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Abstract

The study of continuous phase transitions triggered by spontaneous symmetry breaking has brought 
revolutionary ideas to physics. Recently, through the discovery of symmetry protected topological phases, it 
is realized that continuous quantum phase transition can also occur between states with the same symmetry 
but different topology. Here we study a specific class of such phase transitions in 1 + 1 dimensions – the 
phase transition between bosonic topological phases protected by Zn × Zn. We find in all cases the critical 
point possesses two gap opening relevant operators: one leads to a Landau-forbidden symmetry breaking 
phase transition and the other to the topological phase transition. We also obtained a constraint on the central 
charge for general phase transitions between symmetry protected bosonic topological phases in 1 + 1D.
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1. Introduction and the outline

Last five years witnessed a fast progress in the understanding of a new type of quantum dis-
ordered states – symmetry protected topological states (SPTs) [1–3]. These states exhibit a full 
energy gap in closed (i.e., boundary-free) geometry and exhibit the full symmetry of the Hamil-
tonian. However, these states are grouped into different “topological classes” such that it is not 
possible to cross from one topological class to another without closing the energy gap while pre-
serving the symmetry. Our goal is to understand the difference (if any) between the traditional 
Landau type and this new kind of “topological” phase transitions.

Because the Landau-type phase transitions are triggered by the fluctuations of bosonic order 
parameters over space–time, to minimize the obvious difference we focus on the phase transi-
tions between bosonic SPT phases [3]. Hence we do not address the phase transition between 
fermionic topological insulators or superconductors [1,2]. Moreover, to make everything as con-
crete as possible we shall focus on one space dimension and to topological phase transitions 
which have dynamical exponent equal to one (hence can be described by conformal field theo-
ries (CFTs)). We spend most of the space studying a specific class of such phase transitions – the 
phase transition between bosonic SPTs protected by Zn × Zn.

We spend most of the space describing the study of a specific class of such phase transitions 
– the phase transition between bosonic SPTs protected by Zn × Zn. Here we combine a blend 
of analytic and numerical methods to arrive at a rather complete picture for such critical points. 
From studying these phase transitions we observe an interesting fact, namely whenever the tran-
sition is direct (i.e., when there are no intervening phases) and continuous the central charge (c) 
of the CFT is always greater or equal to one. Near the end of the paper, we obtain a constraint on 
the central charge for CFTs describing bosonic SPT phase transitions: namely, c ≥ 1. Therefore, 
none of the best known “minimal models [4]” can be the CFT for bosonic SPT phase transitions!

According to the group cohomology classification [3], in one space dimension, the group 
Zn × Zn protects n different topological classes of SPTs. If we “stack” a pair of SPTs (which 
can belong to either the same or different topological class) on top of each other and turn on 
all symmetry allowed interactions, a new SPT will emerge to describe the combined system. An 
abelian (cohomology) group H 2(Zn × Zn, U(1)) = Zn (here the superscript “2” refers to the 
space–time dimension) classifies the SPT phases and describes the stacking operation. Here each 
topological class is represented by an element (i.e., 0, ..., n −1) of H 2(Zn ×Zn, U(1)) = Zn and 
the “stacking” operation is isomorphic to the mod(n) addition of these elements.

To understand the phase transitions between different classes of SPTs it is sufficient to focus 
on the transition between the trivial state (which corresponds to the “0” of Zn) and the non-trivial 
SPT corresponding to the “1” of Zn. The transition between phases correspond to other adjacent 
elements of Zn, e.g., (m, m + 1), will be in the same universality class as that between (0, 1). 
Transitions between “non-adjacent” topological classes will generically spit into successive tran-
sitions between adjacent classes.

There are 11 sections in the main text. In these sections we restrain from heavy mathemat-
ics, i.e., we simply state the main results and provide simple arguments. There are 6 appendices 
where mathematical details can be found. The outline of this paper is the follows. In section 2
we present the exactly solvable fixed point hamiltonians for the trivial and non-trivial Zn × Zn

protected SPT phases. In section 3 we present a hamiltonian that interpolates between the fixed 
point hamiltonians in section 2. A single parameter tunes this hamiltonian through the SPT phase 
transition. Section 4 introduces a non-local transformation that maps the hamiltonian in section 3
to that of two n-state clock models with spatially twisted boundary condition and Hilbert space 
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constraint. In particular, at criticality, we show that the partition function of the transformed 
hamiltonian corresponds to an “orbifolded” Zn × Zn clock model. In section 5 we discuss the 
effects of orbifolding on the phases of the clock model and show the results are consistent with 
what one expect for the SPT phases. Section 6 gives the phase diagram of the hamiltonian given 
in section 3. In section 7 we show that from the point of view of the orbifolded clock model the 
SPT transition corresponds to a Landau forbidden transition. In section 8 we present the con-
formal field theories for the SPT phase transitions discussed up to that point. Section 9 presents 
our numerical density matrix renormalization group results. We compare these results with the 
prediction of section 8. Section 10 presents the argument that the central charge of the CFTs 
that describe SPT phase transitions must be greater or equal to one. Finally, section 11 is the 
conclusion.

In Appendix A, we provide a brief review of the key ingredients of the 1 + 1D group coho-
mology, namely, the notions of cocycles and projective representations. After that, we show how 
to use cocycles to construct solvable fixed point SPT hamiltonians. Appendix B summarizes the 
non-local transformation that maps the hamiltonian in section 3 of the main text to that of two 
n-state clock models with spatially twisted boundary condition and Hilbert space constraint. In 
Appendix C we show that the partition function associated with the hamiltonian in Appendix B
(and section 3 of the main text) corresponds to that of “orbifolded” Zn ×Zn clock model. Appen-
dices D, E, F present the modular invariant partition functions of the orbifold Z2 × Z2, Z3 × Z3
and Z4 × Z4 clock models, respectively. In these appendices, we examine the primary scaling 
operator content of the modular invariant conformal field theory. In addition, we study the sym-
metry transformation properties of various Verma modules and the scaling dimension of primary 
scaling operators, particularly that of the gap opening operator. Appendix G summarizes the de-
tails of the density matrix renormalization group calculation. Finally, in Appendix H we briefly 
review the symmetry of the minimal model conformal field theories.

2. Exactly solvable “fixed point” Hamiltonians for the SPTs

Each SPT phase is characterized by an exactly solvable “fixed point” Hamiltonian. In Ap-
pendix A we briefly review the construction of these Hamiltonians using the “cocycles” associ-
ated with the cohomology group [5,6]. For the case relevant to our discussion the following lattice 
Hamiltonians can be derived [7] so that its ground state belong to the “0” and “1” topological 
classes of H 2(Zn × Zn, U(1)) = Zn

H0 = −
N∑

i=1

(M2i−1 + M2i + h.c.)

H1 = −
N∑

i=1

(R
†
2i−2M2i−1R2i + R2i−1M2iR

†
2i+1 + h.c.) (1)

These Hamiltonians are defined on 1D rings consisting of N sites. For each site labeled by i the 
local Hilbert space is spanned by |g2i−1, g2i〉 := |g2i−1〉 ⊗ |g2i〉 where (g2i−1, g2i ) ∈ Zn × Zn

with g2i−1, g2i = 0, 1, ..., n − 1. The total Hilbert space is the tensor product of the local Hilbert 
space for each site. For the convenience of future discussions from now on we shall refer to 
(2i − 1, 2i) as defining a “cell”, and call |g2i−1〉 and |g2i〉 as basis states defined for “site” 2i − 1
and 2i. The operators Mj and Rj in Equation (1) are defined by

Mj |gj 〉 := |gj + 1〉 mod n, and
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Rj |gj 〉 := η
gj
n |gj 〉 where ηn = ei2π/n. (2)

From Equation (2) we deduce the following commutation relation between M and R:

RjRk = RkRj

MjMk = MkMj

RjMk = η
δjk
n MkRj . (3)

Due to this commutation relation, it can be checked that the n × n matrices associated with 
Mj and Rj form a projective representation of the Zn × Zn group multiplication law (see ap-
pendix A.2 for the definition of projective representations). Finally periodic boundary condition 
is imposed on Equation (1) which requires

g2N+1 = g1, and g2N+2 = g2. (4)

Under these definitions Equation (1) is invariant under the global Zn × Zn group generated by

N∏
i=1

M2i−1 and
N∏

i=1

M2i . (5)

The form of Hamiltonians given in Equation (1) is quite asymmetric between M and R. We 
can make it more symmetric by performing the following unitary transformation on the local cell 
basis as follow

|g2i−1, g2i〉 → U |g2i−1, g2i〉 = 1√
n

n−1∑
g′

2i=0

η
(g2i−1−g2i )g

′
2i

n |g2i−1, g
′
2i〉.

This results in the following transformations of the operators in Equation (1)

U†M2i−1U = M2i−1M2i

U†M2iU = R
†
2i−1R2i

U†R2i−1U = R2i−1

U†R2iU = M
†
2i . (6)

It is straightforward to show that after these transformations the new operators obey the same 
commutation relation as Equation (3). Moreover, it can also be shown that R obeys the same 
boundary condition, namely, R2N+1 = R1 and R2N+2 = R2. In addition, it is also straightforward 
to show that under Equation (6) the generators of the Zn × Zn group become

U†

(
N∏

i=1

M2i−1

)
U =

2N∏
j=1

Mj and U†

(
N∏

i=1

M2i

)
U =

2N∏
j=1

R
(−1)j

j . (7)

Thus alternating “site” carries the projective and anti-projective representation of Zn × Zn.
Under Equation (6) the Hamiltonian H0 and H1 become

H0 = −
N∑

i=1

(M2i−1M2i + R2i−1R
†
2i + h.c.)

H1 = −
N∑

i=1

(M2iM2i+1 + R2iR
†
2i+1 + h.c.) (8)
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Fig. 1. (Color online) (a) H0 couples states associated with the same cell (each cell is represented by the rectangular 
box). (b) H1 couples states associated with adjacent cells. Each pair of black dots in a rectangle represents the sites in 
each cell. They carry states |g2i−1〉 and |g2i 〉 which form a projective representation of Zn × Zn. Each link represents 
a coupling term in the Hamiltonian (8). (c) Hamiltonian describing the interface between the two SPTs each being the 
ground state of H0 and H1. It is seen that there is a leftover site (highlighted in red) transforming projectively at the 
interface.

