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Abstract

Nonperiodic Silicon Photonic Devices for Nonlinear Photon Generation and Multimode
Design for Optical Computing

by

Zhetao Jia

Doctor of Philosophy in Engineering — Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Boubacar Kanté, Chair

Integrated photonics has experienced significant growth in both academic research and in-
dustry startups. Chip-scale photonic devices are transforming key areas including communi-
cation, computing, sensing, navigation, and augmented/virtual reality (AR/VR). However,
challenges in current platforms hinder the practical application of these technologies. Specif-
ically, weak materials nonlinearities have limited direct on-chip photon generation for both
classical and quantum light sources, and also existing photonic devices’ bandwidth for com-
munication/computing is not meeting current demands.

The goal of this thesis is to provide possible solutions to the two issues in silicon photon-
ics. First, I will discuss using topological structures to enhance the transport and nonlinear
frequency generation in silicon photonics. We propose a non-periodic photonic system with
a structural disorder that confines light near the system boundary, enhancing the nonlinear
photon generation rate compared to periodic systems. Next, I will introduce a systematic
inverse-design method, aiming to boost the efficiency of on-chip nonlinear photon generation,
along with a physical interpretation of these results. Specifically, I will present our experi-
mental demonstration of a compact, robust, and efficient entangled photon pair source based
on spontaneous four-wave mixing, achieving a generation rate of 1.1MHz and a coincidence
to accidental ratio of 162. This method can also be generalized for other nonlinear optical
processes. In the second part of the thesis, I will show the possibility of expanding the optical
computing bandwidth with a mode-division multiplexing (MDM) strategy, offering a new
degree of freedom in optical computing with the micro-ring resonator platform. I will outline
an MDM strategy suitable for small-scale neural networks and a multi-dimensional architec-
tural approach for large-scale optical computing applications. I will present the experimental
results of our device for matrix multiplication fabricated at foundry.
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optics and photonics, with my previous background in acoustics before joining the group.
His broad research interests, commitment to excellence and innovation, and direct way of
communication profoundly influenced my PhD work. I am particularly thankful for his
support in my venture into silicon photonics, a new direction for our group. He provided his
best support and always pushed the limit of our work, which turned out to be fruitful. I owe
a debt of gratitude to Prof. Eli Yablonovitch for his insightful guidance and visionary views.
His intuitive approach to research taught me to look critically at concepts and terminologies
that are presented with over-complexity. Our weekly joint group meetings that explored
the history of semiconductors, optics, and beyond had been immensely educational and
transformative. I would like to acknowledge Prof. Joel Moore for his valuable advice through
our collaboration and Prof. Ming Wu for his excellent lectures and kind support with lab
equipment. My appreciation also goes to Prof. Stefan Preble, of Rochester Institute of
Technology, for introducing me to foundry-level fabrication and testing, which significantly
broadened my understanding of silicon photonics.

I am also grateful for my friends and colleagues, who have made my PhD journey not
only educational but also enjoyable and memorable. I am very fortunate to start and finish
my PhD alongside Rushin and Mutasem. Rushin is extremely patient and approaches life
with grace and composure. I could always count on him when I needed someone to bounce
ideas off of, and he always shared his knowledge with such clarity. Mutasem was the one who
introduced me to silicon photonics and had been a constant companion during the time we
spent in the cleanroom and discussed physics concepts. His perspectives greatly broadened
my views on academia and industry and had always been inspiring.

I’m deeply thankful to Matteo and Jagang for their patient mentorship. Matteo’s elegant
writing style and serious attitude toward the fundamentals significantly improved my own
research and writing skills. His support during challenging times was indispensable. Jagang’s
keen understanding of our subject matter and deep insights into physics have been a source
of constant learning for me. I want to thank my collaborator Wayesh for his patience in the
discussion and consistent support in fabrication.

I would also like to thank Junhee, Wanwoo, and Whimin for their guidance during the
early years of my PhD. Their advice on how to lead a meaningful doctoral career is invaluable.
In addition, Keke’s curiosity and profound grasp of the fundamental concepts had been
inspiring, and our lunchtime discussions had always been both enjoyable and enlightening.
A special thanks go to Sean Hooten for training me in inverse design and providing valuable
project advice. I would like to thank Alex and Elizabeth for their teachings in topology. I am
also grateful to Hector and Lilian for showing me how to use experimental setups effectively.



xii

To the rest of my colleagues–Walid, Liyi, Kevin, Zhanni, Yertay, Emma, Lanyi, and
Difan, working alongside with you had made daily life in the office much more pleasant.
Your camaraderie and collaboration have been a constant source of joy and learning.

My PhD career would not be this happy without the support from my fiancée Meilin.
Your patience and joy made the past five years shine in my life, saving me from being jaded
by the day-to-day office work routine. I can’t wait to start the next journey with you with
our wedding next year.

Last but most importantly, I would like to thank my parents for their unconditional
support and love. You show me how to be a nice person. And you encouraged me and
allowed me to have the opportunity to study the subject that I have a passion for.



1

Chapter 1

Introduction

1.1 Motivation

The reduction in the size of integrated circuits has significantly advanced everyday electronic
devices. Over the past five decades, Moore’s law has been a general guidance to scale down
the transistors, driving innovations to double the number of transistors every two years.
Beyond size reduction, smaller devices achieve higher operating frequencies and lower power
consumption per operation, as per “Dennard Scaling”. The downsizing makes the integration
of more complicated systems possible, which enables more functionalities. In the meantime,
the smaller footprint of each component also reduces the cost of the device, thanks to batch
fabrication techniques. Driven by all the benefits, the semiconductor foundry has overcome
various challenges to make smaller and smaller transistors.

The idea of building integrated photonics with the existing platform of integrated circuits
greatly speeds up the development of the on-chip system with light. The benefits of scaling
can hopefully also be applied to optical devices, without an additional fifty years’ effort
and billions of dollars to improve the fabrication workflow. Since the concept of integrated
photonics was proposed, there has been a lot of effort spent both in academia and industry
towards the goal of making useful integrated photonics devices. Despite many applications
of integrated photonics are still in the early stage, it has great potential to revolutionize the
existing platforms or products (Fig. 1.1). The optical transceiver, for example, has been
widely used in data communication platforms to improve the communication bandwidth.
There has also been many companies and startups actively working on Light Detecting and
Ranging (LiDAR) system and optical gyroscope for navigation purposes. The integrated
photonics navigation devices can be a critical component for autonomous driving vehicles.
The integrated photonics technologies can also be used for health monitoring by, for example,
measuring the reflection spectrum. In addition, motivated by the large energy consumption
in machine learning related computation, researchers envision that the integrated photonics
technologies can improve the performance of existing computing platforms, in classical or
quantum computing regimes. More applications of compact integrated photonic devices
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Figure 1.1: Existing and emerging applications of silicon photonics.

across diverse fields remain a dynamic research area with promising potential.

1.2 Constraints of silicon photonics technologies

Micro-ring resonator

A useful component in the integrated photonics platform is micro-ring resonators[1], which
is a closed loop (e.g. circle or racetrack shape) formed by the waveguide. The simple ge-
ometry leads to convenient implementation in fabrication. With the coupling waveguide,
the micro-ring structure can be used as a filter as shown in Fig. 1.2. In Fig. 1.2(a), a
micro-ring resonator is coupled to a single bus waveguide, which is connected to two grating
couplers for coupling the light between free space and the chip. The transmission spectrum
is measured and normalized, shown in Fig. 1.2(b). At resonance wavelengths, the incident
photons are extracted to the micro-ring resonator and absorbed. Therefore, this configura-
tion makes a simple and efficient filtering device. With thermal tuning or plasma dispersion
effect, the resonance frequencies can be tuned and the intensity at the output port can be
modulated. In practice, the micro-ring can also be applied in increasing the bandwidth of
data communication. By using micro-ring resonators of slightly different sizes along with
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active tuning mechanisms, the light modulated at different frequencies can be transmitted
through the same waveguide, hence increasing the communication bandwidth. This method
for increasing the bandwidth is called “Wavelength-Division Multiplexing”(WDM).

(a)

(b)

Figure 1.2: Transmission spectrum of a single micro-ring resonator. (a) Layout of
the device. Two grating couplers are used for input (output). (b) Measured transmission
spectrum of the micro-ring resonator.

In addition, the micro-ring resonator is a good candidate for nonlinear processes, espe-
cially four-wave mixing. In Fig. 1.3, the inset shows the energy diagram for a four-wave
mixing process. In the degenerated stimulated four-wave mixing process, two pump pho-
tons and a signal photon produce an idler photon, where the energy is conserved. In the
micro-ring structure, the pump, signal and idler frequencies can be chosen at the resonances.
In this way, the resonances enhance the intensity of the inputs, which increases the gen-
eration efficiency of idler photons. In Fig. 1.3, the output spectrum is measured with two
continuous-wave lasers as inputs at pump and signal frequencies. As shown in the spectrum,
the idler photons are generated due to the nonlinearity.
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Figure 1.3: Stimulated four-wave mixing in a micro-ring resonator. The measured
output spectrum illustrates the generation of the idler photons. Inset: schematic of energy
diagram for the four-wave mixing process.

Constraints of micro-ring resonator

While micro-ring resonators are useful, their applications face limitations due to constraints
in fabrication variation, device footprint, nonlinear conversion efficiency, and modulation
bandwidth.

Fabrication: For commonly used micro-ring resonators, the light is confined inside the
waveguide, which leads to its sensitivity to fabrication. An example is shown in Fig. 1.4,
where nine identical micro-rings are coupled to the same bus waveguide. Ideally, nine micro-
ring resonators should have the same resonant frequencies, therefore deep, isolated dips are
expected in the spectrum. In practice, however, due to fabrication imperfection, multiple
dips are shown, corresponding to different micro-rings, and active tuning methods have to
be used for calibration.

Footprint: The footprint of micro-ring resonator is limited by the scattering loss. As
the bending radius goes below 5um in a silicon micro-ring, the scattering loss increases
significantly, preventing the total footprint from going below 100µm2.

Nonlinear efficiency: The nonlinear efficiency is low and is sensitive to the thermal
effect in practice. As an example, in Fig. 1.3, the conversion ratio from signal frequency to
idler frequency is less than -30dB, which needs to be improved.

Bandwidth: The multiple resonances in the micro-ring resonator prevent the use of the
full spectrum in WDM. The resonances of multiple ring resonators need to fit within a free
spectral range to avoid crosstalk. Ideally, each device should modulate a single wavelength,
and the entire spectrum can be utilized. With the increase in the need for communica-
tion bandwidth, new approaches are needed to enable a larger bandwidth in WDM-related
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(a)

(b)

Figure 1.4: Transmission spectrum of nine identical micro-ring resonators coupled
to the same bus waveguide. (a) Layout of the device. (b) The measured transmission
spectrum shows the fabrication variation of the micro-rings.

applications.

1.3 Periodic and nonperiodic structures

In this thesis, I will first discuss the possible approaches to enhance nonlinearity with non-
periodic structures. The first question to ask is what is the difference between periodic and
nonperiodic systems, in terms of bandgap and mode distribution? Here, we draw ideas from
nonperiodic materials and introduce different types of disorders for nonperiodic photonic
systems.

Periodic and amorphous materials

Electronic bandgap exists in crystalline materials due to the energy difference between the va-
lence band and the conduction band. In amorphous silicon, despite its nonperiodic structure,
it has been observed that a bandgap also exists (1.5(a)). Historically, there had been a lot
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(a) (b)

Figure 1.5: Bandgap in both crystalline and amorphous silicon. (a) Energy gap in
both single crystal and amorphous silicon (germanium) [2]. (b) A schematic figure for the
structure of amorphous silicon with a fixed coordination number [3].

of research interest in understanding the phenomena, which was then successfully explained
by Weaire and Thrope in the 1970s. The amorphous structure in silicon or germanium has
a fixed coordination number, i.e., each atom shares the same number of bonds (four in this
case) with its neighbors as illustrated in Fig. 1.5. In Ref. [3], Weaire and Thrope adopt a
tight-binding model to show that bandgap exists. Their findings not only shed light on the
properties of amorphous silicon but also provided insights into, for example, the transparency
of glass, which is composed of amorphous silicon dioxide.

Types of Disorder

The way that amorphous silicon/germanium breaks the periodicity can be identified as a
special type of disorder called structural disorder. Structure disorder maintains a fixed
coordination number while breaking the periodicity, which can be easier to visualize in the
2D case. The structural disorder is different from other types of disorder, for example,
potential disorder, where each atom/resonator in the system can be slightly different from
one another; or positional disorder, where the position(s) of one or more atoms are shifted,
introducing additional coupling beyond the original nearest neighbors. We will use structural
disorder and potential disorder in the following sections to enhance the nonlinearity.
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Figure 1.6: Different types of disorder.

1.4 Outline of the thesis

This thesis targets performance enhancements in the current silicon photonics platform, fo-
cusing on nonlinear photon generation and optical bandwidth for computing. In Chap. 2,
I will first introduce the basics of topological insulators and topological photonics. I will
discuss the use of topological structures to enhance transport based on arrays of micro-ring
resonators and propose a novel nonperiodic photonic topological system with structural dis-
order to confine light effectively near the system boundary. The platform maintains edge
propagation even in the presence of Kerr nonlinearity, which enhances the nonlinear photon
generation rate compared to conventional periodic systems. In Chap. 3, I will discuss the
generalized phase matching conditions for nonlinear light generation in a non-conventional
cavity. I will then introduce a systematic inverse-design method for nonlinear optical sys-
tems. I will present our experimental demonstration of a compact, robust, and efficient
entangled photon pair source and provide a physical interpretation based on potential dis-
order for the inverse-designed device. In Chap. 4, I will introduce the idea of optical neural
networks and I will show the concept of mode-division multiplexing that can be combined
with wavelength-division multiplexing. As a demonstration, I will show the experimental
results of components and the system for mode-division multiplexing in combination with
wavelength-division multiplexing. In Chap. 5, I will conclude the thesis and propose poten-
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tial future directions.
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Chapter 2

Enhancing nonlinearity with
structural disorder: amorphous
topological systems

2.1 Introduction

Disorder in two-dimensional electronic systems leads to a wide range of topological phe-
nomena, including integer and fractional quantum Hall effects, in which impurities resulting
from the sample fabrication process break the degeneracies of Landau levels and localize
the wavefunctions at almost all energies [4, 5, 6, 7]. Such localization is the direct cause
of quantized plateaus in the Hall conductance, as the localized states do not contribute to
the particle transport and the quantization plateaus would cease to exist in an ideal clean
sample [4, 8, 9].

