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Research on technology and mathematics education has been a longstanding 

interest of the PME community. In this paper we revisit the interplay between 

technology and conjecturing within the process of problem-solving with an 

intention to capture different aspects of the processes in which students make and 

explore mathematical conjectures, and roles that both technology and teachers can 

play in this process. The focus is two-fold: first, to discuss different interpretations 

of conjectures and conjecturing within mathematics education, as reflected 

selected current works in mathematics education research; and second, to offer a 

discussion on progress in the implementation of these ideas with considerations of 

developments in technology, and our wider understandings of the role of the 

teachers. 

INTRODUCTION 
 

“I have dared to undertake a dangerous journey on the basis of a slight supposition 

and already see the foothills of new lands. Those who have the courage to pursue the 

exploration, will step onto those lands…” Immanuel Kant (1755, I:222) 

“All positive knowledge must be reached if at all by an operation that begins with 

conjecture” Charles S. Peirce (1910, p. 283) 

Prologue  

“… the intellectual progress of mankind in mathematical and scientific domains 

depends on our being able to make and explore conjectures…how might we change 

the way we educate people so as to help them make and explore conjectures…?” 

(Schwartz, 1992, p. 167). 

These 30-year old thoughts by Judah Schwartz still hold as a relevant issue in 

mathematics education nowadays. In the following, we revisit what conjectures are 

and We propose why conjectures can become powerful springboards for 

‘intellectual progress’ (i.e. learning both mathematical content and learning to do 

mathematics). We also suggest and exemplify some implications to support 

students in engaging in the practice of making productive conjectures.   
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Conjectures - What? 

• “A mathematical conjecture is a proposition about a previously unsuspected 

relationship thought to hold among mathematical objects.” (Schwartz, 1997, 

p. 95) [1] 

• “Conjectures are ideas formed by a person (the learner) in experience which 

satisfy the following properties: the idea is conscious (though not necessarily 

explicitly stated), uncertain and the conjecturer is concerned about its 

validity.” (Norton, 2000, p. 290) [2] 

• “Inference formed without proof or sufficient evidence. A conclusion 

deduced by surmise or guesswork. A proposition (as in mathematics) before 

it has been proved or disproved.” (Merriam-Webster Dictionary) [3] 

• “(Verb) Infer, predict, form (an opinion or notion) upon probabilities or 

slight evidence” (Online Etymology Dictionary) [4] 

• “A statement strictly connected with an argumentation and a set of 

conceptions where the statement is potentially true because some 

conceptions allow the construction of an argumentation that justifies it.” 

(Pedemonte, 2001, p. 34) [5] 

This eclectic selection of definitions sheds light on the multifarious nature of both 

conjectures and conjecturing. If we choose the one word that is central in any 

definition, we find at least two characterizations: a proposition, a statement 

(grammar), and an idea, an inference, a prediction (semantics). What is such 

proposition/idea/prediction about? A “previously unsuspected relationship” [1], “a 

conclusion” [3], a connection to “a set of conceptions”. How does a conjecture 

arise? From the learners “experience” [2], deduced by “guesswork” [3], based on 

“probabilities or slight evidence” and generated by “some conceptions” [5]. What 

about the conjecturers? They are “conscious” of the idea even if not explicitly, 

“uncertain and concerned” about the validity of the conjecture, and possibly able 

to undertake “the construction of an argumentation that justifies it” [5]. 

Conjectures - Why? 

The mottos (by Kant and Pierce) heading this paper provide a first general 

justification for engaging in conjecturing to support learning: it may lead us to 

explore “a new land”, generating new knowledge along the way.  

More specifically, conjecturing nudges the conjecturers (a) to harness perception, 

previous knowledge and explicit reasoning in order to be clearer about how they 

envision the situation they are working on; (b) to become the ‘owners’ of a 

conjecture, and thus more (cognitively and affectively) committed to it, and (c) to 

become expectant and motivated for acting in pursue of evidence to prove or 

disprove the conjecture (Arcavi, 2000).     

https://www.merriam-webster.com/dictionary/inference
https://www.merriam-webster.com/dictionary/deduce
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In the pursuit to confirm or discard a conjecture, it may happen that unexpected or 

counter-intuitive results emerge creating a clear disparity between outcomes and 

explicitly stated predictions. Students working on such activities are described, for 

example, in Hadas and Hershkowitz (1999). Such a disparity can be the trigger for 

nurturing the students’ own need for re-inspection of their knowledge and 

assumptions, even without the teacher prompting to do so, creating propitious 

opportunities for meaningful learning. 

Conjectures - How? 

Conjecturing, as many other habits of mind (in the sense of Cuoco, Goldenberg & 

Mark, 1996), requires curriculum materials with activities that lend themselves 

well to stimulate students to conjecture. Moreover, it requires the creation of a 

secure environment and enactment of appropriate classroom norms that legitimize 

and support conjecturing while containing students’ negative affective reactions, 

such as refusal, frustration, lack of confidence and fear of incorrect predictions, 

which may expose their lack of knowledge. In the implications of his extensive 

research on students conjecturing, Norton (2004, p. 367) mentions “interaction 

with peers” and “agreeable dispositions” as the “positive factors in generating 

constructive conjectural activity”. Moreover, he states that if “teachers encourage 

students to verbalize their conjectures … other students might build from those 

assertions. But it is equally important for teachers to encourage students to be 

skeptical about such assertions, attempting to explain why they are viable or not 

(ibid.).” However, for that to happen, the conjecturer should feel that it is safe to 

take risks and to have the courage to persevere (Kant), because conjecturing may 

be necessary to attain “positive knowledge” but it may not be sufficient (Pierce). 