These Hamiltonians are pictorially depicted in Fig. 1(a,b). Note that while H0 (Fig. 1(a)) couples 
sites within the same cell, H1 couples sites belong to adjacent cells (Fig. 1(b)). Because both 
H0 and H1 consist of decoupled pairs of sites (the coupling terms associated with different pairs 
commute with one another) they can be exactly diagonalized. The result shows a unique ground 
state with a fully gapped spectrum for both H0 and H1. Using Equation (7) it is simple to show 
that the ground states are invariant under Zn × Zn.

The fact that H0 and H1 describe inequivalent SPTs can be inferred by forming an in-
terface of H0 and H1 as shown in Fig. 1(c). A decoupled site (red) emerges. Localizing on 
this site there are degenerate gapless excitations carrying a projective representation of the 
Zn × Zn [23]. The fact that gapless excitations must exist at the interface between the ground 
states of H0 and H1 attests to that fact that these states belong to inequivalent topological classes 
of H 2(Zn × Zn, U(1)) = Zn.

3. An interpolating Hamiltonian describing the phase transition between Zn × Zn SPTs

To study the phase transition between the ground state of H0 and the ground state of H1 we 
construct the following Hamiltonian which interpolates between H0 and H1 as follows

H01(λ) = (1 − λ)H0 + λH1

= −(1 − λ)

N∑
i=1

(M2i−1M2i + R2i−1R
†
2i ) − λ

N∑
i=1

(M2iM2i+1 + R2iR
†
2i+1)

+ h.c. (9)

With both H0 and H1 present the Hamiltonian given in Equation (9) is no longer easily solv-
able. However, in the following, we present analytic results showing (1) for 2 ≤ n ≤ 4 the phase 
transition occurs at λ = 1/2, (2) the central charge, the conformal field theory and its associated 
primary scaling operators at the phase transitions. For n ≥ 5 there is a gapless phase centered 
around λ = 1/2 hence the phase transition is not direct. Moreover for the interesting case of 
n = 3 we will present the numerical density matrix renormalization group results which confirm 
our analytic solution.
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4. Mapping to “orbifold” Zn × Zn clock chains

In Appendix B we show that Equation (9) can be mapped onto a Zn × Zn clock model with 
spatially twisted boundary condition and a Hilbert space constraint. In Appendix C we further 
show that these amount to “orbifolding”.

The mapping is reminiscent of the duality transformation in a single Zn clock model. The 
mapping is achieved via the following transformations:

R
†
j−1Rj = M̃j for j = 2...2N, R

†
2NR1 = M̃1

and Mj = R̃
†
j R̃j+1 for all j. (10)

After the mapping, the Hamiltonian in Equation (9) is transformed to

H01(λ) = Heven(λ) + Hodd(λ)

Heven(λ) = −
N∑

i=1

[
(1 − λ)M̃2i + λR̃

†
2i R̃2i+2

]
+ h.c.

Hodd(λ) = −
N∑

i=1

[
λM̃2i−1 + (1 − λ)R̃

†
2i−1R̃2i+1

]
+ h.c. (11)

Here M̃ and R̃ obey the same commutation relations as M and R in Equation (3).
Equation (11) is the quantum Hamiltonian for two Zn clock models [8], one defined on the 

even and one on the odd sites, respectively. However, generated by the mapping, Equation (11)
is supplemented with a twisted spatial boundary condition and a constraint:

Boundary condition: R̃2N+1 := B̃R̃1 and R̃2N+2 := B̃R̃2, (12)

Constraint:
2N∏
i=1

M̃i = 1. (13)

Here B̃ is an operator that commutes with all the R̃s and M̃s. The eigenvalues of B̃ are b̃ =
1, ηn, ..., ηn−1

n (recall that ηn = ei2π/n). In terms of the transformed variables, the generators of 
the original Zn × Zn group are given by

B̃ and
N∏

j=1

M̃2j . (14)

The spatially twisted boundary condition Equation (12) and the constraint Equation (13) (which 
turns into a time direction boundary condition twist in the path integral representation of the 
partition function) execute the “orbifolding” (see later).

By swapping the even and odd chains Equation (11) exhibit the

λ ↔ (1 − λ)

duality. This implies the self-dual point at λ = 1/2 is special. In particular, if there is a single 
critical point as a function of λ, it must occur at λ = 1/2. Incidentally, if we put aside Equa-
tion (12) and Equation (13), λ = 1/2 is where each of the clock chains in Equation (11) becomes 
critical.
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As we will show later the effects of Equation (12) and Equation (13) (i.e., orbifold) is to 
change the primary scaling operator content of the critical CFT from that of the direct product 
of two Zn clock models. However they do not jeopardize the criticality, nor do they change the 
central charge. We shall return to these more technical points later. At the meantime let’s first 
study the effects of Equation (12) and Equation (13) on the phases.

5. The effect of orbifold on the phases

Knowing the behavior of the single Zn clock chain, Equation (11) suggests for λ < 1/2 the 
odd-site chain will spontaneously break the Zn symmetry while the even chain remains disor-
dered. The ground state will lie in the b̃ (the eigenvalue of B̃) = 1 sector on account of the 
twisted boundary condition. For λ > 1/2 the behaviors of the even and odd chains exchange, and 
the ground state remains in the b̃ = 1 sector. On the surface, such symmetry breaking should lead 
to ground state degeneracy which is inconsistent with the fact that both SPTs (for λ < 1/2 and 
λ > 1/2) should have unique groundstate.

This paradox is resolved if we take into account of the constraint in Equation (13). For sim-
plicity let’s look at the limiting cases. For λ = 0 the ground state of Equation (11) is

|g,g, ..., g〉odd ⊗ |p,p, ...,p〉even ⊗ |b̃ = 1〉 (15)

where g = 0, ..., n − 1. Here the “paramagnet state” |p〉 for each site is defined as

|p〉 := 1√
n

(|0〉 + |1〉 + ... + |n − 1〉) . (16)

As expected, such ground state is n-fold degenerate and it does not satisfy the constraint of Equa-
tion (13). However, if we form the symmetric superposition of the odd-site symmetry breaking 
states ⎛⎝ 1√

n

n−1∑
g=0

|g,g, ..., g〉odd

⎞⎠ ⊗ |p,p, ...,p〉even ⊗ |b̃ = 1〉 (17)

the constraint is satisfied and the state is non-degenerate. Obviously, Equation (17) is invariant 
under the Zn × Zn generated by Equation (14). Although Equation (17) is non-degenerate, the 
two-point correlation function 〈R̃2j+1R̃

†
2k+1〉 still shows long-range order. Almost exactly the 

same arguments, with odd and even switched, apply to the λ = 1 limit. The only difference is 
instead of observing |p, p, ..., p〉even being invariant under the action of 

∏N
j=1 M̃2j we need to 

observe that 
(

1√
n

∑n−1
g=0 |g,g, ..., g〉even

)
is invariant. As λ deviates from the limiting values, so 

long as it does not cross any phase transition the above argument should remain qualitatively 
unchanged. In this way we understand the effects of Equation (12) and Equation (13) on the 
phases.

6. The phase diagram

Since upon orbifolding the phases of the decoupled Zn × Zn clock models seamlessly evolve 
into the SPT phases we shall construct that phase diagram using what’s know about the phase 
structure of the clock model. It is known that a single Zn clock chain shows an order–disorder 
phase transition at a single critical point for n ≤ 4, while there is an intermediate gapless phase 
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Fig. 2. (Color online) Phase diagram for (9), which linearly interpolates between the fixed point hamiltonians of Zn ×Zn

SPT phases. Red and blue mark the non-trivial and trivial SPTs respectively. (a) For n ≤ 4, a second-order transition 
occurs between the two SPT phases, and the central charge takes values of 1, 8

5 and 2 for n = 2, 3, 4, respectively. (b) For 
n ≥ 5, a gapless phase intervenes between the two SPT phases. The entire gapless phase has central charge c = 2.

for n ≥ 5 we conclude the phase diagram is shown in Fig. 2(a,b). Since our goal is to study the 
continuous phase transition between SPTs we focus on n ≤ 4.

7. SPT transitions as “Landau-forbidden” phase transitions

According to Landau’s rule, transitions between phases whose symmetry groups do not have 
subgroup relationship should generically be first order. Continuous phase transitions between 
such phases are regarded as “Landau forbidden” in the literature.

As discussed earlier, in terms of the orbifolded Zn ×Zn clock chains, the two phases on either 
side of the SPT phase transition correspond to the breaking of the Zn symmetry in one of the 
clock chain but not the other. In the following, we elaborate on this statement.

For λ < 1/2 although the ground state in Equation (17) is non-degenerate, the two-point 
correlation function 〈R̃2j+1R̃

†
2k+1〉 shows long-range order. When the odd and even chains are 

switched the same argument applies to the λ > 1/2 limit. If we define

Qeven =
N∏

j=1

M̃2j and Qodd =
N∏

j=1

M̃2j−1 (18)

it is easy to show that equations (11), (12) and (13) commute with them, hence the Z′
n × Z′

n

group they generate are also the symmetry of the problem. However it is important not to confuse 
Z′

n × Z′
n with the original Zn × Zn group (which is generated by Equation (14)).

With respect to the Z′
n × Z′

n symmetry the two phases (realized for λ < 1/2 and λ > 1/2) 
breaks two different Z′

n factors, hence the symmetry groups of the two phases have no subgroup 
relationship, thus if a continuous phase transition between them exists it is a Landau forbidden 
transition. In fact, it is the original Zn ×Zn symmetry that “fine tunes” the system to realize such 
non-generic continuous phase transition.

8. The CFT at the SPT phase transition for n = 2, 3, 4

It is known that the central charge of the CFT describing the criticality of a single Zn clock 
chain is c = 1/2, 4/5, 1 for n = 2, 3, 4. Thus the central charge of the CFT describing the si-
multaneous criticality of two decoupled Zn clock chains should be c = 1, 8/5, 2 for Z2 × Z2, 
Z3 × Z3 and Z4 × Z4. This is summarized in Table 1.

