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ABSTRACT 

 

Satellite-derived estimates of herbaceous fractional cover and its influence on fire regime in 

San Diego County, California, USA shrublands 

 

by 

 

Krista R. L. West 

 

Expanding invasive herbaceous vegetation (non-native grasses and forbs or herbs) is 

replacing portions of native shrublands in San Diego County, California, USA through a 

grass-fire cycle, which contributes to an increased risk of wildfire ignition and spread as 

well as a changing fire regime. Despite the association between herb abundance and wildfire 

risk, remote sensing and image processing approaches for quantification of fractional herb 

cover in shrublands are not well established, nor is the association between herb fraction and 

proportion of ignitions. In this research, I comparatively assess the accuracy of herb cover 

estimation and mapping based on three spectral unmixing models applied to Landsat-derived 

spectral reflectance and spectral vegetation index data from multiple 2020 dates. Based on 

the model and methods that most accurately and reliably represent herb cover, I then 

reconstruct the spatial-temporal distribution of herb growth using Landsat images from 

1988, 1997, and 2011 and assess the extent to which herb cover has expanded and replaced 

woody vegetation cover (1988 to 2020). Finally, I combine the herb cover maps with 

historical ignition points to evaluate the spatial association between herb fractions and 



 

 
xii 

locations where fires initially ignited and spread (1992 to 2020). When compared to 

generated reference data, results demonstrate the parsimonious spectral unmixing approach 

applied to a fall date estimates herb cover at the 10% accuracy level and more accurately 

than the more sophisticated unmixing models. Absolute change estimates derived from the 

earliest and most recent herb cover maps show approximately 25% of the study area 

exhibited an increase in herb cover > 20%, and roughly 5% experienced a decrease in herb < 

-20%, with the greatest concentration of change occurring in wildland-urban interface areas. 

Factors most strongly associated with substantial increase in herb cover include fire return 

interval, drought, proximity to development, and elevation. The results of evaluating 

historical ignitions in herbs show the largest proportion of ignitions occurred in areas with > 

20% herbaceous fractional cover. Results from this study will enable improved detection of 

sensitive habitats by satellite for wildfire-prone communities and help identify target areas 

for mitigating and combating the grass-fire cycle. 
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I. Introduction 

A. Motivation for Research 

Non-native grasses and forbs (invasive herbaceous vegetation growth forms or herbs) 

have fueled some of the world’s most destructive and deadliest wildfires. Invasive herbs 

contribute to the positive feedback loop called the grass-fire cycle (D’Antonio & Vitousek, 

1992; Halsey & Syphard, 2015; Keeley, 2001). This occurs when herbs invade, expand, and 

convert native shrublands and forest ecosystems following a landscape disturbance like 

wildfire. The presence of herbs, which are fine plant structures that become flammable fuels 

when dry and dead, can lead to more frequent and intense fires that spread rapidly and 

widely among high fuel loads, particularly during a high temperature and low humidity 

extreme wind event. Ultimately, replacement of the native vegetation by invasive herbs can 

have far-reaching impacts – loss of ecological services; decrease in biodiversity due to 

threats to endemic and endangered flora and fauna; increase in a landscape’s flammability; 

and post-fire susceptibility to further herb invasion (Syphard et al., 2018; Syphard et al., 

2019). Detection of herbs at a regional level, particularly when combined with historical 

wildfire data and knowledge about changing climate, can aid pre-fire mitigation and post-

fire vegetation recovery efforts. Observation of herbaceous vegetation change over time can 

inform fire regime change monitoring. 

In this dissertation, I apply and validate herbaceous vegetation cover mapping and 

change monitoring approaches based on Landsat multispectral satellite image data. This is 

achieved by mapping and reconstructing the distribution of herbaceous vegetation in relation 

to wildland areas and the wildland-urban interface (WUI) of San Diego County, California, 
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USA based on a time sequence derived by spectral unmixing techniques. I combine the 

resulting herb cover maps with historical wildfire ignition data to analyze the association 

between herb fractional cover and the proportion of ignitions. I identify the herb interval 

classes in which a disproportionate number of ignitions occurred. As populations in WUI 

areas continue to increase, it is critical that additional research be performed and that 

products be created and shared with first responders, policy makers, and WUI residents. 

B. Overview of Chapters 

In Chapter II, “Landsat spectral unmixing analysis for mapping herbaceous fractional 

cover in wildfire-prone San Diego County, California, USA shrublands (2020),” I 

comparatively assess the accuracy of herb cover estimation and mapping based on three 

different unmixing models applied to Landsat satellite multispectral image data from 

multiple dates in 2020. The models include spectral mixture analysis (SMA), multiple 

endmember spectral mixture analysis (MESMA), and temporal mixture model (TMM) 

analysis. I evaluate single date, multi-date (intra-annual), and spectral reflectance and 

spectral vegetation index (normalized difference infrared index (NDII) and normalized 

difference vegetation index (NDVI)) combinations. I address the following research 

question: How well can remote sensing and image processing approaches be used to identify 

and quantify herbaceous vegetation cover in San Diego County? 

I expand upon the work from Chapter II in Chapter III, “Spectral unmixing of a Landsat 

time sequence to reconstruct herbaceous fractional cover dynamics in wildfire-prone San 

Diego County, California, USA shrublands (1988-2020).” I reconstruct the spatial-temporal 

distribution of herb growth form cover using SMA applied to Landsat data over a 33-year 

period at nearly decadal intervals. I assess the accuracy of the herb cover change results, as 
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well as the degree of uncertainty. I address the following research questions: (1) When 

spectral unmixing models are applied to imagery covering a multi-decadal period in the San 

Diego County study area, how reliable and accurate are maps of herbaceous cover change? 

(2) Where within the study area did substantial change in herbaceous fractional cover occur 

and do areas of substantial change appear to coincide with wildfire frequency or drought 

effects occurring within the study period? 

I combine historical ignition point data and the Landsat-derived, spectrally unmixed 

herbaceous cover maps from Chapter III to determine whether fires ignited in low, 

intermediate, or high herb fractional cover interval classes for Chapter IV, “Evaluation of 

herbaceous cover fraction and wildfire ignition association in San Diego County, California, 

USA shrublands (1992-2020).” I compare proportions of ignitions in Federal versus Non-

Federal lands, and complete five exploratory analyses: all ignitions, human-caused ignitions, 

naturally-caused ignitions, ignitions resulting in a multi-date fire, and ignitions resulting in a 

large fire size. I address the following research question: Are differences in the spatial 

distribution of wildfire ignitions associated with differences in herbaceous fractional cover 

in San Diego County shrublands for 1992 to 2020? 

In Chapter V, “Conclusion,” I summarize the results of each preceding chapter based on 

the overall objectives. I highlight key contributions and findings of the results. I conclude 

with recommendations for next steps for future research directions. 
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II. Landsat spectral unmixing analysis for mapping herbaceous 

fractional cover in wildfire-prone San Diego County, California, USA 

shrublands (2020) 

A. Introduction 

In regions with Mediterranean-type climates, expansion of non-native grasses and forbs 

(invasive herbaceous vegetation or herbs) can lead to more frequent and intense wildfires 

that can spread rapidly and widely in landscapes with high fuel loads and fine fuel biomass 

(Balch et al., 2013; Knapp, 1998; Link et al., 2006). As a flammable and “flashy” fuel, herbs 

contribute to a positive feedback loop which has been named the grass-fire cycle (D’Antonio 

& Vitousek, 1992; Halsey & Syphard, 2015; Keeley, 2001). Invasion of non-native 

herbaceous vegetation following a wildfire or other landscape disturbance can cause a 

decline in native shrubs, trees, and herbs, which allows for additional non-native herbaceous 

cover expansion, and thereby increases the likelihood of future fire. Ultimately, invasive 

herbs can completely replace native vegetation (Syphard et al., 2018), which can have far-

reaching impacts via loss of ecological function, diminished ecosystem services, and 

increased flammability of the landscape (Syphard et al., 2019). Habitat loss threatens 

endangered flora and fauna and leads to a decrease in biodiversity, and this change or 

disturbance in landscapes often leads to susceptibility of invasion by herbaceous species. 

Native Southern California shrubland communities are populated by a morphological 

mixture of true shrubs and subshrubs (Keeley, 2000; Lippitt et al., 2017; Pryde, 2004). True 

shrubs include chamise (Adenostoma fasciculatum) chaparral and mixed chaparral 

communities, and subshrubs found in coastal sage scrub (e.g., Artemisia californica, 
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Eriogonum fasciculatum, and Salvia species) communities. Chaparral is the evergreen 

sclerophyllous shrubland that dominates the cismontane side of coastal mountain ranges, 

growing mostly below 2,000 m in elevation (Keeley & Davis, 2007). Chaparral communities 

are closely associated with the Mediterranean-type climate pattern of winter rain and 

summer drought (Keeley & Davis, 2007). Sage scrub communities generally occur from sea 

level up to 500 m in elevation, where they intergrade with chaparral in an ecotone. 

Undisturbed sage scrub has an herbaceous understory of native grasses and forbs, whereas 

chaparral does not (Rundel, 2007). Both shrubland types are often replaced by mostly 

disturbance-dependent annual non-native grasslands following wildfire (Huenneke, 1989; 

Keeley & Davis, 2007). Repeated fires at short intervals are a common cause of conversion 

of interior sage scrub to grasslands dominated by non-native annual species (Rundel, 2007). 

Herbs are vascular plants that lack perennial aboveground woody stems, with 

perennating buds borne at or below the ground surface, and include forbs, graminoids, and 

herbaceous vines (FGDC, 1997; Whittaker, 1975). In Southern California, the most common 

non-native herbs that invade disturbed shrublands include grasses like wild oats (Avena 

fatua), foxtail chess (Bromus madritensis), and ripgut (Bromus diandrus); and non-grass 

invaders like filaree (Erodium species), mustard (Brassica species), and various thistles. 

These invasive herbaceous annuals quickly fill in disturbed areas because they germinate 

earlier than native herbs following rainfall, grow faster, and have more aggressive seed 

dispersal mechanisms (Halsey, 2008). Balch et al. (2013) claimed that shrubland/grassland 

fires represent “the greatest hazard for fire management.” 

Plant phenology, defined as the seasonal change in biological life because of changing 

conditions (Dudley et al., 2015; Lieth, 1974), can provide a useful source of information for 
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separating vegetation growth forms, particularly herbaceous and subshrub. Herbs and shrubs 

tend to have high reflectance in the near infrared (NIR) region of the electromagnetic 

spectrum during the wet season. During the dry season, herbs and bare ground have 

comparably high reflectance through the visible and NIR spectral range. Additionally, 

seasonal signals between wet and dry seasons (wet-to-dry and dry-to-wet transition periods) 

are evident in soil moisture timeseries (Araki et al., 2022), which affects the aboveground 

vegetation and is critical for vegetation growth in water-limited Mediterranean-type 

landscapes. Thus, spectral separability between shrubs and herbs or herbs and bare ground 

can be problematic if data from only one season are used (Hamada et al., 2009). 

Spectral mixture analysis (SMA), also known as linear spectral unmixing, assumes that 

the ground area sampled by a pixel can be reasonably approximated by a fractional mixture 

of a small number of spectrally distinct materials (Adams et al., 1986; Gillespie et al., 1990; 

Roberts et al., 1998; Settle & Drake, 1993; Smith et al., 1990). SMA considers the radiance 

(or reflectance) of a mixed pixel to be an area-weighted linear combination of spectral 

endmember (EM) materials, plus error. An EM is a “pure” representation of a material and 

its spectrum (Adams et al., 1993). An advantage of SMA is that it can be used to determine 

the fraction (abundance) of materials or land cover types within the ground resolution 

element (GRE) associated with an image pixel, compared to traditional classifiers that 

identify and assign a single material to a pixel (Lippitt et al., 2017). SMA is also a 

biophysically based model (Adams et al., 1993; Roberts et al., 1998) that is computationally 

efficient and simplistic. However, a drawback of SMA is that only one set of EMs is used to 

model all pixels and so does not explicitly account for EM variability (Lippitt et al., 2017). 

Vegetation fractions produced by SMA have been used to describe land cover change 
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(Dennison & Roberts, 2003; Nill et al., 2022; Roberts et al., 2002; Rogan et al., 2002) and 

vegetation regeneration after disturbance (Dennison & Roberts, 2003; Riano et al., 2002). 

Multiple endmember spectral mixture analysis (MESMA) is an extension of SMA, in 

which the number and types of EM are allowed to vary on a per-pixel basis. It accounts for 

variability in the spectral dimensionality between pixels, and spectral variability within an 

EM class, reducing fraction errors resulting from the use of a single EM set (Roberts et al., 

1998). All possible two-, three-, four-, five-, and six-EM model combinations can be tested 

for each pixel, and then optimum models are selected based on the model with the lowest 

root mean square error (RMSE) that meets fraction and residual constraints (Roberts et al., 

1998). Vegetation fractions produced by MESMA have been used to estimate vegetation 

cover (Hamada et al., 2011; Roberts et al., 1998; Singh & Gray, 2020) and assess and 

monitor vegetation growth form change over time (Dudley et al., 2015; Hamada et al., 2012; 

Lippitt et al., 2017). 

Temporal mixture models (TMMs) extend the conceptual model of SMA to the temporal 

domain (Piwowar et al., 1998; Quarmby, 1992; Quarmby et al., 1992). Rather than 

representing each pixel spectrum as a linear combination of constituent EM materials, 

TMMs treat each pixel time series as a linear combination of EM processes (Small, 2012; 

Sousa & Small, 2019). TMMs have recently been applied to California oak woodlands 

(Sousa & Davis, 2020), but detailed accuracy assessment for herb cover mapping has yet to 

be performed. Vegetation fractions produced by TMM analyses have been used to map 

seasonal cloud forest/grassland systems (Sousa et al., 2019), tropical mangrove forests 

(Small & Sousa, 2019), and agricultural dynamics (Jain et al., 2013; Lobell & Asner, 2004; 

Quarmby et al., 1992; Sousa & Small, 2019). 
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The normalized difference infrared Index (NDII) computes the normalized spectral slope 

between NIR and shortwave infrared (SWIR) spectral regions. NDII has been found to be 

sensitive to the optical properties of soil (Hernández-Clemente et al., 2009), plant tissue 

structure or biomass, and water content (Hardinsky et al., 1983). NDII is computed as: 

NDII = (SWIR – NIR) / (SWIR + NIR) 

The normalized difference vegetation index (NDVI) computes the normalized spectral 

slope between red and NIR reflectance values (Rouse et al., 1973). NDVI has been used for 

decades to monitor seasonal and inter-annual changes in vegetation growth and activity. As 

a normalized index, it reduces topographic illumination and atmospheric effects that may be 

present in satellite-derived surface reflectance (SR) data (Díaz-Delgado et al., 2002; Jensen, 

2016; Peña-Barragán et al., 2011; Rouse et al., 1973). NDVI is computed as: 

NDVI = (NIR – Red) / (NIR + Red) 

Spectral unmixing is fundamentally dependent upon EM selection. EMs may be selected 

geographically based on knowledge of the area being studied, through a process (such as in 

VIPER Tools for SMA or MESMA, or from the principal components analysis (PCA) 

output for TMMs), from simulated radiative transfer models, or from a spectral library built 

from spectra collected in a lab or on the ground during field work using portable 

spectroradiometers (Somers et al., 2011). 

The objective of this study was to develop and test three approaches for quantifying 

herbaceous vegetation cover in San Diego County, California, USA. SMA, MESMA, and 

TMMs were applied to single and multi-date (intra-annual) Landsat imagery. Multi-date 

image inputs for improvement of spectral unmixing accuracy when estimating herb cover, 

compared to single date SR and spectral index (NDII and NDVI) inputs alone, were 
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evaluated. In so doing, I sought to answer the following question: How well can remote 

sensing and image processing approaches be used to identify and quantify herbaceous 

vegetation cover in San Diego County? 

B. Data and Methods 

1. Study Area 

The study domain is the 795,463 ha of the Southern California Mountains and Southern 

California/Northern Baja Coast U.S. Environmental Protection Agency (EPA) level III 

ecoregions (Griffith et al., 2016; U.S. EPA, 2013) within San Diego County (Figure 1). 

Areas under built, urban, and agricultural land use were considered as “Developed” and 

masked from analysis, in addition to an area in the southeast portion of the study domain 

that is not covered by the Landsat scenes used in this study. 

 

Figure 1. Study area location within San Diego County. Left: U.S. with the focus area delineated in 

black. Right: Department of the Interior (DOI)/U.S. Geological Survey (USGS)/U.S. Environmental 

Protection Agency (EPA) (Level III) Ecoregions with the 795,463 ha San Diego County study domain 

(delineated in solid purple) within the San Diego County extent (shown in dashed purple line). 

The study domain has a semi-arid Mediterranean-type climate that experiences moderate 

winter precipitation (250 to 1,000 mm) and warm to hot, dry summer seasons (26 to 37 °C) 
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(Hamada et al., 2009). The shrubland habitats cover a range of topographic variability that 

have experienced differences in land use and fire history (Lippitt et al., 2017). 

Growth form types in the wildland area include herbaceous, true shrubs, subshrubs, and 

trees, with bare ground (soil and rock substrate) also composing the GRE associated with a 

Landsat pixel. The California shrublands in this study area are commonly invaded by exotic 

herbs (Keeley, 2001; Park et al., 2018), and thus have a mix of native and non-native herb 

species (D’Antonio et al., 2007; Park et al., 2018). Differentiation of non-native from native 

herbs was not attempted for this study, as their Landsat SR signatures are not generally 

separable (Olsson et al., 2011). 

2. Landsat Image Data 

A single-year time series of NASA/USGS Landsat imagery was used to quantify 

herbaceous cover for the year 2020. All Landsat 8 Operational Land Imager (OLI) SR 

(Collection 2, Level-2, path/row 40/37) 30 m GRE data products from USGS EarthExplorer 

with less than 10% cloud cover were reviewed. Ten cloud-free images from eight months of 

2020 were used (Table 1). 

Table 1. Landsat 8 OLI image information for path/row 40/37 in 2020 selected for this study. Acquisition 

dates, land cloud cover percentages, sun elevation, and sun azimuth are reported. 

Acquisition Date (YYYY/MM/DD) Land Cloud Cover Sun Elevation Sun Azimuth 

2020/01/18 0.35 31.58 153.38 

2020/04/23 0.11 61.95 131.39 

2020/06/10 0.03 68.57 112.56 

2020/06/26 0.66 68.05 110.93 

2020/08/29 0.06 58.64 135.55 

2020/09/30 0.01 49.49 150.17 

2020/10/16 0.08 44.31 155.08 

2020/11/17 0.18 34.94 159.49 

2020/12/03 0.03 31.71 159.30 

2020/12/19 0.06 30.02 157.89 
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3. Aerial Image Data 

Orthoimagery was used for reference data generation and accuracy assessment. National 

Agriculture Imagery Program (NAIP) four-band (visible and NIR) (0.6 m GRE) from spring 

2020 from USGS EarthExplorer and Nearmap three-band (visible) data (as fine as 0.06 m 

GRE) from all seasons of 2020 were acquired (Table 2). 

Table 2. NAIP and Nearmap orthoimage acquisition dates over the San Diego County study domain in 

2020. Seasons are defined by meteorological start dates. 

Orthoimagery 

Spatial 

Resolution 

(m) 

Acquisition Dates (YYYY/MM/DD) 

NAIP 0.6 Spring: 2020/04/15, 2020/04/25, 2020/04/28, 2020/05/20, 2020/05/25 

Nearmap 0.06 

Winter: 2020/01/03, 2020/01/04, 2020/01/05, 2020/01/06, 2020/01/11 

Spring: 2020/05/01, 2020/05/20 

Summer: 2020/07/19 

Fall: 2020/09/05, 2020/09/21, 2020/09/22 

4. Map Data 

National Land Cover Database (NLCD) 2019 data from USGS were used to create a 

mask of urban and developed land cover and surface water (lakes, reservoirs, and woody 

wetlands) classes prior to unmixing (Figure 2, right). Application of the NLCD cover mask 

to the Landsat data resulted in an area of 545,674 ha, hereafter referred to as the San Diego 

County study area. 

