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Abstract

Peak shift effects produced with complex pattern stimuli are
influenced by the level of spatial variability over successive
presentations of the same training stimulus. This effect, now
demonstrated in humans and animals, poses a significant
problem for past models of peak shift, which assume that the
spatial location of the stimulus components will not influence
post-discrimination generalization. Here we present a model
based on contemporary elemental associative theory which
can accurately account for the effect, and furthermore does so
without any of the assumptions of dimensionality on which
previous models of peak shift depend. In so doing, we hope to
further illuminate the nature of dimensionality, i.e. what
makes a dimension a dimension.

Peak shift with ‘icon’ stimuli

Since Hanson’s first report of the effect in 1959, peak shift
has been demonstrated in many forms, using human and
non-human subjects, and using a variety of stimuli (see for
instance Ghirlanda & Enquist, 2003). Peak shift is observed
over a series of stimuli with properties that lie along a
dimension or have some systematic ordinal relationship. In
conditioning experiments, subjects are typically trained to
discriminate between an S+, a stimulus to which responses
are reinforced, and a very similar S- to which no
reinforcement is given for responding. When tested across
several stimuli, subjects’ peak response rate often occurs not
for S+ but for a similar stimulus further along the dimension
away from S- (Hanson, 1959). Likewise, in human
categorization experiments, if subjects are trained to
discriminate between two very similar stimuli and are then
given a generalization test, accuracy is sometimes found to
be highest for stimuli either side of the training stimuli
rather than the training stimuli themselves. Peak shift is
conventionally associated with very simple dimensional
designs employing, for instance, lights of differing
wavelength or tilted lines of differing angle. However, peak
shift has also been shown with much more complex stimuli,
the properties of which are ordered along an artificial
dimension. For instance, patterns of small abstract shapes
commonly referred to as ‘icons’ have been used to produce
peak shift effects in both animal conditioning and human
categorization (Oakeshott, 2002; Wills and Mackintosh,
1998).
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Figure 1. Example of ‘icon’ stimuli used in training.

Typically in these experiments, the frequency of
occurrence of each icon is systematically varied from one
stimulus to the next. This is done in such a way to give the
resulting patterns an ordinal relationship with one another,
in effect mimicking points along a dimension. Shifting
from one stimulus to the next along this artificial
dimension requires changing some of the icons while
holding others constant. Figure 1, for instance shows a
pair of training stimuli, under the conditions used for the
current experiment and model, which share two thirds of
their icons. The full dimensional design and frequency of
occurrence of the icons in each stimulus can be seen in
Table 1. The patterns of icons in Figure 1 represent stimuli
7 and 9 on an artificial dimension of 15 stimuli.
Participants must learn to press a left key for stimulus 7
(Sp) and a right key for stimulus 9 (Sg). Livesey (2004)
found that under some conditions, when tested on all 15
stimulus positions, participants categorize the patterns with
highest accuracy at positions that are 3 steps to either side
of the training stimuli (i.e. stimuli 4 and 12), and thus
demonstrate a significant peak shift. However, the shape
of the post-discrimination generalization gradient appears
to be greatly influenced by the level of spatial variation
over successive presentations of each stimulus, an effect
first demonstrated with pigeons by Oakeshott (2002). The
icon experiments that have produced peak shift effects
have typically allowed the position of each icon within the
pattern to vary randomly from one trial to the next, and in
many cases have also allowed the exact number of each
type of icon to vary from one trial to the next in such a way
that the frequency of occurrence averages to a given
proportion over many trials. In contrast, when the position
of each icon and the frequency of occurrence of each icon



type are both fixed, there appears to be either no evidence of
peak shift at all, with a relatively linear generalization
gradient (Oakeshott, 2002), or a diminished peak shift, with
a similar generalization gradient but occurring over a
smaller range along the dimension (Livesey, 2004). Figure
2 shows the results from 3 conditions run by Livesey (2004),
demonstrating the difference in resultant post-discrimination
generalization gradients after ‘fixed’ and ‘varied’ training.

Table 1. Dimensional design used in the current experiment
and in Livesey (2004).

