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Feedback, power control and beamforming are important PHY and MAC

layer issues in wireless communication systems. This dissertation is concerned

with theoretical studies and algorithmic developments related to these issues in

the context of and in support of the design of situational aware wireless networks.

The envisioned situational aware wireless networks adapt system parameters and

algorithms design to the channel attributes, user attributes, and system attributes,

which constitute the wireless environment and network situations. The research

topics in this dissertation regarding feedback, power control and beamforming are

motivated by issues that arise from considering different types of awareness.
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We first propose an adaptive feedback design based on the heterogeneous

spectral channel statistics among users, which advocates the awareness of channel

attributes. We leverage the multi-cluster subband fading model to develop an

analytical framework to investigate the impact of partial feedback and potential

imperfections including channel estimation error and feedback delay on system

performance.

Next, we examine partial feedback in a heterogeneous multicell, and pro-

pose a heterogeneous feedback design based on heterogeneous user densities and

large scale channel effects, which advocates the awareness of user attributes. The

cumulative distribution function (CDF)-based scheduling policy is employed to

obtain multiuser diversity gain while maintaining scheduling fairness. We derive a

closed form expression as well as asymptotic approximation for the sum rate. In

addition, the CDF-based scheduling policy is leveraged in a random beamforming

framework to address several open problems. We develop the notion of individual

sum rate to study the rate scaling for each individual user. We theoretically exam-

ine the randomness of multiuser diversity incurred by selective feedback to further

establish the individual scaling laws under different feedback schemes.

We then investigate joint beamforming and power control in a multiuser

interference network, and propose the usage of spatial channel statistics for al-

gorithm design, which advocates the awareness of channel attributes. With the

outage event induced by the utilization of spatial channel statistics, we present

decentralized and fast convergent algorithms to achieve outage balancing in the

interference network.

Finally, we study joint beamforming and power control in a coordinated

multicell downlink and employ the max-min formulation to enforce egalitarian

user fairness. In order to design efficient algorithm that scales well with the system

dimension, we leverage the large system structure and advocate the awareness of

system attributes. In our proposed algorithm design, the asymptotic power is

computed using statistical channel information and the instantaneous beamformer

is obtained in a non-iterative manner. We also establish the effective network to

characterize and interpret the asymptotic solution.
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Chapter 1

Introduction

Wireless communication networks continue to get more complex. Hetero-

geneous networks envisioned in LTE-advanced systems, self-organizing ad-hoc and

peer to peer networks, decentralized cognitive radio networks, all are clear evidence

of this trend. In order to efficiently use the wireless resources across a network, we

envision enhanced situational awareness and high levels of cognition as playing a

critical role. Existing networks already include such elements but future networks

are going to need to incorporate them in a much more significant and comprehen-

sive manner. We initiate the discussion of situational aware wireless networks with

the following qualitative definition.

Situational Aware Wireless Networks: wireless networks incorporating link

level awareness to network level awareness for algorithm design and for the adap-

tation of system parameters to better deal with varying wireless environments and

network situations.

Developing a comprehensive framework for situational awareness and cog-

nition in a wireless ecosystem is a daunting task, whose challenges are multifaceted

in nature and will require long-term efforts from many research groups. In order

to help in advancing the foundations of this nascent field, we initially deconstruct

situational awareness into three inter-related components in the wireless ecosys-

tem: awareness of channel attributes, awareness of user attributes, and awareness

of system attributes. Channel attributes may include different types of chan-

nel information (both instantaneous channel information and statistical channel

1
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information), the large-scale channel effects (i.e., path loss, shadowing, etc), vari-

ous channel statistics reflected in different dimensions (i.e., delay spread, doppler

spread and angular spread), among others. These channel attributes can be both

location dependent and environment dependent. With the unprecedented growth

of smart communication devices equipped with a number of sensory components

such as GPS receiver, digital compass, and proximity sensor, such position (or

location) awareness being aware of the channel attributes is very likely to emerge

in next generation wireless networks. User attributes may include different user

densities across cellular structures, the fairness requirements among users, differ-

ent user mobilities at different periods of serving time, among others. System

attributes may include the backhaul capability, the limited system resources, dif-

ferent traffic loads across base stations, the system dimension (large system struc-

ture), among others. The three concrete components, channel, user, and system,

are inter-related and they as a whole constitute the wireless ecosystem. Our aim

in the thesis is addressing algorithmic issues and analytical studies necessary to-

wards understanding and designing situational aware wireless networks that are

aware of channel attributes, user attributes, and system attributes. To approach

this aim, we address important PHY and MAC layer issues for system design in-

cluding feedback, power control, and beamforming. Investigating these issues is

becoming more and more vital for next generation resource allocation and interfer-

ence management (the detailed motivations can be referred to the introduction in

each following chapter). On the conceptual side, the research problems addressed

in the thesis related to feedback, power control, and beamforming, advocate the

design of situational aware wireless networks from different perspectives. On the

analytical side, we contributed to the research fields of feedback, power control,

and beamforming by solving several open issues in each of the research problems.

We now present the main contributions of the thesis by summarizing the technical

contributions in each of the research topics.
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1.1 Contributions of the Dissertation

In the sequel, we summarize the main contributions for each of the research

topics.

1.1.1 Adaptive Feedback Design Based on Spectral Chan-

nel Statistics

Current OFDMA systems group resource blocks into subband to form the

basic feedback unit. Homogeneous feedback design with a common subband size

is not aware of the heterogeneous channel statistics among users. Under a general

correlated channel model, we demonstrate the gain of matching the subband size

to the underlying channel statistics motivating heterogeneous feedback design with

different subband sizes and feedback resources across clusters of users (being aware

of channel attributes). Employing the best-M partial feedback strategy, users with

smaller subband size would convey more partial feedback to match the frequency

selectivity. In order to develop an analytical framework to investigate the impact

of partial feedback and potential imperfections, we leverage the multi-cluster sub-

band fading model. The perfect feedback scenario is thoroughly analyzed, and the

closed form expression for the average sum rate is derived for the heterogeneous

partial feedback system. We proceed to examine the effect of imperfections due to

channel estimation error and feedback delay, which leads to additional considera-

tion of system outage. Two transmission strategies: the fix rate and the variable

rate, are considered for the outage analysis. We also investigate how to adapt to

the imperfections in order to maximize the average goodput under heterogeneous

partial feedback.

1.1.2 Analytical Framework for Heterogeneous Feedback

Being Aware of User Densities

The inherent heterogeneous structure resulting from user densities and large

scale channel effects motivates heterogeneous partial feedback design in heteroge-
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neous networks (being aware of user attributes). In such emerging networks, a

distributed scheduling policy which enjoys multiuser diversity as well as main-

tains fairness among users is favored for individual user rate enhancement and

guarantees. For a system employing the cumulative distribution function (CDF)-

based scheduling, which satisfies the two above mentioned desired attributes, we

develop an analytical framework to investigate heterogeneous partial feedback in

a general OFDMA-based heterogeneous multicell employing the best-M partial

feedback strategy. Exact sum rate analysis is first carried out and closed form

expressions are obtained by a novel decomposition of the probability density func-

tion of the selected user’s signal-to-interference-plus-noise ratio. To draw further

insight, we perform asymptotic analysis using extreme value theory to examine

the effect of partial feedback on the randomness of multiuser diversity, show the

asymptotic optimality of best-1 feedback, and derive an asymptotic approximation

for the sum rate in order to determine the minimum required partial feedback.

1.1.3 Random Beamforming with Heterogeneous Users and

Selective Feedback

We investigate three open problems in random beamforming based commu-

nication systems: the scheduling policy with heterogeneous users, the closed form

sum rate, and the randomness of multiuser diversity with selective feedback. By

employing the CDF-based scheduling policy, we guarantee fairness among users

as well as obtain multiuser diversity gain in the heterogeneous scenario. Under

this scheduling framework, the individual sum rate, namely the average rate for

a given user multiplied by the number of users, is of interest and analyzed under

different feedback schemes. Firstly, under the full feedback scheme, we derive the

closed form individual sum rate by employing a decomposition of the probability

density function of the selected user’s signal-to-interference-plus-noise ratio. This

technique is employed to further obtain a closed form rate approximation with se-

lective feedback in the spatial dimension. The analysis is also extended to random

beamforming in a wideband OFDMA system with additional selective feedback

in the spectral dimension wherein only the best beams for the best-L resource
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blocks are fed back. We utilize extreme value theory to examine the randomness

of multiuser diversity incurred by selective feedback. Finally, by leveraging the

tail equivalence method, the multiplicative effect of selective feedback and random

observations is observed to establish the individual rate scaling.

1.1.4 Outage Balancing Based on Spatial Channel Statis-

tics

We study joint beamforming and power control in a multiuser MISO inter-

ference network with spatial channel statistics (being aware of channel attributes).

Such information consists of the slow-varying covariance matrices in the beam-

forming network, and can be employed to reduce instantaneous feedback needs.

With the outage event induced by the utilization of statistical channel informa-

tion, we optimize signal transmission strategies to minimize the maximum outage

probability under weighted sum power constraint to achieve outage balancing in

the interference network. Under the condition of fixed beamformer, we use non-

linear Perron-Frobenius theory to present a decentralized algorithm with prov-

able geometrically fast convergence rate to compute the optimal power. Since

the joint beamformer and power optimization problem is non-convex, we exam-

ine its certainty-equivalent margin counterpart. By leveraging nonlinear Perron-

Frobenius theory and the established network duality, we present a near-optimal

decentralized algorithm to jointly optimize the beamformer and power. The algo-

rithm converges quickly and the convergence rate of the algorithm is proven to be

geometrical.

1.1.5 Efficient Algorithm Design Being Aware of Large

System Structure

We investigate joint beamforming and power control in a coordinated mul-

ticell downlink system that serves multiple users per cell to maximize the min-

imum weighted signal-to-interference-plus-noise ratio. The optimal solution and

distributed algorithm with geometrically fast convergence rate are derived by em-
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ploying the nonlinear Perron-Frobenius theory and the multicell network duality.

The iterative algorithm, though operating in a distributed manner, still requires

instantaneous power update within the coordinated cluster through the backhaul.

The backhaul information exchange and message passing may become prohibitive

with increasing number of transmit antennas and increasing number of users. In

order to derive asymptotically optimal solution, random matrix theory is lever-

aged to design a distributed algorithm that only requires statistical information

(being aware of system attributes). The advantage of our approach is that there is

no instantaneous power update through backhaul. Moreover, by using nonlinear

Perron-Frobenius theory and random matrix theory, an effective primal network

and an effective dual network are proposed to characterize and interpret the asymp-

totic solution.

1.2 Dissertation Outline

The remainder of the dissertation is organized as follows.

In Chapter 2, we propose the design of an adaptive (or heterogeneous) feed-

back strategy based on spectral channel statistics in a downlink OFDMA system.

Conceptually, this design method is aware of the channel attributes in terms of the

frequency domain channel statistics. We adapt the feedback amount to the differ-

ent frequency selectivity of the users’ channels, and we provide a thorough analysis

of both perfect and imperfect feedback system performance under our proposed

multi-cluster subband fading model. We also develop several approximations and

near-optimal approaches to adapt and optimize the system performance.

Chapter 3 examines heterogeneous partial feedback from another perspec-

tive (different than the design philosophy proposed in Chapter 2). The highlighted

heterogeneous feedback design method is adaptive to the user densities. Concep-

tually, this design method is aware of the user attributes in terms of the different

user densities across the emerging heterogeneous multicell networks. We employ

the CDF-based scheduling policy to maintain user fairness and simultaneously ob-

tain multiuser diversity gain in a general multicell network. Under this distributed
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scheduling policy, we develop an analytical framework to investigate heterogeneous

partial feedback in heterogeneous multicell networks.

The scheduling policy utilized for analysis in Chapter 3 is further lever-

aged in Chapter 4 to study several open problems in random beamforming. We

address practical considerations of random beamforming with heterogeneous users

and selective feedback. We provide theoretical analysis to understand the effect

of selective feedback on rate performance in both spatial and spectral dimensions.

We also develop the notion of virtual users and the multiplicative effect to explain

the impact of selective feedback on rate scaling.

Starting from Chapter 5, we shift our attention to power control and beam-

forming. We consider the use of spatial channel statistics for system design in

a multiuser MISO interference network. Conceptually, the proposed algorithm

design is aware of the channel attributes in terms of spatial statistical channel in-

formation. We investigate the outage balancing problem to develop efficient trans-

mission strategies under given power constraint. We also prove the convergence of

the proposed algorithm to be geometrical.

In Chapter 6, we focus on leveraging the emerging large-scale multiple an-

tenna structure for algorithm design. Conceptually, the proposed design method is

aware of the system attributes in terms of system dimension and backhaul capabil-

ity. We study the problem of joint beamforming and power control in a coordinated

multicell downlink. We examine the large system structure for algorithm design

and establish the notion of effective network to provide insight into the power

control problem with asymptotic solution.

Finally, Chapter 7 concludes the dissertation with discussion on future re-

search directions.



Chapter 2

Adaptive Feedback Based on

Spectral Channel Statistics

2.1 Introduction

Leveraging feedback to obtain the channel state information at the trans-

mitter (CSIT) enables a wireless system to adapt its transmission strategy to the

varying wireless environment. The growing number of wireless users, as well as

their increasing demands for higher data rate services impose a significant burden

on the feedback link. In particular for OFDMA systems, which have emerged as the

core technology in 4G and future wireless systems, full CSIT feedback may become

prohibitive because of the large number of resource blocks. This motivates more

efficient feedback design approaches in order to achieve performance comparable

to a full CSIT system with reduced feedback. In the recent years, considerable

work and effort has been focused on limited or partial feedback design, e.g., see [1]

and the references therein. To the best of our knowledge, most of the existing

partial feedback designs are homogeneous, i.e., users’ feedback consumptions do

not adapt to the underlying channel statistics. In this chapter, we propose and

analyze a heterogeneous feedback design, which aligns users’ feedback needs to the

statistical properties of their wireless environments.

Current homogeneous feedback design in OFDMA systems groups the re-

8
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source blocks into subband [2–6] which forms the basic scheduling and feedback

unit. Since the subband granularity is determined by the frequency selectivity, or

the coherence bandwidth of the underlying channel, it would be beneficial to adjust

the subband size of different users according to their channel statistics. Empirical

measurements and analysis from the channel modeling field have shown that the

root mean square (RMS) delay spread which is closely related to the coherence

bandwidth, is both location and environment dependent [7–14]. The typical RMS

delay spread for an indoor environment in WLAN does not exceed hundreds of

nanoseconds; whereas in the outdoor environment of a cellular system, it can be

up to several microseconds. Intuitively, users with lower RMS delay spread could

model their channel with a larger subband size and require less feedback resource

than the users with higher RMS delay spread. Herein, we investigate this hetero-

geneous feedback design in a multiuser opportunistic scheduling framework where

the system favors the user with the best channel condition to exploit multiuser

diversity [15, 16]. There are two major existing partial feedback strategies for op-

portunistic scheduling, one is based on thresholding where each user provides one

bit of feedback per subband to indicate whether or not the particular channel

gain exceeds a predetermined or optimized threshold [17–20]. The other promising

strategy currently considered in practical systems such as LTE [21] is the best-M

strategy, where the receivers order and convey the M best channels [22–29]. The

best-M partial feedback strategy is embedded in the proposed heterogeneous feed-

back framework. Apart from the requirement of partial feedback to save feedback

resource, the study of imperfections is also important to understand the effect of

channel estimation error and feedback delay on the heterogeneous feedback frame-

work. These imperfections are also considered in our work.

An important step towards heterogeneous feedback design is leveraging the

“match” among coherence bandwidth, subband size and partial feedback. Under

a given amount of partial feedback, if the subband size is much larger than the

coherence bandwidth, then multiple independent channels could exist within a

subband and the subband-based feedback could only be a coarse representative

of the channels. On the other hand, if the subband size is much smaller than
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the coherence bandwidth, then channels in adjacent subbands are likely to be

highly correlated and requiring feedback on adjacent subbands could be a waste of

resource; or a small amount of subband-based partial feedback may not be enough

to reflect the channel quality. In order to support this heterogeneous framework, we

first consider the scenario of a general correlated channel model with one cluster of

users with the same coherence bandwidth. The subband size is adjustable and each

user employs the best-M partial feedback strategy to convey the M best channel

quality information (CQI) which is defined to be the subband average rate. The

simulation result shows that a suitable chosen subband size yields higher average

sum rate under partial feedback conforming the aforementioned intuition. This

motivates the design of heterogeneous feedback to “match” the subband size to

the coherence bandwidth. The above-mentioned study, though closely reflects

the relevant mechanism, is not analytically tractable due to two main reasons.

Firstly, the general correlated channel model complicates the statistical analysis

of the CQI. Secondly, the use of subband average rate as CQI makes it difficult to

analyze the multi-cluster scenario. Therefore, a simplified generic channel model is

needed that balances the competing needs of analytical tractability and practical

relevance.

In order to facilitate analysis, a subband fading channel model is developed

that generalizes the widely used frequency domain block fading channel model.

The subband fading model is suited for the multi-cluster analysis. According to

the subband fading model, the channel frequency selectivity is flat within each

subband, and independent across subbands. Since the subband sizes are different

across different clusters, the number of independent channels are heterogeneous

across clusters and this yields heterogeneous partial feedback design. Another

benefit of the subband fading model is that the CQI becomes the channel gain

and thus facilitate further statistical analysis. Under the multi-cluster subband

fading model1 and the assumption of perfect feedback, we derive a closed form

expression for the average sum rate. Additionally, we approximate the sum rate

ratio for heterogeneous design, i.e., the ratio of the average sum rate obtained by

1An initial treatment of a two-cluster scenario was first presented in [30].
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a partial feedback scheme to that achieved by a full feedback scheme, in order

to choose different best-M for users with different coherence bandwidth. We also

compare and demonstrate the potential of the proposed heterogeneous feedback

design against the homogeneous case under the same feedback constraint in our

simulation study.

The average sum rate helps in understanding the system performance with

perfect feedback. In practical feedback systems, imperfections occur such as chan-

nel estimation error and feedback delay. These inevitable factors degrade the sys-

tem performance by causing outage [31]. Therefore, rather than using average sum

rate as the performance metric, we employ the notion of average goodput [32–34] to

incorporate outage probability. Under the multi-cluster subband fading model, we

perform analysis on the average goodput and the average outage probability with

heterogeneous partial feedback. In addition to examining the impact of imperfect

feedback on multiuser diversity [35, 36], we also investigate how to adapt and op-

timize the average goodput in the presence of these imperfections. We consider

both the fixed rate and the variable rate scenarios, and utilize bounding technique

and an efficient approximation to derive near-optimal strategies.

To summarize, the contributions of this chapter are threefold: a concep-

tual heterogeneous feedback design framework to adapt feedback amount to the

underlying channel statistics, a thorough analysis of both perfect and imperfect

feedback systems under the multi-cluster subband fading model, and the develop-

ment of approximations and near-optimal approaches to adapt and optimize the

system performance. The rest of the chapter is organized as follows. The moti-

vation under the general correlated channel model and the development of system

model is presented in Section 2.2. Section 2.3 deals with perfect feedback, and

Section 2.4 examines imperfect feedback due to channel estimation error and feed-

back delay. Numerical results are presented in Section 2.5. Finally, Section 2.6

concludes the chapter.
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2.2 System Model

2.2.1 Motivation for Heterogeneous Partial Feedback

This part provides justification for the adaptation of subband size with one

cluster of users under the general correlated channel model, and motivates the

design of heterogeneous partial feedback for the multi-cluster scenario in Section

2.2.2. Consider a downlink multiuser OFDMA system with one base station and

K users. One cluster of user is assumed in this part and users in this cluster

are assumed to experience the same frequency selectivity. The system consists

of Nc subcarriers. Hk,n, the frequency domain channel transfer function between

transmitter and user k at subcarrier n, can be written as:

Hk,n =
L−1∑
l=0

σlFk,l exp

(
−j2π(l − 1)n

Nc

)
, (2.1)

where L is the number of channel taps, σl for l = 0, . . . , L−1 represents the channel

power delay profile and is normalized, i.e.,
∑L−1

l=0 σ2
l = 1, Fk,l denotes the discrete

time channel impulse response, which is modeled as complex Gaussian distributed

random processes with zero mean and unit variance CN (0, 1) and is i.i.d. across k

and l. Only fast fading effect is considered in this chapter, i.e., the effects of path

loss and shadowing are assumed to be ideally compensated by power control2. The

received signal of user k at subcarrier n can be written as:

uk,n =
√

PcHk,nsk,n + vk,n, (2.2)

where Pc is the average received power per subcarrier, sk,n is the transmitted

symbol and vk,n is the additive white noise distributed as CN (0, σ2
nc

). From (2.1),

it can be shown that Hk,n is distributed as CN (0, 1). The channels at different

subcarriers are correlated, and the correlation coefficient between subcarriers n1

and n2 can be described as follows:

cov(Hk,n1 , Hk,n2) =
L−1∑
l=0

σ2
l exp

(
−j2π(l − 1)(n2 − n1)

Nc

)
. (2.3)

2This assumption has been employed in [20, 27, 36] to simplify the scheduling policy. With
the same average SNR, the opportunistic scheduling policy is also long-term fair. When different
average SNR is assumed, the proportional-fair scheduling policy [16] can be utilized.
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In general, adjacent subcarriers are highly correlated. In order to reduce

feedback needs, Rc subcarriers are formed as one resource block, and η resource

blocks are grouped into one subband3. Thus, there are N = Nc

Rc
resource blocks and

N
η

subbands4. In this manner, each user performs subband-based feedback to en-

able opportunistic scheduling at the transmitter. Since the channels are correlated

and there is one CQI to represent a given subband, the CQI is a function of the

all the individual channels within that subband. Herein, we employ the following

subband (aggregate) average rate Sk,r as the functional form5 [43, 44] of the CQI

for user k at subband r:

Sk,r � 1

ηRc

rηRc∑
n=(r−1)ηRc+1

log2

(
1 +

Pc|Hk,n|2
σ2

nc

)
. (2.4)

Each user employs the best-M partial feedback strategy and conveys back

the M best CQI values selected from Sk,r, 1 ≤ r ≤ N
η
. A detailed description of the

best-M strategy can be found in [25,27,29]. After the base station receives feedback,

it performs opportunistic scheduling and selects the user k for transmission at

subband r if user k has the largest CQI at subband r. Also, it is assumed that

if no user reports CQI for a certain subband, scheduling outage happens and the

transmitter does not utilize it for transmission.

Now we demonstrate the need to adapt the subband size to achieve the

potential “match” among coherence bandwidth, subband size and partial feedback

through a simulation example. The channel is modeled according to the exponen-

tial power delay profile [45–47]: σ2
l = 1−exp(−1/δ)

1−exp(−L/δ)
exp
(− l

δ

)
for 0 ≤ l < L, where

the parameter δ is related to the RMS delay spread. The simulation parameters

are: Nc = 256, N = 32, L = 16, δ = 4, Pc

σ2
nc

= 10 dB. The subband size η can

3E.g., in LTE, one resource block consists of 12 subcarriers, and one subband can contain 1
to 8 resource blocks [37].

4Throughout this chapter, Nc, N and η are assumed to be a radix 2 number. A more general
treatment is possible but this will result in edge effects making for more complex notation without
much insight.

5This functional form employs the capacity formula and the resulting effective SNR has a
geometric mean interpretation. Other functional forms of the CQI exist in practical systems
such as exponential effective SNR mapping (EESM) [38–40] and mutual information per bit
(MMIB) [41,42] to map the effective SNR to the block-error-rate (BLER) curve. The intuitions
are similar: to obtain a representative CQI as a single performance measure corresponding to
the rate performance.
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Figure 2.1: Comparison of average sum rate for different subband sizes (η =
1, 2, 4) and partial feedback (M = 2, 4) with respect to the number of users.

be adjusted and ranges from 1 to 4 resource blocks. We consider partial feedback

with M = 2 and M = 4. The average sum rate of the system for different subband

sizes and partial feedback with respect to the number of users is shown in Fig. 2.1.

Under the given coherence bandwidth, several observations can be made. Firstly,

the curves with η = 4 has the smallest increasing rate because a larger subband size

gives a poor representation of the channel. Secondly, the curve with η = 1,M = 2

has the smallest average sum rate because a small amount of partial feedback is

not enough to reflect the channel quality. Thirdly, the two curves η = 1,M = 4

and η = 2, M = 2 possess similar increasing rate. This is because the underly-

ing channel is highly correlated within 2 resource blocks and thus having M -best

feedback with η = 2 yields similar effect as having 2M -best feedback with η = 1.

From the above observations, η = 2 matches the frequency selectivity and there

would be performance loss or waste of feedback resource when a subband size is
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Figure 2.2: Illustration of the multi-cluster subband fading channel model for
two different clusters with 16 resource blocks. The subband sizes equal 2 and 4 for
the two different clusters respectively.

blindly chosen. In a multi-cluster scenario where users in different clusters experi-

ence diverse coherence bandwidth, this advocates heterogeneous subband size and

heterogeneous feedback.

The general correlated channel model as well as the non-linearity of the

CQI, though useful to demonstrate the need for heterogeneous feedback, does not

lend itself to tractable statistical analysis. To develop a tractable analytical frame-

work, an approximated channel model is needed. A widely used model is the block

fading model in the frequency domain [48, 49] due to its simplicity and capability

to provide a good approximation to actual physical channels. According to the

block fading model, the channel frequency selectivity is flat within each block, and

independent across blocks [19,27,29]. Herein, we generalize the block fading model

to the subband fading model for the multi-cluster scenario. We assume that users

possessing similar frequency selectivity are grouped into a cluster and the subband

size is perfectly matched to the coherence bandwidth for a given cluster6. Ac-

cording to the subband fading model, for a given cluster with a perfectly matched

subband size, the channel frequency selectivity is flat within each subband, and

independent across subbands. Fig. 2.2 demonstrates the subband fading model for

6In practical systems, since the coherence bandwidth is determined by the channel statistics
which vary on the order of tens of seconds or more, the cluster information can be learned and
updated through infrequent user feedback. Therefore, the cluster is formed dynamically but in
a slow way compared to the time variation of the fast fading effect which is on the order of
milliseconds.
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two different clusters with different subband sizes under a given number of resource

blocks.

2.2.2 Multi-Cluster Subband Fading Model

We now present the multi-cluster subband fading model. Consider a down-

link multiuser OFDMA system with one base station and G clusters of users7.

The system consists of N resource blocks and the total number of users equals K.

Users in cluster Kg are indexed by the set Kg = {1, . . . , k, . . . , Kg} for 1 ≤ g ≤ G,

with |Kg| = Kg and
∑G

g=1 Kg = K. In our framework, users in the same cluster

group their resource blocks into subbands in the same manner while each cluster

can potentially employ a different grouping which enables the subband size to be

heterogeneous between clusters. Denote ηg as the subband size for cluster Kg, and

ηg ∈ {20, 21, . . . , N}. The ηg’s are ordered such that η1 < · · · < ηG. Based on the

assumption for ηg, the number of subbands in cluster Kg equals N
ηg

.

Let H
(g)
k,r be the frequency domain channel transfer function between trans-

mitter and user k in cluster Kg at subband r, where 1 ≤ k ≤ Kg, 1 ≤ r ≤ N
ηg

.

H
(g)
k,r is distributed as CN (0, 1). According to the subband fading model, H

(g)
k,r is

assumed to be independent across users and subbands in cluster Kg. The feedback

for different clusters is at different granularity, and so to model the channel for the

different clusters of users at the same basic resource block level, some additional

notation is needed. Let H̃
(g)
k,n = H

(g)
k,� n

ηg
� with 1 ≤ n ≤ N denote the resource block

based channel transfer function. Then the received signals of user k in cluster Kg

at resource block n can be represented by:

u
(g)
k,n =

√
PH̃

(g)
k,ns

(g)
k,n + v

(g)
k,n, (2.5)

where P is the average received power per resource block, s
(g)
k,n is the transmitted

symbol and v
(g)
k,n is additive white noise distributed with CN (0, σ2

n).

Let Z
(g)
k,r � |H(g)

k,r |2 denote the CQI for user k in cluster Kg at subband r. In

order to reduce the feedback load, users employ the best-M strategy to feed back

7The base station and users are equipped with one antenna each. The scenario with spatial
diversity [50–54] in the heterogeneous feedback framework is examined in [55].
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their CQI. In the basic best-M feedback policy, users measure CQI for each resource

block at their receiver and feed back the CQI values of the M best resource blocks

chosen from the total N values. For each resource block, the scheduling policy

selects the user with the largest CQI among the users who fed back CQI to the

transmitter for that resource block. However, in our heterogeneous partial feedback

framework, since the number of independent CQI for cluster Kg is N
ηg

, a fair and

reasonable way to allocate the feedback resource is to linearly scale the feedback

amount for users in cluster Kg. To be specific, user k in KG (i.e., the cluster with

the largest subband size) is assumed to feed back the M best CQI selected from

{Z(G)
k,r }, 1 ≤ r ≤ N

ηG
, whereas user k in Kg conveys the ηG

ηg
M best CQI selected from

{Z(g)
k,r}, 1 ≤ r ≤ N

ηg
. After receiving feedback from all the clusters, for each resource

block the system schedules the user for transmission with the largest CQI. It is

useful to note that the user feedback is based on the subband level, while the base

station schedules transmission at the resource block level.

2.3 Perfect Feedback

In this section, the CQI are assumed to be fed back without any errors and

the average sum rate is employed as the performance metric for system evaluation.

We derive a closed form expression for the average sum rate in Section 2.3.1 for

the multi-cluster heterogeneous feedback system. In Section 2.3.2 we analyze the

relationship between the sum rate ratio and the choice of the best-M.

2.3.1 Derivation of Average Sum Rate

According to the assumption, the CQI Z
(g)
k,r is i.i.d. across subbands and

users, and thus let FZ denote the CDF. Because only a subset of the ordered CQI

are fed back, from the transmitter’s perspective, if it receives feedback on a certain

resource block from a user, it is likely to be any one of the CQI from the ordered

subset. We now aim to find the CDF of the CQI seen at the transmitter side as

a consequence of partial feedback. Let Ỹ
(g)
k,n denote the reported CQI viewed at

the transmitter for user k in Kg at resource block n. Also, let Y
(g)
k,r represent the
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subband-based CQI seen at the transmitter for user k in Kg at subband r, then

Ỹ
(g)
k,n = Y

(2)
k,� n

ηg
�. The following lemma describes the CDF of Ỹ

(g)
k (the index n is

dropped for notational simplicity), which is denoted by F
Ỹ

(g)
k

.

Lemma 2.1. The CDF of Ỹ
(g)
k is given by:

F
Ỹ

(g)
k

(x) =

ηG
ηg

M−1∑
m=0

ξg(N,M, η,m)(FZ(x))
N
ηg

−m
, (2.6)

where the vector η � (η1, · · · , ηg, · · · , ηG) and

ξg(N, M, η,m) =

ηG
ηg

M−1∑
i=m

ηG

ηg
M − i
ηG

ηg
M

(N
ηg

i

)(
i

m

)
(−1)i−m . (2.7)

Proof. The proof is provided in Appendix A.

Let k∗
n demote the selected user at resource block n, then according to the

scheduling policy:

k∗
n = arg max

k∈Un

{Ỹ (1)
k,n , · · · , Ỹ

(g)
k,n , · · · , Ỹ

(G)
k,n }, (2.8)

where Un � {U (1)
n , · · · ,U (g)

n , · · · ,U (G)
n } is the set of users who convey feedback

for resource block n, with |U (g)
n | = τg representing the number of users belonging

to Un in cluster Kg. It can be easily seen that in the full feedback case, i.e.,

M = MF � N
ηG

, |U (g)
n | = Kg. For the general case when 1 ≤ M < MF , the

probability mass function (PMF) of Un is given by:

P(Un) =

(
G∏

g=1

(
Kg

τg

))(
ηGM

N

)∑G
g=1 τg

×
(

1 − ηGM

N

)K−∑G
g=1 τg

, 0 ≤ τg ≤ Kg. (2.9)

Remark: Only the largest subband size ηG appears in the expression of P(Un)

instead of the vector η. This is due to our heterogeneous partial feedback design

to let users in cluster Kg convey back the ηG

ηg
M best CQI out of N

ηg
values.

Now we turn to determine the conditional CDF of the CQI for the selected

user at resource block n, conditioned on the set of users providing CQI for that
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resource block. Since users are equiprobable to be scheduled according to the

fair scheduling policy, the condition on k∗
n is not described explicitly, and so we

denote the conditional CDF as FXn|Un , where Xn|Un is the conditional CQI of

the selected user at resource block n. Notice from Lemma 2.1 that Ỹ
(g)
k possess

a different distribution for different g due to the heterogeneous feedback from

different clusters. Using order statistics [56] yields FXn|Un as:

FXn|Un(x) =
G∏

g=1

(F
Ỹ

(g)
k

(x))τg . (2.10)

Then the polynomial form of FXn|Un can be obtained, which is stated in the fol-

lowing theorem.

Theorem 2.1. The CDF of FXn|Un is given by:

FXn|Un(x) =

Φ(M,η,τ)∑
m=0

ΘG−1(N,M, η, τ ,m)

× (FZ(x))
∑G

g=1
N
ηg

τg−m
, (2.11)

where the vector τ � (τ1, · · · , τg, · · · , τG), Φ(M, η, τ ) �
∑G

g=1 τg

(
ηG

ηg
M − 1

)
,

Θg(N,M, η, τ ,m)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

m∑
i=0

Λ1(N, M, η, τ , i)Λ2(N, M, η, τ ,m − i), g = 1

m∑
i=0

Θg−1(N, M, η, τ , i)

×Λg+1(N,M, η, τ ,m − i), 2 ≤ g < G

(2.12)

Λg(N, M, η, τ ,m)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ξg(N,M, η, 0))τg , m = 0

1
mξg(N,M,η,0)

∑min
(
m,

ηG
ηg

M−1
)

�=1 ((τg + 1)
 − m)

×ξg(N, M, η, 
)Λg(N, M, η, τ , m − 
),

1 ≤ m < τg(
ηG

ηg
M − 1)

(ξg(N,M, η, ηG

ηg
M − 1))τg , m = τg(

ηG

ηg
M − 1).