Historical fire polygons from the California Department of Forestry and Fire Protection 

(CAL FIRE) Fire and Resource Assessment Program (FRAP) were used to identify areas 

that had burned within four years before and the year of image acquisition (2016 to 2020) 

(CAL FIRE FRAP, 2021). The five-year period was selected based on the regrowth 

trajectories and postfire recovery findings of chamise chaparral (Lippitt et al., 2013; Storey 

et al., 2016; Syphard et al., 2019). Reference sampling grids were not generated at these 

burned locations (Figure 2, right). These burned land areas were not masked for unmixing. 
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Figure 2. Study area location within San Diego County, California. Left: Landsat 8 OLI from 2020/04/23 

acquired over the study domain (795,463 ha). Right: The study area with NLCD developed areas, 

surface water, the southeast portion not covered by Landsat (545,674 ha), and CAL FIRE FRAP burned 

areas from 2016 to 2020 masked (14,509 ha burned during this five-year period). 

5. Field Data 

To supplement the Landsat and aerial image data and provide context for reference data 

generation, true color geolocated field photos were acquired during the 2021 calendar year 

with an iPhone XS within Mission Trails Regional Park (MTRP) (Figure 3). 

 

Figure 3. Field-level images captured from the same locations within MTRP over different dates in 2021 

depicting phenological changes at a landscape-level view and overhead with a 1 m x 1 m quadrat for 

scale. (A) Images captured in a grassland area depict very high herbaceous fractional cover. (B) Images 

captured in an area with true and subshrub, as well as herb and bare ground. Dates (left to right, 

MM/DD): 03/19, 04/16, 05/08, 06/19, and 10/17. 
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6. Landsat Data Preparation 

Image data preparation and mixture modeling were applied to the Landsat images using 

ENVI 5.6.3 + IDL 8.8.3 and ENVI Classic with VIPER Tools 2.0 software. Processed 

satellite, aerial, and map data were analyzed with ENVI and ArcGIS Pro 2.8.3 software. 

 

Figure 4. Image processing workflow. Lists of each image date and feature input that were tested, along 

with the number of EMs per model tested, are shown in the gray boxes. From left to right, SMA, 

MESMA, and TMM unmixing steps were used on the listed inputs, and a total of 33 unmixed maps were 

produced. 

USGS-provided scale factors were applied to all Landsat SR images. Data were spatially 

subset to the smallest common areal extent of coverage (04/23) within the San Diego 

County study area. Data were spectrally subset to remove the Coastal band (resulting in six 

reflectance bands: Blue through SWIR 2 (0.433 to 1.390 μm)). Image date and feature inputs 

were prepared for use with two tactics (single date and multi-date time series) for three 

approaches (SMA, MESMA, and TMMs). Single date six-band multispectral data inputs 

were used with SMA and MESMA steps to unmix each date individually; multi-date stacks 

of spectral data were also unmixed. For multi-date spectral index inputs used with MESMA 
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and TMMs, band math was used to calculate and output NDII and NDVI data sets. Output 

values ranged between -1.00 and 1.00. All dates were stacked to create a multi-date NDII 

file, a multi-date NDVI file, and files that contained combined NDII and NDVI dates. 

Multispectral multi-date combinations were also created (Figure 4). 

7. Spectral Unmixing 

Regions of interest (ROIs) representing the purest pixels or pixel groups which primarily 

represent a single vegetation growth form type (herbaceous or woody cover (true shrub, 

subshrub, and tree)) and bare ground (soil and rock) were selected to derive EM signatures. 

Selection of the individual and grouped 30 m x 30 m pixel ROIs were based on visual 

interpretation of the Landsat, NAIP, and Nearmap images and the field sources, and by 

selecting apexes of feature space data clouds (Boardman, 1993; Peterson & Stow, 2003; 

Sousa & Davis, 2020). For SMA and TMMs, the same nine-to-21 pixels per land cover class 

were selected to derive EM signatures; the values of these pixels were averaged to create a 

single pixel EM per land cover type. For MESMA, ROI polygons totaling 125-to-250 pixels 

per land cover class were identified; a high number of pixels were used for the MESMA 

process to capture both within and between ROI variability to portray the true spectral 

diversity of each EM (Roberts et al., 2019b). The ROIs were used to create a unique spectral 

library for each image date and set of feature inputs. A total of 33 Landsat multispectral 

band and spectral index combinations were tested as image date and feature inputs for the 

three different unmixing model approaches. 

For SMA (Figure 4, left), each of the ten separate dates (six spectral bands each), two 

three-date multispectral combinations (18 spectral bands each), and a ten-date multispectral 

combination (60 spectral bands) were tested separately, resulting in 13 unmixed outputs. 
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Each image date and combination, and the set of spectral signatures for EMs for each data 

set, were selected as the inputs. A unit sum constraint with a weight of 1.00 (equating to 

100% cover) was set. 

For MESMA, VIPER Tools v. 2.0 (Roberts et al., 2019a), an ENVI Classic add-on, was 

used to test two sets of feature inputs – multispectral image dates and a multi-date 

combination, and spectral index inputs and an index combination – resulting in 14 unmixed 

outputs (Figure 4, middle). For the first set, each of the ten separate dates (six spectral bands 

each) and the ten-date multispectral file (60 spectral bands) were modeled. For the second 

set, the band stacked ten-date NDII (ten bands), the band stacked ten-date NDVI (ten bands), 

and a combined ten-date NDII and NDVI (ten dates each, 20 bands total) data sets were 

modeled. 

Each of the 14 image date and feature inputs were processed with VIPER Tools and the 

same steps were applied for each individual test. First, ROI metadata were created, and 

second, a spectral library using the ROI file with polygons per land cover type was created. 

Third, a square array was calculated for the spectral library and fraction constraints were set 

from -0.05 to 1.05 (equating to -5 to 105% cover) with a maximum allowable RMSE of 

0.025. Fourth, a spectral library was optimized based on calculated metrics: Endmember 

Average RMSE (EAR) (Dennison & Roberts, 2003), Minimum Average Spectral Angle 

(MASA) (Dennison et al., 2004), and Count Based (CoB) EM selection (Roberts et al., 

2003) (EAR/MASA/CoB (EMC)), resulting in one-to-three EMs per land cover type unique 

to each spectral band image date or spectral index input (for a total of three-to-nine EMs). It 

is possible for this selection strategy to result in the same EM for a land cover type, so fewer 

than three pixels per class may be selected. Fifth, spectral unmixing steps were used. For 
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each feature input, the scale factor was set to 1.00, the associated EMC spectral library was 

selected, three mixture model schemes of varying complexity (two-, three-, and four-EM 

models) with an absolute threshold of 0.001 were selected, and the unmixing constraints 

were set to -0.05 and 1.05 for fractional cover. All other options were left at the default 

values. 

For TMMs, two sets of data were tested, resulting in six feature outputs (Figure 4, right). 

For one set, PCA was used on each of the ten multispectral dates to distill the spectral bands 

down, and from which the apexes of principal component data clouds in two-dimensional 

feature space were used to identify vegetation, substrate, and dark categories. Stacks of all 

the vegetation and substrate outputs (one band per each of the ten dates) were generated, 

resulting in two ten-date (ten bands) outputs: “Vegetation” and “Substrate.” Due to spectral 

confusion of vegetation and herbaceous cover types compared to substrate, depending on the 

season, both were tested. The “Vegetation” and “Substrate” inputs were unmixed using the 

same location-based pixel EMs selected from the images for the previous SMA steps and a 

unit sum constraint with a weight of 1.00 was set. 

The second set of inputs included the band stacked ten-date NDII and NDVI data sets, 

the combined ten-date NDII and NDVI (ten dates each, 20 bands total), and a stack of the 

four NDII and four NDVI outputs (four dates each, eight bands total) that had the strongest 

seasonal signals. Again, each test input was unmixed using the same location-based pixel 

EMs selected from the images for the previous SMA steps, and a unit sum constraint with a 

weight of 1.00 was set. 
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8. Reference Data Generation 

Reference data used for accuracy assessment were generated by visual image 

interpretation of the multi-date NAIP and Nearmap orthoimagery. A 150-by-150 grouping 

of NAIP pixels equivalent to three-by-three Landsat pixels (90 m x 90 m or 0.81 ha) was 

used to estimate fractional cover. Hereafter, the three-by-three Landsat pixel equivalent is 

referred to as the sampling grid. Use of a sampling grid that is larger than a single Landsat 

pixel accounts for uncertainty in the co-registration of NAIP and Nearmap pixel groupings 

relative to Landsat pixels (Hogland & Affleck, 2019; Shih et al., 2020). A regularly spaced 

grid was generated and overlaid on the Landsat data and 100 systematically aligned 

individual sampling grids from eight areas of interest (AOIs) (i.e., subareas within the study 

area, labeled based on nearby landscape features of interest) were created (Figure 5). 

 

Figure 5. Locations of eight AOIs within the San Diego County study area used to assess the accuracy of 

herb fractional cover estimates. The number following each AOI label represents the number of 90 m x 

90 m sampling grids used to generate reference data within that AOI. AOIs were selected based on the 

presence of locations with high herbaceous fractional cover, locations with a range of true shrub and 

subshrub growth form cover, accessibility for field work, and different time-since-burn dates. Image 

data: Spring 2020 NAIP airborne orthoimages with NLCD areas and 2016 to 2020 burned areas (CAL 

FIRE FRAP) masked. 
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Sampling grids included a variety of landscape cover types, different cover fraction 

values, and multiple slope aspects. Additionally, the sampling grids were representative of 

the full study area, had burned in a wildfire incident anywhere between zero and four times 

between 1910 and 2020, and were separated by a minimum distance of 100 m from one 

another. For each of the 100 sampling grids, a 100-point dot grid was created for visual 

image interpretation of the cover type located at each of the 100 points (Figure 6). Land 

cover type information for all points was recorded in an attribute table as herbaceous, woody 

cover, or bare ground, and fractional cover values per sampling grid were calculated. 

 

Figure 6. Examples of a single sampling grid with the 100-point dot grid and 2020 imagery. (A) The size 

of Landsat pixels within the sampling grid. (B) A false color NAIP image (MM/DD: 05/20). (C) through 

(E) True color Nearmap images (left to right, MM/DD): 01/04, 05/01, 09/22. Arrows point to examples of 

herbaceous vegetation and woody cover in the scene. 

9. Accuracy Assessment 

The accuracy of herbaceous cover proportions was quantified using the generated 

reference data. Each of the 33 resulting predicted cover fractions were assessed for accuracy 
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based on the following metrics: mean absolute error (MAE), RMSE, and coefficient of 

determination (R2). Fractional cover values for individual Landsat pixels were aggregated to 

match the sampling grids. Simple linear regression models were run and scatterplots of 

unmixed results for %Herbaceous (the dependent, or modeled, variables) versus generated 

reference data for %Herbaceous (the independent, or interpreted, variables) were produced. 

A best fit line was calculated to assess systematic error and determine whether herb cover 

outputs were underpredicting or overpredicting herb cover (Lippitt et al., 2017; Peterson & 

Stow, 2003; Uyeda et al., 2016). 

The spectral band, spectral index, or combination result from SMA, MESMA, or TMMs 

that had the lowest MAE and RMSE and highest R2 values were selected for 

visual/descriptive analysis. Patterns of herbaceous cover were visually analyzed relative to 

the NAIP and Nearmap orthoimagery. The goal of this analysis was to determine whether 

the output map appeared reasonable based on the distribution and location of different land 

cover types and where the highest and lowest percentages of herb cover were located. 

Results were also compared to the Rangeland Analysis Platform’s (RAP) vegetation cover 

product from 2020 (Jones et al., 2018). RAP provides annual fractional cover estimates 

(1986 to 2022), and unmixed outputs from this study were compared to the RAP estimates 

for annual forbs and grasses, perennial forbs and grasses, and litter (combined and 

considered to be herbaceous growth forms) (Allred et al., 2021; Jones et al., 2018; Jones et 

al., 2021). 

C. Results 

Following the steps in the workflow (Figure 4), 33 sets of fractional cover maps were 

produced: 13 from SMA, 14 from MESMA, and six from TMMs. The outputs of all 
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unmixing approaches were maps of %Herbaceous for the entire San Diego County study 

area for 2020, at a GRE of 30 m, with land use/land cover areas not of interest masked. 

Accuracy and error statistics are presented in Tables 3 through 6 for each of the three 

unmixing approaches and include the raw values, raw values with min-max normalization 

applied, and raw values constrained to range from 0.00 to 1.00 (0 to 100% cover). Mixture 

model output values were not fully constrained to the set unit sum constraint of 1.00 (100% 

for SMA and TMMs) or -0.05 to 1.05 (-5 to 105% for MESMA). As each image date and 

feature input set resulted in a different range of output values, the values from each output 

data set were converted to a value between 0.00 and 1.00 (0 to 100%) using a min-max 

normalization method using the formula: 

Normalized Value = (Original Value – Minimum Value) 

                                  (Maximum Value – Minimum Value) 

(Jin et al., 2015a). Also, output values for each image date and feature input were 

constrained – negative values were set to 0.00, values greater than 1.00 were set to a 

maximum value of 1.00, and all other values between 0.00 and 1.00 were not adjusted. 

Constrained herbaceous cover outputs from each SMA image date are displayed in 

Figure 7, and the associated output values are listed in Table 3. Herbaceous cover was most 

accurately estimated by the SMA model’s constrained 2020/08/29 date with MAE = 8.85%, 

RMSE = 12.02%, and R2 = 0.85 (Table 3, Figure 8). 
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Figure 7. Herbaceous fractional cover maps from the SMA model with constrained output values. First 

row, left to right (MM/DD): 01/18, 04/23, 06/10, 06/26. Second row, left to right: 08/29, 09/30, 10/16, 

11/17. Third row, left to right: 12/03, 12/19, April/August/November, August/September/October. 

Fourth row: All Dates. 
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Table 3. Herbaceous fractional cover error results for SMA image date inputs. MAE, RMSE, and R2 

results are displayed for the raw output values, raw values with min-max normalization applied, and 

raw values constrained to 0.00 to 1.00. The lowest error magnitudes for each output representation and 

date are highlighted. 

Image Dates 
Raw Normalized Constrained 

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2 

2020/01/18 33.79% 43.97% 0.32 21.84% 26.15% 0.32 20.17% 29.90% 0.29 

2020/04/23 37.63% 42.69% 0.57 15.21% 20.13% 0.57 21.05% 29.23% 0.51 

2020/06/10 31.94% 36.79% 0.76 16.36% 19.66% 0.76 26.88% 32.95% 0.62 

2020/06/26 13.79% 17.71% 0.83 10.81% 13.73% 0.83 11.25% 15.14% 0.81 

2020/08/29 10.76% 13.82% 0.83 11.96% 14.25% 0.83 8.85% 12.02% 0.85 

2020/09/30 11.16% 14.95% 0.79 14.68% 16.98% 0.79 9.26% 13.14% 0.81 

2020/10/16 12.95% 16.55% 0.75 16.21% 18.89% 0.75 10.91% 14.77% 0.77 

2020/11/17 21.01% 25.16% 0.50 26.26% 30.27% 0.50 19.32% 24.19% 0.52 

2020/12/03 21.36% 25.46% 0.48 26.78% 31.07% 0.48 18.90% 23.87% 0.50 

2020/12/19 22.86% 27.99% 0.43 25.56% 29.68% 0.43 18.95% 24.86% 0.45 

April/August/ November 17.17% 21.39% 0.76 12.05% 15.89% 0.76 13.08% 18.64% 0.78 

August/September/ 

October 
11.37% 14.95% 0.78 14.71% 16.94% 0.78 9.58% 13.30% 0.81 

All Dates 14.83% 18.88% 0.70 15.90% 18.64% 0.70 11.78% 16.21% 0.74 

 

 

Figure 8. Left: Herbaceous fractional cover map from the SMA model and the constrained 2020/08/29 

image date. Right: Scatterplot associated with the constrained 2020/08/29 output. The orange dotted 1:1 

line communicates this model and output accurately and systematically estimated herb cover. 

Constrained herbaceous cover outputs from each MESMA image date and feature input 

are displayed in Figure 9, and the associated output values are listed in Table 4. The feature 

input that yielded the highest accuracy from the MESMA model was the combination of all 

ten dates (All Dates) with constrained MAE = 14.42%, RMSE = 18.14%, and R2 = 0.64 
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(Table 4, Figure 10). However, the output maps with the highest R2 values were those from 

the 2020/06/26 and 2020/08/29 image dates (0.66). 

 

Figure 9. Herbaceous fractional cover maps from the MESMA model with constrained output values. 

First row, left to right (MM/DD): 01/18, 04/23, 06/10, 06/26. Second row, left to right: 08/29, 09/30, 10/16, 

11/17. Third row, left to right: 12/03, 12/19, All Dates, NDII. Fourth row, left to right: NDVI, 

NDII+NDVI. 
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Table 4. Herbaceous fractional cover error results for MESMA image date inputs. MAE, RMSE, and R2 

results are displayed for the raw output values, raw values with min-max normalization applied, and 

raw values constrained to 0.00 to 1.00. The lowest error magnitudes for each output representation and 

date are highlighted. 

Image Dates & 

Feature Inputs 

Raw Normalized Constrained 

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2 

2020/01/18 26.65% 32.02% 0.25 28.06% 33.89% 0.25 26.65% 32.02% 0.25 

2020/04/23 23.53% 31.30% 0.31 23.33% 31.44% 0.31 23.53% 31.30% 0.31 

2020/06/10 19.24% 23.19% 0.56 21.35% 25.49% 0.56 19.15% 23.18% 0.57 

2020/06/26 17.20% 21.18% 0.66 18.66% 22.72% 0.66 17.17% 21.17% 0.66 

2020/08/29 16.34% 19.64% 0.66 16.83% 20.42% 0.66 16.34% 19.64% 0.66 

2020/09/30 17.92% 21.56% 0.58 19.96% 24.61% 0.58 17.92% 21.56% 0.58 

2020/10/16 16.14% 20.09% 0.62 18.99% 23.51% 0.62 16.05% 20.08% 0.62 

2020/11/17 21.46% 25.84% 0.57 22.19% 27.00% 0.57 21.46% 25.84% 0.57 

2020/12/03 21.47% 26.07% 0.53 22.97% 28.61% 0.53 21.47% 26.07% 0.53 

2020/12/19 22.34% 27.41% 0.49 22.72% 28.14% 0.49 22.34% 27.41% 0.49 

All Dates 14.51% 18.15% 0.64 15.40% 18.92% 0.64 14.42% 18.14% 0.64 

NDII 23.76% 37.27% 0.07 21.18% 34.49% 0.07 23.27% 37.09% 0.06 

NDVI 18.41% 30.52% 0.13 20.28% 30.45% 0.13 18.08% 30.42% 0.12 

NDII+NDVI 26.44% 39.69% 0.00 27.18% 37.80% 0.00 26.12% 39.62% 0.01 

 

 

Figure 10. Left: Herbaceous fractional cover map from the MESMA model and the constrained ten date 

(All Dates) feature input. Right: Scatterplot associated with the constrained All Dates output. The 

orange dotted 1:1 line communicates this model and output’s underestimation of herb, particularly 

when herb cover was greater than 35%. 

The percentage of sampling grids modeled by MESMA ranged from 23% to 94%, 

depending on the image date or feature input. When unmodeled sampling grids were omitted 

from the calculations, the feature input that yielded the lowest RMSE and highest R2 values 
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of 20.03% and 0.70 was the combination of all ten dates (All Dates) with values constrained 

(Table 5, Figure 11). Eighty-two percent of the All Dates sampling grids were modeled. 

Table 5. Herbaceous fractional cover error results for MESMA image date inputs. MAE, RMSE, and R2 

results are displayed for the raw output values, raw values with min-max normalization applied, and 

raw values constrained to 0.00 to 1.00. Sampling grids that were unmodeled by MESMA were omitted 

from the calculations. The lowest error magnitudes for each output representation and date are 

highlighted. 

