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Both polygenicity (many small genetic effects) and 
confounding biases, such as cryptic relatedness and population 
stratification, can yield an inflated distribution of test statistics 
in genome-wide association studies (GWAS). However, current 
methods cannot distinguish between inflation from a true 
polygenic signal and bias. We have developed an approach,  
LD Score regression, that quantifies the contribution of each by 
examining the relationship between test statistics and linkage 
disequilibrium (LD). The LD Score regression intercept can 
be used to estimate a more powerful and accurate correction 
factor than genomic control. We find strong evidence that 
polygenicity accounts for the majority of the inflation in test 
statistics in many GWAS of large sample size.

Variants in LD with a causal variant show an elevation in test statistics 
in association analysis proportional to their LD (measured by r2) with 
the causal variant1–3. The more genetic variation an index variant 
tags, the higher the probability that this index variant will tag a causal  
variant. In contrast, inflation from cryptic relatedness within or 
between cohorts4–6 or population stratification purely from genetic 
drift will not correlate with LD.

Under a polygenic model, in which effect sizes for variants are 
drawn independently from distributions with variance propor
tional to 1/(p(1 –  p)), where p is the minor allele frequency (MAF),  
the expected χ2 statistic of variant j is:

E Nh M Naj j[ | ] /c2 2 1 = + +

where N is the sample size; M is the number of SNPs, such that h2/M 
is the average heritability explained per SNP; a measures the contribu
tion of confounding biases, such as cryptic relatedness and population 
stratification; and j k jkr= Σ 2  is the LD Score of variant j, which mea
sures the amount of genetic variation tagged by j (a full derivation  

(1)(1)

of this equation is provided in the Supplementary Note).This rela
tionship holds for metaanalyses and also for ascertained studies 
of binary phenotypes, in which case h2 is on the observed scale. 
Consequently, if we regress the χ2 statistics from GWAS against LD 
Score (LD Score regression), the intercept minus one is an estimator 
of the mean contribution of confounding bias to the inflation in the 
test statistics.

RESULTS
Overview of methods
We estimated LD Scores from the Europeanancestry samples in the 
1000 Genomes Project7 (EUR) using an unbiased estimator8 of r2 
with 1cM windows, singletons excluded (MAF > 0.13%) and no r2 
cutoff. Standard errors were estimated by jackknifing over blocks of 
individuals, and we used these standard errors to correct for attenu
ation bias in LD Score regression (that is, the downward bias in the 
magnitude of the regression slope that occurs when the regressor is 
measured noisily; Online Methods).

For LD Score regression, we excluded variants with EUR MAF < 
1% because the LD Score standard errors for these variants were very 
high (note that the variants included in LD Score regression are a sub
set of the variants included in LD Score estimation). In addition, we 
excluded loci with extremely large effect sizes or extensive longrange 
LD from all regressions because these loci can be considered outliers 
in such an analysis and would have disproportionate influence on the 
regression (Online Methods).

An important consideration in the estimation of LD Score is the 
extent to which the sample from which LD Score is estimated matches 
the sample for the association study. If there is a mismatch between 
the LD Scores from the reference population and the target population 
used for GWAS, then LD Score regression can be biased in two ways. 
First, if LD Scores in the reference population are equal to LD Scores 
in the target population plus meanzero noise, then the intercept will 
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be biased upward and the slope will be biased downward. This is 
conceptually equivalent to increasing the measurement error for LD 
Score. Second and perhaps more importantly, consider the scenario 
where there is a directional bias in the average LD Score such that the 
LD Scores in the reference population are systematically higher or 
lower than those in the target population. Under such a scenario, the 
LD Score regression intercept would be biased downward or upward, 
respectively (Online Methods).

To explore the stability of LD Score across Europeanancestry pop
ulations, we estimated LD Scores using each of the 1000 Genomes 
Project EUR subpopulations separately (Utah residents with Northern 
and Western European ancestry (CEU), British in England and 
Scotland (GBR), Toscani in Italia (TSI) and Finnish in Finland (FIN)). 
The LD Scores from all four subpopulations were highly correlated, but 
mean LD Score increased with latitude (Online Methods), consistent 
with the observation that southern European populations have gone 
through less severe bottlenecks than northern European populations9. 
For example, in comparison to the combined EUR LD Score, the mean 
LD Score for the FIN population was 7% larger and the mean LD Score 
for the TSI population was 8% smaller. We evaluated the impact of 
these differences on the behavior of the LD Score regression analysis 
and found that the EUR reference panel was adequate for studies in 
outbred populations of predominantly northern European ancestry, 
such as EuropeanAmerican or UK populations (Online Methods). 
For other populations, a different reference panel should be used.

Under strong assumptions about the effect sizes of rare variants, 
the slope of the LD Score regression can be rescaled to be an esti
mate of the heritability explained by all SNPs used in the estimation 
of the LD Scores (Supplementary Table 1). Relaxing these assump
tions to obtain a robust estimate of the heritability explained by 
all 1000 Genomes Project SNPs is a direction for further research; 
however, we note that the LD Score regression intercept is robust to  
these assumptions.