Of course, we do not have two decoupled clock chains. The spatial boundary condition twist 
(Equation (12)) and the constraint (Equation (13)), namely the orbifolding, couples the two 
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Table 1
The central charges associated with the critical 
point of the Zn × Zn SPT phase transitions for 
n = 2, 3, 4.

Symmetry group Central charge

Z2 × Z2 1
Z3 × Z3 8/5
Z4 × Z4 2

chains together. The purpose of this section is to address the effects of orbifolding on the criti-
cality of the two decoupled chains.

Let’s start with the conformal field theory of a single Zn clock chain. The partition function 
of such CFT on a torus is given by

Z(q) =
∑
a,b

χa(q)Mabχ̄b(q̄). (19)

Here the indices a, b labels the Verma modules. Each Verma module is spanned by states 
associated with a primary scaling operator and its descendants through the operator-state cor-
respondence. Each Verma module carries an irreducible representation of the conformal group. 
The parameter q in Equation (19) is equal to e2πiτ , where τ is the modular parameter of the 
spacetime torus (see Fig. D.8). χa(q) and χ̄b(q̄) are, respectively, the partition function associ-
ated with the holomorphic Verma module a and antiholomorphic Verma module b. The matrix 
Mab has non-negative integer entries.

The partition function of the two decoupled Zn clock chains that are simultaneously critical 
is given by

Z(q) × Z(q) =
∑

a,b,c,d

χa(q)χc(q)(MabMcd)χ̄b(q̄)χ̄d (q̄). (20)

It turns out that the effect of orbifold is to change

MabMcd → N(a,c);(b,d) (21)

(N(a,c);(b,d) is a different non-negative integer matrix) so that

Zorbifold(q) =
∑

a,b,c,d

χa(q)χc(q)N(a,c);(b,d)χ̄b(q̄)χ̄d(q̄). (22)

In particular, N(1,1);(1,1) = 1, i.e., the tensor product of the ground state of the two clock chains 
is also the ground state of the orbifold model. Moreover, for those N(a,c);(b,d) > 0 the scaling 
dimension of the holomorphic primary operator (a, c) is h(a,c) = ha + hc and that of the anti-
holomorphic primary operator (b, d) is h̄(b,d) = h̄b + h̄d . The fact that the ground state of the 
orbifold model remain the same as the tensor product of the ground states of the decoupled clock 
chains implies

corbifold = cdecoupled clock chains. (23)

The latter identity can be seen from the fact that the central charge can be computed from the 
entanglement entropy, which is a pure ground state property. Thus, after the orbifold, the system 
is still conformal invariant (i.e. quantum critical) and the central charge is unaffected by the 
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Table 2
(Color online) The first few primary operators, with the lowest 
scaling dimensions (h + h̄), of the orbifold Zn × Zn CFT for 
n = 2, 3, 4. The momentum quantum numbers of these opera-
tors are equal to (h − h̄) × 2π/N . Entries in blue are invariant 
under Zn × Zn .

n h + h̄ h − h̄ Multiplicity

2 0 0 1
1/4 0 2
1 0 2 + 2
1 ±1 2
5/4 ±1 8

3 0 0 1
4/15 0 4
4/5 0 2
14/15 0 4
17/15 ±1 8
19/15 ±1 16
4/3 0 4
22/15 0 8
8/5 0 1

4 0 0 1
1/4 0 4
1/2 0 2
5/8 0 4
1 0 2
9/8 ±1 8
5/4 0 20
5/4 ±1 12
5/4 ±1 16
3/2 ±1 8
13/8 0 4
13/8 ±1 16

orbifold. This argument allows us to conclude that the central charge of the Zn ×Zn (n = 2, 3, 4) 
SPT phase transition is indeed given in Table 1.

In Appendices D, E, and F we go through the details of obtaining the modular invariant parti-
tion function for the orbifold Zn ×Zn (n = 2, 3, 4) clock chains. We examine the primary scaling 
operator content of the modular invariant conformal field theory. In addition, we study the sym-
metry transformation properties of various Verma modules and the scaling dimension of primary 
scaling operators, in particular, that of the gap opening operator. In Table 2 we list the first few 
most relevant scaling operators and their scaling dimension for n = 2, 3, 4. Entries in blue are 
invariant under Zn × Zn.

9. Numerical DMRG study of the Z3 × Z3 SPT phase transition

In this section, we report the results of numerical density matrix renormalization group cal-
culation for the Z3 × Z3 transition. The purpose is to check our analytic predictions in the last 
section. The details of the numerical calculations are presented in Appendix G.
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Fig. 3. (Color online) Second order derivative of the ground state energy with respect to λ for both open (OBC) and 
periodic (PBC) boundary conditions and different values of N . The results suggest a divergent −d2E/dλ2 as λ → 1/2
and N → ∞. Hence it signifies a second-order phase transition. As expected, we note that finite size effect is significantly 
stronger for open as compared to periodic boundary condition.

First, we demonstrate that λ = 1/2 in Equation (9) is indeed a critical point. Let’s look at the 
second derivative of the ground state energy with respect to λ for both open and periodic bound-
ary conditions with different system sizes (Fig. 3). The results clearly suggest a second-order 
phase transition at λc = 1/2 where the second order energy derivative diverges.

Next, we compute the central charge at λ = 1/2. This is done by computing the entangle-
ment entropy, which is calculated from the reduced density matrix by tracing out the degrees 
of freedom associated with N − l sites in a system with total N sites. In Fig. 4 we plot the 
von Neumann entanglement entropy S against x = N

π
sin(πl/N) where l is the number of 

sites that are not traced out. CFT predicts S = c
6 ln(x) + const for the open boundary condi-

tion and S = c
3 ln(x) + const for periodic boundary condition [9]. From the numerics we find 

c = 1.599(9). This result is in nearly perfect agreement with our analytic prediction c = 8/5.
In addition to the above results, we have also calculated the gap as a function of λ. In fitting 

the result to

� ∼ |λ − λc|α (24)

we estimate the gap exponent to be α = 0.855(1) for open boundary condition (Fig. 5) and 
α = 0.847(1) for periodic boundary condition (Fig. 6). These results are in good agreement with 
the analytic prediction α = 5/6 (see Appendix E.4).

10. The constraint on the central charge

After an examination of Table 1 it is easy to notice that c ≥ 1 for all Zn × Zn SPT phase 
transitions. Moreover, for all the cases we know, including SPTs protected by continuous groups, 
all 1D (z = 1) bosonic SPT phase transitions are described by CFT with c ≥ 1. In the following 
present an argument that the CFT of all 1D bosonic SPT phase transition must have c ≥ 1.

We proceed by showing that the c < 1 CFTs cannot be the critical theory for bosonic SPT 
transitions. The 1D CFTs that are unitary and have c < 1 are the so-called minimal models. 
In Appendix H we summarize the argument in Ref. [10] where it is shown that the maximum
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Fig. 4. (Color online) Entanglement entropy is plotted against ln(x) (where x = N
π sin(πl/N) and l is the size of the 

subsystem which is not traced over) for a few different total system length N . (a) For open boundary condition (OBC) 
the maximum N is 200. (b) For periodic boundary condition (PBC) the maximum N is 60. Combining these results we 
estimate c = 1.62 ± 0.03.

Fig. 5. (Color online) The energy gap � as a function of λ for open boundary condition. (a) The gap closes for λ > 1/2
because of the presence of edge modes associated with the non-trivial SPT. (b) The gap exponent is extracted by ap-
proaching λc from the λ < 1/2 side. The value of α is found to be 0.855(1).

on-site internal symmetry (“on-site” symmetries are the ones consisting of product over local 
transformations that act on the local, e.g. site or group of sites, Hilbert space) that these CFTs 
can possess are either Z2 or S3. Since the critical point of the bosonic SPT phase transitions must 
possess the same on-site symmetry as the phases on either side, and neither Z2 nor S3 can protect 
non-trivial bosonic SPTs in 1D (i.e., H 2(Z2, U(1)) = H 2(S3, U(1)) = Z1), we conclude that the 
CFTs corresponding to the minimal model cannot possibly be the critical theory for bosonic SPT 
phase transitions. This leaves the c ≥ 1 CFTs the only possible candidates as the critical theory 
for bosonic SPT phase transitions.
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Fig. 6. (Color online) The energy gap � as a function of λ for periodic boundary condition. (a) Now there is a non-zero 
gap for both λ > 1/2 and λ < 1/2. (b) The gap exponent is extracted and found to be α = 0.847(1).

11. Conclusions

In this paper, we present an analytic theory for the phase transition between symmetry pro-
tected topological states protected by the Zn × Zn symmetry group. We have shown that for 
2 ≤ n ≤ 4 a direct, continuous, topological phase transition exists. In contrast for n ≥ 5 the tran-
sition from the topological trivial to non-trivial SPTs is intervened by an intermediate gapless 
phase. Our theory predicts that for n = 2, 3, 4 the central charge of the CFT describing the SPT 
phase transitions are c = 1, 8/5 and 2, respectively. We perform explicit numerical density ma-
trix renormalization group calculations for the interesting case of n = 3 to confirm our analytic 
predictions.

We expect treatment analogous to what’s outlined in this paper can be generalized to the phase 
transitions between SPTs protected by symmetry group Zn1 × Zn2 × .... In addition, we provide 
the proof for a conjectured put forward in a previous unpublished preprint [11] that the central 
charge of the CFTs describing bosonic SPT transitions must be greater or equal to 1. Thus all 
c < 1 CFTs cannot be the critical theory for bosonic phase transitions. However, we have not 
yet answered the question “are all CFTs with c ≥ 1 capable of describing topological phase 
transitions.”

Of course upon non-local transformation the c < 1 minimal models can be viewed as the crit-
ical theory for parafermion SPT transitions. Indeed, the c = 1/2 Ising conformal field theory 
describes the critical Majorana chain. The c = 4/5 three-state Potts model CFT describes the 
critical point of Z3 parafermion chain. We suspect that the parafermion models escape the clas-
sification of either the K theory or the cohomology group because of its non-local commutation 
relation.