Image 

Dates & 

Feature 

Inputs 

Percent 

of 

Modeled 

Samplin

g Grids 

Raw Normalized Constrained 

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2 

2020/01/18 87% 29.76% 34.33% 0.18 31.38% 36.33% 0.18 29.76% 34.33% 0.18 

2020/04/23 23% 25.84% 65.26% 0.50 24.95% 65.56% 0.50 25.84% 65.26% 0.50 

2020/06/10 89% 20.86% 24.58% 0.59 23.30% 27.10% 0.59 20.76% 24.57% 0.60 

2020/06/26 89% 18.99% 22.45% 0.66 20.64% 24.10% 0.66 18.95% 22.44% 0.66 

2020/08/29 93% 17.17% 20.36% 0.69 17.69% 21.18% 0.69 17.17% 20.36% 0.69 

2020/09/30 31% 19.28% 22.60% 0.60 21.53% 25.80% 0.60 19.28% 22.60% 0.60 

2020/10/16 94% 17.11% 20.72% 0.61 19.95% 24.23% 0.61 17.01% 20.71% 0.62 

2020/11/17 91% 23.62% 27.09% 0.56 24.46% 29.25% 0.57 23.62% 28.06% 0.57 

2020/12/03 88% 24.24% 27.79% 0.50 25.94% 30.50% 0.50 24.24% 27.79% 0.50 

2020/12/19 90% 24.67% 28.89% 0.46 25.08% 29.66% 0.46 24.67% 28.89% 0.46 

All Dates 82% 15.24% 20.05% 0.70 16.41% 21.30% 0.70 15.14% 20.03% 0.70 

NDII 45% 16.07% 55.55% 0.56 12.99% 55.35% 0.56 14.95% 56.02% 0.55 

NDVI 83% 13.03% 33.50% 0.53 15.67% 34.70% 0.53 12.64% 33.39% 0.54 

NDII+NDVI 45% 12.60% 59.16% 0.24 19.33% 61.16% 0.25 11.91% 58.42% 0.25 

 

 

Figure 11. Scatterplot associated with the constrained All Dates output. Sampling grids that were 

unmodeled by MESMA were omitted from the calculations. The orange dotted 1:1 line communicates 

this model and output’s underestimation of herb, particularly when herb cover was greater than 45%. 
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Constrained herbaceous cover outputs from each TMM feature input are displayed in 

Figure 12, and the associated output values are listed in Table 6. The TMM model’s feature 

input that yielded the lowest error output was the substrate band stack (“Substrate”) with 

constrained MAE = 11.21%, RMSE = 17.97%, and R2 = 0.75 (Table 6, Figure 13). 

 

Figure 12. Herbaceous fractional cover maps from the TMM model with constrained output values. 

First row, left to right: “Vegetation,” “Substrate,” and NDII. Second row, left to right: NDVI, 

NDII+NDVI, and NDII(4)+NDVI(4). 

 

Table 6. Herbaceous fractional cover error results for TMM feature inputs. MAE, RMSE, and R2 results 

are displayed for the raw output values, raw values with min-max normalization applied, and raw 

values constrained to 0.00 to 1.00. The lowest error magnitudes for each output representation and date 

are highlighted. 

Feature Inputs 
Raw Normalized Constrained 

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2 

“Vegetation” 18.77% 28.23% 0.42 29.59% 33.09% 0.42 13.78% 20.66% 0.57 

“Substrate” 15.17% 22.33% 0.68 13.73% 18.04% 0.68 11.21% 17.97% 0.75 

NDII 19.95% 26.46% 0.49 21.42% 25.55% 0.49 15.30% 21.86% 0.54 

NDVI 17.54% 24.63% 0.56 24.30% 28.47% 0.56 13.36% 19.64% 0.63 

NDII+NDVI 22.02% 27.12% 0.50 25.22% 29.31% 0.50 20.06% 26.11% 0.51 

NDII(4)+NDVI(4) 17.75% 23.03% 0.59 19.31% 23.09% 0.59 15.47% 21.57% 0.61 
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Figure 13. Left: Herbaceous fractional cover map from the TMM model and the constrained 

“Substrate” band stack. Right: Scatterplot associated with the constrained “Substrate” output. The 

orange dotted 1:1 line communicates the underestimation of herb cover for this model and feature 

outputs. 

D. Discussion 

1. Unmixing Model Approaches 

The herbaceous fractional cover maps from each unmixing model type that yielded the 

lowest error (Figures 8, 10, and 13) visually portray the spatial distribution of herb cover in 

the San Diego County study area in a realistic manner. The single date SMA model 

(2020/08/29) (Figure 8) yielded the lowest MAE and RMSE and highest R2 and is 

emphasized in this discussion. 

When identical single date versus multi-date input results were compared, the influence 

of EM selection and differences in unmixing approaches on accuracy were isolated. For 

example, the 2020/08/29 image output yielded MAE = 8.85%, RMSE = 12.02%, and R2 = 

0.85 from the SMA model (Table 3) and MAE = 17.17%, RMSE = 20.36%, and R2 = 0.69 

from the MESMA model with unmodeled sampling grids omitted (Table 5). The All Dates 
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combination output yielded values of MAE = 11.78%, RMSE = 16.21%, and R2 = 0.74 from 

the SMA model (Table 3) and MAE = 15.14%, RMSE = 20.03%, and R2 = 0.70 from the 

MESMA model with sampling grids omitted (Table 5). The NDVI feature output yielded 

values of MAE = 12.64%, RMSE = 33.39%, and R2 = 0.54 from the MESMA model with 

unmodeled sampling grids omitted (Table 5) and MAE = 13.36%, RMSE = 19.64%, and R2 

= 0.63 from the TMM model (Table 6). 

Lower accuracy cover estimates from the MESMA model may be due to the constraints 

that were set, which resulted in a high number of unmodeled pixels. Additionally, MESMA 

yields high accuracy outputs for areas exhibiting considerable spectral variability between 

and within EM classes (e.g., urban areas), but less well when the contrast between EMs is 

low (Hamada et al., 2011; Powell et al., 2007; Roberts et al., 1998; Shih et al., 2020). When 

materials on the ground have only a modest amount of spectral contrast, MESMA often 

models the surface as consisting of only one cover type and shade. 

TMM accuracy may be limited due to topographic effects, as well as “phenological 

mimicking.” Phenological mimicking can be considered the analog of “spectral mimicking” 

(Adams and Gillespie, 2006) in the temporal domain (Sousa & Davis, 2020). Like any 

phenology-based approach to vegetation mapping that relies on a time-varying “greenness” 

metric, TMMs will be limited by the statistical separability (or lack thereof) among the 

temporal variations in photosynthetic vegetation in the spatial and temporal domain of the 

study. 

Reference herbaceous cover data generated from visual interpretation of ultra-high GRE 

orthoimagery were compared to the 2020 herb cover estimates from RAP, which yielded 

MAE = 14.01%, RMSE = 16.41%, and R2 = 0.83, respectively. RAP overestimated herb 



 

 29 

cover values from 0 to 40% and underestimated herb cover from 65 to 100%. These lower 

accuracy estimates compared to the more accurate unmixing model estimates may be due to 

a limited number of San Diego County study area plot-level measurements used to calibrate 

the machine learning model implemented by RAP (Jones et al., 2018). Like machine 

learning processes, datasets and parameters should be validated after each adjustment in EM 

selection based on independent testing (reference) data (Allred et al., 2021; Jones et al., 

2018). Unlike machine learning, SMA methods require substantially less training data and 

effort and can still produce accurate fractional cover estimates without the need to generate 

large amounts of reference data for training. 

2. Feature Input Effects 

The SMA model’s constrained single date image input from fall may have yielded the 

highest accuracy estimates because EMs were meticulously selected to represent the purest 

examples of land cover types in terms of complete ground cover and at the apexes of 

spectral feature space. When the SMA model multi-date features were tested, the high 

spectral contrast and separability were diminished by the addition of image date inputs with 

low spectral contrast. MESMA EMC metrics for spectral library selection steps, which are 

designed to identify the most separable EMs (Dennison et al., 2004, Dennison & Roberts, 

2003; Roberts et al., 2003), appeared to be robust for models based on multiple date inputs 

that captured vegetation phenology signals. 

Multispectral SR bands from single summer and fall dates yielded more accurate results 

than SVIs used as feature inputs. However, combinations of single date reflectance bands 

(e.g., April/August/November, All Dates) yielded results that were comparable to SVI 

inputs. Both models that tested single date SR image inputs (SMA and MESMA) resulted in 
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error values most likely caused by seasonal differences. Approximately 93% of average 

annual precipitation in the San Diego County study area occurs between October and April 

(Lippitt et al., 2017), and herbs typically senesce and die by summer. The 01/08, 04/23, 

06/10, 11/17, 12/03, and 12/19 image dates yielded the outputs with the highest error values 

stemming from seasonal spectral confusion between land cover types and terrain shadow 

variability throughout the year. 

MESMA models and TMMs that incorporated multi-date SVI feature inputs, particularly 

NDVI which tracks vegetation growth and activity, resulted in more accurate herb cover 

estimates than those for single date SR image inputs (e.g., winter image dates when terrain 

shadowing was more pervasive). Herb cover distributions appear to follow topographic 

patterns, apparently due to the different vegetation growth form types and densities growing 

on north- versus south-facing slopes. Other SVIs besides NDII and NDVI may be worth 

testing as feature inputs. 

3. Spatial Patterns of Herbaceous Cover 

Differences in spatial patterns of herb cover were observed due to the biophysical 

geographic characteristics of individual AOIs. Accuracy of the SMA product that yielded 

the lowest error values is summarized for each AOI (Figure 5) that contained ten or more 

sampling grids in Table 7. 
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Table 7. Herbaceous, woody cover, and bare ground fractional cover averages and error results for the 

SMA model and constrained 2020/08/29 herbaceous output for each AOI. The number following each 

AOI label represents the number of 90 m x 90 m sampling grids used to generate reference data from 

within that AOI. 

AOI 
Average 

%Herbaceous 

Average 

%Woody 

Cover 

Average 

%Bare 

Ground 

MAE RMSE R2 

Lake Henshaw (10) 63.50% 29.20% 7.30% 4.95% 8.29% 0.97 

Palomar Mountain (18) 23.95% 69.85% 6.20% 5.77% 8.09% 0.94 

Guatay Mountain (10) 18.20% 71.90% 9.90% 7.77% 9.39% 0.95 

Mission Trails Regional 

Park/San Vicente 

Reservoir (20) 

28.35% 56.90% 14.50% 7.43% 9.94% 0.83 

Lake Sutherland (20) 19.25% 67.80% 12.95% 11.11% 13.94% 0.76 

Otay Mountain (19) 31.63% 59.47% 8.89% 13.72% 17.17% 0.60 

The most accurate estimates resulted for the Lake Henshaw and Palomar Mountain AOIs 

which were relatively homogeneous in growth form composition. The Lake Henshaw AOI is 

predominantly composed of grassland and the Palomar Mountain AOI is dominated by 

woody cover, with low herb cover. Lands covered by the Lake Henshaw sampling grids 

have not experienced a recorded wildfire since prior to 1910, and only two of 18 Palomar 

Mountain sampling grids have burned, most recently in 1984 (CAL FIRE FRAP, 2021). The 

SMA products for the Guatay Mountain and MTRP/San Vicente Reservoir AOIs were only 

slightly lower in accuracy. Both AOIs have similar peak elevations and are dominated by 

woody cover but contain open grasslands with greater heterogeneity in growth form cover 

than the Lake Henshaw and Palomar Mountain AOIs. Lake Sutherland and Otay Mountain 

SMA products exhibited the least accurate cover estimates and were the most heterogeneous 

of all AOIs. They were also the most recently burned, with 15 of 20 Lake Sutherland 

sampling grids burned in 2007 and ten of 19 Otay Mountain sampling grids burned in 2003 

(five of which burned again in 2007) (CAL FIRE FRAP, 2021). 

To my knowledge, this is the first study to focus exclusively on herbaceous fractional 

cover in San Diego County shrublands using unmixing model approaches – SMA, MESMA, 

and TMM. Results from this work may be applied to climate-vegetation zones that are 
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affected by rapid transformation of growth form cover (Báez & Collins, 2008) as well as 

locations impacted by grass-fire cycles. Examples include Mediterranean-type climates 

where non-native herbs are encroaching upon native shrubs and trees. Conversely, shrubs 

are invading native grasslands in other biogeographic provinces, such as grasslands in the 

northern Chihuahuan Desert In New Mexico (Báez and Collins, 2008), in South Dakota 

(South Dakota Grassland Coalition), and in prairies of Alberta, Canada (Zapisocki et al., 

2022). These methods may enable monitoring of changes of growth form cover by satellite 

for wildfire-prone communities and support adaptive management practices for mitigating 

and combating the grass-fire cycle. 

E. Conclusions 

With a focus on herbaceous cover estimation and mapping, this study successfully 

explored the accuracy of three unmixing methodologies applied to NASA/USGS Landsat 8 

OLI SR data acquired over San Diego County shrublands. The SMA model and the 

constrained 2020/08/29 image output yielded the most accurate results of MAE = 8.85%, 

RMSE = 12.02%, and R2 = 0.85. This simple and parsimonious approach, with the specific 

parameters tested, yielded a slightly higher accuracy than did more complex unmixing 

models and feature inputs. An unmixing approach provides a framework for quantifying, 

mapping, reconstructing, and monitoring herbaceous vegetation cover on a regular basis; 

representing output cover products with 10% interval classes would be appropriate given the 

levels of error and uncertainty that were quantified in this study. 

Extraction of pure spectral signatures of herbaceous cover for EMs from a 30 m GRE 

image was challenging (Hamada et al., 2011), and this undoubtedly affected the accuracy 

results. SMA requires either an authoritative and validated spectral library, or knowledge of 
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the landscape and/or access to high GRE orthoimagery acquired from multiple seasons to 

identify growth forms remotely for accurate EM selection. The MESMA model’s EM 

selection process is less critical since it is recommended that many ROIs are selected for the 

EMC part of the process. However, results from the MESMA model demonstrated the 

degree to which a spectral mixture can be modeled by a small number of EMC-selected 

EMs, as well as demonstrated that no single set of EMs can adequately describe every 

spectrum in the image (Roberts et al., 1998). Because of this, the creation of the combined 

true shrub, subshrub, and tree – Woody Cover – land cover class may have negatively 

impacted the processes and resulting values. The multi-date feature input approach of 

TMMs ensured seasonality was incorporated in the analysis, but selection of substrate, 

vegetation, and dark spectra from the principal components point cloud proved to be 

difficult to capture in a consistent way that could be compared between feature input types. 

However, the “Substrate” output likely yielded the highest accuracy of the TMM outputs 

due to the spectral similarity between herbaceous and bare ground in late summer and early 

fall, and may be considered for future herbaceous identification work, particularly when 

temporal EMs are selected from point clouds as opposed to geographic knowledge (as was 

the case with this work). 

Both the high GRE NAIP and Nearmap orthoimage-based reference data and moderate 

GRE Landsat fractions are model-based estimates, and measurements of comparative model 

agreement, as opposed to predicted outputs compared to “ground truth.” Assessing the 

accuracy of the reference data with field-based estimates could be beneficial yet labor 

intensive. 
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The results of this study indicate potential for application of the SMA model to longer 

time scale assessments. In Chapter III, this approach will be applied to a long time (multi-

decadal) sequence of Landsat data to analyze herbaceous cover change and evidence of the 

effects of the grass-fire cycle in the San Diego County study area. 
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III. Spectral unmixing of a Landsat time sequence to reconstruct 

herbaceous fractional cover dynamics in wildfire-prone San Diego County, 

California, USA shrublands (1988-2020) 

A. Introduction 

Wildfire is a natural element in a Mediterranean-type ecosystem, but is nonetheless a 

landscape disturbance and, when the land is altered beyond its characteristic range of 

variability, a combination of vegetation community reassembly, invasion, conversion, or 

replacement may occur over time. Post-fire succession in previously disturbed shrublands, 

whether due to mechanical disturbances or shorter fire return intervals, often starts with non-

native grasses and forbs (herbaceous vegetation or herbs). These invasive vegetation types 

tend to recover quickly after disturbances because of their ability to colonize open spaces 

(Christensen, 1994; D’Antonio & Vitousek, 1992). Vegetation communities composed of 

high fractions of herbaceous vegetation, and particularly herbs that have senesced or dried, 

may tolerate and enhance fire effects (D’Antonio & Vitousek, 1992). Post-fire grass 

invasion can set a grass-fire cycle in motion where an invasive grass colonizes an area 

following a wildfire or other landscape disturbance, causes a decline in native shrubs and 

trees, and provides the fine fuel necessary for the ignition and spread of subsequent fires. 

Successive fires in an area then increase in frequency, area, and possibly intensity over time. 

Grasslands invading shrublands are the cause of significant negative ecosystem effects 

(Brooks et al., 2004; Mack et al., 2001) and can alter ecosystem processes over large areas 

because they could feed back to alter other components of global change (e.g., climate, 

atmospheric composition, land use) (D’Antonio & Vitousek, 1992). Additionally, wildfires 
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pose a risk to the growing human population and structures, particularly in wildland-urban 

interface (WUI) areas (Radeloff et al., 2018). For these reasons, it is important to identify 

and monitor areas that experience expansion of invasive herb cover, and particularly 

locations that have type converted from native shrubland- to non-native herb-dominated 

areas over time. 

Typically, vegetation development and change are studied by long-term observations of 

individual sites. In the past, vegetation change was analyzed for proximal sites of differing 

stand ages, by inferring development sequences from differences in cover (Lippitt et al., 

2013; McMichael et al., 2004; Uyeda et al., 2016). However, the challenge with this method 

is that inter-site differences that are unrelated to site age may mistakenly be interpreted as 

developmental and, therefore, data collected in this way must be interpreted cautiously 

(Kellman, 1980). Other studies avoided the issue of inference from different stand ages by 

studying long-term change for specific locations through analysis of random sample points 

to infer the rate or extent of change (Syphard et al., 2019). Using a time sequence of aerial 

photographs, Syphard et al. (2019) quantified fractional cover change of woody and herb 

growth forms at 25% cover intervals between 1953 and 2016 across 916 randomly sampled 

plots in San Diego County (the same study area used for this study). Shrub conversion and 

decline were related to a range of explanatory variables (i.e., fire frequency, proximity to 

human disturbance, and biophysical landscape characteristics). Substantial net woody cover 

loss was reported and, of the plots that were more than 75% woody cover in 1953, 59% 

experienced a decline with a mean woody cover loss of 22.5%. Of those, 28% were heavily 

type-converted to the point that herbaceous vegetation covered more than 50% of the plot. 

Major driver variables for woody conversion and decline were fire intervals shorter than 15 
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years, the total number of fires, actual evapotranspiration, and elevation (Syphard et al., 

2019). However, these methods do not output regional change cover maps. 

Unlike methods using local observations over time, remote sensing offers an approach to 

effectively monitor a Mediterranean-type shrubland ecoregion across large landscapes, 

particularly with the long time series of moderate spatial resolution imagery and large extent 

provided by the Landsat archive. Landsat time series have been used to analyze pre- and 

post-fire data to monitor regeneration of woody fractional vegetation cover (FVC) 

(Clemente et al., 2009; Storey et al., 2021). Clemente et al. (2009) used image data to 

monitor post-fire regeneration in a Mediterranean semiarid and subhumid study area in Beas 

de Granada, Spain. Landsat images acquired before and after a 1993 wildfire incident were 

compared to field survey data collected in 2000 and again in 2005. Ground data were used to 

calculate FVC as the percentage of vegetation occupying a unit area and were related to 

seven Landsat-derived vegetation indices and compared through a Pearson correlation 

matrix. The spectral post-fire analysis revealed that regeneration was related to gradual 

spectral changes over time within different vegetation communities, and the proposed linear 

regression model could derive accurate FVC estimates from Normalized Difference 

Vegetation Index (NDVI) data (Clemente et al., 2009). Storey et al. (2021) used high spatial 

resolution aerial imagery to calibrate fractional shrub cover estimates derived from Landsat 

Surface Reflectance (SR) NDVI trajectories over southern California from 1984 through 

1988 and 2014 through 2018. Change in shrub cover was evaluated for stands that 

experienced different fire return intervals, numbers of fires, and environmental settings, and 

a substantial fraction of chaparral was determined to have degraded because of fire (Storey 

et al., 2021). 
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Although trend analyses based on spectral features and vegetation indices, such as 

NDVI, have been used to reveal patterns of vegetation green up and dry down, spectral 

indices have limitations in that their relationship to biophysical properties are empirical. 