The hallmark of topological phenomena in two-dimensional finite-size systems is the ap-
pearance of a transport channel that is robust to disorder [10]. The robustness to disorder
has been investigated and exploited in many wave-based phenomena including photonics,
microwaves, acoustic, and plasmonics, to conceive devices potentially more robust to manu-
facturing imperfections that usually degrade the performance of classical systems and cause
decoherence in quantum systems [6]. Topological transport, occurring along boundaries, can
be unidirectional and immune to back-scattering, provided that the disorder is not strong
enough to close the mobility gap. The unique robustness of topological transport has led
to advanced device concepts, including topological delay lines, topological lasers, topological
frequency combs, and topological quantum light sources [11, 12, 13, 14, 15, 16, 17, 18, 19].
However, most attention has focused on the treatment of potential disorder, i.e., on spatially
local random potentials. A different type of disorder, known as structural disorder, has long
existed in nature, for example in amorphous silicon. In this non-crystalline form of silicon,
the local connectivity is preserved, since each silicon atom is bonded to four adjacent neigh-
bors, but long-range structural order is lost. Nevertheless, a mobility gap in amorphous
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matter has been observed [3, 20]. More recently, topological phenomena have been observed
in non-periodic systems [21, 22, 23, 24, 25, 26]. These findings lead to a natural question
to ask: beyond preserving topological properties, can disordered topological systems outper-
form their periodic counterpart? We propose a structurally disordered system that exhibits
a nontrivial topological phase, characterized by a non-uniform synthetic magnetic flux. We
show that, in the presence of nonlinearities, the structurally disordered system prevents the
ultrafast leakage of energy from topological modes to bulk modes, enhancing nonlinear phe-
nomena. As an example, we demonstrate that the longer confinement of light can lead to
an order of magnitude increase in the generation rate of correlated photon pairs compared
to periodic topological platforms.

2.2 Theory

Basic idea of topological insulator

The Quantum Hall effect, a pivotal discovery in condensed matter physics, demonstrates
quantized conductance in “dirty” samples. Despite the impurities creating potential disorder
in the sample, the possible values of conductance are still proportional to integer values and
remain the same even when the external magnetic field is perturbed. Such robustness is
also highly desired in practical applications, which can lead to efficient transport of electrons
or photons along the boundary of the system. The robustness can be quantified by the
topological index. A simple example is that for a closed system, we can define the topological
index as the number of eigenmodes below a certain energy threshold. The topological index
remains invariant provided perturbations do not lead to eigenmode transitions across the
critical energy threshold. The advantage of defining the topological index is that such an
index can be used to label different systems so that systems with different labels cannot be
adiabatically changed from one to another without topological transition. A key concept
is bulk-edge correspondence, which predicts edge modes at the boundary between systems
with different topological indices.

The topological insulators can be classified based on the dimension and symmetry of
the system [27]. Here, we focus on the 2D case where time-reversal symmetry, particle-
hole symmetry, and chiral symmetry are all broken. Next, we briefly describe how the
topological index can be calculated. The discussion begins with the Berry phase concept,
the geometric phase acquired by an eigenstate following an adiabatic path around a closed
loop in parameter space. The Berry phase γ can be represented as the line integral of Berry
connection A(R) as

γ =

∮
C

A(R) · dR (2.1)

where R is the parameters. The Berry connection serves as a local gauge of eigenstate
variation. The Berry curvature and Berry connection are related by Stokes’ theorem:
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∮
C

A · dr =
∫
S

Ω · dS,Ω = ∇×A (2.2)

The Chern number is derived from integrating the Berry curvature over the entire Bril-
louin zone.

C =
1

2π

∫
BZ

Ω(k) · dS (2.3)

Or equivalently, the parameter is the momentum, therefore

C =
1

2π

∫
BZ

d2kΩ(k) (2.4)

Chern number calculation in the periodic system

A tight-binding model illustrating non-trivial topological features is examined in a kagome
lattice. In Fig. 2.1, a finite-size periodic kagome lattice is shown. Its unit cell is highlighted
within the red hexagon, with arrows indicating a directional hopping phase e−iϕ. The sys-
tem’s Hamiltonian, representative of the kagome lattice, is expressed as

Ĥ0 =
∑
i

ω0â
†
i âi − κ

∑
⟨i,j⟩

(
e−iϕâ†i âj + eiϕâ†j âi

)
, (2.5)

where â†i (âi) creates (annihilates) a particle on the i-th site, ω0 is the natural on-site fre-
quency, and ⟨i, j⟩ restricts the summation to pairs of nearest-neighbors. In the periodic
system, the hopping phase ϕ determines the band structure and opens a topological gap
when the hopping phase is tuned from ϕ = 0 to ϕ = π/2. The nontrivial topological proper-
ties can be illustrated by the Chern number and the calculated topological indices of three
bands are labeled in Fig. 2.1(c), with −1, 0, 1 from lower to higher bands, respectively.

Generation of the topological graph with structural disorder

To generate a topological graph with structural disorder, a method involving tessellation and
local triangularization of randomly sampled two-dimensional points is employed [25]. The
initial random points can be generated, for example, with disk sampling (Fig. 2.2(a)) in a
domain with area L2 and periodic boundary conditions. The filling ratio η, defined as the
ratio of area covered by disks over the area of the sampling domain, is the parameter used to
control the strength of structural disorder. The Voronoi diagram is used to partition space
and create a graph with a fixed coordination number N = 3 (Fig. 2.2(b)). The amorphous
graph is created by a kagomization process, in which the centers of the edges sharing the
same vertices are connected. The resulting graph has a local coordination number (N = 4)
in Fig. 2.2(c). Because of the coordination number N = 3 for the Voronoi diagram, the
generated amorphous graph consists of local triangles around the vertices of the Voronoi
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Figure 2.1: Topological kagome lattice. (a) Structure of a finite-size kagome lattice
with a directional hopping phase. The unit-cell, containing three sites, is highlighted by the
red hexagon. (b) Band diagram of a kagome lattice with a null directional hopping phase
(ϕ = 0), where the coupling between sites is real. (c) Band diagram of a topological kagome
lattice with ϕ = π/2, which corresponds to a complex hopping e−iϕ = −i. Topological bands
with nonzero Chern numbers appear.

diagram, but the tessellated regions consist of polygons with different numbers of sides.
The periodic lattice in Fig. 2.1(a) can also be generated by the same procedure, with the
difference that, instead of starting from a random point set, we use a triangular lattice. The
triangular lattice arrangement, indeed, is the most compact configuration achievable via disk
sampling, characterized by a maximum filling ratio ηmax = 0.9069. The amorphous graphs
are generated with a fixed filling ratio η = 0.45 for the disk sampling process.

Chern number calculation in the amorphous system

The topology of the amorphous graph is probed by the Kitaev sum, a topological index
defined as [28, 25]

ν(P ) = 12π
∑
i∈A

∑
j∈B

∑
k∈C

(
PijPjkPki − PikPkjPji

)
, (2.6)

where P is the projection operator onto the eigenmodes below the cut-off energy, A, B, C
are three spatial regions shown in Fig. 2.3 and i, j, k are sites within corresponding regions.

The summation region is fixed to span half of the side length of the lattice, as shown
by the square in Fig. 2.3, and it is divided into three regions A,B, and C represented by
different colors. To study the phase transition under different hopping phases e−iϕ, the cut-
off frequency is swept, and the topological index is averaged over 20 random realizations
of the amorphous graph. As an example, the standard deviation of the Kitaev sum with
phase ϕ = π/2 is shown in Fig. 2.3(b), revealing that the Kitaev sum remains −1 within the
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(a) (b) (c)

Figure 2.2: Amorphous graph generation procedure. (a) Disks are randomly sampled
within the domain with periodic boundary conditions. Each disk has a fixed radius and does
not overlap with its neighbors. (b) Voronoi diagram is generated based on the disk centers.
(c) The centers of edges sharing to the same vertices are connected to generate a kagome-like
graph.

A

B

C

(a) (b) (c)

Figure 2.3: Kitaev sum calculation. (a) Calculation of the Kitaev sum in the amorphous
structure. To calculate the local topological index, the integration region is subdivided into
three sections, marked here with different colors. (b) Kitaev sum averaged over 20 random
realizations of a graph with a hopping phase ϕ = π/2. (c) Kitaev sum calculated on a
finite-size periodic lattice.

topological bandgap with negligible variance across realizations of structural disorder. As a
comparison, the Kitaev sum of a similar periodic system is show in Fig. 2.3(c). The periodic
phase diagram has sharp boundaries due to lack of the localized bulk modes near the band
edges. The bandgap closes for phase values of ϕ = 0, 1/3π, 2/3π and π, in agreement with
Fig. 2.1(b).
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2.3 Simulation results

Periodic and amorphous system in linear regime

7𝜙 5𝜙

6𝜙

8𝜙
4𝜙

(a) (b) (c)

(d) (e)

Figure 2.4: Principle and design of amorphous topological graphs. (a) Sketch of an
amorphous topological graph. The local coordination number z is preserved (z = 4), while
the graph connectivity is different from the periodic counterpart. Different colors indicate
polygonal plaquettes with different number of sides. (b) Zoomed-in view of (a), showing
the presence of a non-uniform magnetic field flux. The labels quantify the magnetic flux
across each polygonal plaquette, which is equal to the overall hopping phase acquired by a
photon through a round-trip around the plaquette. (c) Distribution of polygonal plaquettes
with N ≥ 4 sides for the graph in (a). The periodic lattices only have hexagons with
N = 6. (d) Pair correlation function g(r) of the amorphous structure in (a), compared to
the periodic lattice. The amorphous structure lacks long-range order, as evidenced by the
flattened pair correlation function at longer distances r/a. (e) Topological phase diagram for
the amorphous structure. The color represents the Kitaev sum calculated over all the modes
below different values of the cutoff frequency ω/κ, for different hopping phases ϕ between
adjacent vertices. The result is averaged over 20 realizations of disorder.

The proposed nonlinear amorphous graph, presented in Fig. 2.4, is constructed by kagomiz-
ing a Voronoi diagram obtained from a disk-sampled set of points as described in the previous
section [25]. The result is a collage of polygonal plaquettes, each possessing three to nine
sides, as sketched in Fig. 2.4(a). Adjacent vertices are then coupled by a directional hopping
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with uniform magnitude κ and phase factor eiϕ, shown as the graph edges in the sketch
in Fig. 2.4(a). The linear tight-binding Hamiltonian can be written in the same form as
Equation (2.5). The additional hopping phase ϕ, which can be tuned in a silicon photonics
implementation, can be interpreted as the Peierls phase resulting from the presence of a
synthetic magnetic field. In the model considered here, the synthetic magnetic flux across a
polygonal plaquette of the graph depends on the number of edges of the plaquette. Specifi-
cally, within each triangular plaquette (white in Fig. 2.4(a)), a constant synthetic magnetic
field flux of −3ϕ is accumulated. In contrast, as sketched in Fig. 2.4(b), the synthetic mag-
netic field threading each polygonal plaquette with at least four sides is different, and it
can vary from 4ϕ to 9ϕ, proportionally to the number of sides of the polygonal plaquette.
Therefore, unlike the anomalous quantum Hall systems which feature a uniform magnetic
flux inside hexagonal plaquettes [29, 30], the proposed amorphous system has a non-uniform
magnetic flux across different plaquettes based on the real-space connectivity and topology.
The statistical distribution of the magnetic flux per plaquette is shown in Fig. 2.4(c), and it
can be controlled by changing the filling ratio in the original random disk sampling process.
By preserving the local connectivity, the generated structure inherently possesses short-range
order but lacks long-range order. This can be inferred from Fig. 2.4(d), where a flattened
pair correlation function between vertices is observed, unlike periodic structures that exhibit
characteristic sharp peaks. Despite the structural disorder, the system shows the hallmarks
of nontrivial topology. By controlling the hopping phase, the system undergoes a topological
phase transition which opens a nontrivial mobility gap. The topological nature of such a
gap can be verified by calculating its Chern number via a topological marker as “Kitaev
sum”, shown in Fig. 2.4(e)[25, 28], whose value at some frequency ω expresses the accumu-
lated Chern number from all the bands below the chosen frequency. The complex hopping
term e−iϕ allows for a selective tuning of the quantized Kitaev sum across a phase boundary
between −1 and +1, when ϕ is set to a value between 0 and π.

