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A. C. Kollias, and W. A. Lester, Jr. 
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of California, Berkeley, CA 94720-1460, and Chemical Sciences Division, Lawrence 

Berkeley National Laboratory 

 

The solution mapping methodology is presented as a method of geometry optimization of 

molecules in the quantum Monte Carlo method.  Applied to formaldehyde as a test 

system, this approach is found to yield optimized bond lengths and bond angle in the 

diffusion Monte Carlo method that lie within experimental error.  The variational Monte 

Carlo optimized geometry also lies within experimental error, with the exception of the 

CH bond length, which is slightly underestimated.  Additionally, the resulting quadratic 

representation of the potential energy surface in the region of the minimum is used to 

calculate three of the force constants and harmonic frequencies. 
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I. INTRODUCTION 

The quantum Monte Carlo (QMC) method is a stochastic many-body approach to solving 

the Schrödinger equation.1-4 Although several techniques are used to provide optimized 

geometries in QMC5-9, there is presently no general method to address this need.  In ab initio 

basis set methods, analytical gradients of the energy with respect to nuclear positions are readily 

available, and are routinely used to determine critical points on the potential energy surface 

(PES).10-13  Although QMC methods yield molecular energies of high accuracy, they generally 

do not provide gradients of the energy with respect to the nuclear positions.  Therefore, QMC 

energies are traditionally calculated at PES critical points that have been taken from other 

methods.  To date, many QMC calculations have been carried out that validate this approach; see 

for example Refs. 14,15.  However, it would be beneficial to determine both the energies and 

locations of PES critical points, entirely within the QMC method. 

Difficulties arise in the direct evaluation of QMC derivatives due to terms involving the 

reciprocal of electron-nuclear distances, i.e., 
3

1/ irα

→ 
 
 

 found in the first derivative, and 
5
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found in the second derivative of the potential.  During sampling of the force, these terms in 

analytic derivative expressions cause calculated variances to grow rapidly.8  Caffarel et al. 

introduced a zero variance theorem for determining the Hellmann-Feynman forces.16,17  In this 

approach, terms that lead to large variance are canceled, making it possible to evaluate the 

average force with a relatively small variance.  Recently Casalegno et al.18  calculated forces by 

introducing correction terms to the Hellmann-Feynman force as proposed by Pulay.11  To date, 

such calculations have been carried out on several small diatomic systems and have led to good 

agreement with experimental bond lengths.  Tanaka7 has used the Car-Parrinello19 method to 

optimize the geometric and wave function parameters of the water molecule.  By introducing a 
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Lagrangian, the Euler-Lagrange equations generate dynamics for the geometric and wave 

function parameters.  The problem of geometry optimization is reformulated to solving classical 

equations of motion.  Forces are obtained using correlated sampling with fixed iterative 

derivatives.20  At present, water is the largest molecular system for which a VMC geometry 

optimization has been published.7 

Another reason the techniques of geometry optimization, as carried out in ab initio basis 

set quantum chemistry and density functional theory (DFT), are not directly applicable to QMC 

is the cost of optimizing trial wave function parameters.  In QMC, the trial wave function is often 

written as the product of an independent-particle function and a correlation function that depends 

explicitly on interparticle distances.  Ideally, the coefficients of both of these wave function 

factors would be optimized for a given geometry.  However, it is common practice to hold the 

independent-particle function fixed, and optimize only the correlation function to conserve 

computational effort.  In principle, one can determine the force on each atom and pursue a 

steepest descent to the optimal geometry, but the Slater determinant and correlation function 

must be re-optimized at each geometry.  For small systems one can readily construct an 

independent-particle function (single- or multi-determinant) for parameter optimization at each 

geometry with the QMC method.21  However, as system size grows, such an approach becomes 

impractical because of the computer time required.  A geometry optimization procedure along 

these lines for diffusion Monte Carlo (DMC) has recently been applied to diatomic systems by 

Fillipi et al.5,6 

In this study, we examine the alternative of computing an approximate QMC PES by 

employing the numerical approach of solution mapping.  In this approach, the minimum energy 

and optimal geometry can be determined solely based on QMC energies.  Our example molecule 
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is formaldehyde, which is optimized using only single point energy calculations from single 

determinant, effective core potential variational Monte Carlo (VMC) and DMC methods.  