Park et al. (2018) used NDVI to provide a high-resolution approach for assessing the 

distribution and relative cover by herbs into woody cover but found the model may overlook 

some differences in the extent of seasonal changes in NDVI among different species within 

each cover type. Variation in seasonal NDVI and the lack of interspecific discrimination was 

attributed to the tendency of the method to underpredict fractional herb cover in highly 

invaded areas and overpredict herb cover in areas with extremely low herb cover. These 

limitations may represent some inherent constraint in using seasonally based vegetation 

mapping with data such as that from Landsat (Park et al., 2018). Therefore, a vegetation 

cover mapping approach that can be used to estimate continuous cover fractions of distinct 

surface types at a sub-pixel level is more appropriate for landscape-scale change detection 

among cover types. 

Spectral mixture analysis (SMA), or linear spectral unmixing, is an image processing 

approach for estimating material cover fractions based on the assumption that the ground 

area sampled by a pixel, the ground resolution element (GRE), can be reasonably 

approximated by a fractional mixture of a small number of spectrally distinct materials 

(Adams et al., 1986; Gillespie et al., 1990; Roberts et al., 1998; Settle & Drake, 1993; Smith 

et al., 1990). Endmembers (EMs) representing homogeneous, or “pure,” materials and their 

spectra are fundamental inputs in the SMA process. During the unmixing process, the 

radiance (or reflectance) of a mixed GRE is considered to be an area-weighted linear 

combination of spectral EM materials, plus error (e.g., Adams et al., 1993). EMs may be 
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selected based on geographic knowledge of the study area, or through a process such as in 

VIPER Tools for SMA or multiple endmember spectral mixture analysis (MESMA), from 

an existing spectral library built from field or laboratory spectroradiometer measurements, 

or from simulated radiative transfer models (Dennison & Roberts, 2003; Somers et al., 

2011). 

SMA is an important tool for remote sensing of vegetation analysis (Dennison & 

Roberts, 2003) and since SMA can be used to provide a full spectrum measurement of 

vegetation response, SMA fractions are often more robust for fractional cover determination 

than traditional vegetation indices (Dennison & Roberts, 2003; Elmore et al., 2000; Peddle 

et al., 2001; Riano et al., 2002). Vegetation fractions produced by SMA have been used to 

describe land cover change (Dennison & Roberts, 2003; Nill et al., 2022; Roberts et al., 

2002; Rogan et al., 2002) and vegetation regeneration after disturbance (Dennison & 

Roberts, 2003; Riano et al., 2002). The usefulness of accurate quantification of fractional 

cover using SMA is further corroborated when applied to multitemporal image data sets for 

the purpose of tracking vegetation change over time. 

Multitemporal image data captured throughout the intra-annual phenological cycle are 

useful for identification of vegetation at the growth form level, partly due to the changing 

spectral response of vegetation due to phenology (Dudley et al., 2015; Lieth, 1974). Plant 

phenology, defined as the seasonal change in biological life as a result of changing 

environmental conditions (Dudley et al., 2015; Lieth, 1974), provides information that can 

be used to ascertain details about broad plant species composition and vegetation health 

(Dudley et al., 2015). Multitemporal imagery has been used to quantify herbaceous 
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expansion and change over time (Balch et al., 2013; Jones et al., 2018; Lippitt et al., 2017; 

Park et al., 2018).  

In Mediterranean-type ecosystems, landscape disturbances often modify a vegetation 

species’ relative abundance rather than composition such that recovery involves the return to 

initial abundances (Clemente et al., 2009; Lavorel, 1999; Storey et al., 2016; Storey et al., 

2021). A spectral unmixing method is appropriate for identification and observation of FVC 

change through time because landcover classifications are constrained by the observational 

unit of a GRE, which almost exclusively represents a mix of several distinct surface 

materials (Keshava & Mustard, 2002; Nill et al., 2022). Therefore, the objective of this 

study was to reconstruct and analyze the spatial-temporal patterns of herbaceous growth 

form cover for a shrubland study area in San Diego County, California, USA using SMA 

applied to four Landsat multispectral images captured over a 33-year period (1988 to 2020) 

at nearly decadal intervals. The rationale for use of SMA for this objective, as opposed to 

another unmixing approach like MESMA or temporal mixture models, was based on results 

from Chapter II, in which I found the SMA model to output slightly higher herb cover 

accuracy as well as provide a parsimonious modeling approach. The output of four herb 

cover maps was evaluated, and the difference between an early and current year were 

analyzed. The accuracy of the herb cover change results, as well as the degree of 

uncertainty, were assessed using the reference data, according to mean absolute error 

(MAE), root mean square error (RMSE), and coefficient of determination (R2) metrics. The 

reliability of the herb cover change estimates was addressed and locations with high 

amounts of change over time were identified. Specifically, I asked the following research 

questions: 
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1. When spectral unmixing models are applied to imagery covering a multi-decadal 

period in the San Diego County study area, how reliable and accurate are maps of 

herbaceous cover change? 

2. Where within the study area did substantial change in herbaceous fractional cover 

occur and do areas of substantial change appear to coincide with wildfire frequency 

or drought effects occurring within the study period? 

B. Data and Methods 

1. Study Area 

The study domain is the 783,290 ha of the Southern California Mountains and Southern 

California/Northern Baja Coast U.S. Environmental Protection Agency (EPA) level III 

ecoregions within San Diego County (Griffith et al., 2016; U.S. EPA, 2013) (Figure 14). 

Areas under urban, built, and agricultural land use were considered as “Developed” and 

masked from analysis, along with an area in the southeast portion of the study domain that is 

not covered by the Landsat scenes used in this study. 
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Figure 14. Study area location within San Diego County, California. Left: Department of Interior 

(DOI)/U.S. Geological Survey (USGS) (Level III and IV) Ecoregions with the San Diego County study 

domain (delineated in black dotted line) within the San Diego County extent (shown in dashed black 

line) (804,116 ha). Right: Landsat 8 OLI image data from (YYYY/MM/DD) 2020/08/29 acquired over 

the study domain with NLCD developed areas, surface water, and the southeast portion not covered by 

Landsat masked (532,167 ha). 

The San Diego County study area has a semi-arid Mediterranean-type climate that 

experiences warm to hot, dry summer seasons (26˚ to 37 °C) and moderate winter 

precipitation (250 to 1,000 mm) (Hamada et al., 2009). The shrubland communities cover a 

variable range of topography and have experienced different land uses over time (Lippitt et 

al., 2017). Growth form types in the wildland area include herbaceous and woody cover 

(true shrubs, subshrubs, and trees), with bare ground (soil and rock substrate) also 

composing a Landsat GRE. California shrublands are commonly invaded by non-native 

herbs (Keeley, 2001; Park et al., 2018) but may include pockets of native herb species 

(D’Antonio et al., 2007; Park et al., 2018). However, differentiation of invasive from native 

herb species was not attempted for this study, as their Landsat SR signatures are not 

generally separable (Olsson et al., 2011). 
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To characterize the patterns and dynamics of land cover in the San Diego County 

shrublands, fractional cover of three classes was estimated. 

1. Herbaceous: Comprises largely invasive grass and forb species that are annuals, 

with some perennial bunchgrasses (Bartolome et al., 2007; Heady, 1956). Annual 

grassland varies on at least three important scales: intra-annual change within a 

growing season, differences between years, and directional change over many 

years (Bartolome, 1989; Bartolome et al., 2007). Rainfall and air temperature are 

the primary drivers of change at the two smaller temporal scales (Bartolome et 

al., 2007; Jackson & Bartolome, 2002), and anthropogenically influenced factors 

are often the driver of long-term changes (Bartolome et al., 2007). 

2. Woody Cover: Includes true shrub (e.g., chamise (Adenostoma fasciculatum)) 

chaparral and mixed chaparral communities (Keeley, 2000; Pryde, 2004), 

subshrub (e.g., coastal sage scrub (e.g., Artemisia californica, Eriogonum 

fasciculatum, and Salvia species)) communities (Rundel, 2007), and trees (e.g., 

open oak woodlands in riparian areas and canyons, and oak woodlands and 

montane coniferous forests in higher elevations) (Arroyo et al., 1995, Davis & 

Richardson, 1995; Di Castri et al., 1981). 

3. Bare Ground: Encompasses soil and rock substrate. 

Fuel-driven wildfires are common in central and northern California conifer forests 

where lightning is the more frequent cause of ignitions compared to human ignitions 

(Keeley & Syphard, 2018). However, lightning in San Diego County is less common, 

particularly closer to the coast, so the natural fire regime is one of infrequent wildfires that 

likely ignited in higher-elevation montane forests and burned into shrublands. Now, human-
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caused ignitions account for 99% of all fires that occur in coastal California, north and south 

(Keeley & Syphard, 2018), which has decreased the intervals between fires. San Diego 

County may be characterized by periodic fuel- or wind-driven wildfires (Keeley & Syphard, 

2019). Large, high-intensity crown fires (in this domain, crown fires may burn in true and 

subshrubs, and not just trees) driven by hot, dry Santa Ana wind events typically occur in 

autumn, and smaller fires tend to burn in summer seasons (Jin et al., 2015b; Syphard et al., 

2019). Between 1984 and 2020, 522 wildfire incidents were recorded in the Southern 

California Ecoregion, which burned 516,500 ha (CAL FIRE FRAP, 2021). Conversion of 

native shrubs to herbs has been documented in parts of San Diego County (Keeley & 

Brennan, 2012; Lippitt et al., 2013, Syphard et al., 2019). 

2. Landsat Image Data 

The NASA/U.S. Geological Survey (USGS) Landsat program offers the longest 

continuous record of image data acquired from space, which makes it the ideal source for 

estimating and mapping herbaceous cover change over large extents and relatively long 

durations. All Landsat 5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic Mapper 

Plus (ETM+), and Landsat 8 Operational Land Imager (OLI) SR (Collection 2, Level-2, 

path/row 40/37) 30 m GRE data products from USGS EarthExplorer with < 10% cloud 

cover and a fall season date were reviewed. Fall dates were selected because of the seasonal 

and spectral differences observed between the mostly senesced herbaceous and mostly 

evergreen woody vegetation (as described in Chapter II). Landsat 7 ETM+ data after 2002 

were not considered because of the Scan Line Corrector failure (which creates “No Data” 

gaps) (Shih et al., 2020). Image dates were selected based on three factors: (1) exhibition of 

similar annual precipitation amounts near the long-term annual mean precipitation value, 
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according to records for a weather station centrally located within the Southern California 

Ecoregion (Descanso, CA) (Figure 15); (2) the temporal bounds defined by the historical 

period of existing Landsat SR data between 1984 and present (Jones et al., 2018); and (3) 

the available fall dates within that period of data. Landsat imagery was acquired for four 

dates, 1988/09/22, 1997/10/17, 2011/10/08, and 2020/08/29 (Figure 15, Table 8). 

 

Figure 15. Annual water year (WY: October through September) precipitation data from the Descanso 

Station, San Diego County. Y-axis: Annual precipitation data (mm) (sources: 

https://www.wrcc.dri.edu/cgi-bin/cliMAIN.pl?ca2406 and https://raws.dri.edu/cgi-

bin/rawMAIN.pl?cactus). X-axis: WY (1984 through 2022). The solid blue line represents the average 

annual precipitation value, the dotted black line represents the trendline, and the orange bar visually 

communicates the change-over-time in the trendline for 1984 through 2022. The hollow black dot 

represents a year with incomplete total values (e.g., months’ worth of missing data). Numbered gold dots 

represent the years selected for study: (1) 1988 (578.87 mm), (2) 1997 (521.72 mm), (3) 2011 (847.85 

mm), and (4) 2020 (653.03 mm). 

 

Table 8. Landsat 5 TM and 8 OLI image information for path/row 40/37 selected for this study. 

Acquisition dates, land cloud cover percentages, solar elevation, and solar azimuth are reported. 

Landsat Sensor Acquisition Date 
Land Cloud 

Cover 

Solar 

Elevation 

Solar  

Azimuth 

5 TM 1988/09/22 0.00 48.23 137.013 

5 TM 1997/10/17 0.00 41.42 146.98 

5 TM 2011/10/08 0.00 45.92 148.56 

8 OLI 2020/08/29 0.06 58.64 135.55 
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3. Aerial Image Data 

Aerial image data were used primarily to generate reference data, which were used for 

accuracy assessment. Three-band (color infrared (CIR)) digital orthophoto quadrangles 

(DOQ) (1 m GRE) from summer 1996 and fall 1997, the earliest dates of digital 

multispectral orthoimagery available, were acquired from USGS EarthExplorer. Four-band 

(visible and near infrared (NIR)) National Agriculture Imagery Program (NAIP) 

orthoimagery (0.6 m GRE) from spring 2020 were acquired from USGS EarthExplorer. 

Three-band (visible) Nearmap orthoimagery (as fine as 0.06 m GRE) from all seasons of 

2020 were also acquired. Orthoimage acquisition dates are listed in Table 9. 

Table 9. DOQ, NAIP, and Nearmap orthoimage acquisition dates over the San Diego County study 

domain in 1996, 1997, and 2020. Seasons are defined by meteorological start dates. 

Orthoimagery 

Spatial 

Resolution 

(m) 

Acquisition Dates (YYYY/MM/DD) 

DOQ 1.0 
Summer: 1996/06/04 

Fall: 1996/09/26, 1996/09/27, 1996/09/30, 1997/10/16 

NAIP 0.6 Spring: 2020/04/15, 2020/04/25, 2020/04/28, 2020/05/20, 2020/05/25 

Nearmap 0.06 

Winter: 2020/01/03, 2020/01/04, 2020/01/05, 2020/01/06, 2020/01/10, 

2020/01/11 

Spring: 2020/05/01, 2020/05/02, 2020/05/16, 2020/05/20 

Summer: 2020/07/19 

Fall: 2020/09/05, 2020/09/21, 2020/09/22, 2020/10/08, 2020/10/16 

4. Ancillary Data 

USGS National Land Cover Database (NLCD) 2019 data were used to create a mask of 

urban and built land cover (developed and cultivated crops) and surface water (lakes, 

reservoirs, and woody wetlands) classes. Land cover masks were applied prior to the 

implementation of unmixing steps, yielding a 532,167-ha study domain (Figure 14, right), 

hereafter referred to as the San Diego County study area. USGS three-dimensional (3D) 

Elevation Program (EP) (3DEP) data and OpenStreetMap (OSM) data were used to derive 

information about terrain, elevation, and infrastructure. 
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California Department of Forestry and Fire Protection (CAL FIRE) Fire and Resource 

Assessment Program (FRAP) (CAL FIRE FRAP) historical fire polygons (1910 to 2020) 

were used to identify and exclude from analysis areas that burned four years before and the 

year of image acquisition (a five-year burn mask for each analyzed image date) to ensure 

more established herbaceous cover was not confused with immediate post-fire annual 

vegetation. The five-year period was based on chamise chaparral regrowth trajectories and 

postfire recovery results (Lippitt et al., 2013; Storey et al., 2016; Syphard et al., 2019). 

Reference sampling grids were not sampled from within areas that burned between 2016 and 

2020. 

5. Landsat Data Preparation 

Landsat image data were prepared and SMA was implemented using ENVI 5.7 + IDL 

8.9 software. Processed satellite, aerial, and map data were analyzed with ENVI and ArcGIS 

Pro 2.8.3 software. Figure 16 shows the workflow for this study. 

 

Figure 16. Image processing workflow for analyses focused on multi-year difference outputs. The list of 

tested image dates is shown, along with the number of EMs used. SMA unmixing steps yielded four 

cover maps (one per date). Absolute difference calculations yielded five difference results. Accuracy was 

assessed and sample patches of substantial change in herb cover were analyzed. 
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USGS-provided scale factors were applied to all four Landsat SR images, but no 

additional scale factors were applied to harmonize Landsat 5 TM to Landsat 8 OLI. Data 

were spatially subset to the smallest common areal extent of image coverage within the San 

Diego County study area. Landsat 8 data were spectrally subset to remove the Coastal band 

(resulting in six reflectance bands: Blue through the second shortwave infrared (SWIR 2) 

waveband) for a more direct comparison to Landsat 5 data. 

6. Endmember (EM) Selection 

Pixels representing the purest examples of a single land cover class (herbaceous, woody 

cover, or bare ground) were selected to derive EM signatures. The 30 m x 30 m Landsat 

pixels were selected based on interpretation of the Landsat, DOQ, NAIP, and Nearmap 

images, and by selecting apexes of feature space data clouds (Boardman, 1993; Peterson & 

Stow, 2003; Somers et al., 2011). The DOQ (1996 and 1997) and NAIP and Nearmap 

(2020) orthoimages were used to identify herb, woody, and bare ground cover locations that 

displayed minimal change between the early and later time period. If reference data 

sampling grids generated from these orthoimages indicated -2 to 2% change in 1996 or 1997 

versus 2020, the locations were flagged for consideration for in-image, single-pixel EM 

selection. Final EM combinations were selected for each image date based on accuracy 

assessment results. 

7. Spectral Mixture Analysis (SMA) 

Each Landsat image was modeled separately using SMA, with six wavebands and three 

EMs (one pixel per land cover type tested). A unit sum constraint with a weight of 1.00 
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(equating to 100% cover) was set. Four output images were generated per image date, with 

resulting herbaceous cover, woody cover, bare ground, and RMSE data. 

8. Herbaceous Cover Change 

Absolute difference images were generated to assess spatial variability in fractional 

cover change estimates for the entire mapped area between the different time steps (single 

years) (Lippitt et al., 2017), as defined in Equation 1: 

Ha = Ht2 – Ht1     (1) 

where: Ha represents the absolute change in herbaceous cover, Ht2 is the herbaceous 

cover of the later time, and Ht1 is the herbaceous cover of the earlier time. 

Three comparisons using the Landsat-derived fractional cover maps were analyzed to 

identify persistent shifts in cover and analyze herbaceous cover trends (Table 10). For each 

comparison, the absolute difference between each year or time step was calculated; these 

illustrated the fractional cover change between each interval. Every pairwise sequential 

combination was calculated, and five absolute difference images were generated for the 

entire study area at 30 m GRE with land use/land cover areas not of interest masked. 

Table 10. Absolute difference comparisons analyzed. Comparison 1 calculated differences between each 

sequential year studied. Comparison 2 calculated the difference between the years closest to the 

available reference date years. Comparison 3 calculated the difference between the first and the last year 

studied. 

Absolute Difference Comparisons Process 

Comparison 1. Each Sequential Year Year 2 minus Year 1, Year 3 minus Year 2, Year 4 minus Year 3 

Comparison 2. Reference Data Years Year 4 minus Year 2 

Comparison 3. First versus Last Year Year 4 minus Year 1 

9. Reference Data Generation 

Reference data were generated by visual interpretation of the DOQ, NAIP, and Nearmap 

orthoimagery (Table 9). To estimate fractional cover, randomly sampled portions equivalent 
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to three-by-three Landsat pixels (90 m x 90 m or 0.81 ha) (hereafter referred to as a 

sampling grid) were interpreted. A sampling grid, which is larger than a single Landsat 

pixel, was used to account for uncertainty in the co-registration of the DOQ, NAIP, and 

Nearmap pixel groupings relative to Landsat pixels (Hogland & Affleck, 2019; Shih et al., 

2020). A regularly spaced grid was generated and overlaid on the Landsat data, and eight 

areas of interest (AOIs) (i.e., subareas within the study area, labeled based on nearby 

landscape features of interest) were designated. From within the eight AOIs, 100 

systematically aligned individual sampling grids were created (Figure 17). 

 

Figure 17. Locations of eight AOIs within the San Diego County study area used to assess the accuracy 

of herbaceous fractional cover estimates. The number following each AOI label represents the number 

of 90 m x 90 m sampling grids used to generate reference data. AOIs were selected based on the presence 

of locations with high herb, locations with a range of woody growth form cover, accessibility for field 

work, and different time-since-burn dates. Image data: CIR 1996 and 1997 DOQ orthoimages. 

Sampling grids included a variety of landscape cover types, cover fraction values, and 

slope aspects, were representative of the study area, had burned in a wildfire incident 

anywhere between zero and four times between 1910 and 2021, and were separated by a 
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minimum distance of 100 m from one another. For each of the 100 sampling grids, a 100-

point dot grid was created for visual image interpretation of the cover type located at each of 

the 100 points (Figure 18). Land cover type information for all points was recorded for both 

1996 or 1997 (based on DOQ data) and 2020 (based on NAIP and Nearmap data) in an 

attribute table as herbaceous, woody cover, or bare ground. Reference data were used to 

assess the accuracy of Landsat-derived herb fraction maps, particularly those from Year 2 

(1997) and Year 4 (2020). 