Frequency of occurrence of icons A to X in each stimulus
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To compare the curvature of the post-discrimination
generalization gradients produced under fixed and varied
conditions, Livesey (2004) used two contrast scores
calculated as a test of non-linearity. Both gradients were
negatively accelerating approaching the training stimuli S
and resembled a weak peak shift effect. In this case, the
primary interest was the scale over which the curvature of
the two gradients was occurring as it was predicted that the
fixed gradient would peak earlier and decline more rapidly
(that is, manifest on a compressed scale). Quadratic
contrasts of the (1, -2, 1) form were calculated over points 0,
3, and 6 steps from S and again for points 0, 2, and 4 steps
from S, referred to respectively as ‘stretched’ and
‘compressed’ contrasts. The significant interaction between
these contrasts suggested that the curvature of the two
gradients did indeed differ in scale and shape.

There is therefore evidence from human and pigeon research
that spatial variability of the icon patterns affects the nature
of the post-discrimination generalization gradient. This is
significant because none of the models previously used to
simulate peak shift along an artificial dimension can
adequately account for such an effect. Peak shift
experiments with icon stimuli have been cited as evidence
supporting elemental associative learning theories of
generalization and discrimination (for instance Blough,
1975). However, the modeling that has stemmed from this
research generally makes important assumptions about the
underlying dimensionality of the paradigm. This may take
the form of a graded activation function over several units
thought to be ‘tuned’ to similar stimulus properties, a

strategy which has been very successful for modeling peak
shift along a physical dimension. It would seem risky,
however, to rely on such an assumption where the
dimension itself is an artificial construct. In any case, past
models of peak shift along an artificial dimension have
generally assumed that the relative position of the icons
should make little or no difference to the overall pattern of
generalization.
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Figure 2. Post-discrimination generalization gradients
from Livesey (2004). The three gradients correspond to (i)
fixed icon location and frequencies, (ii) varied icon
location but fixed frequencies, and (iii) varied location and

frequencies.

Modeling the effect of spatial variability.

The model considered here is an implementation of
McLaren and Mackintosh's (2000; 2002) general theory of
elemental associative learning which has the scope to apply
to discrimination and generalization effects such as peak
shift. The characteristics that mark this model as a distinct
departure from past attempts to simulate peak shift lie not
only in the way it treats spatial variation and specificity,
but also in the absence of any assumptions of
dimensionality or graded activation. Instead, these factors
emerge from the stimulus properties themselves. The
mechanism through which learning proceeds is actually no
more complicated than a simple delta rule linking a large
number of representational units with two output units. The
stimulus is represented by activation of some input units,
using a relatively simple form of local coding whereby
each icon in each specific location activates a single input
node. Thus icon A in position 1 would be represented as
activation in one input unit, while icon A in position 2 (or
icon B in position 1) would be represented as activation in
another. Thus input unit i is fully activated (A; = 1) when
that location-specific icon is present and not activated at all
(A; = 0) otherwise. In order to model a single subject, one
needs 864 input units (24 different icons are used and the
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stimulus has 36 different locations in which an icon can
appear).

Input Units

Response Output Units

Figure 3. A schematic representation of a model based on
McLaren and Mackintosh (2000; 2002)

This method of coding the input units was chosen mainly as
a matter of convenience. Of course one might expect a high
degree of generalization from, say, icon A in position 1 to
icon A in position 2, particularly with a stimulus of this size
and complexity. There are several ways one could go about
modifying the inputs to express this generalization. Instead
of taking this approach, here generalization can occur
through the pattern of random weights that connect the input
units to a second layer of hidden units. These weights are
fixed throughout the experiment and allow a high degree of
random variation, taking on one of two forms, depending on
which second-layer unit is involved. A proportion of the
second layer units have positive connections specific to a
particular icon type. Positive weights varying randomly
from 0 to +1 connect these units with each of the 36
location-specific inputs that represent a particular icon type,
while the connections to all other input units have small,
random negative weights. The rest of the second layer units
are connected via weights which vary randomly between -1
and +1, irrespective of which icon type and which location
the connected input is representing.

