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ABSTRACT OF THE THESIS

Diffusion of Breakthrough Technologies

in the United States (1975-2005)

by

Carsten Philipp Rietmann

Master of Arts in Geography
University of California, Los Angeles, 2017
Professor David L. Rigby, Chair

This thesis examines the determinants of the spatial diffusion and adoption of breakthrough
technologies, across industries and over time. It sets its focus on the United States between 1975
and 2005. Using patent data, this study uses survival analysis methods to test how geographical,
social, and cognitive proximity, as well as additional covariates influence technological diffusion.
In particular, an Extended Cox Hazard model is estimated and adapted to different subsets of the
data. In total, 406 narrow technological fields within the United States Patent Classification are
analyzed. These are all major technologies that were introduced after 1975. The thesis engages
with breakthrough invention and novelty literature, as well as classic literature on spatial
(innovation) diffusion as well as more recent proximity literature and technology-centered case
studies. The results affirm that the expectations derived from theory regarding the role of
proximities hold empirically. However, it also emphasizes the partial heterogeneity in these

effects.
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1. Introduction

What is technological novelty? How do breakthrough technologies travel across space? Where
are they adopted after their initial invention, and when? What influences these processes of
diffusion? What roles do various dimensions of proximity play? Is it possible to detect explanatory
factors for related technologies within certain technological fields? Do the dynamics of diffusion

differ between diverse technologies, or are there some universal mechanisms at play?

These are the guiding questions that this study explores. The goal is to examine determinants
of the spatial diffusion and adoption of novel and important technological fields, across various
industries and technological domains, and over time. The focus is on the United States between
1975 and 2005. In this sense, the thesis is not concerned with the conditions that led to the invention
of a breakthrough technology, but rather takes an ex-post perspective and examines the spatio-
temporal diffusion and adoption of new ideas. Survival analysis is used to analyze and model the
process of diffusion using patent data. In particular, a Cox Extended Hazard Model with both time-
dependent and time-fixed covariates is developed and implemented for different levels of
aggregation across technologies and time. Though geographical proximity has frequently been
shown to determine the spillover or transmission of innovation, other forms of proximity — social
and cognitive — are incorporated to provide a more comprehensive picture of the conditioning

factors.

From a theoretical standpoint, the thesis engages with different branches of the literature: A
brief review of work on the notion of novelty, the origin of inventions, and breakthrough
technologies is provided. Further, more general work on spatial diffusion, different mechanisms

of expansion and relocation, as well as more specific research on innovation diffusion is revisited.



Here, the classic literature (e.g., Hagerstrand, 1953; Griliches, 1957; Brown, 1981; Rogers, 1983)
is used as much as more recent studies on the role of proximities. Lastly, the thesis surveys existing

case studies of the spatial diffusion and adoption of technologies.

This study is structured as follows. Section 2 provides a brief overview regarding the origins
of inventions, breakthrough technologies and novelty, and their use in research. Section 3 reviews
relevant literature concerning the spatial diffusion of innovations, and covers various fields of
research from general diffusion, through innovation, to newer concepts of proximity. Section 4
outlines contextual information on the use of patents in geographical innovation research and
describes the data sources used for this study. Section 5 describes how novelty and breakthrough
innovations are defined and identified. Section 6 introduces the methodology and describes the
general and particular set-up of the Cox model in survival analysis. Section 7 shows empirical

results from model estimation, and Section 8 offers a short conclusive discussion.

2. Novelty, breakthrough technologies, and the origins of inventions

This study takes an ex-post perspective and focuses on the adoption and diffusion of novelty:
new breakthrough technologies. The conditions that led to the conception and invention of those
technologies are not discussed. Yet, it is important to provide a fundamental understanding of

novelty, its origins, and the characteristics of breakthrough technologies below.



2.1 Defining novelty and breakthrough technologies

Based on Arthur’s (2009) seminal work on the nature of technology (2009), Verhoeven et
al. (2016) distinguish two natures of inventions: Novelty in Recombination and Novelty in
(Technological or Scientific) Knowledge Origins. First, Novelty in Recombination refers to the
degree to which a new technology is based on the recombination of previously existing knowledge
and components. Second, Novelty in (Technological or Scientific) Knowledge Origins is related
to the extent to which a new technology is rooted in areas of knowledge which have not yet been

exploited.

Since this study is framed around breakthrough innovations, it is important to revisit the
various definitions of “breakthrough” that have been developed and employed in research.
Usually, the term is used to distinguish discontinuous and radical inventions from incremental
inventions (Dahlin and Behrens, 2005). While the first can be called ‘structural deepening’
(Arthur, 2009), the latter infers that a new category of technology for an invention has to be
generated, for instance by issuing a new class in technological classification systems, or that
‘redomaining’ (Arthur, 2009) takes place. Incremental innovations are understood as small
changes in existing technologies or simple extensions that do not alter the purpose of a technology,
while breakthroughs refer to radical, unique, and novel advances in technology (Zhou et al., 2005)
that also have an impact on technologies in the future (Dahlin and Behrens, 2005). This view
reverberates with Dosi’s (1982) distinction between ‘normal procedures’ and ‘extraordinary
breakthroughs’, that also emphasizes the role of breakthroughs in shaping and initiating
technological trajectories. This view can be extended by analyzing how an invention shapes later
technologies or inventions in the future, for instance through implementing its technological

elements into other later patents or by initiating novel technological fields, and is hence also used
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as a common definition for a breakthrough (e.g., Trajtenberg, 1990; Rosenberg, 1994; Fleming,
2001) or a radical invention (e.g., Schoenmakers and Duysters, 2010). Section 4 will also outline
how these definitions are related to operationalizing breakthrough inventions in the context of this

study.

Breakthrough inventions are also assumed to be more valuable and to have greater
economic impact (Griliches, 1990). For instance, Kerr (2010) uses citations as a proxy for a
patent’s value and defines the patents within the top percent of forward citations of each
technology as breakthrough inventions. Singh and Fleming (2010) use a similar approach for
certain subpopulations of all patents. Equally analyzing at the subpopulation level, Castaldi et al.
(2015) define thresholds to identify ‘superstar patents’ endogenously, rather than exogenously

derived criteria like Kerr (2010).

2.2  Ex-ante characteristics of inventions

Conceptually, scholars have been analyzing radical inventions ex ante and ex post
(Verhoeven et al., 2016). From an ex-ante perspective, particular (mainly technological)
characteristics of inventions that have led to their creation are scrutinized. From an ex-post
perspective, followed in this study, the impact on the subsequent technological development or the

diffusion and adoption of the technology across space and over time is examined.

In general, the ex-ante standpoint often examines the characteristics of new technology and
understands breakthroughs as disproportionately different from previous practices and procedures
(Nelson and Winter, 1982; Shane, 2001), as adding new knowledge (Verhoeven et al., 2016) and

as combining and re-assembling knowledge unexpectedly (Nooteboom, 2000). Note that some
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scholars argue breakthrough inventions do not necessarily employ previously existing
technologies (Arthur, 2009; Banerjee and Cole, 2011) and it is this novelty that makes them
valuable. Novelty is a sine qua non criterion to assess an invention’s patentability, and hence it
can be assumed that all patents introduce novelty. However, some patents are more radical and
novel than others, as will be shown below. Some studies ignore the patent/invention-level and
analyze the degree of novelty of a firm’s capabilities and procedures as part of the breakthrough
invention (Chandy and Tellis, 1998). In addition to these internal competences, the crucial
knowledge inducing a radical discovery is believed to exist outside the scope of a particular firm’s
knowledge base (Hill and Rothaermel, 2003). Hence, firms need to adapt their internal processes

to build absorptive capacity (Nahm et al., 2003).

Over recent decades, the large-scale analysis of patents has been identified as an alternative
to qualitative methods, which are described below for the ex post perspective. The major advantage
of patent data are their availability and historical coverage. There are various characteristics and
components of patents that can be used for research. Patent information is used to examine ex-ante
technological characteristics that can be linked to radical inventions. For instance, some studies
rely on technological classifications or backward citation information to analyze the knowledge
base and technological tradition that a patent relies upon. For example, Trajtenberg et al. (1997)
look at the diffusion and location of backward citations across technology classes and argue that
the more diverse the covered field of classes is, the more “original” the invention is. Further, a
relatively large number of backward citations can also be understood as an index of reliance on
previous knowledge and hence as reduced novelty (Sung et al., 2015; Wang et al., 2016). Related
to this argument, Shane (2001) also counts the number of technological classes cited by a patent

outside of its own technology classes to gauge radicalness. Additionally, the references and
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citations to scientific publications (non-patent references, the age of the patents cited, and the
variance in these ages have been argued to reflect the novelty of knowledge embedded in

inventions (Gittelman and Kogut, 2003; Verhoeven et al., 2016).

In addition to information on citations, inventions can be examined with other patent
components as well. One possibility here are technological classifications. These are used in this
study to define technological fields, but analyze them from an ex-post perspective regarding
diffusion and adoption. In particular, the works by Fleming (2001, 2007), Strumsky and Lobo
(2015), Akcigit et al. (2013), Youn et al. (2015), and Verhoeven (2016) on recombination and
novelty being identified from technological class co-occurrences on patents need to be mentioned.
The authors use a variety of definitions, such as the pairwise combination of technological classes
being co-listed on a patent, to trace and identify novel recombinations as well as completely new

subclasses that did not previously exist.