 

Figure 18. Examples of a single sampling grid with the 100-point dot grid and imagery. (A) Three-by-

three Landsat pixels associated with the reference data sampling grid. (B) A false color DOQ image 

(1996/09/30). (C) A false color NAIP image (2020/05/20). (D) through (F) True color Nearmap images 

(left to right: 2020/01/04, 2020/05/01, and 2020/09/22). Arrows point to examples of herbaceous 

vegetation and woody cover in the scene. 

10. Accuracy Assessment 

Accuracy of herbaceous cover proportion maps for each year (1988, 1997, 2011, and 

2020) was estimated using the generated reference data, according to MAE, RMSE, and R2 

metrics. Mixture model output values were not fully constrained to the set unit sum 
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constraint weight of 1.00 (100%), so negative values were set to 0.0001 (close to 0.00) and 

values greater than 1.00 were set to 1.00. Simple linear regression models were run, 

scatterplots depicting modeled versus reference cover were generated, and the 1:1 and best 

fit lines were delineated; the latter defines systematic error (Lippitt et al., 2017; Peterson & 

Stow, 2003; Uyeda et al., 2016). 

The accuracy of the estimated change maps of herbaceous cover for 1988 to 2020 and 

1997 to 2020 were calculated using reference data from 1996 and 1997 compared to 2020. 

The absolute difference was calculated for both the unmixed and reference data. MAE and 

RMSE were calculated for the 78 (out of the original 100) sampling grids that did not burn 

within five years of the 1988 image date and the 1996 and 1997 reference data 

orthoimagery; none of the sampling grids burned prior to 2020. Histograms of herbaceous 

fractional cover change were generated. 

11. Analyses of Herbaceous Cover Distributions and Changes 

A random sample of patches of 11 contiguous pixels exhibiting herbaceous cover change 

< -20% and > 20% were analyzed for possible vegetation type conversion from woody-to-

herbaceous cover, or where woody cover re-established. The + 20% value coincides with the 

uncertainty in the herb cover change map. DOQ and Nearmap image sets, along with NLCD 

land cover classification data, were analyzed to reconcile whether apparent herb changes 

were reliable. Percentages and histograms of herbaceous pixels were summarized for each 

Landsat date. The mean herb cover change for the four Landsat dates was analyzed, along 

with woody cover and bare ground fractional cover. The years a fire burned, the number of 

fires, and the time-since-fire were used to calculate fire frequency (and both minimum and 

average fire return interval). 3DEP data were used to determine elevation and aspect. DOQ 
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orthoimagery and OSM data were used to measure approximate distance from patch edges 

to roads and trails. Patch cover values from the estimated change map of woody cover for 

1988 and 2020 were also compared to the chaparral recovery product from Storey et al. 

(2021) and woody cover loss points from Syphard et al. (2019). 

C. Results 

The most accurate Landsat SMA-estimated map is the 2020/08/29 image date with MAE 

= 9.55%, RMSE = 12.88%, and R2 = 0.83 (Table 11). The best fit line in the associated 

scatterplot (Figure 19D) is very close to the 1:1 line, which communicates the map 

accurately and systematically estimated herb cover. Though high GRE orthoimage data that 

matched the 1988 (earliest) Landsat image date were unavailable, MAE = 10.99%, RMSE = 

15.75%, and R2 = 0.77 were lower when compared to the 1996 and 1997 reference data. 

Estimates of the 1997 Landsat product compared to 1996 and 1997 reference data (MAE = 

19.11%, RMSE = 24.07%, and R2 = 0.64) (Table 11) indicate that herb cover was 

overestimated in the 0 to 60% range and underestimated in the 80 to 100% range (Figure 

19B). 

Table 11. Herbaceous fractional cover error results for image date inputs compared to reference data. 

The number of sampling grids analyzed (out of 100) after omitting the grids within burned areas five 

years prior to the image date, and the MAE, RMSE, and R2 results are displayed. 

Image Dates Number of Sampling Grids MAE RMSE R2 

1988/09/22 94 10.99% 15.75% 0.77 

1997/10/17 84 19.11% 24.07% 0.64 

2011/10/08 74 13.55% 17.78% 0.78 

2020/08/29 100 9.55% 12.88% 0.83 
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Figure 19. Herbaceous fractional cover maps and associated EM spectra and scatterplots from the four 

image dates: (A) 1988/09/22, (B) 1997/10/17, (C) 2011/10/08, and (D) 2020/08/29. First row: EM spectra. 

Second row: Herb cover maps. Areas that burned within five years of the image dates and reference 

data orthoimagery are masked. Third row: Scatterplots. The light gray dotted 1:1 line communicates 

each output’s unsystematic estimation of herb cover (e.g., scatter), and the black dotted best fit line 

communicates the systematic error. 

As a goal of this study was to capture fractional cover change from an early and present 

date from the available Landsat SR data archive, focus was placed on the longer time 

intervals. Herbaceous cover change was most accurately estimated for the 1988 and 2020 

interval, for which recently burned sampling grids were omitted, with MAE = 12.17% and 

RMSE = 15.57% (Table 12). Therefore, mapped changes are represented as 20% intervals 

and changes between -20 and 20% are considered areas that experienced “minimal to no 

change” (or are at least within the range of uncertainty). Hereafter, the 1988 to 2020 multi-

decadal period and 20% change intervals are the focus for this work. The 1997 and 2011 

cover maps were treated as intermediate products to reconcile apparent fractional cover 

transitions between the end dates. 
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Table 12. Herbaceous fractional cover error results for cover maps resulting from the absolute 

differences of image dates compared to the absolute difference of the reference data. The number of 

sampling grids analyzed (out of 100) after omitting the grids within burned areas five years prior to the 

image date, and the MAE and RMSE results are displayed. 

Absolute Difference Number of Sampling Grids MAE RMSE 

Δ 1988 and 2020 94 12.17% 15.57% 

Δ 1997 and 2020 84 14.97% 18.83% 

Histograms of herbaceous fractional cover values, at 20% intervals, from the 1988 and 

2020 absolute difference cover map are shown in Figure 20. The results portray an 

agreement between the cover proportions of the reference data and Landsat-derived cover 

maps, and certainly within the 12.17% error range reported by the absolute difference of the 

1988 and 2020 MAE metric. Both estimates communicate that more than 50% of the 

sampling grids (Figure 20A) and Landsat pixels within the full San Diego County study area 

(Figure 20B) experienced a 0 to 20% increase in herb cover over time; 79.49% of the 

sampling grid area and 68.42% of the map are within the “minimal to no change” range (-20 

to 20%). 

 

Figure 20. Histograms of herbaceous fractional cover change from the 1988 and 2020 absolute difference 

cover maps. (A) 78 reference data sampling grids (out of 100) that did not burn within five years of the 

1988 image date and the 1996 and 1997 reference orthoimagery. Outside of the -20 to 20% uncertainty 

range, the sampling grids show a 3.85% decrease and 16.67% increase in herb cover. (B) Pixels from the 

full study area (with the NLCD land cover mask applied and areas that burned before 1988 and 2020 

masked). Outside of the -20 to 20% uncertainty range, the map shows a 4.98% decrease and 26.60% 

increase in herb cover. 
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Figure 21. Absolute difference fractional cover map highlighting areas with change in herbaceous 

fractional cover < -20 and > 20% between 1988 and 2020. Areas that burned within five years of the 

image dates and the NLCD land cover types not of interest are masked. 

A map depicting absolute herbaceous cover change between 1988 and 2020 for the San 

Diego County study area is shown in Figure 21. Again, emphasis is placed on cover change 

< -20 and > 20% to account for the uncertainty and error (Table 12). Less than a third 

(31.58%) of the study area had an absolute difference < -20 and > 20%; 26.60% of the study 

area exhibited an increase in herb > 20% and 4.98% experienced a decrease in herb < -20% 

(Figure 20B). Although pixels of substantial herb increase and decrease are scattered 
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throughout the study area, the greatest concentration are located in WUI areas in the Diegan 

Coastal Hills and Valleys, Diegan Western Granitic Foothills, and Santa Ana Mountains 

(Level IV) Ecoregions (refer back to Figure 14). 

Contiguous 11-pixel patches belonging to the same 20% interval class were segmented 

to generate 50,104 patches that were analyzed for general trends in associated fire 

disturbance and environmental factors (Table 13). Despite the use of the NLCD 2019 data to 

mask land cover types not of interest, almost all patches that decreased by < -60% were 

associated with mechanical landscape disturbances or land cover changes associated with 

cultivated crops (agricultural areas). Many of the -59.99 to -40% change patches were 

pasture/grazing lands (defined by NLCD 2019 data as herbaceous cover). The decline in 

herb cover over time associated with this interval class may be related to the specific 

phenology associated with the image date, soil moisture, or drought. Most of the -39.99 to -

20% change patches were areas of actual decrease in herb cover in heterogeneous wildland 

areas. The majority of the 20 to 39.99% patches were composed predominantly of subshrubs 

and grasses that experienced an increase in herb cover in wildland areas and are commonly 

associated with higher fire frequency (shorter fire return intervals). Similar to patches 

mapped as exhibiting large decreases in herb cover, patches that increased by > 40% were 

mostly found in agricultural areas (not masked by NLCD data), associated with changes in 

reservoir levels, or areas that had been mechanically cleared prior to building and 

development projects. 

A sample of 50 patches was identified for more detailed qualitative analysis (Table 13, 

Figure 22). The number of patches selected per 20% interval was based on the area (ha) that 

experienced each interval of change over time, the number of patches identified within each 
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interval, and the total area of patches per interval (Table 13). Individual patches ranged from 

11 to 372 pixels (0.99 to 33.5 ha) in size. The 20 to 39.99% interval class was represented 

by the largest number of patches (23) because I observed that the most herb expansion 

occurred within this interval (outside of the “minimal to no change” range), and this class 

had the largest number of patches (out of 50,104). Ten patches from the “minimal to no 

change” range (-20 to 20%) were included as a control group. 

Table 13. Percentage and areal information, as well as patch information, associated with each 20% 

herbaceous change interval. The percentage and the area (ha) of the study area represented by pixels 

calculated from each interval are reported. The number of patches represented by each interval, the 

patch area (ha), and the number of patches qualitatively analyzed per interval are listed. The seven -

39.99 to -20% and 23 20 to 39.99% interval class patches were selected for further descriptive analysis 

(highlighted rows). 

Interval 

(%) 

Percentage 

of the Study 

Area (%) 

Area of the 

Study Area 

(ha) 

Number of 

Total Patches 

Total Area 

of Patches 

(ha) 

Number of 

Sample 

Patches 

-100 to -80 0.11 434 78 190 1 

-79.99 to -60 0.28 1,164 131 320 1 

-59.99 to -40 0.90 3,716 422 838 3 

-39.99 to -20 3.69 15,218 2,247 5,044 7 

-19.99 to -0 

(Control) 
15.30 63,122 10,347 33,807 5 

0 to 19.99 

(Control) 
53.12 219,154 19,935 181,245 5 

20 to 39.99 21.65 89,342 13,956 54,640 23 

40 to 59.99 3.81 15,701 2,303 5,201 3 

60 to 79.99 0.87 3,609 499 1,080 1 

80 to 100 0.27 1,134 186 566 1 

Total 100.00 412,594 50,104 282,940 50 
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Figure 22. The locations of patches used for qualitative analysis overlaid on burned area polygons. The 

50 circles represent the approximate location of each 20% interval patch (patches are not to scale). Pale 

yellow, transparent polygons represent areas that burned between 1910 and 2020 (CAL FIRE FRAP, 

2021); brighter yellow indicates multiple fires in the same area (and therefore a lower average fire 

interval and higher fire frequency over time). 

Following comparison to orthoimage data, I focused on the 30 patches within the -39.99 

to -20% (seven patches) and 20 to 39.99% (23 patches) interval classes because they 

represented the most realistic examples of herbaceous change in wildland areas. One patch 

was predominantly herb covered throughout the study period, and the other 29 contained 

heterogeneous mixes of varying herb, woody, and bare ground cover values. Temporal 

relationship to wildfire over the 111-year period from 1910 to 2020 (Figure 23) and 

characteristics about the land cover were evaluated. 

The seven patches that experienced a decrease in herbaceous cover burned between one 

and four times from 1910 to 2020 (an average of 2.57 fires per patch), had an averaged 

minimum fire interval of 13 years, an averaged average fire interval of 15.93 years, an 

average fire frequency of 58.14, and burned between nine and 92 years prior to 2020 (an 
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average of 32.71 years). Three of the seven patches (42.86%) had a minimum interval 

between fires < 15 years (Figure 23). These seven patches were in four of the seven Level 

IV Ecoregions, and on southeast- or east-facing slopes. Their average elevation ranged from 

260 to 1,745 m and the average range in elevation within patches was 180 m. Patch edges 

ranged from 10 to 3,200 m from a road (an average of 2066.43 m) and 0 to 2,750 m from a 

trail or access road (an average of 713.33 m). All seven patches were classified by the 

NLCD program as predominantly Shrub/Scrub. 

The 23 patches that experienced an increase in herbaceous cover burned between zero 

and seven times from 1910 to 2020, with an average of 2.35 fires per patch, had an averaged 

minimum return fire interval of 21.18 years, an averaged average fire interval of 29.02 

years, an average fire frequency of 58.63, and burned between three and 76 years before 

2020 (an average of 22.81 years). Eight of the 23 patches (34.78%) had a minimum interval 

between fires < 15 years (Figure 23). These patches were in all seven Level IV Ecoregions, 

were found on different slope aspects, on ridgelines, in valleys, and over flat terrain, the 

average elevation of patches ranged from 165 to 1,480 m (an average of 663.70 m, and the 

average change in elevation within patches was 90.74 m). Patch edges ranged from 0 to 

4,130 m from a road (an average of 865.65 m) and 0 to 980 m from a trail or access road (an 

average of 175.65 m). Two patches were classified by the NLCD program as predominantly 

Herbaceous or Emergent Herbaceous Wetlands, and 21 were predominantly Shrub/Scrub. 



 

 61 

 

Figure 23. Wildfire information per sample patch. Left: Each of the 30 sample patches (one per row) are 

organized by -39.99 to -20% (seven sample patches) and 20 to 39.99% (23 sample patches) intervals, and 

the associated wildfire incidents are labeled by year (columns) with a square of the same color. 

Visualization is for the study period (1988 to 2020) with years prior to 1988 and 2020 masked, resulting 

in a focus on 1989 to 2015. Right: CAL FIRE FRAP fire information from 1910 through 2020 for each 

sample patch – the number of fires that burned a single patch over time, the minimum fire interval in 

time, the average fire interval at each patch, the frequency (111 years divided by the number of fire 

incidents), and the time since the patch last burned in a wildfire. 

D. Discussion 

1. Reliability and Accuracy of Herbaceous Cover Change Map 

A standard SMA model applied to four dates of Landsat imagery captured over a 33-

year period yielded maps of herbaceous fractional cover change that are reasonably reliable 

and accurate. The four herb cover maps produced for each fall image date over the study 

period (1988, 1997, 2011, and 2020) portray location-specific change in herb over time. 

Herb cover was most accurately estimated by the 2020/08/29 date with MAE = 9.55%, 

RMSE = 12.88%, and R2 = 0.83 (Figure 19D, Table 11). 
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The 100 sampling grid locations were selected based on location, landscape 

heterogeneity, and areas that did not burn between 2016 and 2020. However, once grids that 

had been affected by wildfire between 1984 to 1988 and 1993 to 1997 were omitted, only 78 

sampling grids remained. This lowered the number of available sampling grids for accuracy 

assessment and change analysis and may have introduced a discrepancy in 

representativeness of herb cover fractions observed, compared to the full study area. 

The herbaceous fractional cover change map produced using the first and last years of 

the study (the absolute difference of 1988 and 2020) portrays the spatial distribution of 

herbaceous cover change < -20 and > 20% in the San Diego County study area (Figure 21). 

The change map depicts a 4.98% decrease and 26.60% increase in herb cover (Figure 20B), 

which is consistent with Syphard et al. (2019). When compared to 78 sampling grids, 90 m x 

90 m in size, scattered throughout the study area, error in the change map was estimated to 

be MAE = 12.17% and RMSE = 15.57% (Table 12). This level of error is corroborated by 

the qualitative analysis of 30 sample patches, for which actual change (both decrease and 

increase) of herb was observed. 

The estimated errors for the fractional cover maps (single dates and change) are 

reasonable and render the maps useful for assessing the broad-scale distributions of 

herbaceous change. However, two methodological recommendations stem from application 

of the SMA model for this study. First, validation of the Landsat-derived change map using 

reference data generated from orthoimage-based sampling grids is challenging. Despite use 

of DOQ, NAIP, and Nearmap orthoimagery from 1996 through 2020 at a GRE of < 1.0 m 

and collected during multiple phenological cycles, comparison of the 78 sampling grids to 

the 1997 and 2020 cover map yielded an MAE = 14.97% and RMSE = 18.83% (Table 12). 
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Both reference data and SMA-derived maps should be considered model-based estimates of 

herbaceous cover, and the reference data are not “ground truth.” Nevertheless, that the cover 

maps agree to the sampling grids within the level of estimated agreement is encouraging and 

yields confidence in the utility of the change map. 

Second, selection and intermediate fine-tuning of EMs is critical for accurate unmixing 

based on SMA (Roberts et al., 1998; Somers et al., 2011; Tompkins et al., 1997). The 

vegetation growth form and bare ground cover classes are not necessarily true EMs, which 

makes unmixing challenging (from Chapter II). The EMs incorporated in the SMA model 

that yielded the most accurate results were specific to each image date and were based on 

the results of testing iterative mixture analysis cycles. This makes sense when factors that 

contribute to land cover changes are considered (e.g., soil moisture related to precipitation or 

drought prior to image acquisition and vegetation phenology, particularly for green versus 

non-photosynthetic vegetation, causing spectral confusion (Dudley et al., 2015; Hamada et 

al., 2009; Roberts et al., 1993; Rogan et al., 2002; Roth et al., 2012; Storey et al., 2016), and 

recent wildfire effects (Quintano et al., 2005; Quintano et al., 2017; Röder et al., 2008; 

Veraverbeke & Hook, 2013)). Similar to machine learning processes, datasets and 

parameters should be validated after each adjustment in the EM selection process based on 

independent testing (reference) data (Allred et al., 2021; Jones et al., 2018). However, SMA 

methods require substantially less training data and effort than machine learning and can still 

produce accurate fractional cover estimates without the need to generate large amounts of 

reference data for training. 

Ancillary datasets were used to mask portions of Landsat images associated with land 

cover/land use types not of interest for the study (e.g., developed and agricultural lands) 
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from SMA modelling. However, errors and artifacts in those data sets resulted in substantial 

portions of developed and agricultural lands not being masked. In particular, NLCD data did 

not accurately represent all locations with urban development or cultivated crops. Similarly, 

fire incidents to which CAL FIRE were not engaged in fire suppression efforts (e.g., 

originating on military bases or too small to fit the guidelines for inclusion) were not 

mapped and therefore, not masked. These tended to emerge in the herb cover ranges of -100 

to -60% and 40 to 100% change and were omitted from the sample patches. It is important 

to reconcile the reliability of initial results and manually mask locations like these to exclude 

all areas not of interest. 

2. Areas Exhibiting Substantial Change in Herbaceous Fractional Cover 

Products from this study were used to identify locations of herbaceous change over the 

multi-decadal study period, particularly to infer areas that experienced woody vegetation 

recovery or type conversion from woody-to-herb-dominated landscapes indicative of a 

grass-fire cycle. More than a quarter (26.60%) of the undeveloped portion of the San Diego 

County study area exhibited > 20% increase in herb cover (Figure 20). A sample of 50 

patches was identified for further descriptive analysis (Figure 22, Table 13). Of the sample 

patches identified as experiencing an increase in herbaceous cover > 20% over time (28 out 

of 50, or 56%) (Figure 22, Table 13), 23 patches (82.14%) indicated a simultaneous 

decrease in woody cover (ranging in cover loss between 0.51 and 56.11%). The 23 patches 

ranged in size from 0.99 to 33.5 ha, which provides strong evidence for substantial shifts in 

growth form cover. However, none of the 50 sample patches were identified as having 

experienced full replacement of woody cover by herb. This reinforces that change in 

vegetation growth form cover is a gradual process that often occurs cumulatively over 
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multiple fire cycles (Syphard et al., 2019); thus, the relatively short 33-year period of this 

study may not have bracketed the timing of 100% conversion.  

