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ABSTRACT OF THE DISSERTATION

Time-Varying Preferences, Risk Premia, and Tobin Constraints

By

David Licata

Doctor of Philosophy in Economics
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The first chapter of my thesis explores monetary policy in a New Keynesian model with

Markov-switching risk aversion. The second considers the implications for the macroeco-

nomic and financial properties of an RBC model of the presence of habit formation. The

third examines the result of adding the “Tobin constraint” that shares equal the capital stock

to a benchmark RBC mdoel. The underlying theme of these endeavors is rendering macroe-

conomic models more realistic via the introduction of time-varying preferences, non-linear

modelling, and financial frictions.
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Chapter 1

Monetary Policy in a New Keynesian

model with Markov-Switching Risk

Aversion

1.1 Introduction

How should monetary policy respond to changes in risk aversion? Motivated by empirical

evidence of significant time-variation in risk premia, this paper employs a Markov-switching

model (MSM) – a dynamic model in which the parameters are random and follow a Markov

chain – in order to represent time-varying risk aversion. In particular, I replace the standard

preference shock typically introduced in the general equilibrium environment underlying the

“benchmark” New Keynesian model1 with a Markov-switching “shock” to the representa-

tive agent’s CRRA risk aversion coefficient. This more generalized assumption then leads

to a Markov-switching linearized model that nests the benchmark linearized New Keyne-

1See Woodford [66] Chapters 2, 3, and 4 for a detailed discussion of this model.
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sian model as a special case. Given the random variation in risk aversion induced by this

specification and the resulting nonlinearity of the model, it is not obvious how monetary

policy should be conducted. I consider two different specifications. First, I consider optimal

Taylor-type rules in which the reaction coefficients are potentially regime-dependent. These

rules are analyzed using the methodology introduced by Davig and Leeper [21].

Second, I consider optimal monetary policy with commitment in this model. In this context,

the multiplicative nature of the shock to risk aversion has the property of breaking the

well-known certainty equivalence principle of optimal control – namely, that in a standard

linear-quadratic framework, the optimal policy function in the presence of mean zero additive

shocks is identical to the optimal policy function in the absence of such shocks. Therefore, in

my model the optimal policy function depends on the state of the Markov chain. Following

Svensson and Williams [56], I solve for the regime-dependent optimal policy function in

this model. Finally, in order to quantify the gains from commitment, I explore the optimal

discretionary equilibrium, and the expected loss under this equilibrium is compared with

that under the optimal policy.

1.1.1 Related Literature

Outside the context of optimal policy studies, Markov-switching macroeconomic models

have been investigated by many authors in recent years. Of special importance for my

analysis of simple rules below is the contribution o Davig and Leeper [21], who develop a

tractable method for solving and analyzing determinacy of forward-looking rational expec-

tations MSMs (see Section 3 below). 2

Optimal control of MSMs has been a subject of intensive research in the control theory

literature, where these models are known as Markov jump linear systems.3 In particular, the

2Other notable contributions to this literature include [12] and [26].
3Prominent early contributions to this literature include [41] (for the continuous-time case) and [17] (for
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solution of Markov jump linear-quadratic (MJLQ) control problems via a system of coupled

algebraic Riccati equations (CARE) has become a standard approach. One reason for the

popularity of such systems is their ability to introduce nonlinearity into an otherwise linear

model in a manageable way. Indeed, it’s well-established in this literature that certain classes

of nonlinear systems are very well approximated by Markov jump linear systems.4

Aoki [5] and Chow [18] were pioneers in the attempt to apply these ideas to optimal policy

problems in economic models. More recently Zampolli [67] formulated an MJLQ prob-

lem in an open-economy MSM with two regimes representing “bubble” or “no bubble”

in the exchange rate. Since Zampolli’s model was backward-looking, application of recur-

sive control-theoretic algorithms to solve for the optimal policy was relatively straightfor-

ward. However, most macroeconomic models currently used for policy analysis, notably New

Keynesian/DSGE models, employ forward-looking variables. This “gap” between recursive

control-theoretic models and forward-looking macroeconomic models was bridged by Svens-

son and Williams [56], who demonstrate how to re-write a general forward-looking MSM

as a recursive MSM, and then solve for the regime-dependent optimal policy function. The

present study combines the optimal policy framework developed by Svensson and Williams

with an analysis of simple rules in order to investigate monetary policy in a New Keynesian

MSM featuring time-varying risk aversion.

The calibration employed in this paper is motivated by empirical evidence of large time-

variation in risk premia.This has been abundantly documented for a wide range of asset

markets and by numerous authors, among them [11], [3], [24], [42], and [48]. Such time-

variation in risk premia is difficult to account for in a model with constant risk aversion .5

the discrete-time case).
4See e.g. [9].
5Of course, endogenous time-variation in local relative risk aversion can introduced into a model via the

external habit preferences employed e.g. by Campbell and Cochrane [15], even when the model’s CRRA risk
aversion coefficient is constant. However, I maintain that exogenous time-variation in the CRRA coefficient
itself is necessary to explain why, for example, risk premia often rise precipitously even when consumption is
relatively high (as in the bursting of the tech bubble in 1999), which would not be predicted by an external
habit specification.
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The model which I present below instead switches stochastically between a high risk aversion

regime and a low risk aversion regime, in order to approximate the exogenous component of

the time-variation in risk premia observed in the data.

1.2 The Model

1.2.1 Microfoundation

Underlying the Markov-switching New Keynesian model summarized by equations (1.26)-

(1.27) below is a general equilibrium problem featuring a representative household and a

continuum of firms, each of which produces a differentiated good (indexed by i ∈ [0, 1]), in

an environment characterized by sluggish price adjustment and monopolistic competition.

The representative household maximizes the following infinite-horizon objective:

Et

∞∑
T=t

βT−t
[
UjT (CT )−

∫ 1

0

ν (hT (i)) di

]
(1.1)

where CT is the household’s aggregate consumption in period T , hT (i) is labor supplied by

the household for the production of good i in period T , and β ∈ (0, 1) is the household’s

subjective discount factor. In order to capture time-variation in risk aversion, the household’s

utility function Ujt(·) depends on the regime jt of the Markov chain in the following way:

Ujt(Ct) =
C

1−σjt
t

1− σjt

Thus, the household’s CRRA risk aversion coefficient takes one of two values, σ1 or σ2, de-

pending on the current regime jt ∈ {1, 2}. The conditional expectation Et in the household’s

objective (1.1) thus represents the expectation over the Markov chain given the information

4



set at time t, as well as the expectation over the productivity shock from firms’ production

functions (see expression (3.13) below). In addition, I choose the following CRRA functional

form for the disutility of labor supply function ν(·):

ν (ht(i)) =
ht(i)

1+φ

1 + φ

where φ > 0 indexes the convexity of the household’s disutility of labor supply, just as σjt > 0

indexes the concavity of the household’s utility of consumption.

Aggregate consumption across goods i follows the Dixit-Stiglitz CES form:

Ct =

[∫ 1

0

cit(i)
θ−1
θ di

] θ
θ−1

(1.2)

where the constant elasticity of substitution θ ∈ (1,∞) indexes the degree of substitutability

between differentiated goods, and thus the degree of market power possessed by each firm i.

The associated aggregate price index is:

Pt =

[∫ 1

0

pt(i)
1−θdi

] 1
1−θ

(1.3)

The household chooses the sequences {Ct} and {ht(i)}, i ∈ [0, 1], to maximize (1.1) subject

to a complete markets intertemporal budget constraint:

Et

∞∑
T=t

PTCT
(1 + iT )T

= Et

∞∑
T=t

∫ 1

0
wT (i)hT (i)di+

∫ 1

0
ΠT (i)di

(1 + iT )T
(1.4)

where wt(i) is the household’s wage for producing good i in period t, and Πt(i) = pt(i)yt(i)−

wt(i)ht(i) is the household’s profit from producing good i (the firm’s profit is allocated to

5



the representative household), and the risk-free nominal interest rate it is determined by the

monetary authority.

And market clearing in this economy implies:

Yt = Ct (1.5)

Household optimization then leads to the well-known Euler condition:

1 + it = β−1

{
Et

[
UC,jt+1(Yt+1)

UC,jt(Yt)

Pt
Pt+1

]}−1

(1.6)

Note, however, that given time t information, we can integrate over the Markov chain ex-

plicitly. For example, if jt = 1, we can write:

1 + it = β−1

{
P11Et

[
UC,1(Yt+1)

UC,1(Yt)

Pt
Pt+1

]
+ P12Et

[
UC,2(Yt+1)

UC,1(Yt)

Pt
Pt+1

]}−1

(1.7)

Log-linearization of expression (1.7) then leads to the following New Keynesian “IS” curve:

yt =

[
P11 + P12

σ2

σ1

]
Etyt+1 − σ−1

1 (it − Etπt+1) (1.8)

and, conversely, if jt = 2 we obtain:

yt =

[
P22 + P21

σ1

σ2

]
Etyt+1 − σ−1

2 (it − Etπt+1) (1.9)

Thus, the linearized IS curve takes a different form in our model than under the standard

formulation without regime-switching.

6



Returning to the supply side of the model, each firm i has a production function given by:

yt(i) = Atf (ht(i)) (1.10)

where in general At is a stationary exogenous technology process.

And for simplicity I choose the Cobb-Douglas form for yt(i):

yt(i) = Atht(i) (1.11)

Further, each firm i faces a demand curve:

yt(i) = Yt

(
pt(i)

Pt

)−θ
(1.12)

where

Yt =

[∫ 1

0

yt(j)
θ−1
θ dj

] θ
θ−1

(1.13)

gives aggregate output and Pt is the aggregate price index given by (1.3) above.

Each period, only a measure 1− α (α ∈ [0, 1]) of firms are able to set their prices optimally,

while the remaining α must hold their prices fixed, following the convention of [14]. This

introduces nominal rigidity in the form of sluggish price adjustment into the model. Since all

firms face the same demand curve (1.12) and there are no idiosyncratic shocks, all firms that

are allowed to set their price optimally in period t will choose the same profit-maximizing

price p∗t . In particular, such firms will choose their price to maximize the expected present

7



value of their future profits:

Ei
t

{
∞∑
T=t

αT−tQt,T

[
Πi
T (pt(i))

]}
(1.14)

where Qt,T = βT−t Pt
PT

UC,jT (YT )

UC,jt (Yt)
is the relevant stochastic discount factor, Πi

T (·) is firm i’s

profit function, and firms further discount profits at rate α, since at time t they can expect

the optimal price chosen at time t to still be in effect at time T with probability αT−t.

Thus the firm chooses {pt(i)} to maximize the expected sequence of profits (1.14) given

{YT , PT , wT (j), AT , Qt,T}for T ≥ t and i ∈ [0, 1]. Optimization then generates the following

first-order condition:

Ei
t


∞∑
T=t

(αβ)T−tUC,jT (YT )YTP
θ
T[

p∗t (i)− µPT sjT
(
YT

(
p∗t (i)

PT

)−θ
, YT ; ξ̃T

)]
 = 0 (1.15)

where µ = θ
θ−1

is firms’ (common) profit-maximizing markup and sjT (·) is firm i’s real

marginal cost function in period T ≥ t, given the optimal price p∗t (i), set in period t.

To understand the form of the firm’s real marginal cost function, first note that, in addition to

the Euler condition (1.6) above, household optimization implies the following intratemporal

condition:

νh (ht(i))

UC,jt (Ct)
=
wt(i)

Pt
(1.16)

that is, the real wage for producing good i must equal the household’s marginal rate of

substitution between consumption and labor for good i at each time t.

This condition, combined with the production function (3.13) above, implies that firm i’s

8



real marginal cost in period t is given by:

sjt

(
yt(i), Yt; ξ̃t

)
=
νh

(
f−1

(
yt(i)
At

))
UC,jt (Yt)At

Ψ

(
yt(i)

At

)
(1.17)

where

Ψ(x) ≡ 1

f ′ (f−1(x))

and ξ̃t is the vector of exogenous disturbances, which in our model is simply the technology

disturbance (At − E(At)).

Substituting from (1.12) above, we can then write firm i’s real marginal cost as a function

of the price chosen by firm i:

sjt

(
Yt

(
pt(i)

Pt

)−θ
, Yt; ξ̃t

)
=

νh

(
f−1

(
Yt

(
pt(i)
Pt

)−θ
A

))
UC,jt (Yt)At

Ψ

Yt
(
pt(i)
Pt

)−θ
At



Since each period 1− α of firms choose the profit-maximizing price p∗t and the remaining α

must keep their prices fixed, the Dixit-Stiglitz aggregate price index evolves according to the

law of motion:

Pt =
[
α (Pt−1)1−θ + (1− α) (p∗t )

1−θ
] 1

1−θ
(1.18)

9



From a log-linear approximation of the FOC (1.15) above, one then obtains:

p̂∗t = (1− αβ)Et

∞∑
T=t

(αβ)T−t [ŝT + pT ] (1.19)

where the circumflex denotes log deviations from the steady state, and pt is the log-linearized

aggregated price index Pt. Note that the stochastic discount factors present in expression

(1.15) have been differenced out following the linearization.