In space dimension greater than one, we do not know a model which definitively exhibits 
a continuous phase transition between bosonic SPTs. This is due partly to the likelihood of 
spontaneous breaking of the discrete protection symmetry when d ≥ 2. In addition, even if the 
continuous phase transition exists, it is more difficult to study these phase transitions, even nu-
merically. However a “holographic theory” was developed for phase transitions between SPT 
phases which satisfy the “no double-stacking constraint” [6]. That theory predicts the criti-
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cal point should exhibit “delocalized boundary excitations” of the non-trivial SPT, which are 
extended “string” or “membrane” like objects with gapless excitation residing on them. We ex-
pect this kind of critical point to be fundamentally different from the Landau-like critical point. 
Clearly many future studies are warranted for the understanding of these interesting phase tran-
sitions.
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Appendix A. Cocycles, projective representation and the construction of fixed point 
Zn × Zn SPT Hamiltonian in 1D

We briefly review the definition of cocycles in the group cohomology, and describe a proce-
dure [3,5] to construct fixed point SPT hamiltonians (1) that are relevant to this paper.

A.1. Cocycle

In 1D a cocycle associated with group G is an U(1) valued function ν(g0, g1, g2) where the 
argument gi ∈ G which satisfies ν(gg0, gg1, gg2) = ν(g0, g1, g2). Here we only consider the 
group realized by unitary representation. Moreover, ν satisfies the following cocycle condition

(∂ν)(g0, g1, g2, g3) := ν(g1, g2, g3)ν(g0, g1, g3)

ν(g0, g2, g3)ν(g0, g1, g2)
= 1. (A.1)

If

ν(g0, g1, g2) = ∂c(g0, g1, g2) := c(g1, g2)c(g0, g1)/c(g0, g2) (A.2)

for certain c(g0, g1) satisfying c(gg0, gg1) = c(g0, g1) we say it is a coboundary. It may be 
checked that a coboundary automatically satisfies the cocycle condition Equation (A.1). Two 
cocycles related by the multiplication of a coboundary are viewed as equivalent.

ν ∼ ν′ if ν′ = ν · ∂c. (A.3)

The equivalence classes of cocycles form H 2(G, U(1)) – the 2nd cohomology group of G
with U(1) coefficient. Bosonic G-symmetric SPTs in 1 space dimensions are “classified” by 
H 2(G, U(1)), i.e., each equivalent class of SPTs is in one to one correspondence with an ele-
ment of the abelian group H 2(G, U(1)). The binary operation of the abelian group corresponds 
to the “stacking” operation, i.e., laying two SPTs on top of each other and turning on all symme-
try allowed interactions.
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A.2. Projective representation

In quantum mechanics, symmetry operators are usually realized as matrices R(g) acting 
on Hilbert space. Usually these matrices form a linear representation of the symmetry group, 
namely,

R(g1)R(g2) =R(g1g2). (A.4)

However, two quantum states differ by an U(1) phase are regarded as the same quantum me-
chanically. Thus, one should relax Equation (A.4) by allowing a phase ambiguity ω, namely,

R(g1)R(g2) = ω(g1, g2)R(g1g2). (A.5)

When Equation (A.5) is satisfied we say that R(g) form a projective representation of the orig-
inal symmetry group. Obviously, linear representation where ω(g1, g2) = 1 is a special case of 
projective representation. In the literature linear representations are usually viewed as “trivial” 
projective representations. Associativity under group multiplication, namely,

[R(g1)R(g2)]R(g3) =R(g1)[R(g2)R(g3)] (A.6)

requires

ω(g1, g2g3)ω(g2, g3) = ω(g1, g2)ω(g1g2, g3) (A.7)

In addition the phase ambiguity of quantum states obviously allows one to multiply all R(g) by 
an U(1) phase φ(g), namely,

R(g) → φ(g)R(g).

This phase transformation results in

ω(g1, g2) → φ(g2)φ(g1)

φ(g1g2)
ω(g1, g2) (A.8)

Consequently ωs related by Equation (A.8) should be regarded as equivalent.
It turns out that in 1D, cocycles of group cohomology can be interpreted as projective repre-

sentations. The easiest way to see it is by defining ω(g1, g2) and φ(g1) in terms of the cocycle ν
and the coboundary c defined in the last subsection, namely,

ω(g1, g2) := ν(e, g1, g1g2)

φ(g1) := c(e, g1),

where e is the identity group element of G. In terms of ω the cocycle condition becomes

(∂ω)(g1, g2, g3) := (∂ν)(e, g1, g1g2, g1g2g3)

= ν(g1, g1g2, g1g2g3)

ν(e, g1g2, g1g2g3)

ν(e, g1, g1g2g3)

ν(e, g1, g1g2)
= ω(g2, g3)

ω(g1g2, g3)

ω(g1, g2g3)

ω(g1, g2)
= 1

=⇒ ω(g1, g2g3)ω(g2, g3) = ω(g1, g2)ω(g1g2, g3), (A.9)

namely Equation (A.7). In terms of c the coboundary equivalence relation becomes

ω ∼ ω′ if ω′ = ω · ∂φ, (A.10)

where
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Fig. A.7. (Color online) Construction of the 1D groundstate SPT wavefunction from the cocycle. Here the physical 
degrees of freedom labeled by g1, . . . , gN live on the boundary of the figure. At the center, there is an auxiliary “0” site 
to which we attach the identity group element e. A phase can be assigned to each triangle by evaluating the cocycle on 
the group elements on the vertices. The wavefunction is the product of the phases from all triangles.

(∂φ)(g1, g2) := (∂c)(e, g1, g1g2) = c(g1, g1g2)c(e, g1)

c(e, g1g2)

= φ(g2)φ(g1)

φ(g1g2)
, (A.11)

which is exactly the factor appearing in Equation (A.8).

A.3. Construction of Hamiltonian

Here we describe how to construct solvable Hamiltonians, one for each equivalence class 
of the SPTs. Consider a 1D ring consists of N lattice sites. The Hilbert space for each site i
is spanned by {|gi〉} where gi ∈ G, and the total Hilbert space is spanned by the tensor prod-
uct of the site basis, i.e., |{gi}〉 = ∏

i |gi〉. For each class of the SPTs (or for each element of 
H 2(G, U(1))) picks a representing cocycle ν(g0, g1, g2). The “fixed point” ground state, which 
is a particular representative of a whole equivalent class of SPTs, associated with the cocycle ν
is equal to (Ref. [3] Section IX)

|ψ0〉 =
∑
{gi }

φ({gi}) |{gi}〉, where

φ({gi}) =
L∏

i=1

[ν(e, gi, gi+1)]σ(0,i,i+1). (A.12)

Here e represents the identity element of G. It is attached to “0” site at the center of the ring 
as shown in Fig. A.7. σ(i, i + 1) = ±1 depending on the orientation of the triangle 0, i, i + 1. 
The orientation of each link in the triangle is represented by an arrow pointing from the site 
labeled by a smaller site index to the site labeled by the bigger index. From the link orientation 
we determine the triangle orientation by following the majority of the link orientation and the 
right-hand rule). Finally periodic boundary condition requires gN+1 = g1.

The Hamiltonian whose exact ground state is Equation (A.12) is

H = −J
∑

i

Bi, (A.13)

where J > 0. The operator Bi only changes the basis states on site i, and
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〈{g′
k}|Bi |{gk}〉 =

⎛⎝∏
k �=i

δg′
k,gk

⎞⎠ ν(gi−1, gi, g
′
i )

ν(gi, g
′
i , gi+1)

. (A.14)

For G = Zn × Zn, there are n inequivalent SPT classes and H 2(Zn × Zn, U(1)) = Zn. Each 
equivalent class of H 2(Zn × Zn, U(1)) is represented by a cocycle

ν((e, e), (g1, g2), (g3, g4)) = η
kg2g3
n , where ηn = ei2π/n

In the above (g2i−1, g2i ) ∈ Zn × Zn are the Zn elements associated with site i, and k ∈
{0, 1, . . . , n − 1} each correspond to a different element of Zn (H 2(Zn × Zn, U(1))). In the 
main text, we refer to |g2i−1, g2i〉 as the “cell basis” which is the tensor product of the “site 
basis” |g2i−1〉 and |g2i〉. The fixed point Hamiltonian constructed using the procedure discussed 
above is

H = −
∑

i

(B2i−1 + B2i + h.c.),

where B2i−1 changes the state |g2i−1〉 and B2i changes the state |g2i〉. Explicitly calculating the 
matrix element (Equation (A.14)) for the cases, i.e., k = 0 and k = 1, relevant to our consideration 
(recall that we are interested in the quantum phase transition between SPTs correspond to the “0” 
and “1” elements of Zn) it can be shown that

k = 0 : B2i−1 = M2i−1, B2i = M2i

k = 1 : B2i−1 = R
†
2i−2M2i−1R2i , B2i = R2i−1M2iR

†
2i+1, (A.15)

where Mj and Rj are defined by Equation (2) of the main text.

Appendix B. The mapping to Zn × Zn clock models with spatially twisted boundary 
condition and a Hilbert space constraint

In this section, we show that Equation (8) and Equation (9) of the main text can be mapped 
onto an “orbifold” Zn ×Zn clock models. The mapping is similar to the “duality transformation” 
of the Zn clock model. The mapping is given by

R
†
j−1Rj = M̃j , for j = 2...2N, and R

†
2NR1 = M̃1,

Mj = R̃
†
j R̃j+1 for all j. (B.1)

Here the tilde operators obey the same commutation relation as the un-tilde ones. Due to the peri-
odic boundary condition on R, namely, R2N+1 = R1 and R2N+2 = R2 the line of Equation (B.1)
implies

2N∏
i=1

M̃i = 1. (B.2)

Moreover, if we also impose the periodic boundary condition on R̃j a similar constraint on Mi , 
namely,

2N∏
Mi = 1 (B.3)
i=1
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is obtained. Since there is no such constraint on Mi in the original problem we need to impose a 
“twisted” boundary condition on R̃j :

R̃2N+1 = B̃R̃1

R̃2N+2 = B̃R̃2 (B.4)

where B̃ commutes with all R̃j and M̃j . Moreover B̃ has eigenvalues b̃ = 1, ηn, ..., ηn−1
n , i.e.,

B̃|b̃〉 = b̃|b̃〉.
Substituting Equation (B.1) into Equation (8) and Equation (9) of the main text we obtain the 

following expression of the transformed Hamiltonian

H01(λ) = H even
01 (λ) + H odd

01 (λ) where

H even
01 (λ) = −

N∑
i=1

[
(1 − λ)M̃2i + λR̃

†
2i R̃2i+2

]
+ h.c.

