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Understanding the fracture toughness (resistance) of glasses is a fundamental problem of prime
theoretical and practical importance. Here we theoretically study its dependence on the loading rate, the age
(history) of the glass, and the notch radius ρ. Reduced-dimensionality analysis suggests that the notch
fracture toughness results from a competition between the initial, age- and history-dependent, plastic

relaxation time scale τpl0 and an effective loading time scale τextð _KI; ρÞ, where _KI is the tensile stress-

intensity-factor rate. The toughness is predicted to scale with
ffiffiffi
ρ

p
independently of ξ≡ τext=τpl0 for ξ ≪ 1, to

scale as T
ffiffiffi
ρ

p
logðξÞ for ξ ≫ 1 (related to thermal activation, where T is the temperature), and to feature a

nonmonotonic behavior in the crossover region ξ ∼Oð1Þ (related to plastic yielding dynamics). These
predictions are verified using 2D computations, providing a unified picture of the notch fracture toughness
of glasses. The theory highlights the importance of time-scale competition and far-from-steady-state
elasto-viscoplastic dynamics for understanding the toughness and shows that the latter varies quite
significantly with the glass age (history) and applied loading rate. Experimental support for bulk metallic
glasses is presented, and possible implications for applications are discussed.

DOI: 10.1103/PhysRevApplied.6.024008

I. INTRODUCTION

The fracture toughness, i.e., the ability to resist failure in
the presence of a crack, is a basic physical property of
materials [1]. From a practical perspective, this property is a
major limiting factor in the structural integrity of a broad
range of systems and engineering applications. From a
theoretical perspective, the fracture toughness challenges
our understanding of the strongly nonlinear and dissipative
response of materials under extreme conditions, approach-
ing catastrophic failure. Consequently, obtaining a basic
understanding of the fracture toughness of materials is a
fundamentally important problem.
Quantitatively predicting the fracture toughness of glassy

materials, which lack long-range crystalline order and are
characterized by intrinsic disorder, is a particularly pressing
problem in condensed-matter, materials, and applied phys-
ics. Glassy materials exhibit unique and intriguing physical
properties as compared to their crystalline counterparts
[2–10]. For example, glassy solids typically exhibit a
strength and an elastic limit that significantly exceed those
of crystalline alloys of similar composition due to the
absence of mobile dislocation defects. Instead, glassy solids
deform irreversibly by immobile and localized structural
rearrangements [11–13], at sites termed shear-transformation
zones (STZs), which are not yet fully understood.
Glassy materials are intrinsically out of equilibrium;

hence, their physical properties depend on their preparation
protocol, history, and age (see, for example, Refs. [14,15]).

Moreover, these materials typically do not feature strain
hardening, i.e., an increase in the deformation resistance
with increasing deformation, which is commonly observed
in crystalline alloys [2–10]. Finally, glassy materials feature
rate effects that are far from understood [2–10].
In the past few decades, significant improvement in the

glass-forming ability (GFA) of multicomponent amorphous
alloys has been achieved, allowing the use of conventional
casting techniques to obtain amorphous alloys in bulk
forms, the so-called bulk metallic glasses (BMGs) [16–22].
The emergence of this new family of glasses has triggered
intense research activity and holds great promise for a wide
range of functional and structural engineering applications
[2–10]. The reason for this is twofold. First, BMGs are
exceptionally strong and elastic compared to conventional
engineering materials and exhibit other appealing mechani-
cal and magnetic properties (such as good wear strength,
corrosion resistance, and hard-magnetic properties at room
temperature). Second, BMGs can be processed as plastics
into near-net shapes that are impossible to achieve using
conventional metals, due to stable viscous flow in a wide
supercooled-liquid region and minute shrinkage at the glass
transition [16–22].
A major stumbling block for the widespread usage of

BMGs as structural engineering materials in load-bearing
applications is their limited ductility and typically low
fracture toughness. This severe limitation triggered an
extensive search for improving the toughness of BMGs
by either exploring new alloys and compositions with
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excellent GFA and physical properties or by manipulating
existing alloys [3–10]. Unfortunately, this search is not
yet based on well-established theoretical predictions but
rather on trial-and-error procedures and phenomenological
correlations between various physical properties [3–10].
For example, a large body of work focuses on some
phenomenological correlations between the elastic moduli
of BMGs and important properties such as their fracture
toughness and GFA [3–10]. It is highly desirable to put
these efforts on solid theoretical grounds which will
enhance the predictability of the fracture toughness of
glasses and hence pave the way to a broader range of
engineering applications.
This challenge has attracted considerable attention

and triggered much recent work [23–54]. Yet, there is
no complete understanding of the resistance of glassy
materials to catastrophic failure in the presence of a notch
defect—the notch fracture toughness—and its dependence
on various physical parameters. Our goal in this paper is to
offer a comprehensive theoretical picture of the dependence
of the notch fracture toughness of glasses on the loading
rate, the glass age and history, the notch radius, and the
temperature (below the glass transition temperature).
Our main result, obtained through a reduced-