A non-zero topological marker in the gap implies that a finite-size system will exhibit
chiral topological edge states, unidirectionally guided along the physical edge. These states,
marked by a low density of states in the topological gap (Fig. 2.5(a)), emerge in both periodic
and amorphous systems, and are robust to on-site potential disorder as long as the disorder
strength is not comparable to the bandgap. However, while a strong enough on-site potential
disorder will eventually overcome the topological protection of the edge states, an increasing
degree of structural disorder will not affect the topological properties of the system, i.e. the
edge states are topologically protected irrespective of the degree of structural disorder [26].
The regions with a higher density of states in Fig. 2.5(a) correspond to bulk bands, including
a flat band at zero frequency. We classified the eigenstates ψ by calculating their inverse

participation ratio (IPR), defined as IPR (ψ) =
∑

i|ψi|4

|∑i|ψi|2|2
, whose scaling law with respect to

the lattice size is a measure of the localization of the eigenstates within finite-size systems.
The IPR presented in Fig. 2.5(b) shows that our amorphous structure features three types
of eigenmodes, that are: chiral edge (CE) modes, localized bulk (LB) modes, and extended
bulk (EB) modes. The localization and the scaling properties of the modes with the size of
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Figure 2.5: Scaling of modes in periodic and amorphous topological graphs. (a)
Density of states for the amorphous and periodic topological graphs, for a hopping phase
ϕ = π/2. (b) Inverse participation ratio for the eigenmodes of the periodic and amorphous
graphs. Three types of modes (chiral edge [CE], localized bulk [LB], and extended bulk [EB])
are observed with distinct inverse participation ratios (IPRs). The shaded area represents
the standard deviation for 20 realizations of structural disorder. (c)Scaling of the IPR with
the graph size L, for different modes. The results obtained by diagonalizing the linear
Hamiltonian in Eq. (2.5) agree well with the theory, and the IPR of modes scales as a
constant, 1/L, and 1/L2 for LB, CE, and EB modes respectively. The error bars are obtained
by averaging over 20 realizations. (d-f), Intensity profiles of three representative modes,
classified as LB ((d)), CE (e), and EB (f), showing different localization features. The local
light intensity is proportional to the size of the circles at each site, and it is visualized by
thermal-like fill color.
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amorphous graphs are summarized in Fig. 2.5(c). For a two-dimensional graph with disk
sampling domain area L2, the IPR scales as a constant for LB modes, as 1/L for CE modes,
and as 1/L2 for EB modes. Intensity profiles of three representative modes are shown in
Fig. 2.5(d-f). The IPRs of the CE modes scale like their periodic counterparts, indicating
the existence of topological edge transport channels, while the LB modes, which are a unique
feature of the amorphous system, originate from the presence of structural disorder. The LB
modes stand out as characteristic peaks in the IPR of Fig. 2.5(b), occurring in the vicinity of
the band edges, and they are responsible for the mismatch between the density of states of
periodic and amorphous systems (Fig. 2.5(a)). The EB modes, that are spatially delocalized,
feature low IPRs. The introduction of structural disorder has therefore dramatically changed
the localization nature of the bulk modes, introducing the LB modes near the band edges.
In addition, the remaining bulk modes are more localized, while the topological nature of
the system is preserved.

Periodic and amorphous system with Kerr nonlinearity

We now consider the nonlinear dynamics of the amorphous topological graph by including
multi-particle interactions. As a prototypical example relevant for a wide class of systems,
we will focus here on local two-particle interactions, such as the ones that occur between
photons in a Kerr medium. The full Hamiltonian Ĥ describing the nonlinear graph is written
by adding a term V̂ to the linear Hamiltonian Ĥ0:

Ĥ = Ĥ0 + V̂ , (2.7)

where
V̂ = U0

∑
i

n̂2
i , n̂i = â†i âi . (2.8)

In Eq. (2.8), U0 is a material-dependent strength of the nonlinearity and n̂i is the particle
number operator at site i. The time dynamics of the nonlinear system is obtained by explic-
itly integrating the time-evolution equations. The periodic and the amorphous topological
systems are both driven with the same amplitude, which is spectrally peaked within the
topological bandgap. Snapshots of the intensity distribution at different times t are shown
for the periodic (Fig. 2.6(a)) and amorphous (Fig. 2.6(d)) graphs. The energy of the propa-
gating excitation is confined near the boundary at early time stages in both cases (t0 < 3T ),
where T = 1000κ−1 is approximately the time the signal takes to travel from the input to
the output port. In the periodic case (Fig. 2.6(a)), the excited CE modes couple to other CE
modes, and then leak towards the bulk as the EB modes are fed (t = 5T ). This contrasts
with the amorphous case, where energy is confined within the CE modes at t = 5T , as shown
in Fig. 2.6(d). The difference in energy transport in the presence of nonlinearity is quantified
by probing the transmission at the output port for different injected power levels, as shown in
Fig. 2.6(b,e). For a relatively weak pumping power P0, the transmission spectrum is similar
in the periodic and amorphous systems. As the pumping power increases, the edge transport
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Figure 2.6: Enhanced nonlinear topological transport in amorphous graphs. (a,d),
Snapshots of the real-space intensity distribution in periodic (a) and amorphous (d) struc-
tures, following an initial pulse excitation injected from the input channel, taken at times
3T , 5T , 7T , where T = 1000κ−1 is approximately the time it takes for the signal to travel
from the input to the output port. Energy leaks from the edge to the bulk modes in the
periodic graph, while it remains confined along the edge in the amorphous graph for longer
times. (b,e), Power spectrum at the output channel for two different input powers P0 and
10P0, for the periodic (b) and amorphous (e) graphs. The additional peaks in the periodic
graph spectrum at 10P0 pumping correspond to the coupling between adjacent CE modes.
The insets show a zoomed-in view of periodic (b) and amorphous (e) graphs. (c,f), Time-
evolution of the power spectrum after injecting an initial signal at an edge mode frequency,
obtained via a short-time Fourier transform. In the amorphous case (f), the energy couples
to other edge modes or bulk modes at a slower rate compared to the periodic case (c).
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channel breaks down in the periodic system due to the nonlinearity-induced coupling, while
the transmission in the amorphous system maintains chiral edge propagation, leading to an
almost tenfold increase in the peak power difference at the output. The stronger coupling be-
tween adjacent CE modes in the periodic case is confirmed by the presence of additional side
peaks in the transmission spectrum. The evolution of the two systems in the time-frequency
domain, obtained via a short-time Fourier transform, is presented in Fig. 2.6(c,f). In the
periodic system, at early times, the initialized CE mode couples to the spectrally closest CE
modes, resulting in frequency broadening. As time evolves, the coupling between the excited
CE modes and EB modes, induced by the presence of the nonlinearity, ignites bulk modes,
which in turn excite other EB and CE modes. The result, at long times, is a dramatically
broadened spectrum. The amorphous system in Fig. 2.6(f), however, shows a strikingly dif-
ferent behavior, displaying both reduced oscillations between adjacent CE modes as well as
a notably suppressed appearance of additional modes in the spectrum, achieving an almost
unperturbed propagation for much longer times.

The increased isolation that the injected CE mode experiences in the amorphous system
can be understood as an interplay of different mechanisms. First, the broken periodicity
resulting from the introduction of structural disorder precludes us from identifying a well-
defined momentum for the EB modes, hampering the fulfilment of phase-matching conditions
for the nonlinearity-induced coupling, and suppressing the initial oscillations between CE
modes. Second, according to Fermi’s golden rule, the initially excited bulk modes will be
located around the peak of density of states in Fig. 2.5(a), close to the band edges. These
modes have an EB nature in the periodic system, but, with the introduction of structural
disorder, some of them become LB modes in the amorphous system [31]. The localization of
LB modes, then, delays the nonlinearity-induced propagation from CE to EB modes, with
the latter being excited at much later times. The eventual propagation of the signal to the
EB modes is in fact delayed by the introduction of structural disorder, but not completely
suppressed, as an inevitable consequence of the presence of the nonlinearity.

Four-wave mixing simulation

In this section, we consider the photon pair generation process in periodic and amorphous
systems. In the spontaneous four-wave mixing process, we assume signal and idler photon
pairs are generated and transported along the chiral edge states. In practice, e.g. in a micror-
ings platform, the generated photon pairs can be hosted at different resonance frequencies
of the ring resonators [32]. In this case, the frequencies of the generated light differ from the
pump frequency by a free spectral range, so that the pump light can be filtered out. The
Hamiltonian of signal and idler frequencies in the linear regime is assumed to be the same
as the pump, which have chiral transport channels along the edge. The four-wave mixing
Hamiltonian can be represented as [33]

HSI =

[
HS C

C† H†
I

]
, (2.9)
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where HS = HI = H0 and Cij = χi(t)δij. Here, the four-photon interaction strength at site
i, represented as χi(t), is time dependent, and proportional to the intensity of the pump
at site i. The linear dynamics of signal and idler frequencies are governed by the diagonal
part of the Hamiltonian, while the pump-induced photon pair generation is represented as
the off-diagonal component. The four-wave mixing process is simulated in the time domain
under the undepleted pump assumption, as the pump experiences self-modulation, but it
is not affected by signal or idler photons due to their relatively low intensity. To quantify
the photon pair generation efficiency, a small signal at idler frequency is injected into the
system, and the signal at the output port is recorded and Fourier-transformed to obtain
the spectral information. The evolution of the generated signal photon spectrum over time
is calculated by a short-time Fourier transform of the output signal. A snapshot of the
field distribution in the amorphous system is shown in Fig. 2.7, where the pump, idler
and signal field profiles are plotted in panels (a), (b), (c), respectively. In the photon pair
generation process, the momentum and energy conservation has to be satisfied. In the
amorphous system, the effective momenta of the excited edge modes can be estimated by
calculating the phase differences between adjacent sites along the edge, which are visualized
as zoomed-in views in Fig. 2.7(d–f). The accumulated phase differences are plotted against
the site index in Fig. 2.7(g), from which we can extract the average phase shift per site
as ∆ϕp = −0.293,∆ϕi = −0.583,∆ϕs = −0.012. The momentum conservation can then
be verified in terms of the phase differences as 2∆ϕp = ∆ϕs + ∆ϕi, which is a natural
consequence of the four-wave mixing simulation.

(b)(a) (c) (g)
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Figure 2.7: Four-wave mixing field profiles. The light is injected into the input port and
coupled out at the output port, similar to Fig. 3 of the main text. (a–c), Field profiles for
pump (a), idler (b), and signal (c), where the color (size) represents the phase (amplituede)
at each site. (d–f), Zoomed-in view of the field distribution at sites along the edge. Red
circles indicate the sites used for the phase calculation in (g). (g), Accumulated phases over
500 edge sites for pump, idler and signal fields.
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Photon pair generation in periodic and amorphous systems

(a) (b) (c)

Figure 2.8: Disorder-enhanced topological light generation. (a) Effective dispersion
relation of amorphous and periodic edge states, obtained by plotting the average phase
change between consecutive triangular plaquettes along the edge against the frequency of
each eigenmode. For the amorphous system, dispersion broadening is observed due to the
aperiodic variation of the phase at different positions along the edge state. Note that, for bulk
modes, the quasi-linear phase change breaks down due to the lack of well-defined transport
channels. (b) Time evolution of the total number of generated photon pairs. The photon
pair generation rate (slope of the curve) decreases in the periodic system as the signal/idler
modes couple to the EB modes, while the generation rate remains high for longer time in
the amorphous system. (c)Example of the normalized spectra of photon pairs generated via
a pump at frequency ωp = 0.4κ. The spectra are centered at the pump frequency.

The spatial and spectral energy confinement in the presence of nonlinearity can be used,
for example, to enhance the efficiency of quantum topological photon-pair generation via
spontaneous four-wave mixing in optical systems [32, 34]. In this non-linear four-photon
process, a pump signal is injected into the system via an input port, and the correlated
photon pairs generated within the topological bandgap are guided towards the output port
along the boundaries. The positions of input and output ports are chosen as shown in
Fig. 2.6(a,d) to increase the distance travelled by the pump signal, thereby maximizing the
photon pair generation efficiency. The system is described by the following Hamiltonian [32,
33, 35],

HSI = H
(S)
0 +H

(I)
0 +

∑
i

χiâ
(S)
i

†â
(I)
i

† (2.10)

where the last term creates correlated pairs of photons, called signal (S) and idler (I), at a

site-dependent rate χi = χ0â
(P )
i â

(P )
i which depends both on the pump (P) strength and on

the optical nonlinearity χ0. The terms H
(S/I)
0 are the bare Hamiltonians of the signal and

idler photons, respectively. The effectiveness of this process typically relies on working with
a quasi-linear dispersion to satisfy both energy and momentum conservation. As shown in
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Fig. 2.8(a), the topological dispersion in our system fulfills this requirement. The photon
pair generation efficiency is presented in Fig. 2.8(b). Both the periodic and the amorphous
system generate a similar number of photon pairs at early times. At later times, however,
the efficiency of the periodic system drops due to the increased coupling between CE and
EB modes, while the amorphous system remains efficient. The enhanced spectra of signal,
pump and idler are presented in Fig. 2.8(c). In the periodic case, the self-modulation of the
pump leads to a reduced lifetime of the edge modes at the excitation frequencies, hence the
photon pair generation rate is also reduced, while in the amorphous case, the pumped edge
states can generate more photon pairs.

2.4 Experimental results

𝑒!"#
(a)

(b)

(c)

Figure 2.9: Experimental implementation of the amorphous topological graph
with micro-ring resonator array. (a) Unit cell in tight-binding model and (b) its im-
plementation with micro-ring resonators. (c) The SEM image of the amorphous topological
system with micro-ring resonators.

The proposed amorphous topological system similar to Fig. 2.4 can be implemented with a
2D micro-ring resonator array. The system consists of a triangular unit with a phase-delayed
hopping between adjacent sites as shown in Fig. 2.9(a), which is implemented as coupled
micro-ring resonators in Fig. 2.9(b). The yellow micro-ring resonators are on resonance at
the working frequency, while the blue resonators are non-resonant and provide the delayed
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phase by a transverse shift of their centers. A more detailed description of the configuration
can be found in [36]. The amorphous graph is constructed and the SEM image is shown in
Fig. 2.9(c), where two bus waveguides are used for input and output.

As a preliminary result, we observe the topological edge propagation along the boundary
of the systemFig. 2.10 by monitoring the scattered light using an infrared camera on top of
the device. The direction of propagation is determined by the sign of the topological index
calculated at the excitation frequency.

(b)(a)

Figure 2.10: Experimental observation of edge transport in amorphous topological
micro-ring resonator array. The edge transports are excited at the topological gap
frequencies with different Chern numbers: (a) +1 and (b) -1.

