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Abstract

We analyze several ways of conducting long-horizon regressions, taken from

the empirical literature. Asymptotic arguments are used to show that, in all

cases, the t-statistics do not converge to well-de�ned distributions, thus ex-

plaining the tendency of long-horizon regressions to �nd �signi�cant� results,

where previous short-term approaches have failed. Moreover, in some cases,

the ordinary least squares estimator is not consistent, and the R2 cannot be

interpreted as a measure of the goodness of �t. Those results cast doubt

on the conclusions reached by most previous long-horizon regression studies.

We propose a rescaled t-statistic, whose asymptotic distribution is easy to

simulate, and re-visit some of the evidence on the long-horizon predictability

of returns and the long-horizon tests of the Fisher E¤ect.



1 Introduction

There has been an increasing interest in long-horizon regressions, since stud-

ies using long-horizon variables seem to �nd signi�cant results where pre-

vious �short-term� approaches have failed. For example, Fama and French

(1988), Campbell and Shiller (1988), Mishkin (1990, 1992), Boudoukh and

Richardson (1993), Fisher and Seater (1993), all studies with long-run vari-

ables, have received a lot of attention in �nance and economics. The results

in those papers are based on long-horizon variables, where a long-horizon

variable is obtained as a rolling sum of the original series. It is heuristically

argued that long-run regressions produce more accurate results by strength-

ening the signal coming from the data, while eliminating the noise. Whether

the focus is on expected returns/dividend yields, the Fisher E¤ect, or neu-

trality of money, the striking results produced by those studies prompted us

to scrutinize the appropriateness of the econometric methods.

In this paper, we show that long-horizon regressions will always produce

�signi�cant� results, whether or not there is a relationship between the un-

derlying variables. To understand this conclusion, notice that in a rolling

summation of series integrated of order zero (or I(0)), the new long-horizon

variable behaves asymptotically as a series integrated of order 1 (or I(1)).

Such a persistent stochastic behavior will be observed whenever the regres-

sor, the regressand, or both, are obtained by summing over a non-trivial

fraction of the sample. Based on this insight, we use the Functional Cen-

tral Limit Theorem to analyze the distributions of statistics from long-run

regressions, commonly used in economics and �nance. We �nd that, in addi-

tion to incorrect testing, overlapping sums of the original series might lead



to inconsistent estimators and to a coe¢cient of determination, R2; that

does not converge to 1 in probability. Those results remind us, but are not

analogous to the ones in Granger and Newbold (1974), and explained by

Phillips (1986). The analogy comes from �nding a spurious correlation be-

tween persistent variables when they are in fact statistically independent.

However, there are two major di¤erences. First, in long-horizon regressions,

the rolling summation alters the stochastic order of the variables, resulting

in unorthodox limiting distributions of the slope estimator, its t-statistic,

and the R2. More importantly, even if there is an underlying relationship

between variables, the t-statistic will tend to reject it. In other words, esti-

mation and testing using long-horizon variables cannot be carried out using

the usual regression methods. Richardson and Stock (1989) use a method-

ology similar to our, but they consider only univariate regressions. Their

results can be viewed as a special case in our framework.

We provide a simple guide on how to conduct estimation and inference

using long-horizon regressions. The focus is on the asymptotic properties

of the OLS estimator of the slope coe¢cient, its t-statistic and the coe¢-

cient of determination. Various ways of conducting long-horizon regressions

are analyzed, all taken from previous studies. The estimators from some

regressions, frequently used in empirical work, are inconsistent. Moreover,

the t-statistics from all the considered regressions do not converge to well-

de�ned distributions, thus putting into question the conclusions from studies

that use long-run variables.

We propose a rescaled t-statistic, t=
p

T; for testing long-horizon regres-

sions. Its asymptotic distribution, although non-normal, is easy to simulate.

We use the proposed methods to re-examine the expected returns/dividend

yield regressions in Fama and French (1988), and the Fisher E¤ect tests in

Boudoukh and Richardson (1993), and Mishkin (1992). The obtained re-
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sults are quite general and applicable whenever long-horizon regressions are

employed.

The analytical expressions that we provide explain some of the empiri-

cal and simulation results obtained by previous authors. For example, we

can tackle the interesting question of whether long-horizon regressions have

greater power to detect deviations from the null than do short-horizon re-

gressions, or are the signi�cant results a mere product of size distortion.

This question, indirectly addressed in Hodrick (1992), Mishkin (1990, 1992),

Goetzmann and Jorion (1993) and Campbell (1993), has been posed explic-

itly in Campbell, Lo, and MacKinlay (1997). Some Monte-Carlo simulations

suggest power gains (Hodrick (1992)), other show size distortions (Goetz-

mann and Jorion (1993)), but a de�nite, analytic answer has not yet been

provided. Our results show that the signi�cant results from long-horizon

regressions are due to incorrect critical values. Another implication of our

analysis is that a signi�cant R2 in such regressions cannot be interpreted as

an indication of a good �t.

This paper is not a condemnation of long-horizon studies. Our aim

is to put inference and testing using long-run regressions on a �rm basis,

and not to rely exclusively on simulation methods. The conclusions from

Monte-Carlo or bootstrap studies are limited to the case-study at hand,

but fail to yield general insights, applicable to other cases. In contrast, our

analysis provides a general guideline on how to test long-horizon relations.

Some researchers are aware that normal asymptotic approximations are not

adequate when using long-horizon variables. However, the reason for the

poor approximations is attributed to serial correlation, induced in the error

terms while transforming the data, and to endogeneity bias. Serial correla-

tion will lead to consistent estimates, but for testing, the standard errors are

produced with the Hansen-Hodrick (1980) or Newey-West (1987) method.
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Even after correcting for serially correlated errors, Monte Carlo simulations

show that the small sample distribution of the estimators and the t-statistics

are very di¤erent from the asymptotic normal distribution (Mishkin (1992),

Goetzmann and Jorion (1993)). We discuss the reasons for the poor ap-

proximation and suggest alternative methods for testing and estimation in

long-horizon regressions.

The paper is structured as follows. Section 2 presents the various ways

of specifying long-horizon regressions that have been commonly used in the

empirical literature. These regressions can be categorized into four cases,

arising naturally from the choice of a null hypothesis and the model being

considered. Section 3 provides the main theoretical results. Testing and

inference in all four cases is analyzed, using asymptotic methods. In section

4, we conduct simulations to illustrate the analytical results. Section 5

applies the conclusions in section 3 to the expected returns/dividend yield

equations of Fama and French (1988) and to the long-run Fisher E¤ect, as

tested in Boudoukh and Richardson (1993), and Mishkin (1992). Section 6

concludes.

2 Models

The underlying data-generating processes are:

Yt+1 = ® + ¯Xt + "1;t+1 (1)

(1 ¡ ÁL) b(L)Xt+1 = ¹ + "2;t+1 (2)

The variable Xt is represented as an autoregressive process, whose highest

root, Á; is conveniently factored out1 and b(L) = b0+ b1L+ b2L
2+ :::+ bpL

p

is invertible. For simplicity, we let Á = 1; although all that is required is a

1See Stock (1991).
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highly persistent process2. De�ne wt = ("1;t; "2;t)
0 ; where wt is a martingale

di¤erence sequence with E
³
wtw

0
tjwt¡1; :::

´
= § = [¾211 ¾12;¾21 ¾222] and

�nite fourth moments.