(2.13)

Proof. The proof is provided in Appendix A.
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After obtaining the conditional CDF FXn|Un , let CP (M) denote the average

sum rate and it can be computed using the following procedure.

CP (M) =
1

N

N∑
n=1

E[log2(1 + Xn)]

(a)
= EU

[∫ ∞

0

log2(1 + ρx)d(FX|U(x))

]

(b)
= EU

⎡
⎣Φ(M,η,τ)∑

m=0

ΘG−1(N, M, η, τ ,m)

×
∫ ∞

0

log2(1 + ρx)d(FZ(x))
∑G

g=1
N
ηg

τg−m

]

(c)
=
∑
τ �=0

P(U)

Φ(M,η,τ)∑
m=0

ΘG−1(N, M, η, τ ,m)

× I1

(
ρ,

G∑
g=1

N

ηg

τg − m

)
, (2.14)

where ρ � P
σ2

n
and P(U) is given by (2.9). (a) follows from the conditional expecta-

tion of Xn|Un and the identically distributed property (let X and U represent Xn

and Un respectively), (b) follows from (2.11) in Theorem 2.1, (c) follows from (2.9),

and define I1(a, b) �
∫∞

0
log2(1 + ax)d(FZ(x))b. I1(a, b) is computed in Appendix

A to be:

I1(a, b) =
b

ln 2

b−1∑
�=0

(
b − 1




)
(−1)�


 + 1
exp

(

 + 1

a

)
E1

(

 + 1

a

)
, (2.15)

where E1(x) =
∫∞

x
exp(−t)t−1dt is the exponential integral function [57].

The average sum rate for the full feedback is a special case and is given by:

CP (MF ) =

∫ ∞

0

log2(1 + ρx)d(FZ(x))K = I1(ρ,K). (2.16)

Remark: It is noteworthy to mention that the functional form of CP (M)

in (2.14) consists of two main parts. The first part, which involves P(U) and

ΘG−1(·, ·, ·, ·, ·), accounts for the randomness of the set of users who convey feedback

as well as the scheduling policy. This part is inherent to the heterogeneous partial

feedback strategy, and is independent of the system metric for evaluation, such as
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the average sum rate employed in this chapter. The second part I1(·, ·) depends

on statistical assumption of the underlying channel and the system metric, and it

is impacted by partial feedback as well.

2.3.2 Sum Rate Ratio and Best-M

We now examine how to determine the smallest M that results in almost

the same performance, in terms of average sum rate, as the full feedback case.

Applying the same technique as in [25, 29], define γP as the spectral efficiency

ratio and the problem can be formulated as:

Find the minimum M∗, s.t. γP =
CP (M∗)
CP (MF )

≥ γ. (2.17)

The above problem can be numerically solved by substituting the expressions

for CP (M) and CP (MF ). In order to obtain a simpler and tractable relation-

ship between M and K given η, i.e., the tradeoff between the amount of partial

feedback and the number of users given existing heterogeneity of channel statis-

tics in frequency domain, an approximation is utilized similar to that in [29],

by observing that I1(a, b) in (2.15) is slowly increasing in b with fixed a (This

phenomenon is due to the saturation of multiuser diversity [58]). Observing∑Φ(M,η,τ)
m=0 ΘG−1(N,M, η, τ ,m) = 1 and employing the binomial theorem yields

the approximation for the spectral efficiency ratio as:

γP � 1 −
(

1 − ηGM∗

N

)K

. (2.18)

From (2.17) and (2.18), the minimum required M∗ can be obtained as follows:

M∗ ≥ N

ηG

(
1 − (1 − γ)

1
K

)
. (2.19)

Remark: It can be seen that M∗ depends on the system parameters (N, K, γ) as

well on the largest subband size ηG. It is also a consequence of our heterogeneous

partial feedback assumption to let users in cluster Kg convey back the ηG

ηg
M best

CQI out of N
ηg

values. This results in the fact that obtaining feedback information

from users belonging to different clusters have almost the same statistical influence

on scheduling performance.
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2.4 Imperfect Feedback

After analyzing the heterogeneous partial feedback design with perfect feed-

back, we turn to examine the impact of feedback imperfections in this section. We

develop the imperfect feedback model due to channel estimation error and feed-

back delay in Section 2.4.1, and investigate the influence of imperfections on two

different transmission strategies in Section 2.4.2 and 2.4.3. Then we propose how

to optimize the system performance to adapt to the imperfections in Section 2.4.4.

2.4.1 Imperfect Feedback Model

The imperfect feedback model is built upon the subband fading model for

the perfect feedback case. To differentiate from the notation for the perfect feed-

back case and focus on the imperfect feedback model, the resource block index is

dropped. Let hk denote the frequency domain channel transfer function of user

k (users in different clusters are not temporally distinguished to avoid notational

overload). Due to channel estimation error, the user only has its estimated version

ĥk, and the relationship between hk and ĥk can be modeled as:

hk = ĥk + wk, (2.20)

where wk ∼ CN (0, σ2
wk

) is the channel estimation error. The channel of each re-

source block is assumed to be estimated independently, which yields the channel

estimation errors wk i.i.d. across users and resource blocks, i.e., wk ∼ CN (0, σ2
w).

It is clear that the base station makes decision on scheduling and adaptive trans-

mission depending on CQI, a function of ĥk. Thus this information can be outdated

due to delay between the instant CQI is measured and the actual instant of use for

data transmission to the selected user. Let h̃k be the actual channel transfer func-

tion and we employ a first-order Gaussian-Markov model [34, 36] to describe the

time evolution and to capture the relationship with the delayed version as follows:

h̃k = αk(ĥk + wk) +
√

1 − α2
kεk, (2.21)

where εk accounts for the innovation noise and is distributed as CN (0, 1). The

delay time between h̃k and ĥk is not explicitly written for notational simplicity, and
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αk ∈ [0, 1] is used to model the correlation coefficient. Since the feedback delay is

mainly caused by the periodic feedback interval and processing complexity [34], the

innovation noise εk are i.i.d. across users and a common α is assumed. Moreover,

wk and εk are assumed independent. Therefore, for notational simplicity, the user

index k in the aforementioned parameters is dropped and Ẑ � |ĥ|2 is denoted as

CQI.

Let χ̃, χ and χ̂ represent: the actual CQI of the selected user for transmis-

sion, its outdated version, and its outdated estimate respectively (χ̂ corresponds

to X for the perfect feedback case in Section 2.3.1). Notice that the PDF of

the outdated estimate χ̂ depends on the heterogeneous feedback design and the

scheduling strategy, whereas the conditional PDF of χ̃|χ̂ only depends on α and

σ2
w. Employing the same method in [35, 36], the conditional PDF is obtained as

follows:

fχ̃|χ̂(x|χ̂) =
α2

w

2
exp

(
−α2

wx + α2
wα2χ̂

2

)
I0(α

2
wα
√

χ̂x), (2.22)

where αw =
√

2
α2σ2

w+1−α2 , and I0(·) is the zeroth-order modified Bessel function of

the first kind [57].

Since the feedback is imperfect, there are two types of issues that arise.

The first is the choice of the incorrect user to serve. However, because of the

i.i.d nature of the errors this does not compromise the fairness and also does not

complicate the determination of the CDF. The second problem is that of outage

because the rate adaptation is made by the base station based on the erroneous

CQI. Because of the error in the CQI, the rate chosen may exceed the rate that the

channel can support and so the base station has to take steps to mitigate this effect

of outage. A conservative strategy will result in less outage but under utilization

of the channel while an aggressive strategy will result in good utilization of the

channel but only for a small fraction of the time. We now present two transmission

strategies to address the outage issue.
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2.4.2 Fix Rate Strategy

In the fix rate conservative scenario, a system parameter β0 is chosen for

rate adaptation, and outage results under the following condition:

Declare outage if : {χ̃ ≤ β0|χ̂}. (2.23)

The system average goodput is defined as the total average bps/Hz successfully

transmitted [32]. We derive the average goodput and average outage probability

for a given choice of system parameter β0 in the following procedure.

Firstly the conditional outage probability is expressed as:

P(χ̃ ≤ β0|χ̂) = 1 −Q1(αwα
√

χ̂, αw

√
β0), (2.24)

where Q1(a, b) =
∫∞

b
t exp(− t2+a2

2
)I0(at)dt is the first-order Marcum-Q function

[59]. Denote R0(β0,M) as the average goodput for the heterogeneous partial feed-

back system, which is written according to definition:

R0(β0,M) = EU
[
Eχ̂|U [P(χ̃ ≥ β0|χ̂) log2(1 + ρβ0)]

]
. (2.25)

Then, from (2.9) and (2.14), R0(β0,M) can be computed as:

R0(β0,M)

= EU

⎡
⎣Φ(M,η,τ)∑

m=0

ΘG−1(N, M, η, τ ,m)

×
∫ ∞

0

Q1(αwα
√

x, αw

√
β0) log2(1 + ρβ0)d(FẐ(x))

∑G
g=1

N
ηg

τg−m

]

=
∑
τ �=0

P(U)

Φ(M,η,τ)∑
m=0

ΘG−1(N,M, η, τ ,m)

× log2(1 + ρβ0)I2

(
β0,

G∑
g=1

N

ηg

τg − m

)
, (2.26)

where I2(a, b) �
∫∞
0

Q1(αwα
√

x, αw

√
a)d(FẐ(x))b. I2(a, b) is computed in Ap-

pendix B to be:

I2(a, b) =
2b

(1 − σ2
w) ln 2

b−1∑
�=0

(
b − 1




)
(−1)� 1

ζ�

×
(

exp(−ϑ2

2
) + exp(− ζ�ϑ

2

2(�2 + ζ�)
)(1 − exp(− �2ϑ2

2(�2 + ζ�)
))

)
, (2.27)
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where � = αwα, ϑ = αw

√
a, ζ� = 2(�+1)

1−σ2
w

.

The average outage probability P0(β0,M) for the heterogeneous partial

feedback design can be directly calculated from definition and (2.26) as follows:

P0(β0,M) = EU
[
Eχ̂|U [P(χ̃ ≤ β0|χ̂)]

]
=
∑
τ �=0

P(U)

Φ(M,η,τ)∑
m=0

ΘG−1(N, M, η, τ ,m)

×
(

1 − I2

(
β0,

G∑
g=1

N

ηg

τg − m

))
. (2.28)

The average goodput and average outage probability for the full feedback

scenario is a special case and is given by:

R0(β0,MF ) = log2(1 + ρβ0)I2(β0, K),

P0(β0,MF ) = 1 − I2(β0, K). (2.29)

2.4.3 Variable Rate Strategy

Instead of choosing a conservative system parameter to account for the fix

rate scenario as in the previous subsection, we consider an approach we refer to as

the variable rate strategy. In the variable rate scenario, a system parameter β1 is

chosen and outage results under the following condition:

Declare outage if : {χ̃ ≤ β1χ̂|χ̂}, (2.30)

where β1 can be regarded as the backoff factor. The system average goodput and

average outage probability can be derived utilizing the following procedure.

Now under the variable rate scenario, the conditional outage probability is

expressed as:

P(χ̃ ≤ β1χ̂|χ̂) = 1 −Q1(αwα
√

χ̂, αw

√
β1χ̂). (2.31)

Using the same method as (2.25) and (2.26), let R1(β1,M) denote the average
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goodput for the variable rate scenario whose expression can be written as follows:

R1(β1,M) = EU
[
Eχ̂|U [P(χ̃ ≥ β1χ̂|χ̂) log2(1 + ρβ1χ̂)]

]
=
∑
τ �=0

P(U)

Φ(M,η,τ)∑
m=0

ΘG−1(N,M, η, τ ,m)

× I3

(
β1,

G∑
g=1

N

ηg

τg − m

)
, (2.32)

where I3(a, b) �
∫∞

0
Q1(αwα

√
x, αw

√
ax) log2(1 + ρax)d(FẐ(x))b.

For the full feedback case, the average goodput is given by:

R1(β1,MF ) = I3(β1, K). (2.33)

Note that unlike I2(a, b), I3(a, b) can not be written in closed form. There-

fore, bounding technique and suitable approximation are attractive to find closed

form alternatives for I3(a, b). The following proposition presents a valid closed

form upper bound for I3(a, b) in the low SNR regime.

Proposition 2.1. In the low SNR regime, I3(a, b) can be efficiently upper bounded

by:

IUB
3 (a, b) =

4ρab

(1 − σ2
w) ln 2

b−1∑
�=0

(−1)� 1

ζ2
�

(
1 +

ϑ2

ϕ�

(
�2

ϕ�

× 2F1

(
1,

3

2
; 2;

4�2ϑ2

ϕ2
�

)
− 2F1

(
1

2
, 1; 1;

4�2ϑ2

ϕ2
�

)

+
2ζ�

ϕ�

(
�2

ϕ�
2F1

(
3

2
, 2; 2;

4�2ϑ2

ϕ2
�

)
− 1

2
2F1

(
1,

3

2
; 1;

4�2ϑ2

ϕ2
�

))))
, (2.34)

where � = αwα, ϑ = αw

√
a, ζ� = 2(�+1)

1−σ2
w

, ϕ� = �2 + ϑ2 + ζ�, and 2F1(·, ·; ·; ·) is the

Gaussian hypergeometric function [57].

Proof. The proof is provided in Appendix B.

IUB
3 (a, b) is valid and tight especially for the low SNR regime. In order to

track I3(a, b) over the whole SNR regimes, we propose the following approximation

method by leveraging Jensen’s inequality [60]. Recall the definition of I3(a, b) =
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E[Q1(αwα
√

χ̌, αw

√
aχ̌) log2(1 + ρaχ̌)], where the random variable χ̌ is defined to

have CDF (FẐ(x))b. Firstly, E[χ̌] can be computed and is given by:

E[χ̌] =

∫ ∞

0

x
b

1 − σ2
w

b−1∑
�=0

(
b − 1




)
(−1)� exp

(
−(
 + 1)x

1 − σ2
w

)
dx

=
b

1 − σ2
w

b−1∑
�=0

(
b − 1




)
(−1)�

(
1 − σ2

w


 + 1

)2

. (2.35)

Then plugging (2.35) into Q1(αwα
√

x, αw

√
ax) log2(1 + ρax) yields:

IA
3 (a, b) = Q1

(
αwα

√
E[χ̌], αw

√
aE[χ̌]

)
log2(1 + ρaE[χ̌]). (2.36)

Note that IA
3 (a, b) would serve as an upper bound from Jensen’s inequality if

the function of interest Q1(αwα
√

x, αw

√
ax) log2(1+ρax) was concave in x. Prop-

erties of this function such as monotonicity and concavity are of interest and lead

to rigorous arguments in support of this bound. If outage does not occur, extensive

analysis can be carried out due to the well known properties of the log(·) function.

However, the concavity (or log-concavity) of Q1(αwα
√

x, αw

√
β1x) in x (notice that

x appears in both entries of Q1(·, ·)) still remains an important open problem [61].

Our numerical evidence suggests that Q1(αwα
√

x, αw

√
β1x) log2(1 + ρβ1x) is con-

cave and monotonically increasing in x for practical choices of β1. For any given β1

preserving the aforementioned property, Jensen’s inequality yields an upper bound,

whose tightness is of interest and discussed in the following proposition. The word

practical is used to exclude the situation when β1 approaches its maximum 1 which

in turn enables Q1(·, ·) to dominate the goodput to incur extreme outage. This

makes intuitive sense according to the definition of average goodput.

Proposition 2.2. Let {χ̌b} be the family of positive i.i.d. random variables. If

Q1(αwα
√

x, αw

√
β1x) log2(1 + ρβ1x) is concave and monotonically increasing in x

for any given β1, then the Jensen bound is asymptotically tight, i.e., as b → ∞,

E[Q1(αwα
√

χ̌b, αw

√
β1χ̌b) log2(1 + ρβ1χ̌b)]

Q1(αwα
√

E[χ̌b], αw

√
β1E[χ̌b]) log2(1 + ρβ1E[χ̌b])

→ 1. (2.37)

Proof. The proof is provided in Appendix B.
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Figure 2.3: Calculating the average goodput from numerical evaluation (M =
2, 4, 16) and Jensen approximation (M = 16) for the variable rate scenario under
different ρ.

Nonetheless, when the aforementioned property is not preserved (e.g., β1

approaches 1), Jensen’s inequality does not hold but the expression has been exper-

imentally found to be a good approximation and so can still be used. Therefore,

(2.36) is denoted as Jensen approximation. We conduct a numerical study and

demonstrate the tightness of Jensen approximation in Fig. 2.3. It is observed that

the approximation method is very tight for moderate (even small) number of users

and for all values of β1 ∈ [0, 1], which shows its potential in accurately tracking

the performance of average goodput.

Now we calculate the average outage probability. Since it does not involve
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the log(·) function, it can be computed into closed form as follows:

P1(β1,M) = EU
[
Eχ̂|U [P(χ̃ ≤ β1χ̂|χ̂)]

]
=
∑
τ �=0

P(U)

Φ(M,η,τ)∑
m=0

ΘG−1(N, M, η, τ ,m)

×
(

1 − I4

(
β1,

G∑
g=1

N

ηg

τg − m

))
, (2.38)

where

I4(a, b) �
∫ ∞

0

Q1(αwα
√

x, αw

√
ax)d(FẐ(x))b

(a)
=

2b

(1 − σ2
w)

b−1∑
�=0

(
b − 1




)
(−1)�

×
∫ ∞

0

Q1(αwαx, αw

√
ax) exp

(
−(
 + 1)x2

1 − σ2
w

)
xdx

(b)
=

b

(1 − σ2
w)

b−1∑
�=0

(
b − 1




)
(−1)� 1

ζ�

(
1 +

ψ�

ς�

)
, (2.39)

� = αwα, ϑ = αw

√
a, ζ� = 2(�+1)

1−σ2
w

, ϕ� = �2 + ϑ2 + ζ�, ψ� = �2 − ϑ2 + ζ�,

ς� =
√

ϕ2
� − 4�2ϑ2. (a) follows from change of variables; (b) follows from applying

[62, B.48].

In the case of full feedback, the average outage probability P1(β1,MF ) be-

comes:

P1(β1, MF ) = 1 − I4(β1, K). (2.40)

2.4.4 Optimization and Adaptation to Imperfections

We have obtained the relationship between the system parameter (β0 or

β1) and the system average goodput, and we now aim to maximize the average

goodput by adapting the system parameters.

Consider the optimization of R1(β1, M) to obtain the optimal backoff factor

β∗
1 . It is observed from (2.32) that directly optimizing R1(β1,M) is tedious, and a

near-optimal method is now proposed to obtain β∗
1 . This method is inspired by the

results in Section 2.3.2, which show that the minimum required M∗ can be chosen
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to achieve almost the same performance as a system with full feedback. Thus an

optimal β∗
1 for the full feedback scenario can be optimized first, and then M∗ is

obtained to “match” the system performance. Looking again at Fig. 2.3 with

emphasis on different number M of partial feedback, as M gets larger, the optimal

β1 converges to the full feedback case. In this example, M∗ = 4 is adequate to

match the system performance. It is noteworthy to mention that this adaptation

philosophy can be applied to partial feedback systems wherein system parameters

are optimized according to full feedback assumption first and minimum required

partial feedback is chosen subsequently.

Note that a closed form approximation has been obtained to track R1(β1,MF )

in Section 2.4.3, which is denoted as RA
1 (β1,MF ) � IA

3 (β1, K). The following

proposition demonstrates the optimal property of β1 when optimizing RA
1 (β1,MF ).

Proposition 2.3. There exists a unique global optimal β1 maximizing RA
1 (β1,MF ).

Proof. The proof is provided in Appendix B.

From the above analysis, the optimization strategy can be described as:

β∗
1 = arg max

0≤β1≤1
RA

1 (β1, MF ) � arg max
0≤β1≤1

R1(β1,MF ). (2.41)

Since it is proved in Proposition 2.3 that RA
1 (β1,MF ) is quasiconcave [60] in β1,

numerical approach such as Newton-Raphson method can be applied to obtain β∗
1 .

As discussed before, once β∗
1 is found, the minimum required M∗ can be obtained

by solving (2.17) or relying on (2.19).

The same strategy can be carried over to the optimization of β0, which is

presented as follows:

β∗
0 = arg max

β0

R0(β0,MF ). (2.42)

The impact of imperfections on system parameter adaptation, and the compari-

son between the fixed rate and variable rate strategies will be examined through

simulations in Section 2.5.2.
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Figure 2.4: Comparison of the required minimum M between numerically solving
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2.5 Numerical Results

In this section, we conduct a numerical study to verify the results developed

and to draw some insight.

2.5.1 Perfect Feedback Scenario

The number of resource blocks N is assumed to be 64 for simulations

throughout this section. We first consider a 2-cluster system. Fig. 2.4 plots the

minimum required M obtained by directly solving (2.17) and alternatively by the

approximation (2.19) for two thresholds: γ = 0.99 and 0.9. Note that the result

from (2.19) is rounded with the ceiling function since the required M is an integer.

The other simulation parameters are η = (1, 4) (i.e., MF = 16), and ρ = 10 dB.
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It is observed that the results from the approximate expression matches quite well

with the exact computation. The question of whether the required M is sensitive

to the partition of users in the system is examined in Fig. 2.5 wherein the ratio

of the number of users in cluster K1 is changed and the minimum required M is

depicted for different total number of users with threshold γ = 0.99. Interestingly,

the result turns out to be “uniform”. As discussed in Section 2.3, it is due to the

heterogenous feedback design assumption to let users in cluster K1 consume ηG

η1
M

(4M in this simulation) feedback which results in the fact that obtaining feedback

information from users belonging to different clusters have almost the same influ-

ence on scheduling performance. Therefore, the representative simulation setup

Kg = K/G can be employed when the system performance metric is investigated

with respect to the total number of users.

We now consider a 4-cluster system with subband size vector η = (1, 2, 4, 8)
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Figure 2.6: Comparison of the average sum rate for a 4-cluster system under
different feedback strategies with respect to the number of users.

(i.e., MF = 8). Fig. 2.6 demonstrates the benefit of using heterogeneous feedback

design. One of the competing strategies is also heterogeneous, but treats users from

each cluster separately. In particular, the system firstly clusters the users based on

their channel statistics, and then serves the clusters one by one requiring feedback

only from the served cluster of users. In this way, the feedback amount is varying

over time depending on the partition of users. This strategy is denoted as separate

heterogeneous feedback compared to our joint heterogeneous feedback design. The

other competing strategies are homogeneous without taking advantage of the chan-

nel statistics of different users. To maintain at least the same feedback amount

for fair comparison, each user in the homogeneous case is assumed to feed back


∑G
g=1

ηG

ηg

M
G
� CQI values. Two subband sizes are assumed for the homogeneous

feedback. It is clear that for the homogeneous case, users in cluster K1 have more

independent feedback while users in cluster K4 suffer from redundant feedback.
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The average sum rate for two different values of M are shown in Fig. 2.6. The

separate heterogenous feedback is observed to have the worst performance from a

sum rate perspective because it does not fully exploit multiuser diversity, but it

consumes the least feedback. Our joint heterogenous feedback design is shown to

perform much better than the two homogeneous strategies for the 4-cluster system.

It is due to the fact that by considering the existing heterogeneity among users,

the proposed heterogeneous design can make the best use of the degrees of freedom

in the frequency domain in order to enhance the system performance as well as

reduce feedback needs.
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2.5.2 Imperfect Feedback Scenario

Fig. 2.7 and Fig. 2.8 exhibit the comparison between the fix rate and

variable rate outage scenarios as well as the effect of the number of users on the

optimization of β0 and β1. In order to show the system performance of the two

scenarios in one figure, a normalized parameter β is defined. While examining the

variable rate plots β = β1, and when considering the fixed rate plots β = β0/10.

The system parameters are: α = 0.98, σ2
w = 0.01, and ρ = 10 dB. It can be

seen that for both scenarios, larger number of users K yields better system per-

formance, i.e., higher average goodput and lower average outage probability. This

is a consequence of increased multiuser diversity gain to combat the imperfections

in the feedback system.

Fig. 2.9 and Fig. 2.10 illustrate the effect of channel estimation error σ2
w
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Figure 2.9: The optimal fix rate parameter β0 with respect to channel estimation
error (σ2

w) and feedback delay (α).

and feedback delay α on the optimal value of β0 and β1. Here σ2
w is varied from

0 to 0.1, and α is varied from 0.9 to 0.99 in steps of 0.005. It can be observed

from the changing profiles that both the optimal values of β0 and β1 get smaller as

the imperfections become worse. Therefore, the system should adjust the system

parameters to adapt to the encountered imperfections.

Now we consider the adaptation of system parameters (β0 or β1) and partial

feedback in a 4-cluster heterogeneous feedback system. The system parameters

are: η = (1, 2, 4, 8), α = 0.98, σ2
w = 0.01, and ρ = 10 dB. For both transmission

strategies and for a given number of users K, the optimal value of β∗
0 or β∗

1 is first

optimized according to the full feedback case discussed in Section 2.4.4. Then, a

minimum required M∗ is obtained by matching the system performance to that

in the full feedback case. Fig. 2.11 demonstrates the average goodput for both

transmission strategies with M∗ and β∗
0 (or β∗

1). We observe that there is almost
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Figure 2.10: The optimal variable rate parameter β1 with respect to channel
estimation error (σ2

w) and feedback delay (α).

a constant performance gain for the variable rate strategy compared with the fix

rate one. This is due to the fact that for the variable rate scenario, the system

is adapting the transmission parameters conditioned on the past memory even if

it is the outdated one. If the channel estimation error and feedback delay are

not severe, the imperfections can be compensated by multiplying with the backoff

factor and relying on the past feedback.

2.6 Conclusion

In this chapter, we propose and analyze a heterogeneous feedback design

adapting the feedback resource according to users’ frequency domain channel statis-

tics. Under the general correlated channel model, we demonstrate the gain by

achieving the potential match among coherence bandwidth, subband size and par-
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0 and β∗
1 .

tial feedback. To facilitate statistical analysis, we employ the subband fading

model for the multi-cluster heterogeneous feedback system. We derive a closed

form expression of the average sum rate under perfect partial feedback assump-

tion, and provide a method to obtain the minimum heterogeneous partial feedback

required to obtain performance comparable to a scheme using full feedback. We

also analyze the effect of imperfections on the heterogeneous partial feedback sys-

tem. We obtain a closed form expression for the average goodput of the fix rate

scenario, and utilize a bounding technique and tight approximation to track the

performance of the variable rate scenario. Methods adapting the system param-

eters to maximize the average system goodput are proposed. The heterogeneous

feedback design is shown to outperform the homogeneous one with the same feed-

back resource. With imperfections, the system adjusting the transmission strategy

and the amount of partial feedback is shown to yield better performance. The
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developed analysis provides a theoretical reference to understand the approximate

behavior of the proposed heterogeneous feedback system and its interplay with

practical imperfections.

The text of this chapter, in part, is a reprint of the paper [63], Y. Huang

and B. D. Rao, “Performance analysis of heterogeneous feedback design in an

OFDMA downlink with partial and imperfect feedback”, IEEE Transactions on

Signal Processing, accepted, to appear, 2012. The dissertation author is the primary

researcher and author, and the co-author listed in this publication directed and

supervised the research which forms the basis of this chapter.

2.7 Appendices

2.7.1 Appendix A

Proof of Lemma 2.1: The methodology is an extension of the work in [29]

which deals with the homogeneous feedback case with one cluster of users and one

specific subband size.

Let F
Y

(g)
k

denote the CDF of Y
(g)
k � Y

(g)
k,r . Substituting the subband size N

ηg

and the number of reported CQI ηG

ηg
M for user k in cluster Kg makes F

Y
(g)
k

satisfy

(2.6). It can be shown that F
Ỹ

(g)
k

(x) = P(Ỹ
(g)
k,n ≤ x) = P(Y

(g)
k,� n

ηg
� ≤ x) = F

Y
(g)
k

(x),

which concludes the proof.

Proof of Theorem 2.1: Substituting the expressions of F
Ỹ

(g)
k

from Lemma

2.1 and combining (2.10) yield:

FXn|Un(x) = (FZ(x))
∑G

g=1
N
ηg

τg

×
G∏

g=1

⎛
⎜⎝

ηG
ηg

M−1∑
m=0

ξg(N, M, η, 0)

(FZ(x))m

⎞
⎟⎠

τg

. (2.43)

Applying [64, 0.314] to a finite-order power series in (2.43), the expres-

sion

(∑ ηG
ηg

M−1

m=0
ξg(N,M,η,0)

(FZ(x))m

)τg

can be written as
∑τg(

ηG
ηg

M−1)

m=0
Λg(N,M,η,τ ,m)

(FZ(x))m , where

the expression for Λg(N,M, η, τ ,m) is described in Theorem 2.1. Note that the

coefficients of 1
(FZ(x))m can be computed in a recursive manner.
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Then we employ [64, 0.316] for the multiplication of power series. For g = 1,

Θ1(N,M, η, τ ,m) can be calculated from Λ1(N, M, η, τ ,m) and Λ2(N, M, η, τ ,m)

as:

Θ1(N,M, η, τ ,m) =
m∑

i=0

Λ1(N,M, η, τ , i)

× Λ2(N, M, η, τ ,m − i).

For 2 ≤ g < G, Θg(N,M, η, τ ,m) can be computed from Θg−1(N, M, η, τ ,m) and

Λg+1(N,M, η, τ ,m) in the following manner:

Θg(N, M, η, τ ,m) =
m∑

i=0

Θg−1(N,M, η, τ , i)

× Λg+1(N, M, η, τ ,m − i).

This concludes the proof.

Derivation of I1(a, b): From the definition of Z, FZ(x) = 1 − exp(−x) and

fZ(x) = exp(−x). Thus:

d(FZ(x))b = b(FZ(x))b−1fZ(x)dx

= b

b−1∑
�=0

(
b − 1




)
(−1)� exp(−(
 + 1)x)dx,

where the last equality follows from the binomial theorem.

Therefore,

∫ ∞

0

log2(1 + ax)d(FZ(x))b =
b

ln 2

b−1∑
�=0

(
b − 1




)
(−1)�

×
∫ ∞

0

ln(1 + ax) exp(−(
 + 1)x)dx.

Applying [64, 4.337.2] yields (2.15).

2.7.2 Appendix B

Derivation of I2(a, b): From the definition of Ẑ, it can be shown that

FẐ(x) = 1 − exp(− 1
1−σ2

w
x) and fẐ(x) = 1

1−σ2
w

exp(− 1
1−σ2

w
x). Then I2(a, b) can be
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calculated as:

I2(a, b)

(a)
=

2b

(1 − σ2
w) ln 2

b−1∑
�=0

(
b − 1




)
(−1)�

×
∫ ∞

0

Q1(αwαx, αw

√
a) exp

(
−(
 + 1)x2

1 − σ2
w

)
xdx

(b)
=

2b

(1 − σ2
w) ln 2

b−1∑
�=0

(
b − 1




)
(−1)� 1

ζ�

×
(
Q1(0, ϑ) + exp(− ζ�ϑ

2

2(�2 + ζ�)
)(1 −Q1(0,

�ϑ√
�2 + ζ�

))

)

(c)
=

2b

(1 − σ2
w) ln 2

b−1∑
�=0

(
b − 1




)
(−1)� 1

ζ�

×
(

exp(−ϑ2

2
) + exp(− ζ�ϑ

2

2(�2 + ζ�)
)(1 − exp(− �2ϑ2

2(�2 + ζ�)
))

)
, (2.44)

where � = αwα, ϑ = αw

√
a, ζ� = 2(�+1)

1−σ2
w

. (a) is obtained by substituting the

expression of d(FẐ(x))b and using change of variables; (b) follows from applying [62,

B.18]; (c) follows from using the fact that Q1(0, ϑ) = exp(−ϑ2

2
).
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Proof of Proposition 2.1:

I3(a, b)

(a)
=

b

(1 − σ2
w) ln 2

b−1∑
�=0

(
b − 1




)
(−1)�

×
∫ ∞

0

Q1(αwα
√

x, αw

√
ax) ln(1 + ρax) exp

(
−(
 + 1)x

1 − σ2
w

)
dx

(b)
<

2ρab

(1 − σ2
w) ln 2

b−1∑
�=0

(
b − 1




)
(−1)�

×
∫ ∞

0

Q1(αwαx, αw

√
ax) exp

(
−(
 + 1)x2

1 − σ2
w

)
x3dx

(c)
=

4ρab

(1 − σ2
w) ln 2

b−1∑
�=0

(−1)� 1

ζ2
�

(
1 +

ϑ2

ϕ�

(
�2

ϕ�

× 2F1

(
1,

3

2
; 2;

4�2ϑ2

ϕ2
�

)
− 2F1

(
1

2
, 1; 1;

4�2ϑ2

ϕ2
�

)

+
2ζ�

ϕ�

(
�2

ϕ�
2F1

(
3

2
, 2; 2;

4�2ϑ2

ϕ2
�

)
− 1

2
2F1

(
1,

3

2
; 1;

4�2ϑ2

ϕ2
�

))))
, (2.45)

where � = αwα, ϑ = αw

√
a, ζ� = 2(�+1)

1−σ2
w

, ϕ� = �2 + ϑ2 + ζ�, and 2F1(·, ·; ·; ·) is

the Gaussian hypergeometric function [57]. (a) is obtained by substituting the

expression of d(FẐ(x))b; (b) follows from the fact that when ρ � 1, ρax is a tight

upper bound for ln(1 + ρax); note that change of variables are used; (c) follows

from applying [62, B.60].