2.3 Ex-post characteristics of inventions

An ex-post perspective, adopted in this study, primarily examines the impact of inventions
on the subsequent technological development or the diffusion and adoption of technology across
space and over time. In addition to analyzing the technological and cognitive characteristics of an
invention, the extent to which an invention shapes future technological development has generated
considerable research. Scholars that relate to Dosi’s (1982) concept of technology trajectories
understand radical inventions through their impact on the subsequent evolution of knowledge.
Connected to Kuhn (1962), they look for inventions with such a strong impact that they establish

new knowledge frameworks or paradigms that channel future discovery. Further, from an
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economic standpoint, radical inventions can be examined through their impact on enterprises,

industries, and economies (Anderson and Tushman, 1990; Henderson, 1993).

Qualitative methods have primarily been used to analyze the technological trajectories
associated with core technologies (Dosi, 1982) and the impact of particular inventions on them
and their position in them. Systematically analyzing and outlining technological trajectories has
mainly been conducted on a case-level basis. This work relies on expert judgements on the radical
components of a technology or invention produced in surveys of industry experts or managers (e.g.
Dewar and Dutton, 1986; Pavitt et al., 1987; Acs and Audretsch, 1990). These methods are exposed
to a higher risk of subjectivity and might produce a bias towards technologies that are popularly
perceived as important, or towards those with which the particular expert is most familiar
(Verhoeven et al, 2016). As it is often difficult to continuously gather data to create a panel dataset
that is large enough to trace these temporal trajectories, these studies are often limited to case
studies for specific industries. Also, patents have been used to measure the commercial value of
inventions (Hall et al., 2005) and the broader technological and economic impact (Griliches, 1990;
Fleming, 2001; Jaffe and Trajtenberg, 2002) and from an ex post perspective. Specific literature
on the diffusion and adoption of patented technologies from an ex-post perspective will be

reviewed in Section 3.

3. Literature review: Spatial diffusion of innovations
This section presents a literature review on the spatial diffusion of innovations. Starting from
theory on spatial diffusion in general, it narrows its focus subsequently to cover the particular

characteristics of the adoption of innovations and technologies across space, covering both classic
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and more recent research. After that, the concept of proximity and its different dimensions, crucial

for this study, is introduced.

3.1  Spatial diffusion

Gould (1969) broadly distinguishes between two mechanisms of spatial diffusion. First,
expansion diffusion is related to a spread of adoption across space. With expansion diffusion, the
number of adopters increases over time, while earlier adopters in the center do not cease to use or
be aware of the particular phenomenon of diffusion and continue to display high rates of incidences
and activity. The diffusion of news or rumors are examples of expansion diffusion. Second,
relocation diffusion refers to a variant of diffusion where a phenomenon moves across space. With
relocation diffusion, the size of the phenomenon being studied does not necessarily increase.

Migration or wildfires are examples of relocation diffusion.

In general, there are two mechanisms that drive the process of diffusion (Cohen and Tita,
1999). Contagious diffusion involves spread by direct contact and a non-hierarchical, primarily
bilateral, transmission of a certain phenomenon. Taking an example from epidemiology, one
person may be individually responsible for transmitting a disease to non-infected members of a
population at risk. Hierarchical diffusion refers to the transmission of some phenomenon “through
an ordered sequence of classes and places” (Cliff et al., 1981, p. 9). This can either be related to
dissemination through centralized institutions such as the media, or a process that moves from
larger metropolitan centers to the rural periphery. In many cases, diffusion cannot be uniquely

assigned to one of these two mechanisms, but is often a combination of both. These two



mechanisms could either be at work simultaneously, or be spatially selective, or may vary over

time as the diffusion process unfolds.

The technology diffusion process that is modeled in this study with the Cox Extended
Hazard Model can be identified as a non-hierarchical process of expansion diffusion since only
the conditions leading to the first incidence of adoption (i.e., patenting in a certain technological
field for the first time) in a city are examined. The non-hierarchical character is due to the way
cities and their relationality are modeled in this thesis: through spatial proximity and not between

different types or categories of cities. This will be further outlined below in Section 6.

3.2 Innovation diffusion

From a not exclusively spatial standpoint, Attewell (1992) focuses on two areas that are
relevant for the analysis of innovation diffusion. First, adopter studies consider the particular
characteristics of the adopters of the innovation, within firms often focusing on firm size or
profitability as well as other organizational and environmental attributes. Second, macro-diffusion
departs from the scale of the individual firm and investigates diffusion across the population of
potential adopters. Rogers’ (1983) uses the gravity model to examine diffusion across regions in
space. These models are driven by the size of regions and by the distance between them. However,
as Mansfield (1968) has noted, the gravity model proved less successful at explaining the diffusion

of technological inventions than for social phenomena.

The macroscopic approach also identified the logistic or S-shaped curve that depicts the
rate of adoption over time: Initially, few agents adopt the innovation, thereafter rates of adoption

increase strongly before declining again as the innovation has saturated a population of potential
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adopters. In economic terms, the increase is often explained by a sizable decrease of a new
technology’s price which leads to a rise in demand (Hippel, 1988), or by increased awareness of
the benefits from adopting a new technology From a sociological perspective, Burt (1987) argued
that different social configurations lead to differently shaped S-adoption-curves. While cohesion
is related to the concept of contagion outlined below and refers to direct interpersonal contact
between an adopter and a potential user, structural equivalence is related to a similar position in
relevant social networks of simultaneous adopters. Following Burt’s research, structural
equivalence has been found to be more influential than cohesion. Geroski (2000) offers a
comprehensive critique of the S-curve that has been described above and compares this epidemic
model with the probit model of diffusion that focuses on the different characteristics and interests

of actors when considering the adoption of a novel phenomenon.

Yet, it is necessary to distinguish between the adoption of commercialized innovations by
consumers or practitioners and the adoption of a new technology by researchers to advance
research and development. As Rogers (1983) points out, the so-called hardware and software
dimensions of a new technology differ in their diffusion dynamics. While “hardware is the tool,
machine or physical object that embodies the technology” (Geroski, 2000, p. 605), software is seen
as the necessary information base or knowledge to be acquired to actually use and operate the
technology. Particularly with regard to patentable research, the latter aspect is obviously essential.

Literature regarding this dimension of technology diffusion and adoption is outlined below.

Moreover, the common sequence of invention, innovation, and diffusion is only valid to a limited
extent in the case of the research question in this study. As Silverberg (1991) points out,
particularly the last two segments — innovation and diffusion — are not fully separable, since the

original invention is always incrementally developed and altered when diffused. This is
10



particularly the case for patents which are listed under the same technology code or in the same
technological field. Still, however, the criteria of novelty and non-triviality have to be passed by

every patent.

3.3 Classic literature

Foundations for the analysis of spatial diffusion of innovations were developed by
Hégerstrand (1953) in the mid-20th century. Researching the adoption of agricultural practices by
farmers, he postulated that adoption is heavily dependent on information about them. This
information could either be transmitted through centralized media or interpersonal
communication. Since the latter is spatially selective and constrained, H&gerstrand assumed that
the geography of diffusion is dependent on the geography of personal contacts. In empirical
analysis of tuberculosis controls in dairy herds, Hagerstand (1968) was able to show how spatial
proximity between adopters shaped the diffusion process, and particularly positively influenced
the time of adoption: Using Monte Carlo simulations and empirical analyses people living closer
to earlier adopters were found to adopt the practice first, emphasizing the essential role of
geographical propinquity. In addition, the size of settlements’ populations also played a role and

interacted with this mechanism of spatial proximity.

Brown (1981) reviews the innovation diffusion and adoption process and develops
perspectives of communication, development, economic history, and market infrastructure. While
the first two focus on adopters, the third is concerned with characteristics of the old (incumbent)
and new technology, which is to be adopted. Particularly emphasizing the fourth viewpoint of

market infrastructure, Brown argued that Hégerstrand’s diffusion process focused only on the
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demand for information. He extended these early models by giving agency to the providers of
innovation through encouraging non-propagators to adopt, since called diffusion agency or a
supply-side perspective. One focus was related to the organizational structure of such propagating
agencies (Deshpande et al., 1983). Brown compartmentalized the diffusion and adoption process
into three steps: the establishment of diffusion agencies precedes the establishment of the
innovation, which refers to actions towards triggering adoption in the particular region’s
population. Subsequently, the actual adoption takes place. Brown integrated these three

dimensions in his market infrastructure framework.

In his examination of the creation and dissemination of hybrid corn, Griliches (1957)
considered economic factors such as the profitability of the technology, the role of public and
private institutions, as well as geographical spillovers and the share of potential adopters already
having adopted the technology. Related to Brown (1981), he noted that “it does not make sense to
blame the Southern farmers for being slow in acceptance, unless one takes into account the fact
that no satisfactory hybrids were available to them” (Griliches, 1957, p. 507). He measured
diffusion through the heterogeneity in the context of potential adopters and through the availability
of hybrid corn, hence also giving agency to the suppliers, based on economic motivations:
Specifically, the existence of differential financial incentives and, as mentioned, the innovation’s

profitability regulate the deviations in the rate of diffusion.

Mansfield (1968) provided support for Griliches’ economic approach to explain diffusion,
and developed a micro-level economic model to examine diffusion of industrial technology. While
he focused on the general dissemination of information concerning a new technology in earlier
work, he identified seven factors determining the intra- and interfirm diffusion rate, which can be

categorized as structural dimensions, as well as adopter- and technology-related aspects. For
12



instance, analyzing the diffusion of diesel locomotives in the railroad sector, he finds the
investment’s profitability, interfirm variations in liquidity and size, as well as differences in the
date of first adoption to be significant variables. Further, this research emphasized the

accumulation of knowledge, and how it relates to logistic diffusion and its accelerating pace.