2.5 Discussion

Robustness to on-site disorder

Despite the structural disorder, the amorphous system is robust to on-site (potential) dis-
order, up to a certain strength. In actual physical systems, such disorder may stem from
fabrication imperfections that e.g. shift the natural frequency of the resonators employed as
lattice sites. The on-site disorder is assumed here to follow a Gaussian distribution, char-
acterized by the standard deviation σ which we sweep for the numerical simulations. The
existence of a transport channel along the topological edge state is probed at the output
site, with a single frequency excitation on the input port. The transport can be visualized
by the intensity distribution at the steady state, shown in Fig. 2.11(a-c). As the strength
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.11: Robustness to on-site disorder. (a–c), Topological transport on an amor-
phous graph with different on-site potential disorder. The disorder strength is characterized
by the standard deviation of a Gaussian distribution with σ/κ = 0 (a), 0.4 (b), 1.6 (c).
The transmission with increasing on-site potential is summarized in (d) by averaging over
100 realizations of disorder. (e–h), Topological transport on a periodic graph with potential
disorder, similar to (a–c).

of on-site disorder increases, the edge state couples to localized modes near the boundary
and the transport efficiency is reduced to half when the standard deviation of the on-site
disorder is equal to the coupling strength between sites, κ. As shown in Fig. 2.11(d, h), the
transmission is further reduced to less than 5% as the disorder strength reaches 3κ.

Different amorphous realizations and truncations

We show the generated amorphous topological graph, following the generation procedure
described in Section 2.2 with a square boundary shape. Next, we show that the enhanced
transport in amorphous system is independent of the specific realization of structural dis-
order, and is not limited to a square boundary truncation. As an example, we implement
different realizations of the amorphous graphs, and compare them with the periodic sys-
tems truncated at different orientations. For each system, the same signal is injected into
the structure and the short-time Fourier transform is computed, in order to capture the
frequency information of the lattice intensity over time. For the amorphous graph, the
short-time Fourier transform is similar to the square cut in Fig. 2.6, as different trunca-
tions of the graphs have negligible effect on the amorphous system. The periodic system,
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(c)

(e) (f)(d)

(b)(a)

Figure 2.12: Different realizations and truncations. The periodic system is truncated
along different lattice orientation directions, and the short-time Fourier transform of the
signal is compared to the amorphous system. (a) Armchair-like truncation of the periodic
lattice. (b) Short-time Fourier transform of energy transported in an amorphous system with
nonlinearity. (c)Short-time Fourier transform for transport in the periodic system. (d–f),
Same as (a–c), but with a zig-zag-like truncation.

however, shows different response under different truncation orientations. Nevertheless, the
energy confined in the edge state of the amorphous system decays at a much slower rate
compared to the periodic system, independently of the truncation choice.

2.6 Conclusion

We proposed and demonstrated an amorphous topological platform (graph) to enhance non-
linear phenomena. The disordered topological graphs are based on the control of a synthetic
magnetic field threading through different polygonal plaquettes and leading to a non-uniform
flux that gives rise to the non-trivial topology of the graph. The non-linear responses of such
amorphous topological graphs outperform their periodic counterparts owing to the emergence
of localized bulk modes and to a reduced phase matching, enabling the ultrafast guiding of
energy, protected against leakage. The accumulation of energy in the topologically protected
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channel enhances the generation of photon pairs. The proposed scheme for enhancing non-
linear responses via the introduction of structural disorder in topological systems will have
a broad range of applications, including novel devices for robust light-based information
processing and computing.
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Chapter 3

Enhancing nonlinearity with potential
disorder: inverse-designed cavities

3.1 Introduction

Over the last decades, various nanophotonic platforms have been proposed to implement and
enhance nonlinear photon generation processes, including wire waveguides [37, 38], nanobeam
cavities [39], metamaterials [40], micro-ring resonators[41, 42, 43, 35, 44, 45, 46, 32, 47, 48,
49, 50], periodically poled waveguides/cavities[51, 52], and photonic crystal cavities[53]. It
is well-known that high-quality factor cavities designed at target frequencies can bolster the
nonlinear process by enhancing the field with confinement. Yet, the effective phase matching
conditions are typically challenging to satisfy in non-conventional cavity structures. Without
effective phase-matching, the generated photons from different positions in nonlinear mate-
rials can destructively interfere, reducing the total generation efficiency. Such issues can be
addressed by computational inverse design [54, 55, 56, 57, 58, 59, 60, 61].

Recently, the adjoint method has been generalized to optimize nonlinear photonic pro-
cesses, such as second harmonic generation or optical switches based on the Kerr effect [62,
63, 64, 65]. However, existing inverse-design methods for nonlinear frequency generation [66]
face difficulties in generalization to multi-photon generation processes. Moreover, coupling
efficiencies for both input and output channels are often overlooked due to the optimiza-
tion complexity. In addition, an intuitive understanding of the inverse-designed structure is
unclear. The optimized structure often lacks interpretability, making it challenging to gain
insights into how and why the inverse design method works.

To address these challenges, we put forth an inverse design approach to amplify the
efficiency of on-chip photon pair generation. We implement this strategy using the open-
source package EmOpt [67]. Our method employs a multi-frequency co-optimization strategy
and calculates gradients with respect to the design parameters via the adjoint method. The
resulting efficiency enhancement stems not only from the increased field intensity due to the
confinement of light in high quality factor cavity resonances but also from the improvement
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of phase-matching conditions. We demonstrate the capability of the proposed method by
fabricating and characterizing an optimized device that enables the efficient generation of
photon pairs. Interestingly, the shape of the proposed design can also be explained by an
effective potential method, and the approximate solution aligns well with the finite-difference
frequency domain (FDFD) simulation results. The proposed optimization strategy can be
generalized to other nonlinear processes for compact frequency-mixing devices on-chip, and
the performance can be further improved using global optimization methods [68, 69].

3.2 Theory

Inverse Design Principles

Conventional design methods often depend on an extensive physical understanding of sys-
tems, leading to time-consuming processes and demanding expertise. There has been a lot
of research effort seeking to simplify this process, by employing advanced optimization tech-
niques with computing resources. The inverse design method, i.e., direct target for a given
desired function and computationally find the optimized design structure, has enabled the
development of devices with both compact footprints and novel functionalities in a variety
of fields in engineering, including acoustics, optics, mechanics, etc.

In photonics inverse design, the governing framework is provided by Maxwell’s equations.
A typical inverse-design problem in the frequency domain can be expressed as follows:

min
p⃗
f(x) (3.1)

where x represents the field distribution constrained by Maxwell’s equations Ax = b.
Here, b is the source distribution and A denotes the frequency-domain Maxwell operator,
which depends implicitly on the input parameters as [67]

A =

[
jωϵ ∇×
∇× −jωµ

]
⇒

[
jωϵ(p⃗) ∇×
∇× −jωµ(p⃗)

]
(3.2)

Thus, the design challenge is to identify the optimal parameter combination p⃗ that min-
imizes (or maximizes) a target function f(x) of the field distribution x, with a predefined
source distribution b. These optimization problems are computationally expensive, due to
the target function’s implicit dependence on input parameters and its non-convex nature.
To optimize the target function, gradient-based methods have several advantages over the
non-gradient-based methods in terms of convergence rate, precision, and scalability. Nev-
ertheless, to calculate the gradients of the figure of merit, it may require a large number
of times to solve Maxwell’s equations with different structure configurations. To reduce
the number of calculations in the optimization process, the adjoint method can be helpful,
especially in the case where the number of parameters is large. Using the chain rule, the
derivatives of the figure of merit with respect to each input parameter can be represented as
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df

dpi
= −2ℜ

(
yT
dA

dpi
x

)
(3.3)

where x(y) is the field distribution of the forward (adjoint) simulation, and dA/dpi are
computationally easy-to-calculate shape derivatives. Here, the adjoint field y is the solution
of equation ATy = df/dx, with a different source configuration df/dx depending on the
figure of merit instead of the original source configuration b. Therefore, the gradients with
respect to parameters df/dpi can be calculated with two Maxwell simulations for the field
distributions x and y, in addition to the shape gradients dA/dpi. The total number of
Maxwell simulations required for each iteration is two and is independent of the number of
parameters.

The requisite gradient calculations in this context bear a striking resemblance to those
in neural network training, where back-propagation is employed. A detailed comparison
is included in Chap.A. It has also been shown that the derivative calculations can be
automatically taken care of with the software package. The recent development of automatic
differentiation methods, for example, Jax package [70], enables automatic differentiation of
arbitrary complex functions defined based on Python or Numpy functions. This also allows
simpler calculation of gradients by writing the Maxwell solver using such auto-diff package
[71]. Compared to the adjoint method, which still requires a physical understanding of the
adjoint system (e.g. how to set up the adjoint source), this novel computational method
greatly simplifies the process and allows efficient gradient calculations for an arbitrary figure
of merit. The potential drawback is that such a method may need more computational
resources for a time-domain Maxwell solver compared to the adjoint method. It would be
interesting to compare the two methods in more detail as future research directions.

Phase Matching in Nonlinear Optics

In this work, we are interested in extending the inverse design method to nonlinear photon
generation. Here, we first briefly review the basics of the frequency generation process in
nonlinear optics. In the microscopic picture, the origin of nonlinear frequency generation
lies in the atom-light interaction. The impulse-response function, representing the atom’s
induced polarization, includes nonlinear terms, which can be represented in the time domain
as an expansion of the electric field [72]:

P (t) = ε0
[
χ(1)E(t) + χ(2)E2(t) + χ(3)E3(t) + . . .

]
≡ P (1)(t) + P (2)(t) + P (3)(t) + . . . (3.4)

where P (t) is the induced polarization field, E(t) is the driving electric field, and χ(i) is
the ith-order of susceptibility. In contrast to the linear regime, where only the first-order
dependence χ(1) is non-zero, the high-order terms are no longer negligible in the nonlinear
case. Greater insight is obtained by rearranging the nonlinear equation, positioning linear
terms on the left and high-order polarization field responses on the right [72]:

∇2E − n2

c2
∂2E

∂t2
=

1

ε0c2
∂2PNL

∂t2
(3.5)
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where PNL = P (2)(t) +P (3)(t) + . . . The above equation can be understood as the nonlinear
polarization becomes the source for the frequency generation.

In nonlinear processes, efficient energy transfer hinges on the phase-matching condition,
the synchronization of interacting wave phases while propagating through the nonlinear
medium. Mathematically, in a homogeneous medium, the phase matching can be repre-
sented in terms of momentum conservation as ∆k = knew −

∑
koriginal = 0. In the above

time domain equation, it incdicates that the nonlinear polarization field (
∑
koriginal) deter-

mines the momentum of the generated field (knew). In a second-order nonlinear process,
for example, dipoles are generated at a frequency of 2ω. In a homogeneous medium, the
phase-matching condition is equivalent to momentum conservation as 2k(ω) = k(2ω). In
inhomogeneous media, supported modes diverge from plane waves, resulting in undefined
mode momenta. In this case, the effective phase matching can be considered constructive
interference for dipoles generated at different locations inside the nonlinear material, which
will be discussed in more details in the next section.

Generalized Phase Matching in Cavity
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Figure 3.1: Schematics for second harmonic generation and generalization to
multi-photon nonlinear process in a cavity of arbitrary shape. (a) Forward process
and (b) adjoint process for second harmonic generation in the cavity. The gray rectangles
represent the coupled waveguides. (c) Generalization to multi-photon nonlinear process.

We first discuss the phase matching condition in a cavity in the example of the on-chip
second harmonic generation. A guided mode at frequency ω1 is injected into the cavity, excit-
ing the field E1 inside the cavity. Due to the material nonlinearity χ(2), the field distribution
at fundamental frequency creates the second harmonic polarization field P2 = ϵ0χ

(2)
1 E2

1 at
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ω2 = 2ω1, which becomes the sources J2 for exciting the field distributions at second har-
monic. The subscript 1, 2 represent the frequency ω1, ω2, respectively. The process is shown
in Fig. 3.1(a), where the sources J2 are represented as the red arrows. These nonlinear
dipole sources generate the field distribution E2 at ω2. The on-chip generation efficiency, η,
is defined as the mode-matching integral. Here, we adopt a naive version of expression as
the overlap between the second-harmonic field E2 and the target waveguide mode Em,2 of
the output channel:

η =

∫
wg

E2(r) · E∗
m,2(r)dr . (3.6)

Given such figure of merit, the optimization can be solved by the adjoint variable method.
A similar method has been used in Ref. [62] for the second-harmonic optimization in free
space. When generalizing this formalism to spontaneous photon creation processes, the main
challenge is that the spontaneously generated photons cannot be easily represented as dipole
sources. If random dipole sources are introduced in the cavity to create the polarization
field, the configurations of dipoles may lead to nonphysical results [62].

To address this issue, we can rewrite the efficiency in (3.6) by exploiting Lorentz reci-
procity. With the assumption of undepleted pump, the material properties satisfy ϵ = ϵ⊺, µ =
µ⊺ and Lorentz reciprocity holds at ω2 [73]. The efficiency in (3.6) can then be rewritten as

η ∝
∫
wg

E2(r) · J ′∗
2 (r)dr =

∫
cav

J2(r) · E ′∗
2 (r)dr = ϵ0

∫
cav

χ(2)E ′∗
2 (r)E

2
1(r)dr . (3.7)

In the first step, the guided mode field distribution is related to the current sources as
J ′
2 = ϵ0χ

(1)
2 Em,2. The second step is based on the Lorentz reciprocity, which is shown in

Fig. 3.1(b). The guided modes to be matched at the output are injected backward into the
nonlinear cavity, and the efficiency can be represented as the overlap integral of the forward
field and adjoint fields. Here, J ′

2 is the adjoint source in the reciprocal process and E ′
2 is the

generated field.
Next, we generalize this formalism to multi-photon generation process, for example, spon-

taneous four-wave mixing (sFWM). In the generalized multi-photon process, where multiple
photons at different frequencies are involved, the figure of merit can then be represented as

η =

∫
cav

χ(l)(r)
∏

p∈ωfwd,q∈ωadj

Ep(r)E
∗
q (r)dr . (3.8)

Perturbation Theory for Non-periodic Photonic Crystal

A frequently posed question about inverse-designed structures concerns their physical inter-
pretability. Specifically, can we learn more physical insights from the optimized structures
and use such insights as guidance for future design challenges? For most inverse-designed
devices, the response tends to be negative. The commonly used topological optimization
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Figure 3.2: Schematic figure of a perturbed photonic crystal and its effective
potential. (a) Top view of a perturbed 2D photonic crystal. (b) The effective potential of
the perturbed photonic crystal system.

method relies on multi-reflection in the structure, and therefore it can be quite challenging
to understand intuitively or physically how and why the optimized stricture would work. For
a more physically intuitive understanding of the optimized device, we consider the simpler
structure of a non-periodic photonic crystal. In this section, we develop a perturbation the-
ory based on the existing effective potential method for the one-dimensional photonic crystal
structure. The results will be used to provide a physical interpretation of the optimized cavity
for spontaneous four-wave mixing.