Proof of Proposition 2.2: Define s(χ̌b) � Q1(αwα
√

χ̌b, αw

√
β1χ̌b) log2(1 +

ρβ1χ̌b)]. Firstly it must be shown that s(χ̌b)
s(E[χ̌b])

converges to 1 in probability. For

∀ε > 0, it is now shown that:

P

(∣∣∣∣ s(χ̌b)

s(E[χ̌b])
− 1

∣∣∣∣ ≥ ε

)
=P

(∣∣∣∣s(χ̌b) − s(E[χ̌b])

s(E[χ̌b])

∣∣∣∣ ≥ ε

)
(a)

≤ P

(
s(|χ̌b − E[χ̌b]|)

s(E[χ̌b])
≥ ε

)
(b)→ 0, (2.46)

where (a) follows from the concave and monotonically increasing property of s(·):
|s(x)− s(y)| < s(|x− y|); (b) follows from the asymptotic scaling rate of E[χ̌b] and

|χ̌b−E[χ̌b]|, and the utilization of the Chebyshev’s inequality. From extreme value
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theory and asymptotic analysis of order statistics [56,58], it is known that the tail

behavior of χ̌b converges to type 3 Gumbel distribution, which enables E[χ̌b] to

scale as log b and |χ̌b − E[χ̌b]| to scale as log log b.

Then a method similar to that in [17] can be employed to prove the uni-

formly integrable property [65] of s(χ̌b)
s(E[χ̌b])

. By combining the above property along

with the convergence in probability leads to convergence in the mean [65], which

concludes the proof.

Proof of Proposition 2.3: It must be shown that the following defined func-

tion IA
3 (β1, K) = Q1

(
αwα

√
E[χ̌], αw

√
β1E[χ̌]

)
log2(1 + ρβ1E[χ̌]) is strictly quasi-

concave in β1.

This property can be proved by log-concavity [60]. It is shown in [61, 66]

that Q1(
√

a,
√

b) is log-concave in b ∈ [0,∞) for a ≥ 0. Also, log(1 + b) is concave

thus log-concave in b ∈ [0,∞). Since log-concavity is maintained in multiplication,

Q1(
√

a,
√

b) log(1+b) is log-concave in b ∈ [0,∞). From the definition of IA
3 (β1, K),

it is now proved to be log-concave in β1 ∈ [0,∞) since E[χ̌] is irrelevant to β1.

Therefore, it is quasiconcave in β1 ∈ [0,∞) because log-concave functions are also

quasiconcave.

In addition, it is clear that lim
β1→0

IA
3 (β1, K) = 0. Also, it is now shown that:

0 ≤ lim
β1→∞

IA
3 (β1, K)

(a)

≤ lim
β1→∞

exp

(
−(αw

√
β1E[χ̌] − αwα

√
E[χ̌])2

2

)

× log2(1 + ρβ1E[χ̌])

(b)
= lim

β1→∞
ρ

2α2
w ln 2

1

(1 + ρβ1E[χ̌])
(
1 − α√

β1

)

× exp

(
−(αw

√
β1E[χ̌] − αwα

√
E[χ̌])2

2

)
= 0, (2.47)

where (a) follows from the upper bound Q1(a, b) ≤ exp
(
− (b−a)2

2

)
for b > a ≥ 0

[62]; (b) follows from applying L’Hospital’s rule. Therefore, there exists a unique

global optimal β1 which maximizes IA
3 (β1, K).



Chapter 3

Analytical Framework for

Heterogeneous Feedback Being

Aware of User Densities

3.1 Introduction

The growing dependence of users on wireless services will require wire-

less systems to become ubiquitous and offer seamless support. The demands

of video and other high data rate applications have placed increasing require-

ments on networks to support high data rate services in a cost effective manner

leading to heterogeneous networks. With the advent of OFDMA-based hetero-

geneous networks [67, 68] which incorporate lower power pico [69, 70], femto base

stations [71–73], and fixed relays [74–76] to coexist with the traditional macrocell,

the spectrum reuse has grown aggressively to full usage pattern across different

tiers [77] of the heterogeneous structure. One challenging feature of heterogeneous

networks is the self-created “cell edges” within the macrocell, which requires ad-

vanced techniques both in theory and in practice to model [78], manage [79], and

even make use of the cross-tier intercell interference. Among the recent approaches

that have been developed such as subcarrier allocation and power control to care-

fully adapt the system resource in a centralized way [80–82], and utilization of

44
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spatial domain for cooperative multicell processing to cancel, coordinate, and align

the interference [83–88], a significant impediment is the NP-hardness of the prob-

lem [89], the limited resource constraints, as well as the need for extensive backhaul

capability. These challenges favor the development of distributed solutions. All

the aforementioned techniques in the downlink assume the availability of channel

state information at the transmitter (CSIT) via feedback1 [1] to adapt the net-

work transmission strategy to the varying wireless environment. With the rapidly

growing number of wireless users, the amount of feedback for the OFDMA-based

networks may become prohibitive which motivates the design of efficient feedback

schemes without significantly degrading system performance.

In addition to the usual challenges, there are two new issues that arise

when investigating partial feedback in heterogeneous networks. Firstly, due to the

different locations of the users and different ranges of transmit powers, users’ large

scale channel effects are highly asymmetric. Therefore, it is equally important to

guarantee fairness among users as well as leveraging multiuser diversity [15, 16]

in an opportunistic scheduling framework. Secondly, since the number of users

or user densities are diverse in a heterogeneous network, it would be beneficial to

adapt the feedback and require less feedback when a serving base station has more

users associated with it. We refer to this methodology as heterogeneous partial

feedback2 and we aim to provide an analytical framework to identify its benefits

under a fair and distributed opportunistic scheduling policy to fulfill the vision of

location awareness [14,90] and situational awareness.

The first step towards examining the aforementioned issues is developing

an opportunistic scheduling policy, which exploits multiuser diversity and also

preserves scheduling fairness among heterogeneous users. Traditional scheduling

policies such as round robin strategy [91] and greedy strategy [15] are easy to im-

plement, yet only achieve one of the desired features. In this chapter, we consider a

1For the purpose of scheduling or optimization in a multicell network, the feedback is often
needed in a frequency division duplex (FDD) system, or in a time division duplex (TDD) system
when the channel reciprocity can not be observed due to intercell interference or duplexing time
delay.

2Note that achieving adaptive feedback according to the number of users, the users’ channel
condition, and users’ data rate requirements etc is an important issue in practical systems such
as LTE [21,37].
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system that employs the cumulative distribution function (CDF) based scheduling

policy [92, 93]. According to the basic CDF-based scheduling strategy, an user is

selected whose rate is high enough, but least probable to grow higher. Therefore,

this scheduling strategy possesses properties similar to the proportional fair sched-

uler [16,24,94–96], and additionally enables a user’s rate to be independent of the

statistics of other users. Herein, the CDF-based scheduling policy is analyzed for

a general OFDMA downlink in a multicell environment to examine heterogeneous

partial feedback design. Currently, in an OFDMA-based system which groups sub-

carriers into resource blocks [6, 19, 36] to form the basic scheduling and feedback

unit, two partial feedback strategies are appealing: the thresholding-based partial

feedback [17,18,20] and the best-M partial feedback [22,23,25,27–29,97]. The lat-

ter strategy, which is considered in practical systems such as LTE [21,37], requires

the users to order and convey the M best channels. Herein, we employ the best-M

partial feedback strategy for further analysis. Intuitively, M would be chosen to

be small when the user density in a given cell is large, which motivates the utiliza-

tion of heterogeneous feedback resource across different cells in the heterogeneous

networks.

Rigorous development of the analytical framework requires investigation

of the interplay between the scheduling policy, partial feedback, and the statisti-

cal property of the user’s signal-to-interference-plus-noise ratio (SINR). There are

limited results available in the literature on this topic and the available results

analyzing the best-M partial feedback are for the single cell scenario without in-

tercell interference [22, 23, 25, 27–29]. A detailed treatment of the best-M partial

feedback is provided in [29] and a convenient polynomial form for the CDF of

selected user’s SINR is presented for analytical evaluation. Though it is derived

for the single cell scenario, it forms the building block for our heterogeneous net-

work analysis which takes into account the cross-tier intercell interference. In this

chapter, the analytical framework is treated first from the perspective of exact

system performance. We derive the closed form expression for the sum rate with

the CDF-based scheduling policy and best-M partial feedback strategy. One key

technique developed and utilized is the decomposition of the probability density
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function (PDF) of the selected user’s SINR, which is amenable for further integra-

tion needed to determine system performance. The derived closed form results are

directly applicable to further system evaluation.

In order to gain additional insight, we investigate the system performance

from the asymptotic perspective utilizing extreme value theory [56, 98] when the

number of users in a given cell grows large [58, 99–103]. Different from the spe-

cial case of full feedback, examining the general best-M partial feedback incurs

additional difficulties due to the two-stage maximization resulting from partial

feedback and scheduling policy, with the first stage maximization being performed

at the user side to provide selective feedback and the second stage maximization

being performed at the scheduler side for user selection. Herein, we analyze the

tail behavior of the selected user’s SINR and establish the type of convergence in

order to examine the effect of partial feedback on the randomness of multiuser di-

versity, show the optimality of best-1 feedback in the asymptotic sense, and more

importantly, provide the asymptotic approximation for the sum rate of the gen-

eral best-M partial feedback. The established asymptotic results further help in

analytically tracking and determining the minimum required partial feedback.

To summarize, the contributions of this chapter are threefold: a concep-

tual framework for situational-aware heterogeneous partial feedback design in an

OFDMA-based heterogeneous multicell network, a thorough analysis and deriva-

tion of closed form results for the sum rate, and a detailed investigation of the

partial feedback based on extreme value theory. All these contributions foster

the understanding of heterogeneous feedback design in future systems. Further-

more, the analytical tools developed promise to have broad applicability and can

be applied to many related problems. The remainder of the chapter is organized

as follows. The system model is provided in Section 3.2. The general treatment

without specific channel models is examined in Section 3.3. By assuming standard

channel models, Section 3.4 carries out exact performance analysis, and Section

3.5 presents asymptotic analysis. Numerical results are provided in Section 3.6,

and Section 3.7 concludes the chapter.
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3.2 System Model

We consider the downlink of an OFDMA-based heterogeneous network. The

model assumed is generic and sufficiently general to be applicable to a multitier

multicell network3, e.g., see Fig. 3.1 for illustration. The system consists of N

resource blocks, with one resource block as the basic feedback and scheduling

unit. Full spectrum reuse is assumed and it is also assumed that there is no

advanced technique employed to suppress interference such as multiuser detection

at the receiver side. The process of cell association is assumed to be performed in

advance. Without loss of generality, one base station B0 from the base station set

B and its associated users K0 = {1, . . . , k, . . . , K0} with |K0| = K0 are considered.

The received signal y
(0)
k,n of user k at resource block n is represented by

y
(0)
k,n =

√
G

(0)
k H

(0)
k,ns

(0)
k,n +

Jk∑
b=1

√
G

(b)
k H

(b)
k,ns(b)

n + v
(0)
k,n, k ∈ K0, (3.1)

where the superscript indicates the base station, i.e., the serving cell and the

interfering cells; Jk denotes the number of effective interfering cells for user k, with

the influence of other interfering cells, namely the residual interference, included

in the additive white noise v
(0)
k,n distributed with CN (0, σ2

k). s
(0)
k,n and s

(b)
n are the

transmitted symbols by the serving cell and the interfering cell Bb with E
[
|s(0)

k,n|2
]

=

p(0) and E
[
|s(b)

n |2
]

= p(b). H
(0)
k,n and H

(b)
k,n, which are assumed to be independent

across users and resource blocks4, denote the small scale frequency domain channel

transfer function between the serving cell and user k at resource block n, and

between the interfering cell Bb and user k at resource block n, respectively. G
(0)
k

and G
(b)
k represent the large scale channel gain between the serving cell and user

k, and between the interfering cell Bb and user k respectively. Based on the

aforementioned assumption, the SINR of user k at resource block n can be written

as

SINR
(0)
k,n =

G
(0)
k p(0)|H(0)

k,n|2∑Jk

b=1 G
(b)
k p(b)|H(b)

k,n|2 + σ2
k

=
ρ

(0)
k |H(0)

k,n|2∑Jk

b=1 ρ
(b)
k |H(b)

k,n|2 + 1
, (3.2)

3The special case with one picocell inside a macrocell under symmetric large scale channel
effects is studied in [104].

4This assumption corresponds to the frequency domain block fading channel model [19,28,29]
due to its simplicity and capability to provide a good approximation to actual physical channels.
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Figure 3.1: Illustration of a generic OFDMA-based multicell heterogeneous cel-
lular networks. Each cell has users associated with it. One selected user for
transmission in one resource block is shown: solid line (desired signal); dashed line
(potential intercell interference).

where ρ
(0)
k � G

(0)
k p(0)

σ2
k

, ρ
(b)
k � G

(b)
k p(b)

σ2
k

. The SINR is the channel quality information

(CQI) that will be fed back and used for scheduling as discussed next.

3.3 General Sum Rate Analysis

This section is devoted to the analysis of the interplay between the schedul-

ing policy and partial feedback for a general channel model (note that no assump-

tion on the distribution of the large and small scale channel gains has been made

so far), with treatment of specific channel model in Section 3.4.

Let Z
(0)
k,n represent SINR

(0)
k,n for notational simplicity and denote it as the

CQI of user k at resource block n with CDF F
Z

(0)
k

. The CDF does not depend on
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the resource block index n because the SINR
(0)
k,n’s are independent and identically

distributed (i.i.d.) across resource blocks n for a given user k. Now consider the

feedback procedure utilizing the best-M partial feedback strategy. According to

the best-M partial feedback strategy, users measure CQI for each resource block

at their receiver and feed back the CQI values of the M best resource blocks

chosen from the total of N values5. More details on the best-M partial feedback

approach can be found in [25,27–29,97]. This selective feedback procedure involves

a maximization stage at each user. Because only a subset of the ordered CQI are

fed back, from the perspective of the scheduler (i.e., the serving base station B0),

if it receives feedback on a certain resource block from a user, it is likely to be

any one of the CQI from the ordered subset. We now aim to find the CDF of

the CQI seen at the scheduler side as a consequence of partial feedback. Denote

Y
(0)
k,n,M as the received CQI at the scheduler for user k at resource block n under

best-M partial feedback, which is the outcome of the user side maximization. Let

F
Y

(0)
k,M

be its CDF, with resource block index n dropped due to the i.i.d. property

across resource blocks for a given user. It is easy to see that for the full feedback

case, i.e., M = N , F
Y

(0)
k,N

= F
Z

(0)
k

, and for the best-1 feedback case, i.e., M = 1,

F
Y

(0)
k,1

= (F
Z

(0)
k

)N . Utilizing the results in [29], the CDF for the general best-M

feedback case can be expressed as

F
Y

(0)
k,M

(x) =
M−1∑
m=0

ξ1(N,M, m)(F
Z

(0)
k

(x))N−m, (3.3)

where ξ1(N,M, m) =
∑M−1

i=m
M−i
M

(
N
i

)(
i
m

)
(−1)i−m.

After the scheduler receives feedback from its serving users, it is ready to

perform scheduling. It is clear that for the single cell scenario without intercell

interference, the scheduling policy is easier to implement and analyze. For instance,

in the single cell scenario with homogeneous users, namely same large scale effects,

the greedy scheduler or the max-SNR scheduler makes full use of multiuser diversity

as well as guarantees fairness due to the same statistics of the user’s CQI. In the

single cell scenario with heterogeneous users, i.e., different large scale effects [29],

5We assume the CQI is fed back without feedback delay. Analyzing the effect of feedback
delay [105] on the scheduling framework is beyond the scope of this chapter.
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the normalized greedy scheduler which selects user according to their normalized

CQI has the same desired property. However, in the general multicell scenario with

intercell interference, the SINR
(0)
k,n’s are independent but non-identically distributed

(i.n.i.d.) across users. Therefore, the received CQI at the scheduler for different

users Y
(0)
k,n,M are i.n.i.d. across users. In order to leverage multiuser diversity and

guarantee fairness6, we employ the CDF-based scheduling policy [92,93]. According

to the CDF-based scheduling policy, the scheduler will utilize the distribution of

the received CQI for each user, i.e., F
Y

(0)
k,M

. Herein, it is assumed that the scheduler

perfectly knows the CDF7, and it conducts the following transformation

Ỹ
(0)
k,n,M = F

Y
(0)
k,M

(Y
(0)
k,n,M). (3.4)

The transformed random variable Ỹ
(0)
k,n,M is uniformly distributed over the range

from 0 to 1 and can be regarded as the virtual received CQI of user k at resource

block n. The transformed random variables Ỹ
(0)
k,n,M ’s are i.i.d. across users, which

enables the maximization at the scheduler side to perform fair scheduling. Denot-

ing k∗
n as the random variable representing the selected user for transmission at

resource block n, then

k∗
n = arg max

k∈Un,M

Ỹ
(0)
k,n,M , (3.5)

where Un,M denotes the set of users who convey feedback for resource block n. It

can be easily seen that when M = N , P(|Un,N | = K0) = 1. For the general case

when 1 ≤ M < N , the probability mass function (PMF) of |Un,M | can be shown

to be

P(|Un,M | = τ0) =

(
K0

τ0

)(
M

N

)τ0 (
1 − M

N

)K0−τ0

, 0 ≤ τ0 ≤ K0. (3.6)

After the user k∗
n is selected according to (3.5), the scheduler utilizes the corre-

sponding Y
(0)
k∗

n,n,M for rate matching of the selected user. We denote the random

6Note that the motivations as well as the fairness for the proportional-fair (PF) scheduling
policy and CDF-based scheduling policy are very different. The PF policy targets the system
utility as the definition of system fairness. The CDF-based policy targets the long-term user
fairness and each user on average is equiprobable to be scheduled. In the single cell case, it can
be shown that these two scheduling policies have similar effects. However, in the general multicell
case, users’ rates are coupled under the PF policy, and independent under the CDF-based policy.

7This is the only system requirement to perform CDF-based scheduling, and the CDF can be
obtained by infrequent feedback from users and learned by the system. Methods to estimate the
CDF can be found in [92].
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variable X
(0)
n,M as the selected user’s CQI for resource block n, and use the sum rate

as the system performance metric8. The sum rate C(0)(M) for a given base station

B0 employing the CDF-based scheduling and best-M partial feedback is defined as

follows

C(0)(M) =
1

N

N∑
n=1

E
[
log2

(
1 + X

(0)
n,M

)]
. (3.7)

From the aforementioned analysis, the sum rate can be formulated, with appropri-

ate conditioning, as9

C(0)(M)

=
1

N

N∑
n=1

Ek∗
n
E|Un,M |

[
E

X
(0)
n,M

[
log2

(
1 + X

(0)
n,M

)
| |Un,M | �= 0

]

+ E
X

(0)
n,M

[
log2

(
1 + X

(0)
n,M

)
| |Un,M | = 0

] ]

=
1

N

N∑
n=1

Ek∗
n
E|Un,M |

[∫ 1

0

log2

(
1 + F−1

Y
(0)

k∗n,M

(x)

)
dxτ0 | |Un,M | �= 0

]

(a)
= Ek∗E|UM |

[∫ ∞

0

log2(1 + t)d(F
Y

(0)
k∗,M

(t))τ0 | |UM | �= 0

]
, (3.8)

where (a) follows from the identical distributed property across resource blocks

and the change of variable x = F
Y

(0)
k∗,M

(t). The conditional statistical property of

X
(0)
n,M conditioned on the selected user k∗

n and the set of users who have conveyed

feedback Un,M can be expressed as

F
X

(0)
M |k∗=k,|UM |=τ0

(x) = (F
Y

(0)
k,M

(x))τ0 . (3.9)

Using (3.3), it can be expressed in the following power series expansion [29,64]

F
X

(0)
M |k∗=k,|UM |=τ0

(x)

=

τ0(M−1)∑
m=0

ξ2(N, M, τ0,m)(F
Z

(0)
k

(x))Nτ0−m, (3.10)

8The sum rate is employed as the performance metric in this chapter. Dealing with a more
general performance metric representing certain QoS can be referred to [106].

9In order to maintain full frequency reuse for analytical tractability, it is assumed that if no
user provides CQI for a certain resource block, then that resource block would be in outage and
would not contribute to the sum rate calculation.
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where

ξ2(N, M, τ0, m) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ξ1(N, M, 0))τ0 , m = 0

1
mξ1(N,M,0)

∑min(m,M−1)
�=1 ((τ0 + 1)
 − m)

×ξ1(N,M, 
)ξ2(N,M, τ0,m − 
),

1 ≤ m < τ0(M − 1)

(ξ1(N, M, M − 1))τ0 , m = τ0(M − 1).

(3.11)

Using (3.6) and (3.10), the sum rate (3.8) can be expressed in the following form

C(0)(M)

= Ek∗E|UM |

[∫ ∞

0

log2(1 + x)dF
X

(0)
M |k∗=k,|UM |=τ0

(x) | |UM | �= 0

]

(a)
=

1

K0

K0∑
k=1

K0∑
τ0=1

(
K0

τ0

)(
M

N

)τ0 (
1 − M

N

)K0−τ0

×
τ0(M−1)∑

m=0

ξ2(N,M, τ0,m)Gk(Nτ0 − m), (3.12)

where where (a) follows from the fair property of the CDF-based scheduling policy:

P (k∗ = k, |UM | = τ0) = 1
K0

P (|UM | = τ0). The integration Gk(ε) for ε ∈ N+ is

defined as

Gk(ε) �
∫ ∞

0

log2(1 + x)d(F
Z

(0)
k

(x))ε. (3.13)

From (3.12), the individual user rate for user k can be expressed as

C
(0)
k (M) =

1

K0

K0∑
τ0=1

(
K0

τ0

)(
M

N

)τ0 (
1 − M

N

)K0−τ0

×
τ0(M−1)∑

m=0

ξ2(N, M, τ0,m)Gk(Nτ0 − m). (3.14)

For the special full feedback case, the sum rate becomes C(0)(N) = 1
K0

∑K0

k=1 Gk(K0),

and the individual user rate for user k becomes C
(0)
k (N) = 1

K0
Gk(K0).

Remark: A few remarks are in order. Firstly, the effect of best-M partial

feedback and the CDF-scheduling policy result in a two stage maximization. The

first stage maximization occurs at each user side to select the M best CQI for

feedback. The second stage maximization is conducted at the scheduler side by
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performing CDF-based transformation and user scheduling. Secondly, with the

help of CDF-based scheduling, each user feels as if the other users had the same

CDF for scheduling competition [92]. In other words, each individual user’s rate is

independent of other users. This important feature not only enables the distributed

system to enjoy multiuser diversity, but also makes it possible to consider or predict

each user’s rate by only considering its own CDF. Thirdly, users are equiprobable

to be scheduled despite of their heterogeneous channels (e.g., different statistics due

to diverse propagation environments and interference levels), and so the scheduling

policy maintains fairness among users.

Up to now, we have obtained the general form of the sum rate and individual

user rate with the help of Gk(ε) without assuming specific distributions on the

channel models. In the next section, we derive the closed form expression for Gk(ε)

with standard channel models.

3.4 Exact Performance Analysis

In this section, we perform exact analysis to derive the closed form sum

rate with standard Rayleigh fading channel models. Section 3.4.1 examines the

PDF and CDF of the SINR for each user and uses them to derive a closed form

expression for Gk(ε) in Section 3.4.2.

3.4.1 The Statistics of CQI

In a practical system setting, the time scale for the large scale and small

scale channel effects are much different. The variation of the small scale channel

gain H occurs on the order of millisecond; whereas the large scale channel gain G

which may consist of path loss, antenna gain, and shadowing, varies usually on the

order of tens of seconds. Therefore, the large scale channel effect is assumed to be

known in advance by the system, through infrequent feedback or location aware-

ness. The small scale channel effect is modeled as complex Gaussian distributed

random variables with zero mean and unit variance CN (0, 1). From the definition

of SINR in (3.2), it can be seen that the numerator is a scaled χ2(2) (i.e., chi-square
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random variable with 2 degrees of freedom) random variable, and the denominator

is a weighted sum of χ2(2) random variables plus a constant. The following lemma

provides the density function of SINR
(0)
k , namely f

Z
(0)
k

.

Lemma 3.1. The PDF of Z
(0)
k can be expressed as

f
Z

(0)
k

(x) =

Jk∑
b=1

�
(b)
k e

− x

ρ
(0)
k

×

⎛
⎜⎝ 1

ρ
(0)
k + ρ

(b)
k x

+
ρ

(0)
k ρ

(b)
k(

ρ
(0)
k + ρ

(b)
k x
)2

⎞
⎟⎠u(x), (3.15)

where �
(b)
k =

∏
i=1
i�=b

ρ
(b)
k

ρ
(b)
k −ρ

(i)
k

, and u(·) is the Heaviside step function.

Proof. The proof is given in Appendix C.

From Lemma 3.1, the CDF of Z
(0)
k , namely F

Z
(0)
k

can be computed as

F
Z

(0)
k

(x) =

∫ x

0

Jk∑
b=1

�
(b)
k e

− x

ρ
(0)
k

×

⎛
⎜⎝ 1

ρ
(0)
k + ρ

(b)
k y

+
ρ

(0)
k ρ

(b)
k(

ρ
(0)
k + ρ

(b)
k y
)2

⎞
⎟⎠ dy

=

⎛
⎝1 −

Jk∑
b=1

�
(b)
k e

− x

ρ
(0)
k ρ

(0)
k

ρ
(0)
k + ρ

(b)
k x

⎞
⎠u(x). (3.16)

3.4.2 Procedures to Compute Gk(ε)

Now we consider the computation of Gk(ε) =
∫∞
0

log2(1 + x)d(F
Z

(0)
k

(x))ε,

which will be carried out in three steps. Step 1 provides a suitable PDF decom-

position of d(F
Z

(0)
k

(x))ε by examining the expression for the PDF. In Step 2, the

decomposed PDF is further expanded for integration. Finally, Step 3 employs the

outcome of Step 1 and 2 to derive the closed form expression for Gk(ε) by standard

integration techniques. The details are presented next.
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Step 1: We are interested in the exact formulation of d(F
Z

(0)
k

(x))ε, where the

exponent ε ∈ N+. In the following lemma, an amenable decomposition is proposed

for the statistical form of d(F
Z

(0)
k

(x))ε.

Lemma 3.2. The PDF d(F
Z

(0)
k

(x))ε with ε ∈ N+ can be decomposed as

d(F
Z

(0)
k

(x))ε = ε

ε−1∑
�=0

(
ε − 1




)
(−1)�


 + 1

× d

⎛
⎜⎝1 − e

− (�+1)x

ρ
(0)
k

⎛
⎜⎝ Jk∑

b=1

�
(b)
k

ρ
(0)
k

ρ
(b)
k

1

x +
ρ
(0)
k

ρ
(b)
k

⎞
⎟⎠

�+1⎞
⎟⎠ . (3.17)

Proof. The proof is given in Appendix C.

Step 2: Even though the complicated form of d(F
Z

(0)
k

(x))ε is decomposed

into (3.17), its formulation still prevents direct integration. The following lemma

provides an expanded form for one of the terms to facilitate further integration.

Lemma 3.3.⎛
⎜⎝ Jk∑

b=1

�
(b)
k

ρ
(0)
k

ρ
(b)
k

1

x +
ρ
(0)
k

ρ
(b)
k

⎞
⎟⎠

�+1

=
∑

j1+···+jJk
=�+1

(

 + 1

j1, . . . , jJk

) Jk∑
b=1

jb∑
i=0

ψ
(b)
k,i

Jk∏
b=1

(
�

(b)
k ρ

(0)
k

ρ
(b)
k

)jb

(
x +

ρ
(0)
k

ρ
(b)
k

)i , (3.18)

where

ψ
(b)
k,i =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, i = 0

1
(jb−i)!

djb−i

dxjb−i

[(
x +

ρ
(0)
k

ρ
(b)
k

)jb Jk∏
b=1

(
x +

ρ
(0)
k

ρ
(b)
k

)−jb

] ∣∣∣∣∣
x=− ρ

(0)
k

ρ
(b)
k

,

i ≥ 1.

(3.19)

Proof. The proof is given in Appendix C.
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For illustration purpose, the formulation of Lemma 3.3 is discussed and

provided for the special Jk = 2 case in Appendix C.

Step 3: The following theorem completes the final step by utilizing the

outcomes of the above two steps to derive the closed form expression for Gk(ε).

Theorem 3.1. Gk(ε) can be computed as

Gk(ε) = ε

ε−1∑
�=0

(
ε − 1




)
(−1)�


 + 1

∑
j1+···+jJk

=�+1

(

 + 1

j1, . . . , jJk

)

×
Jk∑
b=1

jb∑
i=0

ψ
(b)
k,i

Jk∏
b=1

(
�

(b)
k ρ

(0)
k

ρ
(b)
k

)jb

I1

(
(
 + 1)

ρ
(0)
k

,
ρ

(0)
k

ρ
(b)
k

, i

)
, (3.20)

where I1(α, β, γ) �
∫∞

0
e−αx

(1+x)(β+x)γ dx whose closed form expression is presented in

Appendix C.

Proof. The proof is given in Appendix C.

The three-step procedure yields the closed form expression for Gk(ε), which

can be substituted into (3.12) and (3.14) to compute the closed form sum rate

and individual user rate. The exact closed form expressions only involves finite

sums and factorials making it computationally tractable and useful for system

evaluation. In the following, the treatment of two simplified special cases are

provided: the one-dominant interference limited case and the noise limited case.

One-Dominant Interference Limited Case: This case approximates the sce-

nario when there is one dominant interferer. Without loss of generality, assume

ρ
(1)
k � ρ

(b)
k for b �= 1 and the effect of noise is omitted. Then the SINR can be

approximated as SINR
(0)
k,n � SIR

(0)
k,n =

ρ
(0)
k |H(0)

k,n|2
ρ
(1)
k |H(1)

k,n|2
, which is the F distributed random

variable. The CDF of the CQI can be written as

F
Z

(0)
k

(x) =

(
1 − ρ

(0)
k

ρ
(1)
k x + ρ

(0)
k

)
u(x). (3.21)

In this case, the computation of Gk(ε) can be reduced to

Gk(ε)
(a)
=

ε

ln 2

ρ
(0)
k

ρ
(1)
k

ε−1∑
�=0

(
ε − 1




)
(−1)�


 + 1

× Beta(1, 
 + 1)2F1

(
1, 1; 
 + 2; 1 − ρ

(0)
k

ρ
(1)
k

)
, (3.22)
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where (a) follows from [64, 3.197.5], Beta(x, y) =
∫ 1

0
tx−1(1 − t)y−1dt is the Beta

function [64, 8.38] and 2F1(·, ·; ·; ·) is the Gaussian hypergeometric function [57].

Noise Limited Case: This case approximates the scenario when the impact

of intercell interference is negligible, i.e., ρ
(b)
k � 1. The SINR can be approximated

as SINR
(0)
k,n � SNR

(0)
k,n = ρ

(0)
k |H(0)

k,n|2, which is the χ2(2) distributed random variable.

The CDF of the CQI can be written as

F
Z

(0)
k

(x) =

(
1 − e

− x

ρ
(0)
k

)
u(x). (3.23)

In this case, the computation of Gk(ε) can be reduced to

Gk(ε)
(a)
=

ε

ln 2

ε−1∑
�=0

(
ε − 1




)
(−1)�


 + 1
e

�+1

ρ
(0)
k E1

(

 + 1

ρ
(0)
k

)
, (3.24)

where (a) follows from [64, 4.337.2] and E1(x) =
∫∞

x
e−t

t
dt is the exponential in-

tegral function of the first order [57]. The noise limited case is equivalent to the

single cell problem which has been addressed extensively in [25,27,29].

Remark: It can be easily seen that the CDF-based scheduling for the two

simplified cases has the same effect as the “normalized” CQI based scheduling,

which is normalized by
ρ
(0)
k

ρ
(1)
k

for the one-dominant interference limited case and

normalized by ρ
(0)
k for the noise limited case. The general CDF-based scheduling

policy enables the general analysis for the multicell scenario, whose closed form

expressions have been obtained by the aforementioned procedures. The exact

expression, though computable, is not easy to interpret and draw insights. We

now use asymptotic analysis to develop results that have the potential of providing

further insights.

3.5 Asymptotic Performance Analysis

This section is devoted to the asymptotic analysis when the associated users

in a given cell grows large. Section 3.5.1 proves the type of convergence exhibited

by the received CQI under best-M partial feedback. A brief summary on the

different types of convergence is provided in Appendix D for easy reference. In

Section 3.5.2, the asymptotic rate approximation is derived and is employed to
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determine the minimum required partial feedback in Section 3.5.3. The results are

presented with the proofs relegated to the appendix.

3.5.1 The Type of Convergence

The first step towards performing asymptotic analysis is examining the

tail behavior of the received CQI at the scheduler side under partial feedback,

namely Y
(0)
k,M for user k. In the full feedback case, F

Y
(0)
k,N

= F
Z

(0)
k

, which means

the tail behavior of the CQI at the user side Z
(0)
k is equivalent to that of the

Y
(0)
k,N . However, for the general best-M partial feedback, the relationship be-

tween Y
(0)
k,M and Z

(0)
k is given by (3.3) and is recalled here for easy reference as

F
Y

(0)
k,M

(x) =
∑M−1

m=0 ξ1(N,M, m)(F
Z

(0)
k

(x))N−m. One natural question is concerning

the relationship between the tail behavior of Y
(0)
k,M and Z

(0)
k , or formulated in a

rigorous way: how to infer the type of convergence of F
Y

(0)
k,M

from the type of con-

vergence of F
Z

(0)
k

under the condition of best-M partial feedback? The following

theorem addresses this issue.