A map depicting absolute woody cover change between 1988 and 2020 for the study 

area was also produced to explore the relationship between herbaceous and woody cover 

over time. The woody cover change values from the same 30 patch locations of apparent 

herb change (+20 to +39.99%) were compared to the woody cover change results from 

Storey et al. (2021) and Syphard et al. (2019). Twenty-four of the 30 sample patches (80%) 

(six that decreased and 18 that increased in herb cover) were in the same location as results 

from the Storey et al. (2021) recovery map. Comparison of mean woody cover values of 

each of the 24 patches to the mean of the same patch areas in the work of Storey et al. 

(2021) yielded MAE = 13.26% and RMSE = 18.71%. For the six patches that decreased in 

herb, MAE = 29.41% and RMSE = 32.25%; for the 18 patches that increased in herb, MAE 

= 7.87% and RMSE = 9.92%. This agrees with Storey et al. (2021) between woody cover 

estimates, particularly for those patches that exhibited herb increase over time (and a 

simultaneous decrease in woody cover), despite the slight difference in time period and 

variation in methodology for creating Ht1 and Ht2 (Equation 1). 

Eighteen of the 30 sample patches (60%) from this study (four that decreased and 14 that 

increased in herb cover) were within 5,000 m of at least one point identified by Syphard et 

al. (2019) as exhibiting woody cover decrease > 25% between 1953 and 2016. However, 

only one of the sample patches exhibited a change in woody cover < -25%. Between 1988 

and 2020 (and with areas that burned prior to those years masked), the Landsat SMA-

estimated map indicated that some areas experienced a decrease in woody cover by 8.32%, 

and other areas an increase by 14.46%, which is not comparable to results from Syphard et 
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al. (2019). This may be due to the difference in studied time period, the variations in slope 

aspect and elevation within the 5,000 m range between the sample patch and associated 

point from Syphard et al. (2019), the fact that woody cover estimates in Syphard et al. 

(2019) were constrained to chaparral (and did not consider other woody vegetation growth 

form types), or by the selection of EMs, which may not have represented woody cover as 

accurately as herb. 

The parsimonious modeling approach of standard SMA enables monitoring of change of 

herbaceous cover by satellite for wildfire-prone locations – both for short-term seasonal 

change as well as for long-term change. Results from this work may be used for monitoring 

purposes and to inform users about locations where herbaceous cover is expanding and 

where vegetation type conversion may be occurring. This is important not only due to 

biodiversity and carbon loss when woody shrubs convert to herbaceous cover, but also 

because grass ignites readily, and grassland fires are fast and dangerous. On average, grass 

fires were attributed to 6% of firefighter injuries between 2011 and 2015 alone, and an 

additional 52% of injuries are attributed to fire suppression in brush or a brush/grass mixture 

in the same five-year period (Ahrens, 2018). In December 2021, the Marshall Fire (first 

reported on 2021/12/30) ignited on an unseasonably warm and windy day in dry grass and 

brush in Boulder County, CO, ultimately burning nearly 1,000 homes and structures 

(Steinberg, 2022). In August 2023, the invasive grass-fueled and wind-driven wildfires that 

devastated Lahaina, Maui, HI (first reported on 2023/08/08) led to just under 100 fatalities, 

ranking among the top five deadliest wildfires in the U.S. since 1871 (Carli, 2023). Use of 

herbaceous cover maps can aid communities in identifying locations that require mitigation 

before the next ignition. 
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3. Factors Influencing Substantial Change in Herbaceous Fractional Cover 

Based on the descriptive analysis of the 23 of 50 sample patches that indicated 

herbaceous increase between 20 and 39.99% (Table 13), the factors that yielded the greatest 

impact on substantial herb increase and subsequent woody cover decrease were fire return 

interval, drought, proximity to development, and elevation. Almost half (46.67%) of the 23 

patches had fire return intervals less than 15 years, which is consistent with Syphard et al. 

(2019). The patches that experienced the shortest fire-return interval burned during drought-

affected years or experienced a drought into the year following the fire (1996, 2002, 2003, 

and 2007). This may have impacted post-fire recovery (Pratt et al., 2014; Syphard et al., 

2019) and mortality of woody resprouts or seedlings, as well as adult shrub mortality 

(Jacobsen & Pratt, 2018; Paddock et al., 2013; Syphard et al., 2019; Ventura et al., 2016), 

which could allow for non-native annual herbs to invade more readily. The two short-

interval fire incidents that burned most of the sample patches, as well as large areas of the 

study area – the Cedar Fire (first reported on 2003/10/25) and the Witch Fire (first reported 

on 2007/10/21) – are both associated with human-caused ignitions (CAL FIRE FRAP, 

2021), further substantiating the role of proximity to development on high fire frequency 

and low fire return interval, particularly in WUI areas. This also supports the framework that 

explicitly recognizes a “human grass-fire cycle” (Fusco et al., 2021). The average elevation 

range of the 23 patches (500 to 1,000 m) corresponds to findings from Safford and Van de 

Water (2014), who reported that some Southern California foothill elevation areas have 

burned more frequently over the last century than during any comparable (average) pre-

settlement period within their reference period. 
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Out of the sample of 50 patches, the most notable differences between the 30 with +20 to 

+39.99% change and the remaining 20 representing the other interval classes were their 

relationships to fire return interval, distance to roads and trails, and elevation. Twenty-one 

out of 30 patches (70%) experienced more than one wildfire between 1910 and 2020; 

36.67% of these 30 patches had an instance of at least one fire interval < 15 years. When 

compared to annual precipitation data per water year (Figure 15), the years in which 

multiple patches were affected by fires (1996, 2002, 2003, and 2007) (Figure 23) were also 

years that experienced lower than average precipitation, were recovering from low 

precipitation the previous year, or were followed by another year of low precipitation. 

Patches that were closer to roads (over 200% closer) and trails or access roads (over 400% 

closer) also exhibited an increase in herb cover. Patches that increased in herb occurred on 

slopes that were 50% flatter and 40% lower in elevation than those patches that decreased in 

herb. In summary, patches of substantial herb change tended to be associated with short fire 

return intervals compounded by drought conditions, elevations between 500 and 1,000 m, 

and in close proximity to roads, trails, and access roads. 

E. Conclusions 

To my knowledge, this is the first study to use SMA applied to multi-decadal Landsat 

image data to provide empirical evidence of the extent and amount of landscape-scale 

herbaceous change in San Diego County shrublands. With a focus on herb cover estimation 

over a 33-year period, I explored the accuracy of SMA applied to Landsat 5 TM and 8 OLI 

SR data acquired over the San Diego County study area. The resulting herb cover maps from 

the earliest (1988) and recent (2020) image dates were used to map absolute cover change 

(Figure 21), with an estimated error of MAE = 12.17% and RMSE =15.57%, respectively 
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(Table 12). High GRE orthoimagery supported evidence of herb cover increase and woody 

cover decline depicted in the cover change map, particularly where herb cover increased 

between 20 and 39.99%. This change interval most accurately depicted locations 

experiencing vegetation type conversion, possibly indicating grass-fire cycle effects. 

Satellite-derived herb cover change maps provide a useful data source to be used in 

conjunction with ground data, expert knowledge, and land use history data to support 

actionable and operational decisions (Allred et al., 2021; Jones et al., 2018). 

Landsat data were used because of the long record length of archived data necessary for 

a multi-decadal study. For projects focused on a time period after 2015 and moving forward, 

other satellite sensor options with higher GRE such as the European Space Agency’s 

Sentinel program, may be useful (Maestas et al., 2020; Sousa & Davis, 2020). Incorporation 

of aerial hyperspectral image (HSI) or imaging spectroscopy data could also improve 

reference data generation and assessment of results (Jarocińska et al., 2023). However, due 

to infrequent collects and smaller areal extents covered by airborne HSI, this option is not as 

tractable as use of spaceborne sensor data for a large area study. 

The results of this study indicate potential for application of the SMA model combined 

with historical wildfire data to inform users of fractional cover conditions before the start of 

the next wildfire. Incorporation of additional EMs that differentiate between subshrubs, true 

shrubs, and trees may be beneficial for studies that extend beyond San Diego County and 

into other parts of Southern California. In Chapter IV, I will integrate historical ignition 

points with herb cover maps to analyze the effects of herbaceous cover and its change on 

wildfire starts in San Diego County shrublands. 
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IV. Evaluation of herbaceous cover fraction and wildfire ignition 

association in San Diego County, California, USA shrublands (1992-2020) 

A. Introduction 

Invasion and expansion of non-native grasses and forbs (herbaceous vegetation or herbs) 

can promote and increase landscape flammability and alter an ecosystem’s fire regime 

(Brooks et al., 2004; D’Antonio & Vitousek, 1992). Ecosystems are partly defined based on 

disturbance regimes, and wildfire is an important type of disturbance (Brooks et al., 2004; 

Sousa, 1984). The invasion of vegetation growth forms can affect native ecosystems by 

changing fuel properties, which can then affect fire behavior and alter fire regime 

characteristics (e.g., frequency, intensity, extent, type, and seasonality) (Pickett & White, 

1985). Although fire regimes are affected by spatial and temporal variations in fuel (which 

can change within a day following a major disturbance), climate (which can potentially shift 

within the scale of centuries to decades), and topography (which tend to change over long 

geologic time scales), fuels are the ecosystem component that is linked with fire regimes by 

feedback loops through other ecosystem properties and plants (Brooks et al., 2004). 

A complex relationship exists between fuels and a fire regime. Fuel amount is defined as 

the available combustible biomass, and it accounts largely for ignition propensity (Chen & 

Jin, 2022). An altered fire regime creates favorable conditions for invasive herbaceous 

species, which recover and spread quickly following a fire incident, resulting in a grass-fire 

cycle (D’Antonio & Vitousek, 1992; Fusco et al., 2019). This directional shift in fire 

behavior and regime properties may result in localized conversion or replacement of species 

that are unable to persist under the new fire regime (Brooks et al., 2004). Grasslands 
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invading shrublands are the cause of significant negative ecosystem effects (Brooks et al., 

2004; Mack et al., 2001). However, there is no single driver that can be viewed as the “silver 

bullet” for type conversion prediction or restoration potential. Therefore, it is recommended 

that species with a high potential to alter fire regimes and contribute to the grass-fire cycle 

should be prioritized for control (Park & Jenerette, 2019). It is important to manage invasive 

species that alter ecosystem processes over large areas because they could feed back to alter 

other components of global change, such as climate, atmospheric composition, and land use 

(D’Antonio & Vitousek, 1992). 

Numerous studies have investigated the effect of the presence and expansion of invasive 

herbaceous growth forms on fire regime (Balch et al., 2013; Brooks et al., 2004; Fusco et 

al., 2019; Jin et al., 2015b). Fusco et al. (2019) examined 12 species of non-native grasses 

and documented regional-scale alteration of fire regimes for eight species across 29 U.S. 

Environmental Protection Agency (EPA) level III ecoregions. They found invasive grasses 

increased fire occurrence by up to 230% and fire frequency by up to 150%, which suggested 

many ecosystems are vulnerable to the effects of a novel grass-fire cycle (Fusco et al., 

2019). Jin et al. (2015b) reported that greater grassy fuels accumulated during two or three 

wet years in Mediterranean climates can promote fire occurrence. 

Balch et al. (2013) analyzed the effect of expanding and invading non-native cheatgrass 

(Bromus tectorum) cover on the Great Basin fire regime by quantifying fire ignition points 

from 1980 to 2009. The authors combined Moderate Resolution Imaging Spectroradiometer 

(MODIS) satellite and U.S. Geological Survey (USGS) burned area and historic fire 

perimeter data to determine the dates of fire detection and compare fire regimes. The 

proportion of ignitions in cheatgrass grassland was compared to the fraction of cheatgrass 



 

 72 

area burned for each multi-date fire (fires that burned more than one day). They found that 

multi-date fires were significantly more likely to have burned in cheatgrass cover on their 

first day compared to other vegetation types (65% of 247 fires between 2000 and 2009). 

They also calculated the total number and mean area of individual fires that burned within 

each analyzed land cover class. 

Increases in fire ignitions, historical fire cycle, altered fire dynamics, land fragmentation, 

rodent herbivory, and altered nitrogen deposition and cycling are examples of drivers that 

have lowered the resistance of native vegetation growth forms (e.g., chaparral) to the 

advances of competitive non-native vegetation species (Park & Jenerette, 2019). 

Anthropogenic development and land use change involves such activities as landscaping 

with exotic and invasive species, constructing firebreaks (intending to aid wildfire control) 

(Merriam et al., 2006; Park & Jenerette, 2019), and mechanically removing fuel (intending 

to mitigate vegetation prior to a wildfire ignition) (Brennan & Keeley, 2015; Park & 

Jenerette, 2019). Recently, most fire ignitions in California chaparral shrublands are 

attributed to human activity (Conard & Weise, 1998; Park & Jenerette, 2019; Syphard et al., 

2007), and too-frequent burns do not allow chaparral to reach maturity or may even preclude 

the reseeding of chaparral shrubs, with especially deleterious effects on obligate seedlings 

(Zedler et al., 1983; Park & Jenerette, 2019). 

The wildland-urban interface (WUI), reported to be the fastest-growing land use type in 

the conterminous U.S., raises additional concerns (Radeloff et al., 2005; Radeloff et al., 

2018) because more wildfires due to human ignitions are anticipated. When wildfires do 

occur, they will pose a risk to the growing human population and number of structures and 
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will be harder to fight. Additionally, naturally ignited (e.g., by lightning) fires will be less 

likely to be left to burn (Radeloff et al., 2018). 

In addition to the impacts of larger and more frequent fires, climate change and invading 

vegetation species will drive further disruptions to fire regimes (Dennison et al., 2014). 

Based on projected changes in temperature and precipitation, climate change is expected to 

increase the potential for fire occurrence by 150% by the end of the century (Liu et al., 

2010; Fusco et al., 2019). Analyses encompassing longer time periods are necessary to 

properly understand the influence of climate, weather, and disturbance factors on fractional 

cover of herbaceous vegetation in shrubland habitats (Lippitt et al., 2017) and the potential 

impacts of herb change on the fire regime. 

Remote sensing offers an approach to effectively map and monitor vegetation cover 

fractions over large areas and long timescales. The archive of Landsat Surface Reflectance 

(SR) data provides imagery acquired at regular time intervals over large geographic extents 

dating back to 1984; it is an ideal source of data for observing multi-decadal vegetation 

change and can be used in combination with imagery analysis methodologies to infer effects 

on fire regime. However, due to Landsat’s moderate spatial resolution, an approach that can 

be used to estimate vegetation growth form and land cover fractions of distinct surface types 

at a sub-pixel level is required. This requirement is met by spectral mixture analysis (SMA), 

an image processing approach used to estimate material cover fractions based on the 

assumption that the ground area sampled by a pixel, the ground resolution element (GRE), 

can be reasonably approximated by a fractional mixture of a small number of spectrally 

distinct materials. During the unmixing process, the radiance (or reflectance) of a mixed 

GRE is considered to be an area-weighted linear combination of spectral endmember (EM) 
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materials, which represent homogeneous or “pure” materials, plus error (Adams et al., 1986; 

Gillespie et al., 1990; Roberts et al., 1998; Settle & Drake, 1993; Smith et al., 1990). 

Vegetation fractions produced by SMA have been used to describe vegetation growth form 

change (Dennison & Roberts, 2003; Roberts et al., 2002; Rogan et al., 2002) and vegetation 

regeneration after disturbance (Dennison & Roberts, 2003; Riano et al., 2002). 

Remotely sensed imagery and fractional cover maps derived from such imagery 

combined with historical fire data yield information about fire regimes. Balch et al. (2013) 

provided the first quantitative basin-wide support for widespread belief that cheatgrass 

increases fire activity across the Great Basin and, at the time of publication, fire cycle and 

cheatgrass relationships had not been evaluated at a regional scale, nor had the fire cycle and 

comparable herbaceous cover relationships been evaluated within Southern California 

shrubland ecoregions. An understanding of historical fire regimes in herbaceous vegetation 

is poor (Safford & Van de Water, 2014), and any shift outside of the typical range of fuel 

conditions for native plants will affect fire behavior and regime properties (D’Antonio & 

Vitousek, 1992; Keeley, 2001; Brooks et al., 2004; Halsey & Syphard, 2015). Therefore, it 

is important to determine the effects of herb expansion regarding potential changes in fire 

regime (e.g., ignition potential, fire spread, and suppression potential) on San Diego County, 

California, USA shrublands. 

The objective of this research was to analyze historical wildfire ignition data and assess 

the spatial-temporal association between herbaceous fractional cover and ignition 

distributions. Herbaceous vegetation cover maps from Chapter III were used to investigate 

the relationship between herb cover and the proportion of ignitions (the number of ignitions 

per total ignitions). I sought to examine and answer the question: Are differences in the 
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spatial distribution of wildfire ignitions associated with differences in herbaceous fractional 

cover in San Diego County shrublands for 1992 to 2020? 

B. Data and Methods 

1. Study Area 

The study domain is the intersection of the 783,290 ha of the Southern California 

Mountains and Southern California/Northern Baja Coast U.S. Environmental Protection 

Agency (EPA) level III ecoregions (U.S. EPA, 2013) within San Diego County (Figure 24). 

Areas under agricultural, urban, and built land use were considered as “Developed” and 

masked from analysis, as was an area in the southeast portion of the study domain that is not 

covered by Landsat scenes used in this study. 

 

Figure 24. Study area location within San Diego County, California. Left: The San Diego County study 

domain (783,290 ha) with National Land Cover Database (NLCD) developed areas and surface water, as 

well as the southeast portion not covered by Landsat, masked (resulting in a study area of 532,167 ha). 

National Forest System (“Federal”) lands (U.S. Department of Defense, U.S. Department of Interior – 

Bureau of Land Management, U.S. Fish & Wildlife Service, U.S. Forest Service, and Federal American 

Indian Reservations) are delineated by green over a topographic relief map (Source: Living Atlas). 

“Non-Federal” lands are white over a topographic relief map. Right: The study domain is delineated by 

a purple polygon. 
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The study domain mostly has a semi-arid Mediterranean-type climate and experiences 

hot, dry summer seasons (26 to 37 °C) and moderate winter precipitation (250 to 450 mm) 

(Rundel, 1998). The topographic and climatic heterogeneity contribute to high levels of 

biodiversity (Syphard et al., 2019a). The most extensive vegetation types are true shrubs 

such as chamise (Adenostoma fasciculatum) chaparral and mixed chaparral communities 

(Keeley, 2000; Pryde, 2004; Syphard et al., 2019a). Shrubs within these communities are 

often distributed in a mosaic with both native and non-native herbaceous cover and 

subshrubs (e.g., drought-deciduous coastal sage scrub like Artemisia californica, Eriogonum 

fasciculatum, and Salvia species (Rundel, 2007)). Oak woodlands and mixed conifer forest 

communities occur in higher elevation areas (Syphard et al., 2019a). 

The natural fire regime of San Diego County and most of the Southern California coastal 

shrubland area is characterized by periodic large, high-intensity crown (which includes 

shrubs) fires driven by hot, dry Santa Ana wind events that recur each autumn, in addition to 

smaller fires in the summer (Jin et al., 2015b; Keeley & Syphard, 2019). Fire frequency has 

increased across much of the landscape in response to a variety of factors, but primarily 

population growth and urban expansion (Syphard et al., 2019). The population of San Diego 

County increased by 27.2%, from 2.6 million people in 1992 to 3.3 million in 2020 

(USAFACTS, 2022). More than 90% of fires in two-thirds of California counties are 

attributed to humans (Keeley & Syphard, 2018; Li & Banerjee, 2021). Thus, intervals 

between fires are now shorter than pre-Euro-American settlement conditions (Safford & Van 

de Water, 2014). Conversion of native shrubs to herbs has been documented in parts of San 

Diego County (Keeley & Brennan, 2012; Lippitt et al., 2013, Syphard et al., 2019a). 
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2. Herbaceous Fractional Cover Data 

To examine the spatial association between ignitions and herbaceous growth form cover 

interval classes (based on Chapter III results), fire occurrence (ignition point) data sets were 

overlaid on a time sequence of maps of herb fractional cover. The maps were derived from 

single-date, fall season images (based on Chapter II results) from four years – three 

spectrally unmixed NASA/USGS Landsat 5 Thematic Mapper (TM) images (1988/09/22, 

1997/10/17, 2011/10/08) and one spectrally unmixed Landsat 8 Operational Land Imager 

(OLI) image (2020/08/29) (Figure 25). The Landsat SR images were acquired from USGS 

EarthExplorer, Collection 2, Level-2, path/row 40/37, have a spatial resolution of 30 m, and 

exhibit less than 10% cloud cover. Each Landsat image was modeled separately using SMA, 

with six wavebands and three EMs (one pixel per herbaceous, woody cover, and bare 

ground was tested). A unit sum constraint with a weight of 1.00 (equating to 100% cover) 

was applied, and four output images were generated per image date (cover maps of 

herbaceous, woody, bare ground, and RMSE data). Refer to Chapters II and III for further 

details. 