We could have started with a general vector autoregression (VAR) (c.f

Watson (1994)). However, the system (1 ¡ 2) is convenient to use in the

studies cited above, since we know what subset of variables have a stochas-

tic trend. In the stock return/dividend yield example, Xt is the dividend

yield, whereas Yt+1 is the expected return or the equity premium. In the

in�ation/interest rate literature, Xt denotes the interest rate. Similarly, in

the money neutrality literature, Xt represents the nominal money supply.

The timing of the variables is chosen to conform exactly with the previ-

ous literature on expected returns and dividend yields (Stambaugh (1986,

1999), Cavanagh et al (1994)), but it is not essential for the results. We

could well have started with a more general triangular cointegrated system

(Campbell and Shiller (1987), Phillips (1991))3. Finally, to alleviate nota-

tion, let ® = ¹ = 0: All regressions are run with a constant term. The above

assumptions can be relaxed considerably, without a¤ecting the conclusions

of the paper.

Running regression (1) often yields poor results, in the sense that the

OLS estimate of ¯ is insigni�cant and the R2 is extremely small4. The

lack of testing and explanatory power has prompted researchers to look

for ways of aggregating the data in order to obtain more precise estimates.

Intuitively, the aggregation of a series into a long-horizon variable is thought

2This assumption can be relaxed, by letting Á be in the neighborhood of one (c.f.

Phillips (1987), Stock (1991), Cavanagh et al. (1994), Torous (1999?))
3Note that we can always express a triangular cointegrated system with (1-2), whereas

(1-2) cannont necessarily be represented as a triangular cointegrated system. However,

the distinction is insigni�cant in practical applications.
4This is not surprising in the equity premium literature, since there is much more noise

in equation (1) than signal coming from Xt; as discussed in Valkanov (1999)
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to strengthen the signal, while eliminating the noise. Given (1 ¡ 2) ; the

long-horizon variables are:

Zkt =
k¡1X
i=0

Yt+i

Qk
t =

k¡1X
i=0

Xt+i

and regressions are run in two fashions: Zkt+1 on Xt and Zkt on Qk
t (or on

Qk
t¡k): Example of the �rst type are the papers by Fama and French (1988)

and Campbell and Shiller (1988). In the equity/dividend literature, Zkt is

the k-th period continuously compounded (log) return. Examples of the

second type of long-horizon regressions are the papers by Boudoukh and

Richardson (1993), Mishkin (1992), and Fisher and Seater (1993), where Zkt

is the k-th period continuously compounded (log) return and the k-th period

GDP growth, respectively, and Qk
t is the k-th period expected in�ation and

the growth (or level) of nominal money supply, respectively.

In addition to the two types of long-horizon regressions, it is often con-

venient to adopt di¤erent null hypotheses for ¯: In the equity premium lit-

erature, it is appropriate to assume that dividends have no predictive power

for expected returns, or ¯ = 0 (Fama and French (1988) and Campbell

and Shiller (1988)). In the Fisher equation literature, it is often assumed

that ¯ = 1; or that nominal interest rates move one-for-one with in�ation

(Mishkin (1992) and Boudoukh and Richardson (1993)). In the money neu-

trality literature, tests are usually carried out under the null of ¯ = 0 (Stock

and Watson (1989) and Fisher and Seater (1993)). Hence, a comprehensive

analysis of long-horizon regressions based on (1-2) must accommodate the

null hypotheses of ¯ = 0 and ¯ = ¯o 6= 0:

The empirically interesting speci�cations of long-horizon regressions can

be categorized into four cases, presented in Table 1. The regressand is always
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Speci�cation of long-horizon regressions

Under the null

Regressor ¯ = 0 ¯ = ¯o 6= 0

Xt Case 1 Case 3

Qk
t Case 2 Case 4

Table 1: Various ways of specifying long-horizon regressions. The regressand

is always Zk
t+1 =

Pk¡1
i=0 Yt+1+i

Zkt+1 =
Pk¡1
i=0 Yt+1+i; but the regressor and the relationship under the null

vary. In the �rst two cases, one regresses Zk
t+1 on Xt or Qk

t ; and testing is

carried out under the null of ¯ = 0; whereas in cases 3 and 4, the null is

¯ = ¯o 6= 0: The distinction is important because the stochastic behavior

of Yt and Qk
t is di¤erent depending on ¯: If ¯ = 0; Yt is an I(0) process,

whereas if ¯ 6= 0; Yt is I(1).

We let the time overlap in the summations be a �xed fraction of the sam-

ple size, or k = [¸T ]: Similar parameterizations are used by Richardson and

Stock (1989) in the univariate context and by Valkanov (1998) in estimating

the persistence of short-term interest rates. More speci�cally, Richardson

and Stock (1989) consider case 1, where the regression is Zk
t on Zkt¡k:

Undoubtedly, the absence of an econometric foundation has greatly con-

tributed to such a variety of ways to specify long-horizon regressions. We

prove that the statistics in long-horizon relations do not have the convenient

properties, namely, consistent OLS estimators of the slope coe¢cient, t-tests

with adequate power and size, and R2 that converge to 1 in probability un-

der the null. More importantly, in all cases, the t-statistic fails to converge

to a well-de�ned distribution, but explodes as the sample size increases. In
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�nite samples, this results in increasingly signi�cant t-tests, as the overlap in-

creases, whether or not there is a relationship between the variables. Similar

results can be observed in the simulations by Hodrick (1992), Goetzmann

and Jorion (1993), Mishkin (1992), and Nelson and Kim (1993), but the

econometric properties of the statistics were never systematically analyzed.

The reasons underlying the results are simple. Aggregating a fraction

of the sample produces a persistent variable that behaves very much like

an I(1) process. The time-dependence is strong enough that correcting for

serial correlation using the Hansen-Hodrick-Newey-West procedure is not

su¢cient. To obtain t-statistics that have a well-de�ned distribution, one

must divide them by the square root of the sample size.

3 Theoretical Results

In this section, we present the analytical results. In addition to stating the

theorems, we also provide informal discussions to clarify their implications

and applications.

The assumptions and additional notation are summarized here for con-

venience.

Assumptions 1 In model (1 ¡ 2) ; let

1. Zkt =
Pk¡1
i=0 Yt+i and Qk

t =
Pk¡1
i=0 Xt+i

2. The portion of overlapping is a fraction of the sample size, or k = [¸T ] ;

where ¸ is �xed, between 0 and 1; and [:] denotes the lesser greatest

integer operator.

3. Á = 1 and ® = ¹ = 0
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4. wt = ("1;t; "2;t)
0 ; where wt is a martingale di¤erence sequence with

E
³
wtw

0
tjwt¡1; :::

´
= § = [¾211 ¾12; ¾21 ¾222]; and �nite fourth mo-

ments.

5. The roots of b(L) = b0 + b1L + b2L
2 + ::: + bpL

p are less than 1 in

absolute value,
Pp
i=1 i jbij < 1, and p is a �xed number.