Beyond the creation of appropriate learning materials and instituting a suitable 

classroom culture, students need not only learn to conjecture upon the request of 

the tasks or the teacher, but they should also take the agency to generate conjectures 

on their own. Autonomously asking what-if or what-if-not questions, 

experimenting with variations and invariants, observing patterns, attempting to 

generalize and searching for justifications place conjecturing as a promising 

companion to problem posing, as in Judah Schwartz’s vision. 

Technological environments provide a most proper arena for such a vision, since 

it allows students to experiment by themselves, and “to appreciate the ease of 

getting many examples . . . , to look for extreme cases, negative examples and non 

stereotypic evidence . . .” (Yerushalmy, 1993, p. 82). Such environments can 

provide immediate feedback as “dry” consequences of the student actions which, 

in some cases, may be more effective than teacher reactions, not only because of 

the affective implications (lack of value judgment), but also because it may engage 

the motivation to restate a conjecture, revise it, experiment again and even induce 

a need for proof.  

Research on technology and mathematics education has been a longstanding 

interest of the PME community (e.g. Ferrara et al, 2006; Laborde et al, 2006; 
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Sinclair & Yerushalmy, 2016). As mathematics educators, a common goal has 

been to use technology to support inquiry-based practices in mathematics 

classrooms. In this paper, we focus on the process of mathematical conjecturing as 

part of technology-enhanced problem-solving activity. Our focus on the 

conjecturing process provides a lens through which to chart the evolution of 

technology designs and implementations across different mathematical content 

domains and phases of education.  

We rely on a set of quotes underlining a set of sub themes around which we 

structure this paper. These quotes (Schwartz, 1992) serve as a connecting thread 

for the ideas that will be presented. In addition, we extend the focus to include 

more explicit attention to the role of the teacher, a dimension that was not 

foregrounded in Schwartz’ original writing.  Specifically, we use the following 

four themes: The role of mathematical conjecture in the construction of knowledge; 

The relations between Problem-Solving and Problem-Posing; Reflecting on the 

consequences of users’ actions; and The impact of Digital environments’ on 

learners’ mathematical knowledge and the role of the teacher. For each of the 

subthemes, we will introduce a main idea, and then expand and exemplify it 

through recent technology and research, discussing the progress and development 

of these ideas over the years. 

THE ROLE OF MATHEMATICAL CONJECTURE IN THE 

CONSTRUCTION OF KNOWLEDGE  

On the role of conjecture in constructing knowledge, Schwartz states that “We need 

to have succeeding generations ask naturally and spontaneously about everything 

they see in the world around them, "What is this a case of ?"” (Schwartz, 1992). 

One well known natural human activity is gameplay, which can be employed to 

create forms of backward reasoning, which allows students to produce conjectures 

and reasoning in a more 'natural' way thanks to technology. 

In different research studies (Soldano et al., 2019; Arzarello & Soldano, 2019; 

Albano et al., 2021) it has been shown how the so-called Logic of Inquiry 

(Hintikka, 1999; LI in what follows) can facilitate the structuring of different types 

of games, which allow students to produce conjectures and reasoning in a more 

'natural' way thanks to technology. In fact, such games can foster a process of 

mathematical concepts learning, which is cognitively resonant with students’ 

attitudes, slowing down the difficulties with and misuse of terms or logic in 

conjectures since early exploration stages of inquiry (Luz & Yerushalmy, 2023), 

but at the same time is epistemologically sound from the mathematical standpoint.  

The above ‘naturality’ promoted by LI has deep cognitive and epistemological 

roots, respectively due to the rich productions of abductions by students in such 

activities and to the status of the mathematical truths within the game-theoretical 

approach. On the one hand, they allow to properly explain how the gap between 

the conjecturing and the proving processes (Arzarello & Soldano, 2019, p. 222) is 

reduced because of the processes triggered by the games proposed through a smart 
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use of technology and of careful interventions of the teacher; on the other hand, 

these results suggest promising ways of deepening further the research and the 

design of teaching/learning situations with digital tools. 

Consequently, in this section we first base on previous researches to give a short 

picture of the LI landscape for approaching proof in the classroom through a 

problem-solving approach, then we sketch a possible development of the research, 

which can be the starting point for a discussion in this RF. 

LI has been introduced from a typical logic context (Hintikka & Sandu, 1997) into 

mathematics education in order to face and possibly overcome the seemingly 

unbridgeable ‘basic double gap’ between students’ argumentative and proving 

processes underlined by most of the literature about the teaching of proof (Boero 

et al., 1996; Selden & Selden 2003; Pedemonte, 2007; Boero et al., 2010; 

Stylianides et al. 2017). The gap has both epistemological and cognitive features: 

it has been so described by Soldano & Arzarello (2016, p. 10): 

On the one hand, there is an epistemological gap between what is empirically 

perceived as true and what is logically valid within a suitable theoretical framework 

[…]. On the other hand, there is a cognitive gap between a first arguing phase in 

students’ productions (when they are asked to explore a situation and make 

conjectures) and the proving phase (when they are asked to prove their conjectures 

in a more formal way).  

