
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
DCFI: Control Flow Integrity for Modern Windows Applications

Permalink
https://escholarship.org/uc/item/6705s87n

Author
Hawkins, Byron

Publication Date
2014

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6705s87n
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

DCFI: Control Flow Integrity for Modern Windows Applications

THESIS

submitted in partial satisfaction of the requirements
for the degree of

MASTER OF SCIENCE

in Electrical and Computer Engineering

by

Byron Hawkins

Thesis Committee:
Professor Brian Demsky, Chair
Professor Athina Markopoulou

Professor Harry Xu

2014

© 2014 Byron Hawkins

TABLE OF CONTENTS

Page

LIST OF FIGURES iv

ACKNOWLEDGMENTS v

ABSTRACT OF THE THESIS vi

1 Introduction 1
1.1 Control Flow Integrity . 1

2 Typical Usage Scenario 5

3 The DCFI Approach 7
3.1 Anomaly Classification . 11
3.2 Indirect Branch Caching . 14
3.3 Return Instructions . 15
3.4 Modular API Preservation . 16

3.4.1 Exported Functions . 16
3.4.2 Callback Functions . 17

3.5 Hash Canonicalization . 17

4 Alarm Configuration 19
4.1 Statistical Modeling . 20

5 Dynamically Generated Code 21
5.1 Code Generation Constraints . 24
5.2 Monitoring Dynamic Code Generation . 25
5.3 Dynamic Code Events . 26

5.3.1 Dynamic Module Discovery . 26
5.3.2 Shadow Page Table . 27
5.3.3 Distinguishing JIT Code from Trampolines 27

6 Attacks 29
6.1 Direct Code Modification . 29
6.2 Return Oriented Programming . 30
6.3 Indirect Branch Manipulation . 31
6.4 Dynamic Code Generation Attacks . 34

ii

6.4.1 Trampoline Injection . 34
6.4.2 Injection into JIT Code . 35

6.5 Non-Control Data Attacks . 35
6.6 Incremental Attacks . 36

7 Evaluation 38
7.1 Eating Our Own Dog Food . 39

7.1.1 Everyday Email with Outlook . 40
7.1.2 Browsing with Google Chrome . 40
7.1.3 Writing This Paper . 41

7.2 Convergence for Large Applications . 42
7.2.1 Creating Microsoft Word Documents 43
7.2.2 Creating PowerPoint Presentations 44
7.2.3 Creating Excel Worksheets . 44
7.2.4 Viewing PDFs with Adobe Reader 44
7.2.5 Giving PowerPoint Presentations . 45

7.3 Exploits . 45
7.3.1 OSVDB-ID 104062 · Notepad++ . 46
7.3.2 OSVDB-ID 93465 · Adrenalin Player 46
7.3.3 CVE-2014-1610 · MediaWiki . 47
7.3.4 CVE-2006-2465 · mp3info . 48

7.4 Performance . 48

8 Related Work 50

9 Conclusion 53

Bibliography 54

A 58

iii

LIST OF FIGURES

Page

1.1 Dynamic code generators in large Windows programs. 2

3.1 DCFI System Overview . 8
3.2 DCFI Learning Cycle . 9
3.3 Anomaly Classification Language . 12
3.4 Terms of the Anomaly Classification Language 13

7.1 Predicate convergence in procedure-based experiments (lower is safer) 43
7.2 Normalized DCFI Execution Times for Spec CPU 2006 49

A.1 Risky Syscalls . 58
A.2 Predicate convergence for all experiments not reported in Figure 7.1 59
A.3 System calls monitored by DCFI . 60
A.4 System calls monitored by DCFI (continued) 61

iv

ACKNOWLEDGMENTS

I would like to thank...

1. Professor Brian Demsky for initiating this project and establishing its technical direc-
tion throughout the course of its development.

2. Professors Harry Xu and Michael Taylor for their helpful critique and suggestions
regarding the presentation of these research ideas.

3. Peizhao Ou, for developing the original CFG merging and analysis program (and for
analyzing all kinds of weird malware graphs).

4. DynamoRIO developers Derek Bruening, Qin Zhao and Reid Kleckner for their help
with my most difficult technical questions (and for developing a great virtual machine).

5. The developers and sponsors of the open source software used to create DCFI, including

• DynamoRIO

• Scintilla and SciTE

• Python powerlaw

• Google Protocol Buffers

• the Ninja compiler for Windows

• gcc/gdb

• cmake

• Ubuntu/Linux

• VirtualBox

• MinGW

• Console2

• Remmina

• git

• gnu binutils

• octave

• Inkscape

6. Microsoft DreamSpark for free licenses to Windows and Visual Studio.

7. The sponsors and maintainers of VirusShare (”because sharing is caring”).

8. Albert Einstein for developing an effective approach to scientific modeling of invariants
in the observable universe.

9. God for creating a universe worth observing, with goals that are worth the effort.

10. The NSF for sponsoring this research project.

This project was partly supported by the National Science Foundation under grant CNS-
1228995.

v

ABSTRACT OF THE THESIS

DCFI: Control Flow Integrity for Modern Windows Applications

By

Byron Hawkins

Master of Science in Electrical and Computer Engineering

University of California, Irvine, 2014

Professor Brian Demsky, Chair

Control flow integrity or CFI has emerged as an important technique for preventing attacks

on software. Previous approaches relied on static analysis and thus largely target static

binaries and are limited in how tightly they can constrain a program’s runtime behavior.

Unfortunately, modern Windows applications make extensive use of dynamically generated

code. We introduce a new dynamic analysis based approach in DCFI to control flow integrity

that precisely learns a program’s behavior by monitoring previous executions. DCFI is the

first approach to demonstrate CFI in the presence of dynamic code generation and/or self-

modifying code and is immune to recent variations on ROP attacks that thwart previous

CFI approaches. DCFI underapproximates the legal executions of software applications and

thus can potentially build tighter constraints than static approaches. As DCFI’s knowledge

of a program becomes more complete, it tightens its constraints on a program’s execution,

making successful attacks progressively more difficult.

We have implemented DCFI in DynamoRIO. Our experiences using DCFI indicate that it

can protect modern desktop applications with dynamic code generation engines including the

latest versions of Microsoft Word, Microsoft Excel, Microsoft PowerPoint, Microsoft Outlook,

Google Chrome, and Adobe Acrobat. Experiments also show that DCFI effectively detects

known exploits.

vi

Chapter 1

Introduction

Malicious software or malware threatens nearly every computing environment. While de-

fenses such as antivirus software, firewalls, and OS safeguards can reduce risks, many vul-

nerabilities remain. The security community has made significant progress in increasing

the difficulty of common attacks: for code injections there is the W
⊕

X memory conven-

tion [25], for stack smashing there are canaries [13], and for buffer overflow attacks there

is memory layout randomization [38]. But the problem of securing a networked computing

environment remains open.

1.1 Control Flow Integrity

Researchers developed control flow integrity (CFI) to increase the difficulty of attacks that

hijack program executions. The key insight of control flow integrity is that attacks often

corrupt the program’s control flow. Instead of identifying the particular kinds of corruption

that may be useful to an adversary, control flow integrity aims to ensure the integrity of the

intended execution. An ideal solution would constrain the program’s execution strictly to

1

the paths that were intended by the developer and the development tools.

Previous research on CFI[1, 2] such as binCFI[49] and CCFIR[48] relies on a static analysis

of a program to derive the expected behavior from the program’s source or binary represen-

tations. The essential limitations that are common to these techniques are that (1) static

analysis inherently introduces imprecision in the targets of indirect branches, (2) analysis of

library calls is complicated by the fact that the components are typically linked dynamically

at run time, (3) they may generate constraints on returns and/or gadget sizes that are too

weak to effectively stop ROP attacks [9], and (4) they are unable to handle the dynamically

generated code that modern Windows applications make extensive use of.

Dynamically Generated Bindings

Gen LM T BBs JITs

Word 8 13 1284 16913 1

PowerPoint 9 15 2753 38105 1

Excel 4 9 432 2714 1

Outlook 4 9 440 3661 1

Chrome 6 10 796 17315 2

Adobe PDF 13 24 163 16965 2

Generators, Linked Modules, Trampolines, Basic Blocks

Figure 1.1: Dynamic code generators in large Windows programs.

Recent versions of large Windows applications employ code generators in several modules.

Figure 1.1 shows that not only do mainstream applications contain one or more JIT engines,

it is also increasingly common for multiple modules to dynamically generate trampolines that

link code at runtime. CFI techniques based on static analysis are unaware of these bindings,

and these trampolines are typically not protected by W
⊕

X protections as they are written

to executable memory pages. This vulnerability is critical for application security because

dynamically generated trampolines most often bind application code to the core system

services that malicious code uses to carry out its attacks.

This thesis introduces a new approach to control flow integrity that learns the expected

2

program behavior by observing executions, including dynamically generated trampolines and

JIT code. We present DCFI, a process virtualization system that learns program control

flow and evaluates the integrity of program executions on the basis of previously observed

control flow behavior. The usage model for DCFI has two phases:

• DCFI monitors a sufficient number of program executions to learn the program’s

expected behavior.

• The alarm system is activated, and DCFI will raise an alarm when control flow viola-

tions exceed a threshold. DCFI can optionally continue learning even in this phase.

The key insight driving DCFI is that users should only execute code that is either familiar

to them or those that they trust. This thesis makes the following contributions:

1. It presents DCFI, a process virtualization system that learns a program’s expected

control flow by monitoring its executions.

2. It presents a hierarchical constraint system for constraining a program’s execution

based on its previously observed behavior.

3. It presents a modular control flow integrity technique that significantly constrains both

dynamically generated code and unverified use of potentially hazardous system calls.

4. It presents a permission system for constraining the relationship between JIT opera-

tions and the runtime behavior of dynamically generated code.

5. It evaluates DCFI on large, commonly used desktop applications including Microsoft

Office 2013, the Chrome web browser, and Adobe Acrobat Reader, uses DCFI to

detect several known exploits, and it measures the performance overhead of DCFI.

3

The thesis is organized as follows. Chapter 2 presents a typical usage scenario for DCFI.

Chapter 3 presents the DCFI approach. Chapter 4 discusses how to configure DCFI’s

alarms. Chapter 5 extends the basic approach to handle dynamically generated code. Chap-

ter 6 examines the DCFI defenses against current and hypothetical malware. Chapter 7

evaluates the effectiveness of DCFI on popular Windows programs, including the latest ver-

sions of Microsoft Office, the Chrome web browser, and Adobe Acrobat Reader. Chapter 8

discusses related work. We conclude in Chapter 9.

4

Chapter 2

Typical Usage Scenario

The goal of DCFI is to provide effective malware protection for modern computing en-

vironments. In this thesis we use as a motivating example the typical corporate software

environment in which an IT department maintains control over the applications available to

the employees, but DCFI is more broadly applicable. To protect corporate infrastructure

from malware, the IT department configures computers to run applications under DCFI.

Under this usage scenario, one approach for learning the expect control flow is for IT depart-

ment to run the application under DCFI so that it can learn the expected control flow. In

practice, there are other sources of training data available—many program of interest have

millions of users and are extensively tested by their vendors before release. Binary analysis

tools such as X-Force [35] could additionally be used in an automated training phase. These

sources have the potential for providing extensive information about a program’s ideal con-

trol flow. After the initial learning phase, the application is then released to the users with

a constraint configuration that allows the employees to use the application comfortably, yet

prevents most attacks.

In some training scenarios, the initial learning process may be incomplete for larger programs.

5

Instead of delaying the rollout, DCFI can enforce looser constraints on the application

allowing the administrator to release it to the users immediately. While the application will

be more vulnerable to attack under the looser constraints, DCFI will continue to learn the

application’s behaviors, and the learning rate will be much faster since observation data will

be collected across all users. As DCFI’s observations of the program’s behavior become more

complete, DCFI would progressively tighten its constraints. Note that for this reason, the

effectiveness of DCFI improves with the number of users, since the size of an application’s

complete control flow graph is finite and its potential to exhibit new behaviors will gradually

be exhausted.

6

Chapter 3

The DCFI Approach

Figure 3.1 presents an overview of the DCFI system. The system contains two primary

components: (1) the client-side DCFI monitor, which observes program executions to detect

potential attacks to the client machine and (2) the program signature server that collects,

aggregates, and distributes information about expected client program behaviors across client

machines.

DCFI monitors the execution of client programs to learn an initial set of constraints that

characterize a program’s typical control flow. Once DCFI has collected sufficient data

about a client program, it monitors for divergences from the known control flow that may

signify an attack. If DCFI detects an execution whose control flow violates the constraints,

significantly diverging from known behavior, it raises an alarm, which may be configured to

suspend or terminate the program.

DCFI extends the binary rewriting framework DynamoRIO[6] to efficiently monitor a

client program’s control flow. Client code is not executed directly from its original location

in memory, but copied into a code cache with nominal instrumentation and executed from

the cache. In most cases, DCFI minimizes overheads by only checking control flow integrity

7

Client
Program

DCFI

Operating System

Program
Signature

Server

Execution
Trace

End User Desktops

Program
Dataset

Figure 3.1: DCFI System Overview

constraints when code first enters the cache. One-time observations do not suffice for all

cases, e.g. indirect branches and returns, and in those cases DCFI instruments the cached

code to continuously monitor its control flow.