This second layer can be thought of as the “elements”
described in the McLaren and Mackintosh model.
Importantly, there is no assumption of dimensionality
inherent in this system of representation — the elements are
activated via a series of random weights with all of the
activated inputs such that input i = > AjW;; where A; is the
activation of input unit i and Wj; is the random fixed weight
between input unit i and second layer unit j. If this input is
negative then unit j has no activation (A;j = 0), otherwise if i
is positive then activation of unit j, A; = E.i/ (D + E.i) where
E and D are constants. In effect, this means that on
presentation of any specific stimulus, roughly half of the
second layer units will have an activation of zero as their
summed input will be negative, while the activation of the
other half will vary between 0 and 1, the distribution of
which is affected by the values of the constants D and E.
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Each of these second layer units is then connected to two
output units, one corresponding to each response (left and
right key presses). These weights are initially set to zero
and vary according to the delta-rule. The change in weight
between second layer unit i and output j, W = S.AA;
where S is a learning rate parameter, A; is the activation of
unit i and A is the difference between external input, e, and
summed internal input, i. The summed input i is calculated
in much the same fashion as for the second layer units (i =
2 AiWj;). During training, the output unit corresponding to
the correct response was given an external activation of 1
while the incorrect response output has an external
activation of 0.

During the test phase, response probabilities for each test
stimulus were calculated using an exponential form of the
ratio rule. For instance, the probability of a left response,
P(Left Response) = e~ / (e" + ¢"®) where L and R are the
summed inputs to the units corresponding to left response
and right responses respectively, and k is a constant held at
a single value for all subjects in each group. This ratio rule
can be considered a fairly standard method of calculating
response probabilities from two competing response
tendencies (see for example Wills, Reimers, Stewart, Suret,
& McLaren, 2000).

This model provides a very close quantitative fit to the
generalization gradients from Livesey (2004) given above,
and accurately predicts the difference in curvature of
gradients produced under fixed spatial conditions and
varied spatial conditions. The crucial feature that allows
the model to make such predictions is the manner in which
the activation of second layer units can represent highly
specific configurations of icons in particular locations and
also more general patterns of icon frequency. The
interaction between large numbers of these units and the
summed error term governing weight change to the output
units acts as a selective process, favoring units that extract
stable differences between the training stimuli. In the
fixed condition, the frequency of occurrence of icons
(irrespective of their position within the array) and
configurations of icons in specific locations are both stable
across multiple presentations of the training stimuli.
Second layer units that are highly activated by specific
configurations of icons present in one training stimulus and
not the other will govern a large component of the
discrimination. However, these units will be much less
activated by neighboring stimuli as configurations of icons
change dramatically in just a few steps along the
dimension. In the varied condition, the location of icons
does not remain stable across many presentations of the
training stimuli. Consequently, the units that are highly
activated by predictive icons in many different locations
will govern the discrimination. The activation of these
units will remain relatively high in neighbouring stimuli,
and will produce a broader generalization gradient and a



stronger peak shift effect, as shown by Livesey (2004) and
Oakeshott (2002).

A further test of the model

An opportunity to test very subtle predictions of the model
arose when the current authors identified a methodological
issue that needed further examination. In previous fixed
conditions used by Oakeshott (2002) and Livesey (2004) the
set of test stimuli were created by taking an initial stimulus
and then shifting along the dimension, each time retaining
the icons that are common to both and replacing the icons
that are unique to one stimulus with new icons unique to the
other. On each shift, if the number of copies of an icon type
was to decrease then the to-be-replaced icon was chosen
randomly and irrespective of which icons had been replaced
in recent shifts. For instance, if the number of copies of icon
K was to be reduced from 6 to 5, then each copy of icon K
had a 1 in 6 chance of being replaced. Thus it was quite
possible for a specific icon to change twice within a small
number of steps, or conversely for an icon to remain in one
position across a disproportionately large number of stimuli,
as illustrated in Table 2. This adds an unwanted source of
variation to the dimension. It means that the location-
specific icons on which the solution to the discrimination
lies may be readily replaced in test stimuli that lie close by
on the dimension.