H odd
01 (λ) = −

N∑
i=1

[
λM̃2i+1 + (1 − λ)R̃

†
2i−1R̃2i+1

]
+ h.c. (B.5)

It is important to note that Equation (B.5) is supplemented with the spatially twisted boundary 
condition

R̃2N+1 := B̃R̃1 and R̃2N+2 := B̃R̃2 (B.6)

and the constraint Equation (B.2). In addition, after the transformation the two generators of the 
Zn × Zn group become

B̃ and
N∏

j=1

M̃2j . (B.7)

On the surface Equation (B.5) describes two decoupled Zn clock models living on even and 
odd sites, respectively. However the notion of “decoupled chains” is deceptive because the con-
straint in Equation (B.2) couples them together.

Appendix C. The notion of “orbifold”

A useful way to implement the constraint Equation (B.2) is to apply the projection operator

1

n

n−1∑
q=0

Qq (C.1)

to states in the Hilbert space, where the operator Q is given by

Q :=
2N∏
j=1

M̃j . (C.2)

Because the eigenvalues of Q are 1, ηn, ..., ηn−1
n . Equation (C.1) projects onto those states in the 

Hilbert space that are symmetric under the action of Q. The partition function of the Hamiltonian 
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(B.5), subject to constraint Equation (B.2) and summed over twisted spatial boundary condition 
sectors is therefore

Z = 1

n

n−1∑
qτ =0

n−1∑
qs=0

Tr
[
Qqτ e−β(Heven+Hodd )

]
qs

, (C.3)

where Tr[...]qs denotes the trace under the spatially twisted boundary condition

R̃2N+1 = η
qs
n R̃1 and R̃2N+2 = η

qs
n R̃2. (C.4)

Moreover in the path integral the action of Qqτ at τ = β and be viewed as imposing a twisted 
boundary condition in the time direction.

Thus Equation (C.3) can be written as

Z = 1

n

n−1∑
qs ,qτ =0

Zn-clock
qs ,qτ

× Zn-clock
qs ,qτ

(C.5)

where Zn-clock
qs ,qτ

represents clock model partition function under the space and time twisted bound-

ary condition characterized by qs and qτ . In Equation (C.5) Zn-clock
qs ,qτ

appears twice on right-hand 
side because without orbifold (i.e., summing over space and time twisted boundary conditions) 
we have two independent n-state clock models. Averaging over the partition function under space 
and time boundary condition twists is the “orbifolding” [12]. Note that here the spatial boundary 
condition twist is generated by one of the Zn generator, namely B̃, in Equation (B.7). How-
ever, the time twist is generated by Q = ∏2N

j=1 M̃j , which is a symmetry of the Zn × Zn clock 
Hamiltonian, Equation (B.5), but it is not the generator for the other Zn in Equation (B.7).

Appendix D. The modular invariant partition function and the primary scaling operators 
of the orbifold critical Z2 × Z2 clock model

D.1. Review of modular invariant partition function for the Ising model

The Ising model shows an order–disorder phase transition. At the critical point, the Hamilto-
nian is given by

HIsing = −
∑

i

[
Mi + RiRi+1

]
where Mi , Ri are Pauli matrices σx and σ z respectively (we use M, R rather than σx, σz for the 
consistency of notation). The central charge of a single critical Ising chain is c = 1

2 . Its conformal 
field theory is the M(4, 3) minimal model. The primary scaling operators are labeled by two 
pairs of indices (r, s) and (r ′, s′) each label the “holomorphic” and the “anti-holomorphic” part 
of the operator. The ranges of these indices are given by 1 ≤ s ≤ r ≤ 2 and 1 ≤ s′ ≤ r ′ ≤ 2. The 
scaling dimensions of the holomorphic and anti-holomorphic parts of these operators are given 
by

hr,s = (4r − 3s)2 − 1

48
, h̄r ′,s′ = (4r ′ − 3s′)2 − 1

48
(D.1)

Equation (D.1) gives rise to three primary holomorphic (and anti-holomorphic) scaling operators 
with distinct scaling dimensions. The corresponding (r, s) indices are (1, 1), (2, 1) and (2, 2). 
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Fig. D.8. (Color online) The spacetime torus with modular parameter τ is obtained from identifying opposite edges of a 
parallelogram with vertices 0, 1, τ and 1 + τ in the complex plane. Here τ is a complex number in the upper complex 
plane.

Through the operator-state correspondence, each of these primary fields and their associated “de-
scendants” form the basis of a Hilbert space (the “Verma module”) which carries an irreducible 
representation of the conformal group.

Now consider the partition function of the CFT on a spacetime torus (see Fig. D.8). The 
prototype torus is obtained from identifying opposite edges of the parallelogram having (0, 1, 1 +
τ, τ) as the complex coordinates of its four vertices (τ ∈ upper half complex plane). On such a 
torus, the partition function is given by

Z(τ) =
∑

r,s;r ′,s′
M(r,s);(r ′,s′)χr,s(τ )χ̄r ′,s′(τ̄ ), (D.2)

where M(r,s);(r ′,s′) is a matrix with integer entries, and

χr,s(τ ) = q− c
24 Tr(r,s)q

hr,s

χ̄r ′,s′(τ̄ ) = (q̄)−
c

24 Tr(r ′,s′) (q̄)h̄r′,s′ , (D.3)

with q = ei2πτ and q̄ = e−i2πτ̄ . Here the trace Tr(r,s) and Tr(r ′s,s′) are taken within the Verma 
module labeled by (r, s) and (r ′, s′). In the literature χr,s and χ̄r ′,s′ are referred to as “characters”.

For the CFT to be consistent, its partition function must be “modular invariant” [13]. The 
modular group consists of discrete coordinate transformations that leave the lattice whose funda-
mental domain is given by Fig. D.8 invariant. This group is generated by the T (τ → τ + 1) and 
the S (τ → −1/τ ) transformations. When acted upon by these transformations the characters 
χr,s (with a similar expression for χ̄r ′,s′ ) transform according to

T : χr,s(τ + 1) =
∑
(ρ,σ )

T(r,s),(ρ,σ ) χρ,σ (τ )

S : χr,s(−1/τ) =
∑
(ρ,σ )

S(r,s),(ρ,σ ) χρ,σ (τ ).

Here S, T are known matrices and the transformation matrices for the anti-holomorphic χ̄ are 
the complex conjugate of those of the holomorphic ones.

The requirement of modular invariance, namely,

Z(τ + 1) = Z(−1/τ) = Z(τ) (D.4)

impose stringent constraints on the possible M(r,s);(r ′,s′) in Equation (D.2). For c = 1/2 if we 
require M(1,1),(1,1) = 1, i.e., a unique ground state, there is only one such possible M , namely, 
M(r,s);(r ′,s′) = δ(r,s),(r ′,s′). The corresponding partition function is given by:
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Table D.3
Conformal dimensions of the primary fields of 
the Ising model, and their transformation prop-
erties upon the action of the Z2 generator.

(r, s) (1,1) (2,1) (2,2)

h(r,s) 0 1/2 1/16
Z2 1 1 −1

Fig. D.9. (Color online) The transformation of the boundary twisted partition function Zqs ,qτ (τ ) under the S and T
transformations.

ZIsing(τ ) = |χI (τ )|2 + |χε(τ )|2 + |χσ (τ)|2
where

χI := χ1,1, χε := χ2,1, χσ := χ2,2 (D.5)

The explicit form of χ(r,s) is given by equation (8.15) of Ref. [14]. The conformal dimensions 
of primary fields and their eigenvalues under the action of the Z2 generator are summarized in 
Table D.3 [14].

D.2. Constructing the orbifold partition function for the Z2 × Z2 critical theory

With the brief review of the modular invariant partition function of the critical Ising model 
we are ready to construct the partition function for the orbifolded Z2 × Z2 model defined by of 
Equation (C.5):

ZZ2×Z2(τ ) = 1

2

1∑
qs=0

1∑
qτ =0

Z
Ising
qs ,qτ

(τ ) × Z
Ising
qs ,qτ

(τ ). (D.6)

Z
Ising
(0,1) is given in Ref. [14]. It is also shown in the same reference that ZIsing

qs,qτ
(τ ) = Z

Ising
qs ,qτ qs

(τ +
1) = Z

Ising

q−1
τ ,qs

(−1/τ) (see Fig. D.9), hence

Z
Ising
0,0 (τ ) = |χI (τ )|2 + |χε(τ )|2 + |χσ (τ)|2

Z
Ising
0,1 (τ ) = |χI (τ )|2 + |χε(τ )|2 − |χσ (τ)|2

Z
Ising
1,0 (τ ) = SZ

Ising
0,1 (τ )

Z
Ising
1,1 (τ ) = T Z

Ising
1,0 (τ ) (D.7)

Using the known S, T matrices of the Ising model we can compute ZIsing
1,0 and ZIsing

1,1 . Substitute 
the results into Equation (D.6) we obtain the orbifolded Z2 × Z2 partition function:
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Table D.4
The quantum numbers of the first few primary operators of the orbifold 
Z2 × Z2 CFT.

h + h̄ h − h̄ Multiplicity Terms in ZZ3×Z3

0 0 1 |χI |4
1/4 0 2 2|χσ |4
1 0 4 4|χI |2|χε |2
1 ±1 2 χ̄2

I
χ2

ε + c.c.
5/4 ±1 8 2|χσ |4 (due to the first descendant)

ZZ2×Z2(τ ) = (|χI |2 + |χε |2)2 + 2|χ2
σ |2 + (χ̄I χε + χ̄εχI )

2 (D.8)

where the τ dependence is suppressed. When expanded in terms of χr,sχ̄r ′,s′ the first term yields 
4 terms (henceforth referred to as group I terms). The second term yields 2 terms (group II terms). 
The third term yields 4 terms (group III terms). Due to the prefactor 2 in the second term on the 
right-hand side of Equation (D.8), terms in group II appear with multiplicity 2. It turns out that 
this partition function is the same as the XY model. The first few energy levels with h + h̄ < 2
and their quantum numbers are listed in Table D.4.