Theorem 3.2. (Type of Convergence under Partial Feedback) F
Y

(0)
k,M

has the same

type of convergence property as F
Z

(0)
k

under the best-M partial feedback strategy.

Proof. The proof is given in Appendix D.

Theorem 3.2 states that the best-M partial feedback does not affect the type

of convergence. In other words, once the type of convergence for F
Z

(0)
k

is proven,

the same property is established for F
Y

(0)
k,M

. Note that so far no specific statisti-

cal property has been assumed for F
Z

(0)
k

. In the following, the statistical model

expressed in (3.16) will be utilized for further analysis. The following corollary

describes the tail behavior of F
Z

(0)
k

.

Corollary 3.1. For the general SINR case in the multicell scenario, F
Z

(0)
k

and F
Y

(0)
k,M

belong to the domain of attraction of the Gumbel distribution [98], i.e., F
Z

(0)
k

∈
D(G3) and F

Y
(0)
k,M

∈ D(G3).

Proof. The proof is given in Appendix D.
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For completeness, the tail behavior of F
Z

(0)
k

for the special simplified one-

dominant interference limited case and the noise limited case is also provided in

the following corollary.

Corollary 3.2. For the one-dominant interference limited case, F
Z

(0)
k

and F
Y

(0)
k,M

belong to the domain of attraction of the Fréchet distribution [98], i.e., F
Z

(0)
k

∈
D(G1) and F

Y
(0)
k,M

∈ D(G1). For the noise limited case, F
Z

(0)
k

and F
Y

(0)
k,M

belong

to the domain of attraction of Gumbel distribution [98], i.e., F
Z

(0)
k

∈ D(G3) and

F
Y

(0)
k,M

∈ D(G3).

Proof. The proof is given in Appendix D.

These established type of convergence results will be used to obtain the

asymptotic rate approximation.

3.5.2 Asymptotic Rate Approximation

We now investigate the asymptotic approximation for the exact sum rate

whose closed form expression has been derived in Section 3.4. Two additional issues

arise in the heterogeneous multicell setting under partial feedback when compared

with the standard homogeneous setting under full feedback.

The first issue regards the heterogeneous statistics of the SINR for different

users. In the homogeneous setting, the maximization or the order statistics is over

the same CDF. Recall that the use of CDF-based scheduling in this chapter has

enabled each user to virtually feel that the other associated users are experiencing

the same CDF for scheduling competition. Therefore, for a given user k, the order

statistics is over the CDF of user k’s received CQI, which makes the individual

user rate more interesting than the sum rate.

The second issue arises due to the effect of partial feedback. In the full

feedback case, the number of CQI values to maximize over at the scheduler is fixed

and equals the number of the associated users K. However, due to partial feedback,

the number of CQI values to maximize over at the scheduler is a random quantity.

In other words, partial feedback results in a random effect on multiuser diversity.

In the exact analysis in Section 3.3, this effect is reflected in the use of Un,M .
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We are interested in the asymptotic effect when the number of users grows large.

To examine this random effect in the asymptotic analysis, denote the sequence of

random variables κn(K) as the number of CQI values fed back for resource block

n with K associated users. It is easy to see from (3.3) and (3.6) that κn(K) are

binomial distributed with probability of success M
N

under best-M partial feedback.

Thus by the strong law of large numbers, as K grows, the number of CQI values

fed back for each resource block becomes KM
N

. Moreover, the convergence property

of the sequence κn(K) can be shown by invoking the central limit theorem [107]:

lim
K→∞

√
K

(
κn(K)

K
− M

N

)
d→N

(
0,

M

N

(
1 − M

N

))
, (3.25)

where d indicates convergence in distribution. Therefore, by employing the tech-

niques which study the extremes over random sample size [98, 108], we have the

following lemma.

Lemma 3.4. When the number of associated users K goes large, the extreme order

statistics [98] of the received CQI for a given user k can be efficiently approximated

by
(
F

Y
(0)
k,M

)KM
N

.

Proof. The proof is given in Appendix D.

Now consider the limiting distribution of the maximum rate in order to

derive the asymptotic approximation for the exact rate. Specially, we examine the

limiting distribution of the rate Rk,M ,

Rk,M = T (Yk,M) = log2(1 + Yk,M), (3.26)

where the superscript (0) is temporally dropped for representation simplicity, and

will be added later to tailor the results for specific K0 and Y
(0)
k,M . Note that the

function T (·) in (3.26) makes it tedious to directly check the conditions needed to

enable finding the form of the asymptotic distribution. In [99], a limiting through-

put distribution theorem is proposed for the full feedback single cell case for a

narrowband system. Herein, we generalize the result to be applicable to the gen-

eral SINR case in the general partial feedback OFDMA scenario with the following

best-M limiting throughput distribution (LTD-M) theorem.
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Theorem 3.3. (LTD-M Theorem) Assume that under the best-M partial feedback

strategy with N resource blocks and K associated users, the CQI received at the

scheduler for user k, Yk,M is a nonnegative random variable with CDF FYk,M
(x)

such that fYk,M
(x) = F ′

Yk,M
(x) > 0 and ω(FYk,M

) � sup{x : FYk,M
(x) < 1} = ∞.

If lim
x→∞

xfYk,M
(x)

1−FYk,M
(x)

= φ > 0, FYk,M
∈ D(G1), i.e., FYk,M

belongs to the domain of

attraction of the Fréchet distribution, or if lim
x→∞

d
dx

[
1−FYk,M

(x)

fYk,M
(x)

]
= 0, FYk,M

∈ D(G3),

i.e., FYk,M
belongs to the domain of attraction of the Gumbel distribution, then the

distribution of the throughput for user k, FRk,M
(r) = FYk,M

(T−1(r)) ∈ D(G3), i.e.,

FRk,M
belongs to the domain of attraction of the Gumbel distribution. Moreover,

the normalizing constants [98] for user k are given by

ak:K(M) = log2

(
1 + F−1

Yk,M

(
1 − N

KM

))
,

bk:K(M) = log2

(
1 + F−1

Yk,M

(
1 − N

KMe

)
1 + F−1

Yk,M

(
1 − N

KM

)
)

. (3.27)

Proof. The proof is given in Appendix D.

Remark: The LTD-M theorem enables us to study the distribution of Yk,M

instead of directly examining FRk,M
. Also, note that the relationship of the type

of convergence between Yk,M and Zk has been revealed in Theorem 3.2. Thus

the connection between Zk and Rk,M can be established by combining the two

theorems.

The normalizing constants in Theorem 3.3 can be used to obtain the asymp-

totic rate approximation. Denote C(0)
k (M) as the asymptotic approximation for the

individual rate of user k in cell B0 with total associated users K0. Then according

to the property that convergence in distribution for the maximum nonnegative ran-

dom variables results in moment convergence [99, 109], C(0)
k (M) can be evaluated
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by the normalizing constants as follows10

C(0)
k (M) =

1

K0

(
1 −
(

1 − M

N

)K0
)

×
(
a

(0)
k:K0

(M) + E0b
(0)
k:K0

(M)
)

, (3.28)

where E0 is the Euler constant, and (1− M
N

)K is the probability of scheduling out-

age. According to the CDF-based scheduling policy, the asymptotic approximation

for the sum rate, denoted by C(0)(M), can be computed as

C(0)(M) =
1

K0

(
1 −
(

1 − M

N

)K0
)

×
K0∑
k=1

(
a

(0)
k:K0

(M) + E0b
(0)
k:K0

(M)
)

. (3.29)

The form in (3.29) is simpler than the exact analytic expression derived in Section

3.4 and can be an alternate basis for studying heterogeneous networks. Looking

again at the normalizing constants in (3.27), the specific expressions involve the

inverse of the distribution function, F−1
Yk,M

(·). In general, due to the complicated

form of the SINR as well as the procedure to evaluate FYk,M
, this inverse function

can not be expressed in simple closed form except in some simplified cases. Since

the CDF is a function of a scalar and is monotonically increasing, standard it-

erative algorithms are well suited for its computation. Now we consider the two

aforementioned simplified cases: the one-dominant interference limited case and

the noise limited case for illustration. For these two special cases with full feedback

and best-1 feedback, the inverse of the distribution function can be computed in

closed form, which are summarized in the following corollaries.

Corollary 3.3. In the one-dominant interference limited case under full feedback,

10This form of asymptotic approximation leverages the first and second order moments of
the extreme order statistics. Dealing with higher order moments and eventually the rate of
convergence can be referred to [110].
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the specific form for the normalizing constants are given by:

a
(0)
k:K0

(N) = log2

(
1 +

ρ
(0)
k

ρ
(1)
k

(K0 − 1)

)
,

b
(0)
k:K0

(N) = log2

⎛
⎜⎝1 +

ρ
(0)
k

ρ
(1)
k

(K0e − 1)

1 +
ρ
(0)
k

ρ
(1)
k

(K0 − 1)

⎞
⎟⎠ . (3.30)

In the noise limited case under full feedback, the specific form for the normalizing

constants are given by:

a
(0)
k:K0

(N) = log2

(
1 + ρ

(0)
k ln K0

)
,

b
(0)
k:K0

(N) = log2

(
1 +

ρ
(0)
k

1 + ρ
(0)
k ln K0

)
. (3.31)

Proof. The proof is given in Appendix D.

Corollary 3.4. In the one-dominant interference limited case under best-1 feed-

back, the specific form for the normalizing constants are given by:

a
(0)
k:K0

(1) = log2

(
1 +

ρ
(0)
k

ρ
(1)
k

(K0 − N)
1
N

K
1
N
0 − (K0 − N)

1
N

)
,

b
(0)
k:K0

(1) = log2

⎛
⎜⎜⎝

1 +
ρ
(0)
k

ρ
(1)
k

(K0e−N)
1
N

(K0e)
1
N −(K0e−N)

1
N

1 +
ρ
(0)
k

ρ
(1)
k

(K0−N)
1
N

K
1
N
0 −(K0−N)

1
N

⎞
⎟⎟⎠ . (3.32)

In the noise limited case under best-1 feedback, the specific form for the normalizing

constants are given by:

a
(0)
k:K0

(1) = log2

(
1 + ρ

(0)
k ln

K
1
N
0

K
1
N
0 − (K0 − N)

1
N

)
,

b
(0)
k:K0

(1) = log2

⎛
⎜⎜⎜⎝

1 + ρ
(0)
k ln (K0e)

1
N

(K0e)
1
N −(K0e−N)

1
N

1 + ρ
(0)
k ln

K
1
N
0

K
1
N
0 −(K0−N)

1
N

⎞
⎟⎟⎟⎠ . (3.33)

Proof. The proof is given in Appendix D.
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Figure 3.2: Comparison of the sum rate for best-M feedback obtained using the
exact analysis and the asymptotic analysis under different symmetric large scale
effects for different M with respect to the number of users: the one-dominant

interference limited case (ρ � ρ(0)

ρ(1) ).

For the general best-M partial feedback case, the normalizing constants

can be obtained using (3.27) and the specific CDF for the corresponding case. To

illustrate the benefit of asymptotic analysis for the two simplified cases, we conduct

a numerical study to compare the sum rate obtained using the exact analysis and

the asymptotic one under different symmetric large scale effects in Fig. 3.2 and

Fig. 3.3. It is interesting to note that the asymptotic expressions hold well even for

small number of users, which means the convergence to the limiting distribution

is fast.

Up to now, we have leveraged exact analysis and asymptotic analysis to

derive useful closed form results for the exact sum rate and the asymptotic ap-

proximation. In the next part, the procedure to determine the minimum required

partial feedback is examined.
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Figure 3.3: Comparison of the sum rate for best-M feedback obtained using the
exact analysis and the asymptotic analysis under different symmetric large scale
effects for different M with respect to the number of users: the noise limited case
(ρ � ρ(0)).

3.5.3 Determining the Minimum Required Partial Feed-

back

Firstly, the asymptotic optimality of the best-1 feedback is presented in the

following corollary.

Corollary 3.5. When the number of associated users K → ∞, the performance

loss of using best-1 feedback in terms of sum rate approaches zero.

Proof. The proof is given in Appendix D.

We are more interested in the pre-asymptotic user regime where the simple

best-1 strategy is no longer optimal. The goal is to choose the minimum required

M without seriously degrading system sum rate when compared to a system with

full feedback. The selection of M can be formulated as the solution to the following
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optimization problem:

Find the minimum M∗, s.t.
C(0)(M∗)
C(0)(N)

≥ η, (3.34)

where C(0)(M) refers to the exact analytic expression derived in Section 3.4 and η

is a system defined threshold. As mentioned previously, the established asymptotic

expressions are more computationally efficient than the exact one. By leveraging

the asymptotic approximation, the problem (3.34) can be reformulated as

Find the minimum M̃∗, s.t.
C(0)(M̃∗)
C(0)(N)

≥ η, (3.35)

where C(0)(M) refers to the asymptotic approximation in (3.29).

We see from (3.34) and (3.35) that M∗ or M̃∗ depends on the number of

users associated with the base station and the corresponding large scale channel

effects. Since these factors can be highly diverse in a heterogeneous network, the

minimum required partial feedback is inherently different across different cells.

Therefore, by employing the established asymptotic results, M̃∗ can be quickly

determined to track M∗ in order to design situational-aware heterogeneous partial

feedback.

3.6 Numerical Results

In this section, we conduct a numerical study to support our analysis. A

simple heterogeneous network is modeled with two macrocells each with two pico-

cells inside. The locations of the picocells are randomly placed and then fixed for

simulation. The system bandwidth is 5 MHz, the noise power spectral density is

−170 dBm/Hz, and the number of resource blocks N = 16. The transmit powers

of the macrocell and picocell are 43 dBm and 30 dBm respectively. The path loss

(in dB) model in [111] with 2 GHz central frequency is employed: the path loss

from the macrocell base station to users is 15.3 + 37.6 log10 d for distance d in me-

ters; the path loss from the picocell base station to users is 30.6 + 36.7 log10 d for

distance d in meters. Log-normal shadowing is assumed with standard deviation

of 8 dB. The radius of the macrocell and picocell is assumed to be 500 m and 100
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Figure 3.4: The sum rate comparison of the three scheduling policies: the greedy
policy, the round robin policy, and the CDF-based policy under best-M partial
feedback strategy with respect to the associated users in a macrocell (N = 16;
M = 4).

m respectively. For each drop in simulation, users are randomly placed and the

cell association is determined by the large scale effects and fixed.

Firstly, the performance of CDF-based scheduling is compared with the

greedy scheduling policy and the round robin scheduling policy in Fig. 3.4 and

Fig. 3.5. In this simulation, users are assumed to employ the best-M partial

feedback with M = 4. In Fig. 3.4, the sum rate with respect to the number of

associated users in a macrocell is shown, which is averaged by performing 1000

independent drops. It can be seen that the round robin policy does not invoke

multiuser diversity at all, and the sum rate performance of the CDF-based policy

is close to the greedy policy. Fig. 3.5 compares the system fairness for the three

policies. The system fairness Θ is defined and discussed in [112, 113] using the

following form: Θ � −∑K
k=1 Pk

ln(Pk)
ln K

, where Pk refers to the proportion of resources
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Figure 3.5: The system fairness comparison of the three scheduling policies:
the greedy policy, the round robin policy, and the CDF-based policy under best-
M partial feedback strategy with respect to the associated users in a macrocell
(N = 16; M = 4).

assigned to user k with the normalization factor ln K. The system fairness for the

round robin policy and the CDF-based policy is 1 despite the number of associated

users and the heterogeneous channel effects. However, the system fairness for

the greedy policy is decreasing when more users are associated. This is due to

the fact that some high geometry users occupy the system resources with high

probability when the greedy system has more serving users. Therefore, the CDF-

based scheduling policy enjoys the multiuser diversity while guaranteeing fairness

at the same time, which makes it well suited for the heterogeneous framework.

Next, in order to evaluate the derived closed form results from exact analysis

and the corresponding asymptotic approximation, one individual user is randomly

selected for demonstration. To illustrate the scaling performance with respect to

the number of associated users, the so called individual sum rate for this user is of
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interest. The individual sum rate is the individual user rate multiplied by the num-

ber of associated users. Fig. 3.6 plots the individual sum rate obtained from the

analytical expression by exact analysis, from simulation, and from the established

asymptotic approximation using normalizing constants. Different partial feedback

cases are also shown for comparison. It can be observed that the analytical ex-

pression and the simulation results are in full agreement. Also, the asymptotic

approximation tracks the system performance very well. Furthermore, the rate

gap between the partial feedback case and full feedback case becomes negligible

when the number of associated users increases.

Finally, Fig. 3.7 examines the minimum required partial feedback M∗ ob-

tained by using the expression for the sum rate from the exact analysis and the

asymptotic approximation for a macrocell. Two different thresholds are set for
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Figure 3.7: Comparison of the minimum required M obtained from exact analysis
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evaluation: η = 0.9, 0.99. It can be seen that the results obtained using asymp-

totic analysis track the results from exact analysis very well, especially for lower

threshold and larger number of users. Since the number of users associated with

each cell as well as the large scale channel effects can lie in diverse ranges, this

results in heterogeneous partial feedback in heterogeneous multicell networks. The

total number of partial feedback with respect to the number of associated users

for a macrocell is illustrated in Fig. 3.8 under the threshold η = 0.9. The to-

tal number of partial feedback is calculated by multiplying the minimum required

partial feedback M∗ with a given number of associated users. It can be seen that

the range of variation for the total number of partial feedback is limited. Even

though the number of associated users is 5 times larger, the total number of partial

feedback does not change much. This is due to the heterogeneous partial feedback

design to adapt the number of partial feedback to the number of users as well as
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Figure 3.8: Comparison of the total number of required partial feedback from
exact analysis and asymptotic analysis under threshold η = 0.9.

the channel conditions.

3.7 Conclusion

In this chapter, an analytical framework is proposed and developed to in-

vestigate the performance of situational-aware heterogeneous partial feedback in

an OFDMA-based heterogeneous multicell using the best-M partial feedback strat-

egy. The system model is general and thus the obtained results can be generalized

and applied to conduct system evaluation with alternate statistical models. The

CDF-based scheduling policy employed in this chapter has the desired property

of supporting multiuser diversity while maintaining scheduling fairness among the

contending users to guarantee each user’s data rate despite of different locations

and large scale channel effects. The exact closed form sum rate is obtained for the
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multicell model by suitable decomposition and expansion of the received CQI at

the scheduler side. Asymptotic analysis is carried out to draw further insight into

the multicell model with partial feedback. Interestingly, the effect of partial feed-

back does not alter the type of convergence of the received CQI. The random effect

of multiuser diversity caused by partial feedback is also examined and asymptotic

approximations are derived by utilizing the normalizing constants. The established

asymptotic approximation tracks the exact system performance well even for small

number of users. Therefore, it can be leveraged to quickly determine the minimum

required partial feedback in a given cell.

The text of this chapter, in part, is a reprint of the paper [114], Y. Huang

and B. D. Rao, “An analytical framework for heterogeneous partial feedback de-

sign in heterogeneous multicell OFDMA networks”, IEEE Transactions on Signal

Processing, accepted, to appear, 2012. The dissertation author is the primary re-

searcher and author, and the co-author listed in this publication directed and

supervised the research which forms the basis of this chapter.

3.8 Appendices

3.8.1 Appendix C

Proof of Lemma 3.1: Denote ζ =
∑Jk

b=1 ρ
(b)
k |H(b)

k,n|2, which is a weighted sum

of χ2(2) random variable. In practical system setting, the large scale effects from

the interfering cells are distinct, the PDF of ζ is derived to be [115,116]:

fζ(ζ) =

(
Jk∑
b=1

�
(b)
k

ρ
(b)
k

e
− ζ

ρ
(b)
k

)
u(x), (3.36)
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where �
(b)
k =

∏
i=1
i�=b

ρ
(b)
k

ρ
(b)
k −ρ

(i)
k

. Then the PDF of Z
(0)
k can be obtained as follows

f
Z

(0)
k

(x) =

∫ ∞

0

f
Z

(0)
k |ζ(x|ζ)fζ(ζ)dζ

=
1

ρ
(0)
k

e
− x

ρ
(0)
k

Jk∑
b=1

�
(b)
k

ρ
(b)
k

∫ ∞

0

(1 + ζ)e
−
(

x

ρ
(0)
k

+ 1

ρ
(b)
k

)
ζ

dζ

=
1

ρ
(0)
k

e
− x

ρ
(0)
k

Jk∑
b=1

�
(b)
k

ρ
(b)
k

⎛
⎜⎜⎜⎝ ρ

(0)
k

x +
ρ
(0)
k

ρ
(b)
k

+

(
ρ

(0)
k

)2

(
x +

ρ
(0)
k

ρ
(b)
k

)2

⎞
⎟⎟⎟⎠u(x). (3.37)

Proof of Lemma 3.2: It is clear that d(F
Z

(0)
k

(x))ε = ε(F
Z

(0)
k

(x))ε−1f
Z

(0)
k

(x)dx.

Employing the binomial theorem [117], and substituting the expressions for F
Z

(0)
k

(x)

and f
Z

(0)
k

(x) yield

d(F
Z

(0)
k

(x))ε = ε

ε−1∑
�=0

(
ε − 1




)
(−1)�

⎛
⎝ Jk∑

b=1

�
(b)
k e

− x

ρ
(0)
k ρ

(0)
k

ρ
(0)
k + ρ

(b)
k x

⎞
⎠

�

×

⎛
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�
(b)
k e

− x

ρ
(0)
k

ρ
(0)
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(b)
k x

+
ρ

(0)
k ρ

(b)
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(b)
k e

− x

ρ
(0)
k(

ρ
(0)
k + ρ

(b)
k x
)2

⎞
⎟⎠ dx

(a)
= ε

ε−1∑
�=0

(
ε − 1




)
(−1)�


 + 1

× d

⎛
⎜⎝1 −

⎛
⎝ Jk∑

b=1

�
(b)
k e

− x

ρ
(0)
k ρ

(0)
k

ρ
(0)
k + ρ

(b)
k x

⎞
⎠

�+1
⎞
⎟⎠ , (3.38)

where (a) follows from the differentiation property of (1 − F
Z

(0)
k

(x))�+1.

Proof of Lemma 3.3: Applying the multinomial theorem [117] yields⎛
⎜⎝ Jk∑

b=1

�
(b)
k

ρ
(0)
k

ρ
(b)
k

1

x +
ρ
(0)
k

ρ
(b)
k

⎞
⎟⎠

�+1

=
∑

j1+···+jJk
=�+1

(

 + 1

j1, . . . , jJk

) Jk∏
b=1

(
�

(b)
k ρ

(0)
k

ρ
(b)
k

)jb

(
x +

ρ
(0)
k

ρ
(b)
k

)jb
. (3.39)
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Exploiting the partial fraction expansion [64] generates the expanded form in (3.18)

with specific expression for ψ
(b)
k,i defined in (3.19).

For illustration purpose, the expansion for Jk = 2 case, which corresponds

to two major interferers is now presented. In this case, applying binomial theorem

is sufficient for expansion, which yields

⎛
⎜⎝�
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k ρ
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�
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where ψ
(1)
k,i = (−1)�+1−j−i

(
�−i
j−1

)
1(

ρ
(0)
k

ρ
(2)
k

− ρ
(0)
k

ρ
(1)
k

)�+1−i and ψ
(2)
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(
�−i
j−i

)
1(

ρ
(0)
k

ρ
(1)
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− ρ
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k

ρ
(2)
k
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for the nontrivial i > 0 case.

Proof of Theorem 3.1: The outcomes of Step 1 and Step 2 lead to direct



76

integration to calculate Gk(ε) as follows

Gk(ε) =
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where (a) follows from integration by parts. The form of (3.20) is expressed by

the definition I1(α, β, γ) �
∫∞
0

e−αx

(1+x)(β+x)γ dx. In order to compute I1(α, β, γ) into

closed form, firstly apply partial fraction expansion [64] to 1
(1+x)(β+x)γ , and then

define the auxiliary integration I2(α, β, γ) �
∫∞

0
e−αx

(β+x)γ dx. It is clear that when

γ = 0, I1(α, β, γ) = I2(α, 1, 1). For the non-trivial case when γ ≥ 1, employing the

partial fraction expansion and after some manipulation the following relationship

is revealed between I1(·, ·, ·) and I2(·, ·, ·):

I1(α, β, γ) =
1

(β − 1)γ
I2(α, 1, 1)

+

γ∑
ı=1

(−1)ı−1

(1 − β)ı
I2(α, β, γ − ı + 1). (3.42)

I2(α, β, γ) can be further computed by noting from [64, 3.352.2] that I2(α, β, 1) =

eαβE1(αβ), where E1(x) =
∫∞

x
e−t

t
dt is the exponential integral function of the first

order [57], and utilizing integration by parts. The closed form result for I2(α, β, γ)

is presented as follows

I2(α, β, γ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(−1)γ−1αγ−1eαβE1(αβ)
(γ−1)!

+
γ−1∑
ı=1

(ı−1)!
(γ−1)!

(−1)γ−ı−1αγ−ı−1, γ ≥ 2

eαβE1(αβ), γ = 1

(3.43)
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3.8.2 Appendix D

Lemma 3.5. (Sufficient Conditions for Type of Convergence [56, 58, 98, 99]) Let

λ1, λ2, . . . , λK be i.i.d. random variables with CDF Fλ(x). We denote ΛK =

maxi λi. If there exists some distribution function G which is nondegenerate and

some constant aK ∈ R, bK > 0 such that the distribution of ΛK−aK

bK
converges to

G, then G must be one of just three types: G1: Fréchet distribution; G2: Weibull

distribution; G3: Gumbel distribution.

The CDF of λi, i.e., Fλ determines one of the exact types. If Fλ results

in one limiting distribution, then we say Fλ belongs to the domain of attraction of

this type, i.e., Fλ ∈ D(Gi). The well-known sufficient conditions for Fλ ∈ D(G1)

and Fλ ∈ D(G3) are as follows: Define ω(Fλ) = sup{x : Fλ(x) < 1}. Fλ(x) is

absolutely continuous and fλ(x) = F ′
λ(x) and f ′

λ(x) = F ′′
λ (x) exist, then

(a) Fλ ∈ D(G1) if fλ(x) > 0 for all large x and for some φ > 0,

lim
x→∞

xfλ(x)

1 − Fλ(x)
= φ. (3.44)

(b) Fλ ∈ D(G2) if μ < ∞ and for some φ > 0,

lim
x→μ

(μ − x)fλ(x)

1 − Fλ(x)
= φ. (3.45)

(c) Fλ ∈ D(G3) if fλ(x) > 0 and is differentiable for all x in (x1, ω(Fλ))

for some x1, and

lim
x→ω(Fλ)

d

dx

[
1 − Fλ(x)

fλ(x)

]
= 0. (3.46)

Further, we can choose the normalizing constants aK = F−1
λ (1 − 1

K
) and bK =

F−1
λ (1 − 1

Ke
) − F−1

λ (1 − 1
K

), where F−1
λ (x) = inf{y : Fλ(y) ≥ x}.

Proof of Theorem 3.2: Assume Z
(0)
k is a nonnegative random variable with

CDF F
Z

(0)
k

(x) such that f
Z

(0)
k

(x) > 0 and f ′
Z

(0)
k

(x) exist. The random variable Y
(0)
k,M

is related to Z
(0)
k by the following equation:

F
Y

(0)
k,M

(x) =
M−1∑
m=0

ξ1(N,M, m)(F
Z

(0)
k

(x))N−m.
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f

Z
(0)
k

(x) − (μ − x)f ′
Z

(0)
k

(x)

)
∑M−1

m=0 ξ1(N,M, m)(N − m)(F
Z

(0)
k

(x))N−m−1f
Z

(0)
k

(x)

(b)
= lim

x→μ

∑M−1
m=0 ξ1(N, M,m)(N − m)(F

Z
(0)
k

(x))N−m−1∑M−1
m=0 ξ1(N, M,m)(N − m)(F

Z
(0)
k

(x))N−m−1
φ = φ, (3.48)

In order to show that F
Y

(0)
k,M

has the same type of convergence property as F
Z

(0)
k

,

the proof in the sequel will be conducted for each of the three types.

(i) If for some φ > 0, lim
x→∞

xf
Z

(0)
k

(x)

1−F
Z

(0)
k

(x)
= φ, then F

Z
(0)
k

∈ D(G1). It must be

shown that lim
x→∞

xf
Y

(0)
k,M

(x)

1−F
Y

(0)
k,M

(x)
= φ̃ for some φ̃ > 0. Substituting the expression for

F
Y

(0)
k,M

and f
Y

(0)
k,M

yields (3.47), where (a) holds by applying the L’Hospital’s rule; (b)

follows from the type of convergence of Z
(0)
k . Therefore, φ̃ = φ, and F

Y
(0)
k,M

∈ D(G1).

(ii) If μ < ∞ and for some φ > 0, lim
x→μ

(μ−x)f
Z

(0)
k

(x)

1−F
Z

(0)
k

(x)
= φ, then F

Z
(0)
k

∈ D(G2).

It must be shown that lim
x→μ

(μ−x)f
Y

(0)
k,M

(x)

1−F
Y

(0)
k,M

(x)
= φ̃ for some φ̃ > 0. Substituting the
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lim
x→∞

(
F

Y
(0)
k,M

(x)−1

)
f ′

Y
(0)
k,M

(x)

(f
Y

(0)
k,M

(x))2

= lim
x→∞

(∑M−1
m=0 ξ1(N,M,m)(F

Z
(0)
k

(x))N−m−1

)
(∑M−1

m=0 ξ1(N,M,m)(N−m)(F
Z

(0)
k

(x))N−m−1f
Z

(0)
k

(x)

)2

×
(∑M−1

m=0 ξ1(N, M, m)(N − m)(F
Z

(0)
k

(x))N−m−1f ′
Z

(0)
k

(x)

)

+ lim
x→∞

(∑M−1
m=0 ξ1(N,M,m)(F

Z
(0)
k

(x))N−m−1

)
(∑M−1

m=0 ξ1(N,M,m)(N−m)(F
Z

(0)
k

(x))N−m−1f
Z

(0)
k

(x)

)2

(a)
=

(
∑M−1

m=0 ξ1(N,M,m)(N−m))
2

(
∑M−1

m=0 ξ1(N,M,m)(N−m))
2

(∑M−1
m=0 ξ1(N,M,m)(F

Z
(0)
k

(x))N−m−1

)
(f

Z
(0)
k

(x))2

×
(∑M−1

m=0 ξ1(N,M, m)(N − m)(F
Z

(0)
k

(x))N−m−1f ′
Z

(0)
k

(x)

)
(b)
= 1,

(3.49)

expression for F
Y

(0)
k,M

and f
Y

(0)
k,M

yields (3.48), where (a) holds by considering the

term that dominant the limit and applying the L’Hospital’s rule; (b) follows from

the type of convergence of Z
(0)
k . Therefore, φ̃ = φ, and F

Y
(0)
k,M

∈ D(G2).

(iii) If lim
x→∞

d
dx

[
1−F

Z
(0)
k

(x)

f
Z

(0)
k

(x)

]
= 0, and lim

x→∞

1−F
Z

(0)
k

(x)

f
Z

(0)
k

(x)
exists, then F

Z
(0)
k

∈

D(G3). It must be shown that lim
x→∞

d
dx

[
1−F

Y
(0)
k,M

(x)

f
Y

(0)
k,M

(x)

]
= 0. Carrying out the differen-

tiation, another equivalent condition is the following: lim
x→∞

(
F

Y
(0)
k,M

(x)−1

)
f ′

Y
(0)
k,M

(x)

(f
Y

(0)
k,M

(x))2
= 1.

Substituting the expression for F
Y

(0)
k,M

and f
Y

(0)
k,M

yields (3.49), where (a) comes from

the fact that
∑M−1

m=0 ξ1(N,M, m) = 1, (b) holds by applying the L’Hospital’s rule

and the type of convergence of Z
(0)
k . Therefore, F

Y
(0)
k,M

∈ D(G3).

Proof of Corollary 3.1: For the general SINR case, in order to prove that

F
Z

(0)
k

∈ D(G3), it must be shown that lim
x→∞

d
dx

[
1−F

Z
(0)
k

(x)

f
Z

(0)
k

(x)

]
= 0. Substituting the
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expression for f
Z

(0)
k

and F
Z

(0)
k

in (3.15) and (3.16) yields

lim
x→∞

1 − F
Z

(0)
k

(x)

f
Z

(0)
k

(x)

= lim
x→∞

∑Jk

b=1

�
(b)
k e

− x

ρ
(0)
k ρ

(0)
k

ρ
(0)
k +ρ

(b)
k x

∑Jk

b=1 �
(b)
k e

− x

ρ
(0)
k

(
1

ρ
(0)
k +ρ

(b)
k x

+
ρ
(0)
k ρ

(b)
k(

ρ
(0)
k +ρ

(b)
k x

)2

)

(a)
=

ρ
(0)
k

∑Jk

b=1 �
(b)
k

1

ρ
(b)
k∑Jk

b=1 �
(b)
k

1

ρ
(b)
k

= ρ
(0)
k , (3.50)

where (a) follows from applying the L’Hospital’s rule. It can be shown that

f ′
Z

(0)
k

(x) =

Jk∑
b=1

�
(b)
k e

− x

ρ
(0)
k

×

⎛
⎜⎝ −ρ

(0)
k

ρ
(0)
k + ρ

(b)
k x

+
−2ρ

(b)
k(

ρ
(0)
k + ρ

(b)
k x
)2 +

−2ρ
(0)
k ρ

(b)
k(

ρ
(0)
k + ρ

(b)
k x
)3

⎞
⎟⎠ . (3.51)

Utilizing the same technique as in (3.50), it can be easily shown that

lim
x→∞

f ′
Z

(0)
k

(x)

f
Z

(0)
k

(x)
= − 1

ρ
(0)
k

. (3.52)

By combining the results of (3.50) and (3.52), the following equation holds

lim
x→∞

(
F

Z
(0)
k

(x) − 1
)

f ′
Z

(0)
k

(x)

(f
Z

(0)
k

(x))2
=

−ρ
(0)
k

−ρ
(0)
k

= 1,

which proves the type of convergence of F
Z

(0)
k

. Applying Theorem 3.2 yields F
Y

(0)
k,M

∈
D(G3).