Quasi-differencing of (1.19) then yields:

p̂∗t = (1− αβ) [ŝt + pt] + (αβ)Etp̂
∗
t+1

Furthermore, from a log-linearization of the law of motion (1.18) we have:

p̂∗t =
1

1− α
pt −

α

1− α
pt−1

Substituting this definition for p̂∗t and defining πt = pt − pt−1 we obtain:

πt = βEtπt+1 + ζ(ŝt) (1.20)

where

ζ =
(1− α)(1− αβ)

α
> 0

This expression gives us the New Keynesian Phillips curve in terms of the real marginal cost

“gap” ŝt. Note that since the linearized pricing condition (1.19) does not depend explicitly

on σjt , the marginal cost Phillips curve takes the same form as in the standard model without

10



regime-switching.

I further assume that the technology process At is such that log-linearization leads to the

simple AR(1) form:

at = ρaat−1 + εt (1.21)

with εt an i.i.d. mean zero random variable.

Given our parametric assumption for the utility and disutility functions, the production

function, and the technology process, we can use the pricing condition (1.15) above to obtain

the following log-linearized expression for the flexible price – or “natural” – level of output

ynt :

ynt =

(
1 + φ

σjt + φ

)
at (1.22)

Now we can define the output gap:

xt = yt − ynt (1.23)

Log-linearization of the real marginal cost function (1.17) then yields the expression:

ŝt = (σjt + φ)xt

Now we can rewrite the Phillips curve (1.20) above in terms of the output gap:

πt = βEtπt+1 + κjt(xt) + et (1.24)

11



where

κjt = (σjt + φ)
(1− α)(1− αβ)

α
> 0

and an AR(1) markup shock et is added following standard practice. Note that once the

Phillips curve is expressed in terms of the output gap, the slope κjt does now depend on σjt

and thus on the current regime jt.

Furthermore, using expressions (1.21), (1.22), and (1.23) above we can now rewrite the IS

curve (1.8)-(1.9) in terms of the output gap as well:

xt = γjtEtxt+1 − σ−1
jt

(it − Etπt+1) + χjtat (1.25)

where

γ1 =

[
P11 + P12

σ2

σ1

]
, γ2 =

[
P22 + P21

σ1

σ2

]

and

χjt = (ρaγjt − 1)

(
1 + φ

σjt + φ

)

Equations (1.24) and (1.25) thus define a regime-switching New Keynesian model with two

endogenous state variable, πt and xt, two exogenous AR(1) variables, et and at, and the

policymaker’s control variable, it.
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1.2.2 Statement and Calibration of the Model

Thus, we have the following linearized New Keynesian MSM:

πt = βEtπt+1 + κjt(xt) + et (1.26)

xt = γjtEtxt+1 − σ−1
jt

(it − Etπt+1) + χjtat (1.27)

jt ∈ {1, 2} indexes the regime at time t, σjt is the household’s CRRA risk aversion coefficient,

φ is the disutility of labor supply coefficient, β is the household’s discount factor, and α is

the probability that a given firm will not be able to set its price optimally in a given period,

and κjt , γjt , and χjt are as defined just above. The productivity shock at and the markup

shock et follow AR(1) processes with autoregressive parameters ρa and ρe, respectively.

The model’s only truly Markov-switching “deep parameter” is the risk aversion coefficient

σjt . However, since the Phillips curve slope parameter κjt is a function of σjt , γjt is a function

of σjt as well as the elements of the Markov matrix defined by equation (1.28) below, and

χjt is a function of σjt and γjt , these three model parameters are also Markov-switching in

practice. See Appendix A for further details.

Following [44], I choose the following values for the model’s constant parameters: α = 2/3,

β = 0.99, φ = 1.7, ρa = 0.7, ρe = 0.35. For the CRRA risk aversion coefficient, I choose

σ1 = 1 and σ2 = 3, in order to produce significant time-variation in risk aversion without

straying too far from the steady state. A very similar Markov-switching New Keynesian

model has been considered by [57].
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The risk aversion coefficient follows a two-regime Markov chain with the following transition

matrix:

P =

 P11 P12

P21 P22

 =

 0.95 0.05

0.22 0.78

 (1.28)

where the transition probabilities for the low (regime 1) and high (regime 2) risk aversion

regimes are matched, respectively, to the quarterly expansion and recession transition prob-

abilities for U.S. data estimated by [16]. This calibration leads to time-variation in risk

aversion at a frequency that on average matches the frequency of the U.S. business cycle.

This results in asymmetric regime-switching, with periods of low risk aversion lasting longer

on average than periods of high risk aversion.

1.3 Simple Rules

Taylor [60] found that historical U.S. monetary policy could be discribed by a simple reaction

function of the form:

it = ī+ απ (πt − π∗) + αxxt + εt (1.29)

where it is the central bank’s policy rate, ī is the long-run policy rate, πt is inflation, π∗ is

the central bank’s inflation target, x is output, and εt is a random variable.6 Taylor used

1.29 with values απ = 1.5 and αx = 0.5 or 1 to analyze Federal Reserve behavior over several

eras since 1960.

In this spirit, in my setting I introduce a simple Markov-switching monetary policy rule in

6it,πt, and xt are in absolute values in Taylor’s analysis, but represent log-deviations from the steady
state in the rest of this paper.
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my setting, following [21]

it = αjt,ππt + αjt,xxt (1.30)

where jt ∈ {1, 2} indexes the regime at time t. Though strictly sub-optimal due to their

lack of history-dependence, such rules have been widely studied owing to their simplicity

and capacity to approximate the behavior of actual central banks, the most notable such

case being the Taylor rule for US data: α1,π = α2,π = 1.5, α1,x = α2,x = 0.125. In Section

5.4 below I consider two special cases of simple rules and then conduct a grid search for

αi,y ∈ [0, 3] in order to determine the optimal such rule in this set.

In order to analyze the Markov-switching NK model under these two simple rules, I integrate

over the distribution of the Markov chain according to the formulation of [21]:

xit = γiPi1Etx1t+1 + γiPi2Etx2t+1 (1.31)

−σ−1
i ((αi,ππit + αi,xxit)− (Pi1Etπ1t+1 + Pi2Etπ2t+1)) + χiat

πit = β(Pi1Etπ1t+1 + Pi2Etπ2t+1) + κi(xit) + et (1.32)

where πit and xit represent inflation and the output gap when the regime jt = i ∈ {1, 2} and

I substitute the monetary policy rule (1.30) into the New Keynesian IS curve (1.27). One

can then define the expectational errors:

ηx1t+1 = x1t+1 − Etx1t+1 ηx2t+1 = x2t+1 − Etx2t+1

ηπ1t+1 = π1t+1 − Etπ1t+1 ηπ2t+1 = π2t+1 − Etπ2t+1
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Substituting these four expressions into the four equations defined by (1.31) and (1.32) for

i ∈ {1, 2}, one can write the resulting 4x1 system in the form:

AYt = BYt−1 + Aηt + Cut

where

Yt =



x1t

x2t

π1t

π2t


, ηt =



ηx1t

ηx2t

ηπ1t

ηπ2t


, ut =

 at

et



Having converted the Markov-switching system to a linear forward-looking rational expecta-

tions model, standard solution methods for such systems can then be employed.7 In partic-

ular, if all of the generalized eigenvalues of (B,A) lie outside the unit circle, then a bounded

solution to the system (1.31)-(1.32) exists that is unique within the class of solutions taking

the minimum state variable (MSV) form:8

Yt = Mut (1.33)

Having solved the model for given simple rule coefficients, one can then obtain the expected

loss under that solution using the loss function (1.38) with λi = 0. First note that in order

for the timelessly optimal policy to be preferred, I need a loss criterion that is independent

of the state of the economy at the initial period in which policy is chosen – period t in

expression (1.37) above. To this end, I require that the period t state vector be set to the

7See e.g. [25] Chapter 10, Appendix 2
8See [50].
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value that would be expected at an arbitrary period prior to period t, namely, zero – see

[66] Chapter 7, Section 3.9 With this constraint, the period t+ τ conditional expectation of

any function of πit+τ and xit+τ , i ∈ {1, 2}, is equal to the unconditional expectation for all

τ ≥ 0. For example:

Et(πit+τ ) = E(πit+τ ) = 0

Et(xit+τ ) = E(xit+τ ) = 0

∀τ ≥ 0, i ∈ {1, 2}

In this case, the discounted infinite-horizon loss function converges to:

Et

∞∑
τ=0

δτLt+τ = E
∞∑
τ=0

δτLt+τ =
∞∑
τ=0

δτE(Lt+τ ) =
1

1− δ
E(Lt)

where the unconditional expected period loss E(Lt) is given by:

E(Lt) = P̄1

[
E(π2

1t) + λxE(x2
1t)
]

+ P̄2

[
E(π2

2t) + λxE(x2
2t)
]

=
[
P̄1σ

2
π1 + P̄2σ

2
π2

]
+ λx

[
P̄1σ

2
x1 + P̄2σ

2
x2

]
(1.34)

where P̄1 and P̄2 are the unconditional (stationary) probabilities of regimes 1 and 2 under

the Markov chain. Thus the unconditional expected period loss (1.34) is equivalent (up to

proportionality constant 1
1−δ ) to the period t conditional expectation of the infinite horizon

loss function (1.37), so long as the period t state vector equals zero. Since σ2
π1, σ2

π2, σ2
x1, and

9In the Markov-switching case, timeless policy also requires that the Markov chain follow its stationary
distribution in period t, since this is the regime that is expected at an arbitrary period prior to period t.
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σ2
x2 can be obtained analytically from the solution (1.33) above, (1.34) can readily be used

as a criterion for ranking alternative simple rules in terms of expected loss.

1.4 Optimal Policy

Following [56], I first note that the two equation Markov-switching model (1.26)-(1.27) can

be represented in matrix form as follows:

Xt+1 = A11jt+1Xt + A12jt+1xt +B1jt+1it + Cjt+1εt+1 (1.35)

EtHjt+1xt = A21jtXt + A22jtxt +B2jtit (1.36)

where jt ∈ {1, 2} indexes the regime at time t, xt is a vector of forward-looking variables

(πt and xt in our case), it is a vector of control variables (it in our case), and Xt is a vector

of predetermined variables (et and at in our case). The regime-dependent matrices A11jt ,

A12jt , B1jt , Cjt , Hjt , A21jt , A22jt , and B2jt contain the model parameters, with the regimes

switching according to the transition matrix (1.28).

The policymaker’s infinite-horizon problem is:

min
{it+τ}τ≥0

Et

∞∑
τ=0

δτLt+τ (1.37)

where

Lt = π2
t + λxx

2
t + λii

2
t (1.38)
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subject to (1.35) and (1.36). This definition nests both a standard loss function with no

interest rate penalty (λi = 0), as well as a loss function that penalizes interest rate variation

(λi > 0). And, following Woodford, I employ a weight on the output gap that is welfare-based

in a constant-coefficient version of our model with σ1 = σ2 = E(σ):

λx =
E(κ)

θ

with the Dixit-Stiglitz CES parameter θ = 7.88 and κ as defined above.

“Microfounded” reasoning also suggests that the policymaker should discount losses at the

same rate as the representative household discounts utility, thus I use δ = 0.99 (although

the qualitative result isn’t sensitive to this choice).

This forward-looking system can then be reformulated using the saddlepoint recursive method

of [47]. In this approach, the policymaker’s “dual” saddlepoint problem becomes:

max
{γt+τ}τ≥0

min
{xt+τ ,it+τ}τ≥0

Et

∞∑
τ=0

δτ L̃t+τ

where

L̃t+τ ≡

 X̃t+τ

ĩt+τ


′

W̃jt+τ

 X̃t+τ

ĩt+τ

 (1.39)

with W̃jt appropriately defined, and subject to the fully recursive system:

X̃t+τ+1 = Ãjt+τ+1X̃t+τ + B̃jt+τ+1 ĩt+τ + C̃jt+τ+1 + εt+τ+1 (1.40)
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with Ãjt , B̃jt , and C̃jt appropriately defined and with the expanded state and control vectors,

X̃t =

 Xt

Ξt−1

 , ĩt ≡


xt

it

γt



where Ξt−1 and γt are the Lagrange multipliers for the forward looking variables in peri-

ods t − 1 and t interpreted as state and control variables, respectively. The state variable

Ξt−1recursively encodes the history dependence of optimal policy. For details see [56].