3.4  Review of proximity concepts

The role of geographical proximity in the flow or the diffusion of technological knowledge
has been emphasized not only in geography but across other disciplines (Hagerstrand 1953;
Griliches, 1957). Such arguments have been confirmed by more recent evidence. For instance, in
research on agglomeration economies, Arzaghi and Henderson (2008) show the importance of
close spatial proximity for the creation of social networks in the advertising industry on New York
City’s Madison Avenue. With regard to innovation, Jaffe et al. (1993) and Sonn and Storper (2008)
examine patent citations as evidence of the localization of knowledge flows. In these classical
diffusion studies, geographical proximity has played a central role. Other forms of proximity bring
this importance of spatial geography with regard to structuring knowledge flows into question,
both theoretically (Boschma, 2005; Lagendijk and Oinas, 2005) and empirically (e.g., Breschi and

Lissoni, 2001, regarding the importance of social networks).

The classic focus on geographical proximity in the analysis of diffusion and related areas
has been widened to incorporate other kinds of proximity, to demonstrate how spatial proximity is
conditioned by other forces, and to point at their interdependencies. For instance, Nooteboom
(2000) shows that the governance and design of organizational structures, and in particular the

proximity within these structures, is inherently connected to cognitive proximity. Aggregating
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different findings, including the French School of Proximity Dynamics (among others, Torre and
Gilly, 2000), Boschma (2005) distinguishes five dimensions of proximity: cognitive,
organizational, social, institutional, and geographical. The underlying assumption for all types of
proximity is that more similar or proximate actors are more likely to behave in a similar or related
way, such as adopting a new technology. The justification for these additional dimensions of
proximity is the critique that spatial proximity is often driven through the underlying influence of
the other types of proximity (Boschma, 2005). In addition to geographical proximity, this study

incorporates measures for cognitive and social proximity.

Cognitive proximity postulates that agents are more proximate if they share a greater
degree of intersection and correspondence of their knowledge and its structures. These refer to
individual as well as organizational routines, skills, and procedures (Nelson and Winter, 1982). If
these are overlapping, the absorptive capacity (Cohen and Levinthal, 1990) of the agents for a
certain set of related knowledge is assumed to increase. Further, higher cognitive proximity is
assumed to lead to higher cognitive homophily, which can be realized through exchange of

knowledge and collaboration between actors with related sets of knowledge (Feldman et al., 2015).

Social proximity is related to the closeness of individual actors and the strength of the
social ties between them. As Boschma (2005) points out, trust is the foundation of the strength of
such ties, and is the outcome of repeated interaction. The relevance of social proximity has been
increasing in research with scholars suggesting that the localized knowledge transfers of Jaffe et
al. (1993) are driven as much by social proximity as spatial proximity. Breschi and Lissoni (2001)
show that prior social ties between inventors exert significant influence on the structure of patent

citations examined by Jaffe et al. (1993). They further their argument by the conjecture that studies
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have not isolated social from geographical proximity, since these two dimensions condition each

other.

Additionally, Bathelt et al. (2004) show that interactive learning processes do not
necessarily have to take place in permanent co-location (‘local buzz’), but can also be realized
through pipelines that can both be maintained over distance or are created or reinforced
periodically in person, for instance at trade fairs or conferences. In their view of the learning
economy, Lundvall and Johnson (1994) add that these interpersonal connections go beyond a strict
market- and exchange-based logic and that sharing information is part of the process of building
trust, as well as its outcome. While Granovetter (1973) has found that simple — but useful —
information can flow between weak social ties (e.g., between distant acquaintances), Breschi and
Lissoni (2009) stress that more complex information, such as patentable knowledge, is being
transmitted through strong social linkages. These are formed through repeated interaction.

Examples are co-employment or long-term collaborations.

3.5  Case studies of diffusion and adoption of technologies

This section outlines a few key case studies in the research literature that explore the spatial
diffusion and adoption of technologies. It is remarkable that there exist only a limited number of
such studies with a spatial focus, while most examples are rather related to the analysis of the
evolution of technological trajectories, as described above with relation to Dosi (1982). The latter

can be categorized as aspatial and are organized separately in this section.

As a first example for case studies of explicitly spatial diffusion, Feldman et al. (2015)

develop a case study in the framework of evolutionary economic geography of the spatial and
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temporal diffusion and adoption of the recombinant DNA technology after its invention in 1980.
rDNA technology was introduced with U.S. patent US4237224 (“Process for Producing
Biologically Functional Chimeras”) by Stanley Cohen and Herbert Boyer. This technology was of
a breakthrough nature in the sense that it introduced knowledge that could not be placed into an
existing patent class and thus a new sub-class was added, United States Patent Classification
(USPC) subclass 435 69/1 (“Recombinant DNA technique included in method of making a protein
or polypeptide”). Tracing the emergence of new patents in this subclass allows the authors to

examine the diffusion of rDNA technology away from the Bay Area, the site of its introduction.

When examining the relative influence and importance of geographical, cognitive, and
social proximity in the diffusion of the rDNA technology, the authors find that diffusion to other
regions was primarily conditioned by social proximity, which was identified from a co-inventor
network in this subclass. Still, the channels of diffusion prove to be more complex, and also
influenced by cognitive and — to a limited extent — by spatial proximity. The latter is shown to be
influential in the later spread of the technology from the mid-1990s onward. Further, incongruent

with theoretical assumptions, the role of university R&D is found to be negative.

Most studies only examine the distribution and spread of innovative activity as a whole
rather than focusing on individual technologies. This is mainly conducted in a rather descriptive
manner. For example, Moreno et al. (2005) analyze the diffusion of innovative activity,
operationalized through patenting, in 17 European countries between 1978 and 1997. A knowledge
production function is used to model patenting behavior, and the authors report that economic
activity, agglomeration economies, and R&D expenditure are significantly related to patenting.
With regard to the third of these, the authors find strong decay affects as the R&D activity of

geographical proximate regions is found to be positive, too.
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In the following, main examples of aspatial studies on technology diffusion are reviewed.
As this thesis is aggregating different related technologies within the same ‘branch’ of the United
States Patent Classification (USPC) technological structure, as outlined in the subsequent chapters,
it is useful to provide a few examples of case studies on the technological trajectories of specific
industries. So far, this has been mainly conducted through citation networks and bibliometric

analysis.

Verspagen (2007) analyzes the trajectory of fuel cell research by mapping a patent citation
network. Understanding different types of patents within such a trajectory as sources, sinks, and
intermediate points, the study uses various metrics such as search path link counts and search path
node pairs to identify the exact route of these trajectories. However, the search is not completely
exploratory since relevant subclasses within the area of fuel cells are defined a priori. Verspagen
builds on the earlier work of Hummon and Doreain (1989) who constructed a network of citations
between scientific publications on DNA discovery and took an approach to build a ‘main path’
within this setup which is postulated to coincide with the primary transmission of knowledge and
ideas in the field of research. Further examples include Su and Lee (2009) whose study in the field
of electrical conducting polymer nanocomposites examines its technological evolution through a
citation network with centrality measures. Here, relevant patents are selected through a search for
United States Patent and Trademark Office (USPTOQO) patents with the keywords “nano” and
“composite” in their title or abstracts. Lee and Wu (2010) examine the same industry in a closely
related study, using centrality metrics in a patent citation network, while Barbieri (2015) follows
technological trajectories of electric and hybrid vehicles through a citation analysis, employing

evolutionary theory and defining the field through subclasses within the International Patent
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Classification (IPC). Ruffaldi et al. (2010) investigate the rehabilitation and surgical robotics

industry through citations.

With regard to bibliometric analyses, Kaplan and Vakili (2015) focus on fullerenes in
nanotechnology and use the technique of topic modeling as a variant of text mining. Liu et al.
(2011) explore the photovoltaics industry with a keyword co-occurrence analysis that identifies
five sub-sectors within the photovoltaic industry which are subsequently used to analyze patent

growth trajectories for these clusters.

However, many of these studies lack an explicit spatial focus and rather focus on the evolution
of particular technological fields. As shown above, substantial research has been conducted on the
diffusion of technologies by adopters and consumers (see also Baptista, 1999) as well as the
importance of regional effects (Alderman and Davies, 1990). Also, the geographical diffusion of
innovative activity in general without considering technological classes and forms of proximity
has often been examined. Such studies are supplemented by work researching spatial diffusion
through patent citations (e.g. Jaffe et al, 1993; Almeida, 1996; MacGarvie, 2005). Further, other
fields of research look at the impact of R&D knowledge spillovers on productivity on proximate
regions (Keller, 2002; Aldieri and Cincera, 2009). Feldman et al. (2015) serve as a hotable example
of studying a particular technology and subclass in the USPC. This thesis contributes to the
literature by examining the spatial diffusion of a large group of technological fields that have
recently emerged and have not been studied yet. The analysis is run at different levels of
aggregation and clustering of technologies to compare and contrast the influence of the dimensions

of proximity and other covariates.
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4. Patents in geographical innovation research and data sources

This section briefly reviews the use of patents in geographical research on innovation, and
describes the data sources used in this thesis as well as important definitions. It particularly
emphasizes the connection between the identification of subclasses and their first occurrence, their

aggregation to technological fields, and how their diffusion is examined in this study.

In the last few decades, patents have been increasingly employed to explore a range of
technology-related issues in various disciplines, such as innovation studies, economics, economic
history, and economic geography (Lamoreaux and Sokoloff, 1996; Jaffe and Trajtenberg, 2002;
Acemoglu etal., 2013). Different elements of patents such as citations, claims, classification codes,
as well as information on inventors, assignees, and their geography have been used — as described
in the previous sections — to examine questions related to patterns of innovative activities, flows
of knowledge and their conditions, the direction and pace of technological development, as well

as the commercialization of scientific knowledge, among many others.