D.3. Transformation properties under the action of Z2 × Z2

To see how the contributing Verma modules of Equation (D.8) transform under the action of 
Z2 × Z2, we construct operators that project the Hilbert space into subspaces carrying various 
irreducible representations of Z2 × Z2. Let GA = B̃ and GB = ∏

i∈even M̃i be the generators of 
Z2 × Z2. The operator that projects into subspace with eigenvalues (ηa

2, ηb
2) (here η2 = −1 and 

a, b = 0, 1) under the action of GA and GB is given by

Pab =
(

1 + η−a
2 GA

2

)(
1 + η−b

2 GB

2

)
(D.9)

To filter out the Verma modules that transform according to this particular irreducible repre-
sentation, we compute

PabZZ2×Z2 := 1

2

1∑
qτ =0

1∑
qs=0

Tr
[
PabQ

qτ e−β(H even+H odd)
]
qs

= 1

8

1∑
μ,ν=0

1∑
qτ =0

1∑
qs=0

η
−aμ−bν
2 Tr

[
G

μ
AGν

BQqτ e−β(H even+H odd)
]
qs

= 1

8

1∑
μ,ν=0

1∑
qτ =0

1∑
qs=0

η
−aμ−bν
2

[
η

qsμ

2 (Z
Ising
qs ,qτ

)(Z
Ising
qs ,qτ +ν)

]
(D.10)

For example,

P00ZZ2×Z2 = (|χI |2 + |χε |2)2, (D.11)

which means only group I transform as the identity representation of Z2 × Z2. For other Pab the 
results are summarized in Table D.5



492 L. Tsui et al. / Nuclear Physics B 919 (2017) 470–503
Table D.5
Transformation properties of the contributing Verma 
modules in Equation (D.8) under the action of GA and 
GB . For group II, the doublet records the transforma-
tion properties of the multiplicity two Verma modules in 
Equation (D.8).

Group GA GB

I 1 1
II (1,−1) (−1,1)

III −1 −1

Fig. D.10. (Color online) A schematic phase diagram near the Z2 × Z2 SPT critical point (the black point). The vertical 
and horizontal arrows correspond to perturbations associated with the two relevant operators found in section D.4. The 
relevant perturbation represented by the horizontal arrows drives the transition between the trivial SPT (blue) and the 
non-trivial SPT (red). The perturbation represented by the vertical arrows drives a Landau forbidden transition between 
spontaneous symmetry breaking (SB) phases where different Z2 symmetries are broken in the two different phases 
(turquoise and green).

D.4. Scaling dimension for the operator driving the Z2 × Z2 SPT transition

The operator that drives the SPT phase transition must be (1) relevant, (2) translational invari-
ant and (3) invariant under Z2 ×Z2. In Equation (D.8) the only term that contains operators (there 
are two such operators due to the multiplicity 2) satisfy these conditions is 2|χIχε |2. The scaling 
dimension of (Iε)(Ī ε) is h + h̄ = 1 < 2 hence it is relevant. The momentum of this operator is 
h − h̄ = 0 hence is translation invariant. Moreover according to Table D.5 there operators are 
invariant under Z2 × Z2. It turns out that one of these two relevant operators drives a symmetry 
breaking transition while the other drives the SPT transition (see Fig. D.10). From the scaling 
dimension h + h̄ = 1 we predict the gap exponent to be 1

2−1 = 1.

Appendix E. The modular invariant partition function and the primary scaling operators 
of the orbifold critical Z3 × Z3 clock model

E.1. Review of modular invariant partition function for the 3 states Potts model

The construction of the orbifold partition function for the Z3 × Z3 case closely mirrors the 
Z2 × Z2 case. But instead of two critical Ising chains, we now have two critical Potts chains. We 
first review the known results for the modular invariant Z3 clock model (equivalent to the 3-state 
Potts model). The 3-state Potts model shows an order–disorder phase transition. At the critical 
point the Hamiltonian is given by

HPotts = −
∑[

Mi + R
†
i Ri+1 + h.c.

]

i
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Table E.6
Conformal dimensions of the primary fields of the 3-states Potts model, and 
their phases under the transformation of the Z3 generator.

(r, s) (1,1) (2,1) (3,1) (4,1) (3,3)1,2 (4,3)1,2

h(r,s) 0 2/5 7/5 3 1/15 2/3
Z3 1 1 1 1 (η3, η̄3) (η3, η̄3)

where Rj = 1, η3, η2
3 (η3 = ei2π/3) and RjMk = η

δjk

3 MkRj . The conformal field theory for the 
critical 3-state Potts model belong to the well known “minimal” model M(6, 5) [14,15]. The 
central charge is

c = 4

5
(E.1)

and the primary scaling operators are labeled by two pairs of indices (r, s) and (r ′, s′) each label 
the “holomorphic” and the “anti-holomorphic” part of the operator. The range of these indices 
are given by 1 ≤ s ≤ r ≤ 4 and 1 ≤ s′ ≤ r ′ ≤ 4. The scaling dimensions of the holomorphic and 
anti-holomorphic parts of these operators are given by

hr,s = (6r − 5s)2−1

120
, h̄r ′,s′ = (6r ′ − 5s′)2−1

120
. (E.2)

It is easy to check that hr,s = h5−r,6−s and h̄r ′,s′ = h̄5−r ′,6−s′ hence there are 10 distinct primary 
fields in the holomorphic and anti-holomorphic sector each.

Requiring modular invariance (D.4) for c = 4/5 yields two possible such M’s: one with 
M(r,s);(r ′,s′) = δ(r,s),(r ′,s′) describing the “tetra-critical Ising model”, and the other corresponds 
to the 3-state Potts model described by the following partition function [14]:

Z3-Potts(τ ) = |χI (τ )|2 + |χε(τ )|2 + 2|χψ(τ)|2 + 2|χσ (τ)|2, (E.3)

where

χI := χ1,1 + χ4,1, χε := χ2,1 + χ3,1, χψ := χ4,3, χσ := χ3,3 (E.4)

Note that out of the 10 possible primary operators in each holomorphic/anti-holomorphic sector 
only six of them contribute to the partition function. In addition, the diagonal combination of the 
(3, 3) and (4, 3) operators from each sector appear twice. The explicit form of χ(r,s) is given by 
equation (8.15) of Ref. [14]. The conformal dimensions of primary fields and their eigenvalues 
under the action of the Z3 generator are summarized in Table E.6 [14].

E.2. Constructing the orbifold partition function for the Z3 × Z3 critical theory

With the brief review of the modular invariant partition function of the critical 3-state Potts 
model we are ready to construct the partition function for the orbifolded Z3 × Z3 model defined 
by of Equation (C.5):

ZZ3×Z3(τ ) = 1

3

2∑
qs=0

2∑
qτ =0

Z3-Potts
qs ,qτ

(τ ) × Z3-Potts
qs ,qτ

(τ ) (E.5)

Z3-Potts
(01) and Z3-Potts

(02) are given in Ref. [14]. Using Z3-Potts
qs ,qτ

(τ ) = Z3-Potts
qs ,qτ qs

(τ +1) = Z3-Potts
q−1
τ ,qs

(−1/τ), 

we have
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Table E.7
The quantum numbers of the first few primary operators of the orbifold Z3 × Z3 CFT.

h + h̄ h − h̄ Multiplicity Terms in ZZ3×Z3

0 0 1 |χI |4
4/15 0 4 4|χσ |4
4/5 0 2 2|χI |2|χε |2
14/15 0 4 4|χε |2|χσ |2
17/15 ±1 8 4(χ̄I χ̄σ χψχε + c.c)
4/15 + 1 ±1 16 4|χσ |4 (due to the first descendants)
4/3 0 4 4|χI |2|χψ |2
22/15 0 8 8|χσ |2|χψ |2
8/5 0 1 |χε |4

Z3-Potts
(00) (τ ) = |χI (τ )|2 + |χε(τ |2 + 2|χψ(τ)|2 + 2|χσ (τ)|2

Z3-Potts
(01) (τ ) = |χI (τ )|2 + |χε(τ )|2 + (η3 + η̄3)|χψ(τ)|2 + (η3 + η̄3)|χσ (τ)|2

Z3-Potts
(02) (τ ) = Z3-Potts

(01) (τ )

Z3-Potts
(10) (τ ) = Z3-Potts

(01) (−1/τ) = SZ3-Potts
(01) (τ )

Z3-Potts
(20) (τ ) = SZ3-Potts

(02) (τ )

Z3-Potts
(12) (τ ) = Z3-Potts

(10) (τ + 1) = T Z3-Potts
(10) (τ )

Z3-Potts
(11) (τ ) = T Z3-Potts

(12) (τ )

Z3-Potts
(21) (τ ) = T Z3-Potts

(20) (τ )

Z3-Potts
(22) (τ ) = T Z3-Potts

(21) (τ ) (E.6)

Using the S, T matrices of the 3-states Potts model we can compute all these terms. Substituting 
the results into Equation (E.5) we obtain the orbifolded Z3 × Z3 partition function:

ZZ3×Z3 = (|χI |2 + |χε |2)2 + 4(|χψ |2 + |χσ |2)2 + 4|χI χ̄ψ + χεχ̄σ |2, (E.7)

where the τ dependence is suppressed. When expanded in terms of χr,sχ̄r ′,s′ the first term yields 
64 terms (henceforth referred as group I terms). The second term yields 16 terms (group II terms). 
The third term yields 64 terms (group III terms). Due to the prefactor of 4 in the last two terms 
of Equation (E.7) group II and III terms appear with multiplicity 4. Thus there are in total 144 
terms, each corresponds to a primary scaling operator. In Table E.7 we give the first few energy 
(h + h̄) and momentum (h − h̄) eigenvalues

E.3. Transformation properties under the action of Z3 × Z3

Following the same procedure in D.3 we construct operators that project the Hilbert space into 
subspaces carrying various irreducible representation of Z3 ×Z3 which is generated by GA = B̃

and GB = ∏
i∈even M̃i . The projector into subspace with eigenvalues (ηa

3, ηb
3) (here η3 = ei2π/3

and a, b = 0, 1, 2) under the action of GA and GB is given by

Pab =
(

1 + η−a
3 GA + ηa

3G2
A

3

)(
1 + η−b

3 GB + ηb
3G2

B

3

)
(E.8)
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Table E.8
Transformation properties of the contributing Verma modules 
in Equation (E.7) under the action of GA and GB . For group II 
and group III, the quadruplet records the transformation prop-
erties of the multiplicity four Verma modules in Equation (E.7).