A centralized program signature server periodically collects traces from the client machines

and compiles them into an updated program dataset by (1) merging all client observations

together into a unified representation of the program control flow and (2) computing tighter

constraints based on recent control flow divergences.

At program startup, DCFI loads a program dataset containing (1) the known control flow

graph for the program and (2) a set of constraints on the execution of unrecognized control

flow. DCFI updates a program dataset as it learns more about the client program’s execu-

tion behavior, increasing the recognition of the program and lowering DCFI’s tolerance for

unrecognized execution behavior. Figure 3.2 presents DCFI’s learning cycle.

A key benefit of DCFI is that it reverses the current advantage that malware developers

have over older versions of a program. Popular security models concede malware development

8

A

B C

D

Trace File

DCFI

Execution

cmp ax bx
jge ax
add ax cx
jmp ax
add bx cx
sub dx cx

A

B

C
D

Dataset File

Constraints

A

B C

D

Re
co

rd

Merge

Monitor

Figure 3.2: DCFI Learning Cycle

time, such that the longer a program is actively used, the more time a malicious coder has to

develop an attack. The DCFI security model conversely improves security for a program the

longer it is used—not only is the attack surface progressively reduced, but it also becomes a

moving target. An attack that could potentially be successful in the first week of program

usage may be consistently detected by DCFI after the second week, at which point the

attack is obsolete.

Monitoring Program Executions: DCFI monitors program executions to dynamically

construct a control flow graph or CFG. The CFG is initialized from the CFGs constructed

by previous executions. Each node in the CFG represents a basic block of instructions that

was executed by the client program, where a basic block in DynamoRIO is a contiguous

sequence of instructions with one entrance and possibly many exits.

DCFI represents control flow transfers as CFG edges, so for example a jmp that represents

9

the ith exit from block a to block b is represented as the directed edge 〈ai, b〉. Each node is

annotated with the physical location of its first instruction in memory, known as its module-

relative tag, and a hash of its instructions. Edges are annotated with an enumerated type

(such as direct or indirect). Function calls are modeled with two edges—one from the call

site to the callee and one from the call site to the next instruction in the caller. When

a thread makes a system call, DCFI does not monitor the execution of the thread into

kernel code, but instead represents each system call as a node annotated with the system

call number. Control transfers at return instructions are only recorded in the graph when

they are unexpected, i.e., they return to a target other than the original call site. If a thread

performs an unexpected return, DCFI creates a CFG edge for the control transfer.

Static Control Flow: The majority of CFG elements can be discovered by static analysis,

including basic block hashcodes and direct branch targets. To avoid the difficulty of statically

decoding a binary image, DCFI maintains a signed copy of each module and consults it

whenever a new basic block or direct branch is observed during program execution. If the

original image contains a matching control flow element, it is recognized just as if it had

been observed in previous executions. It is normal for static control flow elements to diverge

from the original binary image, for example in the common case of system call hooks that

are installed at runtime, or for packed executables. To allow for these variations, DCFI

maintains a version number for each basic block tag, which is incremented each time a new

hashcode is observed at that tag. Since changing the target of a direct branch will also change

the basic block hashcode, DCFI can require direct branches from the original instance of

every basic block (per the binary image) to always have the original target address, yet can

also recognize runtime modifications of those basic blocks without artificially constraining

their direct branches.

Detecting Execution Anomalies: DCFI detects execution anomalies by monitoring the

execution for deviations from the program’s known runtime behavior as recorded in the

10

CFG. When the program first executes a new basic block a at address A, DCFI looks for

a node with identifier A in the CFG. If such a node is found, the node’s hash is compared

with the instructions in block a. Different hashes for the same block indicate a potential

violation of the execution’s integrity. Control flow transfers are likewise compared against

the corresponding CFG edges.

3.1 Anomaly Classification

A control flow anomaly does not necessarily indicate an attack. The CFG summarizes ex-

ecution behaviors that DCFI previously observed and thus the CFG underapproximates a

program’s legal executions. While execution anomalies are expected to be rare for small pro-

grams or programs with extensive execution histories, executions of large programs without

an extensive dataset may contain anomalies. Therefore, DCFI does not necessarily signal

an alarm for every anomaly it detects.

Instead, DCFI classifies anomalies on the basis of low-level observations about the divergence

from known control flow, and enforces constraints that tolerate a limited number of execution

anomalies in each class. Constraints are established by the program signature server on the

basis of (1) a user-specified false alarm tolerance, and (2) the frequency and size of anomalies

occurring in each class during recent program execution. Chapter 4 elaborates the DCFI

process for setting alarm thresholds in each anomaly class.

The key idea is to establish a hierarchy of anomaly classes ranging from specialized primitives

that target the type of divergences that appear in attacks to more general primitives that

include common divergences that can occur during normal execution.

1. Initially, DCFI strictly enforces constraints on attack primitives that occur rarely

during execution of normal programs.

11

expr ::= true | predicate | expr ∧ expr
predicate ::= bb-miss(event) | dbr-miss(event) |

new-br(event, edge-type) |
new-inv(event, edge-type) |
intvl(event, expr, θ) |
to-sys(event, expr, n) | trmpl(event)

edge-type ::= ind | susp-ind | ur | fork
gen-perm | gen-write

θ ::= time-constant
σ ::= tolerance parameter

Figure 3.3: Anomaly Classification Language

2. As DCFI continues to learn a program’s behavior, it tightens constraints on the

broader classes of anomalies until all aspects of a program’s control flow are precisely

constrained.

The driving observation behind anomaly classification is that the kind of control flow viola-

tions that are most useful to an adversary—and the most challenging to conventional defense

techniques—occur infrequently in ordinary programs. Consider, for example, sophisticated

attacks that use return oriented programming [37, 40, 8, 10] to build attacks using existing

code. These attacks by necessity generate a large number of unexpected returns, returns to

program locations that are inconsistent with the current call chain. To our knowledge, all

the unexpected returns in our experiments are caused by inelegant handling of fiber context

switches and call gates, and can be eliminated with simple improvements to DCFI. While

there is no reason that any particular anomaly class cannot occur in a given program—it is

possible to write a program in which any kind of anomaly occurs regularly—in practice it

turns out that most ordinary programs rarely execute the attack primitives that are essential

to today’s malware.

To make our discussion about anomalies more precise, Figure 3.3 and Figure 3.4 present

a language for classifying anomalies. An expr defines an anomaly class, such that each

event observed by DCFI that matches expr a is classified as an instance of anomaly class

a. A single event may match multiple exprs; i.e., anomaly classes are not always mutually

12

Predicate Description

bb-miss Basic block mismatch
dbr-miss Direct branch mismatch in a memory mapped module image
new-br Newly encountered branch of the specified edge-type
new-inv Invocation of a new branch of the specified edge-type
intvl CPU cycle count between occurrences of the specified event
to-sys Invocation of a specific system call while the

stack contains a frame in which event occurred
trmpl New dynamically generated trampoline

Edge Type

ind Indirect branch, having its target selected/computed at runtime
susp-ind New indirect branch with a non-exported target
ur Unexpected return from a callee to a target other than the caller
gen-perm Edge linking permission change to the region’s generated code
gen-write Edge linking a write to region of written code
fork Edge linking the main module to a child process

θ Time constant specifying a number of CPU cycles

Figure 3.4: Terms of the Anomaly Classification Language

exclusive. This language supports a broad spectrum of anomaly classes. For example, the

general class new-br(ind) includes all indirect branch edges not found in the current dataset.

Conversely, to-sys(new-br(ind), 0x66) specifies an attack primitive in which one or more

files are deleted from the filesystem while the current call stack has been influenced by an

unexpected indirect branch target (i.e., in at least one live stack frame, an indirect branch

was taken to a target that is new for that branch).

DCFI generates an event whenever it makes any of the following observations:

1. The execution includes a basic block for which: (1) there is no node in the dataset or

(2) the dataset node’s hash differs.

2. The execution takes a control flow branch for which there is no matching edge in the

data set.

3. The execution changes executable memory permissions.

4. The execution writes to executable memory.

13

5. The execution makes a potentially hazardous system call.

6. The execution creates a child process.

Each predicate captures an observation that DCFI can make about an event on the basis of

the execution history. While many such observations are possible, Chapter 6 explains how

each predicate addresses a class of application vulnerabilities. Figure 3.4 provides an overview

of each predicate. The time constant θ specifies a number of CPU cycles, as observed using

the x86 rdtsc instruction. Special edge types gen-perm and gen-write indicate memory

operations, as explained in Section 5.1, predicate trmpl constrains dynamically generated

code, as discussed in Section 6.4, and predicate fork constrains the creation of child processes.

Anomaly Constraints: To establish constraints on anomalies in program execution, DCFI

maintains a counter cexpr for each class of anomalies defined by expr. As the program

executes, DCFI observes a sequence of event and increments the counter cexpr for each

expr(event) that evaluates to true. The program dataset contains a set of thresholds τexpr,

and DCFI raises the alarm when any counter cexpr reaches corresponding threshold τexpr.

The remainder of this chapter describes implementation details of DCFI event observations,

and Chapter 4 presents the methodology for DCFI alarm configuration.

3.2 Indirect Branch Caching

When the program executes an indirect branch from the code cache, the target will naturally

be computed in the address space of the original application image, because the client ap-

plication continues to execute all of its computations just as if it were not running in a code

cache [7]. To keep the thread from returning to the native application code, an assembly

routine in the code cache looks up the address of the cached copy in a hashtable, pausing

the execution to cache a copy if none exists yet. This operation must be further interrupted

14

so that DCFI can generate an indirect branch event, not just for every new target block,

but for every new pair of from and to addresses. To minimize interruptions, DCFI caches

legal indirect control flow transfers and the assembly routine consults a second hashtable to

determine whether the current from/to address pair has already been observed.

3.3 Return Instructions

In the common case when the execution’s control flow at a ret instruction returns to the

caller, there is no need to record this information as this was the expected behavior. To

filter the corresponding edges from the CFG and prohibit ret statements from returning

to the wrong caller, DCFI maintains a shadow stack of return addresses for each program

thread. In the rare case of an unexpected target, a DCFI function is invoked to generate

the unexpected return event and write it to the execution trace.

Nested Shadow Stacks: When a Windows program calls the OS API, the OS can perform

a call back to the program before returning from the original API call. A fresh call stack is

created for the callback. To distinguish the two contexts, DCFI pushes an empty shadow

frame marked with a sentinel when it observes the instantiation of a callback stack, effectively

creating a nested shadow stack.

Windows can invoke the callback from chain of tail calls such that the return from the

callback goes directly to the program’s original API call site. In this case, the sentinel

value on the empty shadow stack frame is especially useful for keeping the shadow stack

synchronized. DCFI simply unwinds to the frame below the sentinel and compares that

frame with the current stack register to verify that the return is normal.

15

3.4 Modular API Preservation

Windows programs are comprised of many modules (both executables and DLLs). These

modules can be shared between different programs and in many cases are distributed sepa-

rately. Thus, DCFI modularizes the program’s dataset to allow sharing individual module

datasets between program datasets and to better handle updates to individual modules. In

our experiments, we found that the applications that comprise Microsoft Office have more

than half of their modules in common, allowing us to merge datasets for those modules across

the different applications in Microsoft Office.

3.4.1 Exported Functions

One challenge in modularizing the dataset is to make each individual module dataset com-

patible with any other module dataset it may be linked against. For example, Word and

Outlook use the latest Windows 7 version of comctl32.dll, while Excel and PowerPoint

use that version together with the earlier Vista version (simultaneously). All Office pro-

grams share the core module mso.dll which has many CFG edges into comctl32.dll. In

Word and Outlook, these edges always go to the Windows 7 version of comctl32.dll, but

in Excel and PowerPoint, half of the edges go to the older Vista version. To accommodate

this abstraction, DCFI splits the cross-module edges of the program dataset at the mod-

ule boundary and annotates them with a hash representing the identifier of the API being

invoked—usually the name of an exported function. For example, in the case of multiple

comctl32.dll versions, a single cross-module edge from mso.dll represents an invocation

of either version of the exported comctl32.dll function.

16

3.4.2 Callback Functions

Windows applications can use the callback programming pattern, which produces cross-

module calls to private functions having no exported name. Since the function call is linked

dynamically within the application at runtime, it would be overly restrictive for DCFI to

associate the corresponding cross-module edge with the specific function that is invoked, since

in the next execution of the same program could occur after an update and very reasonably

link to a different implementation of the function. To preserve the generic properties of the

callback mechanism, the cross-module edge is simply annotated with a hash representing

(for example) "<user32!callback>", where user32.dll is invoking the callback function.

The effect on program evaluation is that DCFI will allow the callback site to target any

function in any module that has ever been observed to receive any callback from user32.dll.