USGS National Land Cover Database (NLCD) 2019 data were used to create a mask of 

urban and built land cover (developed and cultivated crops) and surface water (lakes, 

reservoirs, and woody wetlands) classes. Application of the NLCD cover mask to the 

Landsat data resulted in an area of 532,167 ha, hereafter referred to as the San Diego County 

study area. 
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Figure 25. Herbaceous fractional cover maps from the four Landsat image dates: (A) 1988/09/22, (B) 

1997/10/17, (C) 2011/10/08, and (D) 2020/08/29 with NLCD developed areas and surface water, as well as 

the southeast portion not covered by Landsat, masked. 

3. Historical Ignition Data 

Two historical fire ignition point data sets were used for this study (Table 14). Points 

from the U.S. Forest Service (USFS) Fire Statistics System (FIRESTAT) database (1981 

through 2021) represent ignition points, or points of origin, from which individual wildfires 

started on National Forest System lands. Points from the U.S. Department of Agriculture 

(USDA)/USFS Fire Program Analysis (FPA) fire-occurrence database (FOD) (FPA FOD) 

(1992 through 2020) (Short, 2014; Short, 2022) include records acquired from the reporting 

systems of federal, state, and local fire organizations. Ignition types include actionable fire 

types (i.e., suppression efforts or management response were required), fires that ignited and 

went out naturally, and unplanned ignitions related to fuels management for which agency 
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units had protection responsibility for the fire resulting from the ignition (Short, 2014). 

Hereafter, FIRESTAT data are referred to as “Federal” and FPA FOD data as “Non-

Federal.” 

Table 14. Sources of fractional land cover and fire occurrence (ignition point) data. Symbol indicates 

that a data set had the attribute listed under the column title. (Website links were verified on 09/30/2023, 

1: https://data.fs.usda.gov/geodata/edw/datasets.php, 2: 

https://www.fs.usda.gov/rds/archive/catalog/RDS-2013-0009.6). 
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A challenge when working with historical ignition data points is the high degree of error 

and uncertainty related to the positional information associated with each point (Brown et 

al., 2002; Schmidt et al., 2002; Short, 2014). The reasons for this positional uncertainty 

include but are not limited to the way data were collected in the field at an incident, 

constraints of dispatch applications, data entry by agencies in jurisdictions with different 

recording standards (e.g., state, national, intra-agency, interagency), and the reality that not 

all data were reconciled post-incident (Short, 2014). It is also challenging to gather reliable 

and complete data on smaller fires and those quickly suppressed by firefighting (Chen & Jin, 

2022). 

In an assessment of federal wildland fire occurrence data, Brown et al. (2002) examined 

657,949 fire occurrence reports acquired over the entire U.S. (1970 to 2000) and found that 

10% of USFS and 30% of U.S. Department of Interior (DOI) records were unusable due to 

reporting issues; they cited numerous quality, control, and assurance aspects of fire data 

https://data.fs.usda.gov/geodata/edw/datasets.php
https://www.fs.usda.gov/rds/archive/catalog/RDS-2013-0009.6
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observation and recording. However, Brown et al. (2002) found USFS data to be the only 

series that showed a high percentage of usable records consistently each year (0.94 to 

0.99%), and there was a slight improvement (approximately 0.02 to 0.05%, depending upon 

the perspective) over time. 

Even though Non-Federal ignition point locations from FPA FOD are standardized, 

screened for obvious errors, and checked for redundancy, Short (2014) cautioned against 

presuming that reference estimates reflected actual wildfire activity. Short (2014) cited 

published estimates of annual wildfire numbers and area burned that differed considerably 

among sources due to inconsistencies and errors in measurement and reporting (Urbanski et 

al., 2009). Although Non-Federal points are at least as precise as a Public Land Survey 

System (PLSS) section (1 mi2 grid) (Short, 2022), they are gridded, which reduces the 

positional precision of the data and therefore increases uncertainty when attempting to co-

locate herbaceous cover estimates at the ignition location (Figure 26). Other discrepancies 

were identified in the data collected for federal incidents from FPA FOD. For example, over 

300 ignition points from one year were associated with the same latitude/longitude, despite 

all other attributes being different. Positional inaccuracies may be a result of prior 

Township-Range-Section (TRS) or Universal Transverse Mercator (UTM) conversions to 

latitude/longitude (Brown et al., 2002), which resulted in several fire incidents being plotted 

at an identical location. For this reason, only non-federal data from the FPA FOD (Non-

Federal) data set were included in this study. 
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Figure 26. San Diego County study area with ignition points overlaid. The 3,132 ignitions points (1,031 

FIRESTAT (Federal) and 2,101 FPA FOD (Non-Federal)) overlaid on a topographic relief map. NLCD 

developed areas and surface water, as well as the southeast portion not covered by Landsat, are masked. 

Ignition points from both the Federal and Non-Federal sources were spatially subset to 

the San Diego County study area (e.g., points were excluded from NLCD developed areas 

and the area lacking Landsat coverage) and Federal points were temporally subset to match 

Non-Federal points (1992 to 2020). Points for ignitions were checked for records that were 

missing either spatial or temporal information, as well as redundant, identical, or duplicate 

records (Brown et al., 2002); duplicate points were identified and removed. This resulted in 

3,132 ignition points in the San Diego County study area: 1,031 from Federal and 2,101 

from Non-Federal (Figure 26). 
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4. Evaluation of Herbaceous Cover Fraction and Ignition Association 

To assess whether ignitions tended to be more associated with particular cover ranges of 

herbaceous growth forms, historical fire ignition data and herb cover maps were analyzed 

with ArcGIS Pro 2.8.3 software. Ignition point data from the combined Federal and Non-

Federal sets were overlaid on the four single-date herb fractional cover maps derived from 

Landsat data and spectral unmixing methods. The herb fractional cover values from the 

Landsat pixel and grid cell for each ignition point location were recorded. Herb cover 

estimates were extracted from the temporally closest maps, meaning, for 1992 ignition 

points from the 1988/09/22 cover map, for ignitions from 1993 through 2003 from the 

1997/10/17 cover map, for ignitions from 2004 through 2015 from the 2011/10/08 cover 

map, and for ignitions from 2016 through 2020 from the 2020/08/29 cover map. I assumed 

that fractional cover did not change substantially over the nine-to-14-year periods between 

fractional cover maps. All calculations were executed for five herb cover interval classes 

(low (0 to 19.9%), intermediate (20 to 39.9, 40 to 59.9, and 60 to 79.9%), and high (80 to 

100%)). These interval classes stem from accuracy assessment results from Chapter III, for 

which mean absolute error (MAE), root mean square error (RMSE), and coefficient of 

determination (R2) values for each cover map were 1988 = 10.99%, 15.75%, and 0.77; 1997 

= 19.11%, 24.07%, and 0.64; 2011 = 13.55%, 17.78%, and 0.78; and 2020 = 9.55%, 

12.88%, and 0.83. 

Federal ignition data points include 15 fuel/cover type attributes that provide a general 

cover classification, but do not take fractional cover of herbaceous vegetation into 

consideration. To evaluate the degree of correspondence between herb cover map pixel 

values and the predominant fuel/cover type recorded at ignition locations, herb cover values 
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were identified for a sample set of ignitions classified as three types of woody cover 

(sagebrush with grass (e.g., subshrub), intermediate brush, and mature brush (chaparral)), as 

well as one herbaceous cover type (western annual grasses). The sample was comprised of 

483 ignitions from woody cover and 183 ignitions from herbaceous from all years of the 

study period (46% and 18% of total Federal ignitions, respectively). 

Statistical tests were used to examine the association between herbaceous cover and the 

location of ignitions. All 3,132 ignition herb cover values from 1992 through 2020 (derived 

from the temporally closest four single-date herb cover maps from 1988, 1997, 2011, and 

2020) were compared to the sample (comprised of 100 ignitions following the 1997 Landsat 

image acquisition date, 100 ignitions following the 2011 image date, and the remaining 

seven ignitions following the 2020 image date). These 207 sample ignition points were 

selected because they were temporally closest to the herb cover maps and, therefore, herb 

values at the points were assumed to be as accurate as possible. Two chi-square goodness of 

fit tests were used to determine whether the proportion of observed ignitions within herb 

cover classes was significantly different when compared to proportions of the study area 

represented by the same herb cover class (Agresti, 2007; Syphard et al., 2014), which is 

what one would expect, for the full set of ignitions and for the sample set. A third chi-square 

goodness of fit test was executed to assess whether the proportion of all observed ignitions 

was significantly different compared to the observed sample set of 207 ignition points. 

I hypothesized a significant relationship between herbaceous fractional cover and 

proportion of ignitions by interval class per year, and that ignitions per area would be higher 

in higher herb growth forms compared to chance alone. To determine whether fires ignited 

in low, intermediate, or high cover interval classes of herb, the (1) proportion of ignitions 
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per year per cover class interval per proportion of area (Schwartz & Syphard, 2021) and the 

(2) proportion of ignitions per cover class interval per proportion of area were calculated. 

Analyses included comparisons of Federal versus Non-Federal sets for (1) all ignitions, as 

well as four additional exploratory analyses: (2) human-caused ignitions, (3) naturally-

caused ignitions, (4) ignitions that resulted in a multi-date fire (a fire that burned more than 

one day), and (5) ignitions that resulted in a large fire (a fire that burned > 4.05 ha). 

C. Results 

1. Ignition Trends and Distributions 

An obvious downward trend in the number of individual ignitions per year is evident for 

the 29-year period. However, Federal ignitions per unit area burned decreased over time and 

Non-Federal ignitions per area burned increased (Figure 27A and B, respectively). A plot of 

Federal versus Non-Federal ignitions exhibits a nonlinear, positive association (Figure 27C). 

 

Figure 27. Federal and Non-Federal ignitions and area burned during the study time period for 1992 to 

2020. (A) Histogram: Number of Federal ignitions per year (1,031). Line: Area burned per year (total: 

340,907 ha). (B) Histogram: Number of Non-Federal ignitions per year (2,101). Line: Area burned per 

year (total: 30,335 ha). (C) Number of ignitions reported by Federal versus Non-Federal data sets. 
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Federal ignition points comprise 39.92% of the total of 3,132 points, with 67.08% of the 

total from the Non-Federal data set (Table 15). Human-caused ignition points represent 

80.30% of the total (of the 80.30%, Federal = 24.10%, Non-Federal = 75.90%). Naturally-

caused ignitions make up 8.49% of the total (of the 8.49%, Federal = 68.42%, Non-Federal 

= 31.58%). Ignition points resulting in a multi-date fire represent 3.99% of the total (of the 

3.99%, Federal = 92.80%, Non-Federal = 7.20%). Ignitions resulting in a large fire 

characterize 8.43% of total points (of the 8.43%, Federal = 38.26%, Non-Federal = 61.74%). 

Table 15. Ignition sample sets. Number of ignitions per Federal and Non-Federal data sets and the tests 

executed to analyze the relationship of herbaceous cover fraction and ignitions. 

 Federal Non-Federal 

(1) All 1,031 2,101 

(2) Human-Caused 606 1,909 

(3) Naturally-Caused 182 84 

(4) Multi-Date Fire 116 9 

(5) Large Fire 101 163 

The herbaceous fractional values agree reasonably well with the 483 Federal fuel/cover 

type woody vegetation growth form point classifications. Corresponding herb cover interval 

data show a slight trend from more to less herb when transitioning from the light to heavy 

brush fuels. The percentage of points with herb cover values between 40 and 100% is: 

sagebrush with grass = 33.62%; intermediate brush = 33.88%; mature brush (chaparral) = 

29.60%. Although intermediate herb cover interval classes are mapped in all levels of brush 

classifications, this result is not surprising since the San Diego County study area subshrub 

communities have intermixed grasses and chaparral communities tend to have low fractions 

of herb. The reasonable agreement between the SMA derived herb cover and coarse 

fuel/cover type descriptions provides some confidence regarding positional uncertainty 

concerns. 
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2. Association of Ignitions and Herbaceous Cover 

A chi-square goodness of fit test was executed to compare the proportion of combined 

Federal and Non-Federal ignitions within each cover interval class to the proportion of the 

same cover interval class within the study area (per herb cover interval class). For the total 

combined ignitions, chi-square = 0.05, p = 1.00, n = 3,132 (Figure 28A), which indicates 

there is not a significant difference between the proportion of ignitions per herb interval 

classes within the study area extent. In another analysis, the proportion of the sample 

Federal and Non-Federal ignitions (6.60% of all points) that were temporally closest to the 

dates immediately following the 1997, 2011, and 2020 Landsat image acquisitions was 

compared to the proportions of the study area. For the sample of ignitions, chi-square = 0.01, 

p = 1.00, n = 207 (Figure 28B), revealing no significant difference between the proportion of 

ignitions per herb interval classes and the study area extent. Comparison of total combined 

ignitions to the sample of ignitions yielded chi-square = 0.27, p = 0.99, n = 3,339 (Figure 

28C), suggesting that the combined and sample data sets were not significantly different. 

This implies that, when monitoring a large areal extent over a multi-decadal period, a small 

number of regularly (temporally) spaced herb cover maps is sufficient for determining 

fraction values at a 20% interval class for ignition points. All available ignition points from 

1992 through 2020 are used for the rest of the analyses. 
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Figure 28. Histograms depicting chi-square test results. (A) Proportion of all 3,132 ignitions (OA) (per 

herb cover class) based on ignitions from 1992 through 2020 compared to the proportion of the study 

area (EA) (per herb cover class) derived from SMA herb cover map results from 1988, 1997, 2011, and 

2020. (B) Proportion of the sample 207 ignitions (OS) (per herb cover class) based on ignitions after 1997, 

2011, and 2020 Landsat image dates compared to the proportion of the study area (ES) (per herb cover 

class) derived from SMA herb cover map results from 1997, 2011, and 2020. (C) Proportion of all 

ignitions per the proportion of the study area (OAA) (from (A)) compared to the proportion of sample 

ignitions per the proportion of the study area (OSS) (from (B)). 

3. Annual Proportion of Ignitions per Proportion of Area 

Results of the chi-square analyses indicate that the observed proportion of ignitions per 

20% herbaceous interval class for the full study time period are not significantly different 

than the expected amount based on areal coverage of each interval class. However, annual 

analyses emphasize the proportion of ignitions that exceed the expectation (e.g., the 

proportion of the study area attributed to an herb interval class) when the calculated value 

from a single year is > 1.00. Color-coded line charts in Figures 29 through 31 communicate 

the fluctuations for each 20% herb cover interval class per year. Trends of increasing 

ignitions, particularly in intermediate (20 to 39.9, 40 to 59.9, and 60 to 79.9%) and high (80 

to 100%) cover interval classes are observed, as well as trends of decreasing ignitions in low 

(0 to 19.9%) cover intervals. This may indicate grass-fire cycle occurrence and support 

evidence for a changing fire regime. Federal ignitions exhibit increasing proportions of 

ignitions in the 40 to 59.9 and 60 to 79.9% herb cover intervals over time (Figure 29A). 

Non-Federal points show slightly increasing proportions of ignitions in the 20 to 39.9, 60 to 

79.9, and 80 to 100% intervals (Figure 29B). 
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Figure 29. Annual proportion of all Federal and Non-Federal ignitions per proportion of the study area 

(1992 through 2020). Line charts represent the fluctuations in the proportion of ignitions per associated 

proportion of the area represented by (from left to right): 0 to 19.9, 20 to 39.9, 40 to 59.9, 60 to 79.9, and 

80 to 100% herbaceous fractional cover interval classes. Dotted trendlines indicate whether the 

proportion of ignitions increased or decreased over time. (A) All Federal ignitions (1,031). (B) All Non-

Federal ignitions (2,101). 

The Federal human-caused proportion of ignitions increased most substantially over the 

study period in the 40 to 59.9 and 60 to 79.9% herb cover classes, and slightly in the 80 to 

100% class (Figure 30A). The proportion of Non-Federal human-caused ignitions increased 

in the 60 to 79.9 and 80 to 100% interval classes (Figure 30B). The proportion of Federal 

naturally-caused ignitions increased over time in the 40 to 59.9% cover class (Figure 30C). 

The Non-Federal naturally-caused proportion of ignitions show an increase in the 80 to 

100% herb cover class (Figure 30D). 
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Figure 30. Annual proportion of Federal and Non-Federal human-caused and naturally-caused ignitions 

per proportion of the study area (1992 through 2020). (A) Human-caused Federal ignitions (606). (B) 

Human-caused Non-Federal ignitions (1,909). (C) Naturally-caused Federal ignitions (182). (D) 

Naturally-caused Non-Federal ignitions (84). 

The proportion of Federal ignitions resulting in a multi-date fire increased in the 40 to 

59.9, 60 to 79.9, and 80 to 100% cover intervals over time (Figure 31A). The small sample 

of Non-Federal ignitions resulting in a multi-date fire are not sufficient to draw definitive 

conclusions regarding which cover classes experienced the largest proportion of ignitions 

(Figure 31B). The proportion of Federal ignition points resulting in a large fire increased in 

the 60 to 79.9 and 80 to 100% herb cover interval classes (Figure 31C). The Non-Federal 

proportion of ignitions resulting in a large fire increased slightly in the 20 to 39.9% cover 

class (Figure 31D). 
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Figure 31. Annual proportion of Federal and Non-Federal ignitions resulting in multi-date and large 

fires per proportion of the study area (1992 through 2020). (A) Federal ignitions resulting in a multi-date 

fire (> 1 day) (116). (B) Non-Federal ignitions resulting in a multi-date fire (9). (C) Federal ignitions 

resulting in a large fire (> 4.05 ha) (101). (D) Non-Federal ignitions resulting in a large fire (163). 

Of importance, 13 Federal and Non-Federal ignitions (of the total 3,132) resulted in the 

largest fires that burned > 2,023 ha. Eleven of the 13 (84.62%) ignitions occurred in areas 

mapped as having > 20% herb fractional cover (Table 16). Ten of the 11 ignited following 

water years (WY) (measured from 01 October to 30 September) with higher precipitation 

compared to the WY corresponding to the ignition date (refer to Chapter III for historical 

average WY precipitation values). For example, the five wildfires that ignited in 2007 (and 

burned a combined total of 149,034 ha) ignited after a higher-than-average annual 

precipitation 2005 WY and a high 2006 WY. This reinforces results showing strong 

associations (p < 0.01 per Faivre et al., 2014) between precipitation during the preceding 

year with grass fire size and the number of fires (Balch et al., 2013; Keeley et al., 2022; 
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Keeley & Syphard, 2018). Additionally, 10 of the 11 fires ignited on days classified by the 

Santa Ana Winds Regional Index as Santa Ana wind events (Guzman-Morales & 

Gershunov, 2019; Guzman-Morales et al., 2016). 

Table 16. Year and herbaceous fractional cover interval class in which the 13 Federal and Non-Federal 

ignition points resulting in large fires (> 2,023 ha) occurred (1992 through 2020). Years with a water 

year (WY) designator indicate the previous water year received higher annual precipitation. The 

numbers in the cells indicate the number of ignitions per cover class, followed by the ignition or 

discovery date and abbreviated month, a Federal (F) or Non-Federal (NF) designator, and a Santa Ana 

wind (SAW) event designator. 