LI allows to face this double gap through the design of mathematical games played 

by the students, who must develop strategic rules in order to win. Specifically, 

students, in couple, have to interpret mathematical statements as debates between 

two players: one assumes the role of falsifier F, who tries through her/his actions 

to disprove it, and the other member of the couple assumes the role of verifier V, 

who tries to prove it. If we consider, for example, a sentence like “∀𝑥∃𝑦𝑃(𝑥, 𝑦)” 

the dialectic between F and V will develop in this way: F starts by showing to V a 

particular individual a, chosen in the most unfavorable situation. If V finds an 

individual b, such that P(a,b) is true, V wins that hand, otherwise F wins it. In this 

way, the process to describe the truth of a sentence becomes a dialectic process: 

each action hides a questioning-answering dynamic, ruled both by definitory rules 

(the rules of inference) and by strategic rules (the rules of well reasoning in the 

game). According to Hintikka (1999), any kind of activity directed to the reach of 

an aim can be conceptualized as a game between two players, and this is true in 

particular for mathematical theorems. Such games, when treating geometric 

arguments, can be transposed into DGS environments, appropriately exploiting the 

robust and soft constructions.  

For a simple but emblematic example (Figure 1), one builds a generic quadrilateral 

ABCD and only the middle points F of AC, and E of BD and the intersection point 

G between AC and BD are built in a robust way (Figure 1). The Verifier’s aim is 

to make E, F G, to coincide, while the Falsifier has to make it impossible. The 

Verifiers moves C and the Falsifier moves D. After some hands, for the students it 
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is clear that the Verifier always wins and that this result occurs because (s)he can 

always move D so to make E, F, G to coincide; in such a way the Verifier always 

constructs a parallelogram (DC parallel to AB and AD parallel to BC). At this 

point, suitable questions of the teacher can guide students to argue that ∀ D ∃ C (G 

= E = F) and why it is so; afterwards, the teacher can guide students to elaborate 

arguments and possibly proofs that “in a quadrilateral ABCD the diagonal AC and 

BD bisect each other if and only if the quadrilateral is a parallelogram”.  

 

Figure 1: Initial state of the quadrilateral presented in the game 

The truth of the sentence that students ascertain is based on a ‘backward approach’ 

rooted in the impossibility of building counterexamples to it: this strategy has an 

important epistemological and cognitive value.  

The former has been discussed by Hintikka (Hintikka & Kulas, 1983), who 

elaborated a logical definition of semantic games, in which he reversed the 

standard definition of truth, given by Tarski (1933) and used in all textbooks of 

logic. In fact, Tarski’s definition starts from the condition of truth of the simplest 

(atomic) sentences and proceeds recursively to the complex ones: for example, to 

say if A&B is true one refers to the truth of A and B. The definition in LI is in the 

opposite direction: it starts with complex sentences and goes inside them, 

according to a top-down procedure, which is in accordance with the approach 

sketched out in the example.  

The latter is discussed in Arzarello & Soldano (2019) and one of its main points 

(not the only one) consists in observing a phenomenon in students’ actions, 

productions and communications, which can generate a reduction of the above 

basic gap. In fact, semantic games extend the example spaces of students 

(Antonini, 2006) through their introduction of non-prototypical examples. Such 

non-prototypical examples are produced by students, typically by Falsifiers, with 

the aim to create difficulties to the Verifier. In the long run they produce reasoning 

to discover whether or not the Verifier can always win, since, to ascertain that, both 

players must check whether the geometric properties are still preserved.  

Consequently, the discussion of the new entries in their example space moves the 

attention from the figural to the conceptual aspects of the geometric figures 

(Fischbein, 1993), and activate their critical thinking (Abrami et al. 2015; Toulmin 

et al. 1984). We can therefore observe empirical evidence for a reduction of the 

basic gap in these discussions. The gap is also reduced since in semantic games 

two types of rules are used by students in a ‘natural’ way: the definitory rules, 

which are the possible and acceptable moves according to the game (deductive 
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moves), and the strategic rules, which correspond to questions and answers for 

investigating which moves are the most convenient for a player in a specific 

situation (argumentative moves). There is so a deep interaction between the logic 

of justification and that of proving: the games are the cognitive and epistemic pivot, 

which allows this link between these two forms of reasoning to be made palpable. 

The mathematical theorems, transformed into games, embody a form of cognitive 

and epistemic continuity between the usual deductive logic of justification and the 

more argumentative logic of inquiry. This continuity constitutes a real added value 

to the educational games from the point of view of mathematics education.  

We have based on LI for designing also a different type of games aimed at fostering 

students’ learning of mathematical concepts in more formal contexts, e.g. in 

algebra, in a way which is cognitively resonant with their attitudes and 

epistemologically sound from the mathematical standpoint. We have called such 

games digital inquiry games: also in this case technology is crucial for their 

implementation. Space does not allow to enter into details and we defer to Albano 

et al. (2021) for their description. 

As hinted above, the interplay between the logic of justification and that of inquiry 

is often characterized by the production of abductions (Peirce, 1878, p. 472 =  CP 

2.623; Magnani, 2001, 2009, 2015, 2023). The term refers to forms of reasoning 

that explain, and also sometimes discover some (possibly new) phenomenon or 

observation. Abduction is the process of reasoning in which explanatory 

hypotheses are generated and justified: in this latter sense, abduction is also often 

called ‘Inference to the Best Explanation’ (Douven, 2021). 

Sometimes abductions regulate the actions made by the players in order to win and 

are produced within forms of backward reasoning (Gómez Chacón 1992; Shachter 

and Heckerman 1987; Beaney, 2021): in game-theory this way of reasoning is also 

called backward induction (it corresponds to what in chess is called retrograde 

analysis). This method is implemented, for example, in automated theorem 

provers, and its logical features were put forward by Hintikka (1998) and constitute 

the logical core of LI.  

A careful analysis of abductions produced in technological games with respect to 

the used tools can suggest fuel for further research and for a discussion in RF, as 

we now shortly argument.  

