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Recent methane surges reveal heightened
emissions from tropical inundated areas

Xin Lin 1 , Shushi Peng 2, Philippe Ciais 1,3, Didier Hauglustaine 1,
Xin Lan 4,5, Gang Liu2, Michel Ramonet1, Yi Xi 1,2, Yi Yin6, Zhen Zhang 7,
Hartmut Bösch8, Philippe Bousquet1, Frédéric Chevallier 1, Bogang Dong 2,
Cynthia Gerlein-Safdi 9, Santanu Halder 1, Robert J. Parker 10,11,
Benjamin Poulter 12, Tianjiao Pu 9, Marine Remaud 1, Alexandra Runge13,
Marielle Saunois1, Rona L. Thompson 14, Yukio Yoshida 15 & Bo Zheng 16,17

Record breaking atmospheric methane growth rates were observed in 2020
and2021 (15.2±0.5 and 17.8±0.5 parts per billionper year), the highest since the
early 1980s. Here we use an ensemble of atmospheric inversions informed by
surface or satellite methane observations to infer emission changes during
these two years relative to 2019. Results show global methane emissions
increased by 20.3±9.9 and 24.8±3.1 teragrams per year in 2020 and 2021,
dominated by heightened emissions from tropical and boreal inundated areas,
aligning with rising groundwater storage and regional warming. Current
process-based wetland models fail to capture the tropical emission surges
revealed by atmospheric inversions, likely due to inaccurate representation of
wetland extents and associated methane emissions. Our findings underscore
the critical role of tropical inundated areas in the recent methane emission
surges and highlight the need to integratemultiple data streams andmodeling
tools for better constraining tropical wetland emissions.

In the years 2020 and 2021, the methane growth rate (MGR) in the
atmosphere reached 15.2 ± 0.5 and 17.8 ± 0.5 parts per billion per year
(ppb yr−1) respectively, hitting record highs since systematic mea-
surements started in the early 1980s by NOAA’s Global Monitoring
Laboratory (GML)1. The unprecedented methane growth during 2020
and 2021 coincided with the reduced human activities and pollutant

emissions during COVID-19 lockdowns and the gradual recovery
afterwards2–5, together with the occurrence of a moderate and pro-
longed La Niña event6, which offers a unique opportunity to examine
the drivers of methane variabilities on a year-to-year basis.

Both process-based studies of sources (“bottom-up” estimates)
and atmospheric-based inverse analyses (“top-down” estimates)
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pointed to pronounced emission growth in 2020 compared to 2019,
arising from tropical and northern sources, likely driven by enhanced
wetland emissions7–10, themain source component of naturalmethane
emissions. From 2019 to 2020, the increase of MGR was earlier and
larger in the Tropics and Northern high-latitudes than in the Southern
extra-tropics from NOAA GML marine boundary layer sites (Figs. 1b
and S1; see Methods)11, consistent with an activation of wetland emis-
sions. The exceptionally high methane growth persisted in 2021, and
prevailed over most latitude bands (Fig. 1a, b). Observations of total
column methane concentrations (XCH4) by Greenhouse Gases

Observing SATellite (GOSAT), whether obtained from the National
Institute for Environmental Studies (Japan) full physics retrievals
(hereafter “GSNIES”)12 or from the University of Leicester proxy
retrievals (hereafter “GSUoL”)13, confirmed the unexpected methane
surges in 2020 and 2021 (Fig. 1c, d). Note that both GOSAT retrievals
showed a largerMGR increase in 2020 over the Southern extra-tropics
than that observed from surface network, with GSUoL exhibiting
higher MGR globally and in the Tropics as well (Figs. 1 and S1).

The zonally-averaged changes in MGR across latitude bands
reveal the integrated variations of regional sources and sinks, atmo-
spheric transport, and removal by the hydroxyl radical (OH). In this
study, we use a global atmospheric inversion system (PYVAR-LMDZ-
SACS; see Methods)14,15 that assimilated either surface or satellite-
based CH4 observations to infer the spatiotemporal patterns in flux
changes from 2019 to 2021. An ensemble of six inversions is per-
formed, with different assimilated observation datasets (surface net-
work, GSNIES or GSUoL) and transport model physical
parameterizations (the “classic” and “advanced” versions) (Table S1;
see Methods). This allows us to test the consistency of flux change
patterns inferred from different types of measurements while
accounting for the uncertainties due to imperfect representation of
atmospheric mixing. Surface networks offer a good coverage of
northern mid-to-high latitudes (especially over Europe and North
America), whereas satellite data have improved data densities from
60°S to 60°N, particularly a better coverage of the tropics than surface
networks (Figs. S2 and S3). We prescribe changes in OH concentration
fields froma full chemistry transportmodel (LMDZ-INCA)16,17, drivenby
interannually varying meteorology18 with natural and anthropogenic
emissions of NOx, CO and hydrocarbons updated to 2021 (Fig. S4;
Table S2; see Methods)19–21. The ensemble of atmospheric inversions
reveals anomalous and persistent emission surges from inundated
areas in tropical Africa and Asia during 2020–2021, linked to water
table rises and La Niña conditions. Meanwhile, we also quantify varia-
tions of methane emissions using bottom-up inventories for anthro-
pogenic and fire sources, and process-based biogeochemical models
for wetland emissions (seeMethods). We find that the strong emission
enhancements over tropical inundated areas are not captured by
current process-based wetland models, likely pointing to models’
limitations in accurately representing dynamics of tropical wetland
extents and processes driving tropical wetland methane emissions.