Proof of Corollary 3.2: In the one-dominant interference limited case, it is

easy to verify that

lim
x→∞

xf
Z

(0)
k

(x)

1 − F
Z

(0)
k

(x)
= lim

x→∞
ρ

(1)
k x

ρ
(1)
k x + ρ

(0)
k

= 1. (3.53)
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Thus, F
Z

(0)
k

∈ D(G1). Applying Theorem 3.2 yields F
Y

(0)
k,M

∈ D(G1).

In the noise limited case, it is easy to verify that F
Z

(0)
k

∈ D(G3), e.g., see [99].

Applying Theorem 3.2 yields F
Y

(0)
k,M

∈ D(G3).

Proof of Lemma 3.4: To prove this lemma, the following theorem which

discusses the extremes over random sample size is called upon.

Theorem 3.4. (Random Observations Theorem [98,108]) Let, as K → ∞, κ(K)
K

→
ϑ in probability, where ϑ is a positive random variable. Assume that there are

sequences aK ∈ R, bK > 0 such that ΛK−aK

bK
converges weakly to a nondegenerate

distribution function G. Then, as K → ∞,

lim P
(
Λκ(K) < aK + bKx

)
=

∫ ∞

−∞
Gy(x)dP(ϑ < y). (3.54)

From the analysis in Section 3.5.2, when K → ∞, κ(K)
K

→ M
N

. Thus from the

above random observations theorem, the extreme order statistics of the received

CQI for a given user k can be efficiently approximated by
(
F

Y
(0)
k,M

)KM
N

.

Proof of Theorem 3.3: According to the condition of domain of attraction,

it must be shown that

lim
r→∞

d

dr

[
1 − FRk,M

(r)

fRk,M
(r)

]
= 0. (3.55)

if lim
x→∞

xfYk,M
(x)

1−FYk,M
(x)

= φ > 0 or lim
x→∞

d
dx

[
1−FYk,M

(x)

fYk,M
(x)

]
= 0.

It is derived in [99] that

lim
r→∞

d

dr

[
1 − FRk,M

(r)

fRk,M
(r)

]

= lim
r→∞

(
−1 − (1 − FYk,M

(T−1(r)))f ′
Yk,M

(T−1(r))

(fYk,M
(T−1(r)))2

)

− lim
r→∞

(
(1 − FYk,M

(T−1(r)))(T−1)′′(r))
fYk,M

(T−1(r))((T−1)′(r))2

)

= lim
x→∞

d

dx

[
1 − FYk,M

(x)

fYk,M
(x)

]
− lim

x→∞
1 − FYk,M

(x)

xfYk,M
(x)

. (3.56)

If lim
x→∞

1−FYk,M
(x)

xfYk,M
(x)

= 1
φ
, then FYk,M

∈ D(G1). Using L’Hospital’s rule, for a

function θ(x) such as θ(x) → ∞ as x → ∞, if lim
x→∞

θ(x)
x

= 1
φ
, then lim

x→∞
θ′(x) = 1

φ
.

This leads to lim
r→∞

d
dr

[
1−FRk,M

(r)

fRk,M
(r)

]
= 0.
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If lim
x→∞

d
dx

[
1−FYk,M

(x)

fYk,M
(x)

]
= 0, then FYk,M

∈ D(G3). Similarly, we can apply

L’Hospital’s rule to yield lim
r→∞

d
dr

[
1−FRk,M

(r)

fRk,M
(r)

]
= 0.

Up to now, the sufficient conditions have been proved. From the analysis in

Section 3.5.2 on the random effect of multiuser diversity due to partial feedback,

the number of CQI values fed back for each resource block becomes KM
N

with high

probability. Additionally, note that

F−1
Rk,M

(x) = T (F−1
Yk,M

(x)) = log2

(
1 + F−1

Yk,M
(x)
)

, (3.57)

thus the normalizing constants (3.27) can be obtained.

Proof of Corollary 3.3: In the one-dominant interference limited case with

full feedback, the normalizing constants can be obtained by using F−1

Y
(0)
k,N

(x) =

ρ
(0)
k x

ρ
(1)
k (1−x)

.

In the noise limited case with full feedback, the normalizing constants can

be obtained by using F−1

Y
(0)
k,N

(x) = ρ
(0)
k ln 1

1−x
.

Proof of Corollary 3.4: In the one-dominant interference limited case with

full feedback, the normalizing constants can be obtained by using F−1

Y
(0)
k,N

(x) =

ρ
(0)
k x

1
N

ρ
(1)
k (1−x

1
N )

and the number of CQI values fed back per resource block equaling

K
N

.

In the noise limited case with full feedback, the normalizing constants can

be obtained by using F−1

Y
(0)
k,N

(x) = ρ
(0)
k ln 1

1−x
1
N

and the number of CQI values fed

back per resource block equaling K
N

.

Proof of Corollary 3.5: When K → ∞, the probability of scheduling outage

(1 − 1
N

)K → 0. Therefore, from (3.27) it should be shown that lim
K→∞

1− 1
K

(1−N
K

)
1
N

→ 1.

By applying the L’Hospital’s rule, the following equivalent equation holds:

lim
K→∞

1
K

1 − (1 − N
K

)
1
N

= 1. (3.58)



Chapter 4

Random Beamforming with

Heterogeneous Users and

Selective Feedback

4.1 Introduction

In multi-antenna downlink systems, transmission strategies which require

less feedback resources [1, 100, 118, 119] to fully utilize multiuser diversity [15, 16],

but with asymptotic sum capacity comparable to dirty paper coding [120–124], are

favored. The idea of random beamforming [58], which satisfies the two aforemen-

tioned features has drawn much interest in recent years [125–131]. In the basic

random beamforming strategy suggested in [58], the transmitter with M transmit

antennas generates M random orthonormal beams and requires each user to feed

back the SINR experienced by them for each beam. Then the transmitter sched-

ules users for transmission that currently have the best channel for each random

beam. Despite the considerable literature on this topic, there are three existing

open problems:

1. How to address heterogeneous users with diverse large scale channel effects

and the impact on scheduling policy?

83
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2. What is the closed form sum rate by exact1 performance analysis?

3. What is the effect of selective feedback, both spatial and spectral, on the

randomness of multiuser diversity?

The first problem is related to a practical downlink system setting with

asymmetrically located users having heterogeneous large scale channel effects. This

near-far effect was first treated in [58] by observing that the system becomes inter-

ference dominated when M is large enough. In the large M setting, the authors

prove that users are asymptotically equiprobable to be scheduled. However, when

M is finite and not increasing simultaneously with the number of users, the greedy

scheduling policy employed in [58] can not maintain fairness among users. Also,

if a round robin scheduling policy was utilized, fairness can be guaranteed, but no

multiuser diversity gain could be achieved for capacity growth. Therefore, an al-

ternate scheduling policy is needed to maintain fairness while exploiting multiuser

diversity at the same time. In this chapter, the cumulative distribution function

(CDF)-based scheduling policy [92] is leveraged and analyzed in the random beam-

forming framework, wherein the user whose rate for a given beam is high enough

but least probable to become higher is selected. Under this scheduling policy, each

user can be equivalently viewed as competing with other users with the same CDF,

thus making the study of individual user rate more relevant and interesting than

that of the sum rate. In this chapter, we develop the notion of individual sum

rate, which is the individual user rate multiplied by the number of users, in order

to demonstrate the multiuser diversity gain with user growth for a given user.

The second problem addresses exact system analysis, namely deriving closed

form expression for the sum rate for arbitrary but finite number of users. Note that

even with full feedback, wherein each user conveys back the signal-to-interference-

plus-noise ratio (SINR) for M beams, the closed form sum rate has not been de-

rived. This is partially due to the complicated form of SINR and its interplay with

multiuser diversity. In this work, the problem is tackled and solved by a novel

probability density function (PDF) decomposition [132] which decomposes and in-

terprets the selected user’s SINR. In [132], the homogeneous setting is considered

1We use the term exact to denote results valid for arbitrary but finite number of users.
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and in this chapter, the technique is extended to the heterogeneous user setting

and the closed form individual sum rate is derived. The closed form result under

full feedback helps in evaluating the system performance and acts as the building

block for exact analysis with selective feedback.

The third problem is concerned with standard selective feedback in the spa-

tial dimension, wherein each user feeds back the SINR for the best beam among

the M beams and the corresponding beam index. This selective feedback is fun-

damentally different than full feedback in two aspects. The first difference is the

two-stage maximization with the first stage maximization carried out by each user

for feedback selection and the second stage maximization carried out by the sched-

uler to perform user selection. Since the best beam is selected by each user, the

first stage maximization is over M correlated SINR. This correlation issue has

been addressed in [20, 133], and the CDF for the selected SINR at the user side

is derived. In this chapter, we propose an approximation for the CDF and utilize

it to derive closed form rate approximation. The other fundamental difference is

the number of the SINR values that the scheduler has to maximize over for each

beam. This number is fixed and equals the number of users in the full feedback

case. However, with selective feedback, it becomes a random quantity. In other

words, selective feedback results in a random effect on the multiuser diversity. This

effect was first observed in [20]. In this chapter, we investigate the randomness

of multiuser diversity by extremes over random samples and provide a rigorous

argument on the rate scaling.

The third problem is further extended to include spectral selectivity by ex-

amining a wideband OFDMA system, which groups the subcarriers into resource

blocks [6] to form the basic scheduling and feedback unit. In order to save feed-

back resource while not significantly degrading the system performance, additional

selective feedback in the spectral dimension is necessary. The effect of random

beamforming in a wideband system is examined in [134] by extensive simulations,

and further studied from a utility function perspective with the proportional-fair

scheduler in [135]. In [136], analytical results on the asymptotic cluster size is

provided. Apart from the thresholding-based partial feedback strategy [17], the
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best-L selective feedback strategy [29] is appealing and utilized in practical sys-

tems such as LTE [37]. In this chapter, we employ the best-L selective feedback

strategy to investigate random beamforming and the effect of spectral dimension

selective feedback, which calls for an additional maximization stage at the user

side to perform feedback selection. In this feedback strategy, only the best beams

from the best L resource blocks along with the beam and resource block index

are fed back from each user. In this chapter, we first derive a closed form rate

approximation with exact analysis, i.e., valid for arbitrary but finite number of

users. Then, the influence of the additional spectral dimension selective feedback

on the type of convergence is investigated with the technique of tail equivalence.

Moreover, the multiplicative effect of selective feedback and random observations

is observed to establish the rate scaling.

To summarize, the main contributions of this chapter are threefold: the

utilization of CDF-based scheduling policy to address heterogeneous users with

random beamforming, the obtained closed form rate results with different selective

feedback assumptions, and the asymptotic analysis on the randomness of multiuser

diversity incurred by selective feedback. These three contributions analytically

examine the raised open problems, and foster further understanding on random

beamforming with heterogeneous users and selective feedback. The organization of

this chapter is as follows. Section 4.2 reviews the basic narrowband system model

for random beamforming. The analysis for the full feedback case is carried out in

Section 4.3, and for the spatial dimension selective feedback in Section 4.4. Section

4.5 provides the model for the wideband OFDMA with random beamforming, and

examines the effect of additional spectral dimension selective feedback on rate

performance. Finally, Section 4.6 concludes the chapter.

4.2 System Model

We consider a multi-antenna narrowband Gaussian downlink channel with

K single antenna receivers and a transmitter equipped with M antennas. A

block fading channel model with coherence interval T is assumed. The random
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beamforming strategy employs M random orthonormal vectors φm ∈ CM×1 for

m = 1, . . . , M , where the φi’s are drawn from an isotropic distribution indepen-

dently every T channel uses [58]. Denoting sm(t) as the mth transmission symbol

at time t, the transmitted vector of symbols at time t, represented by s(t) ∈ CM×1,

is given as

s(t) =
M∑

m=1

φm(t)sm(t), t = 1, . . . , T. (4.1)

Let yk(t) be the received signal at the kth user, then

yk(t) =
M∑

m=1

√
ρkh

†
k(t)φm(t)sm(t) + vk(t), (4.2)

where hk ∈ CM×1 is the complex channel vector which is assumed to be known

at the receiver, vk is the additive white noise, and the elements of hk and vk are

i.i.d. complex Gaussian with zero mean and unit variance CN (0, 1). Note that

this channel assumption corresponds to the Rayleigh fading assumption for the

small scale channel effect. From now on, the time variable t will be dropped for

notational convenience. The total transmit power is chosen to be 1, i.e., E[s†s] = 1,

and thus the received signal-to-noise ratio (SNR) of user k is ρk. In a practical

downlink setting, due to different locations of users, the large scale channel effects

ρk which may consist of path loss and shadowing vary across users. From (4.2),

the SINR of the kth user for the mth transmit beam can be computed as

SINRk,m =
|h†

kφm|2
M/ρk +

∑
i�=m |h†

kφi|2
, m = 1, . . . , M. (4.3)

Denote Zk,m � SINRk,m for notational simplicity. Then for a given beam m,

the Zk,m’s are independent across users k but non-identically distributed due to

different ρk. For a given user k, the Zk,m’s are identically distributed and correlated.

Thus the beam index m can be dropped in the expression for the PDF, which is

computed in [58] as

fZk
(x) =

e
− M

ρk
x

(1 + x)M

(
M

ρk

(1 + x) + M − 1

)
u(x), (4.4)

where u(·) is the Heaviside step function. The CDF of Zk is shown in [58] to be

FZk
(x) =

(
1 − e

− M
ρk

x

(1 + x)M−1

)
u(x). (4.5)
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4.3 Full Feedback Analysis

This section is devoted to the analysis for the full feedback case wherein

each user feeds back the SINR for M beams. Since under full feedback, all the

beams are fed back, the order statistics for each beam is over K independent

random variables. Thus this case is well suited for illustration of the scheduling

policy and the derivation of the individual sum rate.

4.3.1 Scheduling Policy and Individual Sum Rate

After receiving the SINRk,m from user k for beam m, the scheduler is ready to

perform user selection. In a homogeneous setting, selecting the user with the largest

SINR for a given beam maintains fairness and obtains multiuser diversity gain.

This system was analyzed in our recent work [132]. The work is now expanded

to the more complex heterogeneous case. In a heterogeneous setting, the greedy

scheduling policy would be highly unfair for finite M . The round robin scheduling

policy can maintain scheduling fairness, but no multiuser diversity gain can be

obtained. The proportional-fair scheduling policy [16, 135] achieves the system

fairness in terms of system utility. However, under the scenario of inter-beam

interference, the users’ rates are coupled under the proportional-fair scheduling

policy. This coupled effect makes it very difficult, if not impossible, to develop

further analytical results2. Therefore, to tackle this problem it is useful to consider

alternate scheduling policies that decouple each user’s rate. In this chapter, we

employ the CDF-based scheduling policy [92] for further analysis. According to

this policy, the scheduler will utilize the distribution of the received SINR, i.e., FZk
.

It is assumed that the scheduler perfectly knows the CDF3, and it performs the

2Note that extensive simulation results have been provided regarding the use of proportional-
fair scheduling policy under random beamforming in existing literature such as [135]. However,
the coupled effect of user’s rate prevents further analysis and it remains an open problem to
theoretically understand the system performance of proportional-fair scheduling policy under
the heterogeneous user setting with inter-beam interference.

3This is the only system requirement to conduct the CDF-based scheduling, and the CDF can
be obtained by infrequent feedback from users and learned by the system.
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following transformation [92]:

Z̃k,m = FZk
(Zk,m). (4.6)

The transformed random variable Z̃k,m is uniformly distributed ranging from 0

to 1, and independent and identically distributed (i.i.d.) across users for a given

beam. Denote k∗
m as the random variable representing the selected user for beam

m, then

k∗
m = max

Um

Z̃k,m, (4.7)

where Um denotes the set of users conveying feedback for beam m. In the full

feedback case, |Um| = K. After user k∗
m is selected per (4.7), the scheduler utilizes

the corresponding Zk∗
m,m for rate matching of the selected user. Let Xm be the

SINR of the selected user for beam m and now consider the sum rate of the system

defined as follows,

R = E

[
M∑

m=1

log2 (1 + Xm)

]
. (4.8)

From the aforementioned formulation, the sum rate can be computed in the fol-

lowing procedure

R
(a)� MEk∗

m

[∫ 1

0

log2

(
1 + F−1

Zk∗m,m
(x)
)

dxK

]

(b)
=

M

K

K∑
k=1

∫ ∞

0

log2(1 + t)d(FZk
(t))K =

M

K

K∑
k=1

Jk(K), (4.9)

where (a) follows from the sufficient small probability that multiple beams are

assigned to the same user; (b) follows from the change of variable x = FZk∗m,m
(t),

the fair property of the CDF-based scheduling, and the following definition for

Jk(ε) with exponent ε ∈ N+:

Jk(ε) �
∫ ∞

0

log2(1 + x)d(FZk
(x))ε. (4.10)

With the help of the CDF-based scheduling, each user feels as if the other

users have the same CDF for scheduling competition [92]. Therefore, each user’s

rate is independent of other users making it possible to consider or predict individ-

ual user’s rate by only examining its own CDF. It is clear that the scheduling policy
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is not only fair, but also acknowledges multiuser diversity at the same time. If we

denote the sum rate as the “macro” level understanding of the system performance,

then the individual user rate can be seen as the “micro” level understanding of

the system performance since this performance metric examines the rate for any

specific user and the sum rate can be directly computed from the individual user

rate from all the users. Thus, under the CDF-based scheduling policy, each user’s

rate can be examined separately and this property serves as one building block for

further analysis with selective feedback.

In order to demonstrate the multiuser diversity gain for each individual

user, we define the individual sum rate R̂k for user k which is the individual user

rate Rk multiplied by the number of users, as follows

R̂k � KRk = MJk(K). (4.11)

The definition of the individual sum rate under the CDF-based scheduling policy

makes it natural to examine the rate scaling for each user separately, and also

provide a “micro” level understanding of the sum rate scaling. Compared with

the sum rate and the individual user rate which can be treated as performance

metrics, the notion of individual sum rate can be regarded as the analytic metric

for further scaling analysis.

Note that in the homogeneous setting, Jk(ε) reduces to J (ε) �
∫∞
0

log2(1+

x)d(FZ(x))ε. It is mentioned in previous works that the exact closed form for J (ε)

is hard to obtain due to the coupled effect of SINR and multiuser scheduling. In

the sequel, the closed form expression for Jk(ε) is obtained which is the key to

computing the sum rate given by (4.9). The main technique is employing the

following proposed PDF decomposition which readily follows from [132].

Lemma 4.1. (PDF Decomposition) d(FZk
(x))ε can be decomposed as

d(FZk
(x))ε = ε

ε−1∑
i=0

(
ε − 1

i

)
(−1)i

i + 1
d

⎛
⎝1 − e

−M(i+1)x
ρk

(1 + x)(M−1)(i+1)

⎞
⎠ . (4.12)

With the help of this PDF decomposition, Jk(ε) can be computed in closed

form using standard integration techniques whose expression is presented in the

following theorem.
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Theorem 4.1. (Closed Form of Jk)

Jk(ε) =
ε

ln 2

ε−1∑
i=0

(
ε − 1

i

)
(−1)i

i + 1
I
(

M(i + 1)

ρk

, (M − 1)(i + 1) + 1

)
, (4.13)

where I(α, β) �
∫∞
0

e−αx

(1+x)β dx whose closed form expression is presented in Ap-

pendix E.

Proof. The proof is given in Appendix E.

Remark: A few remarks are in order. Firstly, the analytically useful PDF

decomposition decouples the effect of multiuser diversity and random beamform-

ing, which facilitates the integration. The decomposition is general in that it can

be applied to other channel models, though in this chapter the simple Rayleigh

channel model is assumed to obtain the SINR statistics in (4.5). Secondly, the de-

rived closed from results for the individual sum rate and the sum rate only involve

finite sums and factorials, which can readily be computed. Moreover, the derived

Jk(ε) will be employed as a building block for rate computation in Section 4.4 and

Section 4.5 with selective feedback.

4.3.2 Individual Scaling Laws

With homogeneous setting, the asymptotic sum rate scaling is of interest

and has been established as M log2 log2 K [58] given the SINR statistics in (4.5).

It can be easily seen that the multiuser diversity gain is linear with respect to the

number of transmit antennas. With heterogeneous setting employing the CDF-

based scheduling, the same technique can be applied to obtain the asymptotic

scaling for the individual sum rate R̂k of user k. We now develop the notion of

individual rate scaling and state the individual scaling laws under full feedback

through the following theorem.

Theorem 4.2. (Individual Scaling Laws Under Full Feedback)

lim
K→∞

R̂k

M log2 log2 K
= 1. (4.14)
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Remark: It is seen from Theorem 4.2 that users asymptotically follow the

same scaling laws in the CDF-based scheduling policy. The large scale channel

effect ρk is not written explicitly in (4.14) since it is a constant inside the log term.

It should briefly be noted that the rate scaling only measures the asymptotic trend

when K → ∞ and thus can not accurately match the exact performance4 for finite

regions of K.

4.4 Selective Feedback in the Spatial Dimension

This section examines selective feedback in the spatial dimension wherein

each user only conveys the best beam. This standard user side selection requires

the handling of correlated random variables and the random effect on observations,

which are pursued in Section 4.4.1 and Section 4.4.2.

4.4.1 Individual Sum Rate

With selective feedback, each user selects and feeds back the largest SINR

among M beams. As discussed in Section 4.2, the Zk,m’s are correlated random

variables given k. Thus simple order statistics result can not be used to charac-

terize the selected SINR at user side. Denote Yk,m∗(k) = max
m

Zk,m representing the

selected SINR for user k with m∗(k) as the selected beam index. Then according

to the derivation in [20,133], the CDF of Yk,m∗(k) is shown to be

FYk,m∗(k)
(x) =

(
1 −

M∑
ı=1

[dı(x)]M+ e
− 2Mx

ρkdı(x)

Aı(x)

)
u(x), (4.15)

where dı(x) = 2(1−(M−ı)x)
M−ı+1

, Aı(x) = dı(x)
∏M

i�=ı(dı(x)−di(x)), and [·]+ is the positive

part of the argument. Note that the distribution does not depend on the selected

beam index m∗(k) due to the identically distributed property across beams and is

dropped to simplify notation, i.e., FYk,m∗(k)
(x) = FYk

(x). Using a similar procedure

to that described in Section 4.3.1, after receiving feedback, the scheduler performs

4Using asymptotic approximation method to approximate the exact rate performance is ex-
amined in [137].
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the transformation for user selection:

Ỹk,m∗(k) = FYk

(
Yk,m∗(k)

)
. (4.16)

Compared with (4.6), it is clear that FYk
= FZk

for the full feedback case. Denote

k∗
m as the random variable representing the selected user for beam m, then

k∗
m = max

Um

Ỹk,m∗(k), (4.17)

where Um = {k : m∗(k) = m} denotes the set of users conveying feedback for beam

m. Um is a set of random size and the probability mass function (PMF) can be

shown to be given by

P(|Um| = τ1) =

(
K

τ1

)(
1

M

)τ1 (
1 − 1

M

)K−τ1

, 0 ≤ τ1 ≤ K. (4.18)

Following the derivation in Section 4.3.1, let Xm be the selected SINR for beam m

at the scheduler side, then conditioned on k∗
m and |Um| = τ1, the conditional CDF

of Xm can be written as FXm|k∗
m,|Um|=τ1(x) = (FYk∗m,m

(x))τ1 . By averaging over the

randomness of |Um|, the conditional CDF is expressed as

FXm|k∗
m
(x) =

K∑
τ1=0

(
K

τ1

)(
1

M

)τ1 (
1 − 1

M

)K−τ1

(FYk∗m,m
(x))τ1 . (4.19)

From (4.9) and (4.11), the individual sum rate of user k is derived as5

R̂k = M

K∑
τ1=1

(
K

τ1

)(
1

M

)τ1 (
1 − 1

M

)K−τ1 ∫ ∞

0

log2(1 + x)d(FYk
(x))τ1 . (4.20)

Due to the complicated form of FYk
, the exact closed form expression for

(4.20) is hard to obtain. We now aim to provide an approximate expression for

the closed form by examining the property of FYk
and utilizing the established

result in Section 4.3.1. Recall that Yk is the maximization over M correlated

random variables Zk,m, thus alternative approximation for FYk
would lead to rate

approximation. One simple approach is to use the Fréchet upper bound [98] for

the Zk,m’s. Since the Zk,m’s are identically distributed across m, the Fréchet up-

per bound yields FZk
. This upper bound is very loose empirically for FYk

. One

5In this chapter, it is assumed that if no user feeds back SINR for a certain beam, that beam
would be in scheduling outage and would not contribute to rate calculation.
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Figure 4.1: Comparison of the exact CDF FYk
with the Fréchet upper bound

and the negative association upper bound for spatial dimension selective feedback
(M = 4, ρk = 10 dB).

suitable approach is inspired by the conjectured negative associated upper bound

proposed in [20] to deal with the minimum mean square error (MMSE) receiver.

Our empirical evidence shows that even with single antenna receiver, the Zk,m’s

are negative associated [138], thus the upper bound produced by the negative

association property can be utilized to approximate FYk
, namely

FYk
(x) � (FZk

(x))M . (4.21)

Fig. 4.1 illustrates the bounds and the empirical CDF FYk
for M = 4, ρk = 10 dB.

It can be seen that the proposed upper bound in (4.21) approximates the exact one

in (4.15) well, especially when the SINR is large. By using the CDF approximation,

the individual sum rate can be approximated by a closed form expression presented

in the following corollary.
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Figure 4.2: Comparison of the exact individual sum rate and the approximated
one for a given user with different M and ρk with respect to the number of users
(M = 2, 4, ρk = 0 dB, 10 dB, 20 dB).

Corollary 4.1. (Closed Form Approximation of Individual Sum Rate)

R̂k � R̂App
k = M

K∑
τ1=1

(
K

τ1

)(
1

M

)τ1 (
1 − 1

M

)K−τ1

Jk(Mτ1). (4.22)

Proof. The proof is given in Appendix F.

In order to demonstrate the rate approximation in Corollary 4.1, we conduct

a numerical study in Fig. 4.2 for different M and ρk with respect to the number

of users. The exact R̂k in (4.20) can be calculated by numerical integration. It is

observed that (4.22) approximates the exact rate very well, which makes the rate

approximation valuable due to its efficient computational form.
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4.4.2 Individual Scaling Laws

The difficulty of dealing with rate scaling with selective feedback is two-

fold. Firstly, due to selective feedback of the best beam, the number of SINR to

maximize over at the scheduler side for each beam is a random quantity. This

random effect is reflected in the random set Um in Section 4.4.1. Secondly, the

normalizing constants for establishing the type of convergence [56, 98] have to be

obtained for a quantity ϑ other than the number of users K in the full feedback

case. In [20], the first issue was tackled by the Delta method. In this chapter,

we solve the first issue by referring to the extremes over random samples, and

rigorously solve the second one by using the normalizing constants theorem. The

proof is provided in Appendix F.

To examine the random effect on multiuser diversity, denote the sequence

of random variables κm(K) as the number of SINR fed back for beam m with K

users. It is easy to see that κm(K) are binomial distributed with probability of

success 1
M

. Thus by the strong law of large numbers, as K grows, the number of

SINR fed back for each beam becomes K
M

. The following theorem is called upon to

deal with this random effect.

Theorem 4.3. (Extremes with Random Sample Size [98, 108]) Let, as K → ∞,
κ(K)

K
→ ϑ in probability, where ϑ is a positive random variable. Assume that there

are sequences aK ∈ R, bK > 0 such that ΛK−aK

bK
converges weakly to a nondegenerate

distribution function G. Then, as K → ∞,

lim P
(
Λκ(K) < aK + bKx

)
=

∫ ∞

−∞
Gy(x)dP(ϑ < y). (4.23)

Therefore, if we denote Λk:κ(K) as the extreme order statistics of the re-

ceived SINR for each beam of a given user k, then from Theorem 4.3, its CDF

can be efficiently approximated by (FYk
)

K
M . Combining this with the normalizing

constants theorem in Appendix F yields the following corollary.

Corollary 4.2. (Individual Scaling Laws Under Spatial Dimension Selective Feed-

back)

lim
K→∞

R̂k

M log2 log2
K
M

= 1, lim
K→∞

R̂App
k

M log2 log2 K
= 1. (4.24)
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Figure 4.3: Illustration of the spatial and spectral dimension selective feedback
and the scheduling result in an OFDMA system (different colors denote different
users K = 9, N = 5 resource blocks, M = 4 beams, the spectral dimension
selective feedback L = 2).

Proof. The proof is given in Appendix F.

Remark: The scaling for the exact rate R̂k and approximated rate R̂App
k

differs in the factor 1
M

. The rate scaling for R̂App
k does not have this factor because

intuitively the exponent M in the approximated CDF (FZk
(x))M counteracts the

reduction in the number of SINR values for maximization, i.e., K
M

, due to selective

feedback. We call this effect as the multiplicative effect. The detailed proof can be

found in Appendix F. To draw further insights, we can think of the exponent of

FZk
(x) as the virtual users. In the full feedback case, the exponent equals K. In the

selective feedback case with the approximated CDF, the exponent asymptotically

equals K by the aforementioned multiplicative effect6. The notion of virtual users

and the multiplicative effect will be investigated further with both spatial and

spectral dimension selective feedback in Section 4.5.3.

6Note that even though the scaling laws are the same for the full feedback and the selective
feedback case, this metric only measures the asymptotic performance when K is large. The exact
rate performance is different due to the randomness of multiuser diversity and the scheduling
outage event.
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4.5 Selective Feedback in Both Spatial and Spec-

tral Dimension

In this section, random beamforming is embedded in a wideband OFDMA

system. The system model is presented in Section 4.5.1, the exact analysis and the

asymptotic analysis are examined in Section 4.5.2 and Section 4.5.3 respectively.

4.5.1 System Model

The system model described in Section 4.2 is extended to an OFDMA sys-

tem with N resource blocks. Each resource block is regarded as the basic scheduling

and feedback unit. The random beamforming strategy generates M orthonormal

beams φm,n for each resource block. Denote sm,n as the mth transmission symbol

at resource block n, then the received signal yk,n for user k at resource block n can

be expressed as

yk,n =
M∑

m=1

√
ρkH

†
k,nφm,nsm,n + vk,n, (4.25)

where Hk,n ∈ CM×1 is the frequency domain channel transfer function of user k

at resource block n with i.i.d. CN (0, 1) elements. To facilitate analysis, Hk,n is

assumed to be i.i.d. across resource blocks for a given user. This corresponds

to the widely used block fading approximation in the frequency domain [48, 49]

due to its simplicity and capability to provide a good approximation to actual

physical channels. The transmit power for a resource block is assumed to be 1.

From (4.25), the SINRk,n,m of user k at resource block n for beam m is SINRk,n,m =
|H†

k,nφm,n|2
M/ρk+

∑
i �=m |H†

k,nφi,n|2
, and is denoted by Zk,n,m for notational simplicity. For a given

user k, the Zk,n,m’s are i.i.d. across resource blocks for a given beam m, and for a

given resource block n, the Zk,n,m’s are identically distributed and correlated across

beams. The CDF of Zk,n,m is given by FZk
(x) =

(
1 − e

− M
ρk

x

(1+x)M−1

)
u(x), where the

index n and m can be dropped due to the identically distributed property.



99

4.5.2 Individual Sum Rate

With the extra degrees of freedom in the spectral dimension, additional

selective feedback at each user side can be made possible by the following two-stage

feedback selection. The first stage selection is in the spatial dimension, where each

user selects the best beam with the largest SINR for each of the resource block.

This process is similar to the narrowband feedback selection discussed in Section

4.4.1. Let Yk,n,m be the outcome of the first stage selection, thus from (4.15), its

CDF can be written as FYk
(x) =

(
1 −∑M

ı=1

[dı(x)]M+ e
− 2Mx

ρkdı(x)

Aı(x)

)
u(x), where again

the resource block index n and the beam index m can be dropped due to the

identically distributed property across resource blocks and beams. The second

stage selection occurs in the spectral dimension, where each user feeds back the

SINR values of the best L resource blocks among the total N resource blocks. Let

Wk,n,m denote the outcome of the second stage selection of user k at resource block

n for beam m. Thus this random variable represents the selected SINR at the user

side, whose CDF is of interest for further analysis. It is easy to see that for the

case of full feedback in the spectral dimension, i.e., L = N , FWk
= FYk

. For the

best-1 feedback case, i.e., L = 1, FWk
= (FYk

)N due to the independent property

of Yk across resource blocks. For the general best-L feedback case, utilizing the

results in [29], the CDF can be shown as

FWk
(x) =

L−1∑
�=0

ξ1(N, L, 
)(FYk
(x))N−�, (4.26)

where ξ1(N, L, 
) =
∑L−1

i=�
L−i
L

(
N
i

)(
i
�

)
(−1)i−�. The two-stage feedback selection is

demonstrated in Fig. 4.3 with nine users denoted by different colors, five resource

blocks, and four beams. In the illustrated example, we use best-2 spectral dimen-

sion feedback, i.e., L = 2.