dimensionality theoretical analysis and extensive 2D spa-
tiotemporal computations based on a recently developed
numerical method [55], highlights the essential role played
by time-scale competition in determining the notch fracture
toughness of glassy materials. The competing time scales
involve an effective applied loading time scale (depending
on the notch radius of curvature and on the global geometry
and loading rate) and the initial, age-dependent, plastic
(dissipative) relaxation time scale (depending on the
glass cooling rate, age, and history) [56]. Once properly
identified, the ratio of the two time scales ξ is shown to
control the fracture toughness over a wide range of physical
conditions. A master curve describing the dependence of
the toughness on ξ is quantitatively derived and is shown to
feature a nonmonotonic behavior.
These results are shown to be consistent with previously

unexplained experimental data and offer various predic-
tions. The theory suggests a way to predict the variation of
the notch fracture toughness of glasses over a broad range
of physical conditions based on relatively few measure-
ments. It also delineates the range of physical parameters
where BMGs could be manipulated, e.g., by controlled heat
treatments, to achieve improved toughness for engineering
applications. In particular, the minimum of the toughness
master curve in terms of ξ is an important rate-dependent
material parameter that can guide toughening strategies
(e.g., by manipulating the preparation procedure) and put
on more solid ground the related phenomenological criteria
[51]. Moreover, the theory suggests that phenomenological
correlations between elastic moduli and toughness may
be somewhat superficial and of limited predictive power.

Finally, this work offers tools to quantify the rate depend-
ence of the toughness, which is essential for using BMGs in
future load-bearing engineering applications.

II. PROBLEM FORMULATION

The fracture toughness quantifies the amount of dis-
sipation involved in crack propagation. Consequently, one
needs to account for the irreversible deformation of the
material and its interplay with reversible (elastic) deforma-
tion. Inertia plays little role in fracture initiation under a
wide range of conditions and standard engineering testing
protocols; hence, we focus on the quasistatic stress equi-
librium described by

∇ · σ ¼ 0; ð1Þ

where σ is the Cauchy stress tensor. We consider then a
general hypo-elasto-viscoplastic material described by

DtotðvÞ ¼ Delðσ; vÞ þ Dplðσ;…Þ: ð2Þ

Here Dtot ¼ 1
2
½∇vþ ð∇vÞT � is the total rate-of-deformation

tensor, where vðr; tÞ is the Eulerian velocity field and ðr; tÞ
are the spatiotemporal coordinates. Del ¼ ∂tϵþ v ·∇ϵþ
ϵ · ω − ω · ϵ is the elastic rate-of-deformation tensor,
where ω ¼ 1

2
½∇v − ð∇vÞT � is the spin tensor and the

strain tensor ϵ is related to σ through Hooke’s law
σ ¼ K tr ϵ1þ 2μðϵ − 1

3
tr ϵ1Þ. K and μ are the bulk and

shear moduli, respectively. Dplðσ;…Þ is the plastic rate-of-
deformation tensor, which encapsulates the relevant
physics of the dissipative deformation of glasses. The
ellipsis stands for additional dependencies, e.g., on the
temperature and on structural internal state variables.
We adopt the nonequilibrium thermodynamic STZ

model, as in Ref. [35], where

Dplðs; T; χÞ ¼ e−ðez=kBχÞ
Cðs̄; TÞ

τ

�
1 −

sy
s̄

�
s
s̄
; ð3Þ

c0 _χ ¼ Dpl∶s
sy

ðχ∞ − χÞ ð4Þ

for s̄ ≥ sy and Dpl ¼ 0 otherwise. This model, despite its
relative simplicity, is shown to capture a wide range of
driven glassy phenomena [13,35,57–70]. s ¼ σ − 1

3
trσ1 in

Eqs. (3) and (4) is the deviatoric stress tensor, its magnitude
is s̄≡ ffiffiffiffiffiffiffiffiffiffiffi

s∶s=2
p

, and sy is the shear yield stress. χ is an
effective disorder temperature which quantifies the intrinsic
structural state of the glass [57,63], ez=kB is a typical STZ
formation energy over Boltzmann’s constant, and Cðs̄; TÞ=τ
is the rate at which STZs make transitions between their
internal states. τ−1 is a molecular vibration rate, and T is
the bath temperature, assumed to be well below the glass
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temperature [such that spontaneous aging is neglected in
Eq. (4)]. c0 is an effective dimensionless heat capacity, and
χ∞ is the steady-state value of χ.
The STZ transition rate is taken to be of the form

Cðs̄; TÞ ¼
8<
:

e−ðΔ=kBTÞ cosh
h
Ωϵ0 s̄
kBT

i
for Ωϵ0s̄ < Δ;

Ωϵ0 s̄
2Δ for Ωϵ0s̄ ≥ Δ:

ð5Þ

It corresponds to a linearly stress-biased thermal activation
process at relatively small stresses, where Δ is the typical
energy activation barrier,Ω is the typical activation volume,
and ϵ0 is the typical local STZ strain. In the presence of the
high stresses near a tip of a crack, Ωϵ0s̄ may become larger
than Δ, in which case we assume that the exponential
thermal activation form crosses over to a much weaker
dependence associated with a linear, nonactivated, dissi-
pative mechanism [61]. As Δ ≫ kBT, the two regimes
connect continuously but not differentiably. This crossover
in the form of the STZ transition rates, from exponential
thermal activation to a much weaker athermal power law
(here a linear relation, which allows for analytic progress),
turns out below to have important implications for the
toughness.
This elasto-viscoplasticity model is used to formulate a