Simulations with polygenic genetic architectures
To verify the relationship between LD and χ2 statistics, we performed 
a variety of simulations to model scenarios with population stratifica
tion, cryptic relatedness or polygenic architecture.

To model a polygenic quantitative trait, we assigned perallele 
effect sizes drawn from the distribution N(0, h2/(2Mp(1 − p))) to 
varying numbers of causal variants and for varying heritabilities in an 
approximately unstructured cohort of 1,000 Swedes. In all simulation 

settings, the average LD Score regression intercept was close to one 
(Supplementary Figs. 1 and 2). When there were few causal variants, 
the LD Score regression estimates were still unbiased but the standard 
errors became very large, meaning that this approach is best suited to 
polygenic traits (Supplementary Figs. 3–5).

Simulations with confounding
The model assumes that there is no systematic correlation between FST 
(a measure of the betweenpopulation variance in allele frequency) 
and LD Score (Supplementary Note). This assumption may be  
violated in practice as a result of linked selection (positive selection10  
and background selection11). If there were a positive correlation 
between LD Score and FST, the LD Score regression intercept would 
underestimate the contribution of population stratification to the 
inflation in χ2 statistics. To quantify the bias that this might intro
duce into the LD Score regression intercept, we performed a series  
of simulations with real population stratification.

We obtained unimputed genotypes for Psychiatric Genomics 
Consortium (PGC) controls from seven European cohorts genotyped 
on the same array (Supplementary Table 2). To simulate population 
stratification on a continental scale, we assigned case or control status 
on the basis of cohort membership and then computed association 
statistics for each pair of cohorts (note that in this simulation setup 
the expected mean χ2 statistic is 1 + bNFST, where b is the correla
tion between phenotype and ancestry and N is sample size; ref. 12).  
To simulate population stratification on a national scale, we computed  
the top three principal components within each cohort and then 
computed association statistics using each of these principal compo
nents as a phenotype. Quantilequantile plots from simulations with 
population stratification and polygenicity showed indistinguishable 
patterns of inflation (Fig. 1a,b), but the average LD Score regres
sion intercept was approximately equal to the genomic control infla
tion factor (λGC) in simulations with population stratification (see 
Supplementary Table 3a for simulations with continentalscale strati
fication and Supplementary Table 4a for simulations with national
scale stratification) and near one in simulations with polygenicity 
(Supplementary Figs. 1–5).Furthermore, the qualitative appearance 
of the pattern of inflation as a function of LD Score was completely 
different in each set of simulations (Fig. 1c,d). The observed correla
tions between FST and LD Score in all simulations were negligible 
(generally 1 × 10−5 to 1 × 10−4; Supplementary Tables 3b and 4b). 
We note that, in simulations with population stratification, the slope 
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Figure 1 Results from selected simulations. (a) Quantile-quantile plot with population stratification (λGC = 1.32, LD Score regression intercept = 1.30). 
(b) Quantile-quantile plot with a polygenic genetic architecture where 0.1% of SNPs are causal (λGC = 1.32, LD Score regression intercept = 1.006). 
(c) LD Score plot with population stratification. Each point represents an LD Score quantile, where the x coordinate of the point is the mean LD Score 
of variants in that quantile and the y coordinate is the mean χ2 statistic of variants in that quantile. Colors correspond to regression weights, with red 
indicating large weight. The black line is the LD Score regression line. (d) LD Score plot as in c but with polygenic genetic architecture.
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of the LD Score regression was slightly greater than zero on average 
(Supplementary Tables 3c and 4c), likely as a result of linked selec
tion. Nevertheless, the performance of the LD Score regression inter
cept was comparable to λGC and so would be suitably conservative if 
used as a correction factor, despite the small bias in the slope.

Simulations with confounding and polygenicity
To simulate a more realistic scenario where both polygenicity and 
bias contribute simultaneously to the inflation of test statistics, we 
obtained the genotypes for approximately 22,000 individuals through
out Europe from the Wellcome Trust Case Control Consortium 2 
(ref. 13). We simulated polygenic phenotypes by drawing causal SNPs 
only from the first halves of chromosomes. All SNPs on the second 
halves of chromosomes were not causal. In addition, we included an 
environmental stratification component aligned with the first prin
cipal component of the genotype data, representing northern versus 
southern European ancestry. In this setup, the mean χ2 statistic among 
SNPs on the second halves of chromosomes measures the average 
contribution of stratification. We performed similar simulations with 
cryptic relatedness using data from the Framingham Heart Study14, 
which includes close relatives. In all simulation replicates, the LD 
Score regression intercept was approximately equal to the mean χ2 sta
tistic among null SNPs (Supplementary Table 5), which demonstrates 
that LD Score regression can partition the inflation in test statistics, 
even in the presence of both bias and polygenicity.

Finally, we modeled studies of a polygenic binary phenotype 
with casecontrol ascertainment using simulated genotypes and 
a liability threshold model, and we verified that LD Score regres
sion was not noticeably biased by casecontrol ascertainment  
(Supplementary Table 6).

