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myelination implicated by transcriptomic changes following
maternal immune activation in non-human primates

Nicholas F. Page®(1).(), Michael Gandal*(), Myka Estes®), Scott Cameron(®), Jessie
Buth(®:(4), Sepideh Parhami-¥, Gokul Ramaswami(®):4), Karl Murray®, David G.
Amaral®), Judy A. Van de Water®, Cynthia M. Schumann(®), Cameron S. Carter®.6),
Melissa D. Bauman®), A. Kimberley McAllister®.), Daniel H. Geschwind®):(4).(6).(7)
1Department of Psychiatry, Semel Institute, David Geffen School of Medicine, University of
California Los Angeles, 695 Charles E. Young Drive South, Los Angeles, CA 90095, USA.

2Department of Cell Biology and Neuroscience, Rutgers University-New Brunswick, Piscataway,
NJ 08854.

3Center for Neuroscience, University of California Davis, One Shields Avenue, Davis, CA 95616,
USA.

4Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine,
University of California, Los Angeles, Los Angeles, CA 90095, USA.

SDepartment of Psychiatry and Behavioral Sciences, School of Medicine, University of California,
Davis, Sacramento, CA 95817.

5Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David
Geffen School of Medicine, University of California, Los Angeles, 695 Charles E. Young Drive
South, Los Angeles, CA 90095, USA.

"Department of Human Genetics, David Geffen School of Medicine, University of California, Los
Angeles, Los Angeles, CA 90095, USA.

Abstract

Background: Maternal immune activation (MIA) is a proposed risk factor for multiple
neuropsychiatric disorders, including schizophrenia. However, the molecular mechanisms through
which MIA imparts risk remain poorly understood. A recently developed nonhuman primate
model of exposure to the viral mimic poly:ICLC during pregnancy shows abnormal social and
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repetitive behaviors and elevated striatal dopamine, a molecular hallmark of human psychosis,
providing an unprecedented opportunity for studying underlying molecular correlates.

Methods: We performed RNA-sequencing across psychiatrically relevant brain regions
(prefrontal cortex, anterior cingulate, hippocampus) and primary visual cortex for comparison
from 3.5-4-year old male MIA-exposed and control offspring—an age comparable to mid
adolescence in humans.

Results: We identify 266 unique genes differentially expressed (DE) in at least one brain region
with the greatest number observed in hippocampus. Co-expression networks identified region-
specific alterations in synaptic signaling and oligodendrocytes. Although we observed temporal
and regional differences, transcriptomic changes were shared across 15t and 2" trimester
exposures, including for the top DE genes—P/WIL2and MGARP. In addition to P/WIL2, several
other regulators of retrotransposition and endogenous transposable elements were dysregulated
following MIA, potentially connecting MIA to retrotransposition.

Conclusions: Together, these results begin to elucidate the brain-level molecular processes
through which MIA may impart risk for psychiatric disease.

Keywords

MIA; non-human primates; RNA-seq; myelination; synaptic connectivity; retrotransposition

Introduction

Epidemiological studies have implicated /n utero environmental insults, including maternal
infections, as risk factors for neurodevelopmental disorders, such as schizophrenia (SCZ)
and autism spectrum disorder (ASD) (1-7). These results are in accordance with twin and
family studies, which have demonstrated that early childhood environmental factors
contribute to liability for SCZ (8). The wide range of infectious agents and exposures
reported in the clinical literature suggests that common factors downstream of the maternal
immune response may confer risk (7). However, it remains unclear how maternal infection
alters brain development in offspring to increase risk for neurodevelopmental disorders.

To investigate this hypothesis, animal models of maternal immune activation (MIA) were
developed using the viral mimic, poly(1:C) (9). Multiple laboratories have developed rodent
models that exhibit reproducible behavioral phenotypes in domains altered in human
psychiatric illness (1, 9-14). These rodent MIA models also exhibit neuropathological
alterations similar to those found in neuropsychiatric disorders (11-13, 15-21) and several
of the behavioral aberrations are rescued by antipsychotics (11-13, 22-25). Recently, a non-
human primate (NHP) model of MIA was developed, whose young adult offspring display
abnormalities in communication, decreased social attention and interaction, and increased
stereotypic behaviors that increase in intensity with age (10-13, 26, 27). NHP MIA offspring
also show a molecular hallmark of psychosis—enhanced striatal dopamine, similar to the
increases seen in SCZ (28). While behavioral changes have been well characterized, as have
molecular alterations in rodents, the field still lacks an understanding of the molecular
changes associated with MIA in NHPs that may underlie these behaviors.
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Transcriptomic tools such as RNA-seq have revealed substantial changes in disease (29, 30)
and enable unbiased systematic characterization of the brain level molecular changes
underlying behavioral phenotypes in these models. Transcriptomic alterations have also been
detected in adult mice following MIA including changes in myelination (31), mTOR
signaling and potassium ion channel activity (32), dopamine related pathways (33), and
inflammatory responses in microglia (34). A recent study identified potential overlapping
pathways in mouse MIA and human SCZ post mortem brain, suggesting the potential for
MIA contribution to human disease (35). It remains unknown, however, to what extent such
changes are shared across species.