It is known that under the above assumptions,
³

1p
T¾11

P[sT ]
i=0 "1;i;

1p
T¾22

P[sT ]
i=0 "2;i

´
)

(W1(s);W2(s)) jointly, from the Functional Central Limit Theorem (FCLT),

where ) denotes weak convergence, and W1(s) and W2(s) are two standard

Weiner processes on D [0; 1] ; with covariance ± = ¾12= (¾11¾22) : Similarly,

if !2 = ¾211=b2(1), then 1
!
p
T
X[sT ] ) W2(s):

Assumptions 1 simplify the analysis but can easily be generalized. For

instance, Á can be in a neighborhood of one, instead of exactly at unity (see

Phillips (1987), Stock (1991), and Cavanagh et al. (1994)). We may allow

wt to follow a less restrictive time series process as in Stock and Watson

(1993). More generally, the results below will be valid for any strongly mix-

ing process wt, thus allowing for weakly dependent and possibly heteroge-

neous innovations (Hansen (1992)). All regressions are run with a constant,

as it is usually done in practice.

Before proceeding with the main results, we prove a lemma that will

serve as a foundation for the rest of the paper. In this lemma, we show that

long-horizon variables, which are nothing but partial sums of the underlying

processes Xt and Yt; converge weakly to functionals of di¤usion processes,

after appropriate rescaling.

² Lemma 1 If assumptions 1 hold, then

1. 1
!T3=2

Qk
t ) R s+¸

s W2(¿)d¿ ´ W 2(s;¸)

2. 1
!T3=2

³
Qk
t ¡ Q

k
´

) W 2(s; ¸) ¡ 1
1¡¸

R 1¡¸
0 W 2(s;¸)ds ´ W

¹
2 (s;¸)

If ¯ = 0; then
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3. 1p
T¾11

Zk
t ) W1 (s + ¸) ¡ W1(s) = W1 (s; ¸)

4. 1p
T¾11

³
Zkt ¡ Z

k
´

) W1 (s;¸) ¡ 1
1¡¸

R 1¡¸
0 W1(s;¸)ds = W¹

1 (s;¸)

and if ¯ 6= 0; then

5. 1
!T3=2

Zkt ) ¯W 2(s;¸)

6. 1
!T3=2

³
Zk
t ¡ Z

k
´

) ¯W
¹
2 (s;¸)

To simplify notation, let�s de�ne the following functionals.

F1(A(s); B(s)) ´
R 1¡¸
0 A(s)B(s)dsR 1¡¸
0 (B(s))2 ds

F2(A(s); B(s)) ´
³R 1¡¸
0 A(s)B(s)ds

´
·R 1¡¸
0 (A(s))2 ds

R 1¡¸
0 (B(s))2 ds ¡

³R 1¡¸
0 A(s)B(s)ds

´2¸1=2

F3(A(s); B(s)) ´
³R 1¡¸
0 (A(s)B(s))ds

´2
R 1¡¸
0 (A(s))2 ds

R 1¡¸
0 (B(s))2 ds

All distributions can be represented as one of those functionals, using the

di¤usion processes in Lemma 1 as their arguments.

We start by presenting the results for case 1.

Theorem 2 When ¯ = 0 and assumptions 1 hold, if we regress Zkt on a

constant and Xt; the slope coe¢cient and the associated statistics will have

the following properties:

² ^̄ ) ¾11
! F1 (W¹

1 (s;¸);W¹
2 (s))

² t^̄

T1=2
) F2 (W¹

1 (s;¸); W¹
2 (s))

² R2 ) F3 (W ¹
1 (s;¸);W ¹

2 (s))

Some results are worth emphasizing. First, ^̄ is not a consistent esti-

mator of ¯ and its distribution depends explicitly on ¾11 and !, which can
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be estimated consistently from (1 ¡ 2). Second, the t-statistic, testing for

¯ = 0; does not converge to a well de�ned distribution, but diverges at

rate T 1=2. We cannot rely on asymptotic values to construct correctly sized

con�dence intervals. In other words, a bigger sample size or a bigger over-

lap (since k = [¸T ]) will tend to produce higher t-statistics. Therefore, we

can account for the results in Fama and French (1988) and Campbell and

Shiller (1988), where the t-statistics are increasing with the horizon of the

regression. One way around this problem is by carrying out simulations on a

case by case basis. A more general method of testing the slope coe¢cient of

long-horizon regressions is to use the t=
p

T statistic. As we will see below,

this statistic converges weakly in all four cases. Moreover, its distribution

is simple to simulate and depends only on the parameter ±; which can be

estimated consistently from (1 ¡ 2). Lastly, the coe¢cient of determination,

R2; does not converge to 1 in probability under the null, thus explaining

why aggregating the data tends to produce high R2.

Theorem 3 When ¯ = 0 and assumptions 1 hold, if we regress Zkt on a

constant and Qk
t ; the slope coe¢cient and the associated statistics will have

the following properties:

² T (^̄ ¡ 0) ) ¾11
! F1

¡
W ¹
1 (s;¸);W

¹
2 (s;¸)

¢
² t

T1=2
) F2

¡
W¹
1 (s;¸);W

¹
2 (s; ¸)

¢
² R2 ) F3

¡
W

¹
1 (s;¸); W

¹
2 (s;¸)

¢

This is case 2. Here ^̄ is a consistent estimator of ¯: However, the t-

statistic does not converge to a well-de�ned distribution. Similarly to case 1,

the R2 does not converge in probability to 1: In fact, most of the discussion

from case 1 is also applicable here. It is important to notice that the t=
p

T
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statistic converges weakly. Testing can be carried out by simulating its

limiting distribution and calculating its asymptotic critical values.

Theorem 4 When ¯ 6= 0 and assumptions 1 hold, if we regress Zkt on a

constant and Xt; the slope coe¢cient and the associated statistics will have

the following properties:

² ^̄

T ) ¯F1
¡
W ¹
2 (s);W

¹
2 (s; ¸)

¢
² t^̄

T1=2
) F2

¡
W¹
2 (s);W

¹
2 (s;¸)

¢
² R2 ) F3

¡
W

¹
2 (s);W

¹
2 (s; ¸)

¢
Theorem 4 states that, in case 3, ^̄ is not a consistent estimator for

¯ and does not have a well de�ned distribution. As the sample size or

the overlap increases, one would tend to observe increasing (in magnitude)

slope coe¢cients, as is the case in Fama and French (1998), Campbell and

Shiller (1988), and Boudoukh and Richardson (1993). Moreover, the limiting

distribution of
^̄

T depends on the unknown parameter ¯ itself. Similarly to

cases 1 and 2, the t-statistic must be normalized by the square root of

the sample size to converge to a well-de�ned distribution. Fortunately, the

limiting distribution does not depend on any unknown parameters and can

easily be simulated. The coe¢cient of determination does not converge to

1 in probability, but has a well de�ned distribution. However, it cannot be

used to judge the �t of the regression in the usual fashion. In case 3, the

limiting distributions are invariant to ±:

Lastly, we present the results for case 4.