Results and Discussions
Variations of methane emissions from atmospheric inversions
Allmembers of the ensemble of six inversions showed global increases
in surface CH4 emissions by an average of 20.3±9.9 Tg CH4 yr-1 and
24.8±3.1 Tg CH4 yr

-1 in 2020 and 2021 respectively, compared to 2019
(uncertainty being one standard deviation of the ensemble). A large
portion of this surge in global emissions was accounted for by the
northern tropics (0°–30°N),which contributed about 80% (16.2±8.3 Tg
CH4 yr

-1) and 95% (23.2±4.0 Tg CH4 yr
-1) of the global increases in 2020

and 2021, respectively (Figs. 2a, b and S5; Table S3). Higher emission
increases were found over tropical Africa and Southeast Asia in both
years, according to all six inversions (Figs. 2a, b and S5–S7). Overall,
most of the regions with strong and consistent emission changes
overlappedwithmajorwetland complexes and inundated areas. These
emission anomalies aligned well with changes in liquid water equiva-
lent (LWE) from the Gravity Recovery and Climate Experiment Follow-
On (GRACE-FO) satellites (Figs. 2a–d and S5c–f). LWE is a proxy for
water-table depth and water stored in wetland systems22.

Focusing on the 20 major wetland regions of the globe that
represent about 60% of all wetland areas based on the map of ref. 23, a
significant correlation was noted between top-down estimates of
emissionanomalies andchanges in LWE fromGRACE-FO (Fig. 2e–g). The
correlation with temperature or precipitation changes was not statisti-
cally significant across regions (Fig. S8), although these two factors
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Fig. 1 | Variations of atmospheric methane growth rates between 2010
and 2021. a–d Methane (CH4) growth rates were derived from zonally averaged
observations of NOAA Global Monitor Laboratory (NOAA/GML) marine boundary
layer (MBL) sites11, GOSAT NIES retrievals12 or GOSAT UoL retrievals13 of total col-
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For c, d, results are not shown north of 50°N or south of 50°S due to data gaps of
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Source Data file.
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could potentially impact emission variations between years for indivi-
dual wetland regions (Table S4). Among the 20 wetland regions, the
Niger River basin, the Congo basin, the Sudd swamp, the Ganges
floodplains and the Southeast Asian deltas in the tropics, and the Hud-
son Bay lowlands in the boreal region, exhibited persistent emission
enhancements in both 2020 and 2021. Emission increases over each of
these regions exceeded by at least 1.5–2 times the interannual variability
(1.5–2σ) of methane emissions during 2010–2019 (Table S5), based on
the results of inversions with settings comparable to those in our study
but covering a longer period24. These six wetland regions together
contributed around 70% (14.1±4.2 TgCH4 yr

-1) and 60% (14.9±2.6 TgCH4

yr-1) of the global emission increases for 2020 and 2021, respectively
(Figs. 2, 3e, f and S5; Table S5). The synchronous emission increases over
these wetland regions were paralleled by overall wetter conditions
(increased LWE or precipitation), and additionally by warming condi-
tions for specific regions (e.g., Hudson Bay lowlands; Table S4).

Substantial emission increases were also found over the western
Siberian lowlands in 2020 and the Amazon Basin and the Orinoco

floodplain in 2021, but reduced emissions were seen in the other years
over these regions (i.e., the western Siberian lowlands in 2021; the
Amazon Basin and the Orinoco floodplain in 2020), aligning with
corresponding variations in temperature and/or LWE (Figs. 2, 3e, f, and
S5; Table S4). For the Amazon Basin in particular, the enhanced
emissions in 2021 were associated with increased floodplain inunda-
tion and the record high water levels25, linked to intense rainfall over
the northern Amazonia driven by the La Niña conditions, with
strengthened Walker circulation and deep convection26,27. Conversely,
the Pantanal and the Paraná floodplains in central and southeastern
South America exhibited emission reduction in both 2020 and 2021,
due to continued drier conditions and lower water tables (Figs. 2, 3e, f
and S5; Table S4). These two regions experienced severe and pro-
longed drought events since 2019, leading to record low water levels
over the past decades28–30 and therefore persistent reduction in CH4