Here, we conduct the first systematic, multi-regional RNA-seq analysis of the NHP brain
following MIA at two timepoints, the 15t and 2" trimester. We identify 266 unique genes
differentially expressed (DE) in at least one brain region in male MIA-exposed offspring,
most showing concordant changes across both exposures, including the top DE genes—
PIWILZ and MGARP. Our results reveal altered transposable element biology, dysregulated
synaptic connectivity, and enhanced myelination as important molecular pathways
underlying the effects of MIA. These findings provide some initial insights into the
molecular changes that may precede the onset of psychosis and persist into late adolescence
and identify potential targets for future mechanistic dissection.

Methods and Materials

NHP Model of MIA

All animal protocols were developed in conjunction with the California National Primate
Research Center and approved by the University of California, Davis Institutional Animal
Care and Use Committee. Thirteen female rhesus macaques were split into three treatment
conditions: immune activation during the first trimester of pregnancy (1st Trim MIA, n=5),
second trimester MIA (2nd Trim MIA, n=4), or control (Ctrl, n=4). The control group
consisted of 1 untreated, 1 first trimester saline injected, and 2 second trimester saline
injected NHPs. Animals in the MIA conditions were injected intravenously with 0.25 mg/kg
of synthetic double-stranded RNA virus (poly:ICLC) (Oncovir, Inc., Washington, DC) on
gestational days 43, 44, and 46 (1st Trim MIA) or 100, 101, and 103 (2nd Trim MIA).
Animals were housed in the same facility where they had ad libitum access to Lixit-
dispensed water, primate laboratory chow was provided twice daily, and fruit and vegetable
supplements were provided twice weekly. All animals underwent routine health checks and
were assessed twice each day by a trained observer. Any animals observed with clinical
signs were assessed by a member of the Primate Medicine Staff and followed up
appropriately. Our laboratory observed no differences between MIA and control animals in
the frequency or magnitude of common colony infections. Drug exposure for both MIA and
control animals was limited to routine medications and/or pharmacological sedation required
for treatment and/or physical exams as advised by veterinary staff. Pharmacological sedation
was not used for routine animal transport. None of the injected dams in the control group
showed any evidence of a maternal immune response. Details of blood IL-6 analysis are in
the Supplemental Information.
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At 3.5-4 years of age, four brain regions were dissected from the right hemisphere: the
dorsolateral prefrontal cortex (DLPFC, BA 9/46) on middle frontal gyrus along the dorsal
wall of the principal sulcus, anterior cingulate cortex (ACC, BA24), mid-rostrocaudal
hippocampus (HC) caudal to the amygdala, and primary visual cortex (V1). At 3.5-4 years
of age, the brain was perfused with saline, extracted, cerebellum and brainstem removed,
and cerebrum bisected through the sagittal sulcus into the right and left hemispheres. The
right hemisphere was sectioned with a long histology blade into ~9 coronal slabs 6mm thick
perpendicular to the anterior-posterior commissural (AC/PC) axis and flash-frozen in liquid
nitrogen vapor. Slabs were stored in a —80C freezer until dissection. For further details on
animal methods, please see (26).

RNA-sequencing and Analysis

RNA was extracted (Qiagen, miRNA easy-mini), rRNA-depleted RNA-seq libraries were
prepared using TruSeq stranded RNA plus ribozero gold kits. Libraries were multiplexed (24
per pool) and sequenced across two batches on an Illumina HiSeq2500 to an average depth
of ~50 million 69 bp paired end reads. Reads were mapped to the macaque genome
(rheMac8) using the STAR aligner and gene-level quantifications were calculated with
Kallisto (36). 6,410 lowly expressed genes were filtered and removed using the filterByExpr
method from the R package edgeR and were highly enriched for olfactory receptors and
ribosome related genes (Figure S2A). Samples underwent TMM normalization for read
depth (37) followed by differential gene expression with Limma-voom (38). Sequencing
metrics from Picard Tools were summarized by their top 4 principal components (seqPCs)
(Table S1, Supplemental Information), which were included in the linear model to control
for batch, RNA quality, and sequencing-related technical effects. As sequencing batch and
RNA quality measures (sample 280:260, 260:230 ratios) were strongly correlated with these
segPCs (Figure S1A), they were not included in the final model as covariates. The following
model was used, with specific contrast terms to determine DGE between different individual
regions: Expr ~ 0 + Group.Region + seqPCs1—4. p-values were then corrected for multiple
comparisons using the FDRTool package in R. For select genes (e.g. SOX10; Figure 7B) that
did not have an annotated homolog in NHPs, RNA-seq reads mapping to annotated human
DNA sequences were used to determine expression.