Now that the system is in recursive form, I can employ dynamic programming methods to

obtain the optimal policy. Briefly, I can write the Bellman equation:

X̃ ′tṼtX̃t + w̃t =

max
γt

min
xt,it

{
X̃ ′tQtX̃t + 2X̃ ′tNt̃it + ĩ′tRt̃it + δEt

(
X̃ ′t+1Ṽt+1X̃t+1 + w̃t+1

)}

where the matrix Ṽt and the scalar w̃t are components of the value function, and the matrices

Qt, Nt, and Rt result from the partition:

W̃t =

 Qt Nt

N ′t Rt



of the weighting matrix W̃t from the loss function (1.39) of the saddlepoint problem.
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Optimization then leads to a system of coupled algebraic Riccati equations (CARE):

Fj ≡ −J−1
j Kj

Jj ≡ Rj + δ

n∑
k=1

PjkB̃
′
kṼkB̃k

Kj ≡ N ′j + δ
n∑
k=1

PjkB̃
′
kṼkÃk

Ṽj = Qj + δ
n∑
k=1

PjkÃ
′
kṼkÃk −K ′jJ−1

j Kj (1.41)

where j and k ∈ {1, 2} index regimes as above, n is the number of regimes (2 in our case)

, Pjk is the probability of shifting from regime j to regime k (an element of the transition

matrix (1.28) above), and the matrices Jt and Kt are given by:

Jt ≡ Rt + δEtB̃
′
t+1Ṽt+1B̃t+1

Kt ≡ N ′t + δEtB̃
′
t+1Ṽt+1Ãt+1

The CARE system (1.41) can then be uncoupled and a forward iteration procedure employed

which converges asymptotically to the stationary values Fj, Kj, Jj, and Ṽj which solve the

CARE system. This yields the optimal policy function Fj for each of the n regimes. For

details of this method see [22].
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1.5 Results

1.5.1 Simple Rules

Using the welfare-based criterion (1.34) derived in Section 3 above, the expected loss for the

constant coefficient Taylor rule is 0.92, while the expected loss under the optimal equilibrium

is 0.23, indicating that the Taylor rule leaves significant room for improvement. In order

to find the optimal simple rule within a constrained region, I conduct a grid search over

αi,y ∈ [0, 3]. The resulting constrained optimal coefficients take the boundary values:

α1,π = 3.00 α1,x = 0.00 (1.42)

α2,π = 3.00 α2,x = 0.00

Although the responses are constant across regimes to within the precision of the grid (0.01),

in the case of inflation this is likely due to the upper bound constraint binding rather than

to global optimality of a constant coefficient simple rule.

1.5.2 Simple Rules: Impulse-Response Plots

Figure 1 depicts the regime-dependent impulse-responses of inflation, the output gap, and

the interest rate to one standard deviation innovations in the supply and demand shocks

(separately) for the optimal simple rule (1.42). This plot makes clear that, unlike for the

timelessly optimal policy under λi = 0 depicted in Figure 2, the constrained-optimal simple

rule is unable to perfectly offset the demand shock. This observation confirms the intuition

that a simple Taylor-type rule responding only to current inflation and the current output

gap is not able to implement the timelessly optimal equilibrium.
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Figure 1.1: Impulse-Response, Constrained-Optimal Simple Rule
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1.5.3 Optimal Policy: Loss Function without Interest Rate Penalty

For the case λi = 0, I find that with no interest rate penalty the optimal response of the

interest rate to the Lagrange multipliers associated with the inflation and the output gap

constraints is larger in the high risk aversion regime (regime 2) than in the low risk aversion

regime (regime 1). Using Φj,α to denote the optimal response of the interest rate to the

period t − 1 Lagrange multiplier Ξt−1,α (discussed in Section 4 above) associated with the

forward-looking constraint for state variable α in regime j, I find the following values:

Φ1,π = 0.468 Φ1,x = 5.259

Φ2,π = 1.383 Φ2,x = 5.610

Intuitively, a larger change in the interest rate is required to persuade agents to deviate

from intertemporal smoothing behavior in the high risk-aversion regime, just as a higher

risk premium is required to persuade agents to deviate from smoothing across states of the

world. In order to gain a clearer picture of the effect of σjt switching from σ1 to σ2 on the

interaction between interest rates and the representative household’s optimal intertemporal

consumption decision, we can write the household’s Euler condition explicitly by substituting

the parametric form of the household’s utility function into condition (1.6) from Appendix

A below. First, for simplicity consider the constant-coefficient case σ1 = σ2 = σ̄, then the

Euler condition can be written:

β (1 + it)Et

[(
Ct
Ct+1

)σ̄ (
Pt
Pt+1

)]
= 1 (1.43)

It’s clear from this expression that, by increasing the sensitivity of marginal utility to changes
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in consumption, increased σ̄ reduces the sensitivity of the optimal consumption path to

interest rate changes. For example, if Ct > Ct+1, σ̄ > 1 amplifies the “effective consumption

change”
(

Ct
Ct+1

)σ̄
, requiring a greater reduction in it in order for the condition to hold relative

to σ̄ = 1 (and conversely, σ̄ < 1 damps the effective consumption change). In the limit

σ̄ →∞, perfect consumption smoothing regardless of interest rate movements obtains.

In the Markov-switching case, the form of the Euler condition is analogous, but we must

now integrate over the Markov chain. If jt = 1, we have:

β (1 + it)Et

{[
P11

(
Ct
Ct+1

)σ1
+ P12

(Ct)
σ1

(Ct+1)σ2

](
Pt
Pt+1

)}
= 1 (1.44)

Period t marginal utility depends only on σ1. However, period t+1 marginal utility depends

on both σ1 and σ2 with weights P11 and P12. Nevertheless, since P11 >> P12, the overall result

is an Euler condition very similar to a constant-coefficient Euler condition with σ̄ = σ1, but

with the period t+ 1 marginal utility slightly moderated in the direction of σ2. Again, since

P22 >> P21, the reverse obtains for jt = 2. So the intuition from the constant-coefficient

condition (1.43) that when σ̄ increases from σ1 to σ2, greater interest rate movements are

required to justify deviations from consumption smoothing broadly carries over to the case

when σjt switches from σ1 to σ2 in the Markov-switching condition (1.44), (and it’s mirror

image for the case jt = 2) . This intuition is also captured in the linearized form (1.27)

above. Thus, in the MSM defined by (1.26)-(1.27)-(1.28), and with λi = 0, the monetary

authority must respond more aggressively to the Lagrange multipliers associated with both

the inflation and output gap constrains in regime 2, in order to give more risk averse agents

sufficient incentive to substitute consumption from the future to the present (or vice versa).

25



Table 1.1: Optimal Policy Coefficients for Various λi Values

λi Φ1,π Φ2,π Φ1,x Φ2,x

0 0.468 1.383 5.259 5.610
0.02 0.350 0.577 3.728 2.144
0.04 0.286 0.385 2.953 1.384
0.077 0.219 0.246 2.176 0.857
0.1 0.192 0.203 1.882 0.698
0.2 0.129 0.118 1.208 0.393

1.5.4 Optimal Policy: Loss Function with Interest Rate Penalty

Inclusion of a non-zero interest rate penalty λi in the loss function (1.38) may be justified in

various ways. [66] Chapter 6, Section 4 shows that inclusion of such a term can be optimal if

deviations from the Friedman rule (it = iMt = 0, where iMt is the nominal interest rate paid by

money) are costly in terms of welfare, or in the presence of a zero lower-bound constraint.10

Such a penalty may also be justified by the empirical fact that in practice central banker’s

adjust their target rates only slowly, due perhaps to the difficulty of achieving consensus

for a large interest rate movement and also out of a desire to avoid “frightening” market

participants. Interestingly, if such a loss function includes a sufficiently large interest rate

penalty, the qualitative result reported above for the welfare-based loss function is reversed:

the optimal response to the inflation and output gap multipliers is lower during the high risk

aversion regime compared to the low risk aversion regime. This result obtains because the

extra interest rate movement required to respond to inflation or the output gap when agents

are more risk averse becomes too “expensive” in terms of interest rate variation.

Table 1 presents the optimal regime-dependent policy response for various values of λi. The

clear trend is that as λi increases, the optimal policy response to both the inflation and output

gap multipliers becomes less aggressive in regime 2 relative to regime 1 (for the reason just

discussed). Note also that since λx is much smaller than one, the optimal response to the

output gap multiplier switches to a stronger response in regime 1 starting with the second

10I also adopt Woodford’s calibration λi = 0.077 as my baseline value for this parameter.
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row of Table 1 (λi = 0.02), while the response to the inflation multiplier (which implicitly

has weight one in the loss function) doesn’t switch until the sixth row (λi = 0.2).

1.5.5 Optimal Policy: Impulse-Response Plots

Figures 2 and 3 depict the regime-dependent impulse-responses of inflation, the output gap,

and the interest rate to one standard deviation innovations in the supply and demand shocks

(separately), both for the loss function with no interest rate penalty and for the case λi =

0.077. Two broad trends emerge from these plots. First, with no interest rate penalty,

the demand shock is perfectly offset to within machine precision. In contrast, for the case

λi = 0.077, the the demand shock is not perfectly offset, since the interest rate penalty

constrains policy from responding sufficiently aggressively to do so. Second, the magnitude

of deviations of both inflation and output are significantly larger when the interest rate

penalty is added to the loss function – especially for the demand shock – since the interest

rate response to both of these variables is smaller in this case.

1.5.6 Gains from Commitment

In order to quantify the gains from commitment, I first consider the “implicit simple rule”

under the timelessly optimal policy reported in Section 5.1 above (with λi = 0). That is,

after simulating a sample under the optimal equilibrium, I run an OLS regression of the

form (1.30). The average estimated parameter values over a number of such Monte Carlo

simulations provides the response of the interest rate to current inflation and the current

output gap implicit in the conduct of the optimal policy with commitment over time. Thus

this rule, though misspecified, is what an econometrician would infer about the response of

the interest rate to inflation and the output gap from the data generated by the model. The
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Figure 1.2: Impulse-Response, No Interest Rate Penalty
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Figure 1.3: Impulse-Response, Interest Rate Penalty (λi = 0.077)
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parameter values that result from this procedure are:

α1,π = 0.576 α1,x = 0.453 (1.45)

α2,π = 1.838 α2,x = 1.321

Note that the “implicit” interest rate response to both inflation and the output gap is

more aggressive in the high risk aversion regime compared to the low risk aversion regime,

consistent with the qualitative result found under optimal policy with small or no interest

rate penalty. However, these parameters result in indeterminacy of the resulting equilibrium,

and therefore do not result in an expected loss that can be compared with that under optimal

policy.

Therefore, I instead compare the expected loss under optimal policy with commitment with

that under the optimal discretionary equilibrium. Specifically, if I minimize the objective

(1.37) above withλi = 0 subject to the Phillips curve constraint (1.26), but then reoptimize

each period (or equivalently, take future expectations as given), I obtain the following well-

known first-order condition for each time t:

πt = − λx
κjt
xt (1.46)

Combining this condition with the Phillips curve (1.26) results in a two-equation Markov-

switching system that defines the optimal discretionary equilibrium. This is the optimal

equilibrium that a discretionary policymaker – one who reoptimizes every period – can

implement. Using the methodology described in Section 3 above, this system can then be

solved and the expected loss can be calculated. The resulting expected loss under discretion

is 0.28. Compared to the expected loss of 0.23 under the optimal policy with commitment,
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Figure 1.4: Impulse-Responses under Optimal Discretionary Equilibrium
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Table 1.2: Expected Loss Under the Optimal Policy Function, Discretion, and Selected
Simple Rules

α1,π α1,x α2,π α2,x E(Lt)

- - - Opt. 0.23
- - - Discr. 0.28

3.00 0.00 3.00 0.00 0.41
1.5 0.125 1.5 0.125 0.92

0.576 0.453 1.838 1.321 Ind.

the optimal discretionary equilibrium thus represents a 22% increase in expected loss.

Table 2 summarizes the results discussed in Sections 5.1 and 5.6.

1.6 Conclusion

I have investigated optimal monetary policy in a New Keynesian model that switches stochas-

tically between a high risk aversion regime and a low risk aversion regime – motivated by

empirical evidence of substantial time-variation in risk premia. In particular, I replaced the

preference shock typically introduced in the general equilibrium environment underlying the

benchmark New Keynesian model with a Markov-switching CRRA risk aversion coefficient.

I first adopted the framework of Davig and Leeper [21] in order to compute the expected

loss under various regime-dependent Taylor-type rules, and found that the optimal such rule

within a grid involves an aggressive inflation response in both regimes. I then employed

the methodology of Svensson and Williams [56] in order to compute the optimal regime-

dependent policy with commitment. Under a loss function with no interest rate penalty, I

found that optimal policy is characterized by a more aggressive response to both inflation

and the output gap in the high risk aversion regime. However, under a loss function that

includes a sufficiently large interest rate penalty, the reverse result may obtain. The intu-

ition for both results lies in the fact that, when agents are more risk averse, a larger change

in the interest rate is required to persuade them to deviate from intertemporal smoothing
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behavior. Finally, I compared the optimal policy with commitment to the optimal discre-

tionary equilibrium, and find that the gains from commitment in this model are substantial.