While this evaluation is less strict than for cross-module calls to exported functions, it does

constrain callback site while maintaining support for modularity.

3.5 Hash Canonicalization

To filter out location-dependent factors from the execution trace, canonicalization is applied

to all relocatable operands while computing the node hashes. A relocatable operand is an

absolute memory address that appears directly inside an assembly instruction. On disk,

these operands point to the location of the target within the disk file, but the Windows

loader is free to choose any physical location in memory for the module instance, causing the

relocatable operand targets to be incorrect. The Windows loader fixes this by searching every

module at load time for references to relocatable operands and replacing them with absolute

locations. Simply hashing the absolute locations generated by the relocation process would

cause DCFI to compute hashes that reflect the arbitrary locations of objects in memory,

resulting in spurious hash mismatches between program executions, so DCFI canonicalizes

17

the instructions before computing the hash by un-relocating such operands.

18

Chapter 4

Alarm Configuration

In a real world deployment, each threshold τexpr is calculated on the basis of (1) a user-

defined false alarm tolerance and (2) the empirical distribution of cexpr observed in the most

recent half of program execution history. The empirical distribution is only reliable when

the number of executions in the dataset is a few times larger than the inverse of the desired

user-defined false alarm rate; i.e., to establish a false alarm rate for the counter of 0.001%

requires the dataset to contain on the order of 200,000 executions.

For large programs having complex control flow, early releases of the dataset may require

such high thresholds on the more general predicates that little security is provided for those

classes of anomalies. For example, if τnew-br(ind) is calculated to be 200, DCFI might as well

allow an infinite number of them. The program signature server will disable such a predicate

until tighter convergence has been reached, since attacks can be designed to avoid exceeding

the given threshold. Predicates on specific attack primitives occur rarely in normal programs,

so in practice these will always be enabled by DCFI.

19

4.1 Statistical Modeling

The user may wish to set a lower false alarm rate than the length of the execution his-

tory allows, such that the calculated thresholds would be inaccurate. In this case DCFI

uses statistical modeling to estimate the thresholds. The program signature server employs

python package powerlaw [3] to generate a Power-Law or Log Normal distribution that best

fits the empirical data for each cexpr, and then applies the generated model to calculate the

corresponding τexpr.

For small data sets, the thresholds for new-br(ind) and new-br(susp-ind)) have default mini-

mum counts of 10 and 5, respectively, since lower thresholds are unrealistic for such general

classes of anomalies. While an exploit could be devised to take control of the program in

that number of branches, DCFI would continue to monitor execution, so the entire payload

would have to execute within these minimum thresholds. The thresholds for to-sys(ind)

are similarly cushioned with a minimum count of 10, excluding syscalls that could directly

damage the filesystem, registry, environment, drivers or boot configuration (Figure A.1). In

our experience, the tail portion of empirical data for each cexpr does not extend as far as

the corresponding statistical model, resulting in a tendency to moderately over-estimate the

required threshold τexpr.

20

Chapter 5

Dynamically Generated Code

Many mainstream Windows programs dynamically generate code at runtime. Therefore,

to provide effective control flow integrity for real applications, DCFI must recognize and

constrain the dynamically generated code that is executed by a program. In many cases, dif-

ferent code is dynamically generated in different executions—making it infeasible to require

that control flow matches for dynamically generated code. However, dynamic code genera-

tors produce code that interacts with the rest of the system through well-defined interfaces.

Thus, DCFI can learn how the dynamically generated code interfaces with the rest of the

system and later sandbox dynamically generated code to interact only via this interface.

Moreover, DCFI can learn what parts of an application generate code and then later only

allow execution of dynamic code produce by the application’s dynamic code generator.

Dynamic code generation opens the opportunity for sophisticated attacks that do not modify

static program code, but instead inject new code into dynamically generated code regions

and then redirect the execution of at least one (possibly new) thread into the injection.

When carefully implemented, the redirection can have a very small overlap with normal

application code, possibly just one indirect branch. While it is easy for DCFI to detect that

21

the injection is executing dynamically generated code, this cannot be an immediate cause for

alarm because most programs normally execute at least a few basic blocks of dynamically

generated code.

In the programs we have observed—dynamically generated code can be classified into two

distinct categories:

1. Trampolines: Small functions that bind with external components discovered at

runtime. The number of distinct trampolines generated by any module is typically

small enough to fit in the dataset.

2. JIT Code: Many applications incorporate JIT compilers to support internal web

components and online optimization. Both require vast dynamic modules typically

containing millions of basic blocks. JIT code typically never directly invokes system

calls and all of the JIT entry points and exits are linked exclusively with the generating

module.

The key difference between these two categories is that trampolines are typically conserved

across different executions while JIT code frequently varies across different executions.

Throughout this thesis, we use the terms “JIT code” and “trampoline” to refer to dynam-

ically generated code, and the term “generator” to refer to the pre-compiled module that

generates JIT code and/or trampolines.

Dynamic Code Generation: There are commonalities between the tasks faced by both

types of dynamic code generators. We can leverage three observations about the task of dy-

namically generating dynamic code of either kind to infer constraints on the code generators.

• The code generator allocates memory in which the dynamic code resides.

22

• A fixed set of call sites in the code generator modifies permissions on the pages con-

taining dynamic code.

• A fixed set of store operations in the code generator writes code to its executable

memory pages.

We next discuss the key differences between trampolines and JIT code.

Characteristics of Trampolines: The compact, predictable nature of trampolines makes

it possible to effectively learn and enforce control flow graphs for them. Matching control

flow graphs for trampolines is more complicated than for statically compiled modules as

the addresses of nodes in the dynamically generated code graph are arbitrary and therefore

cannot used to optimize the matching procedure. As trampoline code is executed, DCFI

maintains a list of candidate subgraphs that match all the blocks and branches of the tram-

polines that have been observed so far. If at any point a trampoline executes a block or

a branch that does not match any of the candidates in the dataset, DCFI increments the

counter associated with predicate trmpl. For any subsequent nodes and edges executed in

the unrecognized trampoline, DCFI will also increment the counters for the corresponding

node and edge predicates.

Characteristics of JIT Code: The diversity of inputs to JIT compilers makes it infeasible

to generate meaningful CFGs for the code they generate. Instead, DCFI represents the entire

JIT code region with a singleton node, and provides security by using the existing predicates

to learn the interfaces through which JIT code interacts with the rest of system and then to

eventually sandbox the JIT code to these interfaces.

Differentiating JIT code from trampolines is straight-forward—JIT code regions grow with-

out bounds and quickly become many orders of magnitude larger than even the biggest

trampolines. Moreover, should some future system generate gigantic trampolines, it would

be best for performance reasons to handle such trampolines using the JIT model.

23

5.1 Code Generation Constraints

As discussed earlier in this chapter, dynamic code generation in real world programs has a

number of properties that we leverage to prevent attacks. We summarize these properties

below:

• There are well defined entry points into dynamically generated code.

• There are well defined entries into the APIs that JIT code uses to interface with the

rest of the system. For example, JIT code never directly performs system calls.

• There is a fixed set of basic blocks that is used to make regions of memory executable.

• There is a fixed set of stores that write all of the dynamic code.

DCFI leverages these properties as the basis of a permission system for dynamic code

generation. DCFI learns or infers the constraints for a given application from previous

executions and then uses the learnt constraints to enforce the permission system on future

executions.

DCFI leverages the existing constraints on edges to constrain the entry and exits points to

dynamic code as described in Properties 5.1 and 5.1. These constraints effectively sandbox

dynamically generated code to interact with the rest of the system only via the well defined

APIs that are exposed to the dynamic code.

Properties 5.1 and 5.1 control how new code can be generated. Enforcing these properties,

for example, makes it impossible for an attacker to leverage a bug elsewhere in the system to

write new code on top of dynamically generated code. To implement these properties, DCFI

provides two important constraints on accesses to the memory pages on which dynamic code

resides. When DCFI observes a program set the executable permission on any page of

24

memory, several sets of gen-perm edges are added to the execution trace, one for each module

appearing on the call stack. These edges start from the basic block address of the most recent

stack frame for each module, and end at each of the trampolines and/or JITs residing on that

page of memory (see Section 5.3.2 for details). There will usually be very few such edges in

the dataset, since most programs generate dynamic code in a very systematic way, resulting

in DCFI quickly obtaining very tight constraints on the predicates new-br(gen-perm) and

new-inv(gen-perm) (defined in Figure 3.3 and Figure 3.4).

Predicates new-br(gen-write) and new-inv(gen-write) provide similar constraints on writes to

executable memory pages, effectively limiting the set of store instructions that can write

to a specific trampoline or JIT code region while it is executable.

5.2 Monitoring Dynamic Code Generation

Monitoring all writes to executable memory by instrumenting store instructions is potentially

very expensive, so instead DCFI leverages the virtual memory system to perform these

checks by artificially revoking the write permissions on all dynamically allocated executable

memory pages. When the client program writes to any of these pages, DCFI receives a

page fault and looks in a shadow page table to see if the readonly permission is artificial

or intended by the client program. In the artificial case, DCFI makes the page writable,

executes the write on behalf of the client, and resets the page to readonly. DCFI generates

a gen-write event at this time and writes the corresponding edges to the CFG. This approach

is very efficient for most code generating applications, though for a basic block that very

frequently writes to executable pages, DCFI will directly instrument the block for better

performance.

25

5.3 Dynamic Code Events

To generate events for the execution of dynamic code, DCFI must:

1. Assign each basic block to a trampoline or JIT.

2. Correlate each trampoline or JIT to the respective subgraph or singleton in the dataset

(if any).

3. Identify the basic blocks participating in each request for executable memory permis-

sion, and associate them with any dynamic code on those pages that gets executed.

4. Associate every basic block that writes to executable memory with the dynamic basic

blocks that were written.

5.3.1 Dynamic Module Discovery

When a program is executed in DCFI with no prior dataset available, DCFI infers the role

of each dynamic basic block. Each dynamic subgraph is initially designated as a trampoline.

If any maximal contiguous subgraph of dynamic code exceeds 250 basic blocks in size, its

generating module is designated as a JIT generator, and all of its dynamic code is replaced

with a JIT singleton node. This ensures that DCFI can precisely constrain standard tram-

polines while avoiding the potential of incurring large overheads by attempting to match

control flow graphs for JIT code regions or very large trampolines.

If a single module generates both trampolines and JIT code, DCFI simply designates all of

its dynamic code as JIT. In our experiments this rule is never applied, because every JIT

generator produces millions of nodes in a contiguous subgraph.

26

5.3.2 Shadow Page Table

To create the gen-perm and gen-write edges in the execution trace, and to evaluate any

related alarm predicates, DCFI makes an association between observed memory operations

and the execution of dynamic code. The lazy nature of the code cache makes this some-

what challenging, because at the time the memory operation occurs, the associated basic

blocks will most often not be discovered yet. For example, when the application writes to

executable memory, DCFI needs to create a gen-write edge from the basic block perform-

ing the write to the entry point of the new dynamic code. But the basic blocks for the new

dynamic code do not yet exist in the code cache—in fact they do not exist in memory at

all—because the write to executable memory is going to generate them. To simplify the

implementation, DCFI waits for an application thread to enter the dynamic code before

recording these edges:

DCFI maintains a shadow page table to track for each page: (1) the set of stores bbwrite

that write to executable memory pages and (2) the set of calls bbperm that changed a page’s

permission to executable. When a thread first enters the dynamic code on page P , DCFI

consults the shadow page table. If shadow page SP contains bbwrite entries, DCFI records a

gen-write edge from each bbwrite to that entry point of the trampoline or JIT on page P . If

shadow page SP contains bbperm entries, DCFI records a gen-perm edge from each bbperm to

that entry point of the trampoline or JIT on page P . These edges are recorded during the

initial discovery of each trampoline and JIT entry point on page P .

5.3.3 Distinguishing JIT Code from Trampolines

In general, ownership of dynamic code is assigned to the module that first enters it. This can

be problematic if a module generates JIT code and is the first user of trampolines generated

by other modules. In most cases the first entry into a trampoline is from the module that

27

generated it. But suppose module J generates JIT code and is also the first module to

branch into a trampoline generated by module T . It would be possible for DCFI to mistake

T ’s trampoline for J ’s JIT code, which would weaken the JIT constraints to include some

trampoline entry and exit edges.

DCFI distinguishes this condition on the basis of the following refinement to the procedure

for assigning ownership of dynamically generated code. Whenever JIT generator J branches

to an unidentified dynamic block, DCFI checks the shadow page table to verify that some

frame in J was on the call stack at the time the executable permission was granted to

that code page. This check will fail in the case that J branches to T ’s trampoline, and

DCFI accordingly leaves the identity of the dynamic block unassigned until an entry or exit

connects it to a module that satisfies the ownership check.

Note that if the ownership of a trampoline is mistakenly assigned to the wrong module, the

only consequence is that small trampoline regions may be duplicated in the CFG, resulting

in better constraints with slightly worse performance.