Formaldehyde was chosen as a test case, because there is good experimental data on the 

geometry of the system and its size presents a nontrivial example of the methods proposed here. 

 

II. SOLUTION MAPPING 

The solution mapping (SM) methodology has evolved from the needs of reactive flow 

simulations of combustion processes,22,23 where the large size of reaction models has driven the 

development of economic numerical strategies.  In the SM approach an approximation is sought 

not to the mathematical equations that define the model, but to the solution of these equations.24  

The approximation is developed through the statistical techniques of response surface design,25-27 

by performing a relatively small number of computer experiments with the original model (QMC 

in the present case) and fitting the numerical results with simple functions such as polynomials.  

A statistical surrogate obtained in this manner is then used in subsequent numerical calculations 

(potential energy minimization in the present case), replacing the need for repeated solutions of 

the original equations. 

In the present study, we apply SM to develop a functional dependence of the potential 

energy of formaldehyde, computed with QMC, on geometric molecular properties.  We assume 

the optimal geometry to be planar and symmetric about the C-O bond, and hence the PES of 

formaldehyde to be defined by three internal coordinates: the C-O bond length, the C-H bond 

length, and the OCH angle.  Conventionally, for the field of mathematical statistics, the internal 

coordinates are expressed in a dimensionless variable through the transformation 

,center-i i
i

i

s s
x

s
=

∆
 (1) 
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where si is the ith internal coordinate, si,center the center about which si is varied, and ∆si the span 

of si.  The centers were set at the experimental values of r(C═O) = 1.21 Å, r(C–H) = 1.12 Å, and 

∠OCH = 121°.28  The spans were 0.05 Å in the bond lengths and 3° in OCH angle, or 5 times the 

experimental error in the bond lengths and 3 times the experimental error in the OCH angle.  Our 

choice of ∆s values is a compromise between accuracy of the approximation to the PES, which 

increases as variable spans decrease, and mapping the largest possible area. 

The computer experiments are performed at preselected combinations of the factorial 

variables, and the set of these computer experiments is called a factorial design.  Factorial 

designs originate from rigorous analysis of variance, with the objective of minimizing the 

number of computer experiments that must be performed in order to gain the desired 

information; for further discussion see Refs. 25-27. 

A 23 central composite orthogonal design,29 shown in Table I, was employed in the 

present study.  This notation implies that the design is geared toward producing a quadratic 

approximation to a function of 3 independent variables.  As can be seen in Table I, the design 

consists of a total of 15 computer experiments.  The first 8 of these are performed at the corner 

points of the chosen region, and the 9th point is at the center of the region.  The remaining 6 

computer experiments are at “star” points, which are defined so that the columns of the design 

matrix are orthogonal. 

The results of VMC and DMC single-point energy calculations for each of the computer 

experiments in the design matrix, are presented in Table I.  These QMC energies were fit to the 

following second-order polynomial of the factorial variables, 

( ) ( ) ( )2 2 2 2 2 2
1 2 3 0 1 1 2 2 3 3 11 1 1 22 2 2 33 3 3

12 1 2 13 1 3 23 2 3

( , , )

,

V x x x b b x b x b x b x x b x x b x x

b x x b x x b x x

= + + + + − + − + −

+ + +
 (2) 
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where the square terms are re-centered by their respective averages, 
15

2 2
,

1

1
15i u i

u
x x

=

≡ ∑ , to attain 

column orthogonality of the extended design matrix yielding 

[ ]0 1 2 3 11 22 33 12 13 23=X x x x x x x x x x x . (3) 

In Eq. (3), the xi and xij are orthogonal column vectors, with 0 ≡x 1 , 2 2
ii i i= −x x x , and ij i j=x x x .  