On a more plausibly constrained dimension, each location-
specific icon would be present for a fixed number of
adjacent stimuli (6 in the current experiment) so that,
moving across the artificial dimension, the first copy of an
icon to appear would be the first to be replaced, and so on.
Could this subtle difference actually have an effect on the
post-discrimination generalization gradient? The model
proposed in this paper predicted that indeed it would.
Specifically, the model predicts that accuracy should remain
relatively high for a greater range of stimuli along the
dimension, then decline sharply. In terms of the contrasts
used by Livesey (2004), under constrained icon replacement
conditions the curvature of the gradient should be more
pronounced over the full length of the dimension (larger
contrast score over for the stretched contrast) but flatter over
the relatively nearby stimuli (smaller contrast score over the
compressed dimension). This manipulation should have no
effect during training as the training stimuli are too close to
each other on the dimension for any icon position to change
more than once between S; and Sg. The result should
therefore manifest itself only in post-discrimination
generalization across the full range of stimuli. To see why
we might expect this manipulation to have this effect, recall
that in the fixed condition we assume that configurations of
icons play a large part in determining responding. As we
move along the dimension, these configurations are
disrupted as the icons are changed. In previous fixed
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condition stimuli, any of the icon types eligible to change
could change as we moved from one point on the
dimension to the other. In the new, constrained fixed
condition this is not so, and as a consequence some icon
configurations will definitely persist for longer than would
otherwise be expected to be the case. Thus the expectation
is that as we move along the dimension from S+ and away
from S- say, initially the constrained version stimuli will,
on average tend to lose less configurations that have come
into existence in S+ but were not present in S-. Similarly
they will tend to lose configurations that were present in S-
but not in S+. These configurations will, of course, be part
of the basis for discrimination between S+ and S-, and this
process will tend to lead to maintained responding
congruent with that trained to S+ to stimuli containing
them. Then as we move further from S+, the configurations
found in S+ but not in S- must now be replaced, and
responding should fall off rapidly.

Table 2. A possible progression of icons, over a series of
test stimuli, for three positions within the stimulus array,
under fixed conditions with random icon replacement (i), &
fixed conditions with constrained icon replacement (ii).

(1) Position No. (i1) Position No.
1 2 3 1 2 3
1 E J C E J C
5 2 E J C K J C
@ 3 E J H K J H
Z: 4 E J H K J H
2 5 K J J K J H
= 6 K J J K J H
E[7 K |[J L K| P | H
218 [ N[ T [ L N[ P |H
9 N J R N P O

The current experiment tested this prediction. Two very
similar fixed conditions were used, one using a fixed
method with the same random replacement method as
devised by Oakeshott (2002), and one using strict
constraints on icon replacement such that each icon in a
specific location was present for six (and only six) adjacent
stimuli.

Method

Participants and Apparatus 36 undergraduate students
from the University of Cambridge participated in the
experiment. They were randomly allocated into the two
groups ‘Random’ icon replacement and ‘Constrained’ icon
replacement, and did not receive payment for their
participation. Participants were tested individually in a
dimly lit room. The experiment was programmed using
REALDbasic software and run on a Power Macintosh.



Stimuli All stimuli appeared in a rectangular region in the
centre of the computer screen measuring Scm wide by Scm
high, surrounded by a thin white border. Each pattern
consisted of an array of 36 icons, 6 icons wide and 6 icons
high. The composition of each stimulus, in terms of the
number of copies of each icon that it contained, was
determined by its position on the dimension, as shown in
Table 1. For each subject, 24 icons were randomly assigned
a position A to X on the dimension. By way of
counterbalancing the icon distributions, each randomly
ordered set of icons was allocated to one subject from each

group.

For both groups the position of each icon was randomized
on the first trial, but then remained constant for all
subsequent presentations of that stimulus. For any pair of
adjacent stimuli the icons common to both stimuli remained
in a fixed location for both stimuli. In the ‘random
replacement’ condition, the location-specific copy of each
icon to be replaced was chosen randomly from all the icons
of that type present in the stimulus. For the ‘constrained
replacement’ condition, icon replacement was based on the
number of adjacent stimuli for which a particular location-
specific icon was held constant. Once a particular location
in the array was changed, it would change again when (and
only when) another six steps along the dimension had been
calculated. Thus, with the exception of some icons that
appeared in the terminal stimuli 1 and 15, all location-
specific icons appeared for 6 adjacent stimuli.

The icon stimuli were presented on every second trial,
interspersed with filler trials consisting of uniform colored
squares that differed slightly in hue. Two very similar
shades of green were presented during training, S; and Sg,
and a wider array of colors ranging from blue-green to
yellow-green were presented during the transfer test. The
primary purpose of the color trials was to negate any effect
of immediate contrast between patterns that would make the
icon discrimination too easy.