28

Chapter 6

Attacks

We divide attacks that seek to inject malicious behavior into an execution into four general

categories. We have designed DCFI’s predicates to build selective constraints on the vul-

nerabilities that are frequently leveraged by these attacks to provide protection while DCFI

is in the process of sufficiently learning the application’s CFG such that it can eventually

strictly enforce more general constraints. By using selective constraints on the execution

of applications, DCFI can substantially increase the difficulty of common attacks while it

completes the learning process.

6.1 Direct Code Modification

One simple way to attack an application is to directly inject malicious code into the existing

binary code. This attack can also be initiated at runtime by dynamically modifying the

in-memory image of a module. The predicates bb-miss and dbr-miss limit this attack by

recognizing basic blocks and direct branches that do not match the dataset. These constraints

are especially effective because they can also be applied to code outside the dataset by

29

consulting a signed copy of a module’s binary file.

Normal application behavior often includes rewriting a few basic blocks, usually to install

a hook in a system call trampoline or a common library function. The CFG encodes these

runtime modifications with an annotation on the corresponding node, so that the applica-

tion’s code modifications can be distinguished from malicious ones. Since most hooks occur

in central functions that are frequently used, the average and standard deviation for bb-miss

and dbr-miss are always zero after the first run of all our benchmarks.

6.2 Return Oriented Programming

A more sophisticated attack leverages a program bug such as a buffer overflow to change the

return addresses on the stack, effectively hijacking all the ret instructions in the unmodified

code of the victim program. The DCFI predicate new-br(ur) limits this attack by specifically

constraining the number of new unexpected return branches per program execution. As

discussed above, in our experience the number of unexpected returns in a normal program

execution is negligible. For those applications that may have more frequent unexpected

returns, the predicate new-inv(ur) can additionally constrain the number of times each new

unexpected return is invoked during the execution.

Recent conference publications have exposed vulnerabilities in the most advanced CFI tech-

niques. Three generic attack primitives are demonstrated by [9] to defeat kBouncer [34] and

ROPecker [12], among other CFI techniques. DCFI cannot be defeated by these primitives

because:

1. The shadow stack detects any call that does not return to the subsequent instruc-

tion, and predicate new-br(ur) constrains the occurrence of such unexpected returns

according to the frequency observed in the target program.

30

2. The DCFI predicates work equally well for detecting either a single contiguous widget

or a disjoint series of widget fragments; the DCFI predicate counts will be exactly the

same for either configuration of the same widget.

3. The DCFI dataset is never truncated or compressed.

In [39], specialized ROP attacks assembled from a minimal 32-bit C/C++ application (hav-

ing only an empty main() function) are demonstrated to defeat kBouncer, ROPecker and

ROPGuard [18]. By increasing the sophistication of the attack in [15], ROP gadgets built

only from kernel32.dll can additionally defeat a collective implementation of all the afore-

mentioned CFI techniques together with BinCFI [49]. These attacks are not able to defeat

DCFI for the reasons mentioned above (note that the DCFI shadow stack does correctly

distinguish a tail call from an unexpected return).

6.3 Indirect Branch Manipulation

Another popular malware target is the control flow branches for which the target is com-

puted at runtime. This category accounts for about 30% of all branches in our benchmark

applications. The compiler generates an indirect branch whenever multiple targets are possi-

ble, for example in the function table of a polymorphic class, or an invocation of a “listener”

function. Indirect branches are vulnerable to attack because an adversary can hijack them

by changing the target address at runtime, thereby redirecting the control flow. A common

technique is to leverage a buffer overflow to overwrite an exception handler address on the

stack [28], or to replace data objects with impostors having phony function tables [42, 21]. It

can be difficult to determine whether an arbitrary indirect branch target represents correct

or corrupt program behavior. Various attempts have been made to compute the correct set

of branch targets by statically analyzing the code, but this approach has significant limi-

31

tations; while the information does of course exist, it is inconveniently spread out among

numerous parties such as the compiler, the linker, the developer, and the runtime loader.

Attacks Comprised of Existing Widgets

Jump-oriented programming (JOP) [5] modifies several branch targets to construct a set of

code widgets from unmodified basic blocks. The predicate new-br(ind) is often insufficient

to prevent this type of attack, because ordinary executions of large programs with small

training sets can often invoke a dozen or more new indirect branches (or new targets). Three

predicates progressively make indirect branch constraints more selective, allowing for new

indirect branches typically observed while still protecting against attacks.

1. new-br(susp-ind) selects for indirect branches with a target that is neither an exported

function nor the target of any other indirect branch in the program dataset. This

predicate leverages the observation that some strategies for building attack widgets

transfer control to arbitrary locations in a function while structure entry points are by

far the most common targets for indirect branches.

2. new-br(susp-ind)∧new-inv(ind) counts the number of invocations for each new-br(susp-ind).

In our experiments (Chapter 7), roughly half the instances of new suspicious indirect

branches were invoked only once or twice. Consequently DCFI sets a low threshold on

this predicate, thereby preventing an attack from repeatedly using the same widget.

3. intvl(new-inv(ind), θ) counts invocations that occur at intervals shorter than θ. For

new-br(ind) that were frequently invoked in our experiments, most invocations were

separated in time by more than 10,000 CPU cycles, resulting in very low thresholds for

τintvl(new-inv(ind),10k) and τintvl(new-inv(ind),1k). This constraint imposes a timing obligation

on the adversary, who must find widgets that execute for a sufficiently long time before

calling the next widget.

32

Single Branch Attacks

Alternatively, the adversary may focus the attack on a single indirect branch that leads to

an especially useful function or system call [26, 30]. By corrupting the contents of an object

that is the receiver object for a virtual method call later in the execution, the normal func-

tionality of the program can be coerced into unintended operations—or intended operations

at unintended times—such as leveraging support for running shell commands to format the

hard drive. This attack relies on building an impostor of an object that is normally used

for important system calls, which are then hijacked to carry out the attack. Since the ad-

versary can corrupt one object to become an impostor of another object type, any error in

the program can be a launch point for attack on any system call in the program. Detecting

this kind of attack on the basis of the DCFI indirect branch predicates alone would require

waiting for the dataset to be effectively 100% complete.

To focus constraints on the single-branch attack, the predicate to-sys observes the invocation

count of each potentially hazardous system call that occurs on the substack following the

specified expr. For example, the expression to-sys(new-inv(ind), s) will cause DCFI to raise

system call suspicion every time a new indirect branch is invoked, and if any system call s

is invoked before the stack drops below the suspicious frame, the counter cto-sys(new-inv(ind),s)

will be incremented. In our experience with common Windows applications, it is unusual

for a program to execute potentially hazardous system calls on the substack after a new

indirect branch. This selectivity makes it possible to set tight constraints on suspicious

syscall predicates without false alarms.

33

6.4 Dynamic Code Generation Attacks

We next discuss how DCFI’s predicates target attacks that inject malicious code into dy-

namically generated code regions. DCFI monitors indirect branches for transfers from pre-

compiled code to dynamically generated code. When DCFI detects such a transfer, it

consults the dataset to determine whether a previous execution branched into dynamically

generated code from that basic block. If not, DCFI sets predicates ind and susp-ind to

true for that edge and all subsequent edges in the dynamic code region. This limits the size

of the injection to the counter threshold designated by the constraints on these predicates.

If any system calls are made before the thread returns from the stack frame in which the

new-br(ind) was observed, the counters for those system calls will also be incremented (see

Section 5.1).

6.4.1 Trampoline Injection

If a thread enters injected malicious code from a basic block that normally enters a trampo-

line, DCFI will try to match the injection to the set of trampolines reachable from that block.

DCFI will consider each of these trampolines to be a candidate match until the injection

executes a basic block with a hash that does not match the corresponding trampoline block,

where the correspondence is mapped by branch ordinal. The hash uniquely represents the set

of instructions in the basic block (modulo absolute operands when the code is dynamically

generated), so the match will fail if any instruction in the injection differs from an instruction

in the corresponding trampoline block. DCFI discards a candidate when any of its basic

blocks does not match the execution of the monitored thread. Likewise if the branches in

the injection link the basic blocks together into a different structure than the trampoline,

the edges will not match and DCFI will discard the candidate. If at any point there are no

remaining candidates for the dynamic code, DCFI will consider the executing basic block

34

or edge a mismatch, and increment the counters for predicates bb-miss or dbr-miss, along

with the counters for more specific predicates such as new-br(ind) and new-br(susp-ind).

6.4.2 Injection into JIT Code

To avoid detection by the DCFI predicates on basic blocks and edges, malicious code could

potentially gain control through a basic block that normally enters a JIT code region (if the

program has any), since that is the only category of code that DCFI cannot monitor at the

level of basic blocks and branches. Note that to successfully inject code into a JIT region,

the attacker must get the JIT to write the code (due to DCFI’s constraints on which stores

are allowed to generate code). Assuming an attack does this, the injected code will be free

to use any instruction sequence without risk of triggering the DCFI predicates.

While DCFI cannot control the exact instruction sequence of such an attack, it does effec-

tively sandbox the attack code. The key idea is to monitor the execution of dynamic code

and match the exit edge from dynamic code to pre-compiled code (including the system call

node). Such a “dynamic code exit” branch is monitored under the dbr-miss and new-br(ind)

predicates, causing those counters to increment if the target block of the dynamic code exit

has never been observed as the exit point from that particular JIT. In this way, these edge

predicates constrain the code injection to using the normal API of the program’s JIT code

(if it has any). These same predicates constrain system calls because each system call is

represented as an edge to a syscall singleton node.

6.5 Non-Control Data Attacks

Recent research demonstrates that many attacks on the control data of an application (e.g.,

ROP or JOP), can also be carried out through non-control data, either by influencing pro-

35

gram decisions at conditional branches and data-dependent indirect branches, or by mod-

ifying program state to change the effect of existing functionality [44]. In additions, the

persistent malware proposed in Dynamic Hooks [45] restricts its direct influence to non-

persistent data—data not reachable from any global variable—making it invisible both to

hook detection mechanisms and coarse-grained CFI. Malware developers can discover vulner-

abilities in the non-persistent, non-control data processing of an application using symbolic

execution, making it a potentially significant threat in the near future.

The unique advantage of an attack on non-persistent, non-control data is that it can evade

defenses that only observe a subset of application functionality. These defenses can only

prevent an attack from getting started in certain specific ways, and are blind to many

varieties of payloads. DCFI renders evasive strategies ineffective because every category of

control flow in the vulnerable process—and all of its child processes—is subject to the DCFI

constraints.

6.6 Incremental Attacks

In some deployments, DCFI may continually improve its program datasets based on observed

program behaviors in the field. This deployment scenario opens up the threat of adversarial

training in which an adversary constructs a sequence of attacks that incrementally adds the

necessary edges to the CFG to implement the final full attack while remaining below the

alarm threshold.

There is a straightforward countermeasure to such incremental attacks. At a high level, the

purpose of updating the CFG with edges is to enable DCFI to tighten the alarm constraints

to be more sensitive to potential attacks. Conceptually, a solution to adversarial training

is to retain program data sets (comprised of both a CFG and the corresponding alarm

36

thresholds) for multiple different timestamps in the training process. DCFI would then

sound an alarm if the alarm thresholds for any of the program data sets are exceeded. Thus

an incremental attack would only be successful if initially performing the full attack would

have been successful.

This can be efficiently implemented by observing that edges added later are likely to be

infrequently traversed. Thus, we could use the current CFG implementation strategy to

store the oldest CFG and then add a special type of edge with a timestamp to store the

edges that are added in the updated datasets. DCFI could then efficiently maintain different

versions of the alarm counters for each dataset.

37

Chapter 7

Evaluation

The goals of our evaluation are: (1) to evaluate the convergence of DCFI’s predicates for

common desktop applications, (2) verify that DCFI can successfully detect a variety of

known exploits without raising false alarms, and (3) measure DCFI’s overhead using the

SPEC CPU 2006 benchmark suite. A small-scale simulation is expected to yield significantly

worse convergence results than those observed in actual usage as we would expect real world

usage to include orders of magnitude more observations.

We structure our evaluation into three sets of experiments:

• Predicate convergence experiments that measure whether the predicate counts converge

for real world usage of large applications. The “real world” experiments (Section 7.1)

measure the tightness of DCFI constraints while it is learning new behaviors. The

procedure-based experiments (Section 7.2) measure predicate convergence for regular

usage patterns in which DCFI observes every distinct application feature at least twice.

• Exploit experiments (Section 7.3) in which we enable the alarm system and evaluate

how effectively DCFI can detect known exploits and how many false alarms we see for

38

normal executions.

• Performance experiments (Section 7.4) that measure the overhead of DCFI on the

SPEC 2006 benchmarks.