The use of patent data has proliferated due to the range of variables that may be extracted from
patent documents, but also because of the historical and geographical coverage of patent
information, and its availability. At the same time, it is important to note that the use of patent data
has also been questioned, with some asking whether patents provide a representative and unbiased
picture of innovative and economic activity. For instance, Pavitt (1985) stresses the fact that firms
patent strategically and that there are other means of protecting inventions, such as speed of
commercialization or secrecy. Still, Feldman et al. (2015) defend the use of patents by pointing to
the informational character of the inventive operations of different organizations, particularly in

industries where protecting intellectual property is crucial.
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This work uses patent data to examine the diffusion of novelty and technological breakthroughs
in the United States since 1975. | examine novel technologies, which are identified through patents
that introduce a new subclass. The precise procedure to identify these patents will be described in
the next section. | focus on new subclasses because | can locate their emergence in one

Metropolitan Statistical Area (MSA) and then trace their diffusion from this location over time.

For these purpose, the NBER patent dataset is used as the primary data source to cover all
patents that have been issued after 1975. These data are linked to further datasets that include the
various covariates used in this study such as employment, population, National Science
Foundation (NSF) grant information, and geographical coordinates. The latter have been used to

compute Euclidian distances between all pairs of cities.

The United States Patent and Trademark Office (USPTO) is the governmental agency that inter
alia examines patent applications and grants patents, which are a form of property right for the
exclusive commercial use of a technology by the patent assignee. The USPTO differentiates
between three main groups of patents: utility, design, and plant. Utility patents deal with the
usefulness and function of technologies and can be grouped in the categories of (a) an improvement
of an existing idea, (b) a composition of matter, (c) a manufacture, (d) a machine, and () a process.
Design patents are issued for a new, original and ornamental design for a product and hence
protects its aesthetic appearance. Plant patents are the most uncommon patent category and are

issued for the discovery or invention of plants that are reproduced asexually.

This study is limited to utility patents which account for 90% of all granted patents (Strumsky
and Lobo, 2015) and are designated for the invention of new and useful processes, machines,

artifacts, or compositions of matter. The USPTO categorizes the technologies that account for the
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novelty of an invention with a scheme of technology codes, the United States Patent Classification
(USPC). The USPTO has identified 438 primary technology classes, subdivided into
approximately 167,000 sub-classes, hierarchically organized to provide increasingly detailed
definitions of technology types. For instance, the primary Class 435 (“Chemistry: Molecular
Biology and Microbiology”) consists of patents within 823 subclasses. An example for a subclass
is class “435 69/1 - Recombinant DNA technique included in method of making a protein or

polypeptide”, which had been discussed above.

At the most aggregate level, Hall et al. (2001) define six technological categories (Chemical,
Computers & Communications, Drugs & Medicals, Electrical & Electronic, Mechanical, and
Others) and 36 nested technological subcategories. These classes are aggregations of the 438

primary classes of the USPC.

The USPC classification is updated bi-annually. This includes the introduction of new
subclasses, the focus of this analysis as a way to define novelty, as well as the subsequent
reclassification of previous classes and the patents related to them (Harris et al., 2010; Wang et al.,
2016). So-called classification orders are published by the Technology Centers of the USPTO.
These display changes of the USPC to the previous month and state whether patents have been
reclassified, whether new classes have been created and whether classes have been deleted
(Strumsky et al., 2012). It is important to note that when the USPTO identifies a new class or
eliminates an existing class this sets in motion an examination of all patents and their membership
within a particularly class category. Hence, the current classification system provides a reliable

structure for all patents issued by the USPTO since 1836.
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Rather than discard patent data for subclasses below the first tier, all patents in the USPTO
database are rolled up to the first-tier level. An example of the hierarchical structure of the USPC
is provided in Figure 1 below. For the primary class 984, a series of 9 first tier subclasses are
identified. One of these, 984 25/0, may be further disaggregated into the subclasses shown. All

patents within the bounded area in Figure 1 are aggregated up into class 984 25/0.

Primary Class 984 — Musical Instruments
984 25/0

‘ Aids for

Music

| ‘\\
Q 984 25/8 () 98a25/7 Q 984 25/4 ‘ 984 25/1\
‘\

losa 26/0 () 984 25/9 ( ) 984 25/6( )98425/5( )98425/3( )98425/2( )

=y |

Fig. 1: Example of the structure of the USPC hierarchy, and of a technological field

5. The identification of novelty

This study uses patent data to identify technological novelty and to analyze the historical
development of new ideas and their movement over space. Technological novelty is defined as the
first occurrence of a USPC subclass on a patent. Patents have numbers that run consecutively, thus

it is possible to identify the first instance of a new subclass in the USPTO system.
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Before the procedure to identify these first instances of USPC subclasses is described in detail,
some descriptive statistics on novelty and its geography are provided. Table 1 and Figure 2 display
the development of novelty — operationalized through the introduction of new subclasses within
the USPC — and patenting overall since 1975. Within a larger historical frame since 1836, two
trends are apparent. First, the rate of the introduction of newly introduced subclasses steadily
increased after 1836, reached a climax in the 1860s, and has been decreasing steadily since.
Second, overall patenting activity in the United States rose monotonically until 1975, and
experienced a particularly strong increase since 1980, reaching nearly 900,000 patents between
2001 and 2010. Figure 3 shows the overall spatial distribution of birthplaces of 10,195 subclasses
that were introduced by the USPTO between 1975 and 2005. The five metropolitan areas with the
highest counts are New York-Newark-Jersey City (1,139 subclasses), San Jose-Sunnyvale-Santa
Clara (643), Boston-Cambridge-Newton (574), Los Angeles-Long Beach-Anaheim (551), and San
Francisco-Oakland-Hayward (535). Figure 4 then depicts the distribution of the birth places of the
novel 406 technological fields examined in this study among metropolitan areas since 1975. As
described above in the previous section, these are 406 first-tier subclasses which have initiated the
development of related ‘lower-tier’ subclasses. Significantly, only 99 metropolitan areas are
among these birthplaces, with New York-Newark-Jersey City (48 subclasses), San Francisco-
Oakland-Hayward (31), Los Angeles-Long Beach-Anaheim (25), and San Jose-Sunnyvale-Santa

Clara (24) at the top.
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Time period Novelty Patents
1975-1984 4,912 (491) 452,742 (45,274)
1985-1994 3,706 (371) 469,592 (46,959)
1995-2005 1,577 (143) 857,556 (77,960)

> 10,195 1,779,890

Table 1: Development of novelty (newly introduced subclasses) and patenting in the US. Annual
averages in parentheses.
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Fig. 2: Development of novelty and patenting in the US, 1975-2005
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Fig. 4: Birthplace distribution of the novel 406 technological fields, 1975-2005

However, identification of the patent that introduces a new subclass solely based on the grant
date or patent number is problematic. The problem can be exemplified by the case of recombinant

DNA technology that introduced the subclass 435/69.1 as noted above by Feldman et al. (2015).
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The authors determine the origin of this technology to be the famous Cohen-Boyer patent
US4237224 (“Process for Producing Biologically Functional Chimeras”). With the introduction
of this new subclass, the USPTO then identified two prior patents, generated before US4237224,
that belonged in the subclass. Hence USPTO records now show the patent (US4237224) as the

third patent in subclass 435/69.1.

As a remedy for this general problem, I introduce an additional criterion to identify the first
patent that is associated with the emergence of a new USPC subclass. Since the introduction of a
new subclass involves the production of a new type of technological knowledge, this should be
reflected by a larger number of forward citations for the patent that introduces that new knowledge.
Thus, forward citations are counted for every patent within a particular new subclass, up to five
years after their first appearance. | use this five-year window to calculate the mean and standard
deviation of citations for each subclass. | then define the true first instance of a subclass to be the
historically first patent that has a citation count higher than the mean citation plus one standard

deviation within this five-year window.

This study only considers first instances of subclasses at the “first-tier’ level (see Figure 3).
The rationale for this decision is based on three reasons. First, the ‘depth’ of the hierarchy is very
heterogeneous across primary classes, ranging from one to sixteen tiers. Hence, this aggregation
to the first tier is designed to create standards for the broadest possible comparison. Second, many
of the subclasses at very low levels of the USPC hierarchy do not contain enough patents granted
between 1975 and 2005 to examine spatial diffusion and to compute the proximity metrics. Third,
the computational power needed to compute the measures and separate models for all 10,000

subclasses created after 1975 would be beyond the scope of that available.
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6. Model and Construction of Covariates

In this section of the thesis, | present a model of technology diffusion across metropolitan
regions of the U.S. economy. The dependent variable in this analysis is binary: whether or not a
city adopted a particular technological class in a given year. The probability of technology
diffusion is modeled as a function of a series of time-fixed and time-varying covariates. The
framework employed in the analysis is the Cox extended hazard model. The form of this model is

explored below before presenting of the results of the analysis.

6.1  Extended Cox Hazard Model
This study employs event history and survival analysis to examine the spatial diffusion and
adoption of breakthrough technologies between 1975 and 2005. This work uses the Extended Cox
Hazard Model. Despite the fact that it does not explicitly control for unobserved heterogeneity, it

has multiple advantages (cf. Mills, 2011) over the frequently used fixed effects panel models.

First, in contrast to other models in survival analysis, it is a semi-parametric model that is
flexible in form, since a specific probability distribution does not need to be chosen a priori.
Second, its “robust nature” (Mills, 2011: 90) implies that it generally fits data well. Third, although
the baseline hazard probability (h,) is unspecified, the effects of multiple independent variables
can still be examined through the analysis of parameter estimates. Fourth, the exponent that is the
essential part of the model also guarantees that estimated hazards are zero or positive. This is
crucial since the hazard function inherently needs to take on values between zero and infinity.
Fifth, different from logistic regressions, censored observations that experience no event in the

examined time frame are included in the model’s computations and not dropped. This is important,
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for model parameters are derived from a much larger information set that includes many null
events. The extended form of the Cox hazard model allows time-varying independent variables to

be incorporated into the modeling framework, and is employed in the analysis below.