emissions.
The overall strong emission increases over tropical inundated

areas were coincident with the occurrence of a prolonged La Niña
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event since 2020. La Niña is the cold phase of the El Niño—Southern
Oscillation (ENSO) cycles—the dominant mode of interannual climate
variability impactingweather patterns and ecosystemdynamics across
the globe. La Niña is generally associated with a wetter climate and
above-normal precipitation over tropical land areas31, which correlates
with higher wetland methane emissions through expanded flooded
areas. Previous studies suggested a broad anti-correlation between
wetland CH4 emissions and ENSO at the global and pan-tropical scales,
with less emissions during strong El Niño events and more emissions
during strong La Niña events (Fig. S9; also see refs. 32–35). At the
regional scales, however, the sign, magnitude and phasing of wetland
responses to ENSO could vary32,34,35 depending on the spatiotemporal
variability in climate anomalies during specific ENSO episodes36, which
complicates the relationship between ENSO, wetland CH4 emissions,
and CH4 growth rates37. Our results covering the most recent La Niña
episode confirm the overall enhanced CH4 emissions over inundated
areas during La Niña conditions, and further demonstrate the diverse

response patterns across regions and between years that could be
linked to the complex evolution of ENSO-related climate anomalies.

Bottom-up estimates of methane emission changes
Bottom-up inventories and process-based wetland emission models
independently corroborate increased emissions over the northern
tropics during 2020–2021, albeit with much smaller magnitudes than
inversions (Figs. 2, 3 and S10; Table S3). Globally, the net emission
changes were −0.7 ± 4.0 Tg CH4 yr

−1 and 6.9 ± 4.1 Tg CH4 yr−1 in 2020
and 2021 relative to 2019 based on bottom-up methodologies, with
emission increases of 3.2 ± 1.3 Tg CH4 yr−1 and 4.1 ± 1.9 Tg CH4 yr−1

estimated for the northern tropics (Figs. 3a, b and S10; Table S3). A
breakdown into different processes showed that the anthropogenic
CH4 emissions in 2020 and 2021 were higher than the 2019 level by 0.5
Tg CH4 yr

−1 and 4.7 Tg CH4 yr
−1, respectively (Fig. S10; Table S3). While

fossil fuel CH4 emissions were reduced during COVID-19 lockdowns
and rebounded partially afterwards (by −2.7 Tg CH4 yr−1 and −0.5 Tg
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emission changes relative to 2019. c, d Spatial patterns of bottom-up CH4 emission
anomalies summed up from process-based wetland models, and inventories of
anthropogenic and fire emissions. The color scale is the same as for the top-down
CH4 emission anomalies in Fig. 2a, b. The inset bar plots summarize the net emis-
sion changes at the global scale and for four latitude bands. e, f Top-down versus

bottom-up estimates of methane emission anomalies for eight tropical inundated
areas. The delineation of each inundated area is shown in Fig. 2f and Fig. S5i. The
open circle indicates two times the interannual variability (+2σ or –2σ) of methane
emissions during 2010–2019 derived from a previous study using the inversion
systemPYVAR-LMDZ-SACS andGSUoL as constraints for CH4 (ref. 24). Error bars in
all panels denote one standard deviation of the methane emission anomalies from
the ensemble of top-down or bottom-up estimates. Source data are provided as a
Source Data file.
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CH4 yr−1 for 2020 and 2021 compared to 2019), the CH4 biogenic
emissions from sectors of agriculture and waste treatment continued
to increase (by 3.1 Tg CH4 yr−1 and 5.2 Tg CH4 yr−1 for 2020 and 2021
compared to 2019), leading to a net increase of anthropogenic emis-
sions. The globalfireCH4 emissions declined in 2020by 6.5 TgCH4 yr

−1

relative to 2019,mainly contributed by reduced fire emissions of 5.1 Tg
CH4 yr

−1 in the southern tropics (30°S–0°)21. A similar reduction of fire
emissions occurred again in the southern tropics in 2021, but the
extreme fires in boreal North America and eastern Siberia during the
hotter and drier summertime38 led to an increase in emissions of 4.7 Tg
CH4 yr−1 in the northern extra-tropics and therefore a net global
emission reduction of only 1.8 Tg CH4 yr

-1 relative to 2019 (Figs. 3a, b
and S10; Table S3). For wetlands, the results of process-based wetland
model simulations from ORCHIDEE-MICT and LPJ-wsl driven by four
different climate forcings (seeMethods) reported an increase in global
wetland emissions by 5.3 ± 4.0 Tg CH4 yr

−1 in 2020 compared to 2019,
which was dominated by enhanced wetland emissions in the northern
extra-tropics and tropics as a result ofwarmer andwetter climate8. The
updated simulations showed slightly smaller wetland emission
increases by 4.0 ± 4.1 Tg CH4 yr−1 in 2021 compared to 2019, with
similar latitudinal patterns (Figs. 3a, b, S10 and S11; Table S3).