We conduct the experiments in Windows 7 SP 1 running in VirtualBox 4.2.10 on an Intel

Xeon E3-1245 v3 CPU. The Windows Update service and application updates are disabled to

maintain consistency throughout the experiments. The host operating system for VirtualBox

is Ubuntu 13.04. The experiments focus on 6 commonly used Windows programs:

1. Microsoft Office 2013 (Word, PowerPoint, Excel, Outlook)

2. Google Chrome (web install from December 2013)

3. Adobe PDF Reader XI (web install)

7.1 Eating Our Own Dog Food

In the following experiments we did not follow a specific procedure for using the applications,

but simply performed our normal daily tasks with them over the course of 2 or 3 weeks. The

program dataset was regularly updated until the last 5 days of the experiment, at which

point the data set was frozen and the trial began. Since there were no fixed bounds on

application usage or input content, we expected to exercise some features during the trial

that were not covered by the training. To demonstrate the safety of DCFI while discovering

reasonable amounts of new code, the reporting for these experiments focuses on predicates

that discern a degree of risk from unrecognized indirect branches.

39

7.1.1 Everyday Email with Outlook

The author configured Outlook with IMAP access to his personal email account and POP

access to his university gmail account. Throughout the course of the training and trial peri-

ods, he viewed every incoming message, allowing it to load all images along with peripheral

content such as conversation history and related posts from Facebook and LinkedIn. He also

created filters to sort incoming messages among 25 folders.

Only a handful of new indirect branches are encountered during the test, but considering

that Outlook is connected to the Internet and receiving large amounts of untrusted content,

it is very possible for a well-crafted exploit to succeed without producing a larger divergence

from expected control flow. For this reason, predicate to-sys observes syscalls invoked while

the call stack contains a live frame in which any new indirect branch was executed. Three

memory related syscalls occur in this context: NtMapViewOfSection, NtProtectVirtualMemory

and NtAllocateVirtualMemory.

While these could be used in a code injection attack, they are relatively safe while DCFI is

using this Outlook dataset because there is no JIT. If an exploit were to begin by mapping

packed malware to memory and setting it executable, DCFI would assume any entry point

to the injection could only reach a trampoline, and therefore DCFI would enforce the stricter

trampoline constraints.

7.1.2 Browsing with Google Chrome

To build up the program dataset, the author performed all research and personal browsing

tasks in Chrome under DCFI, including online shopping, reading news, social network-

ing, watching videos, googling for technical information, reading related works, and down-

loading software components. To broaden the range of the experiment, he selected several

40

feature-intensive websites, including the top 10 best Flash and HTML 5 websites reported

by ebizmba.com, the demo page of JavaScript 3D and WebGL toolkit threejs.org, and many

sites referenced by backbonejs.org. He especially enjoyed watching the Super Bowl live via

Flash video, and followed Facebook posts about the game, sent SMS via Google Voice to

fellow fans, and followed live game stats on cbssports.com.

During the 5 day trial period, he returned to every site visited during training, addition-

ally browsing similar sites that had been specifically avoided during training. To stress the

DCFI dataset, he visited script-intensive sites featuring JavaScript art, such as (1) a video-

sphere [19], which renders several videos simultaneously on 3D tiles that form the wobbly

surface of a sphere and (2) a textured video [4], which continuously integrates a triangular

distance texture into each frame of a video.

In a few executions, DCFI observed the combination of memory mapping and setting mem-

ory permissions, which in the context of Chrome is much more dangerous than Outlook

because there are two JIT areas that DCFI cannot protect with basic block and branch

predicates. Most of these suspicious executions additionally had one new-br(gen-perm)—if

a code injection caused this variation in memory handling, it could have feasibly replaced

a JIT entry point with its injection. But these executions contain no other dangerous sys-

tem calls under stack suspicion, indicating a successful exploit would have to return from

the manipulated branch without further anomaly, and then rely on the normal behavior of

Chrome to carry out the damaging system calls.

7.1.3 Writing This Paper

The author of this thesis edited the source latex files in SciTE running in DCFI, and

then compiled them to PDF under DCFI using MikTek pdflatex. The training period

included the first draft of Chapters 1-5 of the thesis, along with implementation of the

41

DCFI predicates gen-perm and gen-write, and the post-processing tools that generated the

charts and tables.

Memory management syscalls occur in SciTE during a few executions, though it is relatively

safe because the SciTE dataset only contains a single dynamic trampoline having 3 basic

blocks. This offers very little slack for a code injection to operate without setting off the

DCFI alarm. A few new indirect branches are encountered in several runs of pdflatex,

usually caused by layout variations or the addition of a new package. But this dataset

contains no dynamic code, which means that in real usage DCFI would raise an alarm for

any code injection. Moreover, no dangerous system calls are ever made under the direct

influence of the new indirect branches.

7.2 Convergence for Large Applications

These five experiments simulate typical office application usage of viewing, editing, and

creating documents. We have designed our experiments to simulate the diverse usage that

office applications receive in the real world. Our experiments are structures as a set of

sessions that explore new application usage scenarios. Each session took 2 to 5 minutes, and

was repeated 20 to 100 times. We started each experiment with a baseline data set built

by using the application generically, but not for the prescribed usage scenario. We updated

the program dataset after each session in the training portion of each experiment, and then

stopped updating the dataset for the test portion of the experiment. Figure 7.1 reports

average predicate counts for the first half of the training set, the complete training set, and

the test set.

In each session, we performed ordinary tasks such as creating and editing documents. We

tried to simulate the diversity of real world usage by performing tasks in the many different

42

Word Create PowerPoint Create Excel Create
Predicate 1

2
Training All Training Test 1

2
Training All Training Test 1

2
Training All Training Test

new-br(ind) 2k ± 2k 21.0 ± 13.3 8.90 ± 1.07 2k ± 1k 149 ± 91 13.8 ± 5.7 589 ± 359 183 ± 119 7.07 ± 2.97
new-br(susp-ind) 393 ± 352 6.90 ± 3.37 1.50 ± 0.56 639 ± 544 37.9 ± 21.9 4.00 ± 1.46 156 ± 90 44.6 ± 26.5 2.47 ± 1.16
new-inv(susp-ind) 29k ± 29k 22.4 ± 11.8 2.90 ± 1.38 1k ± 1k 924 ± 832 7.88 ± 3.63 820 ± 691 858 ± 661 25.1 ± 17.0
new-br(ur) 0.60 ± 0.60 0.10 ± 0.10 0.00 ± 0.00 1.33 ± 1.21 0.20 ± 0.18 0.88 ± 0.88 1.43 ± 1.43 0.14 ± 0.13 0.00 ± 0.00

Figure 7.1: Predicate convergence in procedure-based experiments (lower is safer)

ways that the programs support. For example, we used a variety of interfaces such as the

hover menu, the ribbon menu, and shortcut keys.

7.2.1 Creating Microsoft Word Documents

For this experiment, we created 10 new documents in the training set and 10 new docu-

ments in the test set. In each document, we replicated the first page of a (distinct) research

paper randomly chosen from the 2013 USENIX Security Symposium. The replica included

all formatting except figures and references, and we uploaded each file to a SkyDrive ac-

count through the ”Save As...” dialog (which internally is a complete instance of Windows

Explorer).

DCFI learns the new functionality from the SkyDrive connector in the first 5 iterations.

Column editing was also new to this dataset, and only 8 runs were needed to reach effective

coverage.

At this level of convergence, the most permissive predicate is new-br(susp-ind), which could

allow up to 8 suspicious indirect branches (20 indirects overall), with fewer than 50 total

invocations (i.e., not per branch). It could be challenging to implement an effective payload

under these constraints.

43

7.2.2 Creating PowerPoint Presentations

For this experiment, we created 25 short presentations about software security in the training

set and 25 in the test set. Each presentation started with a template downloaded through

PowerPoint’s HTML browser, we then created a title slide and 3-4 additional slides with

2-8 bullet points. After adding a conclusion slide featuring an image downloaded through

PowerPoint’s HTML-based online image search, the file was saved to the local disk.

Four modules produced significant new code that required 25 executions to reach coverage,

partly because of user variations in creating and manipulating bullet points.

7.2.3 Creating Excel Worksheets

For this experiment, we created 15 Excel worksheets in the training set and 15 in the test

set. Each worksheet replicated the crime data reported by the FBI in 2012 for a different

state. Population and crime count data were manually entered, and formulas were inserted

to calculate the crime rate per category and the state totals. We roughly replicated the

formatting from the web page and saved each worksheet to the local disk.

Most of the new-br(susp-ind) occurred in 4 runs for which the input data caused a “divide

by zero” error in the cell formula for the crime rate. Some of worksheets had roundoff errors,

and thus like real world usage we improvised new and different formulas that avoided these

errors.

7.2.4 Viewing PDFs with Adobe Reader

To establish basic coverage of the broad range of formats and graphics found in PDF files, a

screen robot paged through 5,000 randomly downloaded documents, uploading them to ac-

44

robat.com through the reader’s Flash-based file browser. In the test we viewed and uploaded

100 (distinct) manuals for personal security products.

During the test set, the sole anomaly we encountered was 17 suspicious indirect branches.

Our predicates maintains effective constraints even under this anomaly as only 11 distinct

syscalls were ever invoked under new indirect branches in this experiment—all benign in the

observed combination.

7.2.5 Giving PowerPoint Presentations

A screen robot trained DCFI for PowerPoint by watching 2,000 randomly downloaded pre-

sentations. To test convergence, we viewed 100 (distinct) nutrition and health lectures from

the FDA website.

The dataset converges substantially over the course of the training, with an average of 100

new indirect branches in the first half of training reduced to an average of just one during the

test runs. Out of all test executions, even the significant outlier encountered just 6 suspicious

indirect branches.

7.3 Exploits

Four exploit experiments demonstrate that DCFI does not raise false alarms during normal

program execution, but consistently detects exploits—raising the alarm before the payload

is executed. We were unable to find reliable exploits for the recent versions of our office ap-

plications from the previous section. This is likely because vendors pay substantial bounties

that effectively keep exploits off the market [27, 41]. Instead, we chose a representative set

of published exploits [29, 32, 31] that cover a variety of application types and vulnerabilities.

45

We trained DCFI to recognize normal execution of each vulnerable program in two phases:

the first to establish coverage of a substantial feature set, and the second to calculate effective

alarm thresholds. We used the statistical modeling method because the datasets were too

small for calculating thresholds at our target false alarm rate of (empirically) zero.

7.3.1 OSVDB-ID 104062 · Notepad++

We trained DCFI to recognize Notepad++ and the CCompletion plugin during development

of a 500-line graphical chess game. After enabling the alarm, we continued adding features

for one hour with zero false alarms. Then we opened the published exploit file, selected the

text and invoked the CCompletion “locate identifier” function, which attempts to exploit a

buffer overflow. DCFI raised the alarm on the unexpected return predicate as the exploit

attempted to gain control of eip.

7.3.2 OSVDB-ID 93465 · Adrenalin Player

We trained DCFI to recognize the Adrenalin multimedia player by opening and modifying

dozens of playlists, and playing 100 mp3 files. After enabling the alarm, we continued similar

usage of the player for two hours with zero false alarms. Then we opened the published

exploit playlist, which leverages a buffer overflow to initiate an ROP widget that forks an

arbitrary child process. DCFI raised the alarm on the new-br(ur) predicate when execution

first entered the chain of bogus return addresses.

46

7.3.3 CVE-2014-1610 · MediaWiki

We trained DCFI to recognize Microsoft IISExpress running MediaWiki by creating and

editing pages, creating new users, and uploading files. The published exploit leverages

unsanitized input to manipulate a DOS command into executing a malicious subexpression,

which has the side effect of sending malformed input to the ImageMagick program (the

original callee of the command). We wanted to demonstrate that DCFI can detect the

specific actions of an exploit, not just error handling anomalies caused by a side effect, so we

deliberately sent a variety of bad http parameters to the thumbnail script during training.

After enabling the alarm, we continued posting on the wiki for one hour—also sending more

incorrect (but benign) inputs to the thumbnailer—all with no false alarms. Then we invoked

the published exploit. Since it only manipulates non-control data, it had no effect on the

control flow of the intermediate IIS and PHP processes. DCFI raised the alarm on the first

instance of predicate intvl(new-br(ind), 103) in the spawned DOS shell.

To evaluate the resilience of the DCFI constraints, we artificially raised all indirect branch

thresholds for the DOS shell, allowing the hostile command to execute. Then we challenged

successive layers of the DCFI constraint hierarchy:

1. First, the exploited DOS command attempted to download a file using the Windows

utility bitsadmin. DCFI raised the alarm on predicate new-br(fork) because the DOS

dataset contained no fork edge to a process named bitsadmin.

2. After artificially raising the threshold for new-br(fork) in the DOS dataset, we repeated

the exploit. DCFI raised the alarm because there is no DCFI dataset for the bitsadmin

program in the MediaWiki installation.

3. Finally we extended the exploit command to first copy the bitsadmin program to a

temp directory and rename it to gswin32, which is commonly invoked by PHP via

47

the DOS shell. DCFI raised the alarm within the (renamed) bitsadmin process on

the new-br(ind) predicate, because the observed control flow did not match the DCFI

dataset for gswin32.

DCFI was configured to throw an exception on alarm, so IIS terminated the attack threads

gracefully, allowing Media-Wiki service to continue despite the exploit attempts.