In its general form, the Cox Proportional Hazards Model is given by

h(t, X) = hy(t)Zi=1 AiXi

where hy(t), the baseline hazard, is time-dependent but not dependent on covariates. The
exponential term YY_. B;X; includes all covariates, but is not time-dependent. Hence, all
independent variables are fixed over time. Thus, at a particular time t, the hazard is the result of
the interaction of two terms: the time-dependent baseline hazard and the exponent which is the
sum of all §;X;. The model is semi-parametric as the baseline hazard is flexible in its form, yet the

independent variables are incorporated linearly.

The extended Cox model allows time-dependent covariates:
— S BiXy+ X2 8,0
h(t, X(t)) = ho(t)™= j=am

where the exponential term is extended by adding Z}’il 8;X;(t), which includes the time-varying

covariates. Hence, contrary to the general form of the model, the exponential term now includes
both time-independent and —dependent predictors. As in the general model, the coefficients of the
regression are estimated by maximizing a partial likelihood function. Notably, the extended Cox
model assumes that the impact of a time-varying independent variable on the probability of
survival/failure at a certain time t is not contingent on the variable’s values at earlier or later times,
but solely on its value at time t. Further, although the independent variable may change over time

for time-dependent covariates, there is only a single hazard ratio or coefficient (6;) computed for
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each time-dependent variable in the model. Box-Steffensmeier and Jones (2004) suggest that time-
varying covariates in survival models should be incorporated in a temporally lagged way, to
remedy the simultaneity problem of cause and outcome. In innovation diffusion research, Feldman
et al. (2015) lag their time-varying independent variables by one year, an approach followed in
this work. The reader is referred to Kleinbaum and Klein (2006) for an in-depth discussion of the

extended Cox model.

The hazard ratio can be derived from a model coefficient and is provided in the empirical
model output below. In this work, the hazard is the adoption of a technology in a city in a certain
year. It can be interpreted as follows. The particular ratio can be conveniently converted into
percentages, (ratio — 1)*100, representing the percent change of the hazard for each additional unit
of a particular covariate for time-fixed independent variables, ceteris paribus. The parameter
estimates for the time-varying independent variables for time-dependent continuous covariates can
be also understood as the change in the probability of the hazard occurring for a unit change of the

time-varying covariate.

As described above, this study uses not only time-fixed covariates such as the average
distance to other cities, but also — and mainly — time-dependent independent variables such as two
measures for social proximity or the sum of NSF grants. These will be introduced further below in
this section. Incorporating time-dependent covariates into a Cox hazard model implies that the
hazards in the model are no longer proportional. Hence, this adjusted model that used these time-

varying measures as predictors is called the ‘Extended Cox Hazard Model” (Mills, 2011).
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6.2 Data structure

The data for the survival analysis through the extended Cox model used in this study are
set up as a counting process (Therneau and Grambsch, 2000), also known as episode splitting
(Blossfeld et al., 2012), to be explained below. This structure is advantageous to take both time-
varying and time-fixed covariates into account. As Therneau and Grambsch (2000, p. 68, emphasis
in the original) point out, “the basic viewpoint [of the method of a counting process] is to think of
each subject [i.e., a city, in which a particular subclass is to be adopted] as the realization of a very
slow Poisson process. Censoring is not “incomplete data”, rather, the Geiger counter just hasn’t
clicked yet.” Hence, splitting the survival analysis for a certain city over the time period from 1975
to 2005 into different episodes (i.e., years in this thesis) — regardless of the question whether the
city eventually adopts the technology or not — enables the incorporation of time-dependent

covariates and the estimation of the model through statistical software.

In total, there are observations for 406 technology classes for each of 366 metropolitan
areas spanning 31 years from 1975 to 2005. Contrary to the conventional Cox Hazards model,
each city consists of multiple sub-episodes (also referred to as splits). In this study, the data are
structured in an isochronous way, with each observation representing a single year between the
first global occurrence of the new subclass that represents a technological field (1975 at the
earliest) and its first adoption in the specific city (2005 at the latest). Hence, the one-year window

is not varied and flexible.

The event (or failure, as commonly called in survival analysis) status is coded as a binary
variable that reflects whether a Metropolitan Statistical Area (MSA) ¢ patents in a certain subclass
jinyeart (1), or not (0). All observations for cities that have not adopted a particular technology

by 2005 are considered right-censored, but remain in the model, as explained above as one of the
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advantages of the Cox model in comparison with logistic regressions. Each city can only record a
failure status (i.e., adoption) once for each technology. The model stops for each subclass and city
at the first occurrence of such an event. All previous observations before the year of adoption in a
city are recorded as non-failures, but contain the corresponding values of the time-varying
independent variables for the particular year. An observation under the method of episode splitting
hence contains (a) values of the covariates — both time-fixed and time-varying — during the
subperiod, (b) the start and end year of the subperiod (e.g. 1975 and 1976), and (c) information on
the status (failure or survival) of the entity (i.e., the city) during the subperiod (Blossfeld et al.,

2012).

It is important to note that the concept of a technological field has been realized in the data
set through recoding all subclasses in a particular field (review Figure 1 for a visualization of the
concept) to their respective first-tier subclass. The construction of covariates will be described
below. Overall, the hazard model explores how the independent variables influence the probability

of technology adoption, occurring (diffusion) over space through time.

6.3  Construction of covariates

This sub-section briefly defines the major independent variables that are used in the Cox
hazard model. These variables measure the geographical proximity of cities to one another, the
geographical proximity of cities to neighbors that have already adopted a particular technology,
the cognitive proximity of cities to a particular technology class and the social proximity of cities
to one another. A series of additional, more general, covariates are also included in the model.

These are discussed later.
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Geographical proximity

From the theoretical arguments outlined above, geographical proximity is assumed to exert
a positive influence on the diffusion of technology. Thus, cities that are closer together might be
expected to transfer knowledge more readily than cities that are further apart. Geographical
proximity between all pairs of cities is computed in Euclidean form based on latitude and longitude

coordinates for the centroids of each metropolitan area.

This proximity dimension is computed in the following way. A matrix of geographical
distances between all MSAs, and hence between all metropolitan regions in the United States, is
being calculated. The Euclidean distances are based on the latitudes and longitudes of each MSA’s
centroid. Conventionally, it is hypothesized that cities spatially closer to other cities that have
already developed the particular technology in previous time periods are more likely to develop

patents in the same technological field, too.

There are two primary possibilities to incorporate geographical proximity into the Cox
model. In a first, rather crude, form, the proximity of a city to all other cities in the U.S. city-system
is employed. This measure is based on the average Euclidean distance from one city to all other
MSAs, regardless of whether they have developed a particular technology or not. This is a time-
fixed measure since the city’s absolute locations do not change over time. The unit of measurement
is kilometers. In a second form, the minimum distance from a potential adopting city to another
scity that has already developed patents in a particular technology class is used. This study uses
the Euclidean distance in kilometers to the nearest neighboring MSA with a previously developed
patent in the relevant field — and hence the minimum distance — as the independent variable.

Clearly, this decision is ambiguous, since the literature provides no clear answer. However, early
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computations confirmed the consistency of this choice. Further, this research follows Feldman et

al.’s (2015) robust results in choosing this measure.

Year 1980 1990 2000
Minimum 0 0 0
Maximum 6169 5597 5476

Mean 1170 882 583

Standard Deviation 1008 870 659

Table 2: Descriptive statistics for minimum-distance-based geographical proximity (Euclidean
distances, measures in kilometers)

Cognitive proximity

The “distance” between technology fields, what is sometimes referred to as cognitive
proximity, is generally based upon the frequency with which technology classes are grouped
together or co-classified on individual patents. Such calculations of cognitive proximity are usually
performed between the 438 primary classes found in USPTO data. The technological fields
examined in this thesis are more disaggregate than the primary class level, occupying the next tier
down in the USPTO class hierarchy, what is referred to here as the first-tier subclass level. The
probability of a city developing a patent in one of these first-tier technological fields might
reasonably be thought to depend upon the distribution of existing inventive efforts within the city

and how far those efforts are in knowledge space from the first-tier subclass.

The cognitive proximity, or relatedness of a city’s knowledge base to a particular

technological field, is measured in the following way. First, for each technological field with its
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first-tier subclass, a frequency vector is computed, which contains all USPC primary classes that
have been grouped together on patents with this subclass between 1975 and 2005. In detail, Cpsu
=1 if patent p is classified under both subclass s and primary class u, and 0 otherwise. Summing

over all patents in the time period results in this frequency vector.

While the simple co-class counts represent the technological relatedness of all primary
classes to a certain subclass, they are of course also impacted by the absolute number of patents in
these classes. Hence, these co-class counts need to be standardized by the square root of the product
of the overall number of patents in this primary class and the number of patents in the particular
subclass examined:

Zp Cpsu
Sus = =
vV 2 Py * X Ds
Where )’ p,, is the number of patents in primary class u and ), p, is the number of patents

in subclass s.

Subsequently, this global measure needs to be projected to a city-based perspective to
compute the technological proximity of a city’s knowledge stock to the particular subclass. For
this purpose, the average relatedness of a city’s patents to this subclass is calculated. High values
of relatedness are assigned to patents that frequently co-list the subclass. In general, this average
relatedness score AR for city m in year t is computed as follows.

Zj55s * DsCt

t —
AR™ = 2=

where S{. stands for the technological relatedness between patents in the 438 primary classes and

patents in the analyzed subclass. This has been described above as the standardized co-occurrence.
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Moreover, DS represents the patent count in technology s in year t in city c. N¢¢ is the total number

of patents in year t in city c.