Given differences of simulated wetland emissions by process-
based biogeochemical models (Fig. S11), the global total emission
increases from the bottom-up approach were much lower than those
from inversions. When the maximum wetland emission increases are
considered (i.e., 13.4 Tg CH4 yr

−1 and 11.5 Tg CH4 yr
−1 in 2020 and 2021

byORCHIDEE-RFWwithMERRA2; Fig. S11), the total emission increases
amounted to 7.4 Tg CH4 yr−1 and 14.4 Tg CH4 yr−1 in 2020 and 2021,
respectively, still 12.9 Tg CH4 yr

−1 and 10.4 Tg CH4 yr
−1 below the mean

of the inversion ensemble estimates. While there was a general
agreement in the broad spatial patterns of emission changes between
the bottom-up and top-down approaches, large underestimation by
the bottom-up approach was found over the tropics, especially in
tropical Africa and Asia (Figs. 2, 3 and S10). Specifically, for the Niger
River basin, the Congo basin, the Sudd swamp, the Ganges floodplains
and the Southeast Asian deltas, the total emission increases from the
bottom-up approach only accounted for 11% and 5% of the estimates
from top-down inversions for 2020 and 2021, respectively (Fig. 3e, f;
Table S5).

The lower bottom-up estimates of emission increases over tropi-
cal Africa and Asia inundated areas suggest that wetland biogeo-
chemicalmodelsmaymisrepresent keyprocesses inwetlanddynamics
and associated changes in CH4 emissions. A close look into the Sudd
swamp, the wetland emission hotspot in the eastern Africa (3°N–17°N,
25°E–40°E; see also refs. 39–41) showed that the annual variations in
top-down CH4 emissions and GRACE-FO LWE anomalies were highly
correlated (Fig. S12), implying a strong impact of water-table depth on
seasonal emissions over tropical inundated areas (Fig. S13; see also
refs. 22,39,42). The annual peak of LWE occurs during
September–October, about one month before the annual peak of
emissions from top-down inversions. The seasonal peak of emissions
during September–November in Sudd (about 0.3 Tg CH4 month−1

higher relative to April–June) is missed by most wetland model simu-
lations (giving only a non-significant rise of 0.02 Tg CH4 month−1

during September–November relative to April–June; Fig. S12). This
could be partly explained by the simulation of too small wetland
extents of the Sudd swampandweak intra- and inter-annual variations,
as shown by the comparison between the simulated flooded areas and
high-resolution observations from the CYGNSS satellites43,44. The too
small seasonal changes in wetland extent and associated CH4 emis-
sions were also identified previously in other process-based or data-
driven wetland models over tropical regions33,41,45,46, resulting in
smaller estimates of year-to-year emission anomalies. Besides, large
uncertainties remain in the model representation of CH4 production,
oxidation and vegetation-mediated transport processes for tropical

wetlands47,48, where direct flux measurements are sparse49,50. For
example, field studies have demonstrated the importance of
vegetation-mediated CH4 fluxes in tropical wetlands even when the
water table is below the soil surface51. These processes have been
considered in recent development of process-based wetland models
but not calibrated for tropical wetlands due to lack of field
measurements52.More observations of tropical wetland hydrology and
associated CH4 emissions are thus needed to calibrate and constrain
model parameterizations, thereby improving models’ predictive
capacity. It should be noted that other emissions from anthropogenic
sources andbiomass burningmayco-exist in the inundated areas (Figs.
S10 and S12). Estimation of these sources could also be uncertain and
further contribute to the discrepancies between bottom-up and top-
down estimates of emission anomalies.

In summary, the record high CH4 growth rates in 2020 and 2021
revealed heightened emissions from inundated areas in the tropical
and boreal regions. Strong and persistent emission surges were found
simultaneously over the Niger River basin, the Congo basin, the Sudd
swamp, the Ganges floodplains, the Southeast Asian deltas, and Hud-
son Bay lowlands, coincident with elevated groundwater and warming
in the north, and potentially linked to La Niña conditions prevailing
since 2020. Our main findings on heightened emissions from both
tropical and boreal wetlands, along with evidence from other bottom-
up or top-down studies10,39,53–56, suggest recent intensification of wet-
land methane emissions and probable strong positive wetland climate
feedback57. In a futurewithwarming climate (unavoidable in theArctic)
and possibly increasing occurrences of extreme or prolonged La Niña
events58,59, the synchronous emission rise across boreal and tropical
wetlands, as seen in 2020 and 2021, may occur more frequently and
has the potential to accelerate atmospheric CH4 growth. This would
challenge the commitment of the Paris Agreement to limit global
warming, and stresses the urgency of greater reduction in anthro-
pogenic emissions to achieve climate mitigation goals57,60. Our study
also adds key ‘natural experiments’ from La Niña conditions in 2020
and 2021 to better understand the complex spatial-temporal variations
in wetland emissions linked to ENSO. A systematic evaluation of wet-
land responses and their asymmetry between El Niño and La Niña
conditions will help identify fingerprint of ENSO-induced climate
variability in wetland dynamics, and may eventually contribute to an
improved characterization of future variations in wetland CH4 emis-
sions and atmospheric CH4 growth rates. Current process-based wet-
landmodels fail to capture the strong emission surges over the tropics
revealed by top-down inversions. Improved wetland extent mapping
and modeling, informed by sustained and enhanced observations on
wetland hydrology and biogeochemistry, will help constrain tropical
wetland emissions under changing climate and reconcile CH4 budget
estimation between bottom-up and top-down approaches.