Magnani (2015) distinguishes between theoretical (or sentential) and manipulative 

abductions. Roughly speaking, theoretical abductions can be characterized at a 

logical level as those situations in which a hypothesis is formed and evaluated 

relying to the sentential aspects of natural or artificial languages. Theoretical 

abductions can be rendered in the Peircean syllogistic framework as transformation 

of a syllogism in ‘barbara’ (From a Rule, like ‘all the A are B’, and a Case, like ‘x 

is an A’, to a Result, like ‘x is a B’) into a fallacious syllogism (abduction), in 

which from knowing-selecting the Rule, and observing the Result, the Case is 

inferred. Such kinds of abductions, common in scientific reasonings, can be found 
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in the students who play our games. However, many times, their abductions show 

also something more than a purely sentential production, which corresponds to 

forms of manipulative abductions. According to Magnani (2009), manipulative 

abductions are processes in which a hypothesis is formed and evaluated resorting 

to basically extra-theoretical behaviors, for example, manipulating diagrams in 

geometric reasonings. In our case, this happens within technological tools: the 

game creates a kind of an ‘epistemic negotiation’ between the internal framework 

of the student and the external reality of the diagrams built with the digital tool 

because of the proposed game. As claimed by Magnani (2009, p. 46), who in this 

relates to some of Peirce's observations (CP, 5.221): “manipulative abduction 

happens when we are thinking through doing and not only, in a pragmatic sense, 

about doing”. This is an exact picture of what happens in our games: students’ 

actions, e.g. when in the play with a parallelogram produce non-prototypical 

figures, have also an epistemic and not a merely performative role, which is 

relevant for abductive reasoning.  

THE RELATIONS BETWEEN PROBLEM-SOLVING AND PROBLEM-

POSING 

The intellectual progress in the domains of mathematics and science depends on 

mathematicians and scientists “being able to make and explore conjectures. i.e. 

problems that we pose for ourselves” (Schwartz, 1992). In this section we 

demonstrate the relations between Problem-Solving and Problem-Posing through 

problem posing of various stakeholders in the learning process (students and 

teachers), and suggest possible perspectives connecting them to creativity and 

aesthetics. 

Sinclair (2001) reports on the aesthetic dimension of problem posing, showing how 

students engaged in spontaneous problem posing as they explored and interacted 

with digital, colour-based representations of the decimal expansion of fractions. In 

early work, Sinclair (2001) explored the way in which an interactive, visual digital 

environment called The Colour Calculator (CC) could provoke grade 8 students’ 

problem posing. The work drew on the role that aesthetics plays in the problem 

posing of mathematicians (see Sinclair, 2004), especially in terms of how 

mathematicians drawn to certain patterns or objects as they experiment with 

mathematical objects. For example, the images in Figure 2 show different patterns 

produced by the fraction 1/7, shown in different table widths. 
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Figure 2: Patterns produced for the one seventh fraction 

The students did indeed pose many problems that were mathematically interesting 

and that were provoked by the colour patterns and interactive options available in 

CC, such as: How to make a fraction that produces a table that is entirely red? I 

wonder how to make the diagonals go in the other direction? Is there a fraction that 

will not have a pattern? This finding, which corroborated Papert’s (1980) view on 

the potential for non-experts to have aesthetic responses while engaging with 

mathematics. The aesthetic was operationalized less in terms of objective criteria 

(such as simplicity or generalizability or elegance) and more in terms of the visual 

appeal, thereby mobilising aesthetics more in relation to sensory knowing, such as 

the sensibility to visual patterns and colours.  

Similar work on the aesthetic aspect of children’s problem posing can be found in 

Eberle (2014) and Jasien et al. (2022), though in contexts involving symmetry and 

tessellations using non-digital technologies. One significant affordance of the 

digital environment of CC is the fact that it provides both symbolic and visual 

display and feedback, thereby enabling students to pose problems in the register of 

visual patterns yet connect them to numerical (in this case, fractions) registers. In 

their extension of the CC into sounds, which was developed for blind learners, 

Fernandes et al. (2011) report on similar aesthetic engagement, this time focused 

more on sound patterns and notes.  

More recently, Sinclair and Ferrara (2021) draw on Whitehead’s notion of 

prehension, which are subconscious aesthetic feelings, to study the way in which 

aesthetics is involved in student problem solving when they use TouchCounts 

(TC), a multitouch app for number sense. This work broadens the sensory scope to 

include the haptic/gestural experience of interacting with TC, as students use their 

fingers and gestures to create and manipulate cardinal quantities, which are then 

shown visually, aurally and symbolically. As with CC, it is therefore possible for 
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students to draw either on the visual, oral, symbolic or haptic aspects of their 

mathematical interactions.  

These multiple sensory presentations can be seen as way to aestheticise 

mathematics—by which I mean, make it more accessible to the senses—and, in so 

doing, to potentially draw on different ways of sensing and making sense. Other 

studies that were not specifically focused on problem posing did reveal some of 

the ways in which aestheticization provoked problem posing. For example, in 

Smythe et al. (2017), kindergarten children pose problems such as: “How can we 

make 100?”, after having made 33, “What other numbers have the same digits?”, 

“Are there different ways of making 10?”, and “Can I make a number that’s bigger 

than the screen?”  