Network Analysis

Network analysis was performed with the WGCNA package (39) using signed networks. A
soft-threshold power of 14 was used to achieve approximate scale-free topology (R2=0.7).
Networks were constructed using the blockwiseModules function. The network dendrogram
was created using average linkage hierarchical clustering of the topological overlap
dissimilarity matrix (1-TOM). Modules were defined as branches of the dendrogram using
the hybrid dynamic tree-cutting method (39). Modules were summarized by their first
principal component (ME, module eigengene) and modules with eigengene correlations of
>0.9 were merged together. Modules were defined using biweight midcorrelation (bicor),
with a minimum module size of 100, deepsplit of 4, merge threshold of 0.1, and negative
pamStage. Module differential expression was determined using a linear model provided by
the ImFit function in the Limma package (38). Uncorrected P-values are reported for module
differential expression.

Biol Psychiatry. Author manuscript; available in PMC 2022 May 01.
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Assessment of Retrotransposition and Enrichment Analyses

GO analysis (40), over-representation analysis and Expression Weighted Cell-type
Enrichment (EWCE) (41) were performed (see Supplemental Information for details). The
RepEnrich2 pipeline (https://github.com/nerettilab/RepEnrich2) was used to estimate
repetitive elements in the genome using python version 2.7 (42) as described in the
Supplemental Information.

Rank-Rank Hypergeometric Overlap (RRHO)

Original gene lists from this experiment and from studies of post-mortem SCZ and ASD
brains were ordered by signed —log10 P-value and compared via a one-sided hypergeometric
test with a step size of 100 followed by Benjamini-Yekutieli FDR correction using the
RRHO package in R (43). Final p-values are reported on a —log10 scale.

Western Blotting

Western blotting was performed using standard methods as described in the Supplemental

Information.

Code
Scripts used to perform bioinformatic analyses were written in R and are publicly available
on GitHub (https://github.com/dhglab/CONTE_NHP_MIA).

Results

Maternal immune activation induces brain transcriptomic changes in adolescent NHPs

RNA-sequencing was performed on 4 brain regions to characterize brain transcriptomic
changes in a well characterized cohort of 3.5-4 year old male non-human primates (NHPs;
Figure 1). NHPs were exposed /n uteroto saline or poly:ICLC on 3 days starting at
gestational day GD44 (15t Trimester MIA) or GD101 (2" Trimester MIA; Methods and
Materials). Following quality control (Figures 1D, S1, S2A), differential expression (DE)
was characterized within and across the brain regions profiled (DLPFC, ACC, HC, and V1)
for all 14,975 brain expressed genes detected, which we refer to as regional (individual
regions) and global analysis (all regions), respectively (Methods and Materials).

Six genes showed globally significant patterns of differential expression at an FDR < 0.1 --
PIWILZ, MGARP, C150rf41, SNED1, FCRL3, RNASEI (Figure 2A; Table S2). The top
DE gene, PIWIL2 which is down regulated, is a master regulator of piRNA mediated DNA
methylation and an inhibitor of retrotransposition (44, 45). PIWIL 2 also regulates the
expression of plasticity-related genes in the adult brain, and disruption of the piwi pathway
in HC enhances contextual fear memory in mice (46). The second highest DE gene,
MGAREF, encodes a protein that regulates mitochondrial morphology, distribution, and
motility, which when decreased in neurons causes dendritic and axonal overgrowth in mice
(47). The other globally significant genes are not well characterized in the brain.

An additional 100 genes showed suggestive global association with MIA (P < 0.005),
including several downregulated neurotransmitter receptors (H7R3A, GRIKZ, GLRA2) and
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the high-confidence SCZ risk gene AS3MT (48). Gene ontology enrichment analyses
identified significantly up and downregulated terms including membrane fusion involved in
viral entry into host cell (Figure 2B). Cell-type enrichment analyses (Methods and

Materials) indicated that upregulated genes (P < 0.05) were enriched for endothelial cell
markers, whereas excitatory neuron (ExN), inhibitory neuron (InN), and oligodendrocyte
precursor cell (OPC) markers were enriched among downregulated genes (Figure 2C). These
findings demonstrate that MIA-induced changes in brain gene expression affect disease
relevant genes, cell-types, and pathways that persist into adolescence in this model.