Methods
We followed the methodologies described in ref. 8 to combine both
top-down and bottom-up approaches for a synthesis study of recent
methane growthduring 2020–2021. The analyses ofmethane emission
changes were extended to 2021 on the basis of ref. 8 using similar data
sources and modeling tools. We further included satellite-based CH4

observations and flux inversions in addition to the analyses derived
from surface CH4 networks, which allows for intercomparison of the
emission change patterns that are informed by different datasets of
atmospheric CH4 observations.

Atmospheric observations
For surface CH4 observations, in-situ continuous and flask-air CH4

measurements from a total of 121 stations for the inversion analyses
were included (Fig. S2), most of which are operated andmaintained by
the NOAA61 and Integrated Carbon Observation System62. Observa-
tions from other networks, including those from Environment and
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Climate Change Canada (ECCC), Advanced Global Atmospheric Gases
Experiment (AGAGE), Japan Meteorological Agency (JMA), etc., were
obtained from the World Data Centre for Greenhouse Gases (https://
gaw.kishou.go.jp) and the Global Environmental Database (https://db.
cger.nies.go.jp). All observations are reported on or linked to the
WMOX2004 calibration scale.

For satellite CH4 observations, we used two retrievals of GOSAT
XCH4 provided by National Institute for Environmental Studies in
Japan and the University of Leicester in the UK (denoted as “GSNIES”
and “GSUoL” respectively). Launched by the Japan Aerospace
Exploration Agency (JAXA) in early 2009, GOSAT achieves a global
coverage every 3 dayswith a swath of 750kmand a ground pixel with a
diameter of approximately 10.5 km at nadir. The Thermal And Near-
infrared Sensor for Carbon Observation – Fourier Transform Spec-
trometer (TANSO-FTS) onboard enables themeasurements of column-
averaged dry-air CO2 and CH4 mole fractions by solar backscatter in
the shortwave infrared (SWIR) with near-unit sensitivity across the air
column down to the surface63,64. The two GOSAT XCH4 products used
here differ in their algorithms to treat the scattering-induced issues in
the retrieval of total column concentrations from spectral data. The
GSNIES XCH4 retrieval was produced using a full-physics algorithm to
infer CH4 column together with physical scattering properties of the
atmosphere65,66. Alternatively, the GSUoL XCH4 retrieval employed a
proxy algorithm that simultaneously retrieves CH4 and CO2 columns
using the absorption features around the wavelength of 1.6 μm to
minimize the scattering effect on the retrieval67,68. While the two con-
ceptually different approaches have their own advantages and
disadvantages69, the proxy retrieval is less sensitive to aerosol dis-
tribution and instrumental issues than the full-physics retrieval,
therefore has much higher data density over geographic regions with
substantial aerosol loading, such as in the tropics (Fig. S3). In this
study, we used the GSNIES XCH4 retrieval version 2.95/2.9612 and the
GSUoL XCH4 retrieval version 9.013, which are bias-corrected and in
good agreement with ground-based XCH4 measurements from the
Total Column Carbon Observing Network (TCCON) and aircraft-based
CH4 profilemeasurements. These two retrievals have beenwidely used
in global or regional methane inverse modeling to study recent trends
and interannual variabilities7,9,54,55,70. Note that only retrievals over land
(except those over Greenland; Fig. S3) were assimilated in our inver-
sions in order to avoid potential retrieval biases between nadir and
glint viewing modes.

To calculate atmospheric CH4 growth rates in Figs. 1 and S1, for
surfaceobservations,we used zonally-averagedmarine boundary layer
(MBL) references for CH4 constructed by NOAA’s Global Monitoring
Laboratory (NOAA/GML) using measurements of weekly air samples
from a subset of sites in the NOAA Cooperative Global Air Sampling
Network11. Only sites that measure background atmospheric compo-
sitions are considered, typically at remote marine sea level locations
with prevailing onshore winds (see the site map at https://gml.noaa.
gov/ccgg/mbl/map.php?param=CH4). For GOSAT XCH4 observations,
we used daily means of all valid land retrievals per 10° latitude band
between 50°N and 50°S for subsequent growth rate calculation. Note
that GOSAT XCH4 retrievals north of 50°N or south of 50°S were dis-
carded for the calculation of growth rates due to data gaps over these
regions during winter, but these data were included in atmospheric
inversions (Fig. S3). The smoothed CH4 growth rates for each latitude
band shown in Fig. 1 and S1 were extracted from time series of the
zonally-averaged MBL CH4 references or GOSAT XCH4 observations
over the period 2010–2021 following the curve fitting procedures
of ref. 71.