Significantly, in both CC and TC (as well as the environment studied by Eberle 

and Jasien et al.), there are no fixed tasks or given problem—the pedagogical goal 

of these environments is to engage students in explorations and experimentation, 

through which they might notice patterns or surprises that lead to the formulation 

of questions. While learners can generate such questions, it is another matter to 

determine whether the questions are themselves mathematically interesting, or 

even of aesthetic interest. For example, the question mentioned above, “Can I make 

a number that’s bigger than the screen?” does not have much mathematical interest 

in the sense that it doesn’t lead to any patterns or generalisations. Part of the process 

of mathematics enculturation could involve enabling students to become aware of 

what counts as mathematically interesting, something which teachers sometimes 

do in indirect ways (see Sinclair, 2008), and which Lehrer et al. (2013) have 

explored in more explicit ways.    

Related to this, Crespo and Sinclair (2008) conducted research with elementary 

pre-service teachers in order to explore their ideas of what makes a mathematical 

problem interesting, as well as to inquire into how to promote their own problem 

posing. With respect to the latter, they found that having time to explore (with a 

set of tangram pieces) enabled pre-service teachers to pose more interesting 

problems than if they had to pose them without exploration, which confirmed 

Hawkins’ (2000) suggestion that it takes time for learners to get to know an 

environment enough in order to be able to notice what might be interesting 

(unusual, surprising, compelling) to them. Here “more interesting” related to more 

focused on reasoning than on facts.  

Tymoczko (1993) argued that mathematics needed to engage more in explicit 

aesthetic criticism in order to draw attention to certain features of a work of 

mathematics (such as a proof or a technique or a problem), which may enhance our 

appreciation of that work. Sinclair (2022) suggests that the same could be true in 

the context of mathematics education, where engaging students in questions of 

what is interesting or appealing might both enable students to appreciate the values 

that tend to dominate school mathematics (efficiency, unity, symbolism) and 
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perhaps open up mathematical activity to other relevant cultural or individual 

values.  

Turning to teachers, Problem posing-through-investigations (PPI), for 

example, is another mathematical activity in which investigations and conjecturing 

in a dynamic geometry environment (DGE) lead to posing problems and solving 

the posed problems (Leikin 2014; Leikin & Elgrably, 2020, 2022; Elgrably & 

Leikin, 2021). PPI tasks start from a proof problem (either introduced by 

instructors or researchers, or chosen by solvers). PPI tasks require: (a) Investigating 

a geometrical figure (from a proof problem) in a DGE (experimenting, conjecturing 

and testing) to find several new properties of the given figure and related figures 

that are obtained using auxiliary constructions. (b) Formulating multiple new proof 

problems. A PPI task is completed only when all the posed problems are solved by 

the participants.  

Figure 3 demonstrates an example of problems posed by Rasha (who studied for a 

teaching certificate after completion of a B.Sc. in mathematics) who chose the 

Midline-in-a-Triangle Theorem (see Figure 3, 𝐸𝑃 is a midline in triangle 𝐴𝐵𝐶). 

To pose new problems she first performed construction of a parallelogram, 𝐸𝐷𝐶𝐵, 

used when proving the theorem, and connected different points in the figure.  

 

Figure 3: Examples of posed problems 

Rasha discovered 4 different properties (depicted in Figure 3): (a) 
𝐸𝐷

𝐹𝐺
= 3, (b) 

𝐵𝐴

𝑃𝑆
=

4, (c) 
𝐹𝑂

𝑂𝐺
= 1, and (d) 

𝑃𝑂

𝑂𝑆
= 1, and formulated corresponding proof problems. All 

the problems were new for Rasha and her peers. These problems did not appear in 

the textbooks or in the instructional materials available to her.  

Like other problem-posing tasks, PPI tasks are open (Pehkonen, 1995; Haylock, 

1987; Solver, 1995) since solvers can implement different investigation strategies 

related to changing/extending the conditions of a given problem through 

performing auxiliary constructions in DGE, searching for new properties and 

posing different problems based on the discovered properties. Additionally, PPI 
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openness is related to the differences in the collections of problems posed by 

different individuals, which include differences in terms of the number, types and 

complexity of the posed problems. The PPI’s openness is also associated with 

solving a new (posed) problem in that solvers are free to choose how to prove any 

discovered property. The openness of PPI allows these tasks to be used as a 

didactical and research tool aimed at the development and evaluation of creativity.  

The openness of PPI tasks determines these tasks’ complexity, since an 

investigation can lead in unpredicted directions, conjectures can appear to be 

incorrect, or solving some posed problems can require knowledge and skills at a 

level that surpasses the level of problem-solving expertise of those who posed the 

problems. At the same time, the openness of the PPI tasks and their complexity 

determines the power of these tasks as tools for the investigation of creativity and 

problem-solving expertise. The requirement to solve the posed problems links PPI 

to the participants’ problem-solving expertise. Thus, we evaluated both creativity-

related skills and proof-related skills linked to participants’ performance on PPI 

tasks (Leikin & Elgrably, 2020; 2022; Elgrably & Leikin, 2021).  

The examined creativity components included fluency, flexibility and originality 

(Haylock, 1987; Silver, 1997; Leikin, 2009). Fluency was defined as the number 

of investigation strategies used / number of posed problems. Flexibility was 

defined as the number of different investigation strategies employed/ different 

posed problems. Originality was defined by the newness and rareness of the 

investigation strategies / posed problems. The model we employed for the 

evaluation of PPI is based on the model for evaluation of creativity using multiple 

solution tasks MSTs (Leikin, 2009). 

The examined proof-related components included auxiliary constructions that led 

to the discovered property, appropriateness of proof and the complexity of the 

posed problems determined by the conceptual density of the problem (cf., Silver & 

Zawodjewsky, 1997) combined with the length of the required proof. 