Frequency-dependent genetic architectures
LD Score regression works optimally when the variance explained per 
SNP is uncorrelated with the LD Score (this means that rare variants have 
larger effect sizes than common variants, which may be an appropri
ate model for a disease phenotype under moderate negative selection).  
A potential limitation of LD Score regression is that the variance explained 
by each SNP may be correlated with the LD Score for some phenotypes. 
For an example where this might occur, consider a phenotype that is 
selectively neutral, such that the perallele effect size is uncorrelated with 
MAF (which means that the variance explained is positively correlated 
with MAF, as additive genetic variance is defined as 2pqa2, where p and 
q are the major and minor allele frequencies, respectively, and a is the 
additive genetic effect). Because the LD Score is also positively correlated 
with MAF, in this case we would expect the variance explained to be 
positively correlated with the LD Score, which will introduce downward 
bias into the LD Score regression intercept and upward bias into the LD 
Score regression slope, leading to underestimation of potential bias.

To quantify the magnitude of the bias that MAFdependent genetic 
architectures could introduce, we simulated a frequencydependent 
genetic architecture where the effect size was uncorrelated with MAF 
(Online Methods). For most phenotypes, this model should represent 
a reasonable bound on the genetic architecture. We observed mini
mal bias: in these simulations, the mean LD Score regression inter
cept was 0.994 (Supplementary Fig. 6 and Supplementary Table 7).  
Nevertheless, there exist extreme genetic architectures where LD 
Score regression is not effective: for instance, if all causal variants are 
rare (MAF < 1%; which may be an appropriate model for a phenotype 
under extreme negative selection), then LD Score regression will often 
generate a negative slope, and the intercept will exceed the mean χ2 
statistic (Supplementary Fig. 7).

Real data
Finally, we applied LD Score regression to summary statistics from 
GWAS representing more than 20 different phenotypes15–32 (Table 1  
and Supplementary Fig. 8a–w; metadata about the studies in the 
analysis are presented in Supplementary Table 8a,b). For all stud
ies, the slope of the LD Score regression was significantly greater 
than zero and the LD Score regression intercept was substantially 
less than λGC (mean difference of 0.11), suggesting that polygenicity 
accounts for a majority of the increase in the mean χ2 statistic and 
confirming that correcting test statistics by dividing by λGC is unnec
essarily conservative. As an example, we show the LD Score regres
sion for the most recent schizophrenia GWAS, restricted to ~70,000 
Europeanancestry individuals (Fig. 2)32. The low intercept of 1.07 
indicates at most a small contribution of bias and that the mean χ2 
statistic of 1.613 results mostly from polygenicity. LD Score plots for 
all other GWAS included in Table 1 can be found in Supplementary 
Figure 8a–w. As with any inference procedure that relies on a model 
of genetic architecture, it is possible that our results may be biased by 
model misspecifications other than those we have simulated directly 
(for example, if independent effect sizes are a poor model, perhaps 
because coupled alleles have a tendency to have effects in the same 

table 1 lD Score regression results
Phenotype Mean χ2 λGC Intercept (SE) Typea GCb Ref.