Atmospheric 3D inversions
We used a variational Bayesian inversion system PYVAR-LMDZ-SACS
(PYthon VARiational—Laboratoire de Météorologie Dynamique model
with Zooming capability—Simplified Atmospheric Chemistry

System)14,15 to optimize weekly CH4 surface fluxes at a spatial resolu-
tion of 1.9° in latitude by 3.75° in longitude over the period 2019–2021.
An ensemble of six inversions was performed (Table S1), using three
different observation datasets described above as constraints, com-
bined with two physical parameterizations for the transport model
Laboratoire de Météorologie Dynamique with zooming capability
(LMDZ), the atmospheric component of the coupled IPSL climate
model participating in IPCC Assessment Reports (AR). These setups
allowed us to explore consistency of the emission change patterns
informed by different observation datasets while accounting for some
of the uncertainties in atmospheric transport. The two physical para-
meterizations, denoted here as the “classic” and “advanced” versions,
represent two development stages of LMDZ for IPCCAR3 and AR672–74.
The “classic” AR3 version72 uses the vertical diffusion scheme of ref. 75
to represent the turbulent transport in the boundary layer and the
scheme of ref. 76 to parameterize deep convection. The “advanced”
AR6 version74 combines the vertical diffusion scheme of ref. 77 and the
thermal plumemodel by ref. 78 to simulate the atmospheric mixing in
the boundary layer, and the deep convection is represented using the
scheme of ref. 79 coupled with the parameterization of cold pools
developed in ref. 80 While the “advanced” version showed overall
improved representation of boundary layer mixing and large-scale
atmospheric transport81–83, which would benefit trace gas transport
simulations and inversions despite its comparatively larger computa-
tional costs, the “classic” version or its physical parameterization
schemes are still widely used in the scientific community for methane
studies (see Table S8 and S10 in ref. 84). A previous study85 showed
that changing physical parameterizations would have small impact on
the inverted methane emissions at the global scale (around 1%), but
could lead to significant differences in the north–south gradient of
emissions and the emission partitioning between regions (also see
Table S6).

Depending on the observations assimilated and the physical
parameterizations used in the inversion system, discrepancies in the
derived emission changes do exist among inversions at global or
regional scales. The emission growth inferred from surface observa-
tions was much lower than those from GOSAT-based inversions for
2020 (Fig. S5a), possibly because surface networks have limited spatial
coverage over certain key source regions (e.g., the tropics), thus being
blind to the methane growth there (Fig. S2). Among the four GOSAT-
based inversions, the ones constrained by GSUoL retrievals always
gave 15–30% higher global net emission increases than those con-
strained by GSNIES retrievals (Fig. S5a, b), consistent with the steeper
rise of the methane growth rate seen from GSUoL (Figs. 1 and S1). For
several important emitting regions such as eastern China, northern
India and southern Africa, the directions of emission changes dis-
agreed among inversions assimilating different observations (Figs. S6
and S7), reflecting uncertainties in flux solution related to sparse data
density or GOSAT XCH4 retrieval algorithms. Note that we did not
adjust GOSAT XCH4 retrievals in our inversions. We acknowledge the
inconsistency between surface-based and GOSAT-based inversions
regarding the inferred global total emissions and their latitudinal
gradients (Table S6; also see refs. 55,85–87), likely due to systematic
biases in GOSAT retrievals and/or model representation of the stra-
tospheric methane. Several previous studies applied an empirical bias
correction on GOSAT retrievals, making the optimized atmospheric
CH4 more consistent with surface observations85,87–89. As our study
focuses on the year-to-year changes of the optimized methane fluxes,
whichwould be less sensitive to aforementioned systematic biases, we
did not apply such an adjustment toGOSAT retrievals in our inversions
(also see ref. 55).