Theorem 5 When ¯ 6= 0 and assumptions 1 hold, if we regress Zkt on a

constant and Qk
t ; the slope coe¢cient and the associated statistics will have

the following properties:

12



² T (^̄ ¡ ¯) ) ¾11
! F1

¡
W¹
1 (s;¸);W

¹
2 (s; ¸)

¢
² t^̄

T1=2
) F2

¡
W¹
1 (s;¸);W

¹
2 (s; ¸)

¢
² R2 !p 1

In many respects, this is the econometrically most desirable way of esti-

mating a long-run regression. First, the estimator is super-consistent. Sec-

ond, after appropriate normalization, the t-statistic converges to a distribu-

tion that can easily be simulated, provided we have a consistent estimate of

±. Third, unlike in the previous three cases, the R2 converges in probability

to one.

An interesting pattern emerges from the results above. Regressing a

long-run variable on a short-run variable, as in cases 1 and 3, yields incon-

sistent estimators of the slope coe¢cients, whether or not there is a true rela-

tionship between Yt and Xt: However, projecting a long-horizon variable on

another long-horizon variable, as in cases 2 and 4, produces super-consistent

estimators of the true parameter, whether it be ¯ = 0 or ¯ = ¯0 6= 0: More-

over, the limiting distribution of ^̄ and t=
p

T is exactly the same for cases

2 and 4.

Table 2 provides a quick summary of the above results5. In all four cases,

inference based on the t-statistic cannot be done using asymptotic critical

values. However, the normalized t-statistic, t=
p

T ; has a well-de�ned distri-

bution that can be easily simulated. Moreover, as the Monte-Carlo simula-

tions would show, the convergence is quite fast. Hence, asymptotic critical

values can be calculated using a relatively small sample. To obtain accurate

estimates of the slope parameter, one should run long-horizon variables on

5The stochastic order notation VT = Op(1) intuitively means that the variable VT has

a well de�ned distribution, as T !1:
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Speci�cation of long-horizon regressions

Under the null

Regressor ¯ = 0 ¯ 6= 0

Xt Case 1:

^̄ = Op(1)

t
T 1=2

= Op(1)

R2 = Op(1)

Case 3:

^̄

T = Op(1)

t
T 1=2

= Op(1)

R2 = Op(1)

Pk¡1
i=0 Xt¡k+i Case 2:

T (^̄ ¡ 0) = Op(1)

t
T 1=2

= Op(1)

R2 = Op(1)

Case 4:

T (^̄ ¡ ¯) = Op(1)

t
T 1=2

= Op(1)

R2 !p 1

Table 2: Summary of the results in Theorems 2-5.

long-horizon variables, as in cases 2 and 4, where the estimators are super-

consistent. Lastly, the R2 should not be trusted as a measure of regression

�t in the usual sense. This statistic converges to 1 only in theorem 5. In

the other cases, it can lead to false conclusions as demonstrated in the next

section.

4 Simulations

The theorems in the previous section provide an asymptotic approximation

of the distributions of ^̄; t=
p

T ; and R2. It is well known that rescaled partial

sums converge very fast to their limiting distributions (Stock (1994)), or in

other words, the asymptotic distributions can be approximated well with

a relatively small sample size. Here, we conduct Monte-Carlo simulations

to illustrate some of the points made in the previous section. First, we
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demonstrate that the rescaled t-statistic does converge asymptotically for

all of the above cases, unlike the non-rescaled t-statistic. Second, we plot

the densities, derived in Theorems 2-5. Third, we investigate how those

densities depend on ±; the correlation between "1;t and "2;t:

The experiment is conducted as follows. For each case, we simulate se-

ries of length 100 and 750 observations 5000 times. The �rst simulation

corresponds to a typical annual data set, whereas the second corresponds

to a series with monthly frequencies. For each simulation, we compute ^̄,

the t-statistic under the appropriate null hypothesis, and R2: For simplicity,

we let ¾211 = !2 = 1 without losing generality, since the asymptotic distri-

butions of t=
p

T and R2 are invariant to those parameter. The densities of

the simulations for each case are plotted in �gures 1 through 4. In each �g-

ure, the �rst column of graphs displays the densities of the non-normalized

statistics, whereas the second column displays those of the appropriately

rescaled statistics, as suggested by the theorems above. In the cases where

no rescaling is needed for convergence, the graphs across columns are iden-

tical.

The variances of the t-statistics increase with the sample size, in all four

cases. There are no correct asymptotic critical values for the non-rescaled

t-statistics. For T = 750; the variance is considerable. Thus, it is not

surprising that Mishkin�s (1992) simulations lead him to conclude that �the

t-statistics need to be greater than 14 to indicate a statistically signi�cant

¯ coe¢cient...� (Mishkin (1992), p.203). Goetzmann and Jorion (1993) use

the bootstrap method to reach a similar conclusion: �OLS t-statistics over

18 and R2 over 38% for all multiple year horizons are not unusual.�

However, the rescaled t-statistic, t=
p

T ; converges to a well de�ned dis-

tribution that can easily be simulated, provided we have an estimate of ±:

The nuisance parameter, ± can be estimated consistently from (1 ¡ 2) : In
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the �rst set of simulations, we let ± = 0 and approximate the limiting dis-

tributions by rescaled sums of "1;t and "2;t: The results are presented in the

second column of �gures 1-4. Notice that the partial sums converge very

fast to their limiting distributions; the estimated densities for T = 100 and

T = 750 are almost identical.

The R2 converges to 1 only in case 4. In cases 1 and 2, its density has

most of its mass under 0.5. In case 3, most of the mass is between 0.1 and

0.98. Finally, the �gures show that ^̄ is not consistent in cases 1 and 3; its

variance does not decrease as T increases. Table 3a provides the �rst two

moments of all the statistics in cases 1-4, to con�rm the above conclusions.

The previous results were obtained under the assumption of no correla-

tion between W1(s) and W2(s); or ± = 0: Now, we repeat the same battery of

simulations for ± = 0:9: To investigate the e¤ect of this change; we plot the

limiting distributions of t=
p

T for ± = 0 together with those from ± = 0:9,

in �gure 5. In case 1, the mean of the distribution changes. For cases 2 and

4, the limiting distributions are identical, as discussed above. However, an

increase in the correlation ± alters the shape of the distribution. In case 3,

the asymptotic distribution of t=
p

T is invariant to ±; as mentioned above.

Table 3b provides the �rst two moments of all the statistics, in cases 1-4,

for ± = 0:9.

5 Empirical Results�The Expected Returns/Dividend

Yield and Fisher-E¤ect regressions

5.1 Long-Horizon Predictability of Expected Returns using
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Dividend Yields

The predictability of expected returns, labeled as one the �new facts in �-

nance� by Cochrane (1999), is so widely accepted in the profession that it

has generated a new wave of models (Barberis (1998), Brennan, Schwartz,

and Lagnado (1997), Campbell and Viceira (1998), Campbell and Cochrane

(1999), and Liu (1999), among others) that try to analyze the implications

of return predictability on portfolio decisions. Fama and French (1988) and

Campbell and Shiller (1988) �rst argued that, unlike short-horizon returns,

long-horizon returns can be predicted using dividend yields or dividend-

price ratios. The predictability is measured in-sample from the t-test and

R2: Both of those statistics increase with the horizon. However, Goetzmann

and Jorion (1993) conduct simulations and bootstrap studies on the proper-

ties of the estimates from the equity premium/dividend yield long-horizon

regressions and conclude that the evidence for predictability is not nearly as

overwhelming at long-horizons as the previous studies have suggested. Ho-

drick (1992) and Kim and Nelson (1993) use VAR simulation-based studies

conclude that the distortions in the distributions of the t-statistics were not

enough to overturn the conclusion of Fama and French (1988).