Markov-switching provides a tractable yet powerful methodology for introducing multiplica-

tive uncertainty and nonlinear dynamics into the models currently used for monetary policy

analysis, and there is great future potential in advancing this framework.
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Chapter 2

Macroeconomic Implications of the

Risk Premium in a Real Business

Cycle Model with Habit Formation

2.1 Introduction

The importance of risk premia – and their variation over time – for the dynamics of the

business cycle seems difficult to dispute.1 The countercyclical variation in risk premia that

has frequently been documented for U.S. data2 clearly has implications for macroeconomic

agents. For example, if a negative event causes agents to become more “fearful,” firms may

discount risky returns to investment more strongly, and households may discount returns

to risky asset holdings more strongly, resulting in reduced investment and consumption

(respectively), as in fact one observes during recessions. If in turn the resulting drop in

1One prominent theoretical motivator of this claim is [10], in which the higher risk premium implied
by the presence of intersectoral rigidity in a real business cycle model with habit formation leads to higher
consumption variabilty. In turn, higher consumption variability implies a higher risk premium.

2See e.g. [11], [3], [24], [42], and [48].

34



output renders agents still more fearful, risk premia may rise yet again, causing output to

fall still further. The presence of such a “negative feedback loop” between risk premia and

output may at least partly explain why the U.S. recession of 2007-2009 – which was triggered

by unprecedented (in the post-war record) panic in financial markets, and a precipitous rise

in risk premia – also featured the largest drop in output in the post-war record.3 The present

study finds that a “risk aversion accelerator” effect of this type may indeed be present in

the real business cycle (RBC) model with habit formation.

2.1.1 Agenda and Related Literature

The goal (and contribution) of the present study is to examine the implications – for both

macroeconomic variables and the risk premium – of including external habit formation in a

basic stochastic growth model, using a third-order perturbation solution in order to respect

the nonlinearity of the risk premium. Habit formation refers to a preference specification

in which the standard argument of the CRRA utility function – current consumption – is

instead replaced with the difference between current consumption and an exogenous “habit

stock”:4

U (Ct) =
(Ct −Ht)

1−γ

1− γ
(2.1)

Following standard practice in the DSGE literature, in the model I present in Section 2

below I choose Ht = bCt−1, for b ∈ [0, 1], so that the external habit stock is proportional

3Surveying an international dataset, Reinhart and Rogoff [53] report that the mean real output contraction
following a major financial crisis is 9.3 percent, much deeper than that for a typical recession. Similarly,
in Chapter 3 of the IMF’s April 2009 World Economic Outlook, Kannan et al. [36] find that “recessions
associated with financial crises tend to be unusually severe and their recoveries typically slow.” While there
are many factors that may contribute to this stylized fact, the increase in risk premia almost universally
associated with financial crises seems likely to play at least some role.

4If agents don’t take the habit stock to be exogenous (as in Boldrin et al. [10]), the preference is referred
to as internal habit.
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to to past consumption. This seemingly minor change results in agents’ local relative risk

aversion, which I denote Rt, varying over time – specifically, local relative risk aversion is a

decreasing function of the deviation of current consumption from its habit level:

Rt =
−CtUCC

t

UC
t

=
γCt

Ct − bCt−1

=
γ

1− bCt−1

Ct

(2.2)

Campbell and Cochrane [15] first demonstrated that, in a partial equilibrium consumption-

based asset pricing model, an external habit specification is sufficient to produce large and

time-varying risk premia broadly consistent with U.S. data without assuming an unreason-

ably large CRRA risk aversion coefficient, making it a candidate solution of Mehra and

Prescott’s [51] famous equity premium puzzle. Since then, numerous studies have included

habit formation preferences in New Keynesian DSGE models, including Smets and Wouters

[55] and its many successors. However, such investigations have typically linearized the

model, and ignored its asset pricing implications, leaving unanswered the question of whether

Campbell and Cochrane’s findings carry through in a general equilibrium environment.

Jermann [32] investigated the asset-pricing implications of an RBC model with habit forma-

tion and found that, far from explaining the equity premium as it does in partial equilibrium,

in general equilibrium habit formation (in the absence of capital adjustment costs) makes

agents more desirous to smooth consumption, resulting in a lower risk premium. Lettau and

Uhlig [43] also find that consumption is excessively smooth in an RBC model with habit

formation, while Lettau [43] finds a Sharpe ratio consistent with U.S. data in an RBC model

with habit formation and wage rigidity. However, all three of these papers log-linearize the

model in order to generate consumption data, and those that compute asset prices condition

on this data to do so. This approach is suspect since, as discussed above, it renders the

model effectively risk-neutral. The present study will thus ask whether these results carry

through in a third-order perturbation solution.
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One widely-remarked contributor to the lack of a risk premium often found in general equi-

librium models is the ability of agents to offset negative shocks by adjusting on the labor

margin, as documented by Swanson [59]. Thus, in order to grant the RBC model the best

chance of generating a risk premium, in the sequel I consider a calibration with low Frisch

labor-supply elasticity, in addition to a benchmark calibration with higher elasticity. How-

ever, even under perfectly inelastic labor supply, capital remains as a margin on which agents

can adjust to offset shocks, and Jermann introduces convex adjust costs to capital for this

reason. For simplicity, I rely on the standard timing assumption that capital is fixed a period

in advance, so that agents can’t immediately respond to a negative shock with a change in

the capital stock, as would be the case for the labor margin.

An important contribution relative to the present study is that of Boldrin et al. [10]. Using

a nonlinear parametrized expectations solution method, these authors find an empirically

plausible equity premium in a two-sector RBC model with intersectoral rigidity and internal

habit formation. In a reference one-sector model, they do not find that habit formation

increases excess returns or the Sharpe ratio, both of which I find below. However, their excess

returns are derived from sector-specific claims to the marginal return to capital, whereas I

define excess returns in terms of perpetual claims to the aggregate profitability of a capitalist

firm. Further, the macroeconomic moments reported for their one-sector model with and

without habit formation show that output variability decreases with habit formation. This

is likely due to the fact they only report HP-filtered simulations, since I find the same result

in the HP-filtered simulations for the my baseline RBC model. Their findings therefore

need not be inconsistent with the “risk aversion accelerator” that I discuss in Section 3.

Another possibility is that their internal habit specification may have meaningfully different

implications – for excess returns or for the amplification mechanism just mentioned, – relative

to the external habit specification I employ.

Rouwenhorst, in chapter10 of [20], explores the asset-pricing implications of a standard
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RBC model and finds that the mean return of stocks relative to bonds is too low to be

consistent with the historical equity premium. Rouwenhorst solves the model via value

function iteration, which is a far preferable solution method compared to linearization. Still,

he does not consider habit formation, and it is interesting to explore whether a perturbation

approach gives a similar result. Rudebusch and Swanson [54] find a negligible term premium

in a Smets-Wouters-type DSGE model with habit formation, using a high-order perturbation

solution. However, in an alternative calibration with a higher CRRA coefficient – similar to

the value I adopt below – they a significantly increased (though still too low) term premium.

Swanson et al. [58] examine the first- through sixth-order perturbation solutions of the

stochastic growth model without leisure, and note that the linear policy (consumption)

function is not too bad of an approximation. However, these authors don’t consider habit

formation, and use relatively low curvature.

2.2 The Model

2.2.1 An RBC Model with Habit Formation

I present a decentralized, two-firm description of a basic RBC model5 – as in Chapter 12

of [45] – with the addition of external habit formation. This model is isomorphic to the

more-typically presented planner’s problem , as well as to a one-firm decentralization. I also

deviate from Ljungqvist and Sargent (henceforth L-S) in transferring the return to capital to

the household via equity shares rather than having the capitalist firm write-over its profits

to the household via debt securities.

5The basic RBC model is equivalent to the stochastic growth model with leisure.
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2.2.2 The Household

The household chooses consumption, {Ct}∞t=0, labor supply, {Lt}∞t=0, and shareholdings in

the capitalist firm,
{
NK
t

}∞
t=0

to maximize the infinite-horizon objective:

E0

∞∑
t=0

βt

[
(Ct − bCt−1)1−γ

1− γ
− L1+φ

t

1 + φ

]
(2.3)

subject to the flow budget constraint:

Ct + PK
t N

K
t = WtLt +NK

t−1(DK
t + PK

t ) (2.4)

where Wt is the time-t real wage, PK
t is the time-t price of a perpetual claim to the prof-

itability of the capitalist firm, and DK
t is the time-t dividend issued by the capitalist firm,

and NK
t−1 represents the fraction of the capitalist firm’s profitability that the household holds

a claim to in period t. The household exhibits CRRA utility with respect to the deviation

of consumption from the habit stock, with CRRA coefficient γ, and additively-separable

convex CRRA disutility of labor supply, with CRRA coefficient φ – also equal to the inverse

of elasticity of labor supply with respect to the real wage. b ∈ [0, 1] indexes the degree to

which lagged consumption enters the external habit stock.

Combining the period-t first-order conditions with respect to Ct, Ct+1, and NK
t results in

the intertemporal pricing condition:

PK
t = Et

[
Mt,t+1

(
DK
t+1 + PK

t+1

)]
(2.5)

where Mt,t+j =
[
βj
(

Ct−bCt−1

Ct+j−bCt+j−1

)γ]
is the household’s stochastic discount factor (SDF) from

time t to time t+ j.
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And combining the period-t first-order conditions with respect to Ct and Lt results in an in-

tratemporal condition equating the real wage with the marginal rate of substitution between

consumption and labor:

Wt =
Lφt

(Ct − bCt−1)−γ
(2.6)

2.2.3 The Capitalist Firm

The capitalist firm (or firm of type 2 in the terminology of L-S) undertakes investment

and rents the resulting capital to the production firm (type 1 firm). It chooses {Kt}∞t=0 to

maximize the objective:

E0

∞∑
t=0

M0,t [rtKt − It] (2.7)

subject to the law of motion for capital:

Kt+1 = (1− δ)Kt + It (2.8)

where δ is the rate of depreciation, and rt is the period-t rental rate earned on the capital

stock.

Substituting the the capitalist firm’s constraint into its objective and taking the period-t

first order condition with respect to Kt+1, one obtains the intertemporal condition:

1 = Et [Mt,t+1 (rt+1 + 1− δ)] (2.9)

This well-known optimality condition sets the marginal cost of capital creation equal to the
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expected, discounted (by the SDF) next-period marginal benefit of capital, next-period’s

rental rate as well as the “liquidation value” 1 − δ, which is the marginal amount of “free

capital” that will carry over into next period as a result of time-t capital creation.

2.2.4 The Production Firm

The production firm, or firm of type 1, rents capital from the type 2 firm and labor from the

household, and converts them into output. It chooses {Kt}∞t=0 and {Lt}∞t=0 to maximize the

objective:6

E0

∞∑
t=0

M0,t [Yt − rtKt −WtLt] (2.10)

subject to the Cobb-Douglas production function:

Yt = AtK
α
t L

1−α
t (2.11)

Substituting the constraint (3.13) into the objective and taking the period-t first-order con-

dition with respect to Lt one obtains:

Wt = (1− α)AtK
α
t L
−α
t (2.12)

This condition sets the real wage equal to the marginal product of labor.

Similarly, taking the period-t first-order condition with respect to Kt one obtains a condition

6I could use lower-case {kt}∞t=0 and {lt}∞t=0, to underscore that the production firm chooses how much
capital and labor to rent independent of any supply considerations, and then – after solving the production
firm’s problem – impose clearing of the rental markets: kt = Kt, lt = Lt for all t. However, since these
subtleties are well-known, for simplicity I’ll use Kt and Lt on both sides of the market.
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equating the rental rate with the marginal product of capital:

rt = αAtK
α−1
t L1−α

t (2.13)

Log productivity is exogenous and follows an AR(1) process:

logAt = ρ logAt−1 + σεt (2.14)

with εt a standard normal productivity shock.