Specificity of brain molecular changes based on prenatal timing of MIA

In rodent MIA models, the timing of immune activation during pregnancy specifies the
nature of neurodevelopmental and behavioral outcomes in affected offspring (1, 14, 49-53).
We tested the role of MIA timing on gene expression in the brains of offspring by comparing
two susceptibility windows that closely parallel those in humans (54), either 15t or 2nd
trimester MIA (Figure 3A; Table S3). None of the control animals injected with saline at
either time-point or non-injected had measurable immune activation and therefore were
pooled for these comparisons. Transcriptomic changes were largely concordant across
timepoints (/< of log,-FC: 0.738, P<10715) (Figure 3B). PIWIL2and MGARPemerged as
the top downregulated genes during each time point independently. Several genes did show
more specific patterns, such as the serotonin receptor H7R3A which was significantly
downregulated following 1st trimester exposure. In contrast, 2nd trimester exposure showed
unique upregulation of /F/TM3, which mediates the brain immune response to neonatal
poly(1:C) exposure and is strongly upregulated in post-mortem brains from subjects with
SCZ (55-58). The 2nd trimester signal also showed selective enrichment of RNA processing
related gene ontology pathways among downregulated transcripts, indicating that some
differences do exist (Figure 3C, D). Given that the global signatures showed significant
concordance, we grouped the timepoints together for downstream analyses to boost power.

MIA alters gene expression in the brains of offspring in a region-specific manner

We next compared patterns of DE across distinct regions (Figure 4A), observing the most
DE genes in HC (n=118 genes; FDR<0.1), followed by V1 (h=114) and DLPFC (n=34),
with only minor DE detected in ACC (Figures 4A, B; Table S2). PIW/IL2was
downregulated in 3 of the 4 regions (DLPFC, ACC, and HC). We relaxed the statistical
criterion to detect small, yet concordant transcriptomic changes shared across regions and
compared log,-FC effect sizes for all genes exhibiting suggestive DE (P<0.005) in MIA. The
largest correlation (R = 0.447; p < 1e-15) was between the DLPFC and ACC and other
regions (DLPFC and V1; £=0.121; p = 0.004) appearing more distinct (Figure 4C; Figure
S2B). Together, results clearly show that MIA causes DE of genes in a region-specific
manner in offspring.

The region-specific effects of MIA also segregate by cell-type and biological process.
Upregulated genes in the HC are strongly enriched in oligodendrocytes, whereas
downregulated genes are strongly enriched for ExNs, InNs, and OPCs (Figure 4D).
Interestingly, the ACC is the only region that contains any cell-type enrichment for microglia

Biol Psychiatry. Author manuscript; available in PMC 2022 May 01.
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among downregulated genes (Figure 4D). Region specific differences in cell-type
enrichment are also concordant with GO term enrichment (Figure 4E).

Convergent gene expression changes following MIA implicate transposition

To more specifically capture the molecular processes underlying transcriptomic changes, we
performed weighted gene correlation network analysis (WGCNA), detecting 29 gene co-
expression modules (Figure 5A; Figure S2D-E; Table S4). The steelblue module was
downregulated across all brain regions (Figure 5B, C) and contained 105 genes, of which 41
lack human homologs. Surprisingly, many of these 41 genes appeared to be associated with
transposable element (TE) biology. 8/41 belong to the “LINE-1 RETROTRANSPOSABLE
ELEMENT ORF2 PROTEIN” family (PTHR25952:SF231; ref (59)). Other hub genes
include HERV-H LTR-Associating 2 (HHLAZ), an immune checkpoint molecule, and 7igger
Transposable Element Derived 1 (TIGDJI), a paralog of centromere binding protein CENPB
(Figure 5D), both of which were TEs that have evolved into protein coding genes (60). Gene
ontology enrichments were observed for pathways related to steroid/lipid metabolism
including /NSIG2, SULTZA1, and FAAHZ (Figure 5E). Notably, only MEsteelblue and the
MEyellow module had the same direction of change across all regions (Figure 5F).

After confirming that the top global DE gene, PIWIL2, was also downregulated on the
protein-level in the HC (Figure 6A-C), we determined whether specific classes of TEs were
dysregulated following MIA. Only one specific TE, HERVI LTRa, was detected with an
FDR < 0.1 in the ACC while a total of 26 separate TEs had suggestive association with MIA
(p < 0.005) in at least one brain region (Supplemental Information; Figure S3A-C). These
include multiple elements of the human endogenous retrovirus (HERV) and long terminal
repeat (LTR) families of retrotransposons, both of which often modulate transcription (61)
(Figure 6D, S3D, E, F). Together, these results indicate specific changes in transposable
element biology similar to what has been observed in other neurological diseases as a
response to inflammatory signals (62, 63).