plane-strain fracture problem where traction-free boundary
conditions are imposed on a blunted straight notch (crack)
with an initial root radius ρ (cf. Fig. 1) and the universal
linear elastic mode-I (tensile) crack tip velocity fields [71]

vðr; θ; tÞ ¼
_KIðtÞ
μ

ffiffiffiffiffiffi
r
2π

r
FðθÞ for r ≫ ρ ð6Þ

are imposed on a scale much larger than ρ. Here _KI is the
mode-I stress-intensity-factor rate, which measures the
intensity of the linear elastic singularity ∇v ∼ 1=

ffiffiffiffiffiffiffiffi
2πr

p
at

ρ ≪ r ≪ L, where L is a macroscopic length scale in the
global fracture problem (e.g., the sample size). ðr; θÞ is a
polar coordinate system whose origin is set a distance ρ=5
behind the notch root, θ ¼ 0 is the symmetry axis, andFðθÞ
is a known universal function [35,71]. In such a boundary
layer formulation, the stress-intensity factor uniquely
couples the inner scales near the notch root to the outer
scales and, hence, can be controlled independently without
solving the global fracture problem [71].
The notch fracture toughness is the critical value of

the stress-intensity factor, KQ, at which crack propagation
initiates and global failure occurs. Recent work [35,40–49]
suggests that this onset (and in fact also the subsequent
propagation [35]) is controlled by a local cavitation
instability occurring when the hydrostatic tension 1

3
tr σ

surpasses a threshold level σc. We adopt this failure
criterion here.
While a large part of the analysis below is performed

in terms of dimensionless parameters, we nevertheless
consider realistic material parameters corresponding to
Vitreloy 1, a widely studied BMG, identical to those reported
in Ref. [35]. That is, we use T ¼ 400 K, ez=kB ¼ 21 000 K,
sy ¼ 0.85 GPa, μ ¼ 37 GPa, K ¼ 122 GPa, τ ¼ 10−13 s,
ϵ0 ¼ 0.3, Ω ¼ 300 Å3, c0 ¼ 0.4, Δ=kB ¼ 8000 K, and
χ∞ ¼ 900 K. For the initial conditions, we use σðr; t ¼
0Þ ¼ 0 and χðr; t ¼ 0Þ ¼ χ0, where χ0 describes the initial
structural state of the glass which depends on its history. For
example, it may be affected by the cooling rate at which the
glass has been formed, annealing and other heat treatments,
aging time, and previous deformation. The model’s setup is
shown in Fig. 1.

III. THEORY AND ANALYSIS

Our major goal is to study the dependence of the notch
fracture toughness KQ on the initial structural state of
the glass χ0, on the stress-intensity-factor rate _KI, on the
notch radius of curvature ρ, and on the temperature T below
the glass transition temperature. We address the problem of
calculating KQðχ0; _KI; ρ; TÞ by a reduced-dimensionality
theoretical analysis and 2D numerical computations. The
latter, an example of which is shown in Fig. 1, are based on
a recently developed numerical method that can handle
physically realistic loading rates, which is essential for
understanding the properties of the toughness. Preliminary
numerical results addressing this problem appeared
in Ref. [35].

FIG. 1. The problem setting and an example of a numerical
solution in the near-notch-root region. (a) The hydrostatic
pressure and (b) the magnitude of the deviatoric stress, both
normalized by the shear yield stress sy, are shown. The dashed-
dotted line corresponds to the initial notch state and the solid line
to a deformed state with KI ¼ 30 MPa

ffiffiffiffi
m

p
. A small portion of

the simulation domain −20 ≤ x=ρ, y=ρ ≤ 20, near the notch root,
is shown. A fixed coordinate system located a distance ρ=5
behind the initial notch root, with both Cartesian ðx; yÞ and polar
ðr; θÞ coordinates, is shown in (a). The calculation is done using a
1025 × 1025 grid.
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To gain some analytic insight into the fracture toughness,
we perform a reduced-dimensionality analysis which
aims at describing the behavior of a representative material
element near the notch root. We further simplify the
problem by eliminating its tensorial nature, focusing only
on the magnitude of the deviatoric component of the
relevant tensors. In particular, we neglect altogether the
hydrostatic part of the stress tensor σ and replace its
deviatoric part sðr; tÞ by a space-independent scalar sðtÞ
and χðr; tÞ by χðtÞ. Similarly, we replace the space-
dependent elastic and plastic rate-of-deformation tensors
in the problem by their space-independent scalar
counterparts Delðr;tÞ→ _sðtÞ=μ and Dplðr;tÞ→DplðtÞ, with
Dplðs; χÞ ¼ τ−1e−ðez=kBχÞCðs; TÞð1 − sy=sÞ.
The crucial last step is to relate the global loading and

geometry of the system, captured by the stress-intensity
factor KI, and the effective total rate of deformation near
the notch root, taking into account both the strong stress
amplification associated with the linear elastic square-root
singularity and the characteristic length scale inherited
from the notch radius of curvature. A natural way to do
this is through the replacement

Dtotðr; tÞ →
_KI

μ
ffiffiffiffiffiffiffiffi
2πρ

p : ð7Þ

With these replacements, Eqs. (3) and (4) transform into a
set of coupled nonlinear ordinary differential equations:

_s ¼
_KIffiffiffiffiffiffiffiffi
2πρ

p − μDplðs; χÞ; ð8Þ

c0 _χ ¼ Dplðs; χÞs
sy

ðχ∞ − χÞ: ð9Þ

Obviously, Eqs. (8) and (9) miss many features of the full
(2þ 1)-dimensional spatiotemporal dynamics of the prob-
lem, such as the tensorial nature of the basic quantities, the
coupling between the deviatoric and hydrostatic parts of the
deformation and stress, the time evolution of the radius
of curvature ρðtÞ, and the propagation of yielding fronts in
the notch-root region. Yet, as shown below, they capture
important aspects of the fracture toughness. The first step
in analyzing Eqs. (8) and (9) is to identify a proper set of
dimensionless physical parameters that control their behav-
ior. In this context, we stress that elasto-viscoplasticity is
intrinsically linked to a competition between different time
scales. Moreover, glassy response is sensitive to the initial
structural state of the material (affected by its age, cooling
rate, previous deformation, etc.), which must play a crucial
role in far-from-steady-state physical properties such as the
fracture toughness.
To capture this time-scale competition, we define an

initial plastic relaxation time scale (inverse rate) as

τpl0 ðχ0Þ≡ τeðez=kBχ0Þ, an effective applied time scale
(again, an inverse rate) as τextð _KI; ρÞ≡ μ

ffiffiffiffiffiffiffiffi
2πρ

p
= _KI , and

their ratio as

ξðχ0; _KI; ρÞ≡ τext

τpl0
¼ μ

ffiffiffiffiffiffiffiffi
2πρ

p

τ _KI

e−ðez=kBχ0Þ: ð10Þ

This dimensionless quantity plays a central role in what
follows. It is important to note that 1=τext is not the
externally applied strain rate but rather the effective strain
rate experienced by the near-notch region. The effective
strain rate at the innermost scale r≃ ρ is significantly
amplified relative to the externally applied strain rate,
characterizing the outermost scale L, according to the
linear elastic square-root singularity.
We also define ~ez ≡ ez=kBχ0, ~χ∞ ≡ χ∞=χ0, ~μ≡ μc0=sy,

~s≡ s=sy, ~χ ≡ χ=χ0, and ~t≡ t _KI=sy
ffiffiffiffiffiffiffiffi
2πρ

p
. In terms of these

dimensionless quantities, Eqs. (8) and (9) take the form

_~s ¼ 1 − ξfð~s; ~χÞ; ð11Þ

~μ _~χ ¼ ξfð~s; ~χÞ~sð~χ∞ − ~χÞ; ð12Þ

with fð~s; ~χÞ≡ e~ezð1−~χ−1ÞCðs; TÞð1 − ~s−1Þ for ~s ≥ 1 (for
~s < 1, we have f ¼ 0). It should be noted that non-
dimensionalizing differential equations using an initial
condition, in our case χ0, might appear unnatural. Yet, it
is a choice that is dictated by the physics of glasses, which
exhibit a rather unique dependence on the initial state.
To proceed, we distinguish between two regimes: one in

which the deviatoric stress significantly surpasses Δ=Ωϵ0,
where C ∼ s, and one in which the deviatoric stress remains
close to Δ=Ωϵ0, where C varies exponentially with the
stress [cf. Eq. (5)]. We focus first on the former and for
the sake of simplicity set 2Δ=Ωϵ0 ¼ sy, which means that
we exclude thermal activation altogether in this part of the
reduced-dimensionality analysis.
In Figs. 2(a) and 2(b), we present ~sð~tÞ and ~χð~tÞ for two

values of ξ which differ by an order of magnitude. It is
observed that as ξ decreases, when τext decreases relative to
τpl0 , the yielding behavior of the material (i.e., the transition
from elastic-dominated to plastic-dominated deformation)
changes quite significantly. In particular, an elastic over-
shoot leads to a significant increase in the peak stress ~sp
with decreasing ξ, and the subsequent dynamics exhibit a
sharp drop in the stress ~s and a sharp increase in the
effective temperature ~χ. These sharp postyielding dynamics
mark the emergence of a short time scale associated with a
strongly nonlinear material response.
Our next goal is to better understand this behavior and its

relation to the fracture toughness. To that aim, we first try
to estimate the peak stress ~sp, for which _~s ¼ 0. The latter

translates into the relation e~ezð1−~χ−1p Þð~sp − 1Þ ¼ ξ−1 between
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~sp and ~χp ≡ ~χð~spÞ. An approximate solution for the stress
peak can be derived in the form

~sp ≃ 1 −
ζ þ ~μ

4ζ
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ζ ~μξ−1 þ ðζ þ ~μÞ2

p
4ζ

; ð13Þ

with ζ≡ 1þ ~ezð~χ∞ − 1Þ. ~χp is given by the exact relation
~χpð~spÞ ¼ f1þ ~e−1z log ½ξð~sp − 1Þ�g−1. In Fig. 2(c), we
compare the analytic estimation in Eq. (13) to the peak
stress obtained from the full numerical solution of Eqs. (11)
and (12). It is observed that the analytic approximation
accurately captures the increase in ~sp with decreasing ξ. In
light of the latter, we expect ~χpð~spÞ given above to yield
good approximations as well, which is indeed the case
(not shown).
With ~sp and ~χp at hand, we can estimate the stress drop

rate in the postpeak dynamics, observed in Fig. 2(a). As the
plastic rate of deformation is strongly amplified during the
drop, we neglect the external loading term _KI=

ffiffiffiffiffiffiffiffi
2πρ

p
in

Eq. (8). With this approximation, which is expected to be
valid for small ξ, we can eliminate Dplðs; χÞ between
Eqs. (8) and (9), obtaining a differential equation for χðsÞ
(i.e., time becomes a parameter). The solution, which is
expected to be valid deep inside the stress drop region, takes
the form ~χð~sÞ≃ ~χ∞ − ð~χ∞ − ~χpÞ exp ½ð~s2 − ~s2pÞ=ð2~μÞ�.
Using the latter, we obtain the following estimate:

_~sð~sÞ≃ −ξe~ez½1−~χð~sÞ−1�ð~s − 1Þ ð14Þ

for the stress rate during the drop, which should be valid for
1 < ~s < ~sp, not too close to either 1 or ~sp.
It is important to note that ~χð~sÞ in Eq. (14) depends on ξ

also through ~sp and ~χpð~spÞ, which give rise to a super-

exponential increase in the maximal value of _~sð~sÞ, j_~smj,
with decreasing ξ. The prediction in Eq. (14) is compared to
the full solution in Fig. 2(d), demonstrating reasonable
agreement at small values of ξ, where it is expected to be
valid. Note that j_~smj in Fig. 2(d) is 1–2 orders of magnitude
larger than the effective external loading rate [which is
unity in the dimensionless form; cf. Eq. (11)] for suffi-
ciently small ξ, as assumed before. This analysis shows
how nonlinear yielding in glassy materials can dynamically
generate new, and much shorter, time scales.
In order to understand the implications of this reduced-

dimensionality analysis on the toughness, we need to
consider spatial interactions between different material
elements and the coupling between the deviatoric and
the hydrostatic components of the stress tensor. Both
components obviously increase linearly with increasing
KI in the elastic regime. When a material element with the
largest deviatoric stress yields, the stress is redistributed to
nearby material elements. In particular, when ξ is small and
a sharp deviatoric stress drop accompanies yielding as
shown in Fig. 2(a), nearby material elements experience a
sharp increase in stress, and hence the maximal stress
increases abruptly. This applies to both the deviatoric s and
the hydrostatic 1

3
trσ components of the stress tensor σ,

which are coupled through the stress equilibrium equation
∇ · σ ¼ 0. To show this, we plot in Fig. 3(a) the maximum
(in space) of the magnitude of the deviatoric stress s, s̄m,
and of the hydrostatic tension 1

3
tr σ ≡ −p, jpjm, obtained

from a numerical solution of the full (2þ 1)-dimensional
problem with χ0 ¼ 595 K and _KI ¼ 25 MPa

ffiffiffiffi
m

p
=s (cor-

responding to ξ ¼ 0.14). We observe that indeed both
quantities abruptly increase together at a certain applied
stress-intensity factor KI.
If the increase in jpjm for the given ξ is sufficiently large,

it can reach the threshold σc, which in our model implies
failure (and hence the toughness is determined). Consider
then what happens for yet smaller values of ξ, ξ ≪ 1,
corresponding to larger _KI’s or smaller χ0’s. In this case, we
expect the threshold σc to be reached within the predomi-
nantly elastic regime and hence the toughness to be ξ
independent in this regime. This implies that there might be
a range of ξ’s in which the toughness decreases when ξ
increases. That is, this scenario implies that the toughness
can vary nonmonotonically with ξ. To test this, we plot in
Fig. 3(b) jpjm for ξ ¼ 0.14 [exactly as in Fig. 3(a)] and also
for ξ ¼ 4 × 10−3 ≪ 1, along with σc ¼ 4.5sy (horizontal
line, the same value as in Ref. [35]). We indeed observe

FIG. 2. The solution of Eqs. (11) and (12), for two values of ξ
(separated by an order of magnitude). The stress is shown in (a)
and the effective temperature in (b). We use ~μ ¼ 15.07, ~ez ¼ 35,
~χ∞ ¼ 1.5, and C ¼ ~s, with the initial conditions ~sð0Þ ¼ 0 and
~χð0Þ ¼ 1. (c) The analytic prediction for the peak stress ~sp in
Eq. (13) (solid red line) compared to the peak stress obtained
from a numerical solution of Eqs. (11) and (12) (open blue
circles). (d) The prediction of the maximal stress drop rate j_~smj in
the postpeak regime following Eq. (14) (solid red line) compared
to the maximal stress drop rate obtained from a numerical
solution of Eqs. (11) and (12) (open blue circles).
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that the threshold is reached at a smaller KI for the larger ξ,
i.e., that the fracture toughness is indeed nonmonotonic.
These predictions are tested over a wide range of

parameters in Figs. 4(a) and 4(b), where we plot the
toughness as a function of _KI [Fig. 4(a), for various
χ0’s] and χ0 [Fig. 4(b), for various _KI’s], as obtained from
the full (2þ 1)-dimensional computations. The emergence
of a nonmonotonic dependence of the toughness for a large
range of parameters is evident, as well as the saturation of
the toughness for sufficiently small χ0 and sufficiently
large _KI (corresponding to ξ ≪ 1). The minimum in the

toughness shifts systematically with χ0 and _KI. Note that,
while the nonmonotonicity is not huge in magnitude, of the
order of 10 MPa