2.2.5 General Equilibrium

Market clearing implies:

Yt = Ct + It (2.15)

Although conditions (3.5), (3.19), (3.22), (3.13), (3.14), (3.15), and (3.17) above determine

the path of {Ct}∞t=0, {It}∞t=0, {Kt}∞t=0, {Lt}∞t=0, {rt}∞t=0, {Wt}∞t=0, and{Yt}∞t=0 – given {At}∞t=0

– independently of
{
NK
t

}∞
t=0

, the same is not true of
{
PK
t

}∞
t=0

, since the dividend paid by

the capitalist firm includes the share-sale component of the firm’s profit. However, as was

observed in Section 2.3 above, only NK
t = 1 for all t – which transfers the full profitability of

the capitalist firm to the household – is consistent with general equilibrium, implying that

the share-sale term in the capitalist firm’s dividend equals 0 for all t. From the household’s

42



budget constraint, note that in equilibrium ∀t, NK
t = 1 implies:

Ct = −PK
t

(
NK
t −NK

t−1

)
+DK

t N
K
t−1 +WtLt

↔ Ct = 0 +
(
αAtK

α
t L

1−α
t − It

)
+
(
(1− α)AtK

α
t L

1−α
t

)
↔ Ct = αYt − It + (1− α)Yt

↔ Ct = Yt − It

Thus, my assumption that NK
t is constant and equal to 1 for all t ensures that general

equilibrium holds for each time t. Conversely, any other path for
{
NK
t

}∞
t=0

would imply a

violation of general equilibrium.

2.2.6 Calibration

My baseline calibration is α = 0.3, β = 0.99, δ = 0.025, ρ = 0.979, and σ = 0.0072, all

of which are quite standard and are taken from King and Rebelo [39]. For the habit stock

parameter I choose b = 0.66, which is representative of values typically found in estimations

of DSGE models, following Rudebusch and Swanson [54]. For the CRRA coefficient I choose

γ = 5. This moderately-high degree of curvature amplifies the importance of time-variation

in risk premia for macroeconomic dynamics, and increases the importance of the higher-order

terms in my third-order perturbation solution – while remaining small enough to maintain

some degree of microeconomic plausibility.

Following Levine and Pearlman [44], for the CRRA “convexity of labor-disutility” measure

φ, which is the inverse of the Frisch elasticity of labor supply, I choose 1.7 – close to but a

bit higher than typical macro estimates, though still low compared to micro estimates – as
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my baseline calibration. However, given the interest of this parameter, in Section 3 below I

will explore other values.

I take the empirical excess returns in Table 2.3 below from Kochelakota [40], and the empir-

ical range of Sharpe ratios from Hodges [29].

2.2.7 Defining The Risk Premium

Although the asset price
{
PK
t

}∞
t=0

introduced above is “neutral” in the sense that its presence

doesn’t alter the equilibrium path of the model’s macroeconomic variables – e.g. relative to

a model in which the capitalist firm simply hands over its profit7 to the household – it does

facilitate the construction of a natural measure of the risk premium.

I further include a (neutral) risk-free one-period claim:

PB
t = Et [Mt,t+1(1)] (2.16)

I will then be able to explore the risk premium in the model by constructing the excess

return of the risky capital share over the risk-free rate:

Re
t+1 =

rt+1Kt+1 − It+1 + PK
t+1

PK
t

− 1

PB
t

(2.17)

And the unconditional Sharpe ratio is given by

USR =
E [Re]

σ(Re)
(2.18)

7Since the production firm earns zero profit, the profit of the capitalist firm in each period t is identical
to that of the single firm in a one-firm decentralization of the model just presented. As a result, the dvidend
issued by the single firm – and thus also the resulting excess returns and Sharpe ratios – are identical to
those obtained for the capitalist firm reported here.
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The USR thus “adjusts” the mean excess return for its variation over time. Although not

as widely studied as the equity premium, the Sharpe ratio is a more attractive measure of

the risk premium since the mean excess return is normalized by the riskiness of the return,

thereby making it comparable across risky assets of various kinds, whether constructed in

a model or observed in actual financial markets. However, even under efficient markets,

there need not be a unique Sharpe ratio across all assets since, as noted in the introduction,

the magnitude – and even the sign – of the correct risk premium depends crucially on the

covariance of the risky return with the SDF. Since the dividend returned by the one-period

consumption claims covaries negatively with the SDF, one expects that the Sharpe ratio for

this asset will be positive.

2.2.8 Solution Method

I adopt a perturbation approach to solving the stochastic growth model. Specifically, I

employ the PerturbationAIM algorithm introduced by Swanson et al. [58]. PerturbationAIM

first solves for a model’s deterministic steady state, and then computes the first-order solution

using the AIM algorithm of Anderson and Moore [4]. Judd and Guu [35] pointed out

that, once one conditions on these coefficients, determining each successively higher order

of approximation reduces to a solving a linear system in the unknown coefficients.8 Using

this method, PerturbationAIM solves for higher-order coefficients of arbitrarily specified

order. Although high-order perturbation solutions have the weakness of being local (and

to a steady state that, as discussed above, is somewhat problematic), they are significantly

more accurate than linearization,9 and – unlike grid-based value function iteration, which

suffers from a well-known curse of dimensionality – can readily be applied to models with

many state variables.

8See Judd [34] Chapters 13-15 for a detailed discussion of perturbation methods.
9Precisely how much more accurate will depend on the degree of curvature and noise present in the model

– see Arouba et al. [6].

45



2.3 Results

2.3.1 Macroeconomic Variables

Tables 1-2 report the standard deviations of macroeconomic variables for the models with

and without habit formation, for the baseline calibration as well as three successively higher

φ values. I report the raw (unfiltered) simulations since – as long as there is no long run

trend present – the raw moments yield more insight into the true dynamics of the model,

and in particular into the implications of the risk premium (and its time-variation) for

macroeconomic variabilities, which is of primary interest in the present study.10 Thus, while

the quantitative values of the macroeconomic variabilities reported in Tables 1-2 are far too

high relative to U.S. data due to the absence of filtering,11 they are a superior source of

information regarding the qualitative distinctions amongst the various models reported, and

it is in this sense that Tables 1-2 are to be read.

A number of qualitative trends emerge from comparing the moments of the various models

presented in Tables 1-2. First, the variability of all macroeconomic variables – except labor-

supply – increases with the inverse labor-supply elasticity φ. This is unsurprising since,

as discussed in Section 1.3 above, the presence of a labor margin allows risk-averse agents

to smooth consumption more effectively by offsetting negative shocks with increased labor

supply, thus reducing overall variability.

Another intriguing trend is that, for each φ values considered, the variability of all macroe-

10It’s well-known in the literature that, compared to simple detrending, HP-filtering can meaningfully
alter the dynamics of a time series. For the RBC model specifically, Cogley and Nason [19] demonstrate that
HP-filtering can introduce spurious business-cycle dynamics.

11The HP-filtered counterparts of Tables 2.1 and 2.2 in fact reveal that the macroeconomic moments for
my baseline model are too low compared to U.S. data or to those typically reported for the basic RBC
model. This latter discrepancy is primarily due to the higher-than-usual curvature which I impose, as well
as the third-order perturbation solution which “prices in” the risk premium – both of which induce excess
smoothing relative to more standard results. For example, if I set γ = 1, φ = 1 in my model without habit
formation, and analyze the first-order solution, I find macroeconomic moments similar to those reported by
King and Rebelo [39] for their basline calibration.
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conomic variables – except consumption – is higher in the models with habit formation. I

propose that this is the result of a “risk aversion accelerator” whereby, after a positive shock,

agents in the models with habit formation become locally less risk averse (as discussed in

Section 1.2 above), and thus more willing to take advantage of the temporarily higher pro-

ductivity of (risky) capital on offer by investing. The simultaneous increase in intertemporal

elasticity of substitution adds to this effect. The overall result is greater investment, capital

and output variability, as in fact seen in Tables 2.1 and 2.2.

Ceteris paribus, this amplification mechanism might be expected to lead to higher consump-

tion variability as well. However, there is another property of habit formation that works in

the opposite direction. Note that the argument of the utility function under habit formation

– the deviation of consumption from the habit stock – will generally be smaller in magnitude

than consumption alone, resulting in higher local curvature. Relatedly, in a model with

habit formation agents’ constant-consumption relative risk aversion (equal to γ
1−b , see equa-

tion (2.2) in Section 1.2 above) – which obtains on average in a simulation – is greater than

that in its non-habit counterpart, making habit-formation agents more desirous to smooth

consumption on average. Indeed, under my calibration, constant-consumption relative risk

aversion is 3 times higher under the model with habit formation. Thus, there is a tension

between the time-variation in relative risk aversion implied by habit formation, which tends

to amplify consumption variability, and the higher average relative risk aversion also implied

by habit formation, which tends to attenuate it.

This tension is evident in the simulations reported in Tables 1 and 2. For my baseline inverse

Frisch elasticity, φ = 1.7, the smoothing property of habit formation dominates, and the

model with habit formation has lower consumption variability. With labor-supply elasticity

this high, it’s simply too easy for more-risk-averse-on-average agents under habit formation

to take advantage of the labor margin to smooth consumption. However, for φ = 3, one

arrives at a threshold for consumption variability – the two effects perfectly offset, leading
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Table 2.1: Macroeconomic Statistics 1

Model (1.7, h) (1.7, nh) (3, h) (3, nh)

σ(Y ) 2.744 2.722 3.112 3.076
σ(C) 1.662 1.666 1.970 1.970
σ(I) 7.348 6.964 7.914 7.465
σ(K) 4.323 4.202 4.857 4.708
σ(L) 2.147 2.124 1.742 1.720

Model (φ, h/nh) is the third-order perturbation solution of the model with (h) or without (nh) habit, and

with inverse labor-supply elasticity φ. All model moments based on 100,000 Monte Carlo simulations of 500

periods each; all variables are in logs.

Table 2.2: Macroeconomic Statistics 2

Model (6, h) (6, nh) (9, h) (9, nh)

σ(Y ) 3.589 3.532 3.850 3.781
σ(C) 2.374 2.366 2.596 2.584
σ(I) 8.648 8.108 9.042 8.456
σ(K) 5.516 5.328 5.867 5.656
σ(L) 1.216 1.197 0.936 0.921

to constant consumption variability across both models. For the φ = 6 and φ = 9 cases

reported in Table 2, the amplification mechanism wins out, and consumption variability

increases with habit formation. Thus, for φ > 3, all macroeconomic variabilities increase

with habit formation, improving the fit of the model relative to U.S. data. Thus, while many

estimations of DSGE models have required high labor-supply elasticities in order to fit the

data, my model fits best with a relatively low elasticity. A Frisch elasticity < 0.33 is much

more consistent with microeconomic estimates. For example, Altonji [2] reports elasticities

as low 0.02 (φ = 50) in a range of estimates based on different samples and controls.

Table 2.3: Financial Statistics 1

Model (1.7, h) (1.7, nh) (3, h) (3, nh) U.S. Data

rB 0.0100 0.0100 0.0100 0.0100 0.0025
rK 0.0100 0.0100 0.0100 0.0100 0.0175
Re 2.22e-06 2.17e-06 2.73e-06 2.67e-06 0.0150
USR 0.0118 0.0113 0.0139 0.0134 0.3-0.9

Empirical excess returns are from Kocherlakota (1996). The range of plausible Sharpe ratios for U.S. equities

(associated with different horizons and equity types) is drawn from Hodges (1997).
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Table 2.4: Financial Statistics 2

Model (6, h) (6, nh) (9, h) (9, nh)

rB 0.0100 0.0100 0.0100 0.0100
rK 0.0100 0.0100 0.0100 0.0100
Re 3.36e-06 3.25e-06 3.81e-06 3.62e-06
USR 0.0161 0.0154 0.0176 0.0166

2.3.2 Financial Variables

I now consider the financial statistics in Tables 2.3 and 2.4. Quantitatively, both excess

returns and the USR are far too small to be consistent with U.S. data. Thus, the equity

premium puzzle stands in all of the models reported. However, the USR – while off by

a power of 10 – is still much closer to U.S. data than excess returns, implying that once

one corrects the excess return for its variation over time, the resulting measure of the risk

premium is much more empirically plausible. In summary, while a “Sharpe ratio puzzle” is

present in these models, it is much less puzzling than the equity premium puzzle.

Furthermore, trends again emerge from comparing the different models to one another, and

these may confirm/inform the trends that were seen for the macroeconomic moments. One

clear trend is that both excess returns and the USR are increasing with φ. This is unsurprising

since the higher consumption variability observed for increasing φ in Tables 1 and 2 implies

that consumption risk also increases with φ. Thus, we expect the excess returns and Sharpe

ratio demanded by agents for holding the risky capital share to increase as well.

Another important trend is that, for all φ values conidered, both excess returns and the

USR are higher in the models with habit formation. This result is fairly intuitive for the

φ = 6 and φ = 9 calibrations since as was just discussed, in these models habit formation

implies higher consumption variability, and given this higher consumption risk one would

expect higher excess returns and Sharpe ratios. Thus, it may at first seem counterintuitive

that even under the baseline calibration in which habit formation implies lower consumption
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variability, excess returns and the USR nevertheless increase with habit formation. The

solution to this puzzle lies in the (much) greater average relative risk aversion implied by

habit formation – already remarked on in the discussion of the macroeconomic moments

above. The decrease in consumption variability observed for φ = 1.7 – reported in Table

1 – is quite small, and it is clearly outweighed by the higher average risk aversion in the

habit formation model, leading to higher mean excess return and a higher USR even under

this calibration. This is indicative of the type of rich insight that can be obtained by

jointly modeling the dynamics of macroeconomic and financial variables in a single general

equilibrium setting.