As an example of a non-periodic photonic crystal device, Fig. 3.2(a) shows the top
view of a 2D photonic crystal structure, with the middle region having a smaller radius.
This photonic crystal heterostructure [74] can be approximated with a 1D effective potential
(shown in Fig. 3.2(b)) using perturbation theory when differences between the photonic unit
cells of each section are minimal. In the derivation of the effective potential, previous research
[75] assumes the period of each unit cell remains the same. Our derivation extends these
conclusions to scenarios where the periods of the unit cells undergo perturbations. We show
that the effective potential method can still be applied, and the potential profile is obtained
by simulating each unit cell with periodic boundary conditions for the band-edge frequency.
Therefore, we can calculate the field distribution of the eigenmode in such a non-periodic
photonic structure with a simplified 1D model, and provide an intuitive understanding of
the structure.

In a periodic photonic crystal, optical waves propagate in the form of Bloch wave function;

Hk(r) =
1

L
hk(r)e

ik·r (3.9)

When a slow and weak perturbation is introduced in the structure, different Bloch waves
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within the neighborhood of the band extrema (k0) are coupled to form a localized mode.

Hd(r) =
1

L

∑
k∼k0

Γ̃0(k− k0)hke
ik·r (3.10)

where Γ̃0(k − k0) is the Fourier space envelope function near k0. Assuming that the Bloch
mode hk does not significantly change within the neighborhood of k0, the mode solution can
be approximately expressed as a product of the Bloch wavefunction at k0 and an envelope
function Γ0(r) [75]:

Hd(r) ≈
1

L
hk0e

ik0·r
∑
k−k0

Γ̃0(k− k0)e
i(k−k0)·r =

1

L
hk0e

ik0·rΓ0(r) (3.11)

The Wannier-like equation for the envelope function Γ0(r) is found to follow{[
λd − λ0(k)

]
−∆η′(r)

}
Γ0(r) = 0 (3.12)

where λd ≡ (ωd/c)
2 is the eigenvalue of the mode, λ0(k) ≡ [ω(k)/c]2 is the unperturbed band

frequency squared evaluated at the momentum k in the neighborhood of k0, and ∆η′(r) is
the effective potential perturbation at the position r. As we consider quasi-1D structure
in this work, we regard the momentum k and the position r as scalar variables k and x,
respectively, in the following derivation.

The unperturbed band term can be Taylor expanded near the band edge as

λ0(k) = λ0(k0) +
∂λ0
∂k

∣∣∣∣
k0

(k − k0) +
1

2

∂2λ0
∂k2

∣∣∣∣
k0

(k − k0)
2 + · · · (3.13)

≈ λ0(k0) +
1

2m
(k − k0)

2 (3.14)

= λ0(k0)−
1

2m

∂2

∂x2
(3.15)

Here we used the fact that the first derivative ∂λ0/∂k is zero at the band edge k = k0,
and the effective mass is given by 1/m ≡ (∂2λ0/∂k

2)|k=k0 . We also replaced the momentum
difference with the gradient operator by the definition of the real-space envelope function
Γ0(x) =

∑
k−k0 Γ̃(k− k0)e

i(k−k0)x as (∂x/i)
2 Γ0(x) = (k− k0)

2Γ0(x). Therefore, (3.12) can be
rewritten as {

λd −
[
λ0(k0) + ∆η′(x)

]
+

1

2m

∂2

∂x2

}
Γ0(x) = 0 (3.16)

The definition of the effective potential perturbation is given by

∆η′(x) = −∆η(x) ⟨Hk0 |∇2Hk0⟩ − ∇[∆η(x)] · ⟨Hk0|∇Hk0⟩ (3.17)

where ∆η(x ∈ Xn) is the perturbation in the n-th grating domain Xn, and ⟨a|b⟩ is the
overlap integral over a unit cell, ⟨a|b⟩ ≡

∫
v
dx a∗b. In particular, the even/odd symmetry of
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Hk0(x) at the Brillouin zone edge implies that ⟨Hk0 |∇Hk0⟩ = 0. This in turn implies that
∆η′(xn) depends only on the first term of the right-hand side of (3.17), containing the local
perturbation ∆η, but not on its gradient ∇(∆η), which is related to the adjacent unit cell.
Therefore, the potential perturbation ∆η′(x ∈ Xn) can be found by performing unit cell
simulations for each grating with periodic boundary conditions. The periodic boundary con-
dition can be considered as a homogeneous perturbation, which leads to a constant envelope
function Γ0. In this case, the term (∂2x/∂x

2)Γ0 = 0, and the band edge of the n-th grating,
λ0,n(k0), will be

λ0,n(k0) = λ0(k0) + ∆η′(x ∈ Xn) (3.18)

By substituting (3.18) into (3.16), the Wannier-like equation for the envelope function
can be rewritten in the form of an eigenvalue problem:[

− 1

2m

∂2

∂x2
+ λ0(k0, x)

]
Γ0(x) = λdΓ0(x) (3.19)

where λ0(k0, x ∈ Xn) = λ0,n(k0), which can be obtained from the unit cell simulation with
periodic boundary conditions.

3.3 Simulation results

Methods

The proposed multi-frequency co-optimization method exemplifies the spontaneous four-
wave mixing process shown in Fig. 3.3(a), where a single port is used to couple the pump
(generated) photons to (from) the cavity. In the forward process, the fundamental mode
at frequency ωp is injected from the waveguide into the cavity, exciting the electric field
distribution noted as Ep in Fig. 3.3(a). Owing to the presence of nonlinearity, vacuum
fluctuations create dipole sources at other frequencies, specifically, signal and idler, shown as
Js and Ji. The generated photons in the spontaneous four-wave mixing process are designed
to be collected back to the same waveguide. The collection efficiency can be represented as
a mode-matching integral between the collective radiation field generated by dipoles Es(Ei)
and the waveguide mode at signal and idler frequencies Em,s(Em,i). Such nonlinear photon
pair generation process can be approximated by the adjoint process shown in Fig. 3.3(b),
where the adjoint sources J ′

s, J
′
i , i.e., the fundamental mode of the waveguide at signal and

idler frequencies ωs and ωi, are reversely propagated back into the cavity. The figure of merit
can be represented in terms of the effective phase-matching integral as:

FoM =

∣∣∣∣∫
cav

χ(3)(r)β(r)dr

∣∣∣∣2 , β(r) = E2
p(ωp, r)E

′
s(ωs, r)E

′
i(ωi, r) (3.20)

where β(r) is the effective phase-matching integrand, χ(3) is the third-order suscepti-
bility of the material, Ep is the field distribution at pump frequency, while E ′

s and E ′
i are
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Figure 3.3: Forward and adjoint process for the spontaneous four-wave mixing
process. (a) The pump is injected as the fundamental mode of the waveguide, exciting
dipoles of signal and idler frequencies (Js, Ji) due to vacuum fluctuations. The radiation
fields (Es, Ei) of the dipoles are collected back into the waveguide. (b) In the adjoint process,
pump, signal, and idler modes are injected into the waveguide and the phase matching of
fields (Ep, E

′
s, E

′
i) inside the cavity is calculated and optimized. In this case, direct modeling

of vacuum functions is avoided.

adjoint fields at signal and idler frequencies under continuous-wave (CW) excitation from
the coupling waveguide. The integral is carried out over the cavity region.

The proposed figure of merit can be interpreted as follows. First, the pump, signal, and
idler frequencies (ωp, ωs, ωi) in Eq. (3.20) can be selected in the CW-simulation to satisfy
the energy conservation ωs + ωi = 2ωp. Second, the figure of merit uses the non-normalized
electric fields (Ep, Es, Ei), each obtained from a source excitation with fixed amplitude. The
non-normalized field captures the cavity enhancement of the field intensities at the three
frequencies, which also includes the coupling between the waveguide and the cavity for an
efficient collection of the generated photons. In addition, with the overlap integral, the
in-cavity phase-matching will be satisfied after the optimization to ensure the constructive
interference of the generated photons. The proposed method provides a feasible way to
optimize the photon-pair generation rate with linear solvers. The existing methods [66] may
not be easily generalized to spontaneous photon pair generation due to the challenge of
direct modeling of vacuum fluctuations in simulations. To address this issue, our approach
uses a physics-informed source configuration based on the adjoint method, which eliminates
the difficulty in modeling vacuum fluctuations and avoids arbitrariness in choosing excitation
sources. In addition, the coupling from/to the waveguide is naturally included in simulations,



CHAPTER 3. ENHANCING NONLINEARITY WITH POTENTIAL DISORDER:
INVERSE-DESIGNED CAVITIES 36

which is also critical for enhancing the total generation efficiency.

Optimization Process and Results
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Figure 3.4: Bandedge frequencies with different grating periods. (a) The configura-
tion used in the simulation of bandedge frequency. (b) An example of band diagram and the
bandedge is marked by the circle. (c) Simulation results of bandedge frequencies at different
periods of a grating structure with a fixed filling ratio of 0.5. The period of initial condition
is selected based on the target working frequency.

We adopt the hierarchical inverse design strategy, a two-step approach that proposes an
initial physics-based guess, followed by a shape optimization using the adjoint method [76].
Such a strategy minimizes the computational cost by avoiding a large number of random
guesses for initial conditions, and the fabrication limits can be easily enforced by adding
simple shape constraints.

As a first step, we introduce the procedure to choose the physics-based initial condition
before optimization. To enhance the spontaneous four-wave mixing, it would be convenient
to start with a periodic grating (1D photonic crystal) and use the resonances near the band
edge. We consider a periodic system with the configuration shown in Fig. 3.4(a). For
simplicity, we choose the filling ratio to be 0.5, i.e., the grating width is half of the period.
The period of the initial grating is determined by a parametric sweep to search for a band
edge frequency near the target frequency, as shown in Fig. 3.4(c). We choose the number
of periods as N = 35, which depends on the footprint of the device and the frequency
difference between the three modes. It is worth mentioning that the parameters (periods,
filling ratio, number of gratings) don’t have to be precisely engineered. The convergence to
target frequencies with high-quality factor resonances is achieved over iterations. Compared
with the large number of random trials for initial conditions, this process is deterministic
and therefore minimizes the computational cost.
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Figure 3.5: Optimization for nonlinear photonic structure. (a) Electric field profile
(Ez) at the signal, pump, and idler frequencies for optimized structure, excited by funda-
mental modes (J ′

s, Jp, J
′
i) from the input waveguide. (b-c) Illustration of the phase-matching

condition. The height of the bar plot corresponds to normalized intensity, while the color
indicates the phase of the phase-matching integrand, summed over each grating. The color
consistency exemplifies the enhancement of phase-matching. (b) Optimized and (c) initial
(periodic) grating. (d) Reflection spectra for grating before and after optimization. High-Q
resonances, in alignment with target frequencies, are prominently observed. (e) The evolu-
tion of the figure of merit and parameters changes over iterations during the optimization.

Next, we perform the optimization using the width and gap of each grating, and the
initial design is a periodic grating structure with the number of gratings N = 35, width and
gap as w = g = 147nm. The optimized grating structure is simulated to have three energy-
matching resonant modes shown in Fig. 3.5(a). During the optimization, the fundamental
TE mode is injected into the waveguide at the pump wavelength λp = 1549nm, and the field
distribution Ep is computed by the 2D FDFD solver of EMopt. The fundamental modes at
signal and idler frequencies (E ′

s, E
′
i) are excited by adjoint source (J ′

s, J
′
i), also injected from

the waveguide, at λs = 1542nm and λi = 1556nm, respectively. The cavity enhancement of
the fields can be visualized from the contrast of the field inside the cavity compared to that
in the incident waveguide. The phase-matching integrand β(r) in Eq. (3.20) is visualized
as the bar plot in Fig. 3.5 (b) and (c) for each grating. The heights of the bars stand
for the amplitudes and the color for the phases. The field enhancement of five orders of
magnitude is shown on the normalization of the y-axis after optimization. In the ideal case
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where all grating pitches are excited and contribute constructively to the photon generation,
the phase (i.e., color) should be identical. Compared with the phase-matching plot for the
initial period grating in Fig. 3.5(c), the phase-matching condition is greatly enhanced as
the phase difference is minimized. The resonant frequencies of the modes can be probed as
minima in the reflection spectrum, shown in Fig. 3.5(d). Initially, the resonances are not
equally spaced, the quality factors are not high enough, and the phase-matching condition
is not satisfied. After optimization, the three resonances are equally spaced in frequency,
with sharper peaks in reflection due to the improved quality factors. The optimization uses
the limited-memory BFGS (L-BFGS) algorithm [77] with hard constraints on the minimum
width and gap to be larger than 110nm. The convergence of parameters can be observed
from Fig. 3.5(e), with negligible parameters’ change after approximately 600 iterations, and
the increment of the figure of merit is also shown.