Computationally, this procedure is executed as follows. First, a matrix with primary class
counts per city between 1975 and 2005 is computed. Second, counts for all 406 technological
fields/subclasses per city over the same time period are appended. Third, the co-occurrences are
standardized taking the count of the co-occurring primary classes of a particular subclass and
dividing it by the square root of the product of the overall count of the particular primary class and
the respective subclass’ count. Both figures are not city-specific. Then, the average relatedness AR
is computed as described above. Lastly, all average relatedness values are scaled by 100 to fit the

extended Cox Hazard model calibration.

This measure is not a perfect choice since it is based on averages and not on the distribution
of distances between technologies. For instance, as Feldman et al. (2015) note, it does not
distinguish between small cities that produce patents that are an average distance away from the
particular subclass and larger cities with higher innovative activity and patents that are distant and
patents that are close to the relevant subclass. These two scenarios would yield similar results when

calculating the average relatedness as presented above.

Year 1980 1990 2000
Minimum 0 0 0
Maximum 211.2 211.2 211.2

Mean 1.3 11 1

Standard Deviation 5.2 4.6 4.1

Table 3: Descriptive statistics for cognitive proximity
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Social Proximity

The third proximity dimension that is part of the model in this study is social proximity. In
the literature review above, it has been particularly contrasted with geographical proximity (cf.
Breschi and Lissoni, 2001). The social interactions of relevance are the interactions between
inventors working on particular technologies and endowed with particular knowledge sets related
to the relevant technological field, or subclass. If these inventors collaborate on patents, the
probable flow and transmission of knowledge is of interest and is assumed to connect cities to each
other in these knowledge domains. To operationalize this aspect of proximity for this study, a
metropolitan area social proximity matrix is being set up with 366 x 366 cells, the dimensions
being the number of metropolitan areas (MSA) in the United States. Initially, all cells are filled
with zeros. Then, for every subclass, the patents listed under the primary class of this subclass in
a certain time period are identified. Co-inventors for patents in this primary class residing in two
cities c1 and c2 increments the matrix cells (c1, ¢2) and (cz, c1) by 1. For co-inventors residing in
the same city, the diagonal cell value is increased by 1. Once this has been re-iterated for all

relevant patents, the row or column average is computed.

This value represents the average social proximity for each metropolitan area to all other
metropolitan areas for the primary class of the analyzed subclass. The values for each city and
primary class were computed for a moving three-year window preceding the year of a particular
observation. After testing different time frames, three years were found to be the most appropriate
window. For example, for subclass 436 80/2 in CBSA 10180 (Abilene, TX) in 1977, all inventor
data on patents in primary class 436 (Chemistry: Analytical and Immunological Testing) in this

CBSA between 1975 and 1977 were identified and used to compute the statistic for social
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proximity. The primary class has been chosen as a broader category than the subclass itself to
ensure that enough observations are available and to take closely related subclasses into account.
It needs to be reflected that this measure can be critiqued for its generality. Also, all patents with

sole inventors are excluded from this analysis.

It can be argued that particularly complex technologies are spatially sticky and difficult to
transmit them over distances. Thus, another measure of social proximity is introduced that takes
this consideration into account, using the same methodology described above but focusing on
inventor collaborations within the same city, the main diagonal of the matrix described above. As
with the first variant of social proximity, it is based on a moving three-year time frame and
inventions within the primary class of the particular technology. Here, the share of intra-city
collaborations is computed by dividing the number of co-inventorships within a certain city
through the sum of all of a city’s co-inventorships. The values are scaled by 10 to fit the Extended

Cox Hazards model calibration properly.

1980 1990 2000
Year Conventional | Intra- | Conventional | Intra- | Conventional | Intra-
SP city SP SP city SP SP city SP
Minimum 0 0 0 0 0 0
Maximum 7.2 10 18.75 10 53.45 10
Mean 0.02 0.65 0.04 0.87 0.15 1.07
Standard
0.16 2.25 0.3 2.46 1.03 2.5
Deviation

Table 4: Descriptive statistics for social proximity (SP)
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Additional covariates

In addition to the four proximity measures described above, other covariates have been
used in this analysis. First, the number of employees in every city by year, between 1975 and 2005
(Employment). Second, the number of inhabitants of every city, by year between 1975 and 2005
is used as well (Population). Third, the cumulative age of backward citations of patents issued in
a particular city in a certain year is included (Age of Citations) as a proxy for the average novelty
and radicalness of inventions, assuming that a higher average age of backward citations makes
inventions less radical and valuable. Fourth, the sum of NSF grants per city per year is used as a
proxy for R&D resources (NSF Grants). All covariates are lagged one year. It is important to note
that all these covariates as well as the majority of the proximity measures are time-dependent,

which has important implications for the structure and set-up of the model for survival analysis.

7. Empirics

In total, the spatial diffusion and adoption of 406 technological fields (i.e., subclasses within
utility primary classes) is being examined in this study. Digest as well as design classes are
excluded. Table 5 shows the distribution of these technologies with respect to Hall’s six aggregate
classes Chemical, Computers & Communication, Drugs & Medical, Electrical & Electronic,
Mechanical, and Others. The 406 subclasses examined here are distributed across 117 of the 438
primary classes of the USPTO. Analysis focuses on these 406 patent first-tier subclasses because
they have come into existence since 1975 and thus the development of patents within these classes

can be traced year-on-year across the metropolitan areas of the United States.
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Electrical

Computers & Drugs &
Chemical & Mechanical Others >
Communication | Medical
Electronic
64 109 72 77 45 39 406

Table 5: Distribution of the 406 subclasses in Hall’s (2001) six classes

A number of models are estimated in this study. First, | explore aggregate results from a
model that spans all years and technological fields. Thereafter, | run the diffusion model separately
for a series of technology classes at different levels of aggregation and over different time-periods.

The disaggregate analysis is performed to identify sector- or time-specific results that may be of

interest.

Table 6 shows the results of the Extended Cox Hazard Model for the complete sample of

all 406 subclasses, 366 cities, and 30 years. The model includes 12,420 ‘failures’, i.e. events of

adopting a subclass in a city, amongst a total of 2.5 million observations.
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Hazard ratios

Model 1: Full sample

Lag Geographic

Proximity 0.99900™
(0.00003)
Three-year Social
Proximity 1.04435
(0.00507)
Intra-city Social ¥
Proximity kRaeal
(0.00257)
Cognitive
Proximity Lnorde
(0.00059)
Average
Gecgeaphilc 100032
Distance to Other
Cities
(0.00002)
Lag NSF Grants 1.00000™"
(0.00000)
Lag Employment 1.00000™"
(0.0000001)
Lag Population 1.00000™"
(0.0000000)
Lag Age of
Cititiois 1190000
(0.0000001)
Failures 12420
Observations 2,481,496

Log Likelihood

-62,057.97000

Note: "p<0.1; "p<0.05; ""p<0.01

Ties are being handled with the Breslow method. Except for cognitive proximity and the average geographic distance, all
covariates are lagged one year. The p-values are computed by logging the hazard ratios (which yields the regression
coefficient) and by dividing through the standard error.

Table 6: Model results of complete sample

All hazard ratios are significant, not unexpected given the large number of observations in
the model. A hazard ratio significantly different from unity suggests that the independent variable
in question exerts a significant influence on the probability of a city adopting a technology. Here
| briefly run through the influence of all the independent variables for the general model reported
above. First, geographical proximity is smaller than 1 and reflects that a greater geographical
distance to the nearest neighboring city decreases the likelihood for the adoption of a technology

to occur.
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Second, as the only counter-intuitive exception among the hazard ratios, the average
geographic distance enters the model with a marginally greater-than-one hazard ratio, reflecting
that a greater mean distance to other cities actually increases the probability for a technology’s
adoption. While the reasons for this result remain unclear, it can be speculated that this time-fixed
measure is very coarse, and hence presents no clear mechanism for the transmission of knowledge.
Also, this could be an indication of a ‘big-City-effect’ determining the diffusion of technologies,
with large cities with greater spatial distances between them disproportionately often adopting the
technologies. A number of models have been estimated without this variable. Since results for
estimated coefficients qualitatively stayed the same, the variable has not been dropped to guarantee

consistency.

Third, the hazard ratios for both metrics of social proximity are greater than one, implying
that cities with greater social proximity in the particular technological primary classes are more

likely to develop patents in a certain technology.

Fourth, cognitive proximity also enters the model with a coefficient significantly greater
than one. Hence, greater cognitive proximity of a city’s knowledge stock to the particular

technological field positively influences the probability for adoption.

Fifth, the hazard ratios for all four additional city-level covariates of NSF grants,
employment, population, and the age of citations are significant, but deviate only very slightly
from 1. Overall, these are affirming results that underline the importance of the theoretically
derived impacts on knowledge transmission — geographical, social, and cognitive proximity —even

when estimating the Extended Cox Hazards Model across all cities, years, and technologies.
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Separate models are now explored for technology sub-classes that are part of the six broad
technology classes identified by Hall et al. (2001). The results are presented in Table 7. As in the
previous model, the hazard ratios are significant and consistently in the expected direction for

geographical proximity, cognitive proximity, and intra-city social proximity.