7.3.4 CVE-2006-2465 · mp3info

A script trained DCFI to recognize the mp3info utility by executing 2,000 randomly formu-

lated view and edit commands on 300 mp3 files. After enabling the DCFI alarm and adding

50 more mp3 files, the script executed 500 similar commands with no false alarms. Then

the script executed the published exploit, in which a specially crafted command leverages

a buffer overflow to pivot the stack into an ROP chain. DCFI observed the phony return

address and raised the alarm on the new-br(ur) predicate.

7.4 Performance

We evaluated the performance of DCFI relative to native execution speed on the SPEC

CPU 2006 benchmark suite [20]. SPEC CPU 2006 consists of a diverse set of CPU bound

applications across several different application domains and languages—SPEC CPU 2006

contains 7 C++ applications, 12 C applications, 4 C/Fortran applications, and 6 Fortran

applications.

We measured a geometric mean of 25.5% slowdown across all of the benchmarks in SPEC.

Figure 7.2 presents the individual overheads. In our experience, our current prototype of

DCFI on average doubles DynamoRIO’s instrumentation overhead for indirect branches.

48

Performance has not been our focus for DCFI, and a number of opportunities remain to

further reduce overhead. Our current implementation of DCFI disables DynamoRIO’s trace

cache for ease of implementation. Reenabling the trace cache would eliminate DCFI’s in-

direct branch instrumentation overhead in many cases and based on experiments with Dy-

namoRIO would likely significantly reduce the overheads of DCFI on the SPEC benchmarks.

Performance Overhead of DCFI

400.perlbench 2.03 401.bzip2 1.22 403.gcc 1.61 410.bwaves 0.97 416.gamess 1.22

429.mcf 1.05 433.milc 1.00 434.zeusmp 1.06 435.gromacs 1.14 436.cactusADM 1.05

437.leslie3d 0.97 444.namd 1.01 445.gobmk 1.50 447.dealII 1.27 450.soplex 1.12

453.povray 2.40 454.calculix 1.11 456.hmmer 1.03 458.sjeng 1.88 459.GemsFDTD 0.96

462.libquantum 1.01 464.h264ref 1.33 465.tonto 1.33 470.lbm 0.92 471.omnetpp 1.49

473.astar 1.04 481.wrf 1.11 482.sphinx3 1.21 483.xalancbmk 3.17 Geometric mean 1.255

Figure 7.2: Normalized DCFI Execution Times for Spec CPU 2006

Measuring the performance overhead of DCFI on our larger Windows applications is chal-

lenging because they are interactive and it is not clear exactly what to time. However, we

report our subjective experiences using these applications. The user experience of DCFI for

a small program like SciTE is not distinguishable from native execution, even while quickly

editing many large source files before a paper deadline. More complex programs like Word

take a few seconds longer to start, and certain features take a couple seconds to load (e.g.,

the built-in image search), but the user interface is otherwise responsive and natural. Pro-

grams that generate significant amounts of dynamic code have similar delays in DCFI, as

is typical of dynamic binary translation.

49

Chapter 8

Related Work

DCFI is distinguished from previous CFI techniques by its dynamic approach to discovering

the target program’s normal control flow. The key advantages of DCFI relative to other

approaches [46] are that it is able to handle self-modifying code, dynamic code generation,

and can potentially more precisely enforce control flow as it is not constrained by fundamental

limitations of static analysis.

The vtable protection tool SafeDispatch[22] instruments C++ object function tables with

a dynamic check that ensures only valid targets in the class hierarchy are called. Other kinds

of control flow branches are not secured. Within the domain of vtable pointers, DCFI can

provide stronger constraints by discovering at runtime which targets are actually called from

each individual branch. Other limitations of SafeDispatch are that (1) it will instrument

base classes in shared libraries to reject subclass targets in any library that was not available

at the time the tool was applied and (2) it requires source code that may not be available

to the end user.

A similar work (unnamed) [43] assembles vtable data at runtime to avoid the former limita-

tion. It performs best among major CFI techniques, but only protects forward edges in the

50

CFG, and also requires source code to be available.

CCFIR [48] uses a static rewriter to provide CFI with extremely low overheads. CCFIR

does not support protecting applications with dynamic code generation or self-modifying

code and hence DCFI is more broadly applicable.

Several approaches target specific attacks [16, 11, 33], such as ROP, but may not be as robust

as CFI to new types of attacks.

BinCFI also instruments COTS binaries, inserting dynamic bounds checks for indirect branches

and routing them through auxiliary trampoline tables[49]. The set of allowed branch tar-

gets is approximated on the basis of developer and compiler conventions, resulting again in

looser constraints than the DCFI predicates can specify. When applied to an unusual bi-

nary, for example having hand-coded assembly, the instrumentation will either skip over the

unconventional code, or will instrument it incorrectly and cause program errors. The DCFI

predicates are fully compatible with any executable code, including dynamically generated

code that cannot be instrumented on the basis of static analysis even at runtime.

Clearview [36] uses learning to patch software errors. Clearview uses Daikon to learn con-

straints on variables, identifies violations of these invariants on erroneous executions, and gen-

erates patches the restore the invariants. While DCFI uses similar techniques to Clearview,

a key difference is that Clearview focuses on generating repairs (and relies on external mech-

anisms to detect erroneous executions) while DCFI focuses on detecting attacks.

XFI is a static rewriter-based approach to CFI [17]. It checks coarser grained constraints

on control flow that DCFI, cannot handle hand-coded modules, and cannot handle the

dynamically generated code that appears in many modern applications. MoCFI seeks to

enforce CFI on smartphones [14]. It uses static analysis to extract the CFG and simply

enforces that statically unresolvable indirect jumps target a function entrance. DCFI can

enforce more precise constraints on control flow. Program shepherding enforces various

51

execution policies such code origins on program executions [23]. In general it enforces weaker

properties than CFI systems.

PittSField [24] and other SFI [47] tools can verify that assembly code with certain properties

maintains type safety. SFI in general provides stronger guarantees than CFI, but is only

applicable to specially generated code.

52

Chapter 9

Conclusion

We presented DCFI, the first tool for enforcing control flow integrity based on previous

observations of a program’s runtime behavior. DCFI can effectively handle dynamic code

generation by inferring and then enforcing a permission system on dynamic code. Our expe-

rience indicates that DCFI is able to effectively enforce constraints on real-world programs

that would make effective attacks more challenging.

53

Bibliography

[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-flow integrity. In 12th ACM
Conference on Computer and Communications Security, CCS, 2005.

[2] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-flow integrity principles,
implementations, and applications. ACM Transactions on Information and System
Security, 13(1), October 2009.

[3] J. Alstott, E. Bullmore, and D. Plenz. powerlaw: A python package for analysis of
heavy-tailed distributions. PLoS ONE, 9(1):e85777, 01 2014.

[4] beginfill.com. beginfill.com homepage. beginfill.com/WebGL_Video3D, 2014.

[5] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang. Jump-oriented programming: A new
class of code-reuse attack. In Proceedings of the 6th ACM Symposium on Information,
Computer and Communications Security, ASIACCS, 2011.

[6] D. Bruening. Efficient, Transparent, and Comprehensive Runtime Code Manipulation.
PhD thesis, MIT, 2004.

[7] D. Bruening, Q. Zhao, and S. Amarasinghe. Transparent dynamic instrumentation.
In Proceedings of the 8th ACM SIGPLAN/SIGOPS Conference on Virtual Execution
Environments, VEE, 2012.

[8] E. Buchanan, R. Roemer, H. Shacham, and S. Savage. When good instructions go bad:
Generalizing return-oriented programming to RISC. In Proceedings of the 15th ACM
Conference on Computer and Communications Security, CCS, 2008.

[9] N. Carlini and D. Wagner. ROP is still dangerous: Breaking modern defenses. In 23rd
USENIX Security Symposium, August 2014.

[10] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham, and M. Winandy.
Return-oriented programming without returns. In Proceedings of the 17th ACM Con-
ference on Computer and Communications Security, CCS, 2010.

[11] P. Chen, H. Xiao, X. Shen, X. Yin, B. Mao, and L. Xie. DROP: Detecting return-
oriented programming malicious code. In Proceedings of the 5th International Confer-
ence on Information Systems Security, ICISS, 2009.

54

beginfill.com/WebGL_Video3D

[12] Y. Cheng, Z. Zhou, M. Yu, X. Ding, and R. H. Deng. ROPecker: A generic and practical
approach for defending against ROP attack. In Proceedings of the ISOC Network and
Distributed System Security Symposium (NDSS ’14), 2014.

[13] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P. Bakke, S. Beattie, A. Grier,
P. Wagle, and Q. Zhang. StackGuard: Automatic adaptive detection and prevention of
buffer-overflow attacks. In Proceedings of the USENIX Security Symposium, USENIX
Security, 1998.

[14] L. Davi, R. Dmitrienko, M. Egele, T. Fischer, T. Holz, R. Hund, S. Nürnberger, and
A. Sadeghi. MoCFI: A framework to mitigate control-flow attacks on smartphones. In
Proceedings of the Network and Distributed System Security Symposium, NDSS, 2012.

[15] L. Davi, A.-R. Sadeghi, D. Lehmann, and F. Monrose. Stitching the gadgets: On
the ineffectiveness of coarse-grained control-flow integrity protection. In 23rd USENIX
Security Symposium, August 2014.

[16] L. Davi, A.-R. Sadeghi, and M. Winandy. ROPdefender: A detection tool to defend
against return-oriented programming attacks. In Proceedings of the 6th ACM Sympo-
sium on Information, Computer and Communications Security, ASIACCS, 2011.

[17] U. Erlingsson, S. Valley, M. Abadi, M. Vrable, M. Budiu, and G. C. Necula. XFI: Soft-
ware guards for system address spaces. In Proceedings of the 7th USENIX Symposium
on Operating Systems Design and Implementation, OSDI, 2006.

[18] I. Fratric. Runtime prevention of return-oriented programming attacks.
http://ropguard.googlecode.com/svn/trunk/doc/ropguard.pdf, 2012.

[19] Goo Labs. Goo Labs homepage. labs.gooengine.com/videosphere, 2014.

[20] J. L. Henning. SPEC CPU2006 benchmark descriptions. SIGARCH Computer Archi-
tecture News, 34(4), September 2006.

[21] G. Hoglund. Advanced buffer overflow techniques. www.blackhat.com/

presentations/bh-asia-00/greg/greg-asia-00-stalking.ppt, 2000. Black Hat
Asia.

[22] D. Jang, Z. Tatlock, and S. Lerner. SafeDispatch: Securing C++ virtual calls from
memory corruption attacks. In Proceedings of the 2014 Network and Distributed System
Security Symposium, NDSS, 2014.

[23] V. Kiriansky, D. Bruening, and S. Amarasinghe. Secure execution via program shep-
herding. In Proceedings of the 11th USENIX Security Symposium, USENIX Security,
2002.

[24] S. McCamant and G. Morrisett. Evaluating SFI for a CISC architecture. In Proceedings
of the 15th USENIX Security Symposium, USENIX Security, 2006.

55

labs.gooengine.com/videosphere
www.blackhat.com/presentations/bh-asia-00/greg/greg-asia-00-stalking.ppt
www.blackhat.com/presentations/bh-asia-00/greg/greg-asia-00-stalking.ppt

[25] Microsoft. A detailed description of the data execution prevention (DEP) feature in
Windows XP Service Pack 2, Windows XP Tablet PC Edition 2005, and Windows
Server 2003. support.microsoft.com/kb/875352.

[26] Microsoft. Vulnerability in Internet Explorer could allow remote code execution.
technet.microsoft.com/en-us/security/advisory/961051, 2008.

[27] Microsoft. Microsoft bounty programs. msdn.microsoft.com/en-us/library/

dn425036.aspx, 2013.

[28] Microsoft. How to enable SEHOP in Windows. support.microsoft.com/kb/956607/
en-US, 2014.

[29] Mitre. CVE database. cve.mitre.org/, 2014.

[30] H. D. Moore. Microsoft Internet Explorer data binding memory corruption.
packetstormsecurity.com/files/86162/, 2010.

[31] Offensive Security. Exploit database. www.exploit-db.com/, 2014.

[32] OSVDB. Open sourced vulnerability database. osvdb.com/, 2014.

[33] V. Pappas, M. Polychronakis, and A. D. Keromytis. Smashing the gadgets: Hindering
return-oriented programming using in-place code randomization. In Proceedings of the
2012 IEEE Symposium on Security and Privacy, SP, 2012.

[34] V. Pappas, M. Polychronakis, and A. D. Keromytis. Transparent ROP exploit mitiga-
tion using indirect branch tracing. In Proceedings of the 22nd USENIX Conference on
Security, SEC, 2013.

[35] F. Peng, Z. Deng, X. Zhang, D. Xu, Z. Lin, and Z. Su. X-Force: Force-executing binary
programs for security applications. In 23rd USENIX Security Symposium, San Diego,
CA, Aug. 2014. USENIX Association.