Synaptic downregulation and increased myelination in HC

The largest number of DE genes and several unique co-expression modules were observed in
the HC (Figures 4A, B, 5F). Upregulated genes in HC showed enrichment for
oligodendrocyte and endothelial cell markers, whereas downregulated genes were enriched
for excitatory neurons, inhibitory neurons, and oligodendrocyte precursor cells (OPCs) and
related GO categories (Figure 4D, E). Synaptic genes included a number of glutamate
receptors and high-confidence autism risk genes (Table S2). Additionally, we detected a core
up-regulated transcriptomic network important for the differentiation of oligodendrocytes
and the production of myelin sheaths including OL/G2, SOX10, MYRF, PLLP, MBP, CNP,
MOG, and MAG (64) (Figure 7A, B). These findings were similarly observed among HC
co-expression network modules, including the most significantly up- and downregulated
modules, MEturquoise and MEpaleturquoise (Figure 7C, F), enriched for genes related to
axon ensheathment and neuron projections, respectively (Figure 7D-E, G—H). Other
dysregulated co-expression network modules in the HC include MElightgreen which is
enriched for “neuron projection development” (Figure 71-K) and MEtan (Figure 7L-N),
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which contains the hub gene CADPS, a high confidence autism risk gene involved in
synaptic vesicle release (65) (Figure 7M).

Because neuroinflammatory gene expression changes have been reported in SCZ and ASD
(30) and cytokines are altered in the mouse MIA brain throughout postnatal development
(66), we next examined whether there were modules enriched in glial and immune genes in
the NHP model. We did not observe DE in either module enriched for astrocyte (MEgreen)
or microglial (MEblue) markers (Figures 5B, F, S4). The lack of a major microglial
signature is consistent with recent reports from the MIA mouse model indicating little
microglial dysregulation in the brains of adult MIA offspring (67) and from the human
literature showing conflicting results from PET imaging studies (68).

Nevertheless, specific examples of immune dysregulation do exist. CX3CR1 protein, but not
mRNA, was significantly downregulated in the DLPFC with no change in HC. /GSF6
mRNA is trending downwards in both DLPFC and HC, but its protein levels are
significantly upregulated in both regions (Figure S6C, D). Differences between mRNA and
protein level data suggest compensatory mechanisms at the level of translation and indicate
that there are likely protein level immune related changes missed by our current
transcriptomic analysis.

Limited overlap in DE genes with SCZ and ASD

The non-human primates examined here (3.5-4 NHP years; 14-16 human equivalent years)
are significantly younger than human subjects included in the postmortem analysis for SCZ
(median age > 30; refs (30, 54)). Thus, results from the NHP model may provide unique
information about the molecular changes that precede the onset of psychosis. We performed
a rank-rank hypergeometric overlap test (RRHO) of DE genes in MIA vs ASD or SCZ,
detecting no global overlap between the ranked genes from SCZ or ASD and our study (30)
(Figures S7A and S7B). However, individual DE genes in multiple brain regions have been
linked to ASD or SCZ and downregulated genes from two regions -- HC and V1 -- showed
slight enrichment for high-confidence ASD risk genes (SFARI) (Figure S7C).

We also sought to determine whether any gene expression signatures exhibited associations
with the increased repetitive, stereotyped behaviors observed following MIA (Figure 8A;
Table S5). The total number of stereotypies is weakly correlated with module expression
across regions, with the strongest correlations detected in V1. MEmidnightblue and
MEdarkorange have the highest correlations with the number of stereotypies (log»
transformed; R=0.64, P <0.027; R=0.63, P <0.027, respectively) (Figure 8B, S8A, S8B).
MEmidnightblue displays significant GO enrichment for mitochondrial membrane
compartment while MEdarkorange is enriched for mitochondrial compartment, suggesting
that cellular respiration in the visual cortex may be loosely associated with repetitive
behaviors (Figure 8C-F). MEmidnightblue also displays statistically significant overlap with
a mitochondrial gene enriched module (geneM33) from PsychEncode that is downregulated
in SCZ and ASD (30) (Figure S8C) and nominally significant overlap with a previously
identified mitochondrial co-expression module that is correlated with neuronal activity (69)
(Figure S8D).

Biol Psychiatry. Author manuscript; available in PMC 2022 May 01.
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Finally, we examined whether the severity of maternal interleukin 6 (IL-6) induction
following poly:ICLC exposure is correlated with brain molecular phenotypes in our NHP
data (Methods and Materials; Table S5). MEdarkorange and MEsalmon in particular have
the highest correlation with the measured maternal IL-6 levels (R = 0.65; #=0.64
respectively) (Figure S8E). As noted above, MEdarkorange is correlated with increased
stereotypies and is enriched for genes in the mitochondrial compartment.

Discussion

Here, we provide the first transcriptomic analysis across multiple brain regions of an NHP
model of MIA. Our findings implicate alterations in transposable element biology, synaptic
connectivity, and myelination with relative hippocampal vulnerability in the adolescent NHP
brain following MIA. Unexpectedly, strong changes were also detected in V1, which was
initially included as a non-psychiatrically relevant comparison region, a finding that warrants
further investigation. Although we find no significant overlap between this NHP model and
patterns of DE observed in adult patients with SCZ and ASD, these NHPs are significantly
younger than human subjects included in genetic and postmortem analysis. Moreover,
analysis of the functional pathways implicated by our analysis in the MIA NHP brains are
associated with the pathophysiology of both disorders and the magnitude of changes in
several co-expression modules correlate with aberrant behaviors. We hypothesize that the
transcriptional changes reported here may provide unique insight into prodromal changes in
the brain that precede psychosis (70).