The X matrix rows are the values that the column vectors x assume in the computer experiments 

prescribed by the factorial design.  Under these conditions the matrix ( ) 1T −
X X  is diagonal, and 

the coefficients in Eq. (2) are determined by 

15

,
1
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1
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=

=
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∑
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where Xu,k is the (u,k)-th element of matrix X or the value of the kth variable, xk, in Eq. (3) 

realized in the uth computer experiment.  The subscript k in this notation spans all the indices of 

the column vectors in Eq. (3).  With Eq. (2) established, the minimum energy and optimized 

geometry, for each of the QMC methods, was determined by numerical optimization of the 

respective polynomials constrained to the chosen domain, namely,  [–1, +1] of the factorial 

variables. 

The energy found in each QMC calculation has an uncertainty, which results in an 

uncertainty in the statistical surrogate to the PES, and all properties that are derived from it.  The 

uncertainty of a point on the response surface can be evaluated by calculating the variance of 

Eq. (2).  By virtue of the orthogonality of the columns of X, and the consequent independence of 

the estimates of all b’s in Eq. (2), the variance of the potential energy estimate at a given 

point, 1 2 3( , , )x x x , is 
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( ) ( )
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where the variance of the coefficients is given by 

{ }
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∑
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and { }2
uVσ is the variance of the uth QMC energy calculation.  Inspection of Eq. (5), shows that 

the uncertainty in the response surface is small for points near the center of the design, s = scenter,  

where the values of xi are close to zero, and grows larger at the edges of the fitted region, where 

the values of ix  approach unity. 

III. QMC METHODOLOGY 

The DMC method is a stochastic approach for obtaining time independent solutions to 

the Schrödinger equation by solving the time-dependent Schrödinger equation in imaginary  

time 1-4,9,30-34.  Fermion antisymmetry is introduced through the fixed-node approximation 

(FNA), which imposes the nodes of an approximate function  ΨT  onto the unknown exact 

function Φ .  The FNA has been found to provide accurate results for ground and excited states 

with trial functions constructed using various ab initio basis set methods.  The introduction of 

information about the system from another source is the essence of importance sampling,35 

which improves convergence to the state of interest.  In the DMC method the propagation walker 

distribution is achieved with the short-time approximation, which provides an analytical 

approximation to the Green's function.36   
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In the present study   ΨT  is written as a product of a single determinant D and a correlation 

function ( ),i ijU r rα , 

( )( )exp ,t i ijD U r rαΨ =  (7) 

 where ( ),i ijU r rα  depends explicitly on interparticle coordinates.  The orbitals of the single 

determinant in this study are Hartree-Fock (HF) and natural orbitals (NOs) obtained from HF and 

MCSCF calculations using the GAMESS quantum chemistry package.37 

The form chosen for ( ),i ijU r rα  is the 9-parameter function adapted by Schmidt and 

Moskowitz38 from a function introduced by Boys and Handy (SMBH).39  This function contains 

two- and three-body terms in the form of electron-electron, electron-nucleus, and electron-other-

nucleus distances.  The SMBH correlation function contains first-order Jastrow terms that enable 

satisfying electron-electron and electron-nuclear cusp conditions.40 The present DMC 

implementation includes a tenth function to satisfy the electron-nucleus cusp condition.  The 

optimization of correlation function parameters is accomplished through fixed sample 

optimization using the absolute deviation (AD) functional41,42 that minimizes the energy of  ΨT  

and is given by, 

T L
1

1
i

N

i
AD E E

N =

= −∑  . (8) 

Here N is the number of walkers, Li
E  is the local energy of the ith configuration, and ET is 

reference energy chosen to minimize fluctuations. 