In our implementation, we use the 2D FDFD solver in EMopt. The total simulation
domain size is 15µm by 2µm with symmetric boundary conditions at the bottom and perfect
matching layer on other sides. The simulation resolution is 20nm. The optimization takes
approximately 5 hours for 1000 iterations on a desktop with two 24-core central processing
units (AMD EPYC Rome 7352). We start with a periodic grating with 147nm for both width
and gap. The optimized parameters after 720 iterations are converged to the following table,
with a minimum width and gap size of 138.1nm and 119.9nm, respectively, which is suitable
for both in-house and foundry fabrication. The optimized parameters are listed in Table 3.1.

Table 3.1: Parameters for optimized devices

Index 1 2 3 4 5 6 7 8 9 10 11 12

Gap (nm) 119.9 140.1 145.2 147.9 143.7 141.0 141.4 135.5 132.4 135.1 139.6 142.3
Width (nm) 147.9 166.0 169.0 170.4 168.4 160.3 151.5 145.6 145.0 148.6 154.5 159.0

Index 13 14 15 16 17 18 19 20 21 22 23 24

Gap (nm) 141.4 141.2 142.5 143.9 139.3 137.5 137.3 147.7 151.2 153.5 151.8 151.4
Width (nm) 159.8 157.3 152.1 147.8 144.5 145.4 147.1 150.6 154.1 157.0 155.8 150.8

Index 25 26 27 28 29 30 31 32 33 34 35

Gap (nm) 148.5 144.4 143.0 146.5 148.7 155.7 163.3 166.4 168.7 165.4 159.7
Width (nm) 145.8 138.8 138.1 143.5 151.8 163.5 171.4 175.3 177.5 171.9 160.1

3.4 Experimental results

Fabrication Details

The devices were fabricated using silicon-on-insulator (SOI) wafers. The SOI wafer stack
comprises 220 nm crystalline silicon and a 3 µm buried thermal oxide layer on a thick (725
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Figure 3.6: SEM images of the fabricated device. (a) Top view of the device. (b)
Zoomed-in view of the inverse-designed cavity.

µm) silicon handle layer. The fabrication starts with spin-coating negative e-beam resist
(HSQ) on an RCA-cleaned SOI chip, followed by electron beam lithography and develop-
ment. Next, an inductively coupled plasma dry etching process was utilized to finish defining
patterns on the chip. Finally, a one-micron thick SiO2 cladding layer is deposited by the
Plasma-enhanced chemical vapor deposition (PECVD) method.

The SEM images of the device before depositing the cladding layer are shown in Fig. 3.6.
For simplicity in both simulation and fabrication, we choose the transverse length of 10 µm
(y-direction in the SEM). Because the length is much longer than the wavelength, we can
approximate the 3D structure with 2D cross-section simulation. In addition, the resonances
would also be less affected by dimension offset caused by the fabrication imperfection in the
transverse direction. As shown in Fig.3.6(a), the device consists of a pair of grating couplers
(for input and output), waveguide, MMI-based beam splitter, taper, and the inverse-designed
cavity from the left to the right. A zoomed-in view of the cavity is shown in Fig. 3.6(b).

Experimental setup

The experiment setup is presented in Fig. 3.7. The inverse-designed devices were pumped
by a high-power, continuously tunable laser (CTL) in C-band for nonlinear photon pair
generation, or by the tunable laser from the optical spectrum analyzer (OSA) after amplifi-
cation for linear reflection measurement. The light source is coupled to the chip through a
four-channel fiber array with grating couplers and an integrated Y-splitter. The output light
passed through a 50:50 broadband fiber beam splitter to the pump and idler channels or
can be routed directly to the OSA for reflection spectrum characterization. To filter out the
pump light, two (four in total) narrowband, tunable fiber filters (60dB High Isolation Manual
Tunable Filter, Dicon Inc.) were cascaded, and centered at signal and idler wavelength in
each channel. Each filter has an extinction ratio of around 60dB, which provides 120dB for
each channel. The signal and idler photons were detected using fiber-coupled superconduct-
ing nanowire single-photon detectors (SNSPD), and coincidence histograms were measured
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Figure 3.7: Diagram of the measurement setup used in the photon pair generation
experiment. (CTL: continuously tunable laser, SNSPD: superconducting nanowire single
photon detectors, TCSPC: time-correlated single-photon counting) Black line: fiber optical
path. Orange line: free-space and on-chip optical path. Green line: electrical signal path.
Dashed line: transmission-resolved path.

using a two-channel time-correlated single-photon counting (TCSPC). The camera image of
the experimental setup is shown in Fig. 3.8. The SNSPD and TCSPC are not shown in the
image.

Experimental Results and Analysis

The reflection spectrum of the inverse-designed device is measured by an optical spectrum
analyzer in the linear regime, and the minima in reflection are extracted and fitted to obtain
the loaded quality factor of pump, signal, and idler frequencies [Fig. 3.9(a)]. The measured
wavelengths of resonances are λs = 1551.3nm, λp = 1558.1nm, and λi = 1564.8nm, which
are shifted by approximately 9nm compared to simulation results. The shift is mainly due to
fabrication imperfections and can be calibrated by thermal tuning as experimentally shown
in Section3.5. To confirm the field profile, the device is excited at resonance frequencies from
a continuous wave laser source, and the scattered light is captured with an infrared camera
as shown in Fig. 3.9(b). The obtained image is compared with the simulation, where the field
is monitored 1µm above the device plane with Fourier components collected within the nu-
merical aperture of the objective lens (NA = 0.26). The agreement between simulation and
experiment confirms that the field distributions are optimized for phase-matching. Next, the
nonlinear experiment characterizes the paired photon generation efficiency. The CW-laser
is tuned to the pump wavelength, and the output power at signal frequency is monitored at
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Figure 3.8: Camera image of the experimental setup.

different input power levels, shown in Fig. 3.9(c). The output power is proportional to the
pump power squared, as expected for a degenerated spontaneous process before other non-
linear effects, such as free carrier or two-photon absorption, show up at around 15mW [78].
The quantum nature of photon-pair is confirmed by the intensity correlation measurement
g(2) in Fig. 3.9(d), where the peak in the correlation indicates the photon pairs are generated
simultaneously.

Parameters µ(ns) σ (ns) c0 (counts) y0(counts)
Values 1.382 0.02370 289.0 2.6

Table 3.2: Fitting parameters in CAR measurements of Fig. 3.9(d).

To quantify the generation rate and the coincidence-to-accidental ratio (i.e., the signal
to noise ratio of the entangled photon source), the measured coincident count histogram is

fitted with a Gaussian function as y = c0 exp (
−(x−µ)2

2σ2 ) + y0 , where µ is the averaged delay
time between signal and idler channel, σ is the standard deviation, c0 is the peak counts
and y0 is an estimation of averaged noise. The fitted parameters are shown in Table. 3.2.
The coincidence to accidental ratio is obtained from the fitted Gaussian curve as 162 and
a maximum on-chip generation rate is 1.1MHz at an on-chip pump power 0.78mW after
compensating for the loss. In the experiment, the signal and idler photons are filtered out
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Figure 3.9: Measurement results of the inverse-designed device. (a) The reflection
spectrum of the fabricated device clearly shows three distinct resonances for pump, signal,
and idler frequencies, with their corresponding quality factors obtained by fitting. (b) Sim-
ulated scattered light captured by the objective lens monitored above the device and the
observed camera images. (c) Light-light relationship for the spontaneous four-wave mixing
process, with the collected data points aligning with the square-law fitting. The reduction
of generation rate at high pump power is due to the appearance of other nonlinear effects.
(d) Measured coincidence counts for signal and idler channels integrated over 10 minutes.

with cascaded narrowband tunable filters, with 120dB extinction ratio for each channel.
The measured 3dB bandwidth for cascaded filters is 1.03nm centered at signal wavelength
(1551.3nm) and 0.87nm centered at idler wavelength (1564.8nm), which is used for the
recorded counts shown in Fig. 3.9 (c, d).

3.5 Discussion

Interpretation of Optimized Structure

The proposed cavity device can be seen as a quasi-one-dimensional photonic crystal with
small perturbations. In that sense, our inverse design strategy can be understood as op-
timizing the perturbation and consequent mode field profiles to achieve maximal overlap
integral while keeping the resonant frequencies equally spaced. Each mode field profile can
be written as a product of the band edge mode u(x) and a slowly varying envelope function
F (x); E(x) = u(x)F (x). The envelope of a resonance mode F (x) in a perturbed photonic
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Figure 3.10: Interpretation of inverse designed cavity in the envelope function
picture. (a) Cavity comprising perturbed gratings after optimization. Two example grat-
ings with different periods are shown to calculate the band edge frequencies by applying
periodic boundary conditions (PBCs) on left and right, and perfect matching layer (PML)
at top and bottom. (b) Band diagram for the two selected gratings, where valence band
edge frequencies are extracted. (c) The envelope functions (solid lines) of the three lowest
modes in the effective potential landscape (dashed grey line) of the inverse-designed cavity.
The amplitudes extracted from field profiles of FDFD simulation (circles) agree with the
envelope function.

crystal approximately follows the Wannier-like equation[79, 75],

−
[

1

2m

∂2

∂x2
+ Veff(x)

]
F (x) = ω2F (x) (3.21)

where m, Veff and ω are the effective mass, effective potential, and the resonance frequency
of the mode, respectively. The effective mass m is defined by m−1 ≡ ∂2ω0/∂k

2 in analogy
with that of electrons in solids, where ω0 is the photonic band frequency of the unperturbed
photonic crystal. The effective local potential Veff can be extracted by simulating each
grating with periodic boundary conditions (PBC). Two unit-cells with relatively small (star
marker) and large (triangle marker) periods are highlighted as examples. The valence band
edge frequencies are calculated using finite-element simulation, shown as the dashed box
in Fig. 3.10(b). The calculation is performed over each of the gratings, and the obtained
1D effective potential is shown as dashed grey lines in Fig. 3.10(c), as the square of the
valence band edge frequencies. The envelope function solutions for Eq. (3.21) are plotted
in Fig. 3.10(c). The envelopes show good agreement with the fields extracted from the
FDFD solver in EMopt. Interestingly, the effective potential has three wells in the middle
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of the cavity region and a high wall near the right end. Therefore, the inverse-designed
cavity can be interpreted as a three-coupled-resonator system between a highly reflective
mirror on the right and an output coupler on the left. Compared with a single cavity case,
the coupled-resonator configuration provides more degrees of freedom to adjust the optical
mode shapes and, thus, a larger nonlinear overlap integral. In addition, our design method
allows the device to have a smaller footprint for a given target resonance frequency, which
is also advantageous for stronger light confinement.

Robustness Evaluation

(a) (b)
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(e)
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Figure 3.11: Robustness of the inverse-designed device. (a) Spectra for optimized
structure with uniform dimension offset (over/under etching) +/- 5nm. Inset: illustration of
dimension offset. (b) Field profiles for offset = -5nm and (e) offset = 5nm. The field profiles
are similar to Fig. 3.5(a). (c,d) Visualization of the phase-matching condition in the cavity
with dimension offset.

The robustness of our inverse-designed structure to fabrication imperfection stems from
the simplicity of the proposed grating-like structure. Uniform deviation from nominal dimen-
sions by a few nanometers, typically caused by over/under etching, are commonly observed
in practice [80]. Here, we show in simulation that uniform dimension offset by +/-5nm,
similar to the estimated fabrication error, will only lead to a shift of the spectrum without
significantly modifying the field profiles or phase-matching conditions (Fig. 3.11). In Fig.
3.11(a), the reflection spectra with uniform grating width shift of +/-5nm is plotted. The
three resonances (pump, signal, idler) remain of high quality factors as can be seen from
the reflection spectra despite a shift in wavelength. In Fig. 3.11 (b,e), we observe that the
field profiles after dimension offset are also similar to the original fields shown in Fig. 3.5(a).
As a consequence, the phase-matching condition inside the cavity across three wavelengths
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is also preserved, which is visualized in Fig. 3.11(c,d), where the colors, i.e., phase of the
intergrand, are consistent across different gratings. We would like to highlight that the ro-
bustness can also be understood based on our interpretation of the structure in Fig. 3.10.
The dimension shift changes the effective potential in the Wannier equation by effectively
adding a constant potential, but will not change the shape of wavefunction nor the effective
phase-match conditions.

Thermal Tuning Impacts

Figure 3.12: Thermo-tuning of the working wavelength of the device. The sample
is placed on top of a thermo-electric cooling pad with the voltage changed from -1V to 1V.
The resonance wavelengths are extracted from the measured reflection spectra.

In practical applications of an entangled quantum light source, it is critical to match
specific emission wavelengths for signal and idler photons. In the measurement results (Fig.
3.9(a)), we observe a shift (approximately 9nm) of the resonant wavelengths compared to
those in the simulation. The shift can be caused by the fabrication imperfection. As shown
in the previous section, we suggest that the observed shift can originate from a uniform di-
mension offset in the grating widths. To compensate for such wavelength shifts, active tuning
mechanisms can be used to achieve the target wavelength. As an example, we demonstrate
a thermal tuning method, by placing the chip on top of a thermo-electric cooling pad for
temperature control. As shown in Fig. 3.12, with an applied voltage from -1V to 1V, the
temperature of the chip varies by around 50◦C, measured by an infrared thermometer with
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an accuracy of ±1.5◦C. The resonances are shifted by approximately 4.5nm due to the
temperature change. Therefore, by depositing a metallic heater on top of the device, ac-
tive tuning of the wavelengths of signal and idler photons can be achieved and the target
wavelengths can be reached.

Estimate the on-chip generation rate

The generation rate in the experiment is calculated by fitting the intensity correlation mea-
surement g(2) results as shown in Table 3.2. The “off-chip” generation rate, directly mea-
sured, is influenced by losses from the device to the Superconducting Nanowire Single-Photon
Detector (SNSPD) and the efficiency of the SNSPD. Such coupling loss and instrument ef-
ficiency can be improved and are not fundamental to the device’s performance. Hence,
calculating the “on-chip” generation rate, which normalizes measured efficiency η to account
for coupling losses and instrument efficiency, provides a more intrinsic evaluation of the de-
vice performance. Given a measured generation rate Rmeasured, the on-chip generation rate
is

Ron−chip = Rmeasured/ηsηi (3.22)

Here, ηs and ηi are the collection efficiency for signal and idler photons, respectively. In
this analysis, it’s assumed that the collection efficiencies for signal and idler photons are
independent events, i.e., the loss of a signal photon does not influence the loss of an idler
photon. Therefore the collection efficiency of the coincident counts is simply a multiplication
of ηs and ηi. In certain studies, the on-chip generation rate is expressed as a function of
single-channel generation rates for signal and idler photons:

Ron−chip = RsRi/Rmeasured (3.23)

where Rs and Ri are single-channel count rates for signal and idler.