ffiffiffiffi
m

p
, it is a distinct and qualitative feature

of strongly nonlinear yielding dynamics in our model. Note
also that the nonmonotonic behavior disappears for large
enough χ0 [cf. the χ0 ¼ 640 K curve in Fig. 4(a)] and large
enough _KI [not shown in Fig. 4(b), it requires yet larger _KI
values].
Finally, we also plot in Fig. 4(c) the variation of

the toughness with ρ (for various χ0’s, with _KI ¼
20MPa

ffiffiffiffi
m

p
=s), discussed below. The toughness is

obviously a monotonically increasing function of ρ, as
increasing the notch radius of curvature implies enhanced
plastic dissipation and less stress concentration. Yet the
monotonic ρ dependence in Fig. 4(c) is connected below to
the nonmonotonic behavior observed in Figs. 4(a) and 4(b)
with respect to χ0 and _KI.

IV. MAIN RESULT

Up to now, in the analysis of the reduced-dimensionality
model in Eqs. (8) and (9), we use C ∼ s. This cannot
be valid in the large χ0 and small _KI limits (corresponding
to large ξ), where stresses remain close to sy and Cð·Þ
in Eq. (5) is expected to be determined by thermal
activation. Consequently, we would like now to gain some
insight into the behavior of Eqs. (8) and (9) when
Cðs; TÞ ¼ e−Δ=kBT cosh ½Ωϵ0s=kBT�. As the stress remains
close to sy, we assume that χ ≃ χ0 and expand _s ¼ 0 near
sy. We can then solve for the peak stress, which takes
the form ~sp ¼ 1þ ψ−1Wð2ψξ−1eΔ=kBTe−ψ Þ, where ψ ≡
ðΩϵ0syÞ=ðkBTÞ and Wð·Þ is the Lambert W function. For
realistic numbers, the argument of the latter is large, and
we have WðxÞ≃ logðxÞ. Consequently, ~sp depends on ξ
through T log ξ, a clear signature of thermal activation.
We hypothesize that the toughness KQ features the same

FIG. 4. The notch fracture toughness KQðχ0; _KI; ρ; TÞ as obtained from numerical solutions of the full (2þ 1)-dimensional
problem. (a) KQ as a function of _KI for various χ0’s, with ρ ¼ 65 μm and T ¼ 400 K. (b) KQ as a function of the initial structural
state χ0 for various _KI’s, with ρ ¼ 65 μm and T ¼ 400 K. (c) KQ as a function of the notch radius ρ for various χ0’s, with
_KI ¼ 20 MPa

ffiffiffiffi
m

p
=s and T ¼ 400 K.

FIG. 3. (a) The maximum (in space) of the hydrostatic tension
jpjm and the magnitude of the deviatoric stress s̄ (both in units
of sy) as a function of KI , obtained from a numerical solution
of the full (2þ 1)-dimensional problem with χ0 ¼ 595 K, _KI ¼
25 MPa

ffiffiffiffi
m

p
=s, and ρ ¼ 65 μm, corresponding to ξ ¼ 0.14. It is

observed that the two quantities experience an abrupt increase at
the same value of KI . (b) The maximum (in space) of the
hydrostatic tension jpjm (in units of sy) as a function of KI ,
for ξ ¼ 0.14 [as in (a)] and ξ ¼ 4 × 10−3 ≪ 1, together with a
cavitation threshold corresponding to σc=sy ¼ 4.5 (solid black
horizontal line). It is observed that, for the larger ξ, the cavitation
threshold is exceeded at a smaller KI, implying a nonmonotonic
behavior of the fracture toughness.
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dependence when ξ is large, i.e., when stresses remain
relatively small.
We are now ready to put all elements of the analysis into

a unified prediction for KQðχ0; _KI; ρ; TÞ. The analysis
above suggests that the natural quantity to consider is
actuallyKQ=

ffiffiffi
ρ

p
(which can be made dimensionless using a

stress scale, say, sy). Consequently, we have

KQðχ0; _KI; ρ; TÞffiffiffi
ρ

p ∼

8<
:

const for ξ ≪ 1;

gðξÞ for ξ ∼Oð1Þ;
T logðξÞ for ξ ≫ 1;

ð15Þ

where gðξÞ features a nonmonotonic behavior for not too
large χ0 and _KI [i.e., gðξÞ is not a unique function of ξ for
large enough χ0 and _KI]. To test this major prediction, we
replot in Fig. 5 the data appearing in Fig. 4 as KQ=sy

ffiffiffi
ρ

p
vs

ξ in the linear-log scale. We observe that, as predicted,
all data collapse onto a single master curve in the ξ ≪ 1
limit, where it is a constant, and in the ξ ≫ 1 limit, where it
varies as logðξÞ, and feature a nonmonotonic behavior for
ξ ∼Oð1Þ for a broad range of parameters.
Note, in particular, the data corresponding to variations

in ρ, which fall onto the nonmonotonic parts of the curve
and on the logðξÞ part. That means that, while KQ is

monotonic in ρ, when the proper dimensionless variables
are used, it can reveal the nonmonotonic behavior of the
toughness master curve. Furthermore, it implies that the
dependence of KQ on ρ differs from the existing literature,
both theoretical and experimental, where KQ is expected to
be either proportional to or linear in