Hazard ratios

Model 2: Model 3: Computers and Model 4: Drugs and  Model 5: Electrical and Model 6: Model 7:
Chemical Communication Medical Electronic Mechanical Others
Lag Geographic o S oo S e
Proximi 0.99922 0.99904 0.99921 0.99889 0.99885 0.99856
roximity
(0.00007) (0.00006) (0.00007) (0.00008) (0.00011) (0.00013)
Three-year
f s 1.20404 0.98694 1.08192 1.05790 1.16482 213474
Social Proximity
(0.02655) (0.00847) (0.01319) (0.01053) (0.02151)  (0.16872)
Intra-city Social
Proithi 1.22136 1.19237 1.19484 1.23305 1.16177 1.16136
roximity
(0.00732) (0.00424) (0.00603) (0.00841) (0.00877)  (0.01442)
Cognitive B2 5 U R 55 pe
Proximi 1.06454 1.09165 1.02355 0.99868 1.05118 1.837189
roximity
(0.00453) (0.00850) (0.00119) (0.00128) (0.00954)  (0.02452)
Average
Geographic e 5 0 e
Di 1.00032 1.00038 1.00029 1.000385 1.00031 1.00039
istance to
Other Cities
(0.00008) (0.00003) (0.00004) (0.00005) (0.00007)  (0.00007)
Lag NSF Grants  1.00000™ 1.00000™" 1.00000™ 1.00000™" 1.00000"  1.00000™"
(0.00000) (0.00000) (0.00000) (0.00000) (0.00000)  (0.00000)
od 1.00000 1.00000 1.00000 1.00000 1,00000 1.00000
Employment
(0.0000002) (0.0000001) (0.0000001) (0.0000002) (0.0000003) (0.0000003)
Lag Population  1.00000™" 1.00000™" 1.00000™" 1.00000™" 1.00000""  1.00000™"
(0.0000001) (0.0000001) (0.0000001) (0.0000001) (0.0000002)  (0.0000001)
Lag Age of s e i o -
5 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
Citations
(0.0000002) (0.0000001) (0.0000002) (0.0000002) (0.0000002)  (0.0000003)
Failures 1404 4772 2362 1919 1057 906
Observations 435,500 568.218 472,202 463,695 282,074 259,807
Log Likelihood  -6,676.00400 -28,347.85000 -11,704.43000 -9.496.04900 -5,666.35400 4.610.83300

Note: "p<0.1; "p<0.05; ""p<0.01

Ties are being handled with the Breslow method. Except for cognitive proximity and the average geographic distance, all
covariates are lagged one year. The p-values are computed by logging the hazard ratios (which yields the regression
coefficient) and by dividing through the standard error. The model is clustered on cities.

Table 7: Model results for Hall’s (2001) six classes

The results in Table 7 are largely in line with expectations, though the coefficients in two
cases are significant with the wrong sign. In terms of the three-year measure of social proximity,

Model 3 for Computers and Communication has a coefficient that is significantly below 1 (or
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negative). Thus, as social proximity between inventors in different cities increases, so the

probability of technology adoption declines.

It could be argued that patents in this technological class, which consists of complex
knowledge and is hence spatially sticky, is rather developed through intra-city collaborations
between inventors. This conjecture is supported with the coefficient on intra-city social proximity
that is greater than one (positive). The coefficient for cognitive proximity is less than one
(negative) for Model 5: Electrical and Electronic, implying that cities with a knowledge base close
to technologies in electrical and electronic classes are less likely to adopt a new related technology.
While the reasons remain unclear, it could be argued that cities with a strong base in these areas
of research have outdated knowledge and are hence not capable to participate in the development
of novel technologies. Additionally, it may be the case that this aggregate class consists of various
highly heterogeneous technologies which are not necessarily closely related. As Table 5 indicated
above, Electrical and Electronic represents the class with the second highest number of subclasses

in the model (77 of 406). This conjecture is explored further below.

Table 8 continues the path of estimating the Cox model for more disaggregate
technological areas and provides a more detailed analysis and examines a selection of Hall’s (2001)
36 aggregated technological classes. The results for 11 — Agriculture, Food, Textiles (3), 22 —
Computer Hardware & Software (66), 32 — Surgery & Medical Instruments (13), as well as 33 —
Biotechnology (22) (number of subclasses in estimation)are displayed. Still, the tendency of hazard
ratios is similar to the models run for the complete data set as well as Hall’s six classes. The only
exception is 11 — Agriculture, Food, Textiles, which produces a counter-intuitive hazard ratio for
the time-fixed average geographic distance, as well as disproportionately high values for cognitive

and, particularly, the conventionally measured three-year social proximity. It needs to be
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mentioned that this cluster consists of only three subclasses. Hence, extreme results are not

averaged out as could be the case in bigger clusters.

Hazard ratios

Model 8: Agriculture, Food. Model 9: Computer Hardware and Model 10: Surgery and Medical Model 11:
Textiles Software Instruments Biotechnology
Lag Geographic
Proximi 0.99505 0.99891 0.99929 0.99907
roximity
(0.00203) (0.00007) (0.00017) (0.00011)
Three-year
f ¢ 27.60224 0.97987 1.09236 1.21083
Social Proximity
(2.07842) (0.00958) (0.06120) (0.03332)
Intra-city Social
Prosimi 1.49080 1.18291 1.15925 1.18799
roximity
(0.12928) (0.00497) (0.01986) (0.00774)
Cognitive
Pioxinai 2.92296 1.07599 1.76190 1.02249
roximity
(1.01715) (0.00684) (0.13264) (0.00123)
Average
Geographic
Di 0.99749 1.00033 1.00037 1.00021
istance to
Other Cities
(0.00324) (0.00004) (0.000186) (0.00008)
Lag NSF Grants 1.00000™" 1.00000™" 1.00000™ 1.00000™"
(0.0000001) (0.00000) (0.00000) (0.00000)
Lag Employment 0.99999™" 1.00000™" 1.00000™" 1.00000""
(0.00001) (0.0000001) (0.000001) (0.0000002)
Lag Population 1.00000™" 1.00000™" 100000 1.00000™
(0.000004) (0.0000001) (0.0000003) (0.0000001)
Lag Age of
Citati 1.00000 1.00000 1.00000 1.00000
itations
(0.000002) (0.0000001) (0.000001) (0.0000002)
Failures 6 3528 200 1504
Observations 15,014 290,502 73,968 140,946
Log Likelihood -16.88079 -17.499.28000 -1,014.18800 -7.534.78900
Note: "p<0.1; "p<0.05; ""p<0.01

Ties are being handled with the Breslow method. Except for cognitive proximity and the average geographic distance, all
covariates are lagged one year. The p-values are computed by logging the hazard ratios (which yields the regression
coefficient) and by dividing through the standard error. The model is clustered on cities.

Table 8: Model results for technologies in Hall’s (2001) 36 aggregated technological fields

Table 9 depicts a differentiated analysis for the conditions of spatial diffusion and adoption
before and after 1990 for all technological fields. It could be possible that technological changes
and other developments have led to different mechanisms for technology diffusion being
determinant between these time periods. However, the fact that the hazard ratios deviate from one

in the same direction opposes this hypothesis. An additional model with dummy and interaction

44



effects for the proximity variables is estimated to test whether there are significant differences
between the pre- and post-1990 coefficients. The p-values are 0.011 (geographical proximity),
0.00003 (social proximity), 0.11 (intra-city social proximity), and 0.007 (cognitive proximity),

reflecting that these differences are indeed significant at a 95% confidence level.

Hazard ratios

Model 12: Years before 1990 Model 13: Years after 1989
Lag G hi
24 A% drapnie 0.99887 0.99913
Proximity
(0.00005) (0.00004)
Three-year
Social Proximity 1:28200 104800
(0.03124) (0.00512)
Intra-city Social $es 3
FE 1.22804 1.19383
Proximity
(0.00508) (0.00302)
Cognitive 1.02079™ 1.00833™
Proximity s >
(0.00153) (0.00068)
Average
Geographic
Di 1.00053 1.00026
istance to
Other Cities
(0.00004) (0.00002)
Lag NSF Grants 1.00000™" 1.00000™"
(0.00000) (0.00000)
Lag Employment 1.00000™" 1.00000"
(0.0000001) (0.0000001)
Lag Population 100000 1.00000™
(0.0000001) (0.0000000)
Lag Age of
it 1.00000 1.00000
Citations
(0.0000002) (0.0000001)
Failures 2990 9430
Observations 752,922 1,728,574
Log Likelihood -14,424.33000 -47.445.18000
Note: "p<0.1; "p<0.05; "'p<0.01

Ties are being handled with the Breslow method. Except for cognitive proximity and the average geographic distance, all
covariates are lagged one year. The p-values are computed by logging the hazard ratios (which yields the regression
coefficient) and by dividing through the standard error. The model is clustered on cities.

Table 9: Model results for different time periods

Table 10 compares the model results for cities with high and low patenting activity.
Following Feldman et al.’s (2015) distinction between cities with either less than 10 or more than
90 patents per subclass, the model reveals that the determinants for the adoption of a novel subclass
in a particular city almost universally have the same direction and significance. Cognitive

proximity represents the only exception. While a higher cognitive proximity of a city towards the
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respective new subclass’ field of technology increases the probability for low-patent city to adopt

the technology, the opposite is found for high-patent cities.

Hazard ratios

Model 14: Low-patent cities (< 10 patents) Model 15: High-patent cities (> 90 patents)
Lag Geographic
=i 0.99943 0.99905
roximity
(0.00003) (0.00024)
Three-year 1.08167™ 0.99895™
Social Proximity : ;
(0.00875) (0.02097)
Intra-city Social 5 -
Broximmi 1.04441 1.08803
roximity
(0.00342) (0.01618)
Cognitive o
Proximi 1.00431 0.99844
roximity
(0.00183) (0.00185)
Average
Geographic
Di 1.00009 1.00010
istance to
Other Cities
(0.00002) (0.00011)
Lag NSF Grants 1.00000"" 1.00000""
(0.00000) (0.00000)
Lag Employment 1.00000"" 1.00000™"
(0.0000001) (0.0000003)
Lag Population 1.00000™" 1.00000™"
(0.0000000) (0.0000001)
Lag Age of oo o
Citati 1.00000 1.00000
itations
(0.0000001) (0.000001)
Failures 9513 503
Observations 100,706 1,298
Log Likelihood -27.861.31000 -1,170.16200
Note: "p<0.1; "p<0.05; ""p<0.01

Ties are being handled with the Breslow method. Except for cognitive proximity and the average geographic distance, all
covariates are lagged one year. The p-values are computed by logging the hazard ratios (which yields the regression
coefficient) and by dividing through the standard error. The model is clustered on cities.