The two trial functions were constructed from HF and single determinant MCSCF 

calculations.  The C and O 1s atomic cores were replaced by Steven-Basch-Krauss (SBK)43 and 

soft effective core potentials (ECP).44,45  The NOs for the MCSCF trial function were derived 
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from a small MCSCF calculation that included 30 virtual and all occupied valence orbitals in the 

active space.  Due to computational constraints the soft ECPs were implemented for the HF trial 

wave functions while SBK ECPs were utilized for the MCSCF trial function. 

The uncontracted Partridge basis set46 was used with soft ECPs45 for  C and O  and the 

cc-pVTZ basis set was introduced for  H .  The Partridge basis set was modified by the addition 

of a single d polarization basis function for O and C.  At each geometry, the d basis function was 

variationally optimized at the HF level of theory.  Optimization of the d basis functions on H 

resulted in negligible improvement in the HF energy (<0.1 kcal/mol).  The final optimized 

exponents are presented in Table II.  For the MCSCF calculations the cc-pVQZ basis was used 

with the SBK ECPS.. 

IV. GEOMETRY OPTIMIZATION 

QMC energy calculations were performed at the 15 points of the factorial design using 

DMC and VMC.  With each method, two different trial wave functions were employed: HF with 

soft-ECPs, and MCSCF with SBK ECPs.  For each combination of QMC method and trial wave 

function, a statistical surrogate for the PES was obtained.  The QMC energies are reported in 

Table I, and the coefficients of the quadratic fits are listed in Table III.  The accuracy of the 

statistical surrogate can be assessed by the root mean squared (RMS) error, and the maximum 

deviation of the fitted surface from the QMC energies.  The accuracy of the statistical surrogate 

is generally good, with RMS errors of 0.51 kcal/mol or less, as shown in Table IV.  However, 

there are points of significant error, such as the statistical surrogate, the PES, for the VMC 

energies obtained with the MCSCF trial function.  In this case there is a point where the 

statistical surrogate and the calculated QMC energy differ by 1.37 kcal/mol.  This error is most 

likely due to a combination of the non-quadratic shape of the true PES, and the uncertainties in 
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the QMC energies.  However, in each case, it can be seen that the one standard deviation (1 σ) 

uncertainty in the statistical surrogate is significantly lower than that of the individual QMC 

energy calculations. 

The statistical surrogates were used to find the minimum total energies and optimal 

geometries of the molecule.  With the HF trial wave function, the optimized DMC geometry is 

within the uncertainty of the experimental values, as shown in Table V.  For DMC with the 

MCSCF trial wave function, the optimized C-O bond length and OCH angle lie within the 

experimental uncertainties, yet the C-H bond length is slightly shorter than the experimental 

value.  For both trial wave functions tested, the VMC optimal geometry lies within experimental 

uncertainty, with the exception of the C-H bond length.  It is interesting to note that the C-H 

bond length is predicted to be shorter than the experimental value for three of the four methods 

and trial wave function combinations used.  Additionally, the C-H bond length was the only 

geometric parameter that was predicted to lie outside experimental uncertainty, which suggests a 

systematic difficulty in predicting this property.  It is also worth noting that the VMC geometries 

are only slightly less accurate than the DMC results and that a VMC energy calculation requires 

roughly one tenth of the computational expense of the corresponding DMC calculation. 

The global minimum of the PES defines the optimal geometry, and thus the uncertainty in 

energy leads to an uncertainty in optimal geometry.  Having a PES region parameterized with a 

simple algebraic expression, Eq. (2), enables us to examine the nature of the uncertainties in a 

detailed manner.  By solving Eq. (2) for the internal coordinates, with V = Vmin + σ, where Vmin is 

the minimum of Eq. (2) and σ is taken from Eq. (5), the results can be visualized either as an 

energy isosurface in all three dimensions, or as a two-dimensional cross-section by setting one of 

the geometric parameters to its optimized value. 
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Figure 1 displays such results for DMC geometries obtained with the HF trial function.  