Year 
Herbaceous Fractional Cover Interval Class 

0-19.9% 20-39.9% 40-59.9% 60-79.9% 80-100% 

1993WY  

2 

(27 OctF,SAW; 

27 OctF,SAW) 

   

1995    1 (27 AugF)  

2002WY 1 (29 JulF)     

2003WY   
1 

(25 OctF,SAW) 

1 

(26 OctF,SAW) 
 

2006WY    1 (23 JulF)  

2007WY 
1 

(22 OctF,SAW) 
 

2 

(21 OctF,SAW; 

23 OctF,SAW) 

 

2 

(21 OctF,SAW; 

23 OctNF,SAW) 

2014WY  1 (14 MayNF)    

4. Proportion of Ignitions per Proportion of Area 

Histograms shown in Figure 32A through J depict a noticeable difference in proportions 

of ignitions between the Federal and Non-Federal data sets for the 1992 to 2020 study 

period. The proportion of ignitions is considered disproportionate and exceeds the 

expectation (e.g., the proportion of the study area attributed to an herb interval class) when 

the calculated value is > 1.00. The largest proportion of ignitions from the Federal data set 

occurred in the 40 to 59.9% herb cover interval class, closely followed by the 20 to 39.9% 

cover class (Figure 32A). Federal ignition points are almost entirely located in foothill, 

montane, and mountain areas (Figure 26), with approximately 60% of ignitions reported at > 

1,000 m elevation. About 70% of the Federal ignition point fuel/cover type attributes 
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indicate that fires occurred in either woody or a woody/herb cover mix, having intermediate 

herb cover (e.g., 20 to 39.9, 40 to 59.9, and 60 to 79.9%). 

The largest proportion of Non-Federal ignitions occurred in high herb cover interval 

classes – 60 to 79.9%, closely followed by 80 to 100% herb cover (Figure 32B). Ignition 

points are in all landscape types within the study area, ranging from the coastal to the high 

mountain locations (e.g., Hot Springs Mountain: 1,992 m), and capture the topographic and 

fuel heterogeneity found in San Diego County. Additionally, more Non-Federal ignitions are 

within the WUI or abutting the populated urban areas (compared to Federal ignition points). 

Because human-caused ignitions represent just over 80% of the total ignitions, the 

resulting values visualized in the histograms closely resemble those in Figure 32A and B. 

Federal human-caused ignitions disproportionately occurred in the 40 to 59.9% herb cover 

class (Figure 32C). Non-Federal human-caused ignitions started in 60 to 79.9% herb cover 

(Figure 32D). Federal naturally-caused ignitions disproportionately occurred in 20 to 39.9% 

herb cover (Figure 32E), and Non-Federal naturally-caused ignitions disproportionately 

started in the 80 to 100% herb cover interval class (Figure 32F). 

The largest proportion of Federal ignitions that resulted in a multi-date fire occurred in 

20 to 39.9% herbaceous cover, but not disproportionately so – proportions of ignitions are 

similar for all cover classes (Figure 32G). The very low number of Non-Federal ignitions is 

too small of a sample size for a definitive assessment (Figure 32H). The largest proportion 

of Federal ignitions resulting in a large fire occurred in 60 to 79.9% herb cover (Figure 32I). 

Like the Federal ignition points, the Non-Federal ignitions resulting in a large fire occurred 

in 60 to 79.9% herbaceous cover (Figure 32J). 
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Figure 32. Proportion of Federal and Non-Federal ignition points per proportion of the study area (1992 

through 2020) separated by 20% herbaceous fractional cover interval classes. (A) All Federal ignitions. 

(B) All Non-Federal ignitions. (C) Human-caused Federal ignitions. (D) Human-caused Non-Federal 

ignitions. (E) Naturally-caused Federal ignitions. (F) Naturally-caused Non-Federal ignitions. (G) 

Federal ignitions resulting in a multi-date fire (> 1 day). (H) Non-Federal ignitions resulting in a multi-

date fire. (I) Federal ignitions resulting in a large fire (> 4.05 ha). (J) Non-Federal ignitions resulting in a 

large fire. 
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D. Discussion 

I used SMA-derived herbaceous fractional cover maps from four Landsat image dates 

and a combined 3,132 ignition points from two historical fire occurrence data sets to 

evaluate the spatial association of ignition occurrence for 20% herb cover interval classes 

from 1992 through 2020 in the San Diego County study area. The 29-year study period is 

too short to draw conclusions about regional climate changes but is long enough to capture 

change in herbaceous fuels (Brooks et al., 2004). Annual proportions of ignitions per 

proportion of area analysis results show increasing proportions of ignitions, particularly in > 

40% herb cover over time (Figures 29A and B, 30A, and 31A and C). This reinforces 

findings that herbaceous vegetation, particularly expanding invasive grass, increases fire 

occurrence (Balch et al., 2013; Brooks et al., 2004; D’Antonio & Vitousek, 1992; Fusco et 

al., 2019). When the entire study time period is evaluated, results of all analyses show the 

largest proportion of ignitions occurred in > 20% cover (Figure 32). 

1. Spatial Association Between Ignitions and Herbaceous Cover  

Despite the overall decline in the number of ignitions (Figure 27), herbaceous cover has 

increased in the study area over time (Chapter III). Separation of the Federal and Non-

Federal data points provides the opportunity to assess within which herbaceous fractional 

cover interval class ignitions were more strongly associated. With human-caused ignition 

points representing 58.78% of the Federal points and 90.86% of the Non-Federal points and, 

considering that impacts of larger and more frequent fires are expected to drive disruptions 

to fire regimes (Dennison et al., 2014), greater focus is placed on the explanatory variables 

garnered from the exploratory analyses associated with human-caused ignitions and 

ignitions resulting in a large fire. 
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Evaluation of Federal human-caused ignition points reveal a disproportionate number of 

occurrences in the 40 to 59.9% herbaceous cover class (Figure 32C). Large fires 

disproportionately ignited on Federal land in the 60 to 79.9% herb cover class (Figure 32I). 

Brown et al. (2002) noted that changes in vegetation characteristics on Federal land may 

have increased the probability of human-caused fire occurrence whether or not substantial 

changes in human activity had occurred. This is supported by results from the annual 

analyses showing increasing proportions of human-caused ignitions in > 40% herb (Figure 

30A), and ignitions resulting in large fires in > 60% herb (Figure 31C). 

Non-Federal human-caused ignitions and ignitions resulting in large fires show a 

disproportionate number of occurrences in the 60 to 79.9% herbaceous cover class (Figure 

32D and J). However, assessment of exploratory analysis results shows increasing 

proportions of human-caused ignitions in low (0 to 19.9%) and intermediate-to-high (60 to 

79.9 and 80 to 100%) cover (Figure 30B), and proportions of ignitions resulting in a large 

fire increasing over time in 20 to 39.9% herb cover (Figure 31D). Compared to Federal data 

points that show increasing and large proportions of ignitions in intermediate-to-high herb 

interval classes, Non-Federal ignition points exhibit change and disproportionate ignitions in 

nearly all herb classes. Despite this difference in the fraction of cover in which Federal 

versus Non-Federal ignitions occurred, points from both sets indicate spatial similarities and 

common causes of a high percentage of ignitions. 

Federal ignition points tend to be clustered near roads (Deluz (DeLuz Road), Palomar 

Mountain (Highway 76, State Park Road, East Grade Road, South Grade Road), Kumeyaay 

Highway (Interstate 8), Mount Laguna (Sunrise Highway)) and, although associated with the 

PLSS grid, Non-Federal points are also observed near travel corridors and urban areas 
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(Figure 26). Equipment/vehicle use and arson/incendiarism are attributed to 19.47% and 

13.86% of human-caused Federal ignitions and 33.37% and 11.52% of human-caused Non-

Federal ignitions, respectively. These statistics corroborate similar findings that ignition 

occurrence is significantly affected by distance to roads and housing in Southern 

California’s National Forest System lands (p < 0.0001 per Faivre et al., 2014) (Chen & Jin, 

2022) and proximity to urban areas (Syphard et al., 2019b). Much of the vegetation growth 

forms along transportation corridors in the San Diego County study area contain herbs. 

Considering the relationship between prior-year rainfall and increased fuel production in 

grass-dominated ecosystems (Crimmins & Comrie, 2004; Keeley & Syphard, 2016), the 

rising human population in the study area, and the ability of the entire exhaust system of a 

vehicle (muffler, catalytic converter, and exhaust pipe) to ignite a fire in roadside vegetation 

(Downey, 2016), it is not surprising to observe increasing proportions of human-caused 

ignitions in > 40% (Figure 30A) and > 60% herb cover (Figure 30B) over time. 

The 13 Federal and Non-Federal ignitions resulting in the largest fires that burned > 

2,023 ha correspond to results from Balch et al. (2013). The authors reported that the largest 

fire events, particularly from 2000 to 2009, were disproportionately represented by fires that 

burned on cheatgrass-dominated landscapes. They calculated that, of the 50 largest fires 

between 2000 and 2009, 78% were associated with cheatgrass. Of the 13 ignitions that 

resulted in the largest fire sizes from 1992 to 2020, 84.62% occurred in herbaceous 

fractional cover > 20% (Table 16). 

2. Data Set Reliability and Accuracy 

The accuracy and uncertainty associated with the Landsat-derived fractional cover maps 

and ignition point locations have serious implications for the objective of this study. Despite 
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knowledge of the local landscape, use of high spatial resolution orthoimagery acquired 

during multiple seasons for reference data generation and EM selection, and reasonable 

MAE and RMSE values associated with herbaceous cover estimates, the extraction of pure 

spectral signatures of herb cover for EMs from Landsat image data with 30 m spatial 

resolution is challenging (Chapters II and III). Both the orthoimage-based reference data and 

moderate spatial resolution Landsat fractions are model-based estimates and measurements 

of comparative model agreement, rather than predicted outputs compared to “ground truth.” 

Additionally, even if the unmixed cover maps for 1988, 1997, 2011, and 2020 were 

perfectly accurate, ignitions from years between (or just prior to the Landsat acquisition 

dates) may not have been well represented by herb fractions from the four image dates. 

However, use of a small number of herb cover maps is justified by the results of the chi-

square analysis comparing the combined ignitions to the sample set (Figure 28). Thus, I 

assumed herb cover values did not change substantially between image dates (and not more 

than the interval class amounts) for this study. 

Federal and Non-Federal ignition occurrence point records were checked “row-by-row” 

to identify redundant, identical, or duplicate records, which were removed (Brown et al., 

2002). However, this does not mean that the record was necessarily error free, but only that 

no obvious errors remained in the final data set of 3,132 ignition points (Brown et al., 2002). 

A high number of ignitions prior to 1998, followed by a substantial decrease in ignitions, 

(Figure 27) raised questions and concerns about data reliability. However, this decrease is 

supported by Keeley and Syphard (2018), who identified a decrease in fire occurrence 

between 1980 and 2016, and Chen and Jin (2022), whose model predictions suggested a 

slight decrease in ignition probability between circa 2000 and 2010 in coastal Southern 
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California. By calculating the proportion of ignitions, the effects of the high number of 

ignitions in the early- to mid-1990s compared to the 2000s were partially normalized for 

non-herb cover influences, and focus was placed on the relationship between ignitions and 

the herb cover interval classes. A century ago, Show and Kotok (1923) argued that 

“successful [wildfire] protection depends on a critical study of past performances. For this 

purpose, the importance of accurate and complete records of fires cannot be overestimated” 

(Short, 2014). Conversations regarding a continued need to assess and improve fire 

occurrence data are important (Brown et al., 2002; Short, 2014) and incorporation of 

fractional cover information such as from this work should benefit future studies. 

3. Information for Mitigation and Management Strategies 

As is the nature of cycles such as the grass-fire cycle, uncertainties associated with the 

true drivers of change can be substantial. Potential interactions between changing fire 

regimes, native vegetation, and invasive plants are still not well understood (Chornesky, 

2015). Therefore, any plant species that demonstrates potential to alter fire regimes should 

be prioritized for control, and restoration of pre-invasion plant communities and ecosystem 

properties may be necessary (Brooks et al., 2004). 

This study reinforces the importance of prioritizing mitigation, fuels reduction, habitat 

management, and ecological restoration practices based on available data and the observed 

adaptations of dominant plant species in a given fire regime (Syphard & Keeley, 2015). 

Variations in spatial patterns and importance of predictor variables have implications for 

understanding why, where, and how ignitions are generated in the region and can inform 

decisions for developing strategies that would focus fire prevention efforts (Syphard & 

Keeley, 2015). Results of the proportions of ignitions per herbaceous cover interval class per 



 

 99 

year (Figures 29 through 31) are useful for comparing past and recent ignition proportions to 

infer risk. These charts alone do not account for effects of other explanatory variables such 

as small temporal scale weather (e.g., days, weeks, or months) or spatial proximity to human 

populations but, when combined with these data from other sources, can lead to interesting 

observations. For example, six of the 13 (46.15%) ignitions resulting in a large fire (> 2,023 

ha) occurred during a Santa Ana wind event in a year preceded by a higher annual 

precipitation WY in areas with > 40% herb cover (Table 16). The proportions of ignitions 

per herb cover interval class per proportion of area (Figure 32) can inform practitioners 

regarding priority herb cover classes for pre-fire mitigation and can be combined with 

management recommendations per land ownership type (such as from Brooks et al., 2004; 

Chen & Jin, 2021; Fusco et al., 2021). When combined with herb cover maps (such as from 

Chapter III), these data will improve upon existing ignition point sets, which only include 

coarse fuel/cover type classifications, and can be used to better prepare San Diego County 

shrubland communities for fire-related emergencies in Federal and Non-Federal areas at 

local scales (Chen & Jin, 2022). 

E. Conclusions 

To my knowledge, this is the first study to focus exclusively on the association between 

herbaceous fractional cover and the proportion of wildfire ignitions in San Diego County 

shrublands to inform observations of a possibly changing fire regime. Landsat-derived 

herbaceous fractional cover maps from 1988, 1997, 2011, and 2020 (30 m) were combined 

with 3,132 historical ignition points to determine the 20% herb cover interval classes in 

which the largest proportions of ignitions occurred in San Diego County shrublands between 

1992 and 2020. Results show annual changes within each herb cover class and highlight 
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trends of herb increase or decrease over the 29-year period, which can be used to define the 

study area fire regime. Results also show the herb cover class in which a disproportionate 

number of ignitions occurred for the entire study time period, which can be used to 

determine ignition potential dependent on herb fractions. Differences are observed in the 

spatial distribution of Federal and Non-Federal wildfire ignitions within the different herb 

fractional cover interval classes. The results emphasize the importance of monitoring 

landscapes for evidence of grass-fire cycles, and can be used to inform prioritization of fire 

mitigation and management efforts. 

Although the effects of climate and weather were briefly discussed, only annual average 

precipitation data from one centrally located weather station were used in this study 

(Chapter III). Follow-on work should incorporate spatial locations of known wind corridors, 

seasonal weather statistics, and detailed Santa Ana wind event data for all ignition dates as 

opposed to just the dates associated with ignitions resulting in the largest fire sizes (Cayan et 

al., 2022; Jin et al., 2015b; Syphard & Keeley, 2015). Due to changing climate, Keeley and 

Syphard (2019) discussed the likelihood that warmer spring temperatures will alter the 

competitive balance of post-fire environments such that invasive herbs are favored over 

native shrub seedling recruitment, thus increasing the dominance of the more flammable fuel 

types and changing the fire regime in Southern California coastal shrublands. Therefore, 

analyses exploring proportions of ignitions and the relationship between herbaceous fraction 

per meteorological season could also be pursued. Another logical next step beyond fire 

occurrence is evaluation of the association between herbaceous fractional cover and fire 

frequency. Comparisons between past and current fire frequencies (Safford & Van de Water, 
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2014) should be combined with herb cover maps to address the association between herb 

cover variability and fire frequency, another important fire regime variable. 
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V. Conclusion 

A. Summary and Synthesis 

The overall goal of this study is to compare and implement procedures for locating and 

quantifying fractional cover of herbaceous vegetation growth forms, and to understand the 

relationship between herb cover and ignitions through time in San Diego County, California, 

USA. I accomplish this goal by executing spectral unmixing techniques applied to Landsat 

multispectral data from four image dates between 1988 and 2020. To my knowledge, this is 

the first study to apply these methods in a spatially explicit manner with the intent to 

monitor herb expansion as indicators of the grass-fire cycle and a changing fire regime in 

San Diego County coastal shrublands. 

Results presented in Chapter II demonstrate the most parsimonious approach – simple 

spectral mixture analysis (SMA) using a spectral library applied to surface reflectance data 

from a fall date – yields the highest accuracy output. The advantage of SMA applied to 

Landsat is that it provides a framework for monitoring herbaceous growth forms using 

multiple decades of archived data, for a large area, and on a frequent basis. The 

disadvantage of SMA is the critical step of identifying accurate endmembers for dominant 

vegetation growth forms per image; it is an iterative process that requires great attention to 

data in spectral feature space and vegetation phenology in the image. Findings from the 

Chapter II accuracy assessments of 2020 outputs are used to develop the herb cover maps 

output in Chapter III and used in Chapter IV. 

Application of the SMA approach to additional Landsat image dates in Chapter III, for a 

33-year study period from 1988 to 2020, provides a framework for evaluating change in 
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herbaceous vegetation cover. Results show areas that experienced shifts from woody- to 

herb-dominated cover due to successional changes and suggest that a grass-fire cycle has 

been established in the San Diego County study area. Combining herb cover values and 

historical wildfire attribute data provides the opportunity to analyze the factors most 

strongly associated with the increase in herb over time – fire return interval, drought, 

proximity to development, and elevation. 

In Chapter IV, I evaluate the association between herbaceous fractional cover (based on 

the maps produced for Chapters II and III) and the proportion of ignitions for a 29-year 

study period from 1992 to 2020. I separate ignitions that occurred on Federal lands from 

Non-Federal and execute exploratory analyses to yield information about the herb cover 

interval classes in which human- and naturally-caused ignitions, as well as ignitions 

resulting in a multi-date fire and a large fire, occurred. This work builds upon other studies 

that have explored ignitions in the entire state of California and the Great Basin region. 

However, this research further expands on previous studies and wildfire data sets that only 

include coarse vegetation classifications by incorporating and addressing herbaceous 

fractional cover values. 

Use of open-source, pre-processed Landsat surface reflectance data results in efficient 

image acquisition and at a low cost. This will enable detection of at-risk locations and areas 

that require immediate post-fire action on a faster and more frequent basis. This study 

provides a framework for identifying the location and monitoring the spread of flammable 

herbaceous vegetation and determines the herb cover classes in which disproportionate 

amounts of ignitions occurred over time. The approaches developed in this study will be 

useful for identifying target areas for combating the grass-fire cycle. Results from this study 



 

 104 

have benefits for a diverse range of fields, including geography, remote sensing, emergency 

response, hazard and risk mitigation, ecology, biodiversity, and regional planning. 

Ecologists and land managers will be able to use the results to assess vegetation community 

health and decide whether to implement preservation or restoration techniques. Emergency 

response personnel will find the derived products and findings useful for incorporation into 

fire management, mitigation, and preparation plans prior to the start of the next wildfire 

season. 

B. Future Directions 

Follow-on work should include production of SMA-derived herbaceous fractional cover 

maps for additional areas, such as to other Mediterranean-type ecosystems around the globe. 

Landsat data were used for this research due to the ability to acquire archived data with large 

areal coverage and imagery dating back to the mid-1980s. However, because it was difficult 

to generate reference data from high spatial resolution multispectral orthoimagery as well as 

select accurate endmembers (Chapters II and III), future work focused on post-2015 dates 

should pursue other data acquisition options. For example, use of higher spatial resolution 

satellite sensor data as well as incorporation of aerial hyperspectral imagery or imaging 

spectroscopy data will result in improved reference data generation and endmember 

selection opportunities for better herb cover maps. 

Another logical next step beyond fire occurrence is evaluation of the association 

between herb fractional cover and other fire regime variables (e.g., frequency, intensity, 

type, and seasonality). A comprehensive analysis of fire frequency (or minimum fire 

interval) should be executed for all ignitions (as opposed to only a sample set, as was done 

in Chapter III) to determine whether there has been change over time. Additionally, future 
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studies should explore proportions of ignitions and the relationship between herbaceous 

fraction per meteorological season to evaluate the effects of phenology and prior-year 

precipitation on ignitions through time. Assessment of seasonal effects, particularly when 

combined with extreme wind event data, could yield spatial and temporal insight into 

ignition risk. To further the utility of these methods, slope, aspect, and elevation data should 

be considered to gain a more thorough understanding about the association between herb 

cover and ignitions in known wind corridors and steep terrain abutting the wildland-urban 

interface. 
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