Inflammatory bowel 
disease

1.247 1.164 1.095 (0.010) Mega 0 26

Ulcerative colitis 1.174 1.128 1.079 (0.010) Mega 0 26

Crohn’s disease 1.185 1.122 1.059 (0.008) Mega 0 26

Schizophrenia 1.613 1.484 1.070 (0.010) Mega 0 32

Attention deficit/
hyperactivity disorder

1.033 1.033 1.008 (0.006) Mega 0 18

Bipolar disorder 1.154 1.135 1.030 (0.008) Mega 0 23

PGC cross-disorder 
analysis

1.205 1.187 1.018 (0.008) Mega 0 29

Major depression 1.063 1.063 1.009 (0.006) Mega 0 30

Rheumatoid arthritis 1.063 1.033 0.980 (0.007) Mega 2 20

Coronary artery disease 1.125 1.096 1.033 (0.008) Meta 1 24

Type 2 diabetes 1.116 1.097 1.025 (0.008) Meta 1 28

BMI-adjusted fasting 
insulin

1.088 1.072 1.015 (0.007) Meta 1 27

Fasting insulin 1.079 1.067 1.021 (0.007) Meta 1 27

College (yes/no) 1.207 1.180 1.046 (0.009) Meta 1 31

Years of education 1.220 1.188 1.041 (0.009) Meta 1 31

Cigarettes per day 1.047 1.047 0.998 (0.008) Meta 1 21

Ever smoked 1.097 1.083 1.008 (0.006) Meta 1 21

Former smoker 1.050 1.048 0.999 (0.007) Meta 1 21

Age of onset (smoking) 1.025 1.030 0.998 (0.006) Meta 1 21

FN-BMD 1.163 1.109 1.001 (0.009) Meta 2 25

LS-BMD 1.174 1.112 1.032 (0.009) Meta 2 25

Waist-hip ratio 1.417 1.330 1.040 (0.008) Meta 2 16

Height 1.802 1.478 1.149 (0.021) Meta 2 17

BMI 1.130 1.090 1.033 (0.012) Meta 2 19

LD Score regression results for all studies analyzed that either did not apply  
meta-analysis–level genomic control correction or listed λGC in the relevant publication.  
For GWAS that applied meta-analysis–level genomic control correction and listed λGC,  
we reinflated all test statistics by λGC. LD Score regression performed on genomic  
control–corrected summary statistics will generally yield an intercept less than one.  
Note that genomic control correction at the level of the individual study will also push the 
expected intercept, in the absence of confounding, slightly below one (Supplementary 
Note). Standard error (SE) estimates were obtained via a block jackknife over blocks of 
~2,000 adjacent SNPs, providing a robust estimate of standard error in the presence of 
correlated, heteroskedastic error terms. BMI, body mass index; FN-BMD, femoral neck 
bone mineral density; LS-BMD, lumbar spine bone mineral density.
aType of study: mega-analysis (with raw genotypes shared between studies) or meta-analysis 
(with only summary statistics shared between all contributing studies). bThe number of rounds 
of genomic control correction that were performed.
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direction). Such bias might explain the moderate inflation in the LD 
Score regression intercept that we observed in some large GWAS 
that are likely well calibrated. Note that upward bias in the LD Score 
regression intercept means only that the intercept may be conservative 
as a correction factor.

DISCUSSION
Whenever possible, it is preferable to obtain all relevant genotype 
data and correct for confounding biases directly33–37; posthoc cor
rection of test statistics is no substitute for diligent quality control. 
However, in the event that only summary data are available or if a con
servative correction is desired, we propose that the LD Score regres
sion intercept provides a more robust quantification of the extent of 
the confounding bias from inflation than λGC (or intergenic λGC; 
Supplementary Table 9). Because λGC increases with sample size in 
the presence of polygenicity (even without confounding bias)3, the 
gain in power obtained by correcting test statistics with the LD Score 
regression intercept instead of λGC will become even more substantial 
for larger GWAS. Extending this method to nonEuropean popula
tions such as East Asians or West Africans is straightforward given 
appropriate reference panels, but extension to admixed populations 
is the subject of future research.

In conclusion, we have developed LD Score regression, a method 
to distinguish between inflated test statistics from confounding bias 
and polygenicity. Application of LD Score regression to over 20 com
plex traits confirms that polygenicity accounts for the majority of 
inflation in test statistics for GWAS results, and this approach can 
be used to generate a correction factor for GWAS that retains more 
power than λGC, especially with large sample sizes. We have made 
available for download a Python command line tool for estimating 
LD Score and performing LD Score regression and a database of LD 
Scores suitable for Europeanancestry samples (see URLs). Research 

in progress aims to apply this method to the estimation of components 
of heritability, genetic correlation and the calibration of mixedmodel  
association statistics.

URLs. Software tool for LD Score estimation and estimation of  
variance components from summary statistics, https://github.com/
bulik/ldsc/; 1000 Genomes Project genetic map and haplotypes, http://
mathgen.stats.ox.ac.uk/impute/data_download_1000G_phase1_
integrated.html; LD Score, database: ftp://atguftp.mgh.harvard.edu/
brendan/1k_eur_r2_hm3snps_se_weights.RDS; GIANT Consortium 
(anthropometric traits) summary statistics, http://www.broadinsti
tute.org/collaboration/giant/index.php/GIANT_consortium_data_
files; Psychiatric Genomics Consortium (PGC) and TAG (tobacco) 
summary statistics, https://pgc.unc.edu/Sharing.php#SharingOpp; 
IIBDGC (inflammatory bowel disease) summary statistics (note that 
these summary statistics are from metaanalysis of Immunochip data, 
which are not appropriate for LD Score regression), http://www.ibdge
netics.org/downloads.html; CARDIoGRAM (coronary artery disease) 
summary statistics, http://www.cardiogramplusc4d.org/downloads/; 
DIAGRAM (type 2 diabetes) summary statistics, http://diagram
consortium.org/downloads.html; rheumatoid arthritis summary 
statistics, http://www.broadinstitute.org/ftp/pub/rheumatoid_arthritis/
Stahl_etal_2010NG/; blood pressure summary statistics, http://
www.georgehretlab.org/icbp_0880234012349812599.html; MAGIC  
(glycemic traits) summary statistics, http://www.magicinvestigators.
org/downloads/; GEFOS (bone mineral density) summary statistics, 
http://www.gefos.org/?q=content/datarelease; SSGAC (educational 
attainment) summary statistics, http://ssgac.org/Data.php.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.

ACKNoWLeDGMeNtS
We would like to thank P. Sullivan for helpful discussion. This work was supported 
by US National Institutes of Health grants F32 HG007805 (P.R.L.), R01 HG006399 
(A.L.P.), R03 CA173785 (H.K.F.) and R01 MH094421 (PGC) and by the Fannie and 
John Hertz Foundation (H.K.F.). Data on coronary artery disease and myocardial 
infarction were contributed by CARDIoGRAMplusC4D investigators and were 
downloaded from Psychiatric Genomics Consortium.