The ranges of the computed 1-σ  region are quite similar to the reported experimental 

uncertainties, roughly ±0.01 Å for the bond length, and ±1° for the OCH angle.  The ranges of 

the computed 1-σ  region for the VMC PES with the MCSCF trial wave function, shown in Fig. 

2, are somewhat larger; roughly ±0.018 and ±0.03 Å for the C-O and C-H bonds, respectively, 

and ±1.25° for the OCH angle.  In the case of the MCSCF VMC surface, the computed region of 

uncertainty extends beyond the fitted area.  Still, the optimal geometry lies well within the fitted 

region and the uncertainties can be determined by considering the symmetry of the quadratic 

surface.  The uncertainty ranges for each of the method and trial wave function combinations are 

reported along with the optimized geometric parameters in Table V. 

V. FORCE CONSTANTS AND FREQUENCIES 

Using the statistical surrogate to the PES, it is also possible to calculate some of the force 

constants and vibrational frequencies.  Only three internal coordinates were used to map the PES, 

thus the force constants and vibrational frequencies can only be determined for the: C-O stretch, 

C-H symmetric stretch, and the C-H bending modes.  The force constants and normal mode 

frequencies were determined using Eq. (2) and the method of Wilson et al.47  The results are 

reported in Table VI, in the symmetry coordinates given in Ref. 48.  Inspection of these results 

indicates that the errors in the force constants and the vibrational frequencies are sizable.  (it is 

pertinent to mention that such error levels are not uncommon for ab initio methods.)  The 

relatively large errors in the present method originate from the double differentiation of Eq. (2), 

and improving the quality of fit, through a smaller fitting domain or using other designs, can 

reduce them. 

The propagation of the variance in the QMC energy calculations contributes to the errors 
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in frequencies.  The latter can be determined from the coefficients of the second order terms in 

Eq. (5).  The uncertainty in the harmonic frequencies is more difficult to characterize.  We 

estimated the uncertainty approximately by calculating the change in frequency associated with a 

change of σ in the force constants, or  

( ) ( )
2

F FF F
ν

ν σ ν σ
σ

+ − −
≈  (9) 

The calculated uncertainties in the force constants and frequencies are shown in Table VI.  In 

most cases, they are systematically larger than the QMC variance.  This suggests the existence of 

systematic errors, and the most likely source is the accuracy of the quadratic approximation of the 

PES, Eq. (2), as discussed above. 

VI. CONCLUSIONS 

This study demonstrates that QMC, aided by SM, can be used to reliably perform 

geometry optimizations of polyatomic systems.  A statistical surrogate for the PES was 

determined for a relatively large region, and with DMC and a HF trial function, the optimal 

geometry was found to lie within experimental error.  For the DMC with MCSCF trial function 

and the VMC optimal geometries, only the predictions of C-H bond length lie outside the 

experimental uncertainty.  Additionally, the total energy, force constants, and vibrational 

frequencies were determined.  The accuracy of the force constants and vibrational frequencies 

were relatively low and indicate that further work is needed to improve these properties in the 

present approach: one could, for example, improve the accuracy of the frequencies by treating a 

smaller region of the PES, by employing a better functional form for the statistical surrogate, by 

using an improved factorial design, and by reducing the variance of the QMC calculations. 

In general, the solution mapping methodology provides an analytical framework for 
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conducting a series of numerical experiments and developing accurate numerical models.  The 

approach has two properties that make it particularly well suited for use with QMC.  First, a 

minimum number of calculations are required to develop the approximate PES, which is of 

paramount importance because of the high computational cost of QMC calculations.  Second, the 

resulting surface generally has a variance that is lower than the variance of the individual 

computer experiments.  Consequently, the approach results in energy predictions that are more 

accurate than those directly obtained from the QMC calculations, and moderates the 

computational expense of geometry optimization so that polyatomic systems can be effectively 

studied. 
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TABLE I.  A 23 central composite orthogonal design of computer experiments (α = 1.215) and 

the calculated energies.  The factorial variables x1, x2, and x3 represent the C-O and C-H bond 

lengths and the OCH angle, respectively. 