After receiving feedback, the scheduler performs the CDF-based scheduling

by first conducting the transformation on the received SINR,

W̃k,n,m = FWk
(Wk,n,m). (4.27)

Denote k∗
n,m as the random variable representing the selected user at resource block
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n for beam m, then

k∗
n,m = max

Un,m

W̃k,n,m, (4.28)

where Un,m denotes the set of users conveying feedback for beam m at resource

block n. Following the derivation in Section 4.4.1, let Xn,m be the selected SINR

for beam m at resource block n at the scheduler side. Then averaging over the

randomness of |Un,m|, the conditional CDF conditioned on k∗
n,m can be written as

FXn,m|k∗
n,m

(x) =
K∑

τ1=0

(
K

τ1

)(
1

M

)τ1 (
1 − 1

M

)K−τ1

×
τ1∑

τ2=0

(
τ1

τ2

)(
L

N

)τ2 (
1 − L

N

)τ1−τ2

(FWk∗n,m,n,m
(x))τ2 . (4.29)

For further derivation, (FWk
(x))τ2 is manipulated into the following form by the

power series expansion [29,64]:

(FWk
(x))τ2 =

τ2(L−1)∑
�=0

ξ2(N,L, τ2, 
)(FYk
(x))Nτ2−�, (4.30)

where

ξ2(N, L, τ2, 
) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(ξ1(N,L, 0))τ2 , 
 = 0

1
�ξ1(N,L,0)

∑min(�,L−1)
i=1 ((τ2 + 1)i − 
)

×ξ1(N, L, i)ξ2(N,L, τ2, 
 − i), 1 ≤ 
 < τ2(L − 1)

(ξ1(N,L, L − 1))τ2 , 
 = τ2(L − 1).

(4.31)

Following the same procedure as in Section 4.4.1, the individual sum rate for user

k can be derived as

R̂k =
1

N

N∑
n=1

E

[
M∑

m=1

log2

(
1 + Xn,m|k∗

n,m = k
)]

= M

K∑
τ1=1

(
K

τ1

)(
1

M

)τ1 (
1 − 1

M

)K−τ1 τ1∑
τ2=1

(
τ1

τ2

)(
L

N

)τ2 (
1 − L

N

)τ1−τ2

×
τ2(L−1)∑

�=0

ξ2(N, L, τ2, 
)

∫ ∞

0

log2(1 + x)d(FYk
(x))Nτ2−�. (4.32)

In order to obtain the closed form rate approximation for R̂k, the CDF approxi-

mation proposed in (4.21) by the negative association property is utilized to ap-

proximate FYk
. The closed form result is presented in the following corollary.
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Corollary 4.3. (Closed Form Approximation of Individual Sum Rate)

R̂k � R̂App
k = M

K∑
τ1=1

(
K

τ1

)(
1

M

)τ1 (
1 − 1

M

)K−τ1 τ1∑
τ2=1

(
τ1

τ2

)(
L

N

)τ2 (
1 − L

N

)τ1−τ2

×
τ2(L−1)∑

�=0

ξ2(N,L, τ2, 
)Jk(M(Nτ2 − 
)). (4.33)

To understand the impact of spectral dimension selective feedback, we con-

duct a numerical study assuming N = 10, M = 4. Fig. 4.4 plots the exact and

approximated rate for different L under ρk = 10 dB with respect to the number

of users. It can be seen that when the number of users is small, there is a certain

rate gap between selective feedback and full feedback. However, the gap becomes

negligible when the number of users increases. In Fig. 4.5, the performance is

observed for different ρk for K = 20. From the two figures, we can see that the

proposed rate approximation tracks the exact performance very well.

4.5.3 Individual Scaling Laws

We now examine the rate scaling with selective feedback in both spatial and

spectral dimension. In Section 4.4.2 with spatial dimension selective feedback, the

CDF of interest is FYk
and the number of SINR to maximize over at the scheduler

side for each beam approaches K
M

. With additional spectral dimension feedback,

the CDF of FWk
is of primary interest. To get a handle on the randomness of

multiuser diversity for this case, an approach similar to that in Section 4.4.2 can

be utilized. Let the sequence of random variables κn,m(K) be the number of SINR

values fed back for beam m at resource block n with K users. It is easy to see that

κn,m(K) are binomial distributed with probability of success L
MN

. Therefore, by

the strong law of large numbers, as K grows, the number of SINR values fed back

for each beam at each resource block becomes KL
MN

. Moreover, the convergence

property of the sequence κn,m(K) can be shown by invoking the central limit

theorem:

lim
K→∞

√
K

(
κn,m(K)

K
− L

MN

)
d→N

(
0,

L

MN

(
1 − L

MN

))
, (4.34)
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Figure 4.4: Comparison of the exact individual sum rate and the approximated
one for a given user with different spectral dimension selective feedback L with
respect to the number of users (M = 4, N = 10, ρk = 10 dB, L = 1, 2, 4, 10).

where d indicates convergence in distribution. By applying Theorem 4.3, the ex-

treme order statistics of the received SINR for each beam at each resource block

for a given user k can be efficiently approximated by (FWk
)

KL
MN .

Now the remaining problem is to examine the type of convergence of FWk
.

Recall the formulation of FWk
as: FWk

(x) =
∑L−1

�=0 ξ1(N, L, 
)(FYk
(x))N−�. It is

known that FYk
converges weakly to the type 3 Gumbel distribution. Due to

the complicated form of ξ1(·, ·, ·), it is tedious to directly check the conditions

for proving the type of convergence. In order to investigate the tail behavior of

FWk
which dominates the type of convergence [56], the following tail equivalence

theorem is called upon.

Theorem 4.4. (The Tail Equivalence Theorem [139]) U(·) and V (·) are distribu-
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Figure 4.5: Comparison of the exact individual sum rate and the approximated
one for a given user with different spectral dimension selective feedback L with
respect to different ρk (M = 4, N = 10, K = 20, L = 1, 2, 4, 10).

tion functions such that

lim
x→∞

1 − U(x)

1 − V (x)
= 1. (4.35)

If there exist normalizing constants aK, bK > 0 such that UK(aK + bKx) → G(x),

where G(x) is non-degenerate, then V K(aK + bKx) → G(x).

From Theorem 4.4 one can infer that if two distribution functions are tail

equivalent, then they belong to the domain of attraction of the same type. Employ-

ing Theorem 4.4, a tail equivalent formulation can be obtained for FWk
expressed

in the following corollary.

Corollary 4.4. (Tail Equivalent CDF) FWk
(x) and (FYk

(x))N−∑L−1
�=0 ξ1(N,L,�)� are

tail equivalent .

Proof. The proof is given in Appendix G.
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Fig. 4.6 compares the exact CDF and the corresponding tail equivalence

for different selective feedback L under M = 4, N = 10, and ρk = 10 dB. The

tail equivalent CDF is observed to track the exact one even when x is small,

which supports and lends confidence in the power of the tail equivalence theorem.

Therefore, the tail equivalence is used to study the type of convergence, which is

expressed in the following lemma.

Lemma 4.2. (Type of Convergence of Selective Feedback) Given the statistical

property of FYk
in (4.15), FWk

belongs to the domain of attraction of type 3 Gumbel

distribution.

Proof. The proof is given in Appendix G.

Having obtained the type of convergence for FWk
, the rate scaling result
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can be derived by referring to the normalizing constants theorem in Appendix F.

The individual rate scaling is provided below.

Theorem 4.5. (Individual Scaling Laws Under Spatial and Spectral Dimension

Selective Feedback)

lim
K→∞

R̂k

M log2 log2
(N−∑L−1

�=0 ξ1(N,L,�)�)L

MN
K

= 1,

lim
K→∞

R̂App
k

M log2 log2
(N−∑L−1

�=0 ξ1(N,L,�)�)L

N
K

= 1. (4.36)

Proof. The proof is given in Appendix G.

Remark: For the exact rate R̂k, the ultimate equivalent CDF of interest is

F
(N−∑L−1

�=0
ξ1(N,L,�)�)L

MN
K

Yk
, thus the exponent

(N−∑L−1
�=0 ξ1(N,L,�)�)L

MN
K due to multiplicative

effect can be seen as the virtual users for scheduling competition. This exponent is

for the general best-L spectral dimension feedback. For the full feedback L = N ,

since ξ1(N, N, 
) equals 1 for 
 = N − 1 and 0 otherwise, the CDF becomes F
K
M

Yk
.

For the best-1 feedback L = 1, since ξ1(N, 1, 
) is 1 for 
 = 0 and 0 otherwise,

the CDF becomes F
K
M

Yk
. Intuitively, the best-1 feedback is asymptotically optimal

due to the same number of virtual users. In other words, even though additional

maximization reduces the average number of variables for feedback, it counteracts

this reduction by increasing the exponent of the CDF. The number of virtual users

is the limiting factor that dominates rate scaling. For the approximated rate R̂App
k ,

since the approximated CDF compensates for the spatial dimension selection by

increasing the exponent, the rate scaling differs by a factor of M .

4.6 Conclusion

In this chapter, an analytical approach is used to investigate the problem

of random beamforming with heterogeneous users and selective feedback. The

heterogenous user scenario corresponds to the practical scenario of potentially dif-

ferent large scale channel effects for different users. We leverage the CDF-based

scheduling policy to decouple each user’s rate and thus theoretically examine the
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individual user rate. We develop the notion of individual sum rate to analyze the

rate scaling for each individual user. We focus our analysis in this work on theo-

retically understanding the effect of selective feedback in both spatial and spectral

dimensions. On the exact analysis part, extensive numerical results show that

our approximate expression for the rate under selective feedback is effective and

provides an efficient expression for computing the exact rate. On the asymptotic

analysis part, we develop the notion of virtual users and the multiplicative effect

to explain the impact of selective feedback on rate scaling. We further discover

that the limiting factor for the rate scaling is the exponent for the ultimate CDF

of the selected SINR at the scheduler side.

The text of this chapter, in part, is a reprint of the paper [140], Y. Huang

and B. D. Rao, “Random beamforming with heterogeneous users and selective

feedback: individual sum rate and individual scaling laws”, IEEE Transactions on

Wireless Communications, submitted, 2012. The dissertation author is the primary

researcher and author, and the co-author listed in this publication directed and

supervised the research which forms the basis of this chapter.

4.7 Appendices

4.7.1 Appendix E

Proof of Theorem 4.1: With the help of Lemma 4.1, Jk(ε) can be computed

as

Jk(ε)
(a)
=

ε

ln 2

ε−1∑
i=0

(
ε − 1

i

)
(−1)i

i + 1

∫ ∞

0

ln(1 + x)d

⎛
⎝1 − e

−M(i+1)x
ρk

(1 + x)(M−1)(i+1)

⎞
⎠

(b)
=

ε

ln 2

ε−1∑
i=0

(
ε − 1

i

)
(−1)i

i + 1

∫ ∞

0

e
−M(i+1)x

ρk

(1 + x)(M−1)(i+1)+1
dx, (4.37)

where (a) follows from applying Lemma 4.1; (b) follows from integration by parts.

The closed form result for I(α, β) in Theorem 4.1 can be computed in a recursive
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manner [64] and is presented as follows

I(α, β) =

⎧⎪⎨
⎪⎩

(−1)β−1αβ−1eαE1(α)
(β−1)!

+
β−1∑
i=1

(i−1)!
(β−1)!

(−1)β−i−1αβ−i−1, β ≥ 2

eαE1(α), β = 1

(4.38)

where E1(x) =
∫∞

x
e−t

t
dt is the exponential integral function of the first order [57].

4.7.2 Appendix F

Proof of Corollary 4.1:

R̂App
k

(a)
= M

K∑
τ1=1

(
K

τ1

)(
1

M

)τ1 (
1 − 1

M

)K−τ1 ∫ ∞

0

log2(1 + x)d(FZk
(x))Mτ1

(b)
= M

K∑
τ1=1

(
K

τ1

)(
1

M

)τ1 (
1 − 1

M

)K−τ1

Jk(Mτ1), (4.39)

where (a) follows from the CDF approximation in (4.21); (b) follows from the

definition and computation of Jk(ε).

Proof of Corollary 4.2: It is shown in [20] that FYk
belongs to the domain

of attraction of type 3 Gumbel distribution [56]. Thus if the number of SINR to

maximize over for each beam is fixed and equals the number of users K, then

the following equation holds: lim
K→∞

(FYk
(ak:K + bk:Kx))K = Ψ(x), where Ψ(x) =

e−e−x
is the type 3 Gumbel distribution, ak:K and bk:K represent the normalizing

constants for user k. From Theorem 4.3, the number of SINR to maximize over

for each beam approaches K
M

. Let ck:K and dk:K denote the normalizing constants

for user k under the selective feedback case. Then the following equation holds:

lim
K→∞

(FYk
(ck:K + dk:Kx))

K
M = Ψ(x). In order to obtain ck:K and dk:K , the following

theorem is called upon.

Theorem 4.6. (The Normalizing Constants Theorem [98]) Let FK(y) be a se-

quence of distribution functions. Let aK, bK > 0, cK, and dK > 0 be sequences of

real numbers such that, as K → ∞,

lim FK(aK + bKx) = U(x), lim FK(cK + dKx) = V (x) (4.40)
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for all continuity points x of the limits, where U(x) and V (x) are nondegenerate

distribution functions. Then, as K → ∞, the limits: lim dK

bK
= B �= 0, lim cK−aK

bK
=

A are finite, and V (x) = U(A + Bx).

The spatial dimension selective feedback case possesses the following sit-

uation in Theorem 4.6: FK(x) = (FYk
(x))K , aK = ak:K , bK = bk:K , cK = ck:K ,

dK = dk:K , U(x) = Ψ(x), and V (x) = (Ψ(x))M . The sequence of ak:K has been

derived in [58] as: ak:K = ρk log2 K − ρk(M − 1) log2 log2 K + o(1). A suitable

choice of bk:K for type 3 is gk(bk:K), where gk(x) is the growth function for user

k defined by gk(x) � 1−FZk
(x)

fZk
(x)

. Thus a suitable sequence is bk:K = ρk for all

K. Solving (Ψ(x))M = Ψ(A + Bx) yields A = − log M , B = 1. Therefore,

by referring to Theorem 4.6, the normalizing constants can be derived to be:

ck:K = ρk log2
K
M

− ρk(M − 1) log2 log2 K + o(1), and dk:K = ρk for all K. Then

by employing the Corollary A.1. in [58], the individual rate for user k, namely R̂k

scales as M log2 log2
K
M

.

Regarding the approximated rate R̂App
k , since the approximated CDF by

negative association is (FZk
(x))M and the number of SINR to maximize over ap-

proaches K
M

, we have lim
K→∞

(FZk
(ck:K + dk:Kx))M K

M = lim
K→∞

(FZk
(ck:K + dk:Kx))K =

Ψ(x). Thus the normalizing constants ck:K = ak:K , and dk:K = bk:K , which enables

the approximated rate R̂App
k to scale as M log2 log2 K.

4.7.3 Appendix G

Proof of Corollary 4.4: Given Theorem 4.4, the following equality holds:

lim
x→∞

1 −∑L−1
�=0 ξ1(N, L, 
)(FYk

(x))N−�

1 − (FYk
(x))N−∑L−1

�=0 ξ1(N,L,�)�

(a)
= lim

x→∞

∑L−1
�=0 ξ1(N,L, 
)(N − 
)(FYk

(x))N−�−1fYk
(x)

(N −∑L−1
�=0 ξ1(N, L, 
)
)(FYk

(x))N−∑L−1
�=0 ξ1(N,L,�)�−1fYk

(x)

(b)
= 1, (4.41)

where (a) follows from the L’Hospital’s rule; (b) follows from the following fact

that
∑L−1

�=0 ξ1(N, L, 
) = 1.

Proof of Lemma 4.2: FYk
with statistics in (4.15) belongs to the domain of

attraction of type 3. It can be shown that for any distribution function F (x) which
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converges weakly to the limiting distribution, then its exponent form F ε(x) has

the same type of convergence [98], (FYk
(x))N−∑L−1

�=0 ξ1(N,L,�)� belongs to the domain

of attraction of type 3. Then by Theorem 4.4, FWk
belongs to the domain of

attraction of type 3.

Proof of Theorem 4.5: A procedure similar to that used in proving Corollary

4.2 can be used here. Since the number of SINR to maximize over for each beam at

each resource block approaches KL
MN

, and FWk
belongs to the domain of attraction

of type 3, the following equation holds: lim
K→∞

(FWk
(ck:K +dk:Kx))

KL
MN = Ψ(x). By re-

ferring to the tail equivalence theorem, the equivalent equation is: lim
K→∞

(FYk
(ck:K +

dk:Kx))
KL(N−∑L−1

�=0
ξ1(N,L,�)�)

MN = Ψ(x). Applying Theorem 4.6 yields the normalizing

constants: ck:K = ρk log2
KL(N−∑L−1

�=0 ξ1(N,L,�)�)

MN
− ρk(M − 1) log2 log2 K + o(1), and

dk:K = ρk for all K. Therefore, R̂k scales as M log2 log2
KL(N−∑L−1

�=0 ξ1(N,L,�)�)

MN
.

For the approximated rate R̂App
k using the approximated CDF (FZk

(x))M

for FYk
, the following equation holds: lim

K→∞
(FZk

(ck:K +dk:Kx))
KL(N−∑L−1

�=0
ξ1(N,L,�)�)

N =

Ψ(x). Using the same line of arguments, it can be shown that R̂App
k scales as

M log2 log2
KL(N−∑L−1

�=0 ξ1(N,L,�)�)

N
.



Chapter 5

Outage Balancing Based on

Spatial Channel Statistics

5.1 Introduction

In a multiuser interference network, intelligent power control helps in energy

saving and interference reduction thereby enabling cost-effective usage of the wire-

less spectrum [141]. With the additional antenna arrays at the transmitter side,

efficient beamforming technique can be employed jointly with power control to ex-

ploit the spatial resources in multiuser MISO networks and improve spectrum us-

age. In such interference networks, instantaneous channel state information (CSI)

regarding the wireless environment has to be made available to all the transmit

nodes in order to achieve maximum throughput. To obtain the instantaneous CSI,

each receive node has to estimate the channel and conveys such information via

feedback. The feedback requirement may become prohibitive and even infeasible

in a mobile network when there are many transmit-receive links and the chan-

nel changes rapidly. Therefore, much work has focused on efficient transmission

strategies with limited feedback or partial feedback, e.g., see [1] and the references

therein.

In this work, we examine the usage of statistical channel information, or

channel distribution information (CDI) for system design. In a MISO interference

110
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network, the CDI reflects the existing correlation information at antenna side [142],

and is known to be slowly varying on the order of tens of seconds or more. Algo-

rithms based on CDI are triggered only when the statistical channel information

has changed. Thus, CDI can be incorporated into system design to achieve stable

and robust performance compared with design schemes relying on CSI [143]. How-

ever, in a CDI-based system, reliable transmission can not be guaranteed all the

time due to the statistical variation of the instantaneous channel. In other words,

the outage event occurs when the received signal-to-interference-plus-noise ratio

(SINR) is less than a pre-determined threshold, which depends on specific modu-

lation type and other design parameters. Herein, we focus on joint optimization

of beamformer and power to minimize the maximum outage probability in order

to achieve outage balancing in a generic MISO interference network.

Briefly reviewing the literature, earlier work on performing power control

to optimize outage without multiple antennas is addressed in [144], wherein a geo-

metric programming formulation of the worst outage problem in the interference-

limited special case is formulated and a heuristic iterative algorithm is proposed to

compute the optimal power. In [145], the total power minimization problem with

outage constraints in a multiuser uplink is examined and an iterative algorithm is

presented whose convergence is proven based on the standard interference function

framework [146]. In [147], the total power minimization problem is extended to a

MIMO network with antennas at both the transmitters and receivers, and an iter-

ative algorithm similar to [145] is presented for power updates. In [148], the worst

outage problem [144] is analyzed using a nonlinear Perron-Frobenius theory [149],

and the convergence problem of the heuristic algorithm in [144] is resolved. How-

ever, the analysis in [148] focuses on the single antenna model. In this chapter, we

study the outage balancing problem in a multiuser MISO network, where all the

links experience correlated Rayleigh fading. This is a much harder problem due

to correlation coupling and non-convexity in the power vector and beamforming

weights. Based on the derived expression of the outage probability, we present

the optimal solution under the fixed set of beamformer. Since jointly optimizing

beamformer and power for the outage balancing problem is non-convex, we an-
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alyze its certainty-equivalent margin counterpart [144, 145, 147] for near-optimal

algorithm design. We present a Perron-Frobenius characterization of the network

duality [121,122,150–152], and utilize it to propose an iterative algorithm for com-

puting the near-optimal power vector and beamforming weights. The geometrically

fast convergence rate of the proposed algorithm is further proven using nonlinear

Perron-Frobenius theory.

The chapter is organized as follows. Section 5.2 presents the system model

and the outage balancing problem. In Section 5.3, we examine the problem struc-

ture and derive the optimal solution given a fixed set of beamformer. Section 5.4

provides a near-optimal solution by analyzing the certainty-equivalent margin of

the original problem. The numerical results are shown in Section 5.5. Finally,

Section 5.6 concludes the chapter.

Notations in this chapter are presented as follows. Boldface upper-case let-

ters denote matrices, boldface lower-case letters denote vectors, and italics denote

scalars. The Perron-Frobenius eigenvalue of a nonnegative matrix F is denoted

as ρ(F). Let x(F) and y(F) denote the Perron (right) and left eigenvectors of F

associated with ρ(F) respectively. diag(a) denotes the diagonal matrix having the

vector a on its diagonal. Let a ◦ b � (a1b1, · · · , aKbK)T (the Schur product). Let

C, R+, and R++ represent the set of complex numbers, the set of nonnegative real

numbers, and the set of positive real numbers respectively. Let (·)T and (·)† de-

note the transpose operation and conjugate transpose operation respectively. ‖ · ‖
denotes the Euclidean norm for vectors.

5.2 System Model

Consider a multiuser MISO interference network with K transmit-receive

pairs. The transmitter is assumed to be equipped with N antennas. The received

signal yk for user (receiver) k is written as

yk = h†
k,kxk +

∑
j �=k

h†
k,jxj + zk, (5.1)
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where hk,j ∈ CN×1 denotes the channel vector between transmitter j and user k,

xk ∈ CN×1 is the transmitted signal vector of transmitter k, and zk characterizes

the additive white noise effect, which is distributed as CN (0, σk) with σk ∈ R++.

Linear beamforming strategy is assumed at the transmitter, and thus the

transmit signal vector xk can be expressed as xk =
√

pkskuk, where sk and pk

denote the information signal and the transmit power for link k, and uk ∈ CN×1

denotes the normalized transmit beamformer for user k, i.e., ‖uk‖2 = 1. The SINR

for user k can be written as

SINRk(p, U) =
pk|h†

k,kuk|2∑
j �=k

pj|h†
k,juj|2 + σk

, (5.2)

where p = (p1, · · · , pK)T, U = (u1, · · · ,uK).

If instantaneous CSI is available at transmitter side, instantaneous adap-

tation of beamformer and power is possible to optimize the SINR. This approach

consumes a large amount of feedback resource, and is not feasible when the channel

changes fast. Herein, the statistical channel information, namely the CDI charac-

terizing the channel covariance matrix, is assumed to be available at transmitter

side. In this chapter, correlated Rayleigh fading is assumed for all the links in the

interference network and is modeled as

hk,j ∼ CN (0,Σk,j), (5.3)

where Σk,j represents the covariance matrix for hk,j.

Since only CDI is known, the instantaneous SINR becomes a random vari-

able. Denote the SINR threshold for link k as βk, then SINRk can fall below βk

with some probability due to channel fading. Thus, transmission strategies based

on CDI experience the fading-induced outage event. The outage probability for

link k can be expressed as P(SINRk(p, U) < βk).

Let wk denote the weight associated with pk for user k illustrating dif-

ferent power prices with w = (w1, · · · , wK)T. Denote the threshold vector β =

(β1, · · · , βK)T and the noise vector σ = (σ1, · · · , σK)T. The outage balancing
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problem subject to the weighted sum power constraint can be written as follows:

minimize max
k

P(SINRk(p, U) < βk)

subject to wTp ≤ P̄ , pk > 0, ‖uk‖2 = 1, ∀k

variables : p, U.

(5.4)

5.3 Problem Analysis

5.3.1 Problem Manipulation

In order to analyze the optimization problem (5.4), the expression for the

outage probability is needed. Based on the results developed in [147,153], the closed

form expression for P(SINRk(p, U) < βk) can be obtained and is summarized in

the following lemma.

Lemma 5.1. In a multiuser MISO interference network where all the links experi-

ence correlated Rayleigh fading, the closed form expression of the outage probability

for link k is written as1

P(SINRk(p, U) < βk) = 1 − e
− βkσk

pkck,k

∏
j �=k

(
1 +

βkpjck,j

pkck,k

)−1

, (5.5)

where ck,j represents the statistical beamforming channel gain, whose expression is

given by

ck,j � u†
jΣk,juj. (5.6)

Remark: The expression in (5.5) consists of the product of two major parts:

e
− βkσk

pkck,k and
∏

j �=k

(
1 +

βkpjck,j

pkck,k

)−1

. The former is due solely to additive white

Gaussian noise, while the latter is due to the effect of interference from other

links2.

1This lemma corrects an error in [147, Theorem 1] where a constant 2 should not appear in

e
− βkσk

pkck,k .
2This chapter provides an outage characterization of the optimization problem. An ergodic

characterization in the system setting of a cooperative MIMO beamforming can be referred
to [154].
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Using the results from Lemma 5.1, (5.4) is transformed to a deterministic

optimization problem:

minimize max
k

1 − e
− βkσk

pkck,k
∏

j �=k

(
1 +

βkpjck,j

pkck,k

)−1

subject to wTp ≤ P̄ , pk > 0, ‖uk‖2 = 1, ∀k

variables : p, U.

(5.7)

To perform further manipulation, we introduce the auxiliary variable τ and

transform (5.7) into an epigraph formulation as

minimize τ

subject to βkσk

pkck,k
+
∑

j �=k log
(
1 +

βkpjck,j

pkck,k

)
≤ τ, ∀k

wTp ≤ P̄ , pk > 0, ‖uk‖2 = 1, ∀k

variables : p, U, τ.

(5.8)

The problem (5.8) is non-convex in (p, U, τ). However, for any fixed U, it

can be shown that (5.8) is convex in (p, τ) and thus the optimal solution exists,

which is denoted by (p∗(U), τ ∗(U)). In the next part, we will analyze the optimal

solution under given beamformer to draw insights.

5.3.2 Optimal Solution Under Fixed Beamformer

For a given set of beamformer U, a simpler optimization problem can be

formulated from (5.8):

minimize τ(U)

subject to
∑
j �=k

log
(
1 +

βkpj(U)ck,j(U)

pk(U)ck,k(U)

)
+ βkσk

pk(U)ck,k(U)
≤ τ(U), ∀k

wTp(U) ≤ P̄ , pk(U) > 0, ∀k

variables : p(U), τ(U).

(5.9)

Now we will examine (5.9) using nonlinear Perron-Frobenius theory (some

relevant lemma and theorem are briefly reviewed in Appendix H). We denote the

first K constraints of (5.9) as the outage constraints. Then, by observing that the

left-hand side of the kth outage constraint is monotonically decreasing in pk(U),
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and monotonically increasing in pj(U) for j �= k, it can be shown that at optimality,

the outage constraints as well as the weighted sum power constraint become active

which is utilized next.

For compact representation, we define the non-negative matrix Ψ(p) ∈
RK×K

+ as follows:

Ψk,j(p) =

⎧⎨
⎩ 0, if k = j

pkck,k

βkpj
log
(
1 +

βkpjck,j

pkck,k

)
, if k �= j

(5.10)

Also, we define the auxiliary vector g �
(

1
c1,1

, · · · , 1
cK,K

)T

. Then the optimal power

vector satisfies the following conditional eigenvalue problem:

τ ∗(U)p∗(U) = diag(β ◦ g(U))

(
Ψ(p∗(U)) +

1

P̄
σwT

)
p∗(U). (5.11)

From (5.11), it can be shown from non-negative matrix theory that p∗(U) is the

Perron (right) eigenvector (up to a scaling factor) of the non-negative matrix

diag(β◦g(U))
(
Ψ(p∗(U)) + (1/P̄ )σwT

)
, and τ ∗(U) is related to its spectral radius

by the following:

τ ∗(U) = ρ
(
diag(β ◦ g(U))

(
Ψ(p∗(U)) + (1/P̄ )σwT

))
. (5.12)

In order to derive a fast algorithm to compute the optimal solution p∗(U)

and operate in a decentralized manner, we employ nonlinear Perron-Frobenius

theory to present Algorithm 5.1, which is given in Table 5.1.

The geometrically fast convergence rate of Algorithm 5.1 is presented in the

following theorem.

Theorem 5.1. Define the norm ‖ · ‖PN on RK×1
+ as: ‖p‖PN = (1/P̄ )

∑
k wk|pk|,

and the mapping f (1) : RK×1
+ → RK×1

+ as

f
(1)
k (p, U) =

βkσk

ck,k(U)
+
∑
j �=k

pk log

(
1 +

βkpjck,j(U)

pkck,k(U)

)
, ∀k. (5.13)

Then the normalized fixed-point iteration

f̂
(1)
k (p[
 + 1], U) = (1/‖f (1)

k (p[
], U)‖PN)f
(1)
k (p[
], U)

for any given U converges to the optimal solution of (5.9), i.e., p∗(U), geometrically

fast.
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Proof. The proof is given in Appendix I.

We have shown the optimal power given a fixed U. However, due to the

coupled property of the interference in the outage constraint, it is difficult if not

impossible to minimize f
(1)
k (p∗(U), U) to obtain the optimal beamformer. As men-

tioned before, the outage balancing problem (5.7) is non-convex in (p, U). Even

though finding the optimal beamformer for the problem is still an open problem,

we provide a near-optimal approach in the next section.

5.4 Joint Beamforming and Power Control

5.4.1 Problem Observation

Now we consider the joint optimization problem (5.8). One key observation

of (5.8) is that the coupled effect inside the log(·) function in the outage constraint

causes the non-linearity and non-convexity of joint optimization. To overcome

these barriers, bounding techniques are proposed in [144] by exploiting the so-called

certainty-equivalent margin counterpart of the original problem. This approach is

employed in [145, 147] for the power minimization problem. Herein, we leverage

this approach in the outage balancing problem to derive near-optimal solution.

Utilizing the bounding technique in [144], upper and lower bound for the

left-hand side of the kth outage constraint can be derived as

log

⎛
⎝1 +

βk

(∑
j �=k pjck,j + σk

)
pkck,k

⎞
⎠ ≤

βkσk

pkck,k

+
∑
j �=k

log

(
1 +

βkpjck,j

pkck,k

)
≤

βk

(∑
j �=k pjck,j + σk

)
pkck,k

. (5.14)

The upper bound in (5.14) will be utilized since its solution is also feasible

to the original problem. In order to present the corresponding certainty-equivalent

margin problem, we define ΓPN
k (p, U) as

ΓPN
k (p, U) =

pkck,k∑
j �=k pjck,j + σk

, (5.15)
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where the superscript (·)PN represents the primal network. It can be easily seen

that ΓPN
k (p, U) denotes the average SINR when the statistical variation of the signal

as well as the interference are replaced by their expected values. The certainty-

equivalent margin problem is formulated as follows:

maximize min
k

ΓPN
k (p,U)

βk

subject to wTp ≤ P̄ , p > 0, ‖uk‖2 = 1

variables : p, U

(5.16)

To explicitly express the relationship between the original outage balanc-

ing problem (5.7) and its certainty-equivalent margin counterpart (5.16), denote

the optimal value of (5.16) as ζ∗. Then using the bounds (5.14) and after some

manipulation, we have
1

ζ∗ + 1
≤ O∗ ≤ 1 − e−

1
ζ∗ , (5.17)

where O∗ represents the optimal solution for (5.7) and O∗ = 1−e−τ∗
. Moreover, it

is known that log(1+x) � x for small x. Thus the upper and lower bound become

very tight for small outage probabilities. In other words, the optimal solution for

(5.16) provides a near-optimal solution for the outage balancing problem (5.7).

This near-optimal effect is observed in [144,145,147]. In the following, we will use

Perron-Frobenius theory to examine (5.16) and provide a fast iterative algorithm

to compute the optimal value ζ∗.

5.4.2 Near-Optimal Solution

For any beamformer U, a simpler optimization problem for (5.7) can be

formulated by only optimizing the power vector. It can be shown that at optimality,

the weighted power constraint becomes tight, and the weighted average SINR for

different users are the same [155]. Define the nonnegative matrix C ∈ RK×K
+ as:

Ck,j =

{
0, if k = j

ck,j, if k �= j
(5.18)

We can interpret C as the average cross channel interference matrix. With the

definition of C, the optimal power vector satisfies the following eigenvalue problem:

1

ζ∗(U)
p∗(U) = diag(β ◦ g(U))

(
C(U) + (1/P̄ )σwT

)
p∗(U). (5.19)
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Therefore, p∗(U) is the Perron (right) eigenvector (up to a scaling factor) of the

non-negative matrix diag(β ◦ g(U))
(
C(U) + (1/P̄ )σwT

)
, and ζ∗(U) is related to

its spectral radius by the following:

ζ∗(U) =
1

ρ
(
diag(β ◦ g(U))

(
C(U) + (1/P̄ )σwT

)) . (5.20)

Now we establish the hypothesized dual network for further analysis. De-

note the dual network transmit power vector q ∈ RK×1
++ , where qk denotes the

transmit power for user k. Let the weight vector w in the primal network be the

noise vector in the dual network, and conversely let the noise vector σ in the primal

network be the weight vector in the dual network, then given receive beamformer

U, the optimization for the dual network can be formulated as

maximize min
k

ΓDN
k (q,U)

βk
= qk(U)

(diag(β◦g(U))(CT(U)q(U)+w))
k

subject to σTq(U) ≤ P̄ , q(U) > 0

variables : q(U)

(5.21)

where the superscript (·)DN denotes the dual uplink network.

By leveraging the following properties of non-negative matrices: ρ(A) =

ρ(AT) and ρ(AB) = ρ(BA), the optimal solution for (5.21) equals the following

expression: 1

ρ(diag(β◦g(U))(CT(U)+(1/P̄ )wσT))
. Comparing with the optimal solution for

the primal network in (5.19), the network duality is observed by employing CT as

the average cross channel interference matrix for the dual network and reversing

the role of w and σ. Note that the network duality holds for any given U.