AUtHoR CoNtRIBUtIoNS
B.K.B.S. conceived the idea, analyzed the data, performed the analyses and  
drafted the manuscript. B.M.N. conceived the idea and drafted the manuscript. 
M.J.D. conceived the idea and supplied reagents. N.P. conceived the idea and 
supplied reagents. A.L.P. conceived the idea and supplied reagents. P.R.L. analyzed 
the data and performed the analyses. H.K.F. analyzed the data and performed the 
analyses. S.R. analyzed the data and performed the analyses. J.Y. provided software. 
All authors provided input and revisions for the final manuscript. 

CoMPetING FINANCIAL INteReStS
The authors declare no competing financial interests.

Reprints and permissions information is available online at http://www.nature.com/
reprints/index.html.

1. Pritchard, J.K. & Przeworski, M. Linkage disequilibrium in humans: models and 
data. Am. J. Hum. Genet. 69, 1–14 (2001).

2. Sham, P.C., Cherny, S.S., Purcell, S. & Hewitt, J.K. Power of linkage versus 
association analysis of quantitative traits, by use of variance-components models, 
for sibship data. Am. J. Hum. Genet. 66, 1616–1630 (2000).

3. Yang, J. et al. Genomic inflation factors under polygenic inheritance. Eur. J. Hum. 
Genet. 19, 807–812 (2011).

4. Voight, B.F. & Pritchard, J.K. Confounding from cryptic relatedness in case-control 
association studies. PLoS Genet. 1, e32 (2005).

2.5

2.0

1.5

50 100 150 200

LD Score bin

M
ea

n 
χ2

250

0.2

Regression
weight

0.4
0.6
0.8
1.0

Figure 2 LD Score regression plot for the most recent schizophrenia 
meta-analysis. Each point represents an LD Score quantile, where the x 
coordinate of the point is the mean LD Score of variants in that quantile 
and the y coordinate is the mean χ2 statistic of variants in that quantile 
in the most recent schizophrenia meta-analysis33. Colors correspond to 
regression weights, with red indicating large weight and blue indicating 
small weight. The black line is the LD Score regression line. The line 
appears to fall below the points on the right because this is a weighted 
regression in which the points on the left receive the largest weights 
(Online Methods). 

np
g

©
 2

01
5 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.

https://github.com/bulik/ldsc/
https://github.com/bulik/ldsc/
http://mathgen.stats.ox.ac.uk/impute/data_download_1000G_phase1_integrated.html
http://mathgen.stats.ox.ac.uk/impute/data_download_1000G_phase1_integrated.html
http://mathgen.stats.ox.ac.uk/impute/data_download_1000G_phase1_integrated.html
ftp://atguftp.mgh.harvard.edu/brendan/1k_eur_r2_hm3snps_se_weights.RDS
ftp://atguftp.mgh.harvard.edu/brendan/1k_eur_r2_hm3snps_se_weights.RDS
http://www.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files
http://www.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files
http://www.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files
https://pgc.unc.edu/Sharing.php#SharingOpp
http://www.ibdgenetics.org/downloads.html
http://www.ibdgenetics.org/downloads.html
http://www.cardiogramplusc4d.org/downloads/
http://diagram-consortium.org/downloads.html
http://diagram-consortium.org/downloads.html
http://www.broadinstitute.org/ftp/pub/rheumatoid_arthritis/Stahl_etal_2010NG/
http://www.broadinstitute.org/ftp/pub/rheumatoid_arthritis/Stahl_etal_2010NG/
http://www.georgehretlab.org/icbp_088023401234-9812599.html
http://www.georgehretlab.org/icbp_088023401234-9812599.html
http://www.magicinvestigators.org/downloads/
http://www.magicinvestigators.org/downloads/
http://www.gefos.org/?q=content/data-release
http://ssgac.org/Data.php
http://www.nature.com/doifinder/10.1038/ng.3211
http://www.nature.com/doifinder/10.1038/ng.3211
http://www.nature.com/doifinder/10.1038/ng.3211
http://www.nature.com/reprints/index.html
http://www.nature.com/reprints/index.html


Nature GeNetics  VOLUME 47 | NUMBER 3 | MARCH 2015 295

t e c h N i c a l  r e p o rt S

5. Devlin, B. & Roeder, K. Genomic control for association studies. Biometrics 55, 
997–1004 (1999).

6. Lin, D.Y. & Sullivan, P.F. Meta-analysis of genome-wide association studies with 
overlapping subjects. Am. J. Hum. Genet. 85, 862–872 (2009).

7. 1000 Genomes Project Consortium. An integrated map of genetic variation from 
1,092 human genomes. Nature 491, 56–65 (2012).

8. Yin, P. & Fan, X. Estimating R2 shrinkage in multiple regression: a comparison of 
different analytical methods. J. Exp. Educ. 69, 203–224 (2001).

9. Ralph, P. & Coop, G. The geography of recent genetic ancestry across Europe. PLoS 
Biol. 11, e1001555 (2013).

10. Bersaglieri, T. et al. Genetic signatures of strong recent positive selection at the 
lactase gene. Am. J. Hum. Genet. 74, 1111–1120 (2004).

11. McVicker, G., Gordon, D., Davis, C. & Green, P. Widespread genomic signatures  
of natural selection in hominid evolution. PLoS Genet. 5, e1000471  
(2009).