Comparison with Prior Work

We compared our inverse-designed device to previous works with silicon micro-ring resonators
in the following aspects:

1. Flexibility: One advantage of our method is that it is highly flexible and customizable.
While the ring structure can satisfy the phase-matching condition for four-wave mixing pro-
cess, our approach can be used for other nonlinear processes, such as second/third harmonic
generation, spontaneous parametric down conversion, and non-degenerated four-wave mixing
with arbitrary frequency combinations, where micro-ring resonators may not be applicable.
Besides, the wavelength difference between the signal and idler frequencies, for example, is
also customizable by optimization process. On the contrary, the wavelength difference (Free
Spectral Range) is determined by the radius of the micro-ring, hence a decrease in FSR by
a factor 1/α requires the radius to increase by α, and footprint by α2. The inverse-designed
device has no such constraints in scaling.
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Year Ref.
Footprint PGR Avg pump

CAR
(µm2) (kHz) (µW )

2009 Clemmen et al. 154 300 400 30
2012 Azzini et al. 79 200 200 250
2013 Engin et al. 380 132 1000 37
2014 Harris et al. 707 600 300 50
2014 Guo et al. 1,385 14 100 180
2015 Silverstone et al. 707 4,600 150 10
2015 Grassani et al. 314 400 250 132
2015 Wakabayashi et al. 154 21,000 410 352
2015 Gentry et al. 1,520 29 50 55
2015 Steidle et al. 1,134 60 200 1984
2016 Savanier et al. 314 83 79 65
2017 Ma et al. 314 16 7.4 12000
2017 Fujiwara et al. 314 10,000 500 350
2023 This work 100 1,100 780 162

Table 3.3: Previous works on spontaneous four-wave mixing using silicon micro-
ring resonator [46].

2. Footprint: For simplicity in simulation and fabrication, we demonstrated a proof-of-
concept device with a footprint of 10.56um by 10um, by choosing the transverse length of
each grating to be 10um. Because the length (10um) is much longer than the wavelength,
we approximated the 3D grating with a 2D cross-section simulation (assuming length is
infinity), which is more computationally efficient. With additional computational resources,
we can abandon such approximation and directly perform 3D simulation and optimization.
In that case, we estimate that the footprint of inverse-designed cavity can be reduced to
10um×1um, which can be very helpful for large-scale integration of entangled photon pair
sources. On the other hand, in previous research, the smallest micro-ring resonator with
decent quality factor has a radius of 5um, which leads to a footprint of πr2 = 79µm2. This
footprint can hardly get improved, because smaller ring radius leads to more loss, which
lowers the quality factor and reduces the generation rate. In sum, it is very challenging to
further reduce the footprint of the micro-ring structure, while the inverse-designed structure
can be order of magnitude smaller with 3D optimization.

3. Generation rate/efficiency: While the demonstrated generation rate and efficiency
of the inverse-designed devices is smaller than some state-of-the-art micro-ring structures,
we would like to emphasize that majority of the recent publication in micro-ring involves
active modulation, while our device is passive and single-etched. The generation rate of
the inverse-designed devices can be improved with similar techniques. In addition, with 3D
simulation/optimization, higher quality factor can be achieved, which can also improve the
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generation rate/efficiency.
Therefore, our proposed method featured high flexibility, small footprint compared to the

micro-ring platform. The current generation efficiency can be improved by adopting active
tuning methods to compensate the spectra misalignment, and using full 3D optimization.

3.6 Conclusion

In summary, we propose an inverse design method with interpretable results to enhance
the efficiency of on-chip photon generation rate through nonlinear processes by controlling
the effective phase-matching conditions. We fabricate and characterize a compact, inverse-
designed device using a silicon-on-insulator platform that allows a spontaneous four-wave
mixing process to generate photon pairs at 1.1MHz with a coincidence to accidental ratio of
162. Our design method accounts for fabrication constraints and can be used for scalable
quantum light sources in large-scale communication and computing applications.
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Chapter 4

Increasing bandwidth: mode-division
multiplexing for optical computing

4.1 Introduction

As conventional electronic computing approaches its performance limits, photonic-based
computing emerges as a promising alternative, offering potential reductions in energy con-
sumption, enhanced bandwidth, and decreased latency. Therefore, there has been a lot of
effort and interest in developing the next generation of computing platforms based on the
photonic computing [81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93]. A critical concern for
any novel computing platform is scalability, encompassing factors like power consumption,
operational speed, and signal-to-noise ratio. Two integrated platforms for optical neural
networks have caught a lot of attention recently. One is the coherent nanophotonic cir-
cuit based on Mach-Zender interferometers [94], and the other is the wavelength-division
multiplexing (WDM)-based neural network with micro-ring modulators [95]. Recent work
has shown that both platform shares similar scaling law despite the different nature of the
systems [96]. While the WDM approach with micro-ring modulators has the potential to
enable low-latency optical computing, the integration of multi-wavelength laser sources can
be challenging. Although the development of on-chip frequency combs presents a potential
solution [97, 98, 99, 100, 88], the total bandwidth is inherently constrained by the number of
combs fitting within the micro-ring modulator’s free-spectral range. It has been shown that
the packing wavelength crossing below 100 GHz can lead to cross-talk [101]. Recently, 32
channels WDM have been implemented [88], however, it is still insufficient for modern neural
network architectures. For example, a simple feed-forward neural network for the MNIST
dataset (28 by 28 pixels) has an input layer of 784 units [102]. To address the bottleneck of
bandwidth issue, an MDM-WDM approach has been demonstrated to be a promising way
to increase the bandwidth of optical communication[103, 104, 105]. In this work, we propose
and demonstrate the integration of mode-division multiplexing (MDM) as a novel dimension
for enhancing optical computing capabilities. We demonstrate a mode-division multiplexing
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neural network and validate the signal and crosstalk fabricated by AIM Photonics Multi-
Project Wafer (MPW) [106]. We show that such a mechanism can increase the input vector
size, and, more importantly, it is compatible with existing wavelength-division multiplexed
neural networks for increasing the dimension of matrix multiplication.
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Figure 4.1: Architecture of MDM-WDM optical neural network. (a) Schematics of
multi-dimensional optical computing using both wavelength-division multiplexing and mode-
division multiplexing. The matrix multiplication is limited by the number of wavelengths
within one free-spectral range in a conventional WDM-based optical neural network system.
(b) WDM-based optical neural network and (c) WDM-MDM-based optical neural network.
Concentrical circles indicate micro-ring modulators for high-order modes. Inset: Microscope
images of the MDM micro-ring modulator, multi-mode beam splitter, and low-loss multi-
mode waveguide bend fabricated in AIM Photonics foundry.

4.2 Design architecture

We propose multi-dimensional optical neural network architecture as shown in Fig. 4.1.
In traditional optical neural networks utilizing micro-ring modulators, the channel count is
constrained by the number of wavelengths that fit within a single free spectral range. In Fig.
4.1(a), MDM introduces an additional degree of freedom, alongside wavelength, to create
more orthogonal channels, thereby expanding the capacity for optical computing. The con-
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centric rings represent micro-ring modulators for high-order modes. While the conventional
neural network allows an optical matrix-vector multiplication for an input vector of dimen-
sion N , which is encoded in different wavelengths shown in Fig. 4.1(b), MDM-WDM-based
neural network enables a much larger matrix operator of dimension MN , where M is the
number of modes available. The example here has N = 3 and M = 2. Implementing this
high-dimensional optical computing system necessitates the design and optimization of three
crucial components: a modulator for high-order modes, a multi-mode beam splitter, and a
multi-mode waveguide bend (Fig. 4.1(c)). The multi-mode beam splitter is needed to dis-
tribute the intensity of each mode equally into the row of the multiplication matrix, and the
multi-mode waveguide is crucial for minimizing the scattering loss, especially for high-order
modes. The microscope images for corresponding fabricated components are shown in the
zoomed-in views of Fig. 4.1(c).

4.3 Component-level: simulation and experimental

results

To demonstrate the proposed mode-division multiplexed neural network, we designed and
simulated the three key components of a multi-mode system.

Photoconductive modulator

We start with the simulation and experimental results of the photoconductive modulator for
high-order modes. The designed photoconductive micro-ring modulator precisely controls
the coupling and conversion from the TE01 mode to the TE00 mode. As illustrated in Fig.
4.2(a), the designed micro-ring modulator consists of ridge-shaped waveguides to allow the
doped section to conduct current for thermal tuning and calibration purposes. In the coupling
region, the modulator consists of an asymmetric coupling region (TE01 to TE00) at the top
(red box) and a symmetric coupling region (TE00 to TE00) at the bottom (green box). The
width of the input multi-mode coupler is selected to match the effective index of high-order
mode (TE01) with the fundamental mode inside the ring, such that the TE01 mode couples
through. The multi-mode waveguide width used is 1.1 um, leading to a coupling efficiency
of 24.2% near 1550nm wavelength with a coupling length of 1um for the straight section.
The field profile with TE01 mode input is shown in Fig. 4.2(b). We show in simulation
results that only the TE01 mode is coupled but the fundamental mode propagates through
with negligible crosstalk. The symmetric coupler region at the bottom (green box) couples
the fundamental mode inside the micro-ring modulator to the single-mode waveguide with a
similar coupling efficiency of 23.5%. This is designed for a nearly critically coupled condition
such that the input intensity can be fully used in the next stage when on resonance. The
interconnect simulation of the modulator shows that an applied voltage of 1.5 V leads to a
wavelength shift of 2.8 nm, which is enough to modulate the transmission by 16.5dB (Fig.
4.2 (c)). We validate the simulated micro-ring modulator with a testing device consisting of
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Figure 4.2: MDM modulator simulation and measurement results. (a) Layout of the
testing structure for MDM modulator and the top view of micro-ring modulator (d), with
asymmetric coupler (red box) for the TE01-mode, and symmetric coupler (green box) for
the fundamental mode. (b) Simulated intensity profiles show that the TE01-mode couples
into the micro-ring from the asymmetric coupler, while the fundamental modes (TE00) go
through with negligible coupling. The symmetric coupler has a similar coupling coefficient.
(c,f) Simulation and experimental results for the thermal shift of the resonances of the micro-
ring modulator. (e) Photo-conductive effect for calibration of the micro-ring modulator. The
peak in transmission matches the maximum current difference between the laser on and off.

the mode converter followed by the modulator as shown in Fig. 4.2(d). The mode converter
transforms the fundamental mode from the input to TE01 at the output, which is sent to the
modulator to couple back to the fundamental mode that can be directly probed through the
edge coupler. A microscope image of the testing device is shown in Fig. 4.2(a). Experimental
results (Fig. 4.2(f)) show an extinction ratio of −14.2dB, with a resonance shift of 3.1nm
at a voltage difference of 1.5V , which is consistent with the simulation.

One of the major challenges of scalable weight banks with a micro-ring modulator array
is its calibration. Such calibration is trivial for a single heater-based resonator if the optical
output can be directly measured in a feedback loop. But as the dimension of weight matrices
(N) and the number of layers (M) in the neural network increase, the number of modula-
tors increase on the order of O(N2M), hence addressing the response of each modulator
optically becomes challenging. A built-in sensor for calibration with current change due to
photoconductive effect was proposed in [107] and then adopted for weight banks in optical
neural networks [108, 109, 110]. We introduced the photoconductive effect based calibration
in the modulator for high-order modes as shown in the cross-section in Fig. 4.2(a), where the
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regions on both sides of the micro-ring are N-doped and the central region of the micro-ring
is lightly doped. In Fig. 4.2(e), the transmission at the drop port is maximized near applied
voltage 1.5V , where the micro-ring resonator is on resonance. The coupling of light can be
directly probed in the current change by switching the laser on and off. When the laser is
on and the micro-ring is on resonance, the photoconductive effect leads to a change in con-
ductance, compared to the case where the laser is off. For verification, in Fig. 4.3, different
wavelengths are used for the input laser, and the applied voltages for maximum transmission
is shifted accordingly. The alignment between the maximum current difference and highest
transmission at the drop port indicates that the calibration of transmission can be achieved
without measuring the optical output. Therefore, the system would have a built-in calibra-
tion function to compensate the fabrication difference among different micro-ring modulator
devices.

(a) (b) (c)

Figure 4.3: Calibration of micro-ring modulator using photoconductive effect at
different input laser wavelengths. The laser input is (a) 1526.5nm (b) 1527nm and (c)
1527.5nm. The maximum current difference aligns well with the transmission peak.

For the effective functioning of optical neural networks, precise digitalized weight control
with a high signal-to-noise ratio is essential. This section demonstrates the method for
controlling the output intensity of a TE01 micro-ring modulator. In Fig. 4.4(a), the output
transmission is measured at different applied voltages, and the relation is fit by a fourth order
polynomial as shown in the dashed grey line. For demonstration, a 3-bit control scheme was
implemented, resulting in 8 discretized transmission outputs. We show in Fig. 4.4(b) that
the corresponding mapping between transmission and applied voltage can be used for weight
control. The error bars are obtained from five independent measurements. The observed
error bar is much smaller than the transmission difference between the transmission levels,
which indicates that the 3-bit control can be easily achieved with high signal to noise ratio.
We would like to mention that more bits can be achieved and the current demonstration
may be limited by the precision of the power supply used in experiment.
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(a) (b)

Figure 4.4: 3-bit control of the transmission with voltage applied to the micro-
ring modulator. (a) Transmission verse applied voltage. The data is fit with fourth order
polynomial. (b) The digitized transmission is achieved with retrieved applied voltage. The
error bar is from five independent measurements.
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Figure 4.5: Test device and measurement results for multi-mode beam splitter (a)
Schematics of the testing device for multi-mode directional coupler. (b) Microscope image
of the fabricated testing device. (c) Measurement results.