The benefit of the established network duality is the decoupled property

of the dual network which enables beamformer optimization. The optimal beam-

former U∗ depends on the power vector q. For any given q, the optimal beamformer

u∗
k(q) for link k can be determined from the following equation:

u∗
k(q) = arg max

uk(q)

u†
k(q)Σk,kuk(q)

u†
k(q)(

∑
j �=k qjΣj,k + wkI)uk(q)

. (5.22)

Therefore, the optimal beamformer is the dominant eigenvector of the generalized

eigenvalue problem, which is well studied [156]. In specific, u∗
k(q) is the normalized
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vector satisfying the following equation with the largest λ:

Σk,kx = λ

(∑
j �=k

qjΣj,k + wkI

)
x. (5.23)

The optimal solution for the beamformer, the power of the dual network

and the primal network, and the optimal value for (5.16) can be written as: u∗
k =

u∗
k(q

∗), q∗ = q∗(U∗), p∗ = p∗(U∗), and ζ∗ = ζ∗(U∗). As mentioned before, ζ∗

can be used to bound the optimal outage probability, and the optimal solution for

(5.16) serve as a near-optimal solution for the original outage balancing problem.

In the next part, we will present an iterative algorithm to compute the optimal

solution for (5.16) whose fast convergence property is also given.

5.4.3 Algorithm Design

From the aforementioned analysis, we present a decentralized algorithm

denoted by Algorithm 5.2, which is given in Table 5.2, to compute the optimal

solution for (5.16).

The geometrically fast convergence rate of Algorithm 5.2 is presented in the

following theorem.

Theorem 5.2. Starting from any initial point q[0], p[0], and U[0], the q[
], p[
],

and U[
] in Algorithm 5.2 converge geometrically fast to the optimal solution q∗,

p∗, and U∗ of the certainty-equivalent margin problem (5.16).

Proof. The proof is given in Appendix I.

5.5 Numerical Results

In this section, we conduct a numerical study to understand the efficiency of

the developed algorithm for the outage balancing problem. We employ the angular

spread model [147,157] to generate the covariance matrices for the multiuser MISO

interference network. Transmit angular spreads varying from 5 to 20 degrees across

the links are assumed and the number of scatters is assumed to be 100. The desired
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Figure 5.1: Convergence result of the primal network transmit power for different
users (K = 4, N = 4, P̄ = 1 W, SINR Threshold = −5 dB).

signal links are centered at broadside, while the interfering links are centered at

incident angles [147]. We assume N = 4 transmit antennas and the number of

links K = 4. The signal-to-noise ratio (SNR) is kept constant at 10 dB. Also, the

same weight and same SINR threshold are assumed.

We first consider the convergence property of designed algorithm. The total

power P̄ is held constant at 1 Watt and the SINR threshold is set to be −5 dB.

In Fig. 5.1, the convergence result of the primal network power is illustrated for

different users. Then in Fig. 5.2, the convergence result of the outage probabilities

is shown by using the near-optimal solution. It can be observed that the pro-

posed algorithm converges with 3 runs of computation. Empirically, the algorithm

converges within 5− 10 runs with different system parameter settings, which indi-

cate the practical applicability of the algorithm. Also, from Fig. 5.2, we observe

that the maximum outage probability monotonically decreases with the iteration

number.
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Figure 5.2: Convergence result of the outage probability for different users (K =
4, N = 4, P̄ = 1 W, SINR Threshold = −5 dB).

We next demonstrate the effect of the total transmit power P̄ and the SINR

threshold on the maximum outage probability in the multiuser network. We aver-

age the maximum outage probability by considering 100 independent realizations

of the covariance matrices in the network. From Fig. 5.3, we observe that by using

the intelligent joint power control and beamformer design, a small maximum out-

age probability can be achieved for reasonable SINR thresholds. When the network

has a high pre-defined threshold, the total transmit power has to be increased to

bring down the outage probability.

5.6 Conclusion

In this chapter, we consider the use of statistical channel information for

system design in a multiuser MISO interference network to reduce instantaneous

feedback needs. We investigate the outage balancing problem to develop efficient
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Figure 5.3: The effect of total power and the SINR threshold on the maximum
outage probability in the network (K = 4, N = 4, SINR Threshold = −10,−5, 0, 5
dB).

transmission strategies under a weighted sum power constraint. Under the fixed

set of beamformer, we present a fast and decentralized algorithm to obtain the

optimal power. Since the original outage balancing problem is non-convex when

jointly optimizing power and beamformer, we analyze the certainty-equivalent mar-

gin counterpart and propose a near-optimal iterative algorithm based on network

duality and non-negative matrix theory. The fast convergence of the algorithm is

also proven by using nonlinear Perron-Frobenius theory, which makes it suitable

for practical implementation.

The text of this chapter, in part, is a reprint of the paper [158], Y. Huang, C.

W. Tan and B. D. Rao, “Outage balancing in multiuser MISO networks: network

duality and algorithms”, IEEE Global Communications Conferences (Globecom),

Anaheim, CA, Dec. 2012. The dissertation author is the primary researcher and
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author, and the co-authors listed in these publications contributed to or supervised

the research which forms the basis of this chapter.

5.7 Appendices

5.7.1 Appendix H

Lemma 5.2. (Concave Self-Mapping [149]) A mapping T : K → K is concave if

T (ax + (1 − a)y) ≥ aTx + (1 − a)Ty,

for all x,y ∈ K and a ∈ [0, 1], and monotone if 0 ≤ x ≤ y implies 0 ≤ Tx ≤ Ty.

Theorem 5.3. (Krause’s theorem [149]) Let ‖·‖ be a monotone norm on RL. For

a concave mapping f : RL
+ → RL

+ with f(z) > 0 for z ≥ 0, the following statements

hold.

The conditional eigenvalue problem:

f(z) = λz,

with λ ∈ R, z ≥ 0, ‖z‖ = 1 has a unique solution (λ∗, z∗), where λ∗ > 0, z∗ >

0. Furthermore, limk→∞ f̃k(z) converges geometrically fast to z∗, where f̃(z) =

f(z)/‖(z)‖.

5.7.2 Appendix I

Proof of Theorem 5.1: Following similar technique as in [148], we can prove

that f (1)(p, U) is a concave self-mapping of p given U. Also, we have f
(1)
k (p, U) > 0

for p � 0. Then the convergence property of the fixed-point iteration follows from

Theorem 5.3.

Proof of Theorem 5.2: The key step to the proof is to establish the conver-

gence property of the dual network power q via nonlinear Perron-Frobenius theory.

Define the mapping f (2) : RK×1
+ → RK×1

+ as

f
(2)
k (q) = min

uk

(
βku

†
k(
∑

j �=k qjΣj,k + wkI)uk

u†
kΣk,kuk

)
, ∀k. (5.24)
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f (2)(q) is the point-wise minimum of an affine mapping. Thus, f (2)(q) is a concave

self-mapping of q. Also, we have f
(2)
k (q) > 0 for q � 0. Define the norm ‖ · ‖DN on

RK×1
+ as: ‖q‖DN = (1/P̄ )

∑
k σk|qk|. Then applying Theorem 5.3, we can show that

the normalized fixed-point iteration f̂
(2)
k (q[
 + 1]) = (1/‖f (2)

k (q[
])‖DN)f
(2)
k (q[
])

converges geometrically fast to the optimal solution of the following conditional

eigenvalue problem
1

ζ∗q
∗ =

(
f (2)(q∗)

1

P̄
σT

)
q∗. (5.25)

Following the same line of argument, the convergence property of the primal net-

work power p can be proven. Then the alternate optimization given by Algorithm

5.2 converges geometrically fast to the optimal solution of (5.16).
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Table 5.1: Algorithm 5.1–Decentralized algorithm to compute the optimal solu-
tion under fixed beamformer

• For a given U, initialize arbitrary p[0] ∈ RK×1
++ such that wTp[0] ≤ P̄ .

1. Update power p[
 + 1]: ∀k

pk[
 + 1] =
βkσk

ck,k(U)
+
∑
j �=k

pk[
] log

(
1 +

βkpj[
]ck,j(U)

pk[
]ck,k(U)

)
.

2. Normalize p[
 + 1]:

p[
 + 1] ← P̄

wTp[
 + 1]
p[
 + 1].
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Table 5.2: Algorithm 5.2–Decentralized algorithm to compute the optimal solu-
tion for (5.16)

• Initialize arbitrary p[0] ∈ RK×1
++ , q[0] ∈ RK×1

++ and uk[0] ∈ CN×1 for k =

1, . . . , K such that ‖uk[0]‖ = 1, ∀k, wTp[0] ≤ P̄ , and σTq[0] ≤ P̄ .

1. Update dual network power q[
 + 1]:

qk[
 + 1] =

(
βk

ΓDN
k (q[
], U[
])

)
qk[
] ∀k.

2. Normalize q[
 + 1]:

q[
 + 1] ← P̄

σTq[
 + 1]
q[
 + 1].

3. Update transmit beamformer U[
 + 1]: ∀k

uk[
 + 1] = P
⎧⎨
⎩
(∑

j �=k

qj[
 + 1]Σj,k + wkI

)−1

Σk,k

⎫⎬
⎭ ,

where P{·} is the operator that computes the dominant eigenvector of a

matrix.

4. Update primal network power p[
 + 1]:

pk[
 + 1] =

(
βk

ΓPN
k (p[
], U[
 + 1])

)
pk[
] ∀k.

5. Normalize p[
 + 1]:

p[
 + 1] ← P̄

wTp[
 + 1]
p[
 + 1].



Chapter 6

Efficient Algorithm Design Being

Aware of Large System Structure

6.1 Introduction

To benefit from the available and increasing spatial degrees of freedom,

multicell networks exploit different forms of intercell cooperation to operate the

system in an interference-aware manner [83]. Due to practical constraints such

as limited feedback [1] and the finite capacity of the backhaul [37], beamforming

level coordination and efficient power control strategies are favored over data level

cooperation and nonlinear precoding approaches [120, 124] to effectively scale up

the system performance. Considering these practical constraints, two character-

istics are appealing to joint beamforming and power control algorithms design:

distributed computation and fast-convergent algorithms with low complexity. The

desired distributed feature addresses system scalability, and the distributed algo-

rithm only relies on local channel state information (CSI) which can be obtained

by uplink measurement in a time division duplex (TDD) system or through user

feedback in a frequency division duplex (FDD) system. On the other hand, simple

algorithms possessing fast convergence rate are attractive in that they reduce the

message passing overhead and alleviate the finite backhaul constraint.

The algorithm design is intimately related to the system performance metric

128
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of interest. Different system performance metrics reflect different design priorities.

One common approach is to maximize the sum rate of the system. However, due

to the non-convexity of the problem, numerically finding the optimal solution is

challenging and the design of distributed algorithms that can compute the global

optimal solution efficiently is still open, e.g., see [83,155,159–161] and the references

therein. It is known that two specific problem formulations admit global optimal

solutions: the transmit power minimization subject to signal-to-interference-plus-

noise ratio (SINR) constraints, and the maximization of minimum SINR subject to

power constraints. The former problem whose priority is energy saving has been

addressed extensively in the literature and efficient algorithms have been proposed

for both the single cell and multicell systems [85, 121, 122, 146, 150, 151, 162–165].

The analysis of single cell downlink relies on the well-known uplink-downlink du-

ality [121,122,150,164,165] which is readily interpreted by the Lagrange duality in

convex optimization. In [151], the duality is observed for the MIMO multiuser ad

hoc network setting, and in [85], the duality is extended to the multicell setting.

The literature for the latter problem which aims to enforce the fairness level

of the system is comparatively less. The max-min SINR problem was first addressed

in [166] using an extended coupling matrix approach, and a centralized algorithm

was proposed in [164], which involves an increased dimension matrix computation.

A reformulation of the max-min problem is analyzed in [156] by conic programming

and a heuristic algorithm is provided. Recently, the problem was studied in [155]

using a nonlinear Perron-Frobenius theory [149], and a distributed algorithm was

proposed that exhibits the distributed power control (DPC) structure in [162]. The

DPC-like structure is independent of parameter configuration, thus enabling the

application of the power control module in [162] already used in practical cellular

systems. The approach [155] is extended to the MIMO downlink in [167] wherein

the convergence of a heuristic algorithm in [156] is proved. Herein, we extend the

analysis in [155, 167] to the multicell setting with multiple serving users per cell.

The duality between primal and dual network is derived and characterized by the

Perron-Frobenius theory. A distributed algorithm is also proposed which possesses

geometrically fast convergence rate.
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The designed algorithm, though converging to the optimal solution, requires

instantaneous power update within the coordinated cluster through backhaul. This

instantaneous information exchange may become prohibitive when the number of

transmit antennas at base station as well as the serving users per cell grow large.

In such emerging large-scale multiple antenna systems [168–170], the backhaul ca-

pability may turn into the bottleneck. In order to alleviate this problem and to

enable simplified design that utilizes only the statistical channel information, ad-

ditional tools from random matrix theory [171,172] are to be leveraged. The large

system analysis for linear receiver design in the uplink was initiated in [173], and

the notion of effective interference and effective bandwidth was proposed. In [174],

asymptotic analysis for the transmit power minimization problem is carried out.

The approaches in [175] and [176] decouple beamforming and power control by

assuming zero-forcing or regularized zero-forcing beamformers [177]. The analy-

sis in [178] examines the max-min SINR problem from the transmit power min-

imization perspective, and compares several cooperation strategies by assuming

a two-cell model with homogeneous channel setting. In this chapter, we perform

large system analysis for the max-min SINR problem in a general multicell setting.

Utilizing tools developed from random matrix theory, the deterministic equiva-

lents [172, 179] for the dual network SINR and for the primal network SINR are

established. These asymptotic approximations are used to compute the asymp-

totic power which only relies on statistical channel information. Intuitively, in a

large-scale multiple antenna system, the optimal powers for different users would

approach different deterministic values and the obtained power can be utilized for

optimal beamformer design with local CSI. Moreover, by using nonlinear Perron-

Frobenius theory and random matrix theory, we observe an effective network for

the dual network and an effective network for the primal network, which capture

the characteristic of the power control effect in the large system setting. The es-

tablished effective network is further leveraged to provide a distributed algorithm

with fast convergence rate.

To summarize, the contributions of this chapter are three-fold: 1) analysis

and algorithm design for joint optimal beamforming and power control in a fi-
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nite multicell system to maximize the minimum weighted SINR, 2) the established

effective network to characterize the algebraic structure of the power control prob-

lem in the large system setting, and 3) low complexity algorithm design which

requires no instantaneous backhaul exchange. All these contributions lead to effi-

cient methodologies to design algorithms for the large-scale coordinated multicell

downlink. The chapter is organized as follows. Section 6.2 presents the system

model. The finite system analysis is provided in Section 6.3. Section 6.4 carries

out large system analysis and derives the asymptotic solution. Numerical results

are presented in Section 6.5. Finally, Section 6.6 concludes the chapter.

Notations in this chapter are presented as follows. Boldface upper-case let-

ters denote matrices, boldface lower-case letters denote vectors, and italics denote

scalars. The Perron-Frobenius eigenvalue of a nonnegative matrix F is denoted as

ρ(F). Let x(F) and y(F) denote the Perron (right) and left eigenvectors of F asso-

ciated with ρ(F) respectively. Tr(A) denotes the trace of the matrix A, and diag(a)

denotes the diagonal matrix having the vector a on its diagonal. Let (f(a))m de-

note the mth element of a function vector f(a). Let a ◦ b � (a1b1, · · · , aMbM)T

(the Schur product). Let C, R+, and R++ represent the set of complex numbers,

the set of nonnegative real numbers, and the set of positive real numbers respec-

tively. Let (·)T and (·)† denote the transpose operation and conjugate transpose

operation respectively. ‖ · ‖ denotes the Euclidean norm for vectors and spectral

norm for matrices, and
a.s.−→ denotes almost sure convergence.

6.2 System Model

Consider a coordinated multicell downlink formulated by J coordinating

base stations utilizing the same carrier frequency. Each base station is equipped

with N transmit antennas and serves K users simultaneously. Herein, the focus

is on the base station side interference coordination, and each user is assumed to

have a single antenna. The received signal yj,k for user k in cell j is written as

yj,k =
J∑

l=1

h†
l,j,kxl + zj,k (6.1)
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where hl,j,k ∈ CN×1 denotes the channel vector from cell l towards user k in

cell j, xl ∈ CN×1 is the transmitted signal vector of cell l, and zj,k characterizes

the additive white noise effect and any intercell interference not included in the

coordinated cluster for user k in cell j, which is distributed as CN (0, σj,k) with

σj,k ∈ R++.

Linear beamforming strategy is assumed at the base station, and thus

the transmit signal vector xj for cell j can be expressed as xj =
∑K

k=1 xj,k =∑K
k=1

√
pj,k

N
sj,kuj,k, where xj,k ∈ CN×1 represents the signal intended for stream k

of cell j, sj,k and
pj,k

N
denote the information signal and the transmit power for that

stream, and uj,k ∈ CN×1 denotes the normalized transmit beamformer for user k

in cell j, i.e., ‖uj,k‖2 = 1. The SINR for user k in cell j can be written as

ΓPN
j,k � SINRPN

j,k =

pj,k

N
|h†

j,j,kuj,k|2∑
(l,i)�=(j,k)

pl,i

N
|h†

l,j,kul,i|2 + σj,k

(6.2)

where the superscript (·)PN represents the primal downlink network. Let wj,k

denote the weight associated with pj,k for user k in cell j illustrating different

power prices, and denote βj,k as the priority factor associated with ΓPN
j,k for user

k in cell j demonstrating diverse service priorities. Then the max-min problem

under weighted sum power constraint1 can be written as follows

maximize min
j,k

ΓPN
j,k

βj,k

subject to
∑
j,k

wj,k
pj,k

N
≤ P̄ , pj,k > 0, ‖uj,k‖2 = 1

variables : pj,k,uj,k.

(6.3)

The problem (6.3) appears non-convex at first, but can be transformed into a

second-order cone program [60] by applying methods similar to that in [156], which

admits a global optimal solution. However, employing standard convex optimiza-

tion methods to find the optimal solution typically requires centralized computa-

tion and incurs a fair amount of parameter tuning and message passing overhead

that may not be practical in wireless networks. Thus in Section 6.3, we will employ

1The weighted sum power constraint implies that multiple base stations form a coordinated
cluster to jointly perform power control in order to achieve the desired fairness level for users in
the cluster.
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nonlinear Perron-Frobenius theory to propose DPC-like algorithm [162] that does

not require parameter tuning and has geometrically-fast convergence rate. Then in

Section 6.4, algorithms that are even simpler and more practical for systems with

a large number of transmit antennas and users will be presented by performing an

asymptotic analysis.

6.3 Finite System Analysis

This section is devoted to finite system analysis when N and K are not

asymptotically large. Section 6.3.1 reformulates problem (6.3) to exploit its ana-

lytic structure. Section 6.3.2 establishes the network duality via a Perron-Frobenius

characterization, and provides a geometrically-fast convergent algorithm to com-

pute the optimal solution.

6.3.1 Problem Reformulation

The problem formulation in (6.3) essentially regards an interference network

with JK users. However, the formulation in terms of the channel hl,j,k and the link

gain |h†
l,j,kul,i|2 does not easily lead to amenable analysis. In order to construct

the JK × JK cross channel interference matrix, consider the matrix G ∈ RJK×JK
++

with subscripts m and n, whose entry can be written as

Gm,n = |h†
� n

K
�,�m

K
�,m−K
m

K
�u� n

K
�,n−K
 n

K
�|2 (6.4)

where 
·� and �·� denote the ceil and floor operation respectively. Thus the chan-

nel hl,j,k can be represented with subscripts m and n: hm,n � h� n
K
�,�m

K
�,m−K
m

K
�.

Moreover, define the power vector p ∈ RJK×1
++ as pm � p�m

K
�,m−K
m

K
�, and the

beamforming matrix as U � (u1, · · · ,uJK) with um � u�m
K
�,m−K
m

K
�. The gen-

eral formulation in (6.4) can be easily interpreted through two special cases: a)

J = 1, K arbitrary and b) K = 1, J arbitrary. The former case refers to a single

cell downlink with K interfering users, while the latter case corresponds to an ad

hoc interference network setting with J transmitter-receiver pairs or a multicell

setting with one user served per cell. By the formulation of G, the cross channel
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interference matrix, denoted by F ∈ RJK×JK
+ can be obtained by

Fm,n =

{
0, if m = n

Gm,n, if m �= n.
(6.5)

Similarly, the weight vector w ∈ RJK×1
++ , the priority vector β ∈ RJK×1

++ , and the

noise vector σ ∈ RJK×1
++ can be defined by: wm � w�m

K
�,m−K
m

K
�, βm � β�m

K
�,m−K
m

K
�,

and σm � σ�m
K
�,m−K
m

K
�. From the aforementioned mapping, if we denote the

SINR vector as ΓPN ∈ RJK×1
++ with ΓPN

m � ΓPN
�m

K
�,m−K
m

K
�, and the auxiliary vector

g ∈ RJK×1
++ with g �

(
1

G1,1
, · · · , 1

GJK,JK

)T

, then the optimization problem (6.3) can

be readily reformulated as follows:

maximize min
m

ΓPN
m (p,U)

βm
=

1
N

pm

(diag(β◦g)( 1
N

Fp+σ))
m

subject to 1
N
wTp ≤ P̄ , p > 0, ‖um‖2 = 1

variables : p, U.

(6.6)

It can be shown that solving (6.6) is equivalent to solving (6.3). The compact

formulation in (6.6) introduces a nonnegative matrix diag(β◦g)
(
F + (1/P̄ )σwT

)
,

whose algebraic structure helps in establishing the network duality and is pursued

next.

6.3.2 Network Duality and Algorithm Design

The analytic structure in (6.6) is similar to the formulation in [167] for

the single cell multiuser downlink scenario. In [167], the uplink-downlink dual-

ity is proved by a geometric programming formulation and the Lagrange duality.

Herein, we provide a network duality interpretation for the max-min based multi-

cell scenario via Perron-Frobenius characterization.

For any given beamforming matrix U, a simpler optimization problem for

(6.6) can be formulated by only optimizing the power solution. It is known that at

optimality, the weighted SINR for different users are the same, and the weighted

power constraint becomes tight [155]. Now if we explicitly make the dependence

on U and denote the optimal weighted SINR as τ ∗(U), then the optimal power
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solution satisfies [155,167]:

1

τ ∗(U)

p∗(U)

N
= diag(β ◦ g(U))

(
F(U) + (1/P̄ )σwT

) p∗(U)

N
. (6.7)

From (6.7), it can be shown from nonnegative matrix theory [180] that p∗(U)
N

is

the Perron (right) eigenvector (up to a scaling factor) of the nonnegative matrix

diag(β◦g(U))
(
F(U) + (1/P̄ )σwT

)
, namely, p∗(U)

N
=

NP̄x(diag(β◦g(U))(F(U)+(1/P̄ )σwT))
wTx(diag(β◦g(U))(F(U)+(1/P̄ )σwT))

,

and τ ∗(U) is related to its spectral radius by the following:

τ ∗(U) =
1

ρ
(
diag(β ◦ g(U))

(
F(U) + (1/P̄ )σwT

)) . (6.8)

Now, in order to establish the network duality, consider the hypothesized

dual uplink network by construction. Denote the dual network transmit power

solution q ∈ RJK×1
++ as qm � q�m

K
�,m−K
m

K
�, where

qj,k

N
with subscripts j and k

denotes the reciprocal uplink transmit power for user k in cell j. Let the weight

vector w in the primal network be the noise vector in the dual network, and

conversely let the noise vector σ in the primal network be the weight vector in

the dual network. Then the max-min problem for the dual network given receive

beamforming matrix U can be formulated as

maximize min
m

ΓDN
m (q,U)

βm
=

1
N

qm(U)

(diag(β◦g(U))( 1
N

FT(U)q(U)+w))
m

subject to 1
N

σTq(U) ≤ P̄ , q(U) > 0

variables : q(U)

(6.9)

where the superscript (·)DN denotes the dual uplink network. By leveraging the

following properties of nonnegative matrices [180]: ρ(A) = ρ(AT) and ρ(AB) =

ρ(BA), the optimal solution for (6.9) equals 1

ρ(diag(β◦g(U))(FT(U)+(1/P̄ )wσT))
. Com-

paring with the optimal solution for the primal network in (6.8), the network

duality is observed by employing FT as the cross channel interference matrix

for the dual network and reversing the role of w and σ. Thus the optimal

power solution given U is the left eigenvector of the nonnegative matrix diag(β ◦
g(U))

(
F(U) + (1/P̄ )σwT

)
, namely, q∗(U)

N
=

NP̄y(diag(β◦g(U))(F(U)+(1/P̄ )σwT))
σTy(diag(β◦g(U))(F(U)+(1/P̄ )σwT))

. Note

that since the network duality holds for any given U, the achievable SINR regions

of the max-min problem are the same for both the primal network and the dual

network.
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The motivation for establishing the dual network is to exploit the decou-

pled property of the receive beamformer optimization and to utilize the optimized

received beamformer as the optimal transmit beamformer for each user. The op-

timal beamforming matrix U∗ depends on the power vector q, and for any given

q, the optimal beamformer u∗
m(q) can be obtained by

u∗
m(q) = arg min

um

u†
m(
∑

n�=m
qn

N
hm,nh

†
m,n + wmI)um

u†
mhm,mh†

m,mum

(6.10)

which can be readily solved and is known to be the minimum variance distortionless

response (MVDR) beamformer which is given by:

u∗
m(q) =

(
∑

n�=m
qn

N
hm,nh

†
m,n + wmI)−1hm,m

‖(∑n�=m
qn

N
hm,nh

†
m,n + wmI)−1hm,m‖

. (6.11)

Therefore, the optimal solution for the beamformers, the power of the dual network,

and the power of the primal network can be written as: u∗
m = u∗

m(q∗), q∗ = q∗(U∗),

and p∗ = p∗(U∗). The optimal solution is of analytical interest. In order to derive a

fast algorithm to compute the optimal solution in a distributed manner, we employ

nonlinear Perron-Frobenius theory and propose the algorithm given in Table 6.1,

referred to as Algorithm 6.1 for the multicell scenario. It exhibits the DPC-like

structure as in [155, 167] for the single cell scenario. The convergence property of

Algorithm 6.1 is discussed in the following theorem.

Theorem 6.1. Starting from any initial point q[0], p[0], and U[0], the q[κ], p[κ],

and U[κ] in Algorithm 6.1 converges geometrically fast to the optimal solution q∗,

p∗, and U∗.

Proof. The proof is given in Appendix J.

Remark: Distributed algorithms utilizing only local CSI and requiring lim-

ited backhaul exchange are important for practical implementation issues. Al-

gorithm 6.1 is distributed in the sense that the iterative update (step 1, 3, 4 of

Algorithm 6.1) can be independently performed for each individual user at each

base station. In addition, each base station only employs local CSI, which can

be directly obtained in a TDD system or acquired by user feedback in a FDD
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system. The normalization procedure (step 2 and 5 of of Algorithm 6.1), however,

requires a central computation of wTp[κ] and σTq[κ]. This procedure can be made

distributed by gossip algorithms [181] and power update through the backhaul.

Hitherto, an algorithm for computing the optimal solution to (6.3) is estab-

lished. In Section 6.5, we provide numerical results that support and confirm its

fast convergence property. Furthermore, with minimal parameter exchange and

configuration, this algorithm is practical in a finite system. However, in a large-

scale system when both N and K become large, the instantaneous power update

across the coordinated cluster limits its practical implementation. Therefore, a

lower complexity algorithm is needed in large-scale systems and is studied next in

Section 6.4.

6.4 Large System Analysis

This section is devoted to a large system analysis2 when both the number

of transmit antennas N and the number of serving users per cell K go to infinity

while the ratio (load factor) lim K
N

remains bounded, i.e., the notation N → ∞
denotes that both N and K become large, while lim inf K

N
> 0 and lim sup K

N
< ∞.

In this large-scale system setting, for a given channel realization, the amount of

instantaneous power update through the limited backhaul can be impractically

large and thus impacts the system performance. A key question is whether it

is possible to design a non-iterative algorithm to compute the beamformer and

still achieve some form of optimal egalitarian fairness. Herein, the optimality is

in the asymptotic sense. This means that, if the power p and q in the large

system converge to some deterministic values that only rely on statistical channel

information, then these deterministic values can be a priori calculated, stored, and

updated only when the channel statistics change. Thereafter, the beamforming

matrix ought to be non-iteratively computed using these slowly updated power

values and the available instantaneous local CSI.

This idea of practical implementation for large systems will be studied by

2The large system analysis for a single cell downlink is examined in [182].
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addressing two problems related to (6.3). Firstly, different users in the multicell

network have potentially different weights, different priorities, different noise pow-

ers, and more importantly, different large-scale channel effects which may consist

of path loss, shadowing, and antenna gain. Thus, to maintain the max-min fairness

across users, the powers for different users would converge to different determinis-

tic values in the large system setting. One key issue is to establish the asymptotic

optimality for both the dual network power q and primal network power p. An-

other key issue is to design distributed algorithm to compute these deterministic

values.

In Section 6.3, no specific channel models are assumed. Now for amenable

analysis, the transformed notation using subscripts m and n will be still employed

and the following channel model is further assumed:

hm,n =
√

dm,nh̃m,n (6.12)

where dm,n represents the large-scale channel effect and illustrates the statistical

channel information. The h̃m,n denotes the normalized CSI whose elements are

independent and identically distributed as CN (0, 1). This assumption corresponds

to the practical setting where the antenna elements equipped at each base station

are placed sufficiently apart. Herein, independent channel assumption is employed

and the analysis with the general correlated channel model [183–187] is left for

future work. Employing this channel model, the asymptotic analysis for the dual

network and primal network is carried out in Section 6.4.1 and Section 6.4.2,

respectively.

6.4.1 Asymptotic Analysis for the Dual Network

The large system analysis for the dual network is examined first to derive

the asymptotic dual network power, which is utilized for beamformer design. One

key step is to study the asymptotic behavior of the dual network SINR, whose
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expression is given by using the optimal MVDR beamformer as follows:

ΓDN
m (q) =

qm

N
h†

m,m

(∑
n�=m

qn

N
hm,nh

†
m,n + wmI

)−1

hm,m

=
qmdm,m

N
h̃†

m,m

(∑
n�=m

qndm,n

N
h̃m,nh̃

†
m,n + wmI

)−1

h̃m,m ∀m. (6.13)

Since each instantaneous CSI is random, the instantaneous SINR in (6.13) is a

random variable in quadratic form. Moreover, since the dual network power and

large scale channel effects are diverse across users, if we define the random matrix

H̃m as H̃mH̃†
m �

∑
n�=m

qndm,n

N
h̃m,nh̃

†
m,n, then the random matrix H̃m possesses a

variance profile [179, 188]. The asymptotic approximation for ΓDN
m (q) is given in

the following lemma.

Lemma 6.1. The instantaneous random variable ΓDN
m (q) can be approximated by

a deterministic quantity3 γDN
m (q) such that ΓDN

m (q) − γDN
m (q)

a.s.−→ 0 as the system

dimension N → ∞. Also, γDN
m (q) is described by the following fixed-point equation:

γDN
m (q) =

qmdm,m

wm + 1
N

∑
n�=m

qnqmdm,ndm,m

qmdm,m+qndm,nγDN
m (q)

∀m. (6.14)

Proof. The proof is given in Appendix K.

From Lemma 6.1, we know that γDN
m (q) becomes more accurate when in-

creasing the system dimension, and is asymptotically tight for ΓDN
m (q). For further

analysis, an auxiliary vector φ ∈ RJK×1
++ is defined with φm(q) � γDN

m (q)
qmdm,m

, ∀m.

Then from Lemma 6.1, the fixed-point equation for φm(q) can be written as

φm(q) =
1

wm + 1
N

∑
n�=m

qndm,n

1+qndm,nφm(q)

∀m. (6.15)

From (6.15), it is easy to see that q and φ are coupled and their relationship

only depends on the statistical channel information reflected in dm,n. Designing

3Note that we present the asymptotic behavior of ΓDN
m (q) with a given power vector q, not

with the instantaneous optimal power vector q∗. The instantaneous optimal power vector is a
function of channel and thus complicates standard large system analysis. Bounding techniques
trying to investigate this issue are conducted in [178]. In this chapter, iterative method is used to
compute the asymptotically optimal power. This comment carries over to the following lemmas.
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algorithms to compute q and φ(q) is of primary interest and one common approach

is to examine the conditional convergence property of q and φ separately.

The convergence property of φ given q is relatively easy to establish since

it does not involve any constraint. Given any q̂ satisfying the dual network power

constraint, the algorithm to compute the corresponding φ̂(q̂) is given in Table 6.2

and is referred to as Algorithm 6.2 whose convergence property is given below.

Lemma 6.2. For a given q̂, starting from any initial φ̂[0], the φ̂[
] in Algorithm

6.2 converges to the unique solution4 of the fixed-point equation (6.15).

Proof. The proof is given in Appendix K.

Now consider the convergence property of q given φ. Combining (6.14) and

(6.15) yields the equivalent fixed-point equation for γDN
m (q) = qmdm,m

wm+ 1
N

∑
n�=m

qndm,n
1+qndm,nφm(q)

.

Thus the additive effect of 1
N

∑
n�=m

qndm,n

1+qndm,nφm(q)
can be seen as the asymptotically

equivalent interference and is regarded as effective interference in [173]. In the se-

quel, we construct the effective dual network to draw further insight for the power

control problem.

Firstly, the following power control problem conditioned on φ̂ is constructed

by considering the weighted power constraint:

maximize min
m

q̂mdm,m

βm

(
wm+ 1

N

∑
n�=m

q̂ndm,n

1+q̂ndm,nφ̂m

)

subject to 1
N

σTq̂ ≤ P̄ , q̂ > 0

variables : q̂.