12. Price, A.L. et al. The impact of divergence time on the nature of population 
structure: an example from Iceland. PLoS Genet. 5, e1000505 (2009).

13. International Multiple Sclerosis Genetics Consortium & Wellcome Trust Case Control 
Consortium 2. Genetic risk and a primary role for cell-mediated immune mechanisms 
in multiple sclerosis. Nature 476, 214–219 (2011).

14. Splansky, G.L. et al. The Third Generation Cohort of the National Heart, Lung, and 
Blood Institute’s Framingham Heart Study: design, recruitment, and initial 
examination. Am. J. Epidemiol. 165, 1328–1335 (2007).

15. Sullivan, P.F. et al. Genome-wide association for major depressive disorder:  
a possible role for the presynaptic protein piccolo. Mol. Psychiatry 14, 359–375 
(2009).

16. Heid, I.M. et al. Meta-analysis identifies 13 new loci associated with waist-hip ratio 
and reveals sexual dimorphism in the genetic basis of fat distribution. Nat. Genet. 
42, 949–960 (2010).

17. Lango Allen, H. et al. Hundreds of variants clustered in genomic loci and biological 
pathways affect human height. Nature 467, 832–838 (2010).

18. Neale, B.M. et al. Meta-analysis of genome-wide association studies of attention-
deficit/hyperactivity disorder. J. Am. Acad. Child Adolesc. Psychiatry 49, 884–897 
(2010).

19. Speliotes, E.K. et al. Association analyses of 249,796 individuals reveal 18 new 
loci associated with body mass index. Nat. Genet. 42, 937–948 (2010).

20. Stahl, E.A. et al. Genome-wide association study meta-analysis identifies seven new 
rheumatoid arthritis risk loci. Nat. Genet. 42, 508–514 (2010).

21. Tobacco & Genetics Consortium. Genome-wide meta-analyses identify multiple loci 
associated with smoking behavior. Nat. Genet. 42, 441–447 (2010).

22. International Consortium for Blood Pressure Genome-Wide Association Studies. 
Genetic variants in novel pathways influence blood pressure and cardiovascular 
disease risk. Nature 478, 103–109 (2011).

23. Psychiatric GWAS Consortium Bipolar Disorder Working Group. Large-scale genome-
wide association analysis of bipolar disorder identifies a new susceptibility locus 
near ODZ4. Nat. Genet. 43, 977–983 (2011).

24. Schunkert, H. et al. Large-scale association analysis identifies 13 new susceptibility 
loci for coronary artery disease. Nat. Genet. 43, 333–338 (2011).

25. Estrada, K. et al. Genome-wide meta-analysis identifies 56 bone mineral density 
loci and reveals 14 loci associated with risk of fracture. Nat. Genet. 44, 491–501 
(2012).

26. Jostins, L. et al. Host-microbe interactions have shaped the genetic architecture of 
inflammatory bowel disease. Nature 491, 119–124 (2012).

27. Manning, A.K. et al. A genome-wide approach accounting for body mass index 
identifies genetic variants influencing fasting glycemic traits and insulin resistance. 
Nat. Genet. 44, 659–669 (2012).

28. Morris, A.P. et al. Large-scale association analysis provides insights into the genetic 
architecture and pathophysiology of type 2 diabetes. Nat. Genet. 44, 981–990 
(2012).

29. Cross-Disorder Group of the Psychiatric Genomics Consortium. Identification of risk 
loci with shared effects on five major psychiatric disorders: a genome-wide analysis. 
Lancet 381, 1371–1379 (2013).

30. Major Depressive Disorder Working Group of the Psychiatric GWAS Consortium.  
A mega-analysis of genome-wide association studies for major depressive disorder. 
Mol. Psychiatry 18, 497–511 (2013).

31. Rietveld, C.A. et al. GWAS of 126,559 individuals identifies genetic variants 
associated with educational attainment. Science 340, 1467–1471 (2013).

32. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological 
insights from 108 schizophrenia-associated genetic loci. Nature 511, 421–427 
(2014).

33. Patterson, N., Price, A.L. & Reich, D. Population structure and eigenanalysis. PLoS 
Genet. 2, e190 (2006).

34. Price, A.L. et al. Principal components analysis corrects for stratification in genome-
wide association studies. Nat. Genet. 38, 904–909 (2006).

35. Kang, H.M. et al. Variance component model to account for sample structure in 
genome-wide association studies. Nat. Genet. 42, 348–354 (2010).

36. Lippert, C. et al. FaST linear mixed models for genome-wide association studies. 
Nat. Methods 8, 833–835 (2011).

37. Korte, A. et al. A mixed-model approach for genome-wide association studies of 
correlated traits in structured populations. Nat. Genet. 44, 1066–1071 (2012).

np
g

©
 2

01
5 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.