Group GA GB

I 1 1
II (η3, η̄3,1,1) (1,1, η3, η̄3)

III (η3, η3, η̄3, η̄3) (η3, η̄3, η3, η̄3)

Analogous to Equation (D.10) we filter out the Verma modules that transform according to this 
particular irreducible representation by computing

PabZZ3×Z3 := 1

27

2∑
qτ ,qs ,μ,ν=0

η
−aμ−bν
3

[
η

qsμ

3 (Z3-Potts
qs ,qτ

)(Z3-Potts
qs ,qτ +ν)

]
(E.9)

For example,

P00ZZ3×Z3 = (|χI |2 + |χε |2)2, (E.10)

which means only group I transform as the identity representation of Z3 × Z3. For other Pab the 
results are summarized in Table E.8.

E.4. Scaling dimension for the operator driving the Z3 × Z3 SPT transition

From Table E.7 and Equation (E.10) it is seen that the translation-invariant (i.e. h − h̄ = 0), 
relevant (i.e. h + h̄ < 2), Z3 × Z3 invariant operators either have scaling dimensions 4/5 or 8/5. 
Through a comparison with the numerical result for the gap exponent in section 9 of the main 
text, we identify one of the operators with scaling dimension 4/5 as responsible for the opening 
of the energy gap in the SPT phase transition. The predicted gap exponent is 1

2−4/5 = 5/6 which 
agrees reasonably well with the numerical gap exponent. Moreover similar to the Z2 × Z2 case 
there are two operators with the same scaling dimension (4/5). Again one of these operators 
drives a symmetry breaking transition while the other drives the SPT transition, hence the phase 
diagram is similar to Fig. D.10.

Appendix F. The modular invariant partition function and the primary scaling operators 
of the orbifold critical Z4 × Z4 clock model

F.1. Review of modular invariant partition function for the Z4 clock model

The Z4 clock model undergoes an order–disorder transition. The Hamiltonian at criticality 
between the ordered is given by

HZ4 = −
N∑

i=1

[
Mi + R

†
i Ri+1 + h.c.

]
(F.1)

where Rj = 1, η4, η2
4, η

3
4 where η4 = ei2π/4, and RjMk = η

δjk

4 MkRj . With periodic boundary 
condition, RN+1 = R1, it can be exactly mapped onto two decoupled periodic Ising chains [16] as 
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follows. For the Z4 clock model the Hilbert space for each site j is 4-dimensional. In the follow-
ing, we shall regard this 4-dimensional Hilbert space as the tensor product of two 2-dimensional 
Hilbert spaces associated with site 2j − 1 and 2j . We then view each of the 2-dimensional space 
as the Hilbert space of an Ising spin. In this way the Z4 clock model with N sites can be viewed 
as an Ising model with 2N sites.

More explicitly, under the unitary transformation U = ∏
i Ui , where

Ui =

⎛⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠ .

Equation (F.1) becomes

U†HZ4U = −
N∑

i=1

(X2i−1 + Z2i−1Z2i+1) −
N∑

i=1

(X2i + Z2iZ2i+2) (F.2)

= H
Ising
odd + H

Ising
even

where Xi and Zi denote the 2 × 2 Pauli matrices σx
i and σz

i . Thus the partition function of the 
Z4 clock model under periodic boundary condition is given by

Z4-clock
(0,0) (τ ) = Z

Ising
(0,0)

(τ ) × Z
Ising
(0,0)

(τ )

The fact that Ising model has central charge c = 1/2 implies the central charge of the critical Z4
clock model to be 1/2 + 1/2 = 1.

CFT with c = 1 has infinitely many Verma modules [17]. The scaling dimension of the pri-
mary fields, which can take any non-negative values, is parametrized by h = x2/4 where x is a 
non-negative real number. The characters associated with these Verma modules are given [18] by

χh(q) =
⎧⎨⎩

1
η(q)

qx2/4, for x /∈ Z

1
η(q)

(
qx2/4 − q(x+2)2/4

)
, for x ∈ Z

(F.3)

where

η(q) = q1/24
∞∏

n=1

(
1 − qn

)
. (F.4)

Because later on we shall perform orbifolding it is necessary to consider the Z4 clock model 
under twisted spatial boundary condition. With the spatial boundary condition twisted by the Z4
generator, i.e., RN+1 = η4R1, the last two terms, namely Z2NZ2 + Z2N−1Z1 in Equation (F.2), 
are replaced by

Z2NZ2 + Z2N−1Z1 → Z2NZ1 − Z2N−1Z2

In the language of Ising model, the above replacement creates an overpass connecting the even 
chain to the odd chain and a sign change of one bond (the red bond in Fig. F.11(b)). Thus we 
arrive at an Ising chain twice as long and with the spatial boundary condition twisted by the Z2
generator. As a result

Z4-clock(τ ) = Z
Ising

(τ/2). (F.5)
(1,0) (1,0)
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Fig. F.11. (Color online) The mapping of Z4-clock model with different spatially twisted boundary conditions to Ising 
models. Each black dot represents the Xi term in the Hamiltonian and each blue bond represents the term ZiZj (an 
antiferromagnetic bond). The red bond represents −ZiZj . (a) With periodic boundary condition, the Z4 clock model 
maps to two decoupled Ising chains. (b) When the boundary condition is twisted by a Z4 generator, the Z4 clock model 
maps to a single Ising chain twice as long with one antiferromagnetic bond. (c) When the boundary condition is twisted by 
the square of the Z4 generator, the Z4 clock model maps to two decoupled Ising chains, each having an antiferromagnetic 
bond.

The reason the modular parameter of the Ising partition function is half that of the Z4 clock 
partition function is because the Ising chain has twice the length in the spatial direction. The same 
argument applies if the boundary is twisted by the inverse of the Z4 generator (RN+1 = η3

4R1) 
instead, i.e.,

Z4-clock
(3,0) (τ ) = Z

Ising
(1,0)(τ/2). (F.6)

Similarly, when the spatial direction is RN+1 = η2
4R1, the Hamiltonian of the Ising model 

becomes that of two decoupled Ising chain each having a sign-flipped bond equivalent to the Z2
twisted boundary condition (see Fig. F.11(c)). The resulting partition function is given by

Z4-clock
(2,0) (τ ) = Z

Ising
(1,0)(τ ) × Z

Ising
(1,0)(τ )

Using the known S and T matrices for the Ising model, other Z4-clock
(qs,qt )

(τ ) can be determined

Z4-clock
(0,1) (τ ) = Z4-clock

(0,3) (τ ) = SZ4-clock
(1,0) (τ ) = Z

Ising
(0,1)(2τ)

Z4-clock
(1,3) (τ ) = Z4-clock

(3,1) (τ ) = T Z4-clock
(3,0) (τ ) = Z

Ising
(1,0)(τ/2 + 1/2)

Z4-clock
(1,1) (τ ) = Z4-clock

(3,3) (τ ) = SZ4-clock
(1,3) (τ ) = Z

Ising
(1,1)(τ/2 + 1/2)

Z4-clock
(1,2) (τ ) = Z4-clock

(3,2) (τ ) = T Z4-clock
(1,3) (τ ) = Z

Ising
(1,1)(τ/2)

Z4-clock
(2,1) (τ ) = Z4-clock

(2,3) (τ ) = SZ4-clock
(1,2) (τ ) = Z

Ising
(1,1)(2τ)

Z4-clock
(0,2) (τ ) = SZ4-clock

(2,0) (τ ) = Z
Ising
(0,1)(τ ) × Z

Ising
(0,1)(τ )

Z4-clock
(2,2) (τ ) = T Z4-clock

(2,0) (τ ) = Z
Ising
(1,1)(τ ) × Z

Ising
(1,1)(τ ) (F.7)

F.2. Orbifold partition function for the critical Z4 × Z4 CFT

Using these result and Equation (C.5) we can calculate the orbifolded Z4 ×Z4 partition func-
tion
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Table F.9
Scaling dimensions of the extended primary fields of the Z4 clock model.

Field I J Y ε α β σ τ O1 O2 O3 O4

h 0 1 2 1/2 1/8 9/8 1/16 9/16 1/32 49/32 9/32 25/32

ZZ4×Z4(τ ) = 1

4

3∑
qs=0

3∑
qτ =0

Z4-clock
qs ,qτ

(τ ) × Z4-clock
qs ,qτ

(τ )

=
(
|χI |2 + |χJ |2 + 2|χY |2 + |χε |2 + χ̄αχβ + χ̄βχα

)2

+
(
χ̄I χJ + χ̄J χI + 2|χY |2 + |χε |2 + χ̄αχβ + χ̄βχα

)2

+ 2
(
|χα|2 + |χβ |2 + |χε |2 + χ̄Y (χI + χJ ) + (χ̄I + χ̄J )χY

)2

+ 4
(
|χσ |2 + |χτ |2

)2 + 4 (χ̄σ χτ + χ̄τ χσ )2

+ 4|χ̄O1χO3 + χ̄O3χO2 + χ̄O2χO4 + χ̄O4χO1 |2, (F.8)

where

χI = χ0 +
∑
n>0

(
χ8n2 + χ4n2

)
χJ =

∑
n>0

(
χ8n2 + χ(2n−1)2

)
χY =

∑
n>0

χ2(2n−1)2; χε =
∑
n

χ(4n+1)2/2

χα =
∑
n

χ(8n+1)2/8; χβ =
∑
n

χ(8n+3)2/8

χσ =
∑
n

χ(8n+1)2/16; χτ =
∑
n

χ(8n+3)2/16

χO1 =
∑
n

χ(16n+1)2/32; χO2 =
∑
n

χ(16n+7)2/32

χO3 =
∑
n

χ(16n+3)2/32; χO4 =
∑
n

χ(16n+5)2/32. (F.9)

The χh in the above equations are given by Equation (F.3). The scaling dimensions of the high-
est weight states associated with the Verma modules that generate these χh are summarized in 
Table F.9.