It is di¢cult to reconcile or compare the results from these studies, be-

cause they are all based on simulations or bootstrap, and fail to yield gen-

eral results. Their conclusions are ultimately a function on how the arti�cial

data is being generated. More importantly there is no way of knowing what

features of the data would in�uence the statistics of interest and in what

fashion.

In section 3, we provided a framework which will now be applied to

explain and re-test the results from Fama and French (1988). Fortunately

enough, re-testing is simple and does not require a replication of the regres-

sions from the original study. The results from the relevant t-statistics,
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reported in Fama and French are normalized by the square root of the

sample size, yielding a new statistic, which, unlike the previous one, has

a well-de�ned asymptotic distribution. The distribution under the null of

no predictability, derived in theorem 2 (case 1), can be simulated using a

consistent estimator of ±: We estimate ± from the residuals of regressions

(1 ¡ 2) using CRSP data from 1927 to 1986. The lag structure of the div-

idend yield series is chosen with sequential t-tests, as suggested by Ng and

Perron (1995, 1998). The selected lag structure has 14 lags, yielding a high-

est autoregressive root of 0.96. Note that previous studies have arbitrarily

chosen the dividend yield to follow an AR(1) process and the estimated high-

est autoregressive root is lower, 0.85 (Nelson and Kim (1993)). We obtain an

estimate of ±̂ = ¡0:04: In other words, after capturing the dynamics of the

dividend yield, the residuals of the two regressions are not very correlated,

contrary to the results reported in Nelson and Kim (1993) and Stambaugh

(1999)6.

Table 4 presents the results from table 3 in Fama and French (1988)

for nominal returns, using dividend yields and the dividend price ratio as

regressors. The conclusions for real returns are identical and, hence, omit-

ted. Along with the estimates ^̄ and the t-statistics, we compute the t=
p

T

statistic. Given that ± is consistently estimated; we simulate the distribu-

tion from Theorem 2: The percentile of the normalized t-statistic, reported

in table 4, allows us to test the null ¯ = 0 at various levels of signi�cance.

We would reject if the t-statistic falls in the tails of the distribution. For

example, values lower than 0.05 or higher than 0.95 indicate rejection at the

10% level, values lower than 0.025 or higher than 0.975 indicate rejection at

the 5% level, and so forth.

6Note that ± does not correspond exactly to the correlation between the error terms in

Stambaugh (1986, 1999) and Nelson and Kim (1993).
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Using the entire sample of 1927-1986, we cannot reject the null of no

predictability at conventional levels of signi�cance. Looking at the sub-

periods, the lack of rejection seems to come from the 1927-1956 period.

Indeed, after 1956, there seems to be more evidence of predictability. In

the post-1956 periods, the null can be rejected at the 5% level using the

dividend-price ratio as predictor, but not at the 1% level. The dividend

yield performs worse than the dividend price ratio in all periods and for all

maturities. To sum up the results from table 4, the t=
p

T statistic suggests

that there is little evidence of returns predictability before 1956. In the 1956-

1986 period, the dividend-price ratio and the dividend yield seem to have

some predictive power. Overall, the dividend-price ratio is more successful

in explaining variations in expected returns.

5.2 Long-Horizon Fisher E¤ect

The Fisher E¤ect, positing that nominal returns must equal real returns

plus expected in�ation, has been estimated and tested by many authors in

di¤erent forms. We focus on two of the most recent tests of the Fisher E¤ect,

namely the long-horizon approaches of Mishkin (1992) and Boudoukh and

Richardson (1993). Both of those papers cannot reject the null that long-

horizons returns and long-horizon in�ation move one for one (this is known

as the full Fisher E¤ect), whereas previous studies have often had trouble

�nding any positive correlation between short horizon returns and in�ation.

In light of the theoretical discussion above, could it be that the results in

those two studies are due to the fact that long-horizon returns and long-

horizon in�ation are constructed by summing over short horizon variables?

We revisit the main results from both papers below.
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5.2.1 Nominal Stock Returns and In�ation

Boudoukh and Richardson (1993) focus on the regression
P5
i=1Rt+i = ®5+

¯5
P5
i=1 ¼t+i + "t; where Rt is the stock return, ¼t is the in�ation rate,

and the null is ¯5 = 1: This long-horizon regression corresponds to case

4. The tests in the original study are conducted with standard normal

asymptotic critical values. The authors are concerned about measurement

problems that might arise from using ex-post instead of ex-ante in�ation. To

remedy the problem, they also estimate the regression above using several

instruments, one of which is lagged long-horizon in�ation,
P5
i=1 ¼t¡5+i: We

revisit the OLS and the IV calculations using the estimates from Boudoukh

and Richardson, tables 1 and 2. The normalized t-statistics is computed

by dividing the reported t-statistic by the square root of the sample size.

The results are presented in table 3 below for the entire sample and two

sub-samples.

We obtain an estimate of ±̂ = 0:12 using the data from Siegel (1992) and

Schwert (1990)7 and simulate the limiting distribution from theorem 5. The

percentiles of the t=
p

T statistic, computed under the null ¯ = 1; are re-

ported in column 4. Note that the statistics in the IV case will have a slightly

di¤erent asymptotic distributions, because of the lags. The results from

theorem 4 for the IV case are: T (^̄ ¡¯) ) ¾11
! F1

¡
W¹
1 (s;¸);W

¹
2 (s ¡ ¸; s)

¢
;

t ^̄

T 1=2
) F2

¡
W
¹
1 (s;¸);W

¹
2 (s ¡ ¸; s)

¢
; R2 !p 1:

Rejection would occur if the statistic falls in the tails of the distribution.

Values lower than 0.05 or higher than 0.95 indicate rejection at the 10% level.

For the OLS case, the null of a full Fisher E¤ect cannot be rejected at the

5% level, except for the 1914-1990 sub-period, where it cannot be rejected at

7The estimates of ± for the sub-samples were very close to the one from the entire

sample. Since we have no reasons to suspect variations in this parameter, we use the more

precise estimate from the 1802-1990 period.
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the 1% level. This conclusion contradicts the one from the usual t-statistics,

where rejection occurs for all periods. In the IV case, the null cannot be

rejected for any period. We also performed tests under the null ¯ = 0;

corresponding to case 1. The null was rejected at all levels of signi�cance,

thus providing indirect indication for good testing power. To conclude,

our re-examination of the evidence by Boudoukh and Richardson (1993)

supports a full Fisher E¤ect. The evidence is particularly strong in the �rst

sub-period.