MIA has been hypothesized to exert its effect through epigenetic changes which then present
dynamically over the trajectory of brain development and maturation (1, 7). Along these
lines, multiple studies have reported changes in DNA and histone methylation following
MIA (49, 71-74). The most strongly downregulated gene in our dataset, P/WI/LZ2is also
known to act as a global regulator of DNA methylation through its interactions with piRNAs
(44, 45). Thus, if MIA primarily exerts its effect through epigenetic changes, PIW/L2 may
act as a driver of downstream changes. Alternatively, A/W/L2may induce changes in gene
expression in a secondary manner, by altering regulation of transposable elements, which
have shown signs of increased activation in previously published MIA models (72, 74, 75).
Changes in transposable elements have been associated with both SCZ and ASD (76, 77),
but it is unclear whether and how the complex changes in our NHP MIA dataset are related.
Given the increasing appreciation of retrotransposition and other sources of somatic
mutations in neurodevelopmental disorders (78-80), these data support an intriguing
connection between MIA and this process.

One of the strongest effects of MIA in the brains of adolescent NHPs is altered transcription
of genes related to oligodendrocytes and myelination. Consistent with this result, defects in
myelination have been reported in other MIA models, as well as in human disease (49, 81—
84). This result is broadly in line with the increase in myelination and decrease in neuron
projection-related genes observed in adolescent NHPs in this study. All of these studies are
limited in ease of comparison due to differences in the timing of MIA exposure. Since
altered myelination-related genes have also been reported in both ASD and SCZ (85, 86),

Biol Psychiatry. Author manuscript; available in PMC 2022 May 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Page et al.

Page 10

our results highlight the importance of future experiments to determine the progression of
MIA-induced changes in myelination through development to adulthood.

Previous MIA studies have shown reproducible behavioral changes in MIA mouse models
(87, 88), which have led to a search for a common biological underpinning. Transcriptomic
and proteomic studies have examined both embryonic (89-91) and adult (33, 68, 92)
timepoints and long-term changes were related to G-protein coupled receptor signaling and
glutamatergic and serotonergic receptors, similar to our NHP model. Changes in synaptic
connectivity have been hypothesized to be a potential point of convergence for the many
diverse genes and biological processes dysregulated in ASD (93, 94). MEdarkgreen, which
is downregulated in the DLPFC, contains hub gene CNTNAPZwhich causes a severe
recessive neurodevelopmental syndrome associated with hyperactivity, language dysfunction
and ASD (95). Additionally, multiple co-expression networks in the hippocampus including
MEpaleturquoise, MElightgreen, and MEtan contain genes known to localize in dendritic
spines. It is noted that all of these co-expression networks are downregulated, suggesting
broad dysregulation at the synapse.

Mitochondria enriched co-expression modules, MEmidnightblue and MEdarkorange, may
also provide insights into the behavioral phenotypes in this model. Particularly, both
modules from visual cortex (V1) correlate with the number of stereotypies observed in
NHPs. There is no known relationship between V1 and repetitive behaviors, so this may
reflect more widespread alterations that were only detectable in this region, perhaps because
of its high neuronal density (96). Repetitive behaviors are a hallmark of multiple
neurodevelopmental and neuropsychiatric illnesses and further assessment of other brain
regions that have been associated with repetitive behaviors, such as striatum, is warranted in
future studies (97, 98).

While this is a first of its kind study on transcriptomic changes following MIA in NHPs, a
few key limitations do exist. First among them is the limited sample size, which is
necessitated by the increased costs and longer developmental timeframe when
experimenting with NHPs. This combined with the relatively greater genetic diversity
among NHP colonies relative to inbred mouse lines may affect the reproducibility of NHP
experiments. The smaller samples sizes have also necessitated the use of relatively relaxed
statistical thresholds with uncorrected p-values used for co-expression network differential
expression and FDR corrected p-values used for gene differential expression and enrichment
analyses. These compromises are warranted by the increased genetic and developmental
similarities between NHPs and humans, which increases the relevance of findings. We must
acknowledge that while reproducibility may be affected, we hope that novel hypotheses
generated by this work will lay the foundation for future experiments and justify these
statistical thresholds.

Although a broad neural-immune signature was not detected in the brain regions surveyed at
this age, that does not preclude the existence of subsets of offspring with and without
inflammatory abnormalities which we may be underpowered to detect (35). Future
experiments may include the sequencings of samples from additional psychiatrically
relevant brain regions (e.g. striatum), females, and additional timepoints, all of which we
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limited or are absent in the present study. On a technical note, there are challenges
associated with the expression quantification of transposable elements including ambiguity
assigning short reads mapping to more than one location (42), and we have observed limited
reproducibility between computation pipelines. Therefore, future validations should be
performed to gain increased confidence in transposable element results.