Leikin & Elgrably (2020) described an explorative study that examined PPI tasks 

as a tool for the development of PMTs’ proof skills and their creativity components 

in geometry, and for exploring the relationships between problem-solving 

expertise and creativity skills. Elgrably & Leikin (2021) explored PPI performance 

by participants with different types and levels of problem-solving expertise and 

examined differences in their creativity and problem solving performance when 

engaged in PPI activity. In Leikin & Elgrably (2022) we made distinctions between 

outcome creativity (linked to posed problems) and strategy creativity (linked to 

processes of creation of the new problems through investigations).  

The studies demonstrated that both proving skills and creativity components can 

be developed effectively through employing PPI activities, with significant 

changes seen in all the creativity components related to the posed problems (i.e., 

outcome-based creativity). There were no changes in strategy-related creativity 

linked to engagement with PPI tasks. With regard to types of creativity examined 
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in the study, we found that higher strategy creativity did not necessarily lead to 

higher outcome creativity, while a higher level of strategy originality correlated 

with outcome flexibility. Thus creative product and creative process are two 

distinct characteristics of cognitive processing linked to creativity-directed 

problem solving.  

Focusing on the links between types and levels of participants’ problem-solving 

expertise and PPI we argue that problem-solving expertise at high level 

significantly influences the quality of PPI as reflected in proof skills and creativity 

components. Unfortunately, mathematical expertise related to studying 

mathematics in B.Sc.-level university courses does not affect mathematical 

creativity linked to PPI. In addition, creativity components of participants with a 

high level of problem-solving expertise significantly correlated with their proof 

skills and, moreover, problem posing and proving performed by them appeared to 

be interwoven.  Finally, the role of DGE when conjecturing differed between 

participants with different levels and types of problem-solving expertise: High 

level experts tested hypotheses about additional properties and discovered new 

properties while searching for proofs of complex posed problems, whereas non-

experts used a trial-and-error strategy. Correspondingly, high level experts 

performed auxiliary constructions consciously and with careful planning whereas 

non-experts used a trial-and-error approach to auxiliary constructions.  

REFLECTING ON THE CONSEQUENCES OF USERS’ ACTIONS 

Reflecting on the consequences of users’ actions focuses on a major role of 

technology as what can scaffold the posing of powerful problems. Often there is a 

substantial logical distance between the starting points offered by nature and our 

conjectures about nature and the detailed implications of our models. To help 

learners make chains of inferences, appropriately crafted software environments 

can aid dramatically in extending our ability to explore our formal models 

(Schwartz, 1992). The Mathematics Imagery Trainer provides a vivid example in 

which technology provides and environment in which students explore different 

perceptual orientations, and these perceptual orientations, in turn, ground 

prospective mathematical concepts (Abrahamson et al., 2014; Alberto et al., 2021).  

In the design of Mathematics Imagery Trainer activities, the problem students work 

on is a motor-control problem—the student is tasked to figure out how to move 

their body or, by extension, how to operate selected objects in the activity space, 

such as cursors on a screen, voluminous solids in virtual space, or diagrammatic 

elements of a unit circle, so as to elicit some designated feedback, for example 

performing a coordinated bimanual movement that keeps a screen green. As such, 

Trainer tasks emulate embodied cultural practices, such as swimming, riding a 

bicycle, or operating a screwdriver—in all these, one must coordinate ongoing 

sensorimotor actions that maintain a consistent relation between the moving body 

and the environmental media, whether natural, artifactual, or some combination 

thereof, so as to perform goal-oriented actions. That is, the solution is not static or 
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finite but inherently dynamic—students learn to move in a new way that 

instantiates the conservation of a mathematical invariant, such as a particular ratio, 

quadratic function, or sine function, even before they come to realize the 

mathematical modeling of this new movement form. This design approach 

implements a theoretical position by which the cognitive activity of engaging in 

mathematics is not epistemologically different from other cultural–historical 

practices (Abrahamson & Sánchez–García, 2016; Abrahamson & Trninic, 2015; 

Shvarts & Abrahamson, in press a, b). This epistemological position is grounded 

in an evolutionary argument for enactivist mathematics pedagogy, by which the 

biological cognitive capacity for engaging in mathematical reasoning is an 

exaptation (Gould & Vrba, 1982)—that is, a co-opting—of our species atavistic 

capacity of perception-for-action (Abrahamson, 2021). Hence, our natural capacity 

to develop new strategies for perception to guide action (Abrahamson & Mechsner, 

2022) is a key idea in our pedagogical development. In turn, key to developing new 

strategies for perception to guide action is sensorimotor exploration, as we now 

elaborate. 

In Trainer activities, the construct of problem-solving is theorized and, therefore, 

operationalized as pre-symbolic sensorimotor exploration. We view mathematics 

education essentially as the education of perception (Merleau–Ponty, 2005):  

Any mechanistic theory runs up against the fact that the learning process is systematic; 

the subject does not weld together individual movements and individual stimuli but 

acquires the power to respond with a certain type of solution to situations of a certain 

general form. The situations may differ widely from case to case, and the response 

movements may be entrusted sometimes to one operative organ, sometimes to another, 

both situations and responses in the various cases having in common not so much a 

partial identity of elements as a shared meaning (pp. 164–165) 

In a similar guise, Piaget (1971) writes as follow: 

[W]e shall talk of “perception” in the case of a proximate structure of given sensorial 

evidence; as such, perception can already be seen to intervene in instinctive behavior 

and to be a no less essential part of kindred behavior. (p. 2) 