ffiffiffi
ρ

p
, mainly based on

dimensional arguments [25,28,29,31,32,36]. While this
dependence would give apparently reasonable fits to the
data in Fig. 4(c), our analysis shows that there exists an
additional and previously overlooked dependence on ρ
through ξðχ0; _KI; ρÞ, for both ξ ∼Oð1Þ and ξ ≫ 1.
It should be stressed that the crossover from the ξ ≪ 1

behavior to the ξ ≫ 1 behavior, with the possible non-
monotonicity, is directly related to the change in the
transition rate factor C in Eq. (5) with increasing stress,
from thermal activation at relatively small stresses to athe-
rmal processes at higher stresses. This change in behavior,
which is not commonly discussed in the literature, implies
that different parts of the function KQðχ0; _KI; ρ; TÞ depend
differently on the temperature (note, though, that we do not
consider other possible dependencies on the temperature). In
particular, we verify that the logðξÞ dependence originates
from thermal activation (e.g., it disappears if thermal acti-
vation is eliminated altogether, and its logarithmic slope
varies in proportion to T), which suggests that glasses
exhibit appreciable thermal effects well below their glass
temperature. These predictions can be tested by systemati-
cally performing notch toughness experiments at different
temperatures.
Figure 5, which summarizes our main result, provides a

comprehensive picture of the notch toughness of glasses
and various testable predictions. It shows that the toughness
emerges from a competition between the initial (i.e.,
far-from-steady-state) plastic relaxation time scale, which
depends on the glass history and age, and an effective
loading time scale near the notch root, which depends on
the global problem though _KI and on the notch geometry
through ρ. It also shows that the notch fracture toughness of
glasses can vary quite substantially, as claimed in Ref. [35],
by changing ξ. The toughness shown in Figs. 4 and 5
implies a variation of more than an order of magnitude in
the fracture energy Γ ∝ K2

I =μ [1].

V. EXPERIMENTAL EVIDENCE

While the toughness of glasses was experimentally
studied by various groups, there are relatively few works
that systematically vary the stress-intensity-factor rate, the
age of the glass, and the notch radius over a large range. In
Fig. 6, we show three experimental data sets for BMGs
available in the literature, where the notch toughness is
measured as a function of _KI [Figs. 6(a) and 6(b)] and ρ
[Fig. 6(c)].
Inspired by the theoretical prediction in Eq. (15)

and its numerical validation in Fig. 5, we replot in

FIG. 5. The dimensionless notch toughness KQðχ0; _KI; ρ; TÞ=
ðsy ffiffiffi

ρ
p Þ as a function of ξ, using all the data presented in Fig. 4.

As predicted theoretically in Eq. (15), all data sets (except one in
the nonmonotonic part of the curve) collapse on a single master
curve being a constant for ξ ≪ 1, varying as logðξÞ for ξ ≫ 1 and
featuring a nonmonotonic behavior for ξ ∼Oð1Þ. (Inset) Enlarge-
ment of the nonmonotonic part of the toughness master curve.
Note in particular that data corresponding to the monotonic
variation of the toughness with ρ in Fig. 4(c) nicely collapse on
the nonmonotonic part of the master curve (solid triangles) and
that one data set (open green squares) does not exhibit a
nonmonotonic behavior [corresponding to the χ0 ¼ 640 K data
set in Fig. 4(a)].
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Figs. 6(a) and 6(b) the data of Ref. [27] and of Ref. [28],
respectively, as KQ vs logð1= _KIÞ. The data in Fig. 6(a) are
consistent with our predictions, as they feature a quasilo-
garithmic dependence on logð1= _KIÞ for small _KI and
indicate the existence of a plateau for large _KI’s. There
is, however, a gap of nearly 4 orders in magnitude in _KI in
the data, so the possible nonmonotonic behavior at inter-
mediate _KI’s cannot be tested. The data in Fig. 6(b) feature
all of the predicted trends, including a nonmonotonicity of
a similar magnitude compared to our prediction, though
there are too few experimental points to test functional
dependencies.
In Fig. 6(c), we replot the data of Ref. [29] as KQ=

ffiffiffi
ρ

p
vs

logð ffiffiffi
ρ

p Þ. The experimental data, where ρ ranges from 65 to
250 μm, seem to be consistent with the decreasing part of
the toughness master curve in Fig. 5 and possibly indicate
the existence of a minimum. A broader range of ρ’s,
together with varying also χ0 and _KI , are needed in order
to test the predicted functional dependencies, but it is
already clear that replotting the existing data inspired by to
our theory reveals features of the toughness. Our theory
certainly calls for additional experiments, as it offers
various qualitative and quantitative predictions.