5.2.2 In�ation and Nominal Interest Rates

Mishkin (1992) focuses on a similar regression using monthly macroeconomic

data8. The regressor is the 3-period interest rate, whereas and the regres-

sand is the 3-period in�ation9. Despite the relatively small overlap in the

creation of the new series, Monte Carlo simulations conducted by the author

(tables 3-4) convinced us that our asymptotic approximations can appropri-

ately be used in this case. As mentioned above, Mishkin (1992) concludes

that the correct 5% critical value for the t-test is 14 for the entire sample,

and 20 for the 1953-1979 sub-sample. Recalling �gure 4, those values are in

accord with what one would expect in case 4, when using the non-rescaled

t-statistic. In fact, Mishkin remarks that the �potential for a spurious re-

gression result between the level of interest rates and future in�ation is thus

very high.� (Mishkin (1992), p. 203) However, he fails to notice the possi-

bility of rejecting the null of a full Fisher E¤ect, ¯ = 1, when it is true, as a

direct result from creating long-horizon variables. Indeed ¯ = 1 is rejected

using conventional critical values (table 1, Mishkin (1992)).

8The data is descibed in Mishkin (1990)
9Let pt = log(Pt); where Pt is the price level at time t: The 3-period in�ation is

computed as ¼3t = pt ¡ pt¡3 = pt ¡ pt¡1 + pt¡1 ¡ pt¡2 + pt¡2 ¡ pt¡3 = ¼1t + ¼1t¡1 + ¼1t¡2:
More generally,

¡
1¡ Lk¢Yt+k = (1¡ L) ¡1 +L+ ::: +Lk¡1¢Yt+k =Pk

i=14Yt+i
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We test the null ¯ = 1 by rescaling the t-statistic, reported in Mishkin

(1992), and simulating its limiting distribution according to theorem 5: The

results are reported in table 6, for the period 1953-1990 and di¤erent sub-

periods. The last column shows the percentile of the computed t=
p

T statis-

tic under the null. If inference is conducted using the t-statistic (column

2) and standard normal critical values, the null would be rejected in all pe-

riods at usual signi�cance levels. Rejection occurs because the t-statistic

does not converge asymptotically to a well de�ned distribution (Theorem

5). However, the null cannot be rejected at the 5% level (two-sided test) for

any period by using the t=
p

T statistic. The evidence of a full Fisher Ef-

fect is weaker, but still signi�cant, in the post 1979 period. Mishkin (1992)

reaches the same conclusion by conducting a series of Monte-Carlo simula-

tions (table 4), even though he does not provide an econometric explanation

to account for the results.

The t=
p

T tests of long-horizon Fisher E¤ect in the stock (Boudoukh and

Richardson (1993)) and bond (Mishkin (1992)) market remarkably lead us

to the same conclusion. There is strong evidence of a full Fisher E¤ect for

the periods before 1979. In the post-1979 era, the evidence is still present,

but not as convincing. Further testing and exploration of this apparent

structural change might be an interesting question for future research.

6 Conclusion

We analyze four ways of conducting long-horizon regressions that have fre-

quently been used in empirical �nance and macroeconomics. The least

squares estimator of the slope coe¢cient, its t-statistic, and the R2 have

non-standard asymptotic properties. We reach several conclusions. First,

the coe¢cient is not always consistently estimated. For reliable estimates,

one must specify regressions by aggregating both the regressor and the re-
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gressand (cases 2 and 4), i.e. to run one long-horizon variable against an-

other. Second, the standard t-statistic does not converge asymptotically to

a well de�ned distribution in any of the cases. The practical implication

is that an increase in the sample size or the horizon of the regression will

result in higher t-values. Therefore, testing cannot be conducted using the

customary standard normal critical values, since it would most likely lead

to rejecting the null very often, when it is true. In order to conduct asymp-

totically valid tests, we propose the t=
p

T statistic; which has the virtue of

being easily computed. Its limiting distribution, although non-normal, is

fast to converge, easy to simulate, and depends on only one nuisance pa-

rameter that can be estimated consistently. Third, the R2 in long-horizon

regressions does not converge to 1 in probability under the null in three of

the cases. Therefore, it cannot be interpreted as a measure of the goodness

of �t in the regression.

The above results are applicable whenever long-horizon regressions are

used. The tendency of long-run methods to produce �signi�cant� results, no

matter what the null hypothesis is, should neither come as a surprise, nor be

taken as conclusive evidence. In light of the present arguments, the tests in

long-horizon studies must be re-evaluated. In the last section of this paper,

the proposed t=
p

T statistic is employed to re-examine the predictability of

returns in Fama and French (1988) using dividend yields and the dividend-

price ratio. We �nd little predictability for the periods before 1956. In the

1956-1986 period, the dividend-price ratio and the dividend yield seem to

have some predictive power. In another application, the t=
p

T statistic is

used to re-visit the conclusions from the long-run Fisher E¤ect literature.

While there is strong evidence for a full Fisher E¤ect during the periods

before 1979, the post-1979 results are not entirely convincing.

23



Appendix

Proof of Lemma 1: Recall that 1
!T 1=2

Xt ) W2(s); where from now onward

t = [sT ] and !2 = ¾222=b(1): Also, recall that Qk
t =

Pk¡1
i=0 Xt+i: Letting k =

[¸T ] ; we can write 1
!T3=2

Qk
t = 1

T

Pk¡1
i=0

Xt+i
!T1=2

) R s+¸
s W2(¿)d¿ ´ W 2(s;¸);

using the continuous mapping theorem (CMT) to prove part 1. Similarly, for

part 2, 1
!T 3=2

Q
k

= 1
T¡k

PT¡k+1
t=1

1
!T 3=2

Qk
t ) 1

1¡¸
R 1¡¸
0 W 2(s; ¸)ds; using the

CMT. Then, we can write, 1
!T 3=2

³
Qk
t ¡ Q

k
´

) W 2(s;¸)¡ 1
1¡¸

R 1¡¸
0 W 2(s; ¸)ds ´

W
¹
2 (s;¸):

If ¯ = 0; then Yt = "1;t: Recall that Zk
t =

Pk¡1
i=0 Yt+i+1 and 1

¾11T1=2
Zkt =

1
¾11T1=2

Pk¡1
i=0 "1;t+i+1 = 1

¾11T 1=2

nPt+k
i=1 "1;i ¡

Pt
i=1 "1;i

o
) W1 (s + ¸) ¡

W1 (s) ´ W1(s;¸); �nishing part 3. Similarly, 1
¾11T1=2

Z
k

= 1
T¡k

PT¡k
t=1

1
¾11T1=2

Zk
t )

1
1¡¸

R 1¡¸
0 W1(s;¸)ds; and 1

¾11T1=2

³
Zk
t ¡ Z

k
´

) W1(s;¸)¡ 1
1¡¸

R 1¡¸
0 W1(s;¸)ds ´

W
¹
1 (s;¸), thus completing the proof of part 4.

When ¯ 6= 0; Yt = ¯Xt¡1+"1;t: Therefore, 1
!T 3=2

Zkt = 1
!T 3=2

Pk¡1
i=0 Yt+i+1 =

¯ 1
!T 3=2

Pk¡1
i=0 Xt+i+

1
!T 3=2

Pk¡1
i=0 "1;t+i ) ¯W 2(s;¸) using part 1 and 1

!T 3=2

Pk¡1
i=0 "1;t+i =

op(1): Part 6 is proven in exactly the same fashion. ¥

Proof of Theorem 2: By de�nition, ^̄ =

PT¡k
t=1

³
Zkt+1¡Z

k
´
(Xt¡X)PT¡k

t=1 (Xt¡X)
2 =

1
T

PT¡k
t=1

Ã
Zkt+1¡Z

k

T1=2

!³
Xt¡X
T1=2

´
1
T

PT¡k
t=1

³
Xt¡X
T1=2

´2 ) ¾11
!