[36] J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe, J. Bachrach, M. Carbin, C. Pacheco,
F. Sherwood, S. Sidiroglou, G. Sullivan, W.-F. Wong, Y. Zibin, M. D. Ernst, and
M. Rinard. Automatically patching errors in deployed software. In Proceedings of the
ACM SIGOPS 22nd Symposium on Operating Systems Principles, SOSP, 2009.

[37] R. Roemer, E. Buchanan, H. Shacham, and S. Savage. Return-oriented programming:
Systems, languages and applications. ACM Transactions on Information and System
Security, 15(1), March 2012.

[38] D. D. Sandeep Bhatkar and R. Sekar. Address obfuscation: An efficient approach to
combat a broad range of memory error exploits. In Proceedings of the 12th USENIX
Security Symposium, USENIX Security, 2003.

[39] F. Schuster, T. Tendyck, J. Pewny, A. Maa, M. Steegmanns, M. Contag, and T. Holz.
Evaluating the effectiveness of current antiROP defenses. In Research in Attacks, In-
trusions, and Defenses - 17th International Symposium, RAID 2014. Springer, 2014.

56

support.microsoft.com/kb/875352
technet.microsoft.com/en-us/security/advisory/961051
msdn.microsoft.com/en-us/library/dn425036.aspx
msdn.microsoft.com/en-us/library/dn425036.aspx
support.microsoft.com/kb/956607/en-US
support.microsoft.com/kb/956607/en-US
cve.mitre.org/
packetstormsecurity.com/files/86162/
www.exploit-db.com/
osvdb.com/

[40] H. Shacham. The geometry of innocent flesh on the bone: Return-into-libc without
function calls (on the x86). In Proceedings of the 14th ACM Conference on Computer
and Communications Security, CCS, 2007.

[41] M. Sparks. Google offers $2.7m bounty to hackers. www.telegraph.co.uk/technology/
google/10601907/Google-offers-2.7m-bounty-to-hackers.html, 2014.

[42] L. Szekeres, M. Payer, T. Wei, and D. Song. Sok: Eternal war in memory. In Proceedings
of the 2013 IEEE Symposium on Security and Privacy, 2013.

[43] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, Úlfar Erlingsson, L. Lozano, and
G. Pike. Enforcing forward-edge control-flow integrity in GCC & LLVM. In 23rd
USENIX Security Symposium, Security, San Diego, CA, Aug. 2014. USENIX Associa-
tion.

[44] USENIX. Non-Control-Data Attacks Are Realistic Threats. USENIX, August 2005.
Source code of attack programs can be obtained from the attached txt file.

[45] S. Vogl, R. Gawlik, B. Garmany, T. Kittel, J. Pfoh, C. Eckert, and T. Holz. Dynamic
hooks: Hiding control flow changes within non-control data. In 23rd USENIX Security
Symposium, San Diego, CA, Aug. 2014. USENIX Association.

[46] Y. Xia, Y. Liu, H. Chen, and B. Zang. CFIMon: Detecting violation of control flow
integrity using performance counters. In Proceedings of the 2012 Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, DSN, 2012.

[47] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Orm, S. Okasaka, N. Narula,
N. Fullagar, and G. Inc. Native client: A sandbox for portable, untrusted x86 native
code. In Proceedings of the 2007 IEEE Symposium on Security and Privacy, SP, 2009.

[48] C. Zhang, T. Wei, Z. Chen, L. Duan, S. McCamant, L. Szekeres, D. Song, and W. Zou.
Practical control flow integrity & randomization for binary executables. In Proceedings
of IEEE Symposium on Security and Privacy, SP, 2013.

[49] M. Zhang and R. Sekar. Control flow integrity for COTS binaries. In USENIX Security
Symposium, USENIX Security, 2013.

57

www.telegraph.co.uk/technology/google/10601907/Google-offers-2.7m-bounty-to-hackers.html
www.telegraph.co.uk/technology/google/10601907/Google-offers-2.7m-bounty-to-hackers.html

Appendix A

High-Risk System Calls

NtAddBootEntry ZwRestoreKey

ZwAddDriverEntry NtResumeProcess

ZwAlertResumeThread ZwResumeThread

ZwCreateFile NtSaveKey{,Ex}
ZwCreateKey NtSetBootEntryOrder

ZwCreateProcess{,Ex} ZwSetBootOptions

ZwCreateThread{,Ex} ZwSetDriverEntryOrder

NtCreateUserProcess NtSetEaFile

ZwDeleteBootEntry NtSetInformationFile

ZwDeleteDriverEntry ZwSetInformationProcess

ZwDeleteFile NtSetSecurityObject

NtDeleteKey NtSetSystemEnvironmentValue{,Ex}
ZwDeleteValueKey NtSetSystemInformation

ZwDeviceIoControlFile ZwSetSystemPowerState

ZwFsControlFile ZwSetSystemTime

ZwLoadKey{,2,Ex} ZwSetValueKey

ZwModifyBootEntry ZwShutdownSystem

ZwModifyDriverEntry NtSuspendProcess

ZwOpenProcess NtSuspendThread

ZwProtectVirtualMemory NtTerminateProcess

ZwRaiseException ZwUnloadDriver

ZwRaiseHardError ZwUnloadKey{,2,Ex}
ZwRenameKey ZwWriteFile

ZwReplaceKey NtWriteFileGather

Figure A.1: Syscalls for which DCFI sets the minimum τto-sys(ind) to zero because a single
invocation could directly damage the system.

58

Chrome Outlook

Predicate 1
2 Training All Training Test 1

2 Training All Training Test

new-br(ind) 113 ± 96 16.1 ± 13.2 5.23 ± 4.27 1k ± 908 537 ± 345 15.4 ± 5.8

new-br(susp-ind) 29.4 ± 24.5 4.24 ± 3.49 2.10 ± 1.76 362 ± 272 161 ± 103 5.36 ± 2.22

new-br(ur) 1.99 ± 1.93 0.86 ± 0.85 0.02 ± 0.02 153 ± 127 51.2 ± 45.4 0.73 ± 0.65

new-br(gen-perm) 0.00 ± 0.00 0.02 ± 0.02 0.15 ± 0.13 2.17 ± 1.91 1.05 ± 1.00 0.64 ± 0.45

new-br(gen-write) 0.00 ± 0.00 0.02 ± 0.02 0.01 ± 0.01 1.78 ± 1.51 0.92 ± 0.79 0.36 ± 0.25

to-sys(new-br(ind), 0x15) 1.00 ± 0.99 2.31 ± 2.26 0.27 ± 0.26 155 ± 145 76 ± 64 0.09 ± 0.09

to-sys(new-br(ind), 0x25) 0.01 ± 0.01 5.7 ± 5.5 0.23 ± 0.23 1.78 ± 1.67 0.86 ± 0.74 0.09 ± 0.09

to-sys(new-br(ind), 0x47) none 0.11 ± 0.10 0.00 ± 0.00 1.89 ± 1.78 0.92 ± 0.78 none

to-sys(new-br(ind), 0x4d) none 0.04 ± 0.04 9.8 ± 9.8 2.78 ± 1.34 1.73 ± 0.81 1.00 ± 0.30

to-sys(new-br(ind), 0x52) 0.02 ± 0.02 0.31 ± 0.30 none 82 ± 73 40.3 ± 37.4 none

to-sys(new-br(ind), 0xfe) none 0.01 ± 0.01 none 255 ± 255 124 ± 110 0.55 ± 0.55

PDF View PowerPoint View

Predicate 1
2 Training All Training Test 1

2 Training All Training Test

new-br(ind) 5.4 ± 5.1 4.19 ± 4.03 0.32 ± 0.31 2k ± 1k 148 ± 92 12.7 ± 5.7

new-br(susp-ind) 1.63 ± 1.55 1.28 ± 1.23 0.17 ± 0.17 639 ± 544 37.6 ± 21.7 3.76 ± 1.49

new-br(ur) 0.03 ± 0.03 0.02 ± 0.02 0.00 ± 0.00 1.33 ± 1.21 0.20 ± 0.18 0.88 ± 0.88

new-br(gen-perm) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

new-br(gen-write) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

to-sys(new-br(ind), 0x15) none 0.05 ± 0.03 0.14 ± 0.12 none none none

to-sys(new-br(ind), 0x25) none 0.05 ± 0.02 0.50 ± 0.25 none none none

to-sys(new-br(ind), 0x47) none 0.00 ± 0.00 none none none none

to-sys(new-br(ind), 0x4d) none 0.02 ± 0.01 0.03 ± 0.03 none none none

to-sys(new-br(ind), 0x52) none 0.00 ± 0.00 none none none none

to-sys(new-br(ind), 0xfe) none none none none none none

SciTE pdflatex

Predicate 1
2 Training All Training Test 1

2 Training All Training Test

new-br(ind) 216 ± 184 184 ± 138 76.4 ± 35.6 24.0 ± 23.5 9.8 ± 9.7 2.93 ± 1.38

new-br(susp-ind) 39.8 ± 32.4 32.2 ± 22.9 15.0 ± 4.7 2.90 ± 2.86 1.11 ± 1.10 2.93 ± 1.38

new-br(ur) 4.52 ± 3.84 27.2 ± 23.9 2.62 ± 2.25 0.53 ± 0.52 0.24 ± 0.24 0.00 ± 0.00

new-br(gen-perm) 0.74 ± 0.66 0.36 ± 0.34 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

new-br(gen-write) 0.22 ± 0.21 0.11 ± 0.11 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

to-sys(new-br(ind), 0x15) 0.89 ± 0.82 0.87 ± 0.71 0.75 ± 0.75 13.1 ± 3.8 6.55 ± 2.86 none

to-sys(new-br(ind), 0x25) 30.2 ± 27.9 15.3 ± 14.3 0.25 ± 0.25 0.29 ± 0.29 0.16 ± 0.15 none

to-sys(new-br(ind), 0x47) 7.1 ± 6.6 3.67 ± 3.41 0.50 ± 0.50 0.24 ± 0.24 0.13 ± 0.12 none

to-sys(new-br(ind), 0x4d) none 0.18 ± 0.17 0.50 ± 0.43 0.44 ± 0.44 0.22 ± 0.21 none

to-sys(new-br(ind), 0x52) 1.56 ± 1.44 0.93 ± 0.85 1.50 ± 1.36 6.16 ± 2.36 3.11 ± 1.52 none

to-sys(new-br(ind), 0xfe) none none none none none none

Figure A.2: Predicate convergence for all experiments not reported in Figure 7.1 (lower
counts are safer). Label “none” indicates that no instances of the predicate occurred in
any execution of the program, while “0.00 ± 0.00” indicates a minuscule quantity (0x15
NtAllocateVirtualMemory, 0x25 NtMapViewOfSection, 0x47 NtCreateSection, 0x4d Zw-
ProtectVirtualMemory, 0x52 ZwCreateFile, 0xfe NtOpenThread).