Factorial variables  Energies (a.u.) Computer 
experiment x1 x2 x3  VMC/HFa VMC/MCSCFb   DMC/HFa DMC/MCSCFb

1 1 1 1  -22.771902 -22.781235 -22.831317 -22.838882 

2 1 1 –1  -22.771458 -22.782648 -22.831180 -22.841812 

3 1 –1 1  -22.778289 -22.789659 -22.836486 -22.843913 

4 1 –1 –1  -22.780129 -22.794528 -22.837767 -22.847728 

5 –1 1 1  -22.779199 -22.790564 -22.837084 -22.843830 

6 –1 1 –1  -22.777801 -22.786542 -22.834080 -22.842110 

7 –1 –1 1  -22.782454 -22.795032 -22.838092 -22.842738 

8 –1 –1 –1  -22.781878 -22.792426 -22.836544 -22.846043 

9 0 0 0  -22.785688 -22.799110 -22.843844 -22.850806 

10 α 0 0  -22.777967 -22.789146 -22.837378 -22.843221 

11 –α 0 0  -22.782583 -22.793107 -22.839235 -22.846519 

12 0 α 0  -22.777506 -22.790659 -22.839188 -22.845898 

13 0 –α 0  -22.784607 -22.795886 -22.840857 -22.851588 

14 0 0 α  -22.785676 -22.791812 -22.842597 -22.849443 

15 0 0 –α  -22.784442 -22.793120 -22.841076 -22.846355 

aTrial function with HF orbitals.  The C and O 1s cores were replaced by a soft ECP44,45  and the 
remaining electrons were described by the Partridge basis set;46 H  was described by the  
cc-pVTZ basis set. 
bFrom reference 45; a single reference trial function using natural orbitals (NOs) obtained from a 
MCSCF calculation with double excitations of all valence electrons into 30 virtual orbitals.  The 
C and O 1s cores were replaced by SBK ECPs43 and the remaining electrons were described 
using the cc-pVQZ basis set.  
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TABLE II.  Hartree-Fock optimized d-polarization basis functions for C and O atoms. 

Atomsa Computer 
experiment C O 

1 0.856687 0.954891 

2 0.848945 0.956350 

3 0.886927 0.958964 

4 0.872974 0.959773 

5 0.945166 1.056393 

6 0.936912 1.057879 

7 0.970295 1.062937 

8 0.957129 1.063311 

9 0.905953 1.007276 

10 0.858770 0.948128 

11 0.961989 1.074231 

12 0.891856 1.004575 

13 0.921809 1.010570 

14 0.911303 1.006296 

15 0.899330 1.006703 

 

aThe uncontracted Partridge basis set46 with the soft ECP for C and O ,44,45 was augmented with 

optimized d-polarization functions. 
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TABLE III.  The coefficients of the quadratic approximation to the PESa in hartrees.  

VMC  DMC 

Coefficientsb HFc MCSCFd  HFc MCSCFd 

b0 -22.7860 -22.7970  -22.8443 -22.8508 

b1 2.2972 1.9452  1.0322 0.5837 

b2 2.8318 3.3784  1.5753 1.8900 

b3 -0.1897 0.1135  -0.4799 0.4178 

b11 3.9480 3.5144  4.1593 4.0387 

b12 0.9657 1.2440  1.0355 1.0133 

b13 0.4212 1.6137  0.7120 0.6450 

b22 3.4190 2.0617  2.9976 1.4169 

b23 -0.3882 -0.6090  -0.3592 -0.7388 

b33 0.7095 2.6077  1.7697 1.9883 
aThe energies are fit to a function of the form given in Eq. (2).  

bCoefficients b1 through b33 are multiplied by 31 10×  

cSee footnote a of Table II for description of trial function.  

dSee footnote b of Table II for description of trial function. 
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TABLE IV.  The accuracy of the QMC energy calculations and the error in fitting the QMC 

energies to the statistical surrogate, in kcal/mol. 