Other configurations of the inversions followed the descriptions
in ref. 8. The prior CH4 fluxes were built on bottom-up inventories or
process-based land surface models for different categories (Table S7),
consistent with the priors used for top-down inversions contributing
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to the new global methane budget (GMB) assessment84, which allows
for comparisons with earlier studies and other modeling work within
theGMB framework. TheOHandO(1D) fieldswere prescribed from the
simulation of a chemistry-climate model LMDZ-INCA (Laboratoire de
Météorologie Dynamique model with Zooming capability – INterac-
tion with Chemistry and Aerosols) with a full tropospheric photo-
chemistry scheme16,17. The model was run at the resolution of 1.27° in
latitude by 2.5° in longitude, driven by interannually varying horizontal
winds from ECMWF ERA5 reanalysis18 and with natural and anthro-
pogenic emissions of NOx, CO and hydrocarbons updated to 2021
(refs. 19–21). As countries relaxed and lifted COVID-19 restrictions,
global NOx emissions started to rebound in spring 2021, but annual
emissions were still lower by 3–4% compared to 2019 (Fig. S4a–c;
Table S2). Variations in CO emissions are dominated by biomass
burning. While global CO emissions declined by about 12% in 2020
compared to 2019 because of less fire emissions in the Southern
Hemisphere, emissions in 2021werequite similar to the 2019 level. The
reduced CO emissions in the Southern Hemisphere were sustained in
2021 but offset by abnormally high boreal fire emissions during sum-
mertime (Fig. S4d–f; Table S2)38. Our chemistry transport model
LMDZ-INCA simulated a reduction of global tropospheric OH by 3% in
2021 relative to 2019, more than the 1.6–1.8% decrease in 2020
reported by ref. 8. Note that the resulting oxidant fields were not
adjusted in the inversions in order to keep the simulated OH changes
from LMDZ-INCA.We acknowledge that the reduced atmospheric sink
could play an important role in the record high CH4 growth rates
during 2020–2021, although the attribution between changes in
sources and sinks is still under debate4,7–9,90. While the changes in
global tropospheric OH were broadly consistent with independent
estimates and other studies for 20207–9,91, the simulatedOH change for
2021 could be more uncertain due to e.g. inaccurate emission
forcings92, thereby complicating attribution of the anomalous CH4

growth rates between sources and sinks. However, the dominant
contribution from tropical regions to recent CH4 emission surges was
confirmedbyother top-downstudies usingdifferent inversion systems
and OH configurations7,9.

Thepreprocessingof surfaceCH4observations and the assignment
of observation errorswerebasedon the protocol described in ref. 8. For
continuous CH4 measurements in particular, we calculated daily after-
noon averages (12:00–16:00 local sidereal time, LST) for stations situ-
ated below 1000 meters above sea level (a.s.l.) and morning averages
(0:00–4:00 LST) for stations located above 1000 meters a.s.l., which
were used in subsequent inversion analyses. The observation errors are
comprised of measurement errors, representation errors, and model
errors. The latter two were approximated using the synoptic variability
of CH4 observations at each station, calculated as the residual standard
deviation (RSD) of thede-trended andde-seasonalizedobservations85,93.
ForGOSATXCH4observations, the valid datawere averaged intomodel
grids for each time step (30mins) to create “super-observations”, with
the observation errors defined as the retrieval errors reported by the
data product plus model errors whose standard deviations were
empirically set as 1% (refs. 55,93).

Bottom-up estimates of methane emissions
Anthropogenicmethane emissionswerecompiled froma combination
of existing inventories. For the 42 Annex-I countries that report their
national greenhouse gas inventories (NGHGIs) to UNFCCC each year,
we used the reported anthropogenic methane emissions updated to
2021 from coal mining, oil and gas production, agriculture and waste
sectors, respectively (https://unfccc.int/ghg-inventories-annex-i-
parties/2023#fn2). For China, anthropogenic methane emissions
were computed and updated to 2021 based on the activity data col-
lected from national statistic books94 and specific emission factors at
provincial levels95,96. For other countries, emissions from coal mining,
oil and gas production, agriculture and waste were obtained from the

Emissions Database for Global Atmospheric Research version 7.0
(EDGAR v7.0)97,98, with coal production and livestock data correctedby
the activity data from International Energy Agency (IEA)99 and Food
and Agriculture Organization of the United Nations (FAO)100. The
national total emissions from the 42 Annex-I countries, China and
other countries were distributed on 0.1° × 0.1° grid cells based on the
spatial patterns of EDGAR v7.0. Note that the change in global
anthropogenic methane emissions between 2020 and 2019 slightly
differs from that reported by ref. 8, as different versions of EDGAR and
IEA data were used in this study to estimate emissions.

The global firemethane emissions were obtained from the Global
Fire Emissions Database version 4.1 including small fire burned
area21,101. The data set produces monthly gridded burned area and fire
emissions at a spatial resolution of 0.25° × 0.25°, based on satellite
information on fire activity and vegetation productivity21.

