,≥), the categorical product 2×3 = (3,≥2,≥3). Equiv-
alently, in (N,≤), the maximum of two numbers is the dual,
coproduct (universal) construction (denoted, +): e.g., the cat-
egorical coproduct 2+3 = (3,≤2,≤3). These two steps give
us the largest common approximation tree for the Water-Heat
flow analogy, which corresponds to G-systematicity.

Discussion and extensions
Psychologically, we can consider universal constructions as
a kind of optimization of cognitive resources. In the con-
text of cognitive capacity, the F-systematicity property af-
fords the ecological benefit of not having to expend further re-
sources for an already present (component) cognitive capac-
ity (Phillips & Wilson, 2010). In the context of analogy, the
G-systematicity property affords more correspondences be-
tween source and target knowledge domains (Gentner, 1983),
and therefore greater opportunities to exploit knowledge in

one domain for inferences in another. Hence, systematic cog-
nitive capacity and analogical mapping of systems of higher-
order relations are two aspects of one optimization principle.

How this category-theoretic level of analysis maps into a
symbolic level, e.g., the structure mapping engine (Forbus,
Gentner, & Law, 1995), or a connectionist level, e.g., DORA
(Doumas, Hummel, & Sandhofer, 2008), of analysis is a fur-
ther challenge. At the neural level, one approach that we have
mentioned before (Phillips & Wilson, 2014) is to propose a
suitable category of neural networks and arrows between net-
works. Networks are a kind of graph. The category of graphs
and graph homomorphisms has products, so one possibility is
a variation of this category that also has products.

A psychological interpretation of a categorical construc-
tion may also depend on the nature of the arrows and am-
bient category. The explanations for F-systematicity and
G-systematicity involved one kind of universal construction
(product), but two types of arrows and hence categories: func-
tions between sets for F-systematicity, and order relations be-
tween trees or numbers for G-systematicity. Interpreting F-
systematicity in terms of common processes mapping cog-
nitive states to states is natural, but a similar interpretation
for G-systematicity may appear less so, since the arrows ap-
pear to be comparisons (not transformations) between ob-
jects. Nonetheless, G-systematicity also has an interpretation
in terms of common arrows: in a poset as a category, every
comparison between objects z and t (and r), i.e. z ≤ t, factors
through the comparison of the least upper bound p of t and r,
i.e. p ≤ t, because the corresponding arrow ≤zt=≤pt ◦ ≤zp
(i.e. z less-than-or-equal t whenever z less-than-or-equal p
and p less-than-or-equal t). Hence, ≤pt is the common arrow
underlying all comparisons with t, defining an equivalence
class of capacities for comparisons with t (and likewise r).

“Bottom-up” components
There is a large literature on computational models of anal-
ogy for a broad range of phenomena (see Gentner & For-
bus, 2010, for a review), and the category theoretical ap-
proach presented here is a modest step towards integrat-
ing properties of analogy with other components of cogni-
tion. One important aspect of analogy not addressed here
is the role of the one-to-one correspondence principle that
is a central feature of theories of analogy, such as struc-
ture mapping theory (Gentner, 1983). For example, the
gca of Causes(Loves(John, Mary), Kisses(John, Mary)) and
Causes(Loves(Jane, Marcia), Kisses(Jane, Marcia)) is the
same as the gca of Causes(Loves(John, Mary), Kisses(John,
Mary)) and Causes(Loves(Jane, Marcia), Kisses(Susan,
Tony)), yet we may expect a preference for the first choice
given that the repeating components (e.g., John as the lover
and as the kisser) represent the same concept. One possibil-
ity is to include the dual notion of coproducts by considering
each repetition as a single concept with more than one parent,
i.e. by considering the structure as a lattice instead of a tree.
In this case, matching is based on both top-down (product)
and, dually, bottom-up (coproduct) universal constructions.
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Semantic components
Another aspect of analogy not addressed here is the seman-
tic relatedness of concepts, which is addressed in models
of analogy such as LISA (Hummel & Holyoak, 1997) and
DORA (Doumas et al., 2008) using semantic features. These
models prefer Loves(John, Mary) to Likes(Bill, Susan) than
Fears(Peter, Beth), because Loves and Likes share more fea-
tures than Loves and Fears (see Hummel & Holyoak, 1997).

One suggestion (sketched here) is to regard the concept
tree nodes as indices (pointers) to semantic feature sets. In
this case, a concept tree structure has two components: (1) a
tree of indices, τ, and (2) an indexed set of semantic feature
sets, σ = {si}i∈Iτ , where Iτ is the set of indices given by τ, to-
gether denoted as the pair (τ,σ). (Indices may be specified as
the paths from root to node.) Approximation is defined com-
ponentwise: i.e. t v t ′ ⇔ τ v τ′ ∧ (

V

i∈Iτ∩Iτ′
(σi ⊆ σ′

i)). The
empty set, /0, now takes on the “no knowledge” role of the
empty tree, ⊥. A product in a category of sets and inclusions
is set intersection. Thus, a product of concept trees (τ,σ) and
(τ′,σ′) is (gca(τ,τ′),(σi ∩σ′

i)i∈Iτ∩Iτ′ ).
For multiple product trees, we need a way of compar-

ing tree sizes. Let m(p) = (mτ(p),mσ(p)) be a mea-
sure of product tree size in terms of the sizes of each
component. Partial order over product tree size is de-
fined as (mτ(p1),mσ(p1))≤ (mτ(p2),mσ(p2))⇔ (mτ(p1)≤
mτ(p2))∧ (mσ(p2)≤ mσ(p2)). Returning to the Loves-Likes
example, the tree structures for the two alternatives (i.e.
Likes(Bill, Susan) and Fears(Peter, Beth)) match the source
to the same degree, but the size of the intersection for seman-
tic feature sets for Loves and Likes will be greater than for
Loves and Fears, hence Likes(Bill, Susan) is preferred. To
consider the partial order over product trees as a total order,
we need some way of integrating the sizes of each component
into a single measure. One possibility is a function that ac-
cords with the MAX principle (Goldstone, Medin, & Gentner,
1991), where similarity judgement is based on the maximum
of relational and featural similarity measures.

Summary and further work
F-systematicity and G-systematicity are two sides of the same
coin; two aspects of a common principle, universal construc-
tion, which is a form of optimization. Induction is closely
related to analogy, and both are modeled by DORA (Doumas
et al., 2008). Further work considers induction as universal
construction. For example, one approach (Schwering, Krum-
nack, Kuhnberger, & Gust, 2009), which treats analogy as in-
duction, has its roots in category theory as a kind of universal
construction called the least general generalization (Plotkin,
1970). Comparing these categorical methods may lead to a
deeper understanding of cognition as structural optimization.
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