2.4 Conclusion

Unifying models of macroeconomic and financial variables is an important research agenda

which has the potential to improve the fidelity and theoretical consistency of both. In

particular, from a macroeconomic perspective, understanding the implications of risk premia

– and their time-variation – for business cycle dynamics is of great interest. With this in mind,

I have investigated the joint macroeconomic and financial implications of including external

habit formation in a moderately-high-curvature calibration of the real business cycle (RBC)

model. Qualitative comparison of the third-order perturbation solutions for the the models

with and without habit formation yielded intriguing evidence of a “risk aversion accelerator”

mechanism – whereby decreased local risk aversion following a positive productivity shock

results in a greater increase in investment than would otherwise obtain – present in the models

featuring habit formation. For consumption variability, a tension was evident between this

amplification mechanism and the more widely cited tendency of habit formation to induce

consumption smoothing, and a threshold Frisch labor-supply elasticity was identified beyond

which the smoothing effect predominates. Below this empirically-plausible threshold, all
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macroeconomic variabilities increase with habit formation. On the financial side, I find

that excess returns and the unconditional Sharpe ratio were found to be far too low to be

consistent with U.S. data in all models considered. However, both are consistently higher in

the models with habit formation. Thus, while including habit formation in the RBC model

I presented doesn’t solve the equity premium puzzle, it does increase the equity premium, as

well as macroeconomic variability – improving the empirical fit of both. Given the tendency

of variables in higher-order perturbation solutions of “macro-finance” models to deviate

persistently from the steady state, it may be of interest in future work to pursue a more

global nonlinear solution method, such as the spectral projection approach outlined by Judd

[33]. Another interesting future direction would be to include Epstein-Zin preferences, in

order to break the tight link between risk aversion and intertemporal substitution that is

central to the “risk premium problem” in general equilibrium economies.
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Chapter 3

A Real Business Cycle Model with

Capital-Constrained Equity Shares

3.1 Introduction

Models that jointly describe the dynamics of both macroeconomic and financial variables

in a single general equilibrium setting have been the subject of increasing interest in recent

years. A central attraction of such “macro-finance” models is their potential to markedly

increase the fidelity and theoretical consistency of both asset pricing models and macroe-

conomic models. The financial crisis and ensuing deep recession of 2007-2009 has made

understanding the interactions between macroeconomic and financial variables an even more

important research agenda. One important objective of the macro-finance literature is to

model asset prices that are “non-neutral” in the sense that the equilibrium path of the as-

set price is necessary to specify the equilibrium path of the macroeconomic variables.1 An

1Two notable recent macro-finance models featuring non-neutral asset prices are those of Jermann and
Quadrini [31] and Gomes [27]. Furthermore, the family of DSGE models featuring credit frictions of various
sorts (e.g. Bernanke et al. [?] and Motto et al. [52]) often implicitly, if not explicitly, assume the presence
of non-neutral asset prices. Certainly, these models share with non-neutral asset pricing models the theme
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attractive feature of non-neutral asset prices is that they induce two-way causality between

macroeconomic and financial variables (in line with intuition) rather than one-way causality

from macroeconomic to financial variables as in the case of neutral asset prices. Another

fascinating property of non-neutral asset prices is that because they “affect” the macroeco-

nomic equilibrium, policy actions that alter these asset prices can in turn have a (potentially

stabilizing) effect on macroeconomic variables. This makes non-neutral asset pricing mod-

els a natural context in which to consider balance-sheet monetary policy, i.e., “quantitative

easing.”2

One simple method for specifying a non-neutral asset price is to introduce capital-constrained

equity shares, in which shareholdings are allowed to vary over time provided that number of

shares outstanding in each period equals the outstanding capital stock. Thus, if (say) the

firm wishes to take advantage of a relatively high share price by selling shares, it may do

so only if it increases its capital stock by the same amount. Conversely, if the firm wishes

to reduce its capital stock, it may do so provided that it repurchases the shares that were

backed by that capital. Thus, the constraint operates rather like a gold standard for equity

shares, enforcing a fixed ratio of “paper” shares to “hard” capital. This specification takes

its inspiration from Tobin’s (originally in [62], and even more explicitly in [63]) assumption

of capital-constrained equity share in his celebrated q-theory.3 As such, in the sequel I will

refer to the constraint requiring that the quantity of shares outstanding equal the quantity

of capital outstanding as the “Tobin constraint” for brevity.

I find that introducing this constraint into an otherwise-standard decentralized real business

cycle (RBC) model in which a capitalist firm adopts the “correct” objective (profit per-share)

that the financial side of the economy “matters.”
2This is especially so in a New Keynesian setting, in which there exists a cyclical output gap that can

potentially be stabilized by a monetary authority implementing the optimal path for a non-neutral asset
price. (If, for example, the asset is risky, this may involve buying shares during recessions, and selling them
during expansions.) This is a direction that will be pursued in the future.

3I explore the relation of Tobin’s work and the subsequent neoclassical investment literature to the present
study in Section 1.1 below.
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results in an equilibrium which is identical to that chosen by the planner. I then consider

a natural generalization of this model in which the capitalist firm adopts an objective that

assumes a dilution cost of issuing shares – i.e. a “cost of equity” – greater than or lower

than the efficient value, leading to under- and over-investment (respectively) in the steady

state. This generalized model induces non-neutrality of the firm’s share price. I will discuss

the relation of this specification to the theoretical and empirical literature on managerial

preferences when I introduce the model in Section 2.2 below. In Section 3, I explore the

implications of this generalized model for the dynamics of macroeconomic variables under a

variety of calibrations.

3.1.1 Related Literature

In addition to the work of Tobin himself, one strand of the macroeconomics literature that

relates to the present study is the neoclassical optimal investment literature. No attempt

will be made here to provide a detailed review of this literature. Rather, I shall endeavor

to concisely outline how previous work compares and/or contrasts with the work to be

undertaken here.

In the dynamic q-theory presented in his 1982 Nobel lecture, Tobin defines qt (now known

as average q or Tobin’s q) to be “the ratio of market valuation of capital goods to normal

replacement cost at time t.” He further imposed the following assumption on shareholdings:

Private capital investment is the source of new claims to physical capital, modeled

as equity shares, one share for each unit of capital.

With this assumption, if qt > 1, firms have an arbitrage opportunity whereby they can gen-

erate capital and sell shares to the market until qt ≤ 1. If qt < 1, firms have no incentive
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to add to the capital stock and will allow capital to depreciate until qt ≥ 1 (negative invest-

ment is not allowed by Tobin’s model). Therefore, Tobin specified that time-t investment

is an increasing function of qt, and that qt = 1 on average (although his model allowed for

temporary deviations from this value).

The subsequent neoclassical investment literature,4 from the pioneering partial equilibrium

work of Abel [1] and Hayashi [28] to the more recent general equilibrium models ([64], [61],

[38], and [38]) of lumpy microeconomic investment, has provided increasingly sophisticated

microfoundations for the internal, optimal-capital-choice dimension of q-theory (with average

q now replaced by its marginal counterpart). However, the external dimension of optimal

share issue and capital-constrained shares was abandoned, first by the partial equilibrium

literature – in which there’s no other agent to whom to sell shares – and then by the general

equilibrium literature – in which either the planner’s perspective is taken, so that once again

there’s no one to whom to sell shares, or (in the Kahn and Thomas models) shares are sold

each period but are unconstrained, rendering the associated share price neutral.5 The present

study aims to provide a microfoundation for this external dimension of Tobin’s theory as

well, in a benchmark general equilibrium setting.

4See Caballero [13] for an excellent review of this literature up to the date of its publication.
5Specifically, in the Kahn and Thomas (2003, 2008) models, general equilibrium forces the household

to purchase the entire distribution of shareholdings in the firms each period. Since these shares are sold
automatically regardless of the capital stock chosen by any firm each period, the share-sale revenue is
irrelevant to the firms at the margin. Furthermore, since the household is both the purchaser of shares
and (via its ownership of the firms) the seller in equilibrium, it will be indifferent to these purchases in
equilibrium. As a result, the share price in this model is rendered neutral.
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3.2 Tobin-Constrained Models

3.2.1 First-Best Case

The Tobin constraint I consider in the present study is:

∀t, NK
t = Kt (3.1)

i.e., the number of equity shares outstanding must equal the outstanding stock of physical

capital. Below I present a standard two-firm decentralization of the real business cycle model

with elastic labor supply and external habit formation, with the additional assumption that

the capitalist firm can sell or buy back equity shares in each period, but must abide by the

constraint (3.1) at all times – and in which the capitalist firm maximizes profit per-share.

In the sequel, I will refer to this first-best case model for brevity as the FBC model.

In a standard decentralization of the RBC model, in which the number of equity shares

outstanding, if modeled at all, is typically fixed, whether the firm maximizes aggregate or

per-share profit is irrelevant. However, in models featuring the Tobin constraint – in which

the number of shares outstanding is endogenous and time-varying – the distinction between

aggregate and per-share profit max becomes significant. In particular, if the firm adopts

aggregate profit as its objective (as in the η = 0 case under the more general model of

Section 2.2 below), it treats share issue as “free money,” and so fails to internalize the

dilution cost imposed on the current shareholders. To be sure, in the Tobin-constrained

models presented here there is no explicit dilution cost, since share purchases cancel out in

equilibrium for the household, and it simply receives the total return to capital at no net

cost each period. Still, requiring the capitalist firm to take the perspective of a hypothetical

holder of one share forces it to choose its capital holding efficiently, which in turn benefits
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the household in equilibrium.

The Household

The household chooses consumption, {Ct}∞t=0, labor supply, {Lt}∞t=0, and shareholdings in

the capitalist firm,
{
NK
t

}∞
t=0

to maximize the infinite-horizon objective:

E0

∞∑
t=0

βt

[
(Ct − bCt−1)1−γ

1− γ
− L1+φ

t

1 + φ

]
(3.2)

subject to the flow budget constraint:

Ct + PK
t N

K
t+1 = WtLt +NK

t (DK
t + PK

t ) (3.3)

where Wt is the time-t real wage, PK
t is the period-t price of a perpetual claim to the per-

share profitability of the capitalist firm, DK
t is the per-share period-t dividend issued by

the capitalist firm, and NK
t represents the number of shares in the capitalist firm that the

household holds a claim to in period t. The household exhibits CRRA utility with respect to

the deviation of consumption from the habit stock, with CRRA coefficient γ, and additively-

separable convex CRRA disutility of labor supply, with CRRA coefficient φ – also equal to

the inverse of elasticity of labor supply with respect to the real wage. b ∈ [0, 1] indexes the

degree to which lagged consumption enters the external habit stock.

Combining the period-t first-order conditions with respect to Ct, Ct+1, and NK
t results in

the intertemporal pricing condition:

PK
t = Et

[
Mt,t+1

(
DK
t+1 + PK

t+1

)]
(3.4)
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where Mt,t+j =
[
βj
(

Ct−bCt−1

Ct+j−bCt+j−1

)γ]
is the household’s stochastic discount factor (SDF) from

time t to time t+ j.

And combining the period-t first-order conditions with respect to Ct and Lt results in an in-

tratemporal condition equating the real wage with the marginal rate of substitution between

consumption and labor:

Wt =
Lφt

(Ct − bCt−1)−γ
(3.5)

The Capitalist Firm

The capitalist firm (or firm of type 2 in the terminology of Ljungqvist and Sargent [45],

Chapter 12) undertakes investment and rents the resulting capital to the production firm

(type 1 firm). It chooses {Kt}∞t=0, {It}∞t=0, and
{
NK
t

}∞
t=0

to maximize the objective:

E0

∞∑
t=0

M0,t

[
rtKt − It + PK

t

(
NK
t+1 −NK

t

)
NK
t

]
(3.6)

subject to the law of motion for capital:

Kt+1 = (1− δ)Kt + It (3.7)

and the Tobin constraint:

∀t, NK
t = Kt (3.8)

where δ is the rate of depreciation, and rt is the period-t rental rate earned on the capital

stock. Substituting the the capital law of motion and the Tobin Constraint into the objective,
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the firm’s problem is reduced to choosing {Kt}∞t=0 to maximize:

E0

∞∑
t=0

M0,t

[(
rt + 1− δ − PK

t

)
+
(
PK
t − 1

) Kt+1

Kt

]
(3.9)

Taking the period-t first order condition with respect to Kt+1, one obtains the intertemporal

condition:

1

Kt

(
1− PK

t

)
= Et

[
Mt,t+1

(
Kt+2

K2
t+1

(
1− PK

t+1

))]
(3.10)

The term
(
rt + 1− δ − PK

t

)
in the firm’s objective (3.9) is a per-share return that the cap-

italist firm receives regardless of its capital choice. Thus, only the cost of investment, and

the share-sale (or buy-back) revenue matter to the firm at the margin. The term on term on

the RHS of (3.10) represents a base effect, since choosing more capital today increases the

denominator of (and thus reduces) next period’s per-share profit.