That is, perception per se is an innate general cognitive faculty—the adaptive 

capacity to organize sensorimotor activity so as to engage the environment 

effectively. So, when we talk about educating perception, we mean, in fact, 

constructing new neural substrates by which perception can govern sensorimotor 

activity that is effective to accomplish some task of cultural significance. For 

example, when we learn to ride a bicycle, we are building the cerebral networks 

that let our perception respond rapidly to emergent environmental contingencies 

by activating sensorimotor behaviors that keep us moving stably—we develop 

what Bernstein (1996) called the automatisms. Importantly, educating perception 

is never about somehow improving the sensory organs or the muscles themselves 

but figuring out new Gestalts as mental structures that govern automatic 

sensorimotor activation (Mechsner 2003, 2004; Mechsner et al., 2001). In 
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summary, we look to create learning experiences that emulate enactivist 

epistemology: 

In a nutshell, the enactive approach consists of two points: (1) perception consists in 

perceptually guided action and (2) cognitive structures emerge from the recurrent 

sensorimotor patterns that enable action to be perceptually guided. (Varela et al., 1991, 

p. 173) 

Whereas Trainer activities appear similar to certain Dynamic Geometry 

Environments, such as GeoGebra (Leung et al., 2013), they also differ from these 

DGE modules. In Trainer activities, the objects that students operate are not 

computationally pre-constrained to maintain the targeted mathematical relations, 

for example, Trainer students can position the objects in a configuration that 

violates the targeted conceptual instantiation. In Trainer environments, only the 

system’s feedback will indicate whether or not the student’s proposed 

configuration abides with the hidden rule. Thus, Trainer students need to discover 

the rule and self-impose it as a new constraint on their sensorimotor actions: they 

assimilate the discovered rule and accommodate their sensorimotor behavior 

accordingly. That is, in Trainer environments the constraints are implicit to the 

feedback, so that students need to figure out what they may or may not do in order 

to receive the favorable feedback, whereas in classical DGE the constraints are 

inherent to the manipulability of the objects themselves, so that students can’t help 

but operate within the constraints regardless of how they manipulate the objects. 

By way of gross analogy, Trainer activities allow you to fall off your bicycle as 

you learn to ride it, whereas classical DGE activities never remove the training 

wheels. Abrahamson and Abdu (2020) draw on the literature of the movement 

sciences to argue for the pedagogical advantages of Trainer “open” tasks (oDGE), 

where students need to discover and self-impose constraints on their perception–

action loops, as compared to “closed” tasks (xDGE), where the constraints on 

action are preconditions of the interactive system. The relative advantages of these 

two approaches remain to be evaluated empirically. 

Teachers or, more generally, human or AI pedagogical agents, can play active roles 

in guiding students’ sensorimotor engagement and mathematical sense-making in 

enactive learning environments (Abrahamson et al., 2012). Using multimodal 

semiotic resources—words, gestures, diagrammatic structures, etc.—teachers 

introduce constraints suggest affordances that modify the student’s engagement 

with the environment (cf. Churchill, 2022; Newell & Ranganathan, 2010). By way 

of analogy, a piano teacher might place coins on their student’s hands and ask that 

they continue playing without dropping the coins. These interventions in the micro-

zone of proximal development orient students toward elements of the environment 

whose perception could increase the students’ grip on the world, ushering in 

normative cultural practice (Shvarts & Abrahamson, 2019). Next, teachers 

introduce supplementary mathematical instruments into the working space, such 

as a grid of lines, and create opportunities for students to discover how these new 

resources may serve as means of extending their existing sensorimotor activity. 
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Students discern in these new resources features affording potential utility for 

enhancing either the enactment, evaluation, or explanation of their strategy. Yet in 

the course of instrumentalizing these digital artifacts to improve on their existing 

task performance, students implicitly appropriate the cultural–historical practices 

potentiated by these epistemic forms, and consequently their strategy is modified, 

often from qualitative to quantitative procedures (Abrahamson et al., 2011). 

Teachers facilitate this semiotic process: they “re-voice” students’ gestures and 

speech to highlight, objectify, elaborate, and stabilize students’ mathematical 

interpretations of their own sensorimotor engagement (Flood et al., 2020). As such, 

the student–teacher dyad establishes mathematical notions through negotiating for 

the mutual intelligibility of their respective and joint actions (Flood, 2018). 

THE IMPACT OF DIGITAL ENVIRONMENTS’ ON LEARNERS’ 

MATHEMATICAL KNOWLEDGE AND THE ROLE OF THE TEACHER 

Students, and to some point their teachers, would use a pragmatic set of criteria for 

assessing intellectual worth, making sure knowledge of a particular piece of subject 

matter be turned to advantage in the outside world in which one lives. Yet Schwartz 

(1992) notes also that “people are engaged by more than just the pragmatic. They 

are often engaged by interesting complexity, particularly if it is complexity of their 

own making”. We can think of environments as offering people the opportunity to 

fashion and explore complex situations in domains that our culture has come to 

regard as important, e. g. Seeing the Entire Picture - STEP (Olsher et al., 2016). 

However, it is well-documented that many teachers are challenged to support 

learners to engage productively in such environments, when most have never 

previously experienced authentic intellectual progress alongside technological 

tools (Clark-Wilson & Hoyles, 2017; Noss & Hoyles, 1996). 

Since the early research on digital technologies in the 1980s and 1990s, which 

brought the role of the teacher into view, it is well-documented the introduction of 

epistemically rich technologies to school mathematics is influenced in a number of 

ways which include the teachers. One aspect is the prior experiences as learners of 

mathematics with, or without access to digital tools. The fact that many digital 

tools are available for many decades, does not imply that current teachers had a 

chance to use them as students. When teachers have hands-on experiences of the 

digital tool to work on the (successive) problems that they will subsequently offer 

to their students, it impacts the teacher’s own knowledge and practice.  