59

System Call # System Call # System Call
0x44 NtAddAtom* 0xF0 NtOpenIoCompletion 0x185 NtUnloadKey
0x66 NtAddBootEntry 0xF1 NtOpenJobObject 0x187 NtUnloadKeyEx
0x68 NtAdjustGroupsToken 0xF5 NtOpenKeyedEvent 0x188 NtUnlockFile
0x6C NtAllocateReserveObject 0xF7 NtOpenObjectAuditAlarm 0x18A NtVdmControl
0x15 NtAllocateVirtualMemory 0xFB NtOpenSemaphore 0x18E NtWaitHighEventPair
0x70 NtAlpcCancelMessage 0xFC NtOpenSession 0x18F NtWaitLowEventPair
0x72 NtAlpcCreatePort* 0xFE NtOpenThread 0x197 NtWow64CsrCaptureMessageBuffer
0x73 NtAlpcCreatePortSection* 0x21 NtOpenThreadToken* 0x191 NtWow64CsrClientConnectToServer
0x74 NtAlpcCreateResourceReserve* 0xFF NtOpenTimer 0x195 NtWow64CsrFreeCaptureBuffer
0x75 NtAlpcCreateSectionView* 0x100 NtOpenTransaction 0x192 NtWow64CsrIdentifyAlertableThread
0x76 NtAlpcCreateSecurityContext* 0x106 NtPrepareEnlistment 0x19A NtWow64CsrVerifyRegion
0x77 NtAlpcDeletePortSection* 0x103 NtPrePrepareComplete 0x18 NtWriteFileGather*
0x79 NtAlpcDeleteSectionView* 0x104 NtPrePrepareEnlistment 0x37 NtWriteVirtualMemory*
0x7A NtAlpcDeleteSecurityContext 0x107 NtPrivilegeCheck 0x60 ZwAcceptConnectPort
0x7B NtAlpcDisconnectPort 0x109 NtPrivilegedServiceAuditAlarm 0x61 ZwAccessCheck*
0x7D NtAlpcOpenSenderProcess 0x132 NtRecoverEnlistment 0x26 ZwAccessCheckAndAuditAlarm
0x81 NtAlpcRevokeSecurityContext 0x134 NtRecoverTransactionManager 0x62 ZwAccessCheckByType*
0x49 NtApphelpCacheControl* 0x135 NtRegisterProtocolAddressInformation 0x56 ZwAccessCheckByTypeAndAuditAlarm
0x86 NtCancelIoFileEx* 0x7 NtReleaseSemaphore* 0x63 ZwAccessCheckByTypeResultList
0x5E NtCancelTimer 0x139 NtRemoveIoCompletionEx 0x64 ZwAccessCheckByTypeResultListAndAuditAlarm
0x38 NtCloseObjectAuditAlarm 0x13C NtRenameTransactionManager 0x67 ZwAddDriverEntry
0x88 NtCommitComplete 0x13E NtReplacePartitionUnit 0x3E ZwAdjustPrivilegesToken
0x8A NtCommitTransaction 0x9 NtReplyPort* 0x69 ZwAlertResumeThread
0x8B NtCompactKeys 0x8 NtReplyWaitReceivePort* 0x6B ZwAllocateLocallyUniqueId
0x8C NtCompareTokens 0x28 NtReplyWaitReceivePortEx 0x6D ZwAllocateUserPhysicalPages
0x8E NtCompressKey 0x13F NtReplyWaitReplyPort 0x6E ZwAllocateUuids
0x40 NtContinue* 0x140 NtRequestPort 0x6F ZwAlpcAcceptConnectPort
0x92 NtCreateEnlistment 0x1F NtRequestWaitReplyPort 0x71 ZwAlpcConnectPort*
0x45 NtCreateEvent* 0x144 NtResumeProcess 0x78 ZwAlpcDeleteResourceReserve
0x93 NtCreateEventPair 0x145 NtRollbackComplete 0x7C ZwAlpcImpersonateClientOfPort
0x94 NtCreateIoCompletion 0x149 NtSaveKey 0x7E ZwAlpcOpenSenderThread
0x96 NtCreateJobSet 0x14B NtSaveMergedKeys 0x82 ZwAlpcSendWaitReceivePort*
0x98 NtCreateKeyedEvent 0x14D NtSerializeBoot 0x83 ZwAlpcSetInformation*
0x99 NtCreateMailslotFile 0x14E NtSetBootEntryOrder 0x84 ZwAreMappedFilesTheSame*
0x9A NtCreateMutant 0x152 NtSetDefaultHardErrorPort 0x85 ZwAssignProcessToJobObject
0x9C NtCreatePagingFile 0x154 NtSetDefaultUILanguage 0x5A ZwCancelIoFile
0xA1 NtCreateProfileEx 0x156 NtSetEaFile 0x87 ZwCancelSynchronousIoFile
0x47 NtCreateSection 0x159 NtSetInformationDebugObject 0x89 ZwCommitEnlistment
0xA6 NtCreateTimer 0x15A NtSetInformationEnlistment 0x8D ZwCompleteConnectPort
0xA7 NtCreateToken 0x24 NtSetInformationFile* 0x8F ZwConnectPort
0xA8 NtCreateTransaction 0x15C NtSetInformationKey 0x90 ZwCreateDebugObject
0xAA NtCreateUserProcess 0x59 NtSetInformationObject 0x91 ZwCreateDirectoryObject
0xAB NtCreateWaitablePort 0x15E NtSetInformationToken 0x52 ZwCreateFile
0xAD NtDebugActiveProcess 0x160 NtSetInformationTransactionManager 0x95 ZwCreateJobObject
0xAE NtDebugContinue 0x161 NtSetInformationWorkerFactory* 0x1A ZwCreateKey
0x31 NtDelayExecution* 0x162 NtSetIntervalProfile 0x97 ZwCreateKeyTransacted
0xB3 NtDeleteKey 0x165 NtSetLdtEntries 0x9B ZwCreateNamedPipeFile
0xB4 NtDeleteObjectAuditAlarm 0x166 NtSetLowEventPair 0x9D ZwCreatePort
0xB5 NtDeletePrivateNamespace 0x168 NtSetQuotaInformationFile 0x9E ZwCreatePrivateNamespace
0x39 NtDuplicateObject* 0x169 NtSetSecurityObject 0x9F ZwCreateProcess
0xBA NtEnableLastKnownGood 0x16A NtSetSystemEnvironmentValue 0x4A ZwCreateProcessEx
0xC1 NtFlushInstallUILanguage 0x16C NtSetSystemInformation 0xA0 ZwCreateProfile
0xC3 NtFlushKey 0x16F NtSetThreadExecutionState 0xA2 ZwCreateResourceManager
0xC5 NtFlushVirtualMemory 0x5F NtSetTimer 0xA3 ZwCreateSemaphore
0x1B NtFreeVirtualMemory 0x170 NtSetTimerEx* 0xA4 ZwCreateSymbolicLinkObject
0xC9 NtFreezeTransactions 0x171 NtSetTimerResolution* 0x4B ZwCreateThread
0x36 NtFsControlFile* 0x172 NtSetUuidSeed 0xA5 ZwCreateThreadEx
0xD7 NtInitializeRegistry 0x5D NtSetValueKey 0xA9 ZwCreateTransactionManager
0xD8 NtInitiatePowerAction 0x178 NtStartProfile 0xAC ZwCreateWorkerFactory
0xDB NtListenPort 0x17A NtSuspendProcess 0xAF ZwDeleteAtom
0xDC NtLoadDriver 0x17B NtSuspendThread 0xB0 ZwDeleteBootEntry
0xE2 NtLockRegistryKey 0x17C NtSystemDebugControl 0xB1 ZwDeleteDriverEntry
0xE6 NtMapCMFModule 0x17D NtTerminateJobObject 0xB2 ZwDeleteFile
0x25 NtMapViewOfSection 0x29 NtTerminateProcess 0xB6 ZwDeleteValueKey
0xEA NtNotifyChangeDirectoryFile 0x50 NtTerminateThread 0x4 ZwDeviceIoControlFile*
0xEB NtNotifyChangeKey 0x180 NtThawTransactions 0xB7 ZwDisableLastKnownGood
0xED NtNotifyChangeSession 0x5B NtTraceEvent 0xB8 ZwDisplayString
0x55 NtOpenDirectoryObject 0x182 NtTranslateFilePath 0xB9 ZwDrawText
0x3D NtOpenEvent 0x183 NtUmsThreadYield 0x3F ZwDuplicateToken
0x30 NtOpenFile* 0x184 NtUnloadDriver 0xBF ZwExtendSection

Figure A.3: System calls monitored by DCFI. Numbers correspond to Windows 7 x64 SP
1. Predicate to-sys(new-br(ind), n) occurred for those system calls marked with a “*”, but
these were not reported because they did not occur during the trial, or are not interesting
in the combination observed. (continued on next page)

60

System Call # System Call # System Call
0xC0 ZwFilterToken 0x101 ZwOpenTransactionManager 0x15B ZwSetInformationJobObject
0x48 ZwFlushBuffersFile* 0x102 ZwPlugPlayControl 0x19 ZwSetInformationProcess*
0xC2 ZwFlushInstructionCache 0x5C ZwPowerInformation 0x15D ZwSetInformationResourceManager
0xC6 ZwFlushWriteBuffer 0x105 ZwPrepareComplete 0xA ZwSetInformationThread
0xC7 ZwFreeUserPhysicalPages 0x108 ZwPrivilegeObjectAuditAlarm 0x15F ZwSetInformationTransaction
0xC8 ZwFreezeRegistry 0x10A ZwPropagationComplete 0x163 ZwSetIoCompletion*
0xD4 ZwImpersonateAnonymousToken 0x10B ZwPropagationFailed 0x164 ZwSetIoCompletionEx
0x1C ZwImpersonateClientOfPort 0x4D ZwProtectVirtualMemory 0x167 ZwSetLowWaitHighEventPair
0xD5 ZwImpersonateThread 0x10C ZwPulseEvent 0x16B ZwSetSystemEnvironmentValueEx
0xD6 ZwInitializeNlsFiles 0x42 ZwQueueApcThread 0x16D ZwSetSystemPowerState
0xDD ZwLoadKey 0x12E ZwQueueApcThreadEx 0x16E ZwSetSystemTime
0xDE ZwLoadKey2 0x12F ZwRaiseException 0x173 ZwSetVolumeInformationFile
0xDF ZwLoadKeyEx 0x130 ZwRaiseHardError 0x174 ZwShutdownSystem
0xE0 ZwLockFile 0x133 ZwRecoverResourceManager 0x175 ZwShutdownWorkerFactory
0xE1 ZwLockProductActivationKeys 0x136 ZwRegisterThreadTerminatePort 0x176 ZwSignalAndWaitForSingleObject*
0xE3 ZwLockVirtualMemory 0x1D ZwReleaseMutant 0x177 ZwSinglePhaseReject
0xE4 ZwMakePermanentObject 0x13A ZwRemoveProcessDebug 0x179 ZwStopProfile
0xE5 ZwMakeTemporaryObject 0x13B ZwRenameKey 0x17E ZwTestAlert
0xE7 ZwMapUserPhysicalPages 0x13D ZwReplaceKey 0x17F ZwThawRegistry
0xE8 ZwModifyBootEntry 0x141 ZwResetEvent 0x181 ZwTraceControl*
0xE9 ZwModifyDriverEntry 0x142 ZwResetWriteWatch 0x186 ZwUnloadKey2
0xEC ZwNotifyChangeMultipleKeys 0x143 ZwRestoreKey 0x189 ZwUnlockVirtualMemory
0xEE ZwOpenEnlistment 0x4F ZwResumeThread 0x27 ZwUnmapViewOfSection*
0xEF ZwOpenEventPair 0x146 ZwRollbackEnlistment 0x18B ZwWaitForDebugEvent
0xF ZwOpenKey 0x147 ZwRollbackTransaction 0x17 ZwWaitForMultipleObjects32*
0xF3 ZwOpenKeyTransacted 0x148 ZwRollforwardTransactionManager 0x1A3 ZwWow64CallFunction64
0xF4 ZwOpenKeyTransactedEx 0x14A ZwSaveKeyEx 0x194 ZwWow64CsrAllocateCaptureBuffer
0xF6 ZwOpenMutant 0x14C ZwSecureConnectPort 0x196 ZwWow64CsrAllocateMessagePointer
0xF8 ZwOpenPrivateNamespace 0x14F ZwSetBootOptions 0x198 ZwWow64CsrCaptureMessageString
0x23 ZwOpenProcess* 0x150 ZwSetContextThread 0x193 ZwWow64CsrClientCallServer
0xF9 ZwOpenProcessToken 0x151 ZwSetDebugFilterState 0x19B ZwWow64DebuggerCall
0x2D ZwOpenProcessTokenEx 0x153 ZwSetDefaultLocale 0x19E ZwWow64InterlockedPopEntrySList
0xFA ZwOpenResourceManager 0x155 ZwSetDriverEntryOrder 0x1A1 ZwWow64WriteVirtualMemory64
0x34 ZwOpenSection* 0x2A ZwSetEventBoostPriority 0x5 ZwWriteFile*
0xFD ZwOpenSymbolicLinkObject 0x157 ZwSetHighEventPair 0x54 ZwWriteRequestData
0x2C ZwOpenThreadTokenEx 0x158 ZwSetHighWaitLowEventPair 0x43 ZwYieldExecution

Figure A.4: (continued) System calls monitored by DCFI. Numbers correspond to Windows
7 x64 SP 1. Predicate to-sys(new-br(ind), n) occurred for those system calls marked with
a “*”, but these were not reported because they did not occur during the trial, or are not
interesting in the combination observed.

61

	LIST OF FIGURES
	ACKNOWLEDGMENTS
	ABSTRACT OF THE THESIS
	Introduction
	Control Flow Integrity

	Typical Usage Scenario
	The DCFI Approach
	Anomaly Classification
	Indirect Branch Caching
	Return Instructions
	Modular API Preservation
	Exported Functions
	Callback Functions

	Hash Canonicalization

	Alarm Configuration
	Statistical Modeling

	Dynamically Generated Code
	Code Generation Constraints
	Monitoring Dynamic Code Generation
	Dynamic Code Events
	Dynamic Module Discovery
	Shadow Page Table
	Distinguishing JIT Code from Trampolines

	Attacks
	Direct Code Modification
	Return Oriented Programming
	Indirect Branch Manipulation
	Dynamic Code Generation Attacks
	Trampoline Injection
	Injection into JIT Code

	Non-Control Data Attacks
	Incremental Attacks

	Evaluation
	Eating Our Own Dog Food
	Everyday Email with Outlook
	Browsing with Google Chrome
	Writing This Paper

	Convergence for Large Applications
	Creating Microsoft Word Documents
	Creating PowerPoint Presentations
	Creating Excel Worksheets
	Viewing PDFs with Adobe Reader
	Giving PowerPoint Presentations

	Exploits
	OSVDB-ID 104062 Notepad++
	OSVDB-ID 93465 Adrenalin Player
	CVE-2014-1610 MediaWiki
	CVE-2006-2465 mp3info

	Performance

	Related Work
	Conclusion
	Bibliography
	