Procedure Participants sat approximately 1m from the
computer screen and were given verbal and written
instructions pertaining to the training and test phases and the
responses they would be required to make. For every trial,
participants were required to make either a left or right key
response by pressing either ‘x” or ‘.” on the keyboard.
During training, feedback appeared after every response in
the form of the words “correct” or “wrong” flashed in the
centre of the screen. During the test phase no feedback was
given. If no response was given within 4 seconds of the
stimulus appearing then the trial timed out and the message
“no response” appeared on the screen.

As in Table 1, the stimuli at positions 7 and 9 were used as
St and Sg respectively during the training phase. Trial order
was randomized within eight blocks of 12 trials, containing
three presentations each of Sy and Sy and three each of the

corresponding filler trials, with the condition that trials
alternate between icon stimuli and filler stimuli. During the
transfer test, all 15 stimulus positions were tested, with an
equal number of interleaved color filler trials. Trial order
was randomized within blocks of 30 trials, containing one
trial of each of the 15 transfer stimuli and 15 filler stimuli.
In total there were 180 trials organized in six blocks.

Results and Discussion

4 people were excluded from the results as they failed to
acquire the task during training, leaving each group with n
= 16 for the purposes of analysis.

During training, both groups acquired the discrimination at
roughly the same rate, though accuracy appeared to be
slightly higher over all for the constrained group. A
repeated measures anova showed a significant effect of
training block (F = 15.4, p<.001), reflecting the linear
increase in accuracy in both groups, while there was a
marginal effect of group (F = 3.4, p = 0.075) and no
interaction (F < 1, p>.05).
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Figure 5. Mean test scores for groups Constrained and
Random plotted as a function of distance from the nearest
training stimulus (S).

The post-discrimination generalization gradients for both
groups are shown in Figure 5. As in training, the overall
level of accuracy appears to be higher for the constrained
group than the random group, but again it was not reliable
(F = 3.464, p = .073). Predictably, there was a main effect
of stimulus (F = 5.145, p < .05), though the interaction
between stimulus and group did not reach significance (F =
1.835, p > .05). Following the analysis used by Livesey
(2004), quadratic trend contrasts were calculated over two
sets of three stimuli, in order to test for non-linearity over a
compressed range (points 0, 2, and 4) and over a stretched
range (points 0, 3, and 6). These test the model prediction
that the shape of the post-discrimination generalization
gradient will be subtly different in each group. Over the
compressed contrast, the difference between groups was in
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the predicted direction (less negative for the constrained
group), though it was not statistically significant (t = 0.67, p
> .05). Over the stretched contrast, the difference was once
again in the predicted direction (more negative for the
constrained group) and reached one-tailed significance (t =
1.682, p = .05). An interaction between group and contrast
type was also significant (F =4.109, p <.05, 1-tailed).

In addition, it appears that a level of accuracy significantly
above chance was retained for a much larger range of test
stimuli in the constrained group than the random group. All
test scores along the constrained dimension were
significantly above chance except for stimuli 6 steps from S
(t=1.532, p > .05 for position 6, next lowest t = 4.708, p <
.001). In contrast, in the random group only positions 0, 1,
and 2 steps from S were significantly above chance (lowest t
=2.297, p<.05). This may go some way to explaining the
unexpected dip in accuracy at position 3 — since positions 3
to 6 differ significantly neither from chance, nor each other,
it may be little more than random variation.
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Figure 6. Model predictions fitted to overall accuracy for
groups random and constrained respectively.

The experimental results appear to conform to the
predictions of the model quite well, the fit is shown in
Figure 6. There is some rather pronounced deviation in the
random group, particularly at 3 steps from the training
stimulus. However, as mentioned, accuracy for points
further along the dimension does not increase significantly
and it is likely that this is no more than random variation.

Conclusions

The model presented in this paper can account both for the
effect of spatial variation in icon placement on the post-
discrimination gradients obtained, and for variations in the
degree to which our artificial dimension approximates a real
one. This makes it the most robust model of its type.
Furthermore the model avoids the assumptions of
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dimensionality on which previous models of peak shift
have relied. Instead the icons are treated as location-
specific stimulus components in a system of representation
that allows dimensional qualities to emerge from a
seemingly random pattern of activation of second-layer
units. This system is an implementation of the elemental
representation described by McLaren and Mackintosh
(2000; 2002), and demonstrates that some contemporary
elemental learning models are powerful enough to make
very subtle and accurate predictions about generalization in
human categorization.
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