Table 10: Model results for cities with differing levels of patenting activity

While these results affirm the general mechanisms — particularly regarding geographical,
social, and cognitive proximity — that influence and condition the spatial diffusion and adoption of

technologies, a question remains: Does aggregating data across individual technological fields

46



drive some of the results reported above? Thus, running the Cox model for individual technology
subclasses might be a useful extension. Some evidence of the variability in coefficients across
individual technology subclasses is presented in Figure 5. Discussion of estimating the Cox model
across individual USPTO subclasses continues below. Note that repeated hypothesis testing of this
kind raises questions about the levels of significance at which the null hypothesis should be

rejected. However, because this work is largely exploratory, | do not focus on these concerns here.
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Hazard ratio: Intra-city social proximit

Fig. 5: Distribution of proximity hazard ratios across all 406 subclasses

It is informative to compare the results for the hazard ratios and related model coefficients
for individual technological fields. Figure 5 plots the distribution of hazard ratios for all four

employed metrics for the three proximity dimensions. A visual and brief statistical analysis reveals
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that the values of the conventionally measured social proximity are most dispersed, followed by
cognitive proximity (mean = 4.89, standard deviation = 8.7), intra-city social proximity (mean =
9.39, standard deviation = 1.84), and geographical proximity (mean = 0.99, standard deviation =
0.03). Particularly the hazard ratios of the latter seem to be very homogenous. Figure 6 shows a
significantly more homogeneous picture for the hazard ratios of the additional covariates for the
average geographical distance, NSF grants, employment, population, and the age of citations, with
the time-fixed geographical proximity measure of average spatial distance being the only
exception. The reader may refer to the ‘big-city-effect’ described above for the interpretation of
this independent variable’s hazard ratios, with large cities with greater spatial distances between

them disproportionately often adopting the technologies.
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Fig. 6: Distribution of additional covariate hazard ratios across all 406 subclasses
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In the following, individual technological fields with different configurations of their
proximity hazard ratios of their spatiotemporal diffusion and adoption between 1975 and 2005 will
be presented. Focusing on the crucial split between greater-than-one and less-than-one hazard
ratios, Table 11 shows the distribution of individual subclasses above and below this threshold. To
remind the reader, both social proximity metrics as well as the cognitive proximity statistics are
expected have a hazard ratio greater than one, while geographical proximity is expected to have
values less than one. As the preceding estimated models already suggested, these separate results
reflect that the majority of subclasses have proximity hazard ratios with the respective expected
sign. Still, the shares of hazard ratios with an unexpected hazard ratio range between 8.6% for

geographical proximity and 29% for the conventionally measured social proximity.

Intra-city
Geographical Social Cognitive
social
proximity proximity proximity
proximity
>1 34 (8.6%) 272 (71%) 341 (89%) 283 (89.3%)
<1 362 (91.4%) 111 (29%) 42 (11%) 34 (10.7%)
> 396 383 383 317

Table 11: Distribution of subclass-based hazard ratios

To deepen this analysis of the Cox model estimations for single technological fields, Tables
12 and 13 provide an overview of possible hazard ratio combinations of the three key proximity
metrics nearest-neighbor geographical proximity, intra-city social proximity, and cognitive
proximity. The hazard ratios are categorized as either less than (0) or greater than (1) one. Both

average-distance spatial proximity and the conventionally measured social proximity are not
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considered here due to their counter-intuitive results that could be attributed to their generality as
well as to the significant variation of values of social proximity due to varying patent data
availability in different technology classes, respectively. Eight different combinations of these
three hazard ratios are possible as displayed in the table. The signs that theory suggests are
highlighted. For example, the combination 011 means that the hazard ratios for a particular
technological fields are less than one for geographical proximity, greater than one for intra-city
social proximity and also greater than one for cognitive proximity. For 304 of all 406 subclasses,
complete results have been reported for the model’s estimation. The remaining 102 subclasses
have partially missing values for their hazard ratios that are due to the low number of patents issued
in certain technologies and cities, which were insufficient to estimate the Cox model. Interestingly,
225 of these 304 technologies (74%) with complete results report a combination of the expected
signs for the three proximities. The frequency of hazard ratio combinations for these outliers is
given below. A group of these outliers are due to limited numbers of patents in these fields and

cities that adopted these technologies.

Hazard Ratio Geographical Intra-City Social Cognitive
Count (N = 304)

Combination Proximity Proximity Proximity

000 <1 <1 <1 6

001 <1 <1 >1 22

010 <1 >1 <1 23

011 <1 >1 >1 225

100 >1 <1 <1 1

101 >1 <1 >1 3
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110

>1

>1

<1

4

111

>1

>1

>1

20

Table 12: Distribution of subclass-based hazard ratios. O in the hazard ratio combination stands

for a less-than-one and 1 for a greater-than-one hazard ratio. Highlighted cells: Hazard ratios as
expected from theory.

Hazard 2 — Computers 3- 4 —
1- 5- 6 -
Ratio & Drugs & | Electrical & %
Chemical Mechanical | Others
Combination Communication | Medical Electronic

000 1 2 0 0 2 1 2.0
001 2 4 4 4 7 1 7.2
010 2 3 4 5 4 5 7.6
011! 36 79 42 43 18 7 74.0
100 0 0 0 0 0 1 0.3
101 0 2 1 0 0 0 1.0
110 1 1 0 1 1 0 1.3
111 5 6 5 3 1 0 6.6
N =

% 155 31.9 18.4 18.4 10.9 4.9
304

Table 13: Distribution of subclass-based hazard ratios across Hall’s (2001) six classes. O in the
hazard ratio combination stands for a less-than-one and 1 for a greater-than-one hazard ratio.t:

Combination of expected signs for the three proximity hazard ratios (Code 011).
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8. Discussion

This study of novelty and the spatial diffusion and adoption of breakthrough inventions in the
United States between 1975 and 2005 has produced three main findings. First, the results show
that certain factors, theoretically and previously empirically found to condition the spatial diffusion
and adoption of certain technologies, are equally relevant across different industries and
breakthrough technologies, different time frames, and cities with differing patenting activity. This
particularly emphasizes the importance of the three examined dimensions of proximity —
geographical, social, and cognitive — in influencing the likelihood of technology adoption in a

particular city.

Second, through estimating the Extended Cox Hazard Model for incrementally smaller subsets
of the patent data set and peaking at subclass-based model runs, more complex dynamics are found.
Although the vast majority of technological areas exhibit similar influences through the proximity
measures and additional covariates, a few outliers are identified. Particularly the latter ones were
simply averaged out when executing the model at more aggregate data levels. A group of these
outliers are due to limited numbers of patents in these fields and cities that adopted these
technologies. It may be an interesting additional research project to provide case studies of these

outliers to find out what the reasons for these (partially) unexpected proximity values are.

Third, this study affirms the accuracy of the institutionally defined United States Patent
Classification by examining the diffusion of groups of related technologies. The definition for
relatedness is solely derived from its proximity in the classification’s structure and hierarchy, as
demonstrated in Chapter 4. Still, this institutionally defined relatedness produces consistent results
in the Extended Cox Hazard Model, which are largely consistent with theory. Here, all subclasses

have been aggregated to their respective ‘parent’ subclass at the first tier of the hierarchy. As
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mentioned above, only first-tier subclasses introduced between 1975 and 2005 were considered in

this thesis.

This thesis contributes to the literature by examining the spatial diffusion of a large group of
technological fields that have recently emerged and have not been studied yet. The analysis is run
at different levels of aggregation and clustering of technologies to compare and contrast the

influence of the dimensions of proximity and other covariates.

There are different potential extensions to the study presented here. It would certainly be
interesting to link these technology diffusion models to citation data in order to compare different
notions of technological trajectories and relatedness. Further, the existing model could be extended
by incorporating other covariates that focus on certain dimensions of the technologies. For
instance, different measures for the ‘growth’ or ‘branching’ of a first-tier subclass such as the
number of ‘downstream’ subclasses could be used. In addition, more computational power would
allow more precise calculation of proximities with more fine-grained resolutions than at the
primary class level, which was partially used. Also, with available data in the future, the analysis
could be extended to years prior to 1975 and after 2005. Another related research question could
be how the conditions for spatial diffusion differ between breakthrough and non-breakthrough

technologies.

There are different dimensions in which this study and its results have to be reflected critically.
First, there exists a potential right-censoring issue in the identification of first instances which has
been based on grant data and the additional criterion of relatively high citation counts. This is due
to the fact that earlier patents had more time to being cited. Second, Kerr’s (2010) critique on the

risk of upward bias of the model coefficients through unmodeled factors needs to be reinstated
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here. These could lead to higher shares of breakthroughs and generally higher numbers of patents.
Further, if citations are localized (as demonstrated, for instance, in Jaffe et al., 1993 and Sonn and
Storper, 2008), breakthroughs could disproportionately be identified in cities with unusually high
patent growth. Another critique that extends an argument made above is the generality of the
cognitive and social proximity measures. It can be argued that their broad focus on primary classes
IS not necessarily representative for proximity characteristics at the subclass level. Particularly
regarding social proximity, an individual-based co-inventor network could have been constructed
and used for the calculation of proximity values (cf. Breschi and Lissoni, 2009; Feldman et al.,

2015) but proved to be too complex for the 406 first-tier subclasses examined in this study.
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