(6.16)

Then, by defining the vector eDN �
(

1
d1,1

, · · · , 1
dJK,JK

)T

and the nonnegative matrix

EDN(q̂) as

EDN
m,n(q̂) =

⎧⎨
⎩ 0, if m = n

dm,n

1+q̂ndm,nφ̂m
, if m �= n

(6.17)

4The existence of the solution can be shown by employing the same method as in the proof
of Theorem 6.1 in [172] and the proof of Theorem 1 in [186].
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the objective function in (6.16) can be expressed compactly as the following:
q̂m

(diag(β◦eDN)( 1
N

EDN(q̂)q̂+w))
m

, whose algebraic structure leads to the following eigen-

value problem in terms of the power q̂∗ and weighted asymptotic SINR ς∗:

q̂∗

ς∗
= diag

(
β ◦ eDN

) (
EDN(q̂∗) + (1/P̄ )wσT

) q̂∗

N
. (6.18)

By comparing with (6.7), we can see that EDN(q̂) can be regarded as the effective

cross channel interference matrix and the effective dual network can be character-

ized by the nonnegative matrix diag
(
β ◦ eDN

) (
EDN(q̂) + (1/P̄ )wσT

)
. Note that

in the finite system setting, the cross channel interference matrix F is independent

of the power. However, for the large system setting, EDN(q̂) and q̂ are interdepen-

dent. In the following, we employ nonlinear Perron-Frobenius theory to propose

a distributed algorithm to compute q̂∗ given φ̂, which is given in Table 6.3 and is

referred to as Algorithm 6.3.

Theorem 6.2. For a given φ̂, starting from any initial q̂[0], the q̂[
] in Algorithm

6.3 converges geometrically fast to the optimal solution q̂∗(φ̂) of (6.16).

Proof. The proof is given in Appendix J.

After establishing the convergence properties of computing φ̂(q̂) in Algo-

rithm 6.2 and q̂∗(φ̂) in Algorithm 6.3, both Algorithm 6.2 and Algorithm 6.3 can be

combined using alternate optimization to compute an asymptotically local optimal

solution φ(q̂∗) and q̂∗. The asymptotically optimal dual network power is used to

design the asymptotically optimal beamformer in (6.11). The procedure to derive

the asymptotically optimal primal network power requires q̂∗ and φ(q̂∗), and is

pursued next.

6.4.2 Asymptotic Analysis for the Primal Network

Similar procedure for analyzing the dual network can be applied to the

primal network in order to examine the asymptotically optimal transmit power

p̂∗. From the analysis in Section 6.3, the primal network SINR is given as

ΓPN
m (p) =

pmdm,m

N
|h̃†

m,mu∗
m|2∑

n�=m

pndm,n

N
|h̃†

m,mu∗
n|2 + σm

. (6.19)
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The asymptotic approximation of ΓPN
m (p) is presented in the following lemma.

Lemma 6.3. The instantaneous random variable ΓPN
m (p) can be approximated by

a deterministic quantity γPN
m (p) such that ΓPN

m (p) − γPN
m (p)

a.s.−→ 0 as the system

dimension N → ∞. Also, γPN
m (p) is described by the following fixed-point equation:

γPN
m (p) =

pmdm,m
φ2

m(q)
−φ′

m(q)

σm + 1
N

∑
n�=m

pndm,nφ′
m(q)

(1+qmdm,mφm(q))2φ′
n(q)

∀m (6.20)

where φ′
m(q) = −φm(q)

wm+ 1
N

∑
n�=m

qndm,n

(1+qndm,nφm(q))2

∀m.

Proof. The proof is given in Appendix K.

We can see from (6.20) that the effective interference in the primal network

equals the following: 1
N

∑
n�=m

pndm,nφ′
m(q)

(1+qmdm,mφm(q))2φ′
n(q)

. In order to establish the effec-

tive primal network, we consider the following constructed power control problem

conditioned on q̂ and φ̂:

maximize min
m

p̂mdm,m
φ̂2

m
−φ̂′

m

βm

(
σm+ 1

N

∑
n�=m

p̂ndm,nφ̂′
m

(1+q̂mdm,mφ̂m)2φ̂′
n

)

subject to 1
N
wTp̂ ≤ P̄ , p̂ > 0

variables : p̂.

(6.21)

Then, by defining the vector ePN �
(

−φ̂′
1

d1,1φ̂2
1

, · · · ,
−φ̂′

JK

dJK,JK φ̂2
JK

)T

and the nonnegative

matrix EPN as

EPN
m,n =

⎧⎨
⎩ 0, if m = n

dm,nφ̂′
m

(1+q̂mdm,mφ̂m)2φ̂′
n
, if m �= n

(6.22)

the objective function in (6.21) can be expressed compactly as the following:
p̂m

(diag(β◦ePN)( 1
N

EPNp̂+σ))
m

, whose algebraic structure leads to the following eigenvalue

problem in terms of the power p̂∗ and weighted asymptotic SINR ζ∗:

p̂∗

ζ∗ = diag
(
β ◦ ePN

) (
EPN + (1/P̄ )σwT

) p̂∗

N
. (6.23)

By comparing with (6.7), we can see that EPN can be regarded as the effective cross

channel interference matrix and the effective primal network can be characterized
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by the nonnegative matrix diag
(
β ◦ ePN

) (
EPN + (1/P̄ )σwT

)
. Compared with the

effective dual network, EPN is not dependent on p̂. In the following, we employ

Perron-Frobenius theory to propose a distributed algorithm to compute p̂∗ given

q̂ and φ̂, which is given in Table 6.4 and is referred to as Algorithm 6.4.

Theorem 6.3. For given q̂ and φ̂, starting from any initial p̂[0], the p̂[
] in Al-

gorithm 6.4 converges geometrically fast to the optimal solution p̂∗(q̂, φ̂) of (6.21).

Proof. The proof is given in Appendix J.

Now, by combining Algorithm 6.2, Algorithm 6.3, and Algorithm 6.4 that

have respectively treated φ̂, q̂ and p̂ separately, a single timescale algorithm is

given in Table 6.5 and is referred to as Algorithm 6.5. Even though this algorithm

that computes the asymptotic power is iterative, it only requires statistical channel

information and thus the asymptotic power is updated at a slower timescale. Then

for each instantaneous time, the asymptotic primal network power p̂∗ is used for the

downlink transmission, and the asymptotic dual network power q̂∗ is employed to

non-iteratively obtain the instantaneous beamforming matrix Û∗ with local CSI as

û∗
m(q̂∗) =

(
∑

n�=m
q̂∗n
N

hm,nh†
m,n+wmI)−1hm,m

‖(∑n�=m
q̂∗n
N

hm,nh†
m,n+wmI)−1hm,m‖ . In this way, by leveraging the asymptotic

property in the large scale system, no instantaneous power update is required in

the coordinated cluster to jointly optimize power control and beamformer.

Discussion of Complexity: It is important to note that even though Al-

gorithm 6.1 and Algorithm 6.5 are both discrete time algorithms, their operating

timescales as well as the implementation complexities are vastly different (we use

indices κ and 
 to differentiate them). In Algorithm 6.1, the power update is on

the order of milliseconds to track the instantaneous channel effect. Thus, this al-

gorithm requires a large amount of instantaneous power update to compute the

optimal solution. In contrast, the power update in Algorithm 6.5 relies only on

statistical channel information. Therefore, this algorithm operates on the order of

tens of seconds or more (at the same timescale as the variation of the long-term

channel statistics) and thus the implementation complexity is greatly reduced.
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Figure 6.1: Convergence plot of the primal network power in a finite system
setting employing Algorithm 6.1: (N = 4, K = 4, J = 3, P̄ = 10 Watt). Different
marker types represent different users.

6.5 Numerical Results

In this section, we conduct a numerical study to support the analysis. We

consider a three-cell cluster, i.e., J = 3, wherein the three base stations jointly

perform power control and coordinated beamforming. The path loss (in dB) model

in [111] is assumed with 15.3+37.6 log10 d for distance d in meters and a log-normal

shadowing with standard deviation of 8 dB is employed. The noise power spectral

density is set to −162 dBm/Hz. The radius of each base station is set to be 1.5 km,

and a 15 dBi antenna gain is assumed. For illustration purpose, the coordinated

cluster is subject to a total power constraint, i.e., w = 1, and each user possesses

the same priority of service, i.e., β = 1. The total power constraint P̄ is assumed

to equal 10 Watt.

Firstly, a finite system setting is considered. Each base station is assumed
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Figure 6.2: Convergence plot of the primal network weighted SINR in a finite
system setting employing Algorithm 6.1: (N = 4, K = 4, J = 3 P̄ = 10 Watt).
Different marker types represent different users.

to be equipped with N = 4 antennas and serves K = 4 randomly located users

simultaneously. For one channel realization, the coordinated cluster utilizes Algo-

rithm 6.1 to iteratively obtain the optimal beamformer and optimal power. Fig.

6.1 demonstrates the convergence plot of the primal network power for different

users. It is observed that for this channel realization, the power converges to its

optimal value within 3 runs of iteration. This demonstrates the geometrically fast

convergent property of Algorithm 6.1. Extensive numerical evaluations show that

it converges typically within 5 runs of iteration for different channel realizations.

In Fig. 6.2, the convergence plot of the primal network weighted SINR for different

users is shown. Since the system metric of the coordinated cluster is to maintain

fairness across users, each user’s optimal SINR (w = 1) would converge to the same

value for a given channel realization, which is verified in Fig. 6.2.
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Figure 6.3: Convergence plot of the primal network weighted SINR in a large
system setting employing Algorithm 6.5: (N = 50, K = 40, J = 3, P̄ = 10 Watt).
The SINR for different users are not differentiated, but use the same line style for
illustration.

Next, a large system setting is considered with N = 50 and K = 40. For

a given geometry, the asymptotic SINR of the primal network is of interest, whose

convergence plot is shown in Fig. 6.3 by employing Algorithm 6.5. The SINR’s of

each user are not differentiated, and uses the same line of type for illustration. Note

that the converged value does not depend on the channel realization. However, it

depends on the user geometry, namely the large scale channel effects, which means

different user geometries would lead to different deterministic equivalents for the

optimal SINR in the large system. Fig. 6.4 considers the use of asymptotic result.

The asymptotic primal network power is utilized for downlink transmission, and

the asymptotic dual network power is leveraged to non-iteratively determine the

instantaneous beamformer. The achieved SINR’s for different users using the deter-
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Figure 6.4: The achieved primal network SINR for each individual user using
the asymptotically optimal beamformer in a large system setting for one channel
realization: (N = 50, K = 40, J = 3, P̄ = 10 Watt). The mean of the achieved
SINR using asymptotically optimal beamformer averaged over users and the the
achieved SINR using the optimal beamformer are illustrated for comparison.

mined beamformer are shown, along with their mean and the achieved SINR using

the optimal beamformer obtained via Algorithm 6.1, for one channel realization. It

is observed that the SINR’s of different users employing the asymptotically optimal

beamformer fluctuate around the optimal one, with the mean close to the optimal

SINR. Therefore, by using Algorithm 6.5 to obtain the asymptotically optimal

beamformer, the max-min fairness across users can be achieved in the asymptotic

sense.

Finally, in Fig. 6.5, we consider the use of the asymptotic result in a finite

system with N = 4 and K = 3 and demonstrate the comparison of the average

SINR using optimal beamformer and the asymptotically optimal beamformer with

respect to the variation of the total power constraint P̄ . Herein, the averaging is
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Figure 6.5: Comparison of the average achieved primal network SINR using
asymptotically optimal beamformer and the optimal beamformer in a finite system
setting with respect to different values of the power constraint P̄ : (N = 4, K = 3,
J = 3).

over the user geometries, and for a given user geometry, different channel realiza-

tions are drawn. It can be seen from Fig. 6.5 that the performance of applying

asymptotic result holds well for finite system setting. Accordingly, in a practical

system with limited backhaul constraint, the asymptotically optimal power and

beamformer can be developed and leveraged to reduce the implementation com-

plexity and approach the optimal performance in the asymptotic sense.

6.6 Conclusion

In this chapter, we consider a joint optimization of beamforming and power

control in a coordinated multicell downlink and employ the max-min formulation

to enforce egalitarian fairness across users. The network duality is interpreted via a

nonlinear Perron-Frobenius theoretic characterization and utilized to design a dis-
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tributed algorithm to obtain the optimal solution. The iterative algorithm requires

instantaneous power update through the limited backhaul and does not scale well

in a large system setting. In order to design an algorithm that only utilizes channel

statistics, we leverage random matrix theory to derive deterministic equivalents for

the optimal SINR expression, and utilize the nonlinear Perron-Forbenius theory to

establish the notion of effective network and propose a fast convergent algorithm.

The asymptotically optimal solution enables a non-iterative approach to compute

the instantaneous beamformer and thus requires no instantaneous information ex-

change across the coordinated cluster.

The text of this chapter, in part, is a reprint of the paper [189], Y. Huang,

C. W. Tan, and B. D. Rao, “Joint beamforming and power control in coordinated

multicell: max-min duality, effective network and large system transition”, IEEE

Transactions on Wireless Communications, minor revision, revised, 2012. The

dissertation author is the primary researcher and author, and the co-authors listed

in these publications contributed to or supervised the research which forms the

basis of this chapter.

6.7 Appendices

6.7.1 Appendix J

Proof of Theorem 6.1: The key step to the proof is to establish the con-

vergence property of the dual network power q via a nonlinear Perron-Frobenius

theory in [167]. The relationship between q∗ and the optimal weighted SINR τ ∗ is

of interest, and can be obtained by substituting the optimal MVDR beamformer:

q∗m
Nτ ∗ =

βm

h†
m,m(

∑
n�=m

q∗n
N

hm,nh
†
m,n + wmI)−1hm,m

∀m. (6.24)

Thus the mapping I(1)(·) : RJK×1
+ → RJK×1

+ can be defined by the following

equation: I(1)
m (q∗) � βm

h†
m,m(

∑
n�=m

q∗n
N

hm,nh†
m,n+wmI)−1hm,m

. It can be shown using the

same technique in [167] that I(1)(·) is a concave self-mapping of q∗. Also, for the

dual network, the weighted sum power constraint 1
N

σTq∗ = P̄ induces a norm



150

on RJK×1
+ defined by ‖q∗‖DN � (N/P̄ )

∑
m σmq∗m. By applying [149, Theorem 1],

starting from any initial point q[0], the fixed-point iteration (step 1 and step 2

of Algorithm 6.1) converges geometrically fast to the optimal solution q∗ for the

eigenvalue problem (6.24). The optimal beamforming matrix U∗ is unique and

can be computed by substituting the optimal dual network power q∗ into the

MVDR beamformer (6.11) for each user (step 3 of Algorithm 6.1). For the primal

network power p, the induced norm on RJK×1
+ is established by the weighted power

constraint 1
N
wTp∗ = P̄ as: ‖p∗‖PN � (N/P̄ )

∑
m wmp∗m. Therefore, by using

the same line of argument for the dual network with the optimal beamforming

matrix U∗, the fixed-point iteration (step 4 and step 5 of Algorithm 6.1) converges

geometrically fast to the optimal solution p∗ for the eigenvalue problem (6.7) with

any initial point p[0]. This completes the proof of Theorem 6.1.

Proof of Theorem 6.2: For a given φ̂, the nonlinear eigenvalue problem in

(6.18) enables us to define the mapping I(3)(·) : RJK×1
+ → RJK×1

+ as: I(3)
m (q̂) �

βm

dm,m

(
wm + 1

N

∑
n�=m

q̂ndm,n

1+q̂ndm,nφ̂m

)
. Since the function x

1+x
is strictly concave in

x ∈ R++, the mapping I(3)
m (q̂) is a summation of strictly concave functions in

q̂ and thus is a concave self-mapping in q̂. Then using the norm ‖q‖DN and

applying [149, Theorem 1], the fixed-point iteration (step 1 and 2 of Algorithm

6.3) converges geometrically fast to q̂∗(φ̂) for the eigenvalue problem (6.18).

Proof of Theorem 6.3: For given φ̂ and q̂, the eigenvalue problem in

(6.23) enables us to define the mapping I(4)(·) : RJK×1
+ → RJK×1

+ as: I(4)
m (p̂) �

−φ̂′
mβm

φ̂2
mdm,m

(
σm + 1

N

∑
n�=m

p̂ndm,nφ̂′
m

(1+q̂mdm,mφ̂m)2φ̂′
n

)
. It can be easily seen that the mapping

I(4)
m (p̂) is affine, thus it is a concave self-mapping in p̂. Then using the norm

‖p‖PN and applying [149, Theorem 1], the fixed-point iteration (step 1 and 2 of

Algorithm 6.4) converges geometrically fast to p̂∗(φ̂, q̂) for the eigenvalue problem

(6.23).

6.7.2 Appendix K

Useful Results from Random Matrix Theory: We reproduce the following

theorem [174,178,188] that will be employed to prove Lemma 6.1 and Lemma 6.3.
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Theorem 6.4. (Theorem 2 in [188]) Consider an Ñ × ñ random matrix Y =

(Yi,j)
Ñ,ñ
i=1,j=1 where the entries are given by: Yi,j =

σ̃i,j√
ñ
Xi,j, the Xi,j being indepen-

dent and identically distributed (i.i.d.), with the following assumptions hold:

A1: The complex random variables Xi,j are i.i.d. with E[Xi,j] = 0, E[X2
i,j] =

0, E[|Xi,j|2] = 1, and E[|Xi,j|8] < ∞.

A2: There exists a real number σ̃max < ∞ such that: sup
ñ≥1

max
1≤i≤Ñ
1≤j≤ñ

|σ̃i,j| ≤ σ̃max.

There exists a deterministic Ñ × Ñ matrix-valued function

Ψ(z) = diag(ψ1(z), . . . , ψÑ(z))

analytic in C − R+ such that:

1

Ñ
Tr
(
YY† − zIÑ

)−1 − 1

Ñ
Tr(Ψ(z))

a.s.−→ 0 for z ∈ C − R+ (6.25)

whose elements are the unique solutions of the deterministic system of Ñ + ñ

equations:

ψi(z) =
−1

z
(
1 + 1

ñ

∑ñ
j=1 σ̃2

i,jψ̃j(z)
) for 1 ≤ i ≤ Ñ

ψ̃j(z) =
−1

z
(
1 + 1

ñ

∑Ñ
i=1 σ̃2

i,jψi(z)
) for 1 ≤ j ≤ ñ (6.26)

such that 1
Ñ

Tr(Ψ(z)) is the Stieltjes transform [171] of a probability measure.

Proof of Lemma 6.1: The technique to establish the deterministic equivalent

for γDN
m (q) lies in the asymptotic behavior of the empirical distribution of the

eigenvalue for
(∑

n�=m
qndm,n

N
h̃m,nh̃

†
m,n + wmI

)−1

. This uplink problem for the equal

power system has been addressed in [173], and the general treatment using the

notion of variance profiles for random matrices is provided in [188]. Applying [190,

Lemma 2.7] yields the following:

γDN
m (q) − qmdm,m

N
Tr

⎛
⎝(∑

n�=m

qndm,n

N
h̃m,nh̃

†
m,n + wmI

)−1
⎞
⎠ a.s.−→ 0. (6.27)

Since the separable variance profile for the Gram matrix
∑

n�=m
qndm,n

N
h̃m,nh̃

†
m,n is

characterized by the optimal power qn and the large-scale channel effects dm,n,
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there exist a deterministic equivalent for the Stieltjes transform [171] of this Gram

matrix. In order to invoke Theorem 6.4, the channel model needs to satisfy the two

assumptions (i.e., A1 and A2) described above. Note that the channel model in

(6.12) constitutes a special case of the channel model assumed in [179,188], there-

fore the matrices considered satisfy the two necessary assumptions. Employing

Theorem 6.4 generates the fixed-point equation for γDN
m (q) in (6.14).

Proof of Lemma 6.2: For a given q̂, define the following mapping: I(2)
m (φ̂m) �

1

wm+ 1
N

∑
n�=m

q̂ndm,n

1+q̂ndm,nφ̂m

. The idea for proving this lemma is to use the standard inter-

ference function framework [146]. It is straightforward to check that the positivity

and monotonicity conditions in [146] hold for I(2)
m (φ̂m). Also, for all ε > 1, we

have 1
wm

ε
+ 1

N

∑
n�=m

q̂ndm,n

ε+q̂ndm,nεφ̂m

> 1

wm+ 1
N

∑
n�=m

q̂ndm,n

1+q̂ndm,nεφ̂m

, which establishes the scalabil-

ity condition in [146]. Since the mapping is a standard interference function, the

convergence result follows from [146], thus completing the proof of Lemma 6.2.

Proof of Lemma 6.3: The expression for ΓPN
m (p) is given in (6.19), and

the optimal beamformer u∗
m is the MVDR beamformer in (6.11). The asymptotic

approximations for 1
N
|h̃†

m,mu∗
m|2 and 1

N
|h̃†

m,mu∗
n|2 need to be determined. The

expression for 1
N
|h̃†

m,mu∗
m|2 can be further expanded as

1

N
|h̃†

m,mu∗
m|2 =

(
1
N
h̃†

m,m

(∑
n�=m

qndm,n

N
h̃m,nh̃

†
m,n + wmI

)−1

h̃m,n

)2

1
N
h̃†

m,m

(∑
n�=m

qndm,n

N
h̃m,nh̃

†
m,n + wmI

)−2

h̃m,n

. (6.28)

Employing Theorem 6.4, the numerator of (6.28) converges almost surely to φ2
m(q).

In order to obtain the deterministic equivalent for the denominator, the depen-

dence of φm(q) on the noise variance wm can be made explicit, i.e., φm(q) =

φm(q, x)|x=wm . Then, by employing the differential of the Stieltjes transform of

the Gram matrix
∑

n�=m
qndm,n

N
h̃m,nh̃

†
m,n and applying Theorem 6.4, the denomina-

tor of (6.28) converges almost surely to −φ′
m(q) � − ∂

∂x
φm(q, x)|x=wm , which can

be shown to be: φ′
m(q) = −φm(q)

wm+ 1
N

∑
n�=m

qndm,n

(1+qndm,nφm(q))2

.
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The expression for 1
N
|h̃†

m,mu∗
n|2 can be further expanded as

1

N
|h̃†

m,mu∗
n|2

=

1
N
h̃†

m,m

(∑
j �=n

qjdn,j

N
h̃n,jh̃

†
n,j + wnI

)−1

h̃n,nh̃
†
n,n

(∑
j �=n

qjdn,j

N
h̃n,jh̃

†
n,j + wnI

)−1

h̃m,m

1
N
h̃†

n,n

(∑
j �=n

qjdn,j

N
h̃n,jh̃

†
n,j + wnI

)−2

h̃n,n

.

(6.29)

Following the same line of argument, the denominator of (6.29) converges almost

surely to −φ′
n(q). For the numerator of (6.29), since h̃m,m and the Gram matrix∑

j �=n
qjdn,j

N
h̃n,jh̃

†
n,j are not independent, the numerator of (6.29) is transformed into

the following equivalent form by matrix inversion lemma:

1
N
h̃†

m,m

( ∑
j �=m,n

qjdn,j

N
h̃n,jh̃

†
n,j + wnI

)−1

h̃n,nh̃
†
n,n

( ∑
j �=m,n

qjdn,j

N
h̃n,jh̃

†
n,j + wnI

)−1

h̃m,m

⎛
⎝1 + qmdm,m

N
h̃†

m,m

( ∑
j �=m,n

qjdn,j

N
h̃n,jh̃

†
n,j + wnI

)−1

h̃m,m

⎞
⎠

2 .

(6.30)

By employing the rank-1 perturbation lemma [191] and Theorem 6.4, the numer-

ator of (6.30) converges almost surely to −φ′
m(q), and the denominator of (6.30)

converges almost surely to (1 + q∗mdm,mφm(q))2. Combining the aforementioned

results yields the fixed-point equation for γPN
m (p) in (6.20). This completes the

proof of Lemma 6.3.
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Table 6.1: Algorithm 6.1–Max-min weighted SINR for multicell downlink

• Initialize arbitrary p[0] ∈ RJK×1
++ , q[0] ∈ RJK×1

++ and um[0] ∈ CN×1 for m =

1, . . . , JK such that ‖um[0]‖ = 1,∀m, 1
N
wTp[0] ≤ P̄ , and 1

N
σTq[0] ≤ P̄ .

1. Update dual network power q[κ + 1]:

qm[κ + 1] =

(
βm

ΓDN
m (q[κ], U[κ])

)
qm[κ] ∀m.

2. Normalize q[κ + 1]:

q[κ + 1] ← NP̄

σTq[κ + 1]
q[κ + 1].

3. Update transmit beamforming matrix U[κ + 1]:

um[κ + 1] =
(
∑

n�=m
qn[κ+1]

N
hm,nh

†
m,n + wmI)−1hm,m

‖(∑n�=m
qn[κ+1]

N
hm,nh

†
m,n + wmI)−1hm,m‖

∀m.

4. Update primal network power p[κ + 1]:

pm[κ + 1] =

(
βm

ΓPN
m (p[κ], U[κ + 1])

)
pm[κ] ∀m.

5. Normalize p[κ + 1]:

p[κ + 1] ← NP̄

wTp[κ + 1]
p[κ + 1].
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Table 6.2: Algorithm 6.2–Computation of φ̂ given q̂

• Initialize arbitrary φ̂[0] ∈ RJK×1
++ with a given q̂.

• Update φ̂[
 + 1]:

φ̂m[
 + 1] =
1

wm + 1
N

∑
n�=m

q̂ndm,n

1+q̂ndm,nφ̂m[�]

∀m.

Table 6.3: Algorithm 6.3–Computation of q̂ given φ̂

• Initialize arbitrary q̂[0] ∈ RJK×1
++ with a given φ̂ such that 1

N
σTq̂[0] ≤ P̄ .

1. Update dual network power q̂[
 + 1]:

q̂m[
 + 1] =
βm

dm,m

(
wm +

1

N

∑
n�=m

q̂n[
]dm,n

1 + q̂n[
]dm,nφ̂m

)
∀m.

2. Normalize q̂[
 + 1]:

q̂[
 + 1] ← NP̄

σTq̂[
 + 1]
q̂[
 + 1].
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Table 6.4: Algorithm 6.4–Computation of p̂ given q̂ and φ̂

• Initialize arbitrary p̂[0] ∈ RJK×1
++ with given q̂ and φ̂ such that 1

N
wTp̂[0] ≤ P̄ .

1. Update primal network power p̂[
 + 1]:

p̂m[
 + 1] =
−φ̂′

mβm

φ̂2
mdm,m

(
σm +

1

N

∑
n�=m

p̂n[
]dm,nφ̂′
m

(1 + q̂mdm,mφ̂m)2φ̂′
n

)
∀m.

2. Normalize p̂[
 + 1]:

p̂[
 + 1] ← NP̄

wTp̂[
 + 1]
p̂[
 + 1].
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Table 6.5: Algorithm 6.5–Computation of p̂ and q̂ for multicell downlink

• Initialize arbitrary φ̂[0] ∈ RJK×1
++ , p̂[0] ∈ RJK×1

++ , and q̂[0] ∈ RJK×1
++ such that

1
N
wTp̂[0] ≤ P̄ , and 1

N
σTq̂[0] ≤ P̄ .

1. Update dual network power q̂[
 + 1]:

q̂m[
 + 1] =
βm

dm,m

(
wm +

1

N

∑
n�=m

q̂n[
]dm,n

1 + q̂n[
]dm,nφ̂m[
]

)
∀m.

2. Normalize q̂[
 + 1]:

q̂[
 + 1] ← NP̄

σTq̂[
 + 1]
q̂[
 + 1].

3. Update φ̂[
 + 1]:

φ̂m[
 + 1] =
βm

dm,m

1

q̂m[
 + 1]
∀m.

4. Update primal network power p̂[
 + 1]:

p̂m[
 + 1] =
−φ̂′

m[
 + 1]βm

φ̂2
m[
 + 1]dm,m

×
(

σm +
1

N

∑
n�=m

p̂n[
]dm,nφ̂′
m[
 + 1]

(1 + q̂m[
 + 1]dm,mφ̂m[
 + 1])2φ̂′
n[
 + 1]

)
∀m.

5. Normalize p̂[
 + 1]:

p̂[
 + 1] ← NP̄

wTp̂[
 + 1]
p̂[
 + 1].



Chapter 7

Concluding Remarks

This dissertation investigates several novel techniques and system design is-

sues for next generation wireless networks and advocates the concept of situational

aware wireless networks. The algorithmic issues and analytical studies related to

feedback, power control and beamforming have been investigated. The objective

of this dissertation is two-fold. Firstly, by exploring the aforementioned research

topics in this dissertation, several open problems related to feedback, power control

and beamforming have been tackled, and a number of novel design mechanisms

has been proposed and studied in a theoretical manner. Secondly, each of the

aforementioned research topics has addressed situational awareness from a differ-

ent perspective. More specifically, Chapter 2 designs adaptive feedback based on

spectral channel statistics (being aware of channel attributes); Chapter 3 designs

heterogeneous partial feedback based on user densities across cells (being aware of

user attributes); The scheduling policy utilized in Chapter 3 and Chapter 4 lever-

ages the diverse statistics of the users’ channels to maintain user fairness and obtain

multiuser diversity gain (being aware of channel attributes and user attributes);

The algorithm design in Chapter 5 employs the spatial channel statistics (being

aware of channel attributes); Chapter 6 proposes to design efficient algorithm based

on the large system structure (being aware of system attributes). In the sequel,

we discuss some possible future research directions for each of the aforementioned

research topics, enabled by the theoretical and algorithmic developments presented

in this dissertation.

158
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1. In Chapter 2, the explicit feedback assumption is used to analyze the adaptive

feedback with channel estimation error and feedback delay. Practical scenar-

ios may incorporate the effect of finite-rate quantization [192–195]. Some

initial study examining the impact of quantized feedback and quantizer de-

sign can be found in [196]. Instead of quantizing order statistics to minimize

the mean-squared error [197,198], the approach in [196] optimizes the quan-

tizer design to maximize the sum rate. The impact of quantized feedback

under the framework in Chapter 2 is studied separately. From a practical

point of view, it would be great interest to consider all these imperfections

in a joint manner.

2. Chapter 3 and Chapter 4 employ the CDF-based scheduling policy to de-

couple each user’s rate to provide analytical insight. In order to guarantee

that each user is equiprobable to be scheduled, the equal weight is used for

the CDF-based scheduling policy. In a general system setting, each user

may have different QoS requirement, which may correspond to different

weights in the CDF-based scheduling policy. Some initial study examin-

ing the weighted CDF-based scheduling policy in a relay-assisted downlink

can be found in [199]. It is an interesting problem to consider the design of

partial feedback in a relay-assisted system under the weighted CDF-based

scheduling policy and draw theoretical relationship with the proportional-

fair scheduling policy. Furthermore, Chapter 3 considers a generic multicell

SISO network and Chapter 4 considers a single cell multi-antenna network

and utilizes random beamforming as the transmission scheme. Some initial

study examines random beamforming and receiver design in a distributed an-

tenna system [200–203] can be found in [204]. A possible research direction

is to extend the techniques in both Chapter 3 and Chapter 4 to a centralized

multicell MIMO network and a distributed multicell MIMO network.

3. In Chapter 5, the weighted sum power constraint is employed for algorithm

design in a multiuser MISO network. Application scenarios including the ad

hoc network and the device-to-device network [205, 206] may involve indi-

vidual power constraint [207, 208]. A potential research problem along the



160

direction of Chapter 5 is to investigate decentralized algorithm design under

the individual power constraint.

4. Chapter 6 proposes to compute asymptotic power based on statistical chan-

nel information and thus the instantaneous beamformer can be obtained in a

non-iterative manner. When performing large system analysis in Chapter 6,

an independent channel with asymmetric large-scale channel effects for dif-

ferent users is assumed. This corresponds to the scenario when transmit an-

tennas are placed far apart. A general system setting may involve correlation

among antennas [183–186]. Some initial study examining the transmit-side

channel correlation in power minimization algorithm design can be found

in [209]. It would be interesting to jointly consider the practical issues such

as channel correlation, channel estimation error, and pilot contamination for

efficient algorithm design.

This dissertation advocates the concept of situational aware wireless net-

works by mainly focusing on PHY and MAC layer issues. Solving the aforemen-

tioned research problems related to feedback, power control and beamforming are

useful first steps in the vision of situational aware wireless networks. Lastly, we

would like to briefly comment on the framework of situational aware wireless net-

works. The proposed methods and algorithm design in this dissertation focus

on the awareness of situations (channel, user and system). Such awareness can

be achieved by leveraging learning in the wireless ecosystem. In current wireless

system, there is no learning based on the gathered wireless data and thus there

is no efficient data base to utilize the history of the wireless networks. Proper

utilization of history can certainly give rise to a superior Bayesian prior for pa-

rameter setting and system design. The overall architecture of such systems, the

components, and mechanism by which learning will take place are still very un-

clear and are needed so that there is a basis for future development, evaluation

and integration. Cognition [210] as a way to deal with the challenges of future

wireless networks has been suggested in various forms: cognitive radios [211,212],

self-organizing networks [213, 214], biologically inspired networks [215–217], etc.

However, there remain many unanswered questions and it is important to consider
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all the players in a wireless ecosystem in a coherent manner1, namely the end user,

infra-structure providers and content providers. Increasing the innate abilities of

each of the participants is clearly going to be important in meeting the needs of the

future wireless systems, but this is not enough. There is need for synergy among

all the participants to make maximal use of these abilities. In order to achieve

this synergy, there is a need for enhanced situational awareness at all levels and

an ability to learn and adapt.

1A conceptual framework to leverage a swarm of mobile users to collaboratively obtain situ-
ational aware wireless data can be found in [218].
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