Method Average σQMC RMS fitting error 
Maximum 

deviation in 
fitted points 

σ of 
statistical 
surrogate 

VMC     

     HFa 0.36 0.164 0.37 0.23 

     MCSCFb 0.42 0.489 1.37 0.25 

       

DMC     

     HFa 0.23 0.26 0.77 0.15 

     MCSCFb 0.37 0.51 1.29 0.22 

aSee footnote a of Table II for description of trial function.  

bSee footnote b of Table II for description of trial function. 
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TABLE V.  The minimum energies and optimized geometries found with the VMC and DMC 

methods.  The computed uncertainties, from the ranges of the isosurface Vmin + σ, are listed in 

parentheses. 

Optimal geometry 
Method Minimum energy 

(a.u.) 
r(C═O) (Å) r(C–H) (Å) ∠COH (°) 

VMC     

      HFa -22.7868295 1.197(15) 1.101(15) 121.3(2.25) 

     

      MCSCFb -22.7984708 1.204(18) 1.08(3) 120.8(1.25) 

     

DMC     

      HFa -22.8445736 1.20(1) 1.11(1) 121.4(1.0) 

     

      MCSCFb  -22.8515749 1.212(15) 1.08(15) 120.2(1.13) 

     

Experimentc — 1.21(1) 1.12(1) 121(1) 
aSee footnote a of Table II for description of trial function.  

bSee footnote b of Table II for description of trial function. 

cReference 28. 
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TABLE VI.  The force constants, F, and vibrational frequencies, ν, for the three normal modes 

represented by the statistical surrogate.  Units of force constants are mdyn Å-1 for stretching,  

mdyn Å for the bending modes, and cm-1 for frequencies.  The uncertainties are given in 

parentheses. 

C-O stretch C-H stretch C-H bending 
Method 

F ν F ν F ν 

VMC       

HF 13.8(1.9) 1820(194) 5.96(70) 3311(43) 0.38(21) 1275(88) 

MCSCF 12.3(2.2) 1639(59) 3.59(82) 2759(85) 1.38(25) 2327(173)

       

DMC       

HF 14.5(1.2) 1785(56) 5.23(46) 3109(60) 0.94(14) 2087(55) 

MCSCF 14.1(2.0) 1732(106) 2.47(74) 2446(75) 1.05(22) 1975(146)

       

Experimentc 12.903(62) 1764(17) 4.963(34) 2944(100) 0.570(4) 1563(15) 

aSee footnote a of Table II for description of trial function.  

bSee footnote b of Table II for description of trial function. 

cReference 48. 
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Figure Captions 

FIG. 1.  Visualizations of uncertainties in optimal geometry using Eq. (2) for the DMC 

calculations with HF trial wave function: (a) The Vmin + σ isosurface; (b) ∠OCH held to the 

optimal value; (c) r(C–H)  held to the optimal value; and (d) r(C═O)  held to the optimal value.  

The white ellipsoid in b, c, and d is the Vmin + σ region.  Potential energy is reported in a.u., bond 

lengths in Å, and bond angle in degrees. 

 

FIG. 2.  Visualizations of uncertainties in optimal geometry using Eq. (2) for the VMC 

calculations with MCSCF trial wave function: (a) The Vmin + σ isosurface; (b) ∠OCH held to the 

optimal value; (c) r(C–H) held to the optimal value; and (d) r(C═O) held to the optimal value.  

The white ellipsoid in b, c, and d is the Vmin + σ region.  Potential energy is reported in a.u., bond 

lengths in Å, and bond angle in degrees. 
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