Multi-mode beam splitter based on directional coupler

A multi-mode beam splitter is crucial in the system to evenly distribute input power across
various rows of the multiplication matrix, thus facilitating matrix multiplication. A simple
way to implement such multi-mode splitter is based on the directional coupler as shown in
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Fig. 4.5(a). The TE00 mode is converted to TE01 and split by the directional coupler, then
converted back to TE00 for detection. A microscope image is shown in Fig. 4.5(b). We
use the same width of the multi-mode waveguide of 1.1 um as the multi-mode microring
modulator. The experimental results are shown in Fig. 4.5(c), which indicates that an equal
output intensity at both ports appears near 1480nm.

Multi-mode waveguide bend

Conventional bend in single-mode waveguide allows redirecting of light within a compact
footprint. With a turning radius on the order of 10um, the scattering loss is less than 0.01dB.
However, for a multi-mode waveguide, the cross-talk between modes can be significant. In
Ref. [111], authors show the multi-mode interference pattern within a waveguide bend of
15um, and a radius greater than 200um is needed to minimize unwanted crosstalk. The
crosstalk, originates from the mismatch of mode profile between straight and bend region,
can be reduced by using special shaped bend. The design adopts an Euler curve with
gradually changing curvature to minimize cross-talk in multi-mode waveguide bends. The
schematic is shown in Fig. 4.6. We use Euler curve with an ending radius of 20um, which
bends the multimode waveguide off by 45 degrees after the multi-mode splitter. The total
footprint is approximately 43um by 10um. The 3D FDTD simulation demonstrates an
average transission of 96.5% for both TE00 and TE01 mode, across a broad wavelength range
from 1450nm to 1650nm. In the optical multiplication system, two multi-mode waveguide
bends are used in each arm after the multi-mode beam splitter to route for multiplication.

𝑟 = ∞

𝑟 = 20𝜇𝑚

(a) (b)

Figure 4.6: Schematic and simulation of a multi-mode waveguide bend using Euler
curve. (a) Euler bend with ending radius of 20um. (b) 3D FDTD simulation results of TE00-
TE00 and TE01-TE01 coupling.
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4.4 System-level: simulation and experimental results

System architecture

Fig. 4.7 presents a camera image of the fabricated chip, highlighting its various components
including testing structures and the multimode matrix multiplication system. The chip
consists of testing structures including multimode modulators, a directional coupler-based
multimode beam splitter. The system with a multimode matrix multiplication system is on
the bottom part, consisting of edge couplers from the left-hand side, and the electrical pad
on the right-hand side. The chip is fabricated at AIM Photonics with MPW run [106].

Figure 4.7: Camera image of the system.

This section demonstrates a 2x2 matrix multiplication using the mode-division multi-
plexing scheme, as illustrated in Fig. 4.8(a). The schematic figure of the fabricated layout
is shown in Fig. 4.8(a). The laser input is coupled to the bus waveguide as TE00 and TE01

mode with input modulator x1 and x2, respectively. The bus waveguide is connected to the
multi-mode beam splitter, and then to four micro-rings for a matrix multiplication oper-
ation. The micro-rings convert the target mode back into the fundamental mode and are
measured by the photodetectors. We first show the results for element-wise multiplication
(i.e. a11x1, a12x2, a21x1, a22x2). For simplicity, the input modulator is tuned to couple max-
imum intensity into the bus waveguide in each case. The current measured by the on-chip
photo-detector is monitored while modulating the weight rings in the matrix. In Fig. 4.8(b),
we demonstrate that the target modes can be coupled correctly into the photodetectors.
Crosstalk between different modes is visualized in Fig. 4.8(c), where we estimate an average
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signal-to-noise ratio of 5, based on the measurement results. Next, the multiplication and
addition results are shown in Fig. 4.8(e-g) with different combinations of the input. For
an input vector of (0, 1) where only the TE01 mode is coupled into the bus waveguide and
distributed through the splitter, the current is determined by the applied voltage on the
corresponding modulator a12, which is designed to couple the TE01. Similarly, the current
response is dominated by the voltage applied on modulator a11 with an input vector (1,0).
For the (1,1) case, the current is summed up as expected, showing a correct multiplication-
and-addition behavior.

(d)

(e)
(g)(f)
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Figure 4.8: Matrix multiplication with MDM micro-ring modulators. (a) Schematic
figure for the implemented 2 by 2 matrix multiplication with mode-division multiplexing.
The fabricated structure consists of 6 micro-rings, two for input weights and four for matrix
multiplication. Two photodetectors are connected in parallel for summing up the measured
current for each row. (b) Measured photodetector currents for different combinations of input
and weight micro-rings, showing the results for element-wise multiplication. (c) Measured
cross-talk current for different combinations. (d) Matrix multiplication operation performed
by the system. (e-g) Multiplication and addition results for different input combinations
(1,0), (0,1), and (1,1).

Next, we show that the proposed MDM scheme is compatible with WDM. We combine
two lasers and send them through the input channel. In Fig. 4.9, the output current is shown
for different input combinations. When laser 1 is on and laser 2 is off, the fundamental mode
at λ1 is coupled, leading to the output current modulated by modulator a11. If only laser 2
is switched on, the input laser of wavelength λ2 is coupled to the second order mode of the
bus waveguide and therefore modulated by the a12. In Fig.4.9(d), we show that the output
current at different wavelengths and modes can be summed up, resulting in the addition
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of the current. These results confirm that MDM and WDM can be effectively combined,
significantly increasing the number of channels available for matrix multiplication purposes.
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(d)(c)(b)

(a)

Figure 4.9: Matrix multiplication with MDM-WDM scheme. (a) Matrix multipli-
cation operation performed with the system. (b) Multiplication and addition results for
different input combinations (1,0), where only the laser 1 is on. (c) Multiplication and ad-
dition results with laser 2 on. (d) With both lasers on.

4.5 Conclusion

We propose and demonstrate a mode-division multiplexing optical matrix multiplication
platform. We design and characterize the necessary components following the foundry fabri-
cation constraints, including photoconductive micro-ring modulators for high-order modes,
multi-mode beam splitter, and multi-mode waveguide bend, for a scalable WDM-compatible
neural network. We experimentally characterize a matrix multiplication, and demonstrate
the element-wise multiplication and row addition. The crosstalk between different modes is
characterized and can be further optimized in future iterations. Such mode-division archi-
tecture can be used for small-size neural networks like convolutional neural networks for the
prepossessing of graphs, which can reduce the complexity of multiple laser/frequency comb
integration. For large-scale neural network applications, we also show that the proposed
mode-division multiplexing is compatible with wavelength division multiplexing to increase
the dimension of channels as well as the matrix. Conclusively, the proposed platform shows
promise for developing compact, low-energy, and scalable computing systems, with potential
for future optimization and application in large-scale neural networks.
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Chapter 5

Future Directions

Nonlinear applications with inverse-design

In practical quantum applications, direct generation of desired entangled high-order quan-
tum state using inverse design can be very useful for quantum applications as proposed in
Ref.[112], where the coupled wave equations are solved and the structure optimized for target
quantum states at output. While Ref. [112] uses a quantum-optics picture, and optimizes
a periodic structure by directly modeling vacuum fluctuation using a Gaussian white noise
with variance, our work adopts a classical approach to optimize an aperiodic cavity using
adjoint sources to avoid the sampling for vacuum fluctuations. Our inverse-design apporach
enhances the generation rate using cavity resonances and reduces the computational cost by
avoiding sampling the vacuum fluctuations numerically. An interesting future direction is to
combine both works to produce target quantum state with cavity-enhanced generation rate
on-chip.

The proposed inverse-design method can also be generalized for other nonlinear pho-
ton generation processes, such as on-chip parametric down-conversion, and third harmonic
generation to name a few. The flexibility to choose target frequencies of the photon gener-
ation process opens opportunities for inverse-designed frequency conversion across different
bands. The approach can be extended to multi-physics processes, for example, optimizing
an opto-mechanical cavity for enhancing the coupling between optical waves and mechanical
waves.

In addition, the perturbation theory shows that the 2D/3D Maxwell’s equation can be
approximated with 1D Schrodinger equation. The agreement between their solutions, i.e.
field distributions and wave functions, indicates that the computational cost can be greatly
reduced by replacing the simulation of Maxwell’s equations with Schrodinger equations. This
can provide a feasible roadmap for designing large-scale photonic crystal structures with an
effective potential picture. It is also possible to apply inverse design to the Schrodinger
equation to optimize for target effective potential, then replace the potential with the cor-
responding photonic crystal. This method can potentially greatly reduce the computational
cost required for inverse design.



60

Appendix A

Supplementary materials

A.1 Coupling light from fiber to chip

(a) (b)

Figure A.1: Home-made fiber and fiber array coupler.

In the experiment, we tested different ways to couple light from the optical fiber to the
chip. We started with a single fiber and customized the fiber holder with 3D printing as
shown in Fig. A.1(a). Our 3D-printed fiber holder, comprising two interconnected parts with
a screw connector, allows for precise tuning of the coupling angle, a key factor for optimal
coupling efficiency. To allow multiple input/output channels, the fiber is replaced with a
fiber array configuration, which is shown in Fig. A.1(b). In this configuration, the coupling
angle is fixed but the installation is easier.

A.2 Intuitive understanding of adjoint method

This section aims to elucidate the adjoint method through an intuitive approach, simplifying
the understanding of its results. As shown in Eq. (3.3), the gradient is a multiplication of
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(a)

(b) (c) (d)

Figure A.2: Intuitive illustration of adjoint method based on interference. (a) An
example of using inverse design for a waveguide from port 1 to port 2. (b) Field distribution
in forward simulation. (c) Field distribution in adjoint simulation. (d) Interference pattern
of forward and adjoint field used for gradients calculation.

fields of forward and adjoint simulations. The multiplication can be visualized with the
following toy problem. We consider the naive case to design a waveguide from port 1 to
port 2 using inverse design. In Fig. A.2(a), the design area is marked with a red box, and
the colormap represents the refractive index distribution. The field distribution for forward
and adjoint simulations are shown in Fig. A.2(b) and (c), respectively. In this example, the
forward simulation corresponds to a guided source sent from port 1 and adjoint simulation
is from port 2. In Fig. A.2, we can visualize the multiplication of the forward and adjoint
fields, which forms the interference pattern as expected. The expression in Eq. (3.3) can be
understood as the interference pattern multiplied with some shape gradients. In other words,
the interference pattern provides a intuitive way to modify the permittivity distribution
to optimize for the target function, naively reducing the permittivity in the blue region
and increasing in the red region. In practice, this is the sensitivity analysis for the initial
condition and typically the optimization needs many iterations with sensitivity analysis at
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each iteration.

A.3 Connection between adjoint method and

back-propagation

There are a lot of similarities and connections between the adjoint method used in elec-
tromagnetic inverse design and back-propagation for training neural networks in machine
learning.

1. Sensitivity analysis in optimization: Both approaches try to optimize a target
function, which is called “figure of merit” in the adjoint method and “loss function” in
machine learning by efficiently calculating gradients with respect to the input param-
eters.

2. Chain rule: Both methods use the chain rule in the calculation of the gradient.

3. Forward and reverse propagation: Both methods need to perform two runs of the
system in forward and reverse directions to calculate the gradients.

In this section, we derive the expression for derivatives in a simple, two-layer neural
network, which is then compared with the results of the adjoint method we have seen in the
previous chapter. The goal is to develop a better understanding of the way that the two
methods are related to one another.
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Figure A.3: Schematics for a two-layer neural network. (a) The function of a neuron.
(b) A simple two-layer neural network.

A neural network consists of a unit called a neuron, or “perceptron”, which is an operation
that takes linear combinations of the input, and then applies a nonlinear activation function
to the sum. The function of the neuron is illustrated in Fig. A.3(a), and is expressed
as y = σ(b +

∑
j wijxj) = σ(Σ). Here, xj are the inputs, and σ represents the nonlinear

activation function. A neural network includes many layers of such neuron operation, and
the output of the neurons in the previous layer becomes the input of the next layer. A two-
layer neural network with two inputs is shown in Fig. A.3(b). The error function is defined
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as the mismatch between the output of the network and the true value. For simplicity, we
write the error E = (g − g0)

2. By using the chain rule, we can represent the derivative of
the error function with respect to the output of each neuron as:

∂E

∂fj
=
∂E

∂g
σ′(Σ)vij (A.1)

The essence of training a neural network is to obtain the derivatives of the error function
with respect to parameters (ujk, vij in this example). We can use the chain rule to find the
target derivatives

∂E

∂vij
=
∂E

∂g
σ′(Σ)fj (A.2)

∂E

∂ujk
=
∂E

∂fj
σ′(Σ)xk (A.3)

In Eq. A.1, we first calculate the derivative of the error with respect to the neuron
output. Based on the chain rule, the derivative for the first-layer neuron output ∂E

∂fj
can be

represented in terms of the derivative for the final-layer neuron ∂E
∂g
. Therefore, this relation

follows the name ”back-propagation”, where the derivatives are obtained from the final layer
to the first layer in the backward direction. Next, the expression for parameters Eq. A.2 and
A.3 can be used for derivatives calculation and training. Comparing these equations with
the adjoint method (Eq. 3.3), we find that both involve three key components:

1. Forward result: x, fj

2. Backward result: y, ∂E
∂g

3. Local derivative: ∂A
∂pi
, σ′(Σ)

The sensitivity to parameters (i.e. derivatives) is the product of the three terms. Therefore,
we can conclude that not only are the essence of the two methods are same (chain rule), but
the final expressions for the adjoint method and back-propagation share a lot of similarities.
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