These limitations however should not diminish the value of NHP models for understanding
the long-term effects of MIA, and the results here should motivate more comprehensive
studies in the future. Particularly interesting lines of future work will focus on the role of
PIWIL 2 methylation and regulation of transposition in addition to dysregulated myelination
trajectories following MIA. Overall, these results provide a starting point for understanding
the molecular changes occurring subsequent to MIA during adolescence, a critical period for
development of psychosis.
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Figure 1.

Outline of experimental approach and bioinformatic analyses. (A) Female non-human
primates were injected with the viral mimic Poly:ICLC once daily for 3 days starting at
gestational day GD44 (1st Trimester MIA) or GD101 (2nd Trimester MIA; see Methods and
Materials for details). Tissue was harvested from male offspring at 48 months followed by
RNA-sequencing. Behavioral testing for stereotypic behaviors was performed throughout
development and PET imaging was performed directly before sequencing and has been
previously published on this same cohort (27). (B) Brain regions with relevance to
schizophrenia and autism biology were profiled including dorsolateral prefrontal cortex
(DLPFC), cingulate cortex (ACC), and hippocampus (HC) with primary visual cortex (V1)
also included for comparison. (C) Diagram of RNA-sequencing pipeline. Briefly, RiboZero
strand specific library preparation was performed before obtaining 69bp paired end Illumina
reads. Reads were aligned to the current version of the Rhesus genome and quantified with
Kallisto or RepEnrich2, which is specially designed to detect the expression of transposable
elements (TEs). In both cases differential expression was quantified using a linear mixed
effects model with Limma-voom. (D) Top principal components (PCs) of normalized gene
expression demonstrating that batch and brain region are the largest drivers of variation in
the dataset.
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Figure 2.

Global differential gene expression across brain regions following MIA. (A) Differential
gene expression analysis using Limma-voom was performed on all saline injected vs.
poly:ICLC injected MIA samples and pooled across brain regions and MIA timepoints.
Volcano plot of differential gene expression detects P/W/LZ2 as the top globally
downregulated gene followed by MGARP. Red dots indicate genes that pass FDR correction
for differential gene expression (FDR<0.1), yellow dots indicate suggestive association with
MIA, and grey dots indicate minimal or no association. Dotted line indicates log,(FC)=0.
Genes are labelled according to their human homologs, those without annotated homologs
are left unlabeled. (B) Top GO terms enriched among up and downregulated genes with
p<0.05 following MIA determined using g:ProfileR. Red dotted line indicates an FDR
significance threshold of 0.05. (C) Cell-type specificity of up and downregulated genes
following MIA with p<0.05 genes based on PsychEncode and Lake et al., 2018 adult human
single-cell Nuc-seq data. *FDR<0.05, unlabeled cell-types are not significantly enriched.
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High concordance between genes differentially expressed in first and second trimester MIA
offspring. (A) Differential gene expression analysis using Limma-voom was performed
separately on saline injected vs. poly:ICLC injected MIA samples from 15t or 2" trimester
pooled across brain regions. Volcano plots of differential gene expression detect A/W/L2and
MGARP as the top downregulated genes following both 15t and 2" trimester MIA. Red dots
indicate genes that pass FDR correction for differential gene expression (FDR<0.1), yellow
dots indicate suggestive association with MIA, and grey dots indicate minimal or no
association. Genes are labelled according to their human homologs, those without annotated
homologs are left unlabeled. (B) All genes with suggestive association with MIA p<0.005
following either timepoint of poly:ICLC injection were plotted comparing their log,(FC)
following either 15t or 2" trimester MIA. Blue dots indicate genes that are associated with
MIA regardless of timepoint while red and green dots indicate specific dysregulation
following 15t or 2" trimester MIA respectively. The overall log,(FC) correlation between
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genes dysregulated following either timepoint is #=0.738. (C, D) To determine the trimester
specific effects of MIA, GO enrichment was determined for genes with p<0.05 following 15t
trimester MIA and log,(FC)<0.2 following 2" trimester MIA and vise-versa using
g:ProfileR. Red dotted line indicates an FDR significance threshold of 0.05.
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Figure 4.
MIA alters gene expression in a region-specific manner in the brains of offspring. (A)