R 1¡¸
0 W¹

1 (s;¸)W
¹
2 (s)dsR 1¡¸

0 (W¹
2 (s))

2
ds

= ¾11
! F1 (W ¹

1 (s;¸);W ¹
2 (s))

using Lemma 1, part 4 and the CMT. De�ne s2 = 1
T

PT¡k
t=1

³
Zt+1 ¡ Z

k
´2¡

^̄2 1
T

PT¡k
t=1

¡
Xt ¡ X

¢2
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T

PT¡k
t=1

µ
Zt+1¡Zk
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¶2
) ¾211
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0 (W¹

1 (s;¸))2 ds

and 1
T
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³
Xt¡X
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´2 ) !2
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2 (s))2 ds: Then, s
2
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0 (W¹
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¹
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¹
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#
: Under the null,
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the t-statistic is: t =
(^̄¡0)

³PT¡k
t=1 (Xt¡X)2

´1=2
s . In our case, t

T 1=2
=
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Proof of Theorem 3: The OLS estimator is: ^̄ =
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Proof of Theorem 4: The proofs follow exactly the same pattern.
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The OLS estimator is: ^̄ =
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Table 3a

Case 1

T= 100 T= 750 Ratio
E(^̄) -0.0029 0.0069 -2.3566

V ar(^̄) 0.0868 0.0932 1.0740

E(t ¡ stat:) -0.0478 0.1590 -3.3251
V ar(t ¡ stat:) 10.0627 79.6769 7.9181

E(R2) 0.0862 0.0893 1.0365
V ar(R2) 0.0107 0.0113 1.0519

Case 2

T= 100 T= 750 Ratio
-0.0006 0.0001 -0.2112
0.0014 0.0000 0.0188

-0.0512 0.2096 -4.0968
11.7233 91.0426 7.7660

0.0961 0.0989 1.0291
0.0134 0.0134 1.0027

Case 3

T= 100 T= 750 Ratio
E(^̄) 7.8246 56.8151 7.2611

V ar(^̄) 2.4431 159.9102 65.4540

E(t ¡ stat:) 16.8051 47.5789 2.8312
V ar(t ¡ stat:) 80.7647 601.6150 7.4490

E(R2) 0.7264 0.6951 0.9569
V ar(R2) 0.0304 0.0358 1.1792

Case 4

T= 100 T= 750 Ratio
0.9994 1.0001 1.0007
0.0014 0.0000 0.0188

-0.0512 0.2096 -4.0968
11.7233 91.0426 7.7660

0.9875 0.9998 1.0124
0.0002 0.0000 0.0004

Notes: The system (1 ¡ 2) is simulated 5000 times, using samples of length T = 100 and T = 750: In cases 1
and 2, ¯ = 0; whereas in cases 3 and 4, we let ¯ = 1: The error terms are simulated from a standard normal
distribution, and ± = 0: Long-horizon series are produced as Zk

t =
Pk¡1

i=0 Yt+i and Qk
t =

Pk¡1
i=0 Xt+i; where

k = [¸T ] and ¸ = 0:1: In each case and for each simulation, we estimate ^̄; its t-statistic under the appropriate
null hypothesis, and the R2: The �rst two moments of those three statistics are tabulated, for T = 100 and
T = 750: The ratio of the moments is given in the last column of each table.



Table 3b

Case 1

T= 100 T= 750 Ratio
E(^̄) -0.1738 -0.2244 1.2906

V ar(^̄) 0.0855 0.0932 1.0901

E(t ¡ stat:) -1.8886 -6.5913 3.4901
V ar(t ¡ stat:) 10.0062 77.5463 7.7498

E(R2) 0.1083 0.1238 1.1438
V ar(R2) 0.0155 0.0180 1.1594

Case 2

T= 100 T= 750 Ratio
0.0032 0.0000 0.0068
0.0012 0.0000 0.0180

0.2731 0.0229 0.0838
10.3546 74.4857 7.1935

0.0881 0.0842 0.9559
0.0113 0.0104 0.9241

Case 3

T= 100 T= 750 Ratio
E(^̄) 7.6463 56.2755 7.3599

V ar(^̄) 2.7653 168.3164 60.8668

E(t ¡ stat:) 15.1551 46.6912 3.0809
V ar(t ¡ stat:) 65.9799 649.2143 9.8396

E(R2) 0.6904 0.6837 0.9902
V ar(R2) 0.0358 0.0377 1.0525

Case 4

T= 100 T= 750 Ratio
1.0032 1.0000 0.9968
0.0012 0.0000 0.0180

0.2731 0.0229 0.0838
10.3546 74.4857 7.1935

0.9877 0.9998 1.0122
0.0002 0.0000 0.0004

Notes: The system (1 ¡ 2) is simulated 5000 times, using samples of length T = 100 and T = 750: In cases 1
and 2, ¯ = 0; whereas in cases 3 and 4, we let ¯ = 1: The error terms are simulated from a standard normal
distribution. Here, we let ± = 0:9: Long-horizon series are produced as Zk

t =
Pk¡1

i=0 Yt+i and Qk
t =

Pk¡1
i=0 Xt+i;

where k = [¸T ] and ¸ = 0:1: In each case and for each simulation, we estimate ^̄; its t-statistic under the
appropriate null hypothesis, and the R2: The �rst two moments of those three statistics are tabulated, for
T = 100 and T = 750: The ratio of the moments is given in the last column of each table.



Table 4

Period 1927-1986

Dividend Yield: D(t)/P(t-1) Dividend Price ratio: D(t)/P(t)

horizon ^̄ t t=
p
T percentile ^̄ t t=

p
T percentile

1 year 5.370 2.400 0.310 0.83 2.470 1.270 0.164 0.69
2 year 9.100 2.180 0.284 0.81 7.380 2.040 0.266 0.80
3 year 11.560 2.140 0.281 0.81 9.940 2.210 0.290 0.82
4 year 12.680 1.930 0.256 0.79 12.860 2.430 0.322 0.84

Period 1927-1956

Dividend Yield: D(t)/P(t-1) Dividend Price ratio: D(t)/P(t)

horizon ^̄ t t=
p
T percentile ^̄ t t=

p
T percentile

1 year 11.040 2.490 0.455 0.92 1.500 0.460 0.084 0.60
2 year 22.490 2.880 0.535 0.95 8.920 1.490 0.277 0.81
3 year 29.240 2.860 0.540 0.95 15.270 2.210 0.418 0.90
4 year 28.160 2.250 0.433 0.91 20.860 3.140 0.604 0.97