More is now known in some countries about the nature of the more impactful 

professional learning opportunities that pre- and in-service teachers engage with 

and value. Furthermore, as such professional learning opportunities also require 

careful design and implementation, which requires a group of expert others, who 

might be known as champions, or mathematics teacher educators. Research on the 

nature and role of professional learning communities within the specific context of 

student technology use for the purpose of problem solving is also emerging, with 

some promising findings that can inform new country, school and classroom 
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contexts. In addition, it is well known that teachers’ personal perspectives with 

respect to school mathematics curricula and teaching approaches have a great 

influence on their practices. Furthermore, their views of technology may align or 

conflict with these ideas. Writing this in 2023, we find ourselves in the midst of a 

global discourse on the impacts of artificially intelligent mathematics tools on that 

are rapidly negating the need for rote learning of traditional numeric and algebraic 

algorithms. This negates the type of problems that are present in most high-stakes 

assessments of school mathematics, and leaves wondering whether their new role 

will be to restrict students’ access to digital technologies, or join the widening 

lobby to radically review school learners’ educational experiences, and the place 

of mathematics within it. Furthermore, there are a number of institutional factors 

that also influence how teachers can come to know, develop, and sustain the 

student use of technology within more problem solving contexts. Factors that are 

known to increase the likelihood of teacher growth in this area include: Supportive 

national, regional and local mathematics curricula; mathematically- and 

pedagogically-aligned assessment methods and practices (especially high-stakes 

testing); high quality professional learning activities, resources and communities, 

which are designed and supported by suitable experts; and supportive national, 

regional and local policies and resourcing for digital tools. 

The mathematics education research literature abounds with examples of small-

scale, mostly exploratory studies that conclude promising findings with respect to 

teachers’ motivational, confidence and epistemic growth within the context of 

student problem-solving with technology. However, few studies are followed up 

by larger-scale research initiatives that aim to understand effectiveness (and 

possibly efficacy) of such approaches in multiple schools and classrooms. This is 

a problem for the field, as in the real world of schools globally, there are multi-

millions of free and paid-for digital educational resources available, some of which 

will be positioned towards problem solving in mathematics education. Although, 

these resources compete with the more research-informed resources, they are rarely 

accompanied by support resources (material and human) that can enable them to 

be implemented widely and with increasing effectiveness in diverse classrooms. 

However, the research field is mature enough to be able to propose more research-

informed professional learning opportunities for teachers on a wide scale - 

enhanced and informed by technology itself. 

One way to tackle the challenges in the pursuit of interesting mathematical 

knowledge in a mathematical classroom is demonstrated by design principles of 

the STEP platform. Beyond providing the students with rich tasks that enable them 

to express their own mathematical ideas using learner generated examples and 

explore different mathematical concepts through different patterns of example 

eliciting tasks (Olsher, 2022), STEP demonstrates means to increase the interaction 

with mathematical knowledge harnessing also digital tools for analysis of student 

work.  
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STEP analyzes student answers as mathematical objects. This analysis creates a set 

of automatically assessed characteristics for student’s answers. For example, Abdu 

et al. (2021) presented a set of characteristics that were assessed for quadratic 

functions submitted by students as examples for quadratic functions that their 

graph passed through two given points. While the functions were assessed also for 

whether their graph indeed passed through the given points which indicate whether 

the answers was correct or not, other characteristics were also automatically 

assessed. Among these characteristics were the type of extremum point (minimum 

or maximum), the number of x-axis intercepts (zero, one or two), the form of the 

expression (polynomial, vertex or intercepts). While these characteristics are not 

critical for the correctness of the answer to the task, they provide the teachers and 

the students an accessible means of interaction over different mathematical ideas 

related to the task at hand, providing flexibility in terms of the mathematical 

knowledge that takes form in the interaction over the task. On a student level, one 

can learn to communicate about different mathematical objects in various ways 

either during the work on the task itself or after submitting it (Olsher & Thurm, 

2022; Yerushalmy, Olsher, Harel & Chazan, 2022).  

This analyzed data about student work in used to create different interactive tools 

that make different aspects in students work more accessible for the teacher. Using 

the different interactive visualizations, the teachers can choose whether they want 

to manually browse through their student’s work, and drill down into specific 

students’ work. Teachers can also further their analysis using statistical 

information, as well as interactive filtering tools resembling online shopping 

websites to filter student’s work and inspect characteristics they find as relevant, 

as well as their relation to other characteristics (Abu-Raya & Olsher, 2021). In their 

use of STEP in their classrooms, we observed that teachers shift the focus of their 

teaching from mostly student mistakes to other characteristics of student answers 

(e. g. interesting non critical characteristics of student answers), thus providing an 

example of flexibility in what they find as relevant, worthwhile, mathematical 

knowledge (Olsher & Abu- Raya, 2019). 

CONCLUDING REMARKS 

In this paper we take a contemporary perspective to revisit the interplay between 

technology and conjecturing within the process of problem-solving. This 

perspective, rooted in sub-themes conceptualized over three decades ago, is 

demonstrated through the use of up-to-date technologies. The manifestation and 

evolution of the “classic” ideas and categorization provide a unique opportunity to 

value both the fundamental ideas in combining technology in conjecturing, and 

also the influence of the current developments on the evolution of the ways we 

perceive problem solving over the years.  
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