Nature GeNetics doi:10.1038/ng.3211

ONLINE METHODS
Estimation of LD Score. We estimated European LD Scores from 378 phased 
Europeanancestry individuals (excluding one individual from a pair of  
cousins) from the 1000 Genomes Project reference panel using the ldmean
rsq option implemented in the GCTA38 software package (with flags ld
meanrsq ldrsqcutoff 0 maf 0.00001. We implemented a 1cM window 
using the ldwind flag and modified .bim files with physical coordinates 
replaced with genetic coordinates as described below; note that a 1cM window 
can be achieved more conveniently using the flags l2 and ldwindcm in 
the LDSC software package by the authors). The primary rationale for using 
a sequenced reference panel containing several hundred individuals for LD 
Score estimation rather than a genotyped GWAS control panel with several 
thousand individuals was that, even after imputing offchip genotypes, the 
variants available from a genotyping array only account for a subset of all 
variants. Using only a subset of all variants for estimating LD Score produces 
estimates that are biased downward.

We used a window size of 1 cM around the index variant for the sum of 
r2 values (using the genetic map and phased genotypes from the IMPUTE2 
website; see URLs), did not set an r2 cutoff and excluded singletons (MAF < 
0.13%). The standard estimator of the Pearson correlation coefficient has an 
upward bias of approximately 1/N, where N is sample size, so we employed an 
approximately unbiased estimator of LD Score given by:

r r
r

Nadj
2 2

21

2
= − −

−
ˆ

ˆ

where r̂2 denotes the standard, biased estimator of the squared Pearson’s  
correlation. Note that it is possible to have radj

2 1< , which is a mathematically 
necessary feature of any unbiased estimator of r2. Thus, some estimated LD 
Scores will be less than one. In practice, almost all variants with an estimated 
LD Score of less than one were rare: only 0.01% of variants with MAF > 5% 
had estimated LD Scores below one.

We examined the effect of varying the window size on our estimates of 
LD Score and found that our estimates of LD Score were robust to choice 
of window size. The mean difference in the LD Scores estimated with a  
1cM window and a 2cM window was less than 1% of the mean LD Score 
(Supplementary Fig. 9), and all LD Scores estimated with window sizes greater 
than 1 cM had squared correlations of >0.99 (Supplementary Table 10). This 
observation also addresses concerns about inflation in the LD Score from the 
intraEuropean population structure in the 1000 Genomes Project reference 
panel. The mean inflation in the 1cM LD Score from population structure 
can approximately be bounded by the mean difference between a 1cM LD 
Score and a 2cM LD Score. Because this difference is <1% of the mean LD 
Score, we conclude that bias from population structure does not significantly 
inflate our estimates of LD Score.

We estimated the standard errors for LD Scores via a deleteone jackknife 
over the 378 phased individuals in the 1000 Genomes Project EUR reference 
panel. We found that the standard error for LD Score was positively correlated 
with MAF and with LD Score itself. Jackknife estimates of LD Score standard 
error became extremely large for variants with MAF < 1%, so we excluded 
variants with 1000 Genomes Project EUR sample MAF < 1% from all LD 
Score regressions.

Intra-European LD Score differences. To quantify the magnitude of intra
European differences in LD Score, we estimated LD Scores using each of the 
1000 Genomes Project EUR subpopulations CEU, GBR, TSI and FIN. The LD 
Scores from the four subpopulations were all highly correlated, but the mean 
LD Score was not constant across populations. The mean LD Scores (MAF > 
1%) were as follows: EUR, 110; CEU, 109; GBR, 104; FIN, 117; TSI, 102. The 
observation that the mean LD Score in the FIN population was elevated is 
consistent with a recent bottleneck in the genetic history of Finland39, and the 
observation that the mean LD Score in the southern European TSI population 
was lower is consistent with reports that southern European populations have 
gone through less severe bottlenecks than northern European populations.

IntraEuropean differences in LD Score can be a source of bias in the 
LD Score regression intercept. For instance, if one attempts to perform LD 
Score regression using the 1000 Genomes Project EUR LD Score on a GWAS 

with all samples from Finland, then the LD Score regression intercept may 
be biased upward. Similarly, if one attempts to perform LD Score regression 
using the 1000 Genomes Project EUR LD Score on a GWAS with all samples 
from Italy, the LD Score regression intercept may be biased downward. If 
we make the approximation that the intraEuropean differences in LD Score 
can be described by an additive term plus 5% noise (that is, if we assume that 
the FIN LD Score equals the panEuropean LD Score plus seven, which is a 
worstcase scenario among the linear relationships between two LD Scores 
in terms of bias in the intercept), then the bias introduced into the LD Score 
regression intercept by using the panEuropean LD Score to perform LD Score 
regression on a Finnish GWAS will be seven multiplied by the slope of the LD 
Score regression plus 5% of the mean χ2 value minus one, where seven is the 
difference between the reference population LD Score and the GWAS popula
tion LD Score. Because all of the mean EUR subpopulation LD Scores that we 
have estimated are within ±8 of the mean panEuropean LD Score, we estimate 
that the bias in the LD Score regression intercept from intraEuropean LD 
Score differences is at most ±10 times the LD Score regression slope. For the 
real GWAS analyzed in Table 1, this corresponds to a worstcase difference of 
approximately ±10% in the estimate of the proportion of the inflation in the 
mean χ2 statistic that results from confounding bias, with a higher probability 
of upward bias (because the noise term in the relationship between target and 
reference LD Scores always causes upward bias in the LD Score regression 
intercept, whereas systematic directional differences in the target and reference 
LD Scores can bias the LD Score regression intercept in either direction).