Period 1957-1986

Dividend Yield: D(t)/P(t-1) Dividend Price ratio: D(t)/P(t)

horizon ^̄ t t=
p
T percentile ^̄ t t=

p
T percentile

1 year 5.600 1.860 0.340 0.85 9.320 3.020 0.551 0.95
2 year 7.510 1.890 0.351 0.86 16.400 4.040 0.750 0.99
3 year 10.410 3.010 0.569 0.96 17.120 4.120 0.779 0.99
4 year 15.050 3.370 0.649 0.97 19.690 3.870 0.745 0.99

Period 1941-1986

Dividend Yield: D(t)/P(t-1) Dividend Price ratio: D(t)/P(t)

horizon ^̄ t t=
p
T percentile ^̄ t t=

p
T percentile

1 year 4.460 2.620 0.386 0.89 5.090 2.880 0.425 0.91
2 year 7.150 3.040 0.453 0.92 10.340 4.180 0.623 0.97
3 year 9.420 4.770 0.719 0.98 12.940 5.680 0.856 0.99
4 year 12.750 5.490 0.837 0.99 15.350 5.620 0.857 0.99

Notes: The columns named ^̄ report the OLS estimate of regressing the long-horizon returns on the dividend
yield or the dividend-price ratio. All the values in the table are taken or computed from Fama and French
(1988), table 3. The third column is the appropriately normalized t-statistic. The last column reports
the percentile of the normalized t-statistic, under the null of no relation between expected returns and
dividend/price ratios, or ¯ = 0 and ± = 0:04, as discussed in the text . This long-horizon regression
corresponds to case 1. Unlike the non-normalized t-statistic, which sujests a clear rejection of the null,
the t=

p
T statistic rejects the null at the 0.05-level, but cannot reject the null at the 0.01 (two sided test).

Although the evidence of a long-horizon forecasting relationship is not as strong as suggested by Fama and
French (1988), it is present, especially in the post WWII periods.



Table 5

Period 1802-1990

horizonl ^̄ t t=
p

T percentile
5 years 0.524 -2.736 -0.200 0.27

IV:lagged 5 years 1.820 0.752 0.055 0.56

Period 1870-1990

horizon ^̄ t t=
p

T percentile
5 years 0.462 -2.093 -0.191 0.28

IV:lagged 5 years 1.434 0.559 0.041 0.55

Period 1914-1990

horizon ^̄ t t=
p

T percentile
5-years 0.432 -11.360 -1.303 0.01

IV:lagged 5 years 2.120 0.941 0.069 0.58

Notes: The �rst column reports the OLS estimate of regressing the 5-month
nominal stock return on the 5-month in�ation rate. The values in the �rst row
of each table are taken from Boudoukh and Richardson (1993), table 1. The
values in the second row, labeled �IV lagged 5 years� is taken from Boudoukh
and Richardson (1993), table 2, case ii. The third column is the appropriately
normalized t-statistic. The last column reports the percentile of the normalized
t-statistic, under the null of a full Fisher e¤ect (Mishkin (1992) and Gali (1988)),
or ¯ = 1. This long-horizon regression corresponds to case 4. The normalized
t-statistic cannot reject the null in two out of the three periods for the OLS case,
contrary to the conclusions reached from the un-normalized t-statistic. The null
cannot be rejected in any period, for the IV case .



Table 6

Period 1953-1990

horizon ^̄ t t=
p

T percentile
3 months 0.663 -5.507 -0.261 0.21

Period 1953-1979

horizon ^̄ t t=
p

T percentile
3 months 1.188 2.642 0.150 0.66

Period 1979-1982

horizon ^̄ t t=
p

T percentile
3 months 0.235 -3.027 -0.505 0.07

Period 1982-1990

horizon ^̄ t t=
p

T percentile
3 months 0.125 -5.573 -0.569 0.05

Notes: The �rst column reports the OLS estimate of regressing the 3-month
in�ation on the 3-month interest rate. The values are taken from Mishkin
(1992), table 1. The third column is the appropriately normalized t-statistic.
The last column reports the percentile of the normalized t-statistic, under the
null of a full Fisher e¤ect (Mishkin (1992) and Gali (1988)), or ¯ = 1. This long
horizon regression corresponds to case 4. Unlike the t-statistic, the normalized
t-statistic cannot reject the null. However, the evidence for a full Fisher e¤ect
is less convincing for the last two sub-periods. A similar conclusion was reached
by Mishkin (tables 3-4), using Monte Carlo simulations.
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Figure 1: The graphs in the �rst column are the distributions of ^̄; the t-statistic under the null ¯ = 0; and
the R2 in Case 1, ± = 0, for T=100, and 750. The distributions of the same statistics, appropriately rescaled
to converge asymptotically, are presented in the second column. The variance of ^̄ does not decrease as T
increases, because the estimator is not consistent, as proven in Theorem 2. The variance of the t-statistic
increases with the sample size, but t=

p
T has a well de�ned asymptotic distribution, as expected from

Theorem 2. The R2 does not converge to 1, as T increases. Its distribution has a considerable mass at zero,
but values of 0.4 are not unusual.
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Figure 2: The graphs in the �rst column are the distributions of ^̄; the t-statistic under the null ¯ = 0; and
the R2 in Case 2, ± = 0; for T=100, and 750. The distributions of the same statistics, appropriately rescaled
to converge asymptotically, are presented in the second column. The variance of ^̄ decreases at rate T 2,
because the estimator is super-consistent, as proven in Theorem 3. The variance of the t-statistic increases
with the sample size, but t=

p
T has a well de�ned asymptotic distribution, as expected from Theorem 3.

The R2 does not converge to 1, as T increases. Its distribution has a considerable mass at zero, but values
of 0.4 are not unusual.
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Figure 3: The graphs in the �rst column are the distributions of ^̄; the t-statistic under the null ¯ = 1; and
the R2 in Case 3; ± = 0; for T=100, and 750. The distributions of the same statistics, appropriately rescaled
to converge asymptotically, are presented in the second column. The variance of ^̄ does not decrease as T
increases, because the estimator is not consistent, as proven in Theorem 4. In fact, higher values of T or
k (since k=[¸T ]) result in higher estimates of ^̄: The variance of the t-statistic increases with the sample
size, but t=

p
T has a well de�ned asymptotic distribution, as expected from Theorem 4. The R2 does not

converge to 1, as T increases. Its distribution has a considerable mass away from zero.
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Figure 4: The graphs in the �rst column are the distributions of ^̄; the t-statistic under the null ¯ = 1; and
the R2 in Case 4; ± = 0; for T=100, and 750. The distributions of the same statistics, appropriately rescaled
to converge asymptotically, are presented in the second column. The variance of ^̄ decreases at rate T 2,
because the estimator is super-consistent, as proven in Theorem 5. The variance of the t-statistic increases
with the sample size, but t=

p
T has a well de�ned asymptotic distribution, as expected from Theorem 5.

The R2 does not converge to 1, as T increases. Its distribution has a considerable mass away from zero.
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Figure 5: The asymptotic distributions of the rescaled statistics in all four cases are compared for ± = 0
and ± = 0:9: A correlation between "1;t and "2;t a¤ects the mean and the variance of the distribution in the
�rst case. The second and the fourth cases have identical asymptotic distributions. The variance only is
a¤ected. In case 3, the distribution of t=

p
T is invariant to ±.