For wetland emissions, we used two process-based wetland
emission models (WEMs), ORCHIDEE-MICT102 and LPJ-wsl103, to simu-
late the global wetland CH4 emissions. Both ORCHIDEE-MICT and LPJ-
wsl participated in the Wetland and Wetland CH4 Inter-comparison of
Models Project104,105, and have contributed to wetland biogeochemical
model simulations of the Global Methane Budget84,106,107. These two
models differ in model structures and parameterizations, and repre-
sent part of the wide uncertainty range in characterizing CH4 emission
processes104,105. An inter-comparison among GMB wetland model
ensemble shows that ORCHIDEE-MICT and LPJ-wsl cover a consider-
able uncertainty range across the GMB wetland model ensemble in
simulating global annual wetland CH4 emissions and emission changes
from 2019 to 2020, and broadly agree with the interannual variability
of model ensemble means (Fig. S15). Based on the simulation protocol
in ref. 8, wetlandmethane emissions were updated to 2021 using these
two WEMs with four climate datasets (i.e., CRU TSv4.06108, ERA518,
MERRA2109, and MSWEPv2.8110,111) to account for uncertainties in
simulating wetland CH4 emissions due to meteorological forcings34.
The spatiotemporal dynamics of wetland areas were simulated by a
TOPMODEL-based diagnostic model and applied to ORCHIDEE-
MICT112,113 and LPJ-wsl114, respectively. For ORCHIDEE-MICT in parti-
cular, we utilized two wetland maps to calibrate the parameters in
simulating the wetland area dynamics113. The static map of Regularly
FloodedWetlands (RFW)23was applied for the grid-based calibrationof
the long-term maximum wetland extent, whereas the Global Inunda-
tion Estimate from Multiple Satellites version 2 (GIEMS-2)115 was
applied to calibrate the yearly maximum wetland extent for each grid.
Combining twowetlandmaps for ORCHIDEE-MICT and one for LPJ-wsl
with four climate datasets, we included a total of twelve simulations of
wetland CH4 in our analyses (Fig. S11).

Data availability
The datasets that support the findings of this study are publicly
available as follows. The global atmosphericmethane growth rates and
marine boundary layer references are obtained from https://gml.noaa.
gov/ccgg/trends_ch4 and https://gml.noaa.gov/ccgg/mbl/ respec-
tively. The assimilated surface CH4 observations from NOAA and
ICOS networks are available at https://doi.org/10.15138/VNCZ-M766
and https://doi.org/10.18160/KCYX-HA35; surface observations from
other networks are available from World Data Centre for Greenhouse
Gases (https://gaw.kishou.go.jp/) and Global Environmental Database
(https://db.cger.nies.go.jp/). The GOSAT NIES full physics XCH4

retrievals are available at https://data2.gosat.nies.go.jp/ through
registration; the GOSAT University of Leicester proxy XCH4 retrievals
are available at https://catalogue.ceda.ac.uk/uuid/18ef8247f52a4cb
6a14013f8235cc1eb. The EDGAR v7.0 time series of country-level
emissions and sector-specific gridmaps are downloaded from https://
edgar.jrc.ec.europa.eu/dataset_ghg70. The hourly ERA5 reanalysis
data are obtained from https://www.ecmwf.int/en/forecasts/dataset/
ecmwf-reanalysis-v5. The monthly datasets of temperature and
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precipitation from CRU TS v4.06 are obtained from https://crudata.
uea.ac.uk/cru/data/hrg/cru_ts_4.06/. The monthly precipitation data
from MERRA2 are obtained from https://gmao.gsfc.nasa.gov/
reanalysis/MERRA-2/. The monthly precipitation data from MSWEP
v2.8 are obtained from http://www.gloh2o.org/mswep/. The dataset of
monthly global water storage/height anomalies from GRACE-FO is
available at https://doi.org/10.5067/TEMSC-3JC63. The Regular Floo-
ded Wetlands maps are available at https://doi.pangaea.de/10.1594/
PANGAEA.892657. The monthly wetland extents based on
CYGNSS observations are obtained from the Berkeley-RWAWC pro-
duct available at https://podaac.jpl.nasa.gov/dataset/CYGNSS_L3_UC_
BERKELEY_WATERMASK_V3.1. Themonthly fire emissions from Global
Fire Emissions Database version 4.1, which includes small fire burned
area, are obtained from https://www.geo.vu.nl/~gwerf/GFED/GFED4/.
The anthropogenic emissions from the CEDS emission inventory up to
2019 are available at https://data.pnnl.gov/dataset/CEDS-4-21-21. The
gridded near-real time fossil fuel combustion data that include
confinement-induced reductions in 2020 and rebound in 2021 are
obtained from https://carbonmonitor.org/. The global gridded
anthropogenic CH4 emissions and the outputs of WEMs, LMDZ-INCA
and atmospheric inversions are publicly available at Figshare (https://
doi.org/10.6084/m9.figshare.27207999.v1). Source data are provided
with this paper.

Code availability
The codes and documentation for the process-based wetland model
ORCHIDEE-MICT (v8.4.4) are publicly available at http://forge.ipsl.fr/
orchidee/; the LPJ-wsl model code is freely available at https://github.
com/benpoulter/LPJ-wsl_v2.0.git, and a permanent version of the
model code is deposited at Zenodo (https://doi.org/10.5281/zenodo.
4409331). The global chemistry transport model LMDZ-INCA is part of
the coupled IPSL climate model, with its codes and documentation
available at https://cmc.ipsl.fr/ipsl-climate-models/ipsl-cm6/. The
codes for the atmospheric inversion system are publicly available at
http://community-inversion.eu/installation.html#getting-the-code.
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