Regression weights. To produce an efficient regression estimator, we must deal 
with two problems. First, χ2 statistics at SNPs in LD are correlated. Second, the 
χ2 statistics of variants with high LD Scores have higher variance than the χ2 
statistics of variants with low LD Scores (heteroskedasticity).

The statistically optimal solution to the correlation problem is to perform 
generalized least squares (GLS) with the variancecovariance matrix of χ2 
statistics. However, this matrix is intractable under our model. As an approxi
mation, we correct for correlation by weighting variant j by the reciprocal of 
the LD Score of variant j, counting LD only with other SNPs included in the 
regression. Precisely, if we let S denote the set of the variants included in the 
LD Score regression, then the LD Score of variant j counting LD only with 
other SNPs included in the regression is as follows:

j jk
k S

S r( ) = +
∈
∑1 2

Weighting by 1/j (S) would be equivalent to GLS with the full variancecovariance 
matrix of χ2 statistics if the genome consisted of LD blocks and r2 (in the popula
tion) was either zero or one. We estimate j (S) for the set of variants S described 
in “Real data” using the same procedure we used to estimate the full 1000 
Genomes Project LD Score. Because our estimates of  ̂ ( )j S  can be negative and  
regression weights must be positive, we weight by ̂ /max(ˆ , )a j1 1 .

To account for heteroskedasticity, we weight by

( / )1 2 2+ Nh Mg j

which is the reciprocal of the conditional variance function var[ | ]c j j
2   under 

our model if we make the additional assumption that the effect sizes for each 
normalized genotype are normally distributed (note that violation of this 
assumption does not bias the regression but only increases the standard error; 
a derivation is provided in the Supplementary Note).

Attenuation bias. Standard leastsquares and weighted leastsquares regres
sion theory assumes that the explanatory variable (also referred to as the 
independent variable, or X) is measured without error. If the explanatory 
variable is measured with error, then the magnitude of the regression slope 
will be biased toward zero. This form of bias is known as attenuation bias. 
If the explanatory variable is measured with error but the variance of this 
error is known, then it is possible to produce an unbiased regression slope by 
multiplying the slope by a disattenuation factor, which is equal to the squared 
weighted Pearson correlation between the noisy estimates of the explanatory 
variable and the true value of the explanatory variable.
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Simulations. When performing simulations with polygenic genetic architec
tures using genotyped or imputed data, variants in the 1000 Genomes Project 
reference panel not included in the set of genotypes used for simulation cannot 
contribute to the simulated phenotypes and thus should not contribute to the 
LD Score used for simulations. Precisely, for the simulations with polygenic
ity and the simulations with polygenicity and bias, we used LD Scores where 
estimates of r2 were derived from the 1000 Genomes Project EUR reference 
panel but the sum of the r2 values was taken over only those SNPs included in 
the simulations. For the simulations with frequencydependent genetic archi
tecture, we estimated the LD Scores from the same genotypes used for the 
simulations because we wanted to quantify the bias introduced by frequency
dependent genetic architecture even when the LD Scores are estimated with 
little noise. For the simulations with pure population stratification, we used 
an LD Score estimated from all 1000 Genomes Project variants, as there was 
no simulated polygenic architecture in these simulations. For simulations with 
pure population stratification, the details of the cohorts used are given in 
Supplementary Table 1.

It is difficult to use real genotypes to simulate ascertained studies of a 
binary phenotype with low population prevalence: to obtain 1,000 cases for a 
phenotype with a simulated prevalence of 1%, one would need to sample on 
expectation of 100,000 genotypes, which is not feasible. We therefore gener
ated simulated genotypes at 1.1 million SNPs with a mean LD Score of 110 
and a simplified LD structure where r2 was either 0 or 1 and with all variants 
having a MAF of 50%. We generated phenotypes under the liability threshold 
model with all effect sizes per normalized genotype (effects on liability) drawn 
independently and identically from a normal distribution and then sampled 
individuals at random from the simulated population until the desired number 
of cases and controls for the study had been reached.

Application to real data. The majority of the sets of summary statistics that 
we analyzed did not contain information about sample MAF or imputation 
quality. To restrict to a set of common, wellimputed variants, we retained 
only those SNPs in the HapMap 3 reference panel40 for the LD Score regres
sion. To guard against underestimation of LD Score from summing only LD 
with variants within a 1cM window, we removed variants in regions with 
exceptionally longrange LD41 from the LD Score regression (note that LD for 
these variants was included in the estimation of LD Score). Lastly, we excluded 
pericentromeric regions (defined as ±3 cM from a centromere) from the LD 
Score regression because these regions are enriched for sequence gaps, which 
may lead to the underestimation of LD Score, and depleted for genes, which 
may reduce the probability of association with a phenotype42,43. The final set 
of variants retained for LD Score regression on real data consisted of approxi
mately 1.1 million variants.
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