As a result of the Tobin constraint, the timing of shareholdings is identical to that for capital:

in period t the capitalist firm chooses next periods shareholdings, NK
t+1, at the same time

that it chooses next period’s capital stock, Kt+1. At the end of period t, period t profit per

share is handed back to the owner’s of period t shareholdings, NK
t , in the form of a dividend:

DK
t =

(
rt + 1− δ − PK

t

)
Kt +

(
PK
t − 1

)
Kt+1

Kt

(3.11)

Next period, the purchasers of NK
t+1 (again, the household), receive DK

t+1.
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The Production Firm

The production firm, or firm of type 1, rents capital from the type 2 firm and labor from the

household, and converts them into output. It chooses {Kt}∞t=0 and {Lt}∞t=0 to maximize the

objective:6

E0

∞∑
t=0

M0,t [Yt − rtKt −WtLt] (3.12)

subject to the Cobb-Douglas production function:

Yt = AtK
α
t L

1−α
t (3.13)

Substituting the constraint (3.13) into the objective (3.12) and taking the period-t first-order

condition with respect to Lt one obtains:

Wt = (1− α)AtK
α
t L
−α
t (3.14)

This condition sets the real wage equal to the marginal product of labor.

Similarly, taking the period-t first-order condition with respect to Kt one obtains a condition

equating the rental rate with the marginal product of capital:

rt = αAtK
α−1
t L1−α

t (3.15)

6I could use lower-case {kt}∞t=0 and {lt}∞t=0, to underscore that the production firm chooses how much
capital and labor to rent independent of any supply considerations, and then – after solving the production
firm’s problem – impose clearing of the rental markets: kt = Kt, lt = Lt for all t. However, since these
subtleties are well-known, for simplicity I’ll use Kt and Lt on both sides of the market.

60



Log productivity is exogenous and follows an AR(1) process:

logAt = ρ logAt−1 + σεt (3.16)

with εt a standard normal productivity shock.

General Equilibrium

Market clearing implies:

Yt = Ct + It (3.17)

From the household’s budget constraint, note that in equilibrium ∀t, NK
t = Kt implies:

Ct = −PK
t (Kt+1 −Kt) +DK

t Kt +WtLt

↔ Ct = −PK
t (Kt+1 −Kt) + PK

t (Kt+1 −Kt) +
(
αAtK

α
t L

1−α
t − It

)
+
(
(1− α)AtK

α
t L

1−α
t

)
↔ Ct = αYt − It + (1− α)Yt

↔ Ct = Yt − It

Thus, the Tobin constraint ensures that general equilibrium holds in each period t.
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Equivalence to the Planner

The FBC model just presented has the following remarkable property, proved in Appendix

A1:

Proposition 1: The FBC model results in an equilibrium identical to that under the plan-

ner’s problem, as well as to that under a standard two-firm decentralization of the RBC

model.

Intuitively, the capitalist firm adjusts the capital stock so that the share price always equals

one. This in turn causes the pricing condition for the equity share to become identical to the

intertemporal condition for the capitalist firm under a standard two-firm decentralization of

the RBC model. Thus, despite the apparent dissimilarities between the PSPM model and a

standard decentralization – the presence of the LTC, per-share rather than aggregate profit

max, shares changing hands between the household and the capitalist firm – they are in fact

two ways of deriving the same model.

3.2.2 Generalized Tobin-Constrained Model

I now consider a case in which, due to imperfect monitoring, the capitalist firm may adopt

an objective that deviates from that under the first-best case. In particular, the firm may

assume a dilution cost of issuing shares greater than or less than that under FBC model,

resulting (respectively) in under- and over-investment. This generalized model differs from

the FBC model only in the capitalist firm’s problem, which is presented below. In the sequel

I will refer to this model as the GTC model.
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The Capitalist Firm

The capitalist firm chooses {Kt}∞t=0, {It}∞t=0, and
{
NK
t

}∞
t=0

to maximize the objective:

E0

∞∑
t=0

M0,t

[
rtKt − It + PK

t

(
NK
t+1 −NK

t

)
(NK

t )
η

]
(3.18)

subject to the law of motion for capital:

Kt+1 = (1− δ)Kt + It (3.19)

and the Tobin constraint:

∀t, NK
t = Kt (3.20)

where δ is the rate of depreciation, and rt is the period-t rental rate earned on the capital

stock. Thus η = 1 captures the efficient FBC model considered in Section 2.1 above. How-

ever, if 0 ≤ η < 1, the firm assumes a cost of equity – the dilution cost of issuing shares,

represented by the denominator in (3.18) – lower than that for the efficient case (ignoring it

completely at η = 0), resulting in excess capital accumulation (i.e., over-investment). Con-

versely, for η > 1, the firm assumes a cost of equity greater than that for the efficient case,

resulting in under-investment.

Substituting the constraints (3.19) and (3.20) into the objective, the firm’s problem is reduced

to choosing {Kt}∞t=0 to maximize:

E0

∞∑
t=0

M0,t

[(
rt + 1− δ − PK

t

)
(Kt)

1−η +
(
PK
t − 1

)
Kt+1 (Kt)

−η] (3.21)
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Taking the period-t first order condition with respect to Kt+1, one obtains the intertemporal

condition:

(
1− PK

t

)
(Kt)

−η = (3.22)

Et
[
Mt,t+1

(
η
(
1− PK

t+1

)
Kt+2 (Kt+1)−η−1 + (1− η)

(
rt+1 + 1− δ − PK

t+1

) (
K−ηt+1

))]

In condition (3.10) of Section 2.1.2 above, the presence of the firm’s share price in the

intertemporal condition renders the share price non-neutral in the strict sense, since it is

necessary to specify the macroeconomic equilbrium. However, since, as demonstrated in

Appendix A1, the share price is constant in the FBC model, it’s non-neutrality is not of the

most interesting variety (it serves a technical role in defining the equilibrium, but doesn’t

behave anything like a real-world equity share price). By contrast, the presence of the firm’s

share price in condition (3.22) does indeed induce non-neutrality of the more meaningful

variety for all cases ther than η = 1 (which latter case is equivalent to the FBC model),

since for η 6= 1 the share price is both necessary to specify the macroeconomic equilibrium

and dynamically varying over time.

The per-share dividend issued to shareholders each period is:

DK
t =

(
rt + 1− δ − PK

t

)
Kt +

(
PK
t − 1

)
Kt+1

Kt

(3.23)

Given the contrasting implications of η < 1 vs. η > 1 for aggregate investment, it’s nat-

ural to ask which case better represents managerial preferences. That is, do imperfectly-

monitored managers prefer to over- or under-invest relative to the level that maximizes

shareholder value? Interestingly, the theoretical and empirical literature on managerial pref-

erences is distinctly undecided on this point. The theoretical literature has traditionally
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favored “empire-building” theories of managerial preferences, which hold that manager’s

prefer to over-invest since this increases their relative power and compensation.7 However,

a recent empirical investigation by Bertrand and Mullainathan [8] finds instead that man-

agers appear to exhibit inertial “quiet life” preferences, shunning profitable new investment

opportunities while also maintaining old capital that should be retired, with no effect on net

investment.

In another recent study, Malmendier and Tate [46] find that over-confident CEO’s – as

measured by failure to divest firm-specific risk in their own portfolio’s – over-invest when

internal funding is abundant, but under-invest when external financing is required. Given

that about 80% of investment is financed internally, this finding would seem to imply net

over-investment, at least among over-confident CEO’s. Yet Elsas et al. [23] find that the

shares of firms undertaking major internally-financed investments outperform relative to

those of firms financing such investments externally – which hardly seems consistent with

the idea that firms over-invest with internal funds.

Given this lack of unanimity, the present study will attempt to shed some (modest) light

on the question of whether imperfect monitoring and managerial preferences lead (in the

aggregate) to over- or under-investment in Section 3 below.

Calibration

My baseline calibration is α = 0.3, β = 0.99, δ = 0.025, ρ = 0.979, and σ = 0.0072, all of

which are quite standard and are taken from King and Rebelo [39]. For the CRRA coefficient

I choose γ = 2, increasing the degree of curvature a bit relative to King and Rebelo while

still remaining microeconomically plausible. For the habit stock parameter I choose b = 0.67,

which is representative of values typically found in estimations of DSGE models, following

7See [7], [49], [65] [30], and the more recent formal work of Kanniainen [37].
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Rudebusch and Swanson [54]. I also consider the case of no habit formation: b = 0.

Following Levine and Pearlman [44], for the CRRA “convexity of labor-disutility” measure

φ, which is the inverse of the Frisch elasticity of labor supply, I choose 1.7 – close to but a bit

higher than typical macro estimates, though still low compared to micro estimates – as my

baseline calibration. I further consider the case of perfectly inelastic labor supply, φ = ∞,

which corresponds to a Frisch elasticity of 0.

I consider four benchmark values for the η parameters introduced above: 0, 0.5, 1, and 1.5.

The first two imply over-investment, the third replicates the first-best case, and the fourth

implies under-investment.

Steady State Analysis

The nonstochastic steady-state values for the macroeconomic variables – and PK – for the

various calibrations considered here are reported in Tables 1-3. For the inelastic labor sup-

ply case, the steady states are independent of the habit formation parameter b, since this

parameter only appears in the stochastic discount factors, which simply reduce to β in the

steady state.Therefore, the common steady states for φ = ∞ , b = 0 and φ = ∞ , b = 0.67

are reported in Table 1.

However, once elastic labor supply is considered, b enters the steady state via the marginal

rate of substitution in the intratemporal condition (3.5) above. Thus, the steady states for

φ = 1.7 , b = 0 and φ = 1.7 , b = 0.67 are reported separately in Figures 2 and 3.

Notice that in all three tables, PK ’s steady state value is the same increasing function of η.

However, it’s important to note that in the efficient case, PK is constant and equal to one,

not just in the steady state but also dynamically (see Appendix A1 below). The same does

not hold for the other η values, for which PK varies dynamically, rendering its non-neutrality
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Table 3.1: Steady States for Various η Values, b = 0 and b = 0.67, φ =∞

η = 0 0.5 1 1.5

C 0.699 0.693 0.679 0.630
I 0.669 0.619 0.536 0.373
K 3.287 3.209 3.065 2.704
PK 0.500 0.666 1.000 2.000
Y 0.986 0.963 0.920 0.811

All variables (except PK) are in logs.

Table 3.2: Steady States for Various η Values, b = 0, φ = 1.7

η = 0 0.5 1 1.5

C 0.491 0.482 0.464 0.412
I 0.544 0.501 0.432 0.300
K 3.079 2.998 2.850 2.486
L -0.208 -0.211 -0.215 -0.218
PK 0.500 0.666 1.000 2.000
Y 0.778 0.752 0.705 0.594

All variables (except PK) are in logs.

Table 3.3: Steady States for Various η Values, b = 0.67, φ = 1.7

η = 0 0.5 1 1.5

C 1.091 1.082 1.063 1.011
I 0.990 0.913 0.787 0.547
K 3.679 3.598 3.449 3.085
L 0.392 0.388 0.384 0.382
PK 0.500 0.666 1.000 2.000
Y 1.378 1.351 1.304 1.193

All variables (except PK) are in logs.
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more meaningful, in the sense discussed in Section 2.2.1 above.

For the macroeconomic variables represented in Table 3, it’s quite clear that steady state

consumption, investment, capital, labor (when elastic), and output are all monotonically

decreasing with η. This is due to the increase in capital accumulation produced by the lower

assumed cost of equity as η is reduced.

The fact that steady-state consumption is higher in the η < 1 models than in the efficient

η = 1 models does not, of course, imply that welfare is higher in the η < 1 case. Rather,

the welfare cost of the excess saving (=investment) required to reach the higher steady-state

capital of the APM model outweighs – in discounted terms – the welfare benefit of increased

consumption once that higher steady state is reached.

3.3 Dynamics

What are the implications of the models presented in Sections 2 above for the dynamics

of macroeconomic variables?8 Here I consider the GTC model of Section 2.2 above under

the baseline calibration and benchmark range of η values introduced in Section 2.2.2. 9

I obtain the third-order perturbation solution10 for each calibration considered using the

PerturbationAIM algorithm outlined by Swanson et al. [58], and then run Monte Carlo

simulations from this solution.11

In Tables 4-11 I report the standard deviations of macroeconomic variables for both HP-

8Due to the absence of capital-adjustment costs (or a similar rigidity), the mean excess returns implied by
the model introduced above are extremely small. For this reason, I omit them and focus on macroeconomic
dynamics in this section. These dynamics are, of course, still influenced by the presence of the non-neutral
share price.