VI. DISCUSSION, IMPLICATIONS FOR
APPLICATIONS, AND PROSPECTS

In this paper, we provide a comprehensive theory of the
notch fracture toughness of glassy solids, focusing on its
dependence on the structural state of the glass (quantified
by the initial value of the effective disorder temperature χ0),
on the stress-intensity-factor rate _KI, on the notch radius of
curvature ρ, and on the temperature T below the glass
transition temperature. The main results are the theoretical
prediction in Eq. (15) and its numerical validation in Fig. 5
based on a computational method [55]. The theory high-
lights the underlying competition between an intrinsic

plastic relaxation time scale and an extrinsic driving time
scale, as well as the roles played by nonlinear yielding
dynamics and a crossover between thermal and athermal
rheological processes. The theoretical predictions are
shown to be consistent with existing experimental data.
These results may have implications for the usage of

BMGs in load-bearing engineering applications. The
master curve in Fig. 5, which features a minimum at
ξm ∼Oð1Þ, shows that for ξ ≪ ξm the normalized tough-
ness reaches a low-value plateau, while for ξ > ξm it
increases as logðξÞ. Since ξ is monotonic in χ0, this means
that, for fixed _KI and ρ, varying χ0 in the range ξ < ξm has
little effect on the glass (which will be relatively brittle),
while increasing χ0 in the range ξ > ξm can significantly
enhance the toughness (making the glass more ductile).
In the latter regime, we have KQ ∼ logðξÞ ¼ const−
½ðezÞ=ðkBχ0Þ�, where typically ez ≫ kBχ0. Therefore, small
variations of χ0 in this regime can have a significant effect
on the toughness.
The value of χ0, as stressed above, is affected by the

history of the glass, which includes the preparation proto-
col, the cooling rate, the age of the glass, heat treatments,
and previous deformation. For example, by annealing near
the glass temperature, χ0 can be reduced, and if it is in the
range ξ > ξm, it will lead to the annealing-induced embrit-
tlement [23,24,35,38,51]. On the other hand, by increasing
the cooling rate by which the BMG is formed (but still
resulting in bulk samples) [51,54] and by rejuvenating the
glass through a specially designed heat treatment after it is
cast (as, for example, recently suggested in Ref. [52]), the
glass can be significantly toughened in the range ξ > ξm.
As ξ also incorporates _K, similar effects can be obtained,
depending on the typical loading rate relevant for a given
device or application.
It is therefore important to identify ξm for a given glass

and typical performance and external conditions. Related
ideas were recently developed in Ref. [51], where the
phenomenological notion of a critical fictive temperature is

FIG. 6. Experimental support for BMGs. (a) The notch fracture toughness data KQð _KIÞ of Ref. [27] replotted as KQ vs logð1= _KIÞ,
following the theoretical prediction in Eq. (15). (b) The same as (a), but for the data of Ref. [28]. (c) The notch fracture toughness data
KQðρÞ of Ref. [29] replotted as KIc=

ffiffiffi
ρ

p
vs logð ffiffiffi

ρ
p Þ, following the theoretical prediction in Eq. (15).
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discussed. In fact, our main result in Fig. 5 bears a
resemblance to Fig. 1(a) of Ref. [51], though in the latter
only the macroscopic bending strain to failure is measured
(and not the fracture toughness itself) and the loading rate is
not varied. We believe that the resemblance is well founded
and, consequently, that our theoretical results substantiate
and significantly expand the results of Ref. [51], making
them relevant to various applications.
We also note that, as the elastic moduli are expected to be

well-defined functions of χ0, some correlations between
them and the toughness might emerge occasionally. Even
when such correlations appear to exist, our results show
that they are not causal, i.e., that the elastic moduli do not
determine the toughness, but rather that both are affected by
χ0 [35]. In fact, the dependence of the toughness on χ0 is
much stronger and is responsible for the toughness-control
opportunities offered in this work. Consequently, we do not
expect correlations between elastic moduli and the fracture
toughness to offer well-founded predictive tools for the
design of improved BMGs for engineering applications.
The analysis presented is based on a simple version of

the nonequilibrium thermodynamic STZ model [35].
We suspect that, despite its relative simplicity, the model
captures some salient features of glassy rheology that are
not specific to the STZ model, which in turn account for
generic properties of the notch fracture toughness of
glasses. In particular, the model features a competition
between internal plastic relaxation rates and externally
applied deformation rates, taking into account the universal
stress-intensity-factor fields and the notch geometry.
Furthermore, the model incorporates a dynamic structural
variable (in our case, the effective temperature χ) which
accounts for both the dependence on the initial state
(cooling rate, history of deformation, etc.) and for the
strongly nonlinear strain-softening behavior upon yielding.
Finally, the model incorporates thermal activation below
the glass transition temperature and a threshold for fracture
initiation. We believe that any elastic-viscoplastic model
should incorporate these generic features, which are shown
above to give rise to the fracture toughness master curve
in Fig. 5.
Other physical effects that are already identified in our

numerical solutions, such as the time evolution of the
notch curvature ρðtÞ and the propagation of plastic yielding
fronts, will be reported on separately, along with discussing
the postcavitation dynamics. The latter are shown in
Ref. [35] to lead to catastrophic failure, as we assume in
this work, though we do not discuss them at all. More
elaborate models and quantitative predictions will be
explored in the future once additional experimental data
become available.
A few important directions for future investigations

emerge from the present analysis. Most notably, one would
be interested in calculating the intrinsic toughness KIc, as
opposed to the notch toughness KQ, in the limit of ρ → 0,

where the notch or tip radius of curvature is not the
dominant length scale in the problem. This touches upon
a fundamental problem in glass physics, i.e., the existence
of an intrinsic glassy length scale. Within the adopted
nonequilibrium thermodynamic framework, such a length
scale may appear in the macroscopic theory in an effective
diffusion term proportional to ∇2χ in Eq. (4) [60,70]. This
will be discussed in a separate report. Finally, it would be
interesting to see whether variations in the glass compo-
sition, and their effect of the toughness, can be incorporated
into the proposed theoretical framework [51].
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