Differential gene expression analysis using Limma-voom was performed separately for each
brain region on all saline injected vs. poly:ICLC injected MIA samples pooled across MIA
timepoints. Volcano plots indicate the top 10 differentially expressed genes in each region
following MIA. Red dots indicate genes that pass FDR correction for differential gene
expression (FDR<0.1), yellow dots indicate suggestive association with MIA, and grey dots
indicate minimal or no association. Genes are labelled according to their human homologs,
those without annotated homologs are left unlabeled. (B) The number of DE genes in each
region by significance threshold. (C) logo(FC) of all genes with suggestive association
(p<0.005) with MIA in at least one brain region are compared pairwise with each other brain
region. Small correlations indicate minimal overlap in the similarity of gene expression
changes between each region following MIA. (D) Cell-type specificity of region specific up
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and downregulated genes following MIA with p<0.05 genes based on PsychEncode and
Lake et al., 2018 adult human single-cell Nuc-seq data. *FDR<0.05, unlabeled cell-types are
not significantly enriched. (E) Top GO terms enriched among region specific up and
downregulated genes with p<0.05 following MIA determined using g:ProfileR. Red dotted
line indicates an FDR significance threshold of 0.05.
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Figure 5.

Consistent changes across brain regions in MIA offspring implicates transposable elements
and steroid biology. (A) WGCNA was used to construct a signed bicor network and identify
co-expression network modules, each containing genes whose expression is highly
correlated across samples. Dendrotree height indicates the degree of co-expression
correlation and colors indicate co-expression network module assignments. (B) Differential
co-expression network expression was determined using Limma-ImFit on all saline injected
vs. poly:ICLC injected MIA samples pooled across brain regions and MIA timepoints. Only
one co-expression network, MEsteelblue, is significantly downregulated across all pooled
samples. *p<0.05. (C) Boxplot of MEsteelblue module eigengene expression across the
brain regions analyzed. (D) Top 20 hub genes for MEsteelblue. (E) Top GO terms enriched
in MEsteelblue region by g:ProfileR. For all GO enrichment plots, red dotted line indicates
an FDR significance threshold of 0.05. (F) Differential module expression was determined
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using Limma-ImFit separately for each brain region on all saline injected vs. poly:ICLC
injected MIA samples pooled across MIA timepoints. *p<0.05.
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Figure 6.

Effect Size (log,(FC))

® FDR<0.1

P-val < 0.005 n.s.

MIA causes dysregulation of transposable elements across brain regions in offspring. (A)
Boxplot of piRNA regulator P/WI/L2 expression across brain regions following MIA. (B)

Western blot of PIWIL2 expression on the hippocampus following MIA. Blot was

performed only once due to limited sample availability (Control, n=4; MIA, n=9). (C)
Quantification of part B relative to GAPDH. *p<0.05. (D) Differential transposable element
expression analysis using Limma-voom was performed separately for each brain region on
all saline injected vs. poly:ICLC injected MIA samples pooled across MIA timepoints.
Volcano plots indicate all transposable elements with suggestive association with MIA in
each brain region. Red dots indicate transposable elements that pass FDR correction for
differential transposable elements expression (FDR<0.1), yellow dots indicate suggestive
association with MIA, and grey dots indicate minimal or no association.
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Figure 7.

MIA increases myelination and oligodendrocyte-related genes and decreases neuron
projection genes in hippocampus of offspring. (A) Summary of changes in the HC. (B)
Multiple oligodendrocyte and myelin sheath related genes are upregulated in the HC
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following MIA. (C) Boxplot of MEturquoise module eigengene expression across the brain
regions analyzed. (D) Top 20 hub genes for MEturquoise. (E) Top GO terms enriched in

MEturquoise region by g:ProfileR. (F) Boxplot of MEpaleturquoise module eigengene

expression across the brain regions analyzed. (G) Top 20 hub genes for MEpaleturquoise.

(H) Top GO terms enriched in MEpaleturquoise region by g:ProfileR. (1) Boxplot of

MElightgreen module eigengene expression across the brain regions analyzed. (J) Top 20

hub genes for MElightgreen. (K) Top GO terms enriched in MElightgreen region by

g:ProfileR. (L) Boxplot of MEtan module eigengene expression across the brain regions
analyzed. (M) Top 20 hub genes for MEtan. (N) Top GO terms enriched in MEtan region by
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g:ProfileR. For all GO enrichment plots, red dotted line indicates an FDR significance
threshold of 0.05.
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Figure 8.

Mitochondrial co-expression networks in V1 correlate with behavioral aberrations in

offspring. (A) The total number of stereotypic behaviors was measured in NHPs throughout

development. The logy(Total # stereotypies) observed is significantly increased in MIA
offspring as compared to controls (p=0.009; Student’s t-test). (B) Correlation between

module eigengene expression in a given region and the log,(Total # stereotypies) in a given
subject. The largest correlations with logo(Total # stereotypies) are found in V1, particularly
MEmidnightblue and MEdarkorange. (C) Top 20 hub genes for MEmidnightblue (D) Top

GO terms enriched in MEmidnightblue by g:ProfileR. (E) Top 20 hub genes for
MEdarkorange (F) Top GO terms enriched in MEdarkorange by g:ProfileR. For all GO
enrichment plots, red dotted line indicates an FDR significance threshold of 0.05.
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