9All of these (except for γ) are taken from King and Rebelo [39].
10For a detailed discussion of perturbation methods see Judd [34].
11The Mathematica code for PerturbationAIM is available on Eric Swanson’s website

(http://www.ericswanson.us/perturbation.html), and your author has also written a suite of support-
ing functions for running and analyzing simulations, which is available upon request.
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Table 3.4: Standard Deviations of Macroeconomic Variables for Various η Values, b = 0,
φ =∞, Filtered

η = 0 0.5 1 1.5

σ (C) 0.53 0.55 0.52 0.34
σ (I) 2.17 2.21 2.50 4.69
σ (K) 0.20 0.20 0.23 0.41
σ (Y ) 0.94 0.94 0.94 0.95

Based on 100 Monte Carlo simulations of N = 100, 000 observations each for the third-order perturbation

solution of the specified model.

Table 3.5: Standard Deviations of Macroeconomic Variables for Various η Values, b = 0,
φ =∞, Unfiltered

η = 0 0.5 1 1.5

σ (C) 4.16 4.15 4.26 4.66
σ (I) 7.54 7.89 8.77 11.00
σ (K) 5.36 5.68 6.27 6.23
σ (Y ) 4.87 4.92 5.09 5.21

Based on 100 Monte Carlo simulations of N = 100, 000 observations each for the third-order perturbation

solution of the specified model.

Table 3.6: Standard Deviations of Macroeconomic Variables for Various η Values, b = 0.67,
φ =∞, Filtered

η = 0 0.5 1 1.5

σ (C) 0.42 0.42 0.41 0.33
σ (I) 2.90 3.02 3.39 5.48
σ (K) 0.24 0.24 0.28 0.49
σ (Y ) 0.95 0.95 0.95 0.96

Based on 100 Monte Carlo simulations of N = 100, 000 observations each for the third-order perturbation

solution of the specified model.

Table 3.7: Standard Deviations of Macroeconomic Variables for Various η Values, b = 0.67,
φ =∞, Unfiltered

η = 0 0.5 1 1.5

σ (C) 4.17 4.19 4.33 4.79
σ (I) 8.12 8.57 9.56 12.21
σ (K) 5.55 5.92 6.56 6.55
σ (Y ) 4.93 5.02 5.20 5.34

Based on 100 Monte Carlo simulations of N = 100, 000 observations each for the third-order perturbation

solution of the specified model.
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Table 3.8: Standard Deviations of Macroeconomic Variables for Various η Values, b = 0,
φ = 1.7, Filtered

η = 0 0.5 1 1.5

σ (C) 0.48 0.49 0.46 0.38
σ (I) 2.33 2.37 2.78 6.21
σ (K) 0.21 0.21 0.25 0.51
σ (L) 0.05 0.05 0.05 0.36
σ (Y ) 0.94 0.93 0.95 1.16

Based on 100 Monte Carlo simulations of N = 100, 000 observations each for the third-order perturbation

solution of the specified model.

Table 3.9: Standard Deviations of Macroeconomic Variables for Various η Values, b = 0,
φ = 1.7, Unfiltered

η = 0 0.5 1 1.5

σ (C) 3.29 3.33 3.43 3.63
σ (I) 6.84 7.20 8.17 11.01
σ (K) 4.45 4.80 5.33 4.97
σ (L) 1.04 1.03 1.05 1.37
σ (Y ) 4.03 4.11 4.27 4.22

Based on 100 Monte Carlo simulations of N = 100, 000 observations each for the third-order perturbation

solution of the specified model.

Table 3.10: Standard Deviations of Macroeconomic Variables for Various η Values, b = 0.67,
φ = 1.7, Filtered

η = 0 0.5 1 1.5

σ (C) 0.37 0.37 0.36 0.36
σ (I) 2.91 3.01 3.49 6.97
σ (K) 0.24 0.25 0.29 0.59
σ (L) 0.05 0.06 0.05 0.37
σ (Y ) 0.92 0.91 0.94 1.15

Based on 100 Monte Carlo simulations of N = 100, 000 observations each for the third-order perturbation

solution of the specified model.
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Table 3.11: Standard Deviations of Macroeconomic Variables for Various η Values, b = 0.67,
φ = 1.7, Unfiltered

η = 0 0.5 1 1.5

σ (C) 3.31 3.35 3.45 3.68
σ (I) 7.32 7.75 8.80 12.05
σ (K) 4.62 4.98 5.53 5.17
σ (L) 1.04 1.02 1.05 1.38
σ (Y ) 4.07 4.16 4.32 4.25

Based on 100 Monte Carlo simulations of N = 100, 000 observations each for the third-order perturbation

solution of the specified model.

filtered and raw (unfiltered) simulations, since the former follow standard practice in the

literature, while the latter yield more insight into the true underlying dynamics of the model.

The precision of the standard deviations reported in Tables 4-11 is such that values reported

should be considered to be accurate to within ±0.01 (as determined by duplicating two of the

simulations). Therefore, a difference of 0.01 between two calibrations should be disregarded,

while a difference of 0.02 or more is likely to be significant.

The impact of varying η on the various terms of condition (3.22), and by extension on

macroeconomic dynamics, is complex indeed. However, some clear trends emerge upon

inspection of Tables 4-11. I will focus on the unfiltered simulations in Tables 5, 7, 9, and

11, since, as just stated, these more accurately represent the true underlying dynamics of

the model. In all four of these tables, consumption variability increases monotonically with

η, as does investment variability. However, capital variability increases as η increases from

0 to 1, and then decreases as η increases from 1 to 1.5. In Tables 9 and 11 (the elastic

labor supply models), output variability follows this same trend. Labor supply variability

decreases slightly as η increases from 0 to 0.5, increases slightly as η increases from 0.5 to 1,

and then increases markedly as η increases from 1 to 1.5.

Comparing the no-habit models in Tables 5 and 9 to their habit formation counterparts in

Tables 7 and 11, it’s clear that the presence of habit formation increases the variability of all

macroeconomic variables, while leaving the qualitative trends with increasing η mostly intact.
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In Chapter 2 of this Dissertation, I postulate that this amplification of second moments under

habit formation is due to a “risk aversion accelerator,” whereby variation in local relative risk

aversion – and simultaneous inverse variation in local intertemporal elasticity of substitution

– leads to greater ouput and investment variability than would otherwise obtain.

Which of these calibrations best matches U.S. data? To address this question in a simple way,

I construct the 2-norm (i.e., the square root of the sum of squares) of the difference between

{σ (C) /σ (Y ) , σ (I) /σ (Y )} for a given calibration and the empirical value of {0.4, 2.39},12

and then investigate which of the 16 calibrations considered here delivers the minimum 2-

norm so-constructed.13 In this case I focus on the HP-filtered simulations of Tables 4, 6, 8,

and 10, since they are more directly comparable to U.S. data. Using this method, the best

fitting calibration is η = 0, b = 0, φ = 1.7, (represented by column 1 of Table 6) with a

2-norm of 0.142. The next-best-fitting calibration is η = 0, b = 0, φ =∞, with a 2-norm of

0.183. Therefore, the η = 0 case, implying aggregate over-investment, seems to be preferred

by the data. This result can be read as lending modest support to “empire-building” theories

of managerial preferences

3.4 Conclusion

This investigation has sought to understand the consequences of introducing capital-constrained

equity shares into an otherwise-standard decentralized real business cycle model. In particu-

lar, the equity shares outstanding of a capitalist firm were allowed to vary over time subject to

the constraint that shares outstanding equal the outstanding capital stock. If the firm adopts

per-share profit as its objective, this model was found to result in an equilibrium identical to

that chosen by the planner. However, if the firm disregards the shareholder’s perspective and

adopts an objective that deviates from per-share profit, the resulting equilibrium features a

12This empirical value is taken from [10].
13[32] conducts a calibration along similar macroeconomic dimensions – and via a comparable methodology.
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share price for the firm which is “non-neutral” in the sense that it is necessary to specify

the macroeconomic equilibrium. I explored a generalized model in which the firm can adopt

an objective that assumes a cost of equity higher or lower than that under the efficient case,

resulting in under- or over-investment (respectively) – motivated by the large theoretical and

empirical literature on managerial preferences. The resulting equilibria naturally incorpo-

rate a non-neutral share price (except for the single point-calibration corresponding to the

efficient case). I found a calibration that assumes a cost of equity lower than that under the

efficient case – resulting in aggregate over-investment – to provide the best fit to empirical

data in terms of the standard deviations of consumption and investment relative to that of

output, lending tentative support to “empire-building” theories of managerial preferences.

In future work it will be of interest to explore the implications of the capital-constrained

equity shares for excess returns in the context of a model featuring a more quantitatively

meaningful risk premium. This can be achieved through a capital rigidity such as capital

adjustment costs, or by introducing Epstein-Zin preferences. The presence of a non-neutral

share price also makes it straightforward (in a future model) introduce a monetary author-

ity that uses its balance sheet to affect the share price – thereby altering (and potentially

stabilizing) the macroeconomic equilibrium – in a form of quantitative easing.
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Appendix A

Proof of Proposition 1

A1: Proposition 1

Recall the capitalist firm’s intertemporal condition for the First-Best Case model in Section

2.2.1:

1

Kt

(
1− PK

t

)
= Et

[
Mt,t+1

(
Kt+2

K2
t+1

(
1− PK

t+1

))]

Since Kt+1 is a choice variable being determined in period t without knowledge of period

t+ 1 shocks, we can rearrange this as:

1− PK
t =

Kt

Kt+1

Et

[
Mt,t+1

(
Kt+2

Kt+1

(
1− PK

t+1

))]
(A.1)

Now consider the expression:

Kt+1

Kt

(
1− PK

t

)
(A.2)
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Substituting (A.1) into (A.2) we obtain:

Et

[
Mt,t+1

(
Kt+2

Kt+1

(
1− PK

t+1

))]
(A.3)

Advancing (A.1) a period and substituting into (A.3) we get:

Et

[
Mt,t+1

(
Et+1

[
Mt+1,t+2

(
Kt+3

Kt+2

(
1− PK

t+2

))])]

Now we can certainly pull the β terms of the stochastic discount factors out of the integrals

represented by the conditional expectations. Doing so, we find:

β2Et

[(
UCt+1

UCt

)(
Et+1

[(
UCt+2

UCt+1

)(
Kt+3

Kt+2

(
1− PK

t+2

))])]
(A.4)

where UCt+J denotes period t+j marginal utility. Now, as we continue to iteratively advance

(A.1) a period, substitute into the current version of (A.4), and pull the additional β term

out of the expectations, the term in the power of β in front of the expression clearly goes to

β∞ = 0. Therefore we have:

Kt+1

Kt

(
1− PK

t

)
= 0

Now since Kt+1

Kt
> 0,1 and since similar reasoning can be applied to (A.2) advanced forward

1Although there’s no explicit constraint preventing the capital stock from going to zero, in practice as
long as β > 0 the capitalist firm (or planner) will never have an incentive to choose a next-period capital
stock of zero, since this would mean zero output and (because negative investment, even if allowed, is not
possible with a current capital stock of zero) zero consumption next period. If the standard Inada conditions
are satisfied by the utility function (as they are in our case with respect to consumption for b = 0 and with
respect to the deviation of consumption from the external habit stock for b > 0), then zero consumption (or
zero deviation of consumption from the habit stock) will never be allowed. Refer to Section 2.1.1 to review
our assumptions regarding household preferences.
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or backward to any other period, we obtain:

∀t, PK
t = 1 (A.5)

The capitalist firm will adjust the capital stock so that marginal cost of generating capital

is equal to the marginal benefit of selling shares to the household in each period. Thus, this

is a “q-condition” that captures Tobin’s no-arbitrage logic in a microfounded way.

Now recall that the pricing condition for the equity share is:

PK
t = Et

[
Mt,t+1

((
rt+1 + 1− δ − PK

t+1

)
Kt+1 +

(
PK
t+1 − 1

)
Kt+2

Kt+1

+ PK
t+1

)]
(A.6)

Substituting (A.5) into (A.6) we get:

1 = Et [Mt,t+1 (rt+1 + 1− δ)]

But this is simply the capitalist firm’s intertemporal condition under the standard two-firm

decentralization of the RBC model, which in turn is well-known to be isomorphic to the

model under the planner. Thus, there exists an isomorphism from the FBC model to the

standard two-firm decentralization, and another from that model to the planner’s model.

Of necessity, therefore, these three models result in identical equilibria, yielding the desired

result.
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