Let’s refer to the six terms in Equation (F.8) as Groups I, II, III, IV, V, and VI respectively. Due 
to the prefactor of 2, Group III elements appear in doublets. Due to the prefactor of 4, Groups IV, 
V and VI elements appear with multiplicity 2. In Table F.10 we list the first few primary fields 
with scaling dimension h + h̄ < 2 and their quantum numbers.
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Table F.10
The quantum numbers of the first few low scaling dimension primary 
operators of the orbifold Z4 × Z4 CFT.

h + h̄ h − h̄ Multiplicity Terms in ZZ4×Z4

0 0 1 |χI |4
1/4 0 4 4|χσ |4
1/2 0 2 2|χα |4
5/8 0 4 4|χO1χO3 |2
1 0 2 2|χI χε |2
9/8 ±1 8 4

(
χ̄2

O1
χO3χO4 + c.c.

)
5/4 0 16 + 4 16|χσ χτ |2 + 4|χαχε |2
5/4 ±1 8 + 4 4(χ̄σ χτ )2 + 2|χI |2χ̄αχβ + c.c.
5/4 ±1 16 4|χσ |4 (first descendants)
3/2 ±1 8 2|χα |4 (first descendants)
13/8 0 4 4|χO1χO4 |2
13/8 ±1 16 4|χO1χO3 |2 (first descendants)

Table F.11
Transformation properties of the contributing Verma mod-
ules in Equation (F.8) under the action of GA and GB . For 
Groups III to VI, the multiplet records the transformation prop-
erties of the corresponding degenerate Verma modules in Equa-
tion (F.8).

Group GA GB

I 1 1
II −1 −1
III (1,−1) (−1,1)

IV (1,1, η4, η̄4) (η4, η̄4,1,1)

V (−1,−1, η4, η̄4) (η4, η̄4,−1,−1)

VI (η4, η4, η̄4, η̄4) (η4, η̄4, η4, η̄4)

F.3. Transformation properties under the action of Z4 × Z4

Similar to sections D.3 and E.3 we resolve the Verma modules that generate the partition 
function in Equation (F.8) into different irreducible representation spaces of Z4 × Z4. As done 
in previous sections we construct the symmetry projection operators

PabZZ4×Z4 := 1

64

3∑
qτ ,qs=0

3∑
μ,ν=0

η
−aμ−bν+qsμ

4

[
Z4-clock

qs ,qτ
Z4-clock

qs ,qτ +ν

]
(F.10)

The results are summarized in Table F.11.
The term 2|χIχε |2 in Equation (F.8) yields two primary fields with scaling dimension 

h + h̄ = 1 (hence are relevant) and are invariant under Z4 × Z4 and translation. Hence they are 
qualified as the gap generating operator. The gap exponent is 1

2−1 = 1. Similar to the Z2 × Z2
and Z3 × Z3 cases there are two operators with the same scaling dimension (1). As the above 
two cases one of these operators drives a symmetry breaking transition while the other drives the 
SPT transition, hence the phase diagram is similar to Fig. D.10.
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Appendix G. Some details of the density matrix renormalization group calculations

G.1. The truncation error estimate

We determine the ground state phase diagram and properties of the model Hamiltonian 
in Equation (9) by extensive and highly accurate density-matrix renormalization group [19]
(DMRG) calculations. We consider both periodic (PBC) and open (OBC) boundary conditions. 
Careful study of the dependence on the finite system sizes enables the extrapolation to the ther-
modynamic limit. For OBC, we keep up to m = 1000 states in the DMRG block with around 
24 sweeps to get converged results. The truncation error is estimated to be no bigger than 
ε = 5 × 10−9. For PBC, we keep up to m = 1100 states with around 60 sweeps for converged 
results. In this case, the truncation error is of the order ε = 10−5.

G.2. The entanglement entropy

For conformal invariant system in one dimension, the central charge can be extracted by fitting 
the von Neumann entanglement entropy to the following analytical form [9]

S(x) = c

3η
ln(x) + constant. (G.1)

Here η = 1(2) for the periodic (open) boundary condition, respectively. The parameter x is given 
by x = ηN

l
sin(πl

N
) for a cut dividing the chain into segments of length l and N − l. For each 

system size under both OBC and PBC, we first calculate the entanglement entropy by keeping 
a fixed number of states m, hence yielding finite truncation error ε. We then perform systematic 
m dependence study which allows us to extrapolate to the ε = 0 limit. For each system size the 
resulting entanglement entropy is fit to Equation (G.1) to generate the data shown in Fig. 4. This 
result enables us to estimate the central charge to be c = 8

5 . The exponent for the energy gap is 
obtained in a similar way.

Appendix H. The on-site global symmetry of conformal field theories

In order to determine which CFT can describe the critical points between bosonic SPT phases, 
it is important to understand the on-site symmetries of CFTs. This is because the critical theory 
should at least contain the protection symmetry (which is on-site for bosonic SPTS) of the SPT 
phases on either side. In Ref. [20] it is shown that a particular type of lattice models (the “RSOS 
models”) reproduce the minimal model CFTs in the continuum limit. Moreover, the symmetry 
of such lattice model is related to that of the Dynkin diagrams which are used to classify the 
modular invariant partition functions [20,21]. However this elegant result does not answer the 
question whether the continuum theory has emergent symmetry beyond that of the lattice model. 
In this appendix we briefly review the results of Ref. [10,22] which answers this question.

The key idea of Ref. [10] is the following. Let’s assume the CFT in question has an on-site 
symmetry group G. This means G commutes with the Virasoro algebra hence each Verma mod-
ule must carry an irreducible representation of G. Let Zm be any abelian subgroup of G. We 
can use Zm to perform orbifolding. (Note that in order for the space and time symmetry twists 
to be consistent with each other on a torus the respective elements we use to twist the space 
and time boundary conditions must commute (see Fig. H.12)). Moreover, if the Zm irreducible 
representations are correctly assigned to the Verma modules the resulting orbifolded partition is 
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Fig. H.12. (Color online) The space–time torus with spatial and temporal boundary condition twisted by group elements 
gs and gτ . The path in red picks up the group element gτ gs , while the path in blue picks up the group element gsgτ . 
Since the path in red can be deformed into the path in blue, gs and gτ need to commute so that the boundary condition 
is self-consistent.

modular invariant. Therefore to detect whether an on-site symmetry group contains Zm as an 
abelian subgroup we just need to see whether it possible to assign Zm irreducible representations 
to the Verma modules so that after orbifolding the partition function is modular invariant. For 
discrete groups after knowing all abelian subgroups we can reconstruct the total group G. This 
is essentially the strategy followed by Ref. [10].

More explicitly, let the Hilbert space be consistent with a spatial boundary condition involving 
a twist generated by ρgs (ρ is the generator of certain abelian subgroup Zm and gs = 0, ..., m −1)

H(gs ) = ⊕i,j ⊕M(gs )
ij

k=1 (Vi ⊗ V̄j )k (H.1)

where Vi (V̄i ) is the ith Verma module in the holomorphic (anti-holomorphic) sector and M(gs)
ij

is a non-negative integer labeling the multiplicity of the Vi ⊗ V̄j modules. Moreover, for the CFT 
to have a unique ground state, we require the vacuum module (i = 1) only shows up once in the 
periodic sector, i.e., M(gs)

11 = δ0,gs .
Next we assign irreducible representation to the Verma modules:

ρgτ (Vi ⊗ V̄j )k = η
Q(gτ ;gs ,i,j,k)
m (Vi ⊗ V̄j )k (H.2)

where gτ = 0, ..., m − 1, ηm = e
i2π
m and Q(gτ ; gs, i, j, k) ∈ 0, ...,m − 1 is called “symmetry 

charge” in Ref. [10]. Combine Equation (H.1) and Equation (H.2) we obtain the following space–
time boundary twisted partition function on a torus with modular parameter τ

Zgs,gτ (τ ) = T rH(gs ) (q
L0−c/24q̄L̄0−c/24qτ ) =

∑
i,j

⎡⎢⎣M(gs )
ij∑

k=1

ζ
Q(gτ ;gs,i,j,k)
N χi(τ )χ̄j (τ )

⎤⎥⎦
(H.3)

H.1. The consistency conditions

So far the abelian subgroup Zm as well as M(gs)
ij and Q(gτ ; gs, i, j, k) are unknown. They 

need to be determined subjected to the following consistency conditions. (1) When there is no 
spatial boundary condition twist the Hilbert space in Equation (H.1) must return to that of the 
periodic boundary condition. Moreover in the case where there is also no time boundary condi-
tion twist the partition function must agree with the modular invariant partition function Z0,0(τ ). 
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(2) The Zgs,gτ (τ ) in Equation (H.3) must transform under the generators (S and T ) of the mod-
ular transformation as (see Fig. D.9):

Zgs,gτ (τ ) = Zgs,gτ gs (τ + 1) = Z
g−1
τ ,gs

(−1/τ)

(3) M(gs )

11 = δ0,gs , M(gs )
ij = non-negative integer, and Q(gτ ; gs, i, j, k) = 0, ..., m − 1. (1)–(3) 

pose strong constraints on the possible abelian subgroup Zm and the allowed assignment of the 
irreducible representations (i.e. Q(gτ ; gs, i, j, k)) to each Verma module.

H.2. The on-site symmetry of minimal models

Under constants (1)–(3) in the previous subsection Ref. [10] solved the possible abelian sub-
groups and their symmetry representations for the all minimal models. By patching these abelian 
subgroups together the author reached the following conclusion: the on-site symmetries of the 
unitary minimal models are exactly the same as those predicted by the lattice RSOS models [20]. 
Hence there is no emergent symmetry! Thus, for most of the unitary minimal models the sym-
metry is Z2. The only exceptions are 3-states Potts and tri-critical 3-state Potts models where the 
symmetry is S3. Finally for the minimal model labeled by E7, E